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Summary

“Optimization” is widely taught in departments such as operations re-
search, industrial engineering, and sometimes applied math, as focusing
on complex, multidimensional (and often very high-dimensional) prob-
lems that can be formulated as linear, nonlinear or integer programs.
Introductory courses are often centered on linear programming, the
simplex algorithm and duality theory.

“Optimization” should be the study of making good decisions, and
should start with the simplest (but nontrivial) decisions that are familiar
to every student. Linear programs solve a very tiny fraction of decision
problems, even in areas such as business where linear programming
is often taught. I will note that almost no-one in business without
formal training in linear programming has even heard the term. More
distressingly, only a fraction of undergraduates or masters students
who take linear programming ever solve a linear program (even with
a package). And no-one outside a tiny core of specialists has ever
programmed the simplex algorithm.

This document outlines a new way of teaching optimization that
starts with some basic machine learning problems that are very familiar
today given the attention that “AI” has attracted. Few people recognize
that machine learning is actually solving a stochastic optimization
problem by assuming we are given a training dataset. I leverage this
idea to introduce students to some simple sequential decision problems
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ii Summary

that involve decisions that everyone faces. We make these decisions
using methods (policies) that range from simple, parameterized rules
or functions that can be optimized exactly as we solve our machine
learning problem.

I then present a series of topics that progress from simple problems
that are familiar to everyone, eventually reaching topics such as linear,
integer, and nonlinear programming. However, I minimize the attention
given to the design of algorithms given that there are widely available
packages (it will be the rare beginning student who ever transitions to
an algorithmic designer). Instead, I focus on modeling and evaluating
the solution which is typically done in the presence of uncertainty.

This book is aimed at faculty who are already teaching an introduc-
tory optimization course, or who have a background in optimization
and are designing an optimization course. It is also useful to anyone
with conventional training in optimization, since it will show you how to
think about optimization differently. The presentation consists of a set
of topics to guide the design of lectures, leaving considerable flexibility
in terms of how much emphasis is placed on individual topics.

The presentation starts with sequential problems, since these are
the simplest nontrivial decision problems that are most familiar to
students. It then transitions to classical static optimization problems
(linear, integer and nonlinear programming) but in each case we show
how static optimization models can often be viewed as methods for
making decisions in a sequential setting.
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1
Introduction

Making decisions is a universal human activity, something we all have
done since we are born. Making good decisions is how we perform better,
whether we are running a business, managing a health or energy system,
designing and controlling a supply chain, inventing new products and
materials, or creating new drugs. Optimization, I claim, is the science
of making the best decisions that we can.

The academic community has largely limited the scope of optimiza-
tion to pet methods for different communities. Industrial engineering
and operations research equate optimization with linear programming
(as a starter), progressing into even more specialized fields such as non-
linear and integer programming. Dynamic programming is considered a
very advanced topic, rarely taught at the undergraduate level. Faculty
in engineering (mechanical, electrical, chemical) and economics focus
on the field of optimal control, a close cousin of dynamic programming,
typically using fairly advanced mathematics. Computer scientists will
either study combinatorics (a close cousin of integer programming) or,
more recently, reinforcement learning (a cousin of dynamic program-
ming). All of these approaches to optimization are typically taught at a
fairly advanced level.
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Introduction 3

I am going to suggest a new way to teach introductory optimization
to undergraduates and masters that is far more useful and addresses
the modeling and algorithmic challenges that arise in decision problems
that occur in practice. To do this, I am going to take on two of the
titans of optimization: George Dantzig and Richard Bellman. In this
course, we will still teach linear programming, but it is demoted to a
method that is used only for a small number of problems, and while
I will illustrate the simplex algorithm using a network problem (where
the steps of the simplex algorithm can be described visually), I do
not drag students through the simplex algorithm for general linear
programs.

By contrast, we will pay considerably more attention to sequential
decision problems (also known as dynamic programs), but we will largely
ignore Bellman’s equation (or Hamilton-Jacobi equations). Also, we note
that the origins of linear programming were in the context of sequential
decision problems, and we will make the distinction between linear
programming as a static problem, and as a policy for sequential decision
problems. We do the same for integer and nonlinear programming.

My approach will be to start with the simplest nontrivial problems,
and progress to more complex settings. We start with some basic
machine learning problems (with linear and nonlinear models) that lay
the foundation for modeling and solving sequential decision problems
(SDPs). SDPs, which usually involve making relatively simple decisions
over time, are problems that are pervasive in business, economics,
engineering, the sciences, and even everyday life. SDPs include problems
where the decision may be binary (which web page design to use, when
to stop and sell an asset), discrete (choosing the best catalyst, drug,
product, path, supplier, employee, . . . ), and scalar continuous (finding
the best price, dosage, temperature, budget). We make decisions using
the three classes of policies that are widely used in practice (albeit in
an ad hoc way), but show students how to properly model and tune
these policies. And we do not use Bellman’s equation other than a
brief illustration in a shortest path problem. Bellman requires a level
of sophistication for both modeling and algorithmic work that is not
suitable for an introductory course, and it is only useful for a very
narrow subset of problems.



4 Introduction

In the process of using sequential decision problems, we are going
to have to introduce the dimension of modeling sequential information
processes. While this potentially opens a pandora’s box into the complex
arena of stochastic modeling, we avoid this by exclusively working with
random samples, just as is done with machine learning where a training
dataset is a sample of the random observations.

The course is aimed at undergraduates (or masters) using a minimal
amount of calculus or linear algebra. We use very simple Monte Carlo
simulation, but do not require a course in probability or statistics. There
are many opportunities for a faculty member to adjust the examples and
scope of the material to their own students. However, we urge faculty
to resist the typical style of teaching this material which emphasizes the
methods that have a strong theoretical foundation. This material can
be taught at a very advanced level, but this course focuses on teaching
students how to think about making decisions.



2
Audience

This book was originally written to help schools teaching introductory
optimization courses adjust their pedagogical approach to a modern
style that is much more useful and relevant to students. For this purpose,
I discuss below the audience from three perspectives: what departments
can use this approach, the students that I am targeting, and the faculty
who might be interested in teaching this.

A fourth audience is people who have already taken a traditional
course in (typically deterministic) optimization. Simply reading these
notes will provide a different perspective that draws on the skills you
have already learned.

2.1 Academic Departments

I think the style of this course can be used in any department that
involves making quantifiable decisions. This includes engineering (all
departments), the physical sciences (laboratories are full of sequential
decision problems), the social sciences, economics, business schools,
politics, and psychology.

“Optimization” (linear, nonlinear and integer programming) is tra-
ditionally taught in operations research, industrial engineering and

5



6 Audience

applied math. In engineering there is much more emphasis on control
theory (a form of sequential decision problem), while economics (along
with advanced courses in OR and IE) will emphasize dynamic program-
ming. Computer science for the past decade has taught reinforcement
learning, a field that addresses “Markov decision processes” which is
just a different form of control problem. These courses all tend to be
taught with a moderate to high level of mathematical sophistication,
ignoring the reality that virtually everyone needs to solve sequential
decision problems.

I will note that none of these classical courses on optimization
traditionally deal with what I call “optimal learning” problems, which
are problems where the decision controls what information to collect
to improve your understanding of a process so you can make better
decisions in the future. Optimal learning problems arise in laboratory
experimentation (either physical experiments or computer simulations)
and a host of field settings (what is the best product to recommend,
what is the best price to charge, what is the best medical treatment,
what process to use to make a material, . . . ). I taught a course called
Optimal Learning for 10 years at Princeton at the undergraduate level.
The course was quite popular, and deals with problems that are much
more familiar to our students than linear programs.

The course I am proposing covers both static problems (such as
linear programs) as well as sequential decision problems (which includes
dynamic programming, optimal control and reinforcement learning).
Topics like linear programming can be ignored (for fields where these
problems simply do not arise), covered very briefly (a single lecture), or
extensively (some courses will spend 4–6 weeks just on linear program-
ming).

The real novelty of our teaching style is how we approach sequential
decision problems, which arise in virtually every problem domain, and
yet are often ignored in introductory courses in optimization. Our
approach to teaching this topic emphasizes practical solution methods
that reflect what is used in practice but placed in a framework that
formalizes the evaluation and tuning of policies.

Our point of departure from traditional approaches for teaching
sequential decision problems is that we largely ignore methods based
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on solving Bellman’s equation (known as Hamilton-Jacobi equations
in the optimal control field). Methods based on HJB equations are
mathematically elegant, but only apply to a very narrow set of problems,
which is a reason why people routinely make decisions over time who
have never even heard of HJB equations.

[Side note: I spent 20 years of my career, and wrote a popular
500-page book on approximate dynamic programming (also known as
reinforcement learning) which is a field that focuses on methods for
solving HJB equations approximately. My conclusion that this approach
has limited practical value is based on many years of research.]

2.2 Students

The course is aimed at undergraduates or masters students with no
prior training in optimization. The following skills will be useful:

• Students will need some calculus, but only at the level of under-
standing a derivative and gradient (which, to be honest, can be
presented very quickly). When we do use derivatives/gradients,
these can often be estimated numerically instead of using the
analytical formulas stressed in introductory calculus courses.

• We use a very modest amount of linear algebra – much less than
traditional courses in optimization. For example, there are perhaps
two places where we use the concept of an inverse of a matrix.
Students without any prior training in linear algebra could be
taught the basic idea of a vector and matrix in a short tutorial
session.

• We will occasionally use some very basic concepts from statistics,
but we will do this in a way that does not require a prior course in
statistics. For example, it is very easy to introduce a student to a
mean and variance. In this course there is no need for familiarity
with different probability distributions.
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2.3 Faculty

I am assuming that the faculty teaching this course are already trained in
the core fields of linear, nonlinear and integer programming if you wish to
cover this material, but there are entire fields (such as computer science)
where students are typically not introduced to linear programming.
These topics are covered, but not nearly in the depth that the faculty
member might remember from their own training. Times have changed,
and there is no longer a need to teach, for example, algorithms for
solving linear programs (packages will be used).

2.4 Students/Professionals with Prior Optimization Training

Reading (even skimming) these notes by someone who has already had
a course in (deterministic) optimization should change how they think
the solution of the optimization model should be evaluated. This means
appreciating that in many (most? almost all?) settings, deterministic
optimization models are actually policies (methods for making decisions)
that need to be evaluated over time, under uncertainty. This then opens
a door to improving the solution of their deterministic model in terms
of real-world performance.



3
Course Outline

This section provides a sketch of the course. The material is divided
into 11 topics, which are described in much more depth in Section 5.
Here, I summarize each of the topics, focusing on the development of
key concepts.

The course will transition from the simplest (but nontrivial) decision
problems to more complex settings. We will start with basic machine
learning problems partly because they are very familiar today, but also
because they are well motivated and easy to understand. The machine
learning problems will also lay the foundation for how we handle random
observations in sequential decision problems which are of fundamental
importance (since so many real problems are, in fact, sequential in
nature).

The lectures are organized to follow a natural progression from
simpler decisions (binary, discrete, continuous scalar) to more complex
ones (continuous vectors, integer variables, nonlinear functions). Our
emphasis is on formulating optimization models, including the critical
(but historically overlooked) problem of understanding how to handle
decision problems when they are made sequentially over time. We
present algorithms when one or both of the following applies:

9



10 Course Outline

• An understanding of the algorithm can help students appreciate
the behavior of the solution, even if they never implement an
algorithm.

• Students may need to program the algorithm if they are to solve
the problem (we limit these to relatively simpler algorithms).

This document presents the course as a series of “topics” that can
be adapted to the interests of the faculty member, and the background
and interests of the students. Most topics can be presented in 1 to 3
lectures, but some topics can be extended to as many as 6–8 lectures
depending on the interests of the faculty member and the skills and
background of the students.

Below I will list each topic and describe the key points being covered,
emphasizing the transition from simpler to more complex problems.
This is a sharp departure from introductory courses in “optimization”
that turn out to be courses in “linear programming with extensions.”

• Topic 1 – Machine learning – We start with fitting a linear model
to introduce the idea of solving a convex optimization problem
exactly. Students should learn the minimum amount of data
required to fit a linear model (for example, n ≥ p) in addition
to other conditions on the data. We then transition to nonlinear
models and introduce gradient search and the issue of multiple
optima (a major topic with neural networks that are so prominent
today). Also note that with nonlinear estimation, we no longer
require n ≥ p, implying that we can fit, say, a neural network
with 100 million parameters with a single datapoint.

A particularly important piece of pedagogy in Topic 1 is the idea
(often overlooked) that estimation problems are, in fact, stochastic
optimization problems, where random variables are replaced with
sampled observations. This is going to set the style for handling
uncertainty which will run throughout our handling of sequential
decision problems. We note that this style allows students to
do “stochastic optimization” without any training in stochastic
optimization, probability, or even a course in statistics.
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• Topic 2 – Sequential decision problems – We next introduce the
concept of a sequential decision problem, and then use some
important and visible problems to illustrate how to model these.
Most important is the concept of a policy which is a method (that
is, a function) for making decisions, that is controlled by tunable
parameters. This closely parallels fitting a model to data (as we do
in Topic 1). We start with a basic example for selling an asset that
uses historical data, and then transition to an inventory problem
where we need to randomly generate observations. This is done
using a very basic introduction to Monte Carlo sampling.

The policies we introduce are both forms of policy function approx-
imations (PFAs) which are widely used by individuals as well as
corporations. PFAs help us create a natural bridge to estimating
functions in machine learning, but students also learn how to set
up an objective function for sequential decision problems. This
skill will stay with us as we progress to more complex decision
problems.

• Topic 3 – Adaptive optimization – In this topic I use the newsven-
dor problem to introduce the idea of using sampled information to
compute a gradient. This is widely known as a stochastic gradient
in the literature, but the gradient is based on a sample, which
means we are taking the derivative of a deterministic function.
This problem will require generating random variables dynami-
cally rather than creating a sample in advance as we did in Topic 2.
It is important to recognize that while the newsvendor problem is
perhaps the most widely studied stochastic optimization problem,
the algorithm is quite simple, and outside of generating random
samples, all of the steps use deterministic methods.

• Topic 4 – Optimal learning – This is a topic where the optimization
problem is making decisions of what to observe, such as how a
patient responds to a drug, how many clicks a website attracts,
and the market demand for a product at a particular (discretized)
price (applications of this model are endless, and familiar to
everyone). We use a policy called interval estimation (a form
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of upper confidence bounding) that is very popular with tech
companies (e.g. Google and Facebook) for maximizing ad-clicks.
Optimal learning will also play a role any time we need to do
parameter tuning, which will turn out to be a common type of
optimization problem.

Upper confidence bounding policies represent a form of “cost func-
tion approximation” (CFA) where the policy for making decisions
has an imbedded optimization problem. For UCB policies, this
optimization problem involves a simple sort, but it introduces
the idea of a policy that involves solving an optimization prob-
lem to make a decision. This means we have an optimization
problem which requires sorting a set of estimates within a larger
optimization problem of tuning the parameter in the UCB policy.

• Topic 5 – Shortest path problems – Here we introduce our first
nontrivial static, deterministic optimization problem which is also
a very special form of linear program (but that comes later). This
is the only time we use Bellman’s equation in the course, although
there are problems (in Topic 10) where we could draw on Bellman
again.

After presenting the model and algorithm for a deterministic,
static shortest path problem, we then transition to show how
this can be used in a dynamic setting, as would happen if we
are modeling a path through a dynamic network. We show how
to model this problem, and then show how to create a classic
deterministic dynamic lookahead approximation (deterministic
DLA). We show how to evaluate the shortest path problem as a
policy, and how to parameterize it so that it works better in a
stochastic, dynamic environment.

We are going to copy this setting as we move into more general
optimization problems. We will start by presenting a basic, static
optimization problem (this could be a linear, nonlinear or integer
program), and then show how it is often used as a policy in a
dynamic setting. In my experience, the vast majority of “optimiza-
tion problems” are actually policies used in a sequential problem
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setting, something that is typically overlooked in standard texts
on optimization.

• Topic 6 – General concepts – We pause at this point to discuss
two important dimensions of sequential decision problems:

◦ Classes of policies – So far, we have illustrated four ways of
making decisions, each of which come from the four classes
of policies. These four classes cover every possible method
that we might use to make decisions, including any method
people are already using.

◦ Evaluating policies – The biggest difference between people
who make decisions in an ad hoc way versus someone with
formal training is their understanding of the concept of a
policy, and how to evaluate it. In this topic (typically a single
lecture) we start by reviewing how we have evaluated policies
in topics 2 – 5. We then list different ways of evaluating
policies such as cumulative reward for online learning, and
final reward for learning in a lab. We also differentiate be-
tween expected performance versus risk. While the academic
literature deals with risk with a considerable amount of math-
ematical sophistication, we are going to show students how
to model risk in a way that can be easily computed in a
spreadsheet.

• Topic 7 – Linear programming – Here is where we introduce
linear programming. This can be done in a single lecture (which I
recommend for an introductory optimization course) or expanded
given the time available, interests of the students, and the interests
of the faculty member teaching the course.

Our preferred style for an introductory course is to teach the
idea of a linear program and then transition to the understanding
that “algorithms exist” for solving it. An in-depth presentation
of the simplex algorithm is simply not appropriate at this stage,
since no-one is ever going to implement their own simplex algo-
rithm. Modern implementations of the simplex algorithm use a
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variety of sophisticated strategies to improve performance; these
strategies are never discussed in textbook treatments of the sim-
plex algorithm, so it is not clear what a student is learning from
these streamlined presentations. In addition, production imple-
mentations might combine strategies such as dual simplex or even
interior point methods. This material is simply not appropriate
for an introductory course.
This said, we illustrate the simplex algorithm graphically using
a network problem which helps students understand, in a highly
visual way, the concept of a basis, pivoting, and most important,
dual variables. This can be done without any linear algebra, but
we do have a section where we present the simplex algorithm (for
a network problem) both graphically, and then algebraically. We
leave it to the instructor to decide which presentation best suits
their students.
We begin by presenting linear programming as the solution to a
static problem, but we then transition to using linear programming
as a policy for sequential decision problems. We suspect that
most linear programming applications arise in the context of
sequential decision problems (and this is certainly true of the
original motivating applications used by George Dantzig). I think
the recognition that linear programs are often used as policies for
sequential decision problems is one of the great failures of the math
programming community. Topic 8 illustrates how a deterministic
linear program might be used in a sequential inventory problem.

• Topic 8 – Dynamic inventory problem – Here we are going to copy
what we did for our dynamic shortest path problem but use the
context of an energy storage problem in a highly dynamic setting
with rolling forecasts (a topic that has been completely overlooked
in the operations research literature). This requires solving a series
of simple linear programs, even though the decision at a point
in time is a scalar (we get the LP because we are optimizing
over a planning horizon, which means our decision variable is
now a vector). The lookahead LP with be parameterized to help
mitigate the errors in the rolling forecasts, and we will show
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that this produces a much better result than using typical point
forecasts. The challenge, as always, will be the tuning, a problem
we first saw in the machine learning problem in Topic 1. We will
suggest a strategy that is fairly easy to implement.

• Topic 9 – Integer programming – Here we introduce the idea of
integer variables in the context of a facility location problem. As
with our shortest path problem, we will start with a simple, static
facility location problem. Then, Topic 10 shows how the static
model can be used as a policy in a fully sequential problem.

Optimization books tend to become drawn into the fairly sophis-
ticated algorithms required to solve integer programs. However,
since year 2000, commercial packages have conquered wide classes
of even very large integer programs, although some care has to be
used since there is a wide range of integer programming problems,
and some still require specialized algorithms. The best packages
(such as Gurobi and Cplex) can be dramatically better than free
software that students can download over the internet. As with
algorithms for linear programs, teaching algorithms for integer
programs is pointless for an introductory course – these algorithms
are quite sophisticated and no-one today would implement their
own. However, it is important for students to be able to recognize
which types of integer programming problems are likely to be
solvable with a general purpose package.

• Topic 10 – Dynamic facility location – As we did with linear
programming, we start by presenting a static integer programming
problem using facility location, and then extend it here to a
dynamic setting. We start by making the case that any facility
location problem would have to be implemented in a stochastic
environment. We separate the decision of where to locate facilities,
which is made using forecasted demands, and the “real world”
decisions of how to meet demands which are revealed after we
make the decision to locate facilities.

We then recognize that decisions to locate facilities are them-
selves decisions that are made over time, in the presence of the
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uncertainties about demands. We illustrate a few strategies for
solving the dynamic facility location problem.

• Topic 11 – Nonlinear programming – We have already seen nonlin-
ear programming in topic 1 when we fitted a nonlinear model, but
here we are going to address this rich topic in more depth. As with
linear and integer programming, we are going to present nonlinear
programming in two stages: first as a static problem, and then
as a policy in a fully sequential problem. Nonlinear programming
is a rich topic that can be introduced in a single lecture but can
span an entire course. It is up to the professor to decide how much
time to spend on this topic given the interests of the students.

We are going to introduce students to a quadratic programming
problem that arises when optimizing investments over a portfolio.
We will first introduce this problem in its classical formulation
as a static problem, and then transition to solving it sequentially
over time, treating it as a policy in a fully sequential decision
problem (based on actual practice on Wall St.). This will be a
sophisticated (but very real) extension of the asset selling problem
we introduced in Topic 2.



4
Readings

Many of the topics are organized around sequential decision problems
presented in

Warren Powell, Sequential Decision Analytics and Modeling, NOW
Press, 2022 (available for free download from https://tinyurl.com/
sdamodeling). Below I refer to this as “SDAM.”

Readings from SDAM are indicated at the beginning of each topic (or
subtopic).

Occasionally I refer to material in my graduate-level book:

Warren Powell, Reinforcement Learning and Stochastic Optimization,
Wiley, 2022 (see https://tinyurl.com/RLandSO/ for an overview). Below
I refer to this as “RLSO.”

RLSO is not appropriate for an introductory course such as this, but I
recommend that the instructor have a copy of the book.
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18 Readings

There are blocks of material on mature topics like linear, integer,
and nonlinear programming. I assume that any professor teaching a
course in optimization will already have a favorite book they like to
use for these topics. We encourage, for an introductory course like this,
putting more emphasis on describing what these problems are and how
they are used, with less emphasis on algorithms, especially when these
are widely available in packages.



5
Lectures

In this section I sketch out a sequence of topics that steadily transition
from relatively simple decision problems to more complex ones. There
is considerable flexibility in terms of how much time is spent on each
topic. For example, linear programming can easily be taught in a single
lecture (basically defining what a linear program is), but it can also
fill half a course. There are also topics on integer programming and
nonlinear programming which can also be taught in a single lecture,
but there are entire (graduate level) courses dedicated to each of these
topics. In an introductory course, I think students should be introduced
to these topics, but in a modest way.

Topic 0: Applications

It always helps to start an introductory course such as this with a series
of applications. This will be very dependent on the department where
the course is being taught. Below I give some illustrative applications
that I used when I was teaching this material.

• Machine learning problems – These require optimizing parameters
to make a model fit a training dataset.

19
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• Management of physical resources – Physical resources might be:

◦ People (hiring, firing, training, moving)
◦ Equipment (trucks, drones, robots, medical equipment, . . . )
◦ Facilities (building, leasing, closing, resizing)
◦ Product (planning inventories for retail sale, or parts used

in manufacturing)

• Management of financial resources – These include

◦ Planning cash reserves
◦ Making investments
◦ Arranging different financial instruments (loans, insurance

contracts, . . . )
◦ Setting budgets

• Information acquisition and communication

◦ Running experiments in a lab or the field
◦ Running medical tests
◦ Sending/sharing information about the status of a system

• Finding the best ways of making decisions

◦ Choosing the best method for making decisions
◦ Tuning parameters used by a method

These decision problems can come in two forms:

• Static problems – These are problems we solve once and then use
the solution

• Sequential decision problems – These are decisions that are made
repeatedly over time as new information is arriving.

Sequential decision problems are quite rich, and typically involve
relatively simple decisions. However, the sequential nature, and in partic-
ular the flow of new information, can introduce significant complexities.
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We are going to steer around these complexities and show how to model
and solve problems that everyone encounters in their own personal
activities, or any of a wide range of problems in business, engineering
and the sciences.

The powerpoint slides I used in my first lecture can be downloaded by
going to https://tinyurl.com/RLSOcourses/. Scroll down to the heading
“Undergraduate/masters course in sequential decision analytics” and
then scroll down to “Lecture 1” and download the slides. However, it is
very important that these applications be chosen based on the interests
of the students.

https://tinyurl.com/RLSOcourses/
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Topic 1: Machine Learning

One of the most visible (and accessible) optimization problems today
arises in machine learning, where we have to find the best fit of a model
to a training dataset (this is also known as supervised machine learning).

Below we describe the optimization problems and solution methods
that arise when we are fitting linear models and nonlinear models. Each
setting will allow us to illustrate different optimization strategies, from
finding an optimal solution analytically with linear models to using a
derivative-based search algorithm for nonlinear models. We will also
learn some properties of optimal solutions along with the necessary
conditions for optimality in each setting.

1.1 Linear Models

We are going to start by assuming we have a basic training dataset that
we can write as

(x1, y1), (x2, y2), . . . , (xN , yN ).

We assume that we have a model of the form

y = f(x|θ) =
N∑

n=1
θf ϕf (xn), (1.1)

where ϕf (x) is known as a “feature” which is some function of the input
data x. Given the features (chosen manually) our optimization problem
is given by

min
θ

N∑
n=1

(yn − f(xn|θ))2. (1.2)

I would start by deriving the well-known normal equations, given by

θ∗ = [XT X]−1
XT Y,

where X is the design matrix given by

X =


x1

1 x1
2 . . . x1

p

x2
1 x2

2 . . . x2
p

...
...

...
...

xn
1 xn

2 . . . xn
p

,
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and Y is our vector of observations (also called responses or labels)

Y =


y1

y2

...
yn

.

This should be a warmup using their linear algebra and setting up
a quadratic optimization problem that can be solved analytically.

Bring out that we need n observations ≥ p (number of parameters),
and that the data has to be well behaved (so that the [XT X] matrix is
invertible). It is easy to illustrate this with a simple example – fitting a
line through two datapoints.

In the teaching notes below, we argue that that the optimization
problem in (1.2) is actually a stochastic optimization problem. It looks
deterministic here (and it is) because we are working with a sample of
the random variables y. The sequence (y1, . . . , yN ) is actually a sample
of the random observations. We are going to see later that we can
turn a lot of stochastic optimization problems into problems requiring
deterministic methods by using samples, so this starter problem not only
introduces an important application (machine learning), it is setting the
stage for how we are going to solve a wide range of sequential problems
that involve random information.

1.2 Nonlinear Models

Next we transition from a linear model (where f(x|θ) is linear in the
parameters) to a nonlinear model. One example is a logistic regression
such as

f(x|θ) = eθ0|θ1x

1 + eθ0|θ1x
,

or

f(x|θ) =


−1 x < θ1
0 θ1 ≤ x ≤ θ2
+1 x > θ2

.

Or, our nonlinear model could be a neural network with millions
(or billions) of parameters θ that looks like
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We now have the optimization problem

min
θ

g(θ) =
N∑

n=1
(yn − f(xn|θ))2. (1.3)

We can solve this using a gradient-based search algorithm that looks
like:

θn+1 = θn − αn∇xg(θn). (1.4)

(Note that we use the negative gradient because we are minimizing). You
need to talk the students through the process of finding the gradient (and
possibly explaining what this is). One key step is finding the stepsize
αn which is done by solving the one-dimensional search problem:

αn = argminα>0g(θn − αn∇xg(θn)). (1.5)

The figure below illustrates the search process.
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One issue that often arises is that the function g(x|θ) may have
local minima (llustrated below), which means your gradient algorithm
may produce different optimal depending on the starting point.

Also – I would note that while we need n (the number of observations)
≥ p (the dimensionality of θ) to use the normal equations for our linear
model (in Topic 1), we no longer require this for the nonllinear model.
We can apply the gradient algorithm for any value of n, even if it
is smaller (and potentially much smaller) than p. Students need to
understand that just because the algorithm returns an estimate of the
best value of θ, that does not mean that it is guaranteed to be a good
value that will work well on future datasets.

You can start by illustrating it using a linear model, and then show
how to use it for a nonlinear model. For example, fit a logistic regression
to predict demand as a function of price, or the probability of winning
a bid for placing an ad on Google or Facebook. Then extend to a simple
neural network. Be sure to highlight the presence of multiple optima
and the need to use multiple starting points. Then, show that you get
an answer even when n < p, an issue that becomes important with deep
neural networks.

This will create a basis for later discussing a well-known issue with
neural networks (all students will have heard of this as “AI”) which use
models where p ≫ n. Students will also learn that there is not a unique
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solution when we optimize parameters for nonlinear models. Finally,
I would also make the point that while linear models require n ≥ p,
nonlinear models do not. We can fit a neural network with 100 million
parameters with a single datapoint (!).

1.3 Neural Networks (Optional)

A special kind of nonlinear model is a neural network. Given the visibility
of this technology, an instructor may wish to introduce students to the
basic idea of a neural network, since the calculations are relatively
simple. It is easy to show how to construct a basic neural network, and
how to take a vector of inputs and translate it to an output (or set of
outputs). Section 3.9.3 of RLSO describes how to compute the output
of a neural network through a simple forward pass.

You can then jump to section 5.5 of RLSO if you wish to show how
to compute the gradient of a neural network with respect to the weights
on each link (these are the tunable parameters). Key to neural networks
is that these derivatives are easy to compute. Given the interest in deep
neural networks, you can show how these calculations can be done in
parallel, which is why chips such as those by Nvidia (which are designed
for massively parallel computation, originally for the graphics in video
games) are so popular.

I would also point out that there are packages such as TensorFlow
that do these calculations very effiiciently. However the calculations are
performed, the core ideas are the same as what we illustrated using the
logistic regression example in section 1.2. Remember – the idea in an
introductory course is not to prepare students to actually do research
on this topic; it is only to introduce them to important optimization
problems and how we go about solving them. For example, the issue of
multiple local optimal solutions that we introduced in our section on
nonlinear models above is important, since it helps to understand that
the “optimal” solution we obtain is not truly optimal, and that small
changes in inputs might result in finding a different local solution.

Also – remember that while we require n ≥ p in a linear model,
we have no such requirement for nonlinear models, including neural
networks. We might have a neural network with 100 million parameters,
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but we will still get a number if we try to train it with just one data
point. While this seems silly, it is quite common to fit neural networks
where the number of observations (that is, the size of the training
dataset) is quite a bit smaller than the number of parameters.

I don’t personally encourage including this material, but it fits very
nicely here, and might go a long way to attracting student interest.

1.4 Teaching Notes for Machine Learning

There are some key points that should be brought out in this topic:
• The linear model is a nice opportunity to remind students of some

basic linear algebra when deriving the normal equations.

• Be sure to bring out the requirement that [XT X], where X is the
“design matrix” of data, must be invertible, which requires that
n ≥ p. I suggest illustrating with the problem of fitting a line to
a single data point, and then to two data points where x is the
same for each one.

• The objective functions (equations (1.2) and (1.3)) look like de-
terministic optimization problems, but they are not. Fitting a
function (linear or nonlinear) to data is actually a stochastic
optimization problem which should be written

min
θ

EXEY |X (Y − f(X|θ))2. (1.6)

Here we view X, the explanatory variables (also known as inde-
pendent variables or covariates), and the response Y = f(X|θ),
as random variables. We assume we are given a sample of these
variables

(x1, y1), (x2, y2), . . . , (xN , yN ),
which we call the training dataset. However, this is just a sample
of the random variables X and Y , which turns our stochastic opti-
mization problem (1.6) into a deterministic optimization problem
(1.2) or (1.3). We are going to use this technique over and over
again in this course to handle virtually any form of uncertainty.
The only difference will be in future applications is that we may
need a way of generating our own random sample.
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Topic 2: Sequential Decision Problems I

The vast majority of all decision problems are sequential decision prob-
lems. Later, we are going to motivate harder decision problems that use
linear, nonlinear and integer programming, but to start we are going to
use simpler problems which are still important as well as challenging.

2.1 Introduction to Sequential Decision Problems

Readings: SDAM Chapter 1 (introduction to sequential decision prob-
lems).

A sequential decision problem is any problem that consists of the
sequence:

decision, information, decision, information, . . .

where each decision receives a contribution or incurs a cost. Sequential
decision problems cover an extremely broad class of optimization prob-
lems. Most important is that they cover problems that arise in almost
any setting: business, health (all kinds), energy, economics, laboratory
experiments, field experiments, . . . , the list is endless, which means it is
possible to illustrate these problems with applications that are suitable
to any class.

Decisions are made with methods that we call “policies.” There are
two broad strategies for designing policies, and each of these produces
two classes, creating four classes of policies:

Strategy 1 – Policy search – This is where we identify a class of functions
for making decisions, and then search for the best function that works
well over time. The two classes of policies in this strategy are:

1. Policy function approximations (PFAs) – These are analytical
functions that take what we know to determine what decision to
make now. Examples are order-up-to policies for inventory, or buy
low, sell high policies in finance.

2. Cost function approximations (CFAs) – These are simplified (usu-
ally deterministic) optimization models that have been parame-
terized to work well under uncertainty. We will see CFAs when



Topic 2: Sequential Decision Problems I 29

we introduce optimal learning (Topic 4). We will also see these
when we introduce linear, integer and nonlinear programming in
topics 7–11.

Strategy 2 – Lookahead approximations – We estimate the value of a
decision by combining the immediate cost or reward of a decision plus
some approximation of downstream costs and rewards from the initial
decision. This strategy can be divided into two classes:

3. Value function approximations (VFAs) – Here we find the decision
that optimize the immediate cost or reward plus an approximate
value of the state that the decision takes us to. These are the only
policies that use Bellman’s equation (Hamilton-Jacobi if you are
a controls person).

4. Direct lookahead approximations (DLAs) – Finally we optimize
the immediate cost or reward plus an estimate of downstream
costs or rewards computed by solving an approximate model of
the future.

Note that sequential decision problems arise throughout human
activities. PFAs are the simplest class and are the most widely used. Most
important, these are parameterized functions, just like the parametric
models in statistics that we saw in Topic 2.

Below is the slide I use to present the elements of a sequential
decision problem. It illustrates the notation of states St (what we know
at time t), decisions xt (what decision we choose from a set of feasible
decisions), and the exogenous information Wt+1 that we learn only after
we make the decision xt. Decisions are made with a method (policy) that
we designate as Xπ(St|θ) that often depends on tunable parameters
θ. Also shown is the contribution (if we are maximizing) or cost (if
minimizing) C(St, xt) which may depend on information in the state St

(such as dynamically changing prices or costs) in addition to the decision
xt. The transition function SM (St, xt, Wt+1) gives the updated state
St+1 given the information in St, the decision xt, and the exogenous
information Wt+1.

The next slide (below) is one I use to compare machine learning
with sequential decisions. The difference between machine learning
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and sequential decisions is that with machine learning, you need a
training dataset to fit a general-purpose function, whereas sequential
decisions (which do not need a training dataset) need a model of the
underlying problem (such as the evolution of inventories). It is important
to emphasize this difference, since it is often overlooked (especially in
discussions of “AI”).

There is a wide range of sequential decision problems that will be
familiar to students (unlike linear programs). The challenge is that
sequential decision problems involve the arrival of new information,
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which puts even simple decision problems into a class that has been
treated under a wide variety of names, with the most common being
“dynamic programs.” This will produce gasps of “oh, that is stochastic
optimization. . . you can’t teach stochastic optimization in an introduc-
tory optimization course.” For most faculty, “dynamic programming”
means teaching Bellman’s equation.

We are not going to go down that path. First, we observe that
both of the machine learning problems in Topics 1 and 2 are forms of
stochastic optimization problem. We avoid the complexities that would
normally arise by tuning our statistical models used a training dataset
that we assumed was given to us.

We are going to follow the same strategy for sequential decision
problems, emphasizing three types of policies that are widely used, and
which students will typically be familiar with. These are:

• PFAs – These are the simplest policies such as buy low, sell high
in finance or order-up-to policies for inventory planning. Note that
PFAs include every possible model that might be used in machine
learning, which might be anything from a linear model to a deep
neural network.

• CFAs – These will be simplified (always deterministic) optimiza-
tion problems that might involve nothing more than a sort. For
more complex problems, we will introduce linear programs, and
then show how we can parameterize a linear program to make it
work well over time. This powerful idea is widely used in practice
but has been completely ignored in the academic literature.

• Deterministic DLAs – Google maps is a nice example of a de-
terministic DLA, since it plans a path to a destination (which
requires looking into the future). For problems where we need to
plan into the future, the most widely used strategy is to use a
deterministic approximation. We might use tunable parameters
to make these perform better over time, but not always.

Below we are going to illustrate some simple sequential decision
problems using PFAs, which require tuning parameters. The approach
exactly parallels what we did in Topic 1 for machine learning.
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2.2 Asset Selling

Readings: SDAM Chapter 2.
We are going to start with a simple buy-low, sell-high policy in

finance, which offers an important simplification to help us get started:
the random information (the price at which we can sell our asset) is
drawn from history, allowing us to treat it just as we did the observations
yn in our machine learning problems in Topic 1.

We are going to assume that we are given a historical sequence of
prices

(pt−H , pt−H+1, . . . , pt′ , . . . , pt)

where time t′ is any point in time in the history where we might sell
an asset (assume for simplicity that we can only sell at the end of each
day). The price pt would be the most recent price we have available. A
nice feature of this problem is that we can assume that the prices are
independent of any decisions that we make.

Next imagine that we are going to use the following policy that
determines when to buy, sell or hold a single asset

Xπ1(St|θ) =


+1 Sell if pt > pt−1 + θ1
0 Hold if pt−1 − θ2 ≤ pt ≤ pt−1 + θ1
−1 Buy if pt < pt−1 − θ2

(2.1)

where
pt = .5pt + .35pt−1 + 0.15pt−2 (2.2)

is a smoothed estimated of prices. The variable St, which is called the
“state variable” captures all the information we know at time t, that
we need to make a decision (that is, compute our policy Xπ1(St|θ)),
as well as any other information we might need. For this problem, the
state variable consists of

St = (pt, pt−1, pt−2).

It is easy to see that our policy Xπ1(St|θ) is one of many possible
strategies we could use. This policy has two tunable parameters. To
tune the parameters, we need an objective function.
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The objective function we would use to perform our tuning would
look like

F (θ) =
t∑

t′=t−H

Xπ(St′ |θ)pt′ . (2.3)

Note that our policy depends only on information that we would
know at time t, even though we have an entire history of prices
(pt−H , pt−H+1, . . . , pt′ , . . . , pt). This type of tuning is widely used in
finance, and is known as “backtesting” since it requires using historical
prices to evaluate the policy.

This objective closely parallels the one we used to fit nonlinear
models in Topic 1. If we let θ1 = θ2, then we have a one-dimensional
problem, which could be easily optimized in a spreadsheet (it is not
much harder to do this over two dimensions).

This exercise accomplishes several educational objectives:

• It introduces the idea of a policy for making decisions.

• It uses historical data to represent a sample of outcomes, just as
we created a training dataset for machine learning (see Topics 1
and 2).

A different way to perform the tuning is to create a mathematical
model of prices, and use this to create a brand new set of prices for each
iteration of the algorithm. We do not have to do this for this specific
problem, although the tuning would be more robust if we did. However,
creating mathematical models of prices is relatively difficult – we would
need to capture both the distribution of prices (which is fairly easy) in
addition to the correlations of prices over time (this is quite difficult).
Working with historical prices avoids these complications.

2.3 Inventory Planning

Reading: Section 1.3 of SDAM
Inventory problems are one of the most popular applications of

sequential decision problems. This will be a fairly minor variation of
the asset selling problem, but it opens the door to an incredibly rich
set of applications that arise in supply chain management.
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For this topic, we will start with a vanilla inventory problem where
we define:

Rt = The amount of inventory at time t.

xt = The amount of new inventory we order, where we assume it
arrives right away.

D̂t+1 = The demand for product that arises between t and t+1
(and after we make the decision xt).

p = The unit price at which we sell the product.

c = The unit cost of ordering more product.

The basic equation for updating the inventory Rt is given by

Rt+1 = max{0, Rt + xt − D̂t+1}. (2.4)

Unlike our asset selling problem, we generally do not get to observe
the actual demands D̂t, which means we cannot just use a set of
observations from history. Instead, we are going to need to generate
a set of observations of demands using a random number generator.
We are going to take advantage of a standard function built into all
computer languages to generate a random number between 0 and 1.
For example, in Excel this function is called RAND(). In Python it is
called Random.uniform(0,1). We are going to just let the function be
represented by U().

If we want a random number R that is uniformly distributed between
a and b, we use

R = a + (b − a)U(). (2.5)

Now imagine that we know that on average the demand is µ, where
our actual demand D̂t is given by

D̂t = µ + ε, (2.6)

where ε is a random error term that is uniformly distributed between
−µ and +µ. We can generate random observations of ε using

ε = −µ + 2µ U(). (2.7)
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If we want 100 observations of demands, we need to generate 100
observations of ε.

Now that we have a set of random demands D̂1, D̂2, . . . D̂t, . . . , D̂T ,
we need a method for making decisions. We are going to use a policy
known in the literature as an “(s, S)” policy where s and S are tunable
parameters. We like to use θ for our tunable parameters, so we are going
to replace s and S with θmin and θmax. Our policy is then given by

Xπ(St|θ) =
{

θmax − Rt if Rt < θmin

0 otherwise.
(2.8)

Our challenge now is to find the best value of θ = (θmin, θmax),
which we do by optimizing the objective function

max
θ

T∑
t=0

p max{Rt + Xπ(St|θ), D̂t+1} − cXπ(St|θ), (2.9)

where the inventory Rt evolves according to equation (2.4).
The optimization problem in (2.9) can be approached just as we

did to optimize our nonlinear model in Topic 1 (equation (1.3)) or the
asset selling problem in section 2.2.

2.4 Teaching Notes

• We have now seen that optimizing a parameterized policy closely
parallels optimizing the parameters of a nonlinear function for
machine learning. One difference is that we can generally compute
the gradient of the nonlinear function in machine learning, whereas
this is typically not true when we are simulating a policy.

• The simplest approach to use right now is to introduce the idea
of numerical derivatives.

• There is also a wide range of derivative-free methods, but these
should be introduced slowly over the course, depending on the
interests of the professor and the backgrounds of the students.
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Topic 3: Adaptive Optimization – The Newsvendor Problem

Readings: Chapter 3 in SDAM
Arguably one of the most widely encountered problems when manag-

ing resources is the newsvendor problem, which is a nice illustration of a
decision problem involving uncertainty. We will show how to solve this
using a simple stochastic gradient algorithm that can be implemented
in an online (learn as you go) setting. This is a natural extension of
the gradient-based method we used in section 1.2 for optimizing the
parameters of a nonlinear statistical model.

In Topic 1, we solved the following machine learning problem

min
θ

F (x|θ) = 1
N

N∑
n=1

(yn − f(xn|θ))2. (3.1)

This is a sampled estimate of the function

min
θ

F (x|θ) = E(Y − f(X|θ)), (3.2)

where “Y ” is a random variable representing the response given the
random input “X”, and where

(x1, y1), (x2, y2), . . . (xn, yn), . . . (xN , yN ),

is a sample of N observations of the variables (X, Y ).
The idea of using a sampled estimate to transform a stochastic

optimization problem (3.2) into a deterministic optimization problem
(3.1) is a powerful and widely used strategy when optimizing functions
of random variables.

One of the most popular stochastic optimization problems is the
newsvendor problem, where we need to choose a quantity x to meet an
unknown demand D. The challenge is that we have to purchase x units
of a product at a unit cost c, to meet the demand D receiving a revenue
p for each unit sold. The problem is that we cannot sell more than the
demand, giving us the objective function

max
x

F (x|D) = p max{x, D} − cx. (3.3)

The function F (x|D) assumes we know the demand D, but we do
not. What we have to do is to find the quantity x that maximizes the
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expected value of F (x|D) over the random quantity D. This would be
written

max
x

g(x) = EDF (x|D) = ED{p max{x, D} − cx}. (3.4)

Imagine that we have a historical dataset of order quantities and
demands which we can write out as

(x1, D1), (x2, D2), . . . (xn, Dn), . . . (xN , DN ).

If we have this data, we could solve our problem just as we did our
machine learning problem in (3.1):

max
x

F (x) = 1
N

N∑
n=1

(p max{x, Dn} − cx). (3.5)

The problem with this approach is that we never have a set of
observations of demands D1, D2, . . . , DN because we do not observe
demands – we observe what we sell which is the smaller of what we
ordered xn and the true demand Dn. If we order xn = 6 and observe
sales of 6, it might be that Dn = xn, but more often it means that
Dn > xn.

There is a simple way to get around this problem. We are going to
use a basic gradient search algorithm, but we cannot take the derivative
of the function g(x). What we are going to do seems magical (that is,
it seems as if we should not be able to do it). We are going to assume
that we choose a quantity x = xn, and then observe a demand Dn+1.
Note that we have introduced a subtle shift in how we are indexing xn

and the demand Dn+1; this way of indexing means that xn depends on
D1, . . . , Dn but does not depend on Dn+1.

After we observe the demand, we now have the deterministic function

g(x|Dn+1) = p min{x, Dn+1} − cx. (3.6)

Next we are just going to take the derivative of g(x|Dn+1) with
respect to x:

∇g(x|Dn+1) = dg(x|Dn+1)
dx

=
{

p − c if x ≤ Dn+1

−c if x > Dn+1 . (3.7)
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We now use the same gradient-based search algorithm we first
introduced in Topic 1 for nonlinear models:

xn+1 = xn + αn∇g(x|Dn+1). (3.8)

Unlike our first use of gradient based methods in Topic 1, we can no
longer find the stepsize αn by solving a one-dimensional search problem
as we did in equation (1.5). Instead, we are going to use something that
is much simpler:

αn = 1
n

. (3.9)

Incredibly, we can show that this stepsize rule will produce a sequence
of decisions x1, x2, . . . , xn, where

lim
n→∞

xn → x∗. (3.10)

This means that if we run this algorithm an infinite number of times,
it will find the optimal solution! The bad news is that it is possible that
the algorithm will be quite slow. A lot of research has gone into finding
better stepsize formulas. One way speed up the algorithm is to insert a
tunable parameter giving us

αn(θstep) = θstep

θstep + n − 1 . (3.11)

where θstep is a parameter that has to be tuned. OK, so we have another
problem that involves tuning a parameter, but the core idea here is
quite simple!

Stochastic gradient algorithms tend to be taught in advanced stochas-
tic optimization classes. However, they are perfectly appropriate for
an introductory optimization course, especially for the context of un-
constrained problems. Nonnegativity constraints and upper bounds are
easy to handle.
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Topic 4: Optimal Learning – Finding the Best Treatment

Readings: Chapter 4 in SDAM
An important class of optimization problems falls under the umbrella

of “optimal learning” where the decision involves what to observe,
or what experiment to run. From the information gained from the
observation (or experiment). We then use our beliefs to make a choice
about a choice of design, or product, or price.

There is an endless array of optimal learning problems – a sample
might include:

• Which medical treatment to use (choice of drug, dosage)

• Which product to advertise on a website

• Which supplier to use to supply materials or components

• Which schools to visit to interview for employees

• What price to charge for a product (from a set of prices)

• Who should be starters on a basketball team

• Which path to take through a congested network to get to work

• Which product to recommend on a webpage to attract the most
clicks

• Which of several webpage designs to use to maximize traffic

• . . . (This is a very long list)

In this section we will use the context of finding the best medical
treatment for a patient.

Learning the best of a set of “treatments” is widely known as
a “multiarmed bandit problem” which is a mathematically rich (and
computationally complex) problem. However, the approach we are going
to use here is quite simple and very popular at companies like Google
and Facebook for optimizing ads (students should resonate with this).
In the process, we are also going to introduce a new class of policy that
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is going to open the door to a much more complex class of problems.
These policies are known as “cost function approximations” (or CFAs).

We are going to start with a policy called “interval estimation” that
helps us choose the best treatment x ∈ X = {x1, . . . , xK}. Let µn

x be
our estimate of the effectiveness of treatment x after we have performed
n experiments using any of the choices. Then let σn

x be the standard
deviation of µn

x (remind students how to do the standard deviation of a
mean, and how it goes to zero as n → ∞).

After n experiments, our beliefs might look like those shown in
the figure above – this might represent the potential sales of different
products, but there are many settings where this applies. We represent
our beliefs using the belief state variable Bn = (µn

x, σn
x)x∈X which

capture our beliefs about the performance of each choice x. For this
problem, the state variable Sn = Bn equals the belief state, but there
are problems where we may have information other than the belief state
(such as the budget remaining to run experiments). For now, we are
just going to limit the state variable to the belief state.

The interval estimation policy is given by:

XIE(Sn|θIE) = argmaxx∈X(µn
x + θIEσn

x) (4.1)

where xn = XIE(Sn|θIE) is the design we are going to choose for the
n + 1st experiment, which produces an observation W n+1.
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With our inventory problem, we updated our state variable (the
inventory) using the inventory equation (2.4). With a learning problem,
we have to update our beliefs, which we are going to do using some
simple recursions. Assume that we observe performance W n+1

x when we
test choice x = xn. First, we are going to replace the variances (σn

x)2

with their inverses which we call the precision given by

βn
x = 1

(σn
x)2 . (4.2)

We are also going to assume that when we observe the results of
an experiment which we represent by W n+1

x that this experiment is
random with a known variance σ2

W and precision

βW = 1
σ2

W

. (4.3)

We can use the precision to write the updating equations for the
means and precisions using

µn+1
x = βn

x µn+1
x + βW W n+1

x

βn
x + βW

, (4.4)

βn+1
x = βn

x + βW . (4.5)

Equations (4.4) and (4.5) represent the transition equations Sn+1 =
SM (Sn, xn, W n+1) for this problem.

An important feature of our interval estimation policy (4.1) is that
imbedded in the policy is an optimization problem. Here the optimiza-
tion (given by the “argmax”) requires nothing more than a simple sort
over the alternatives to find one with the best value of µn

x + θIEσn
x.

Later, we are going to replace this with more sophisticated optimization
problems. For example, in Topic 5, our imbedded optimization problem
will be a shortest path problem. In Topic 7 the imbedded optimization
problem will be a linear program, which we see again in Topic 8 when
we are dynamically planning energy storage. In Topic 10 the imbed-
ded optimization problem will be an integer program, and in Topic 11
(section 11.2) the imbedded optimization problem will be a nonlinear
programming problem.
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The interval estimation policy is very easy to implement, but it is
important not to overlook the need to tune the parameter θIE . One way
to do this is to run a simulation where we assume that we know the
true performance of each alternative x which we denote by µx. If we
choose to test alternative x, we cannot observe µx perfectly – instead,
we can only perform a noisy observation where we add a noise term ε.
This means that the observed performance of x = xn would be given by

W n+1
x = µxn + εn+1 (4.6)

We can use the methods we presented for the inventory planning
problem (see equations (2.5)–(2.7)) to generate random observations
of ε. Next, create N (say, N = 100) observations of W n

x for each
alternative x and store these. Then, simulate our interval estimation
policy XIE(Sn|θIE) which we evaluate using

F (θ) =
N−1∑
n=0

W n+1
xn (4.7)

where xn = XIE(Sn|θIE) and where the state variable Sn is updated
using equations (4.4) and (4.5). Note that we have written (4.7) as if
we are running a single simulation. We can do this, but it will be noisy.
Instead of pre-generating the outcomes of W n

x and using these in the
simulation of the policy, it makes more sense to generate them on the
fly (this is very fast using any programming language such as Python).
Now compute the sum in (4.7), say, 1000 times and take an average.
Finally, repeat this for a discrete set of values of θ such as 0, 0.1, 0.2,. . . ,
4.0 and choose the value of θIE that works the best.
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Topic 5: Shortest Path Problems

We are going to use shortest path problems as our first small step into a
nontrivial decision problem. While this is technically a linear program,
we will be able to demonstrate a simple algorithm based on Bellman’s
equation that everyone can understand. Shortest path problems also
provide a nice visual setting to later illustrate the idea of a basis and
pivoting (but this is for later).

We are going to first present the static shortest path problem, and
then transition to using this in a dynamic setting as would occur when
you are driving from one location to the next while your navigation
system is responding to new information. It is in the dynamic setting that
we will see that a shortest path problem is a form of policy (specifically
a direct lookahead policy, or DLA) that can, if we like, be parameterized
to help deal with uncertainty.

5.1 Static Shortest Paths

This lecture is based on chapter 5 of SDAM.
This will be our first peek at a specialized linear program that we

will solve using a classical Bellman iteration. This is very simple in the
context of a network problem since the “state” variable is just the node
where the traveler is located.

Assume we are trying to find the shortest path from origin s = 1 to
destination r = 11. Let

vi = the minimum cost to get from node i to the destination node
r = 11. We are going to initialize v11 = 0, and set vi equal to some large
number for all other nodes i ̸= 11.
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Let

N+
i = the set of nodes we can reach from node i.

A simple (but not very efficient) algorithm for finding the shortest
path from each node to node 11 would be to repeatedly compute for
every node i

vi = min
j∈N+

i

(cij + vj). (5.1)

The idea is to repeatedly loop over all nodes i and compute (5.1)
until none of the node values change. We can store the optimal solution
by letting

x∗
ij =


1 if j = argmin

k∈N+
i

(cik + vk)

0 Otherwise
(5.2)

Equation (5.1) is known as Bellman’s equation and is very popular
in the academic literature for solving a wide range of sequential decision
problems. In practice, it only works for a very small subset of prob-
lems, but this happens to be one where it works very well (although
commercial algorithms use a lot of shortcuts).

We can trace the shortest path by starting at node r and then
traversing from any node i to the node j where x∗

ij = 1.

5.2 Dynamic Shortest Paths

Readings: SDAM Chapter 6
Here we introduce the problem faced by Google maps. We have to

route a traveler through a network where new information is arriving
over time. Imagine that time steps forward one increment each time we
traverse a link. When the traveler arrives at node i at time t, Google
receives updated estimates of travel times and recomputes the shortest
path. This is a dynamic system where the “state” now includes two
pieces of information: the node where the traveler is located (node i),
and the updated estimates of the travel times over the entire network.

To keep the notation simple, assume that we get updates of estimated
travel times at each time period, although in reality we only need to
update the travel times each time a traveler arrives at a node and has
to make a decision. Now, instead of a fixed cost cij , we have costs that
are updated and depend on time t, so we define
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ctij = The estimated travel time on each link (i, j) given the infor-
mation we have at time t.

We then solve the same static shortest path problem we did above,
but instead we are using the updated costs ctij , and obtain the updated
path x∗

tij . We are not going to implement the entire shortest path –
instead, if we are at some node i at time t, we are going to choose to
go to node j if x∗

tij = 1.
We can write our shortest path problem at time t using our vo-

cabulary of policies. At time t, our state variable St captures what we
know, which includes the node it where we are located, and the current
estimates of all the link costs which we can write as

ct = (ctij) for all links (i, j) in the network.

So we would write our state variable as

St = (it, ct).

Our policy is to solve the static shortest path problem using our
updated vector of costs ct, but the policy only returns what the traveler
should do at time t, which we can write as

Xπ
t (St) = x∗

it,j .

This means that Xπ
t (St) is a vector of 0’s with a 1 in the entry

corresponding to x∗
it,jt

= 1. We will let

Xπ
tit,j(St) =

{
1 if j = jt

0 Otherwise

Let’s introduce a twist. Imagine that we have a goal of reaching our
destination by a particular time, and while the shortest path suggests
that we will arrive in time, we recognize that there is uncertainty in the
travel times. The costs (times) ctij are just the estimated means from
the sampled observations we have from watching individual travelers.
Instead of using an average, what if we use the 80th percentile, or the
90th percent, or the 50th? These are easy to compute from the raw data.

Let

θpctile = the percentile of the travel time for a link.
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ctij(θpctile) = the travel time corresponding to the θpctile of the
travel times.

Now we use ctij(θpctile) for the travel times (instead of the means
ctij). We would then write our policy as Xπ

t (St|θpctile) to express the
dependence on θpctile. The performance of the policy Xπ

t (St|θpctile)
depends on both the actual travel time, but also how late the traveler
is for their appointment. Typically we would add a penalty θlate times
how late the traveler.

Now we have another tuning problem just like we saw with PFAs
(Topic 2), and solved using the same methods we saw in Topic 1. To
evaluate our policy, let

ĉn
tij = the sample realization of the actual time to traverse link (ij)

that we reach at time t. These samples are not used to plan a path –
they are only used to evaluate the policy for making decisions. We can
generate ĉn

tij using the Monte Carlo simulation methods we introduced
in section 2.3.

Next let

F̂ n(θ) = the actual travel time over the entire path for the nth trial,
using costs ĉn

tij ,

=
∑T

t=1
∑

ij Xπ
tij(St|θ)ĉn

tij .

F̂ n(θ) is the actual travel time we experience in our nth trip following
policy Xπ

t (St|θ) while experiencing link costs ĉn
tij . Let’s say that we

have to finish the trip in time τ to arrive in time for our appointment.
Let

η = penalty per unit time for being late.

The total cost (time plus late penalty) for the nth trip is then

Ĉn(θ) = F̂ n(θ) + ηmax{0, F̂ n(θ) − τ}. (5.3)

We can then write the performance of our policy by averaging over
N as

C
π(θ) = 1

N

N∑
n=1

Ĉn(θ).
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We now have another instance of needing to tune the parameter of
a policy.

This lecture is setting the stage for parameterizing linear programs.
When we present linear programs in Topic 7, we are going to start by
presenting a basic static, deterministic linear program (just as we did
with our initial shortest path problem), and then transition to recogniz-
ing that the linear program we chose is typically solved repeatedly over
time, just as we have done above with our shortest path problem.
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Topic 6: General Concepts

Up to now we have been approaching problems in what might appear
an ad hoc manner. Actually our problems have been carefully chosen to
illustrate some important dimensions of modeling and solving different
types of decision problems.

We are going to step back and talk more generally about modeling,
designing policies, and evaluating policies.

So far we have seen two types of optimization problems:

• Static problems (the machine learning problems in Topic 1, and
the shortest path problem in Topic 5, section 5.1).

• Sequential decision problems (Topics 2, 3 and 4, and the dynamic
shortest path problem in Topic 5, section 5.2).

Below we are going to provide modeling frameworks for each of
these problems.

6.1 Modeling Static Optimization Problems

For our machine learning problems, we faced the problem of minimizing
a nonlinear function (the sum of squares of errors) of a set of tunable
coefficients θ. If we let

F (θ) =
N∑

n=1
(yn − f(xn|θ))2, (6.1)

then we can write our optimization problem as

min
θ

F (θ). (6.2)

We refer to F (θ) as our objective function. The standard form
that we might use would be to replace θ with x which is our standard
notation for a decision variable, and let C(x) be a generic “cost” function
(assuming we are minimizing, which is what is typical in deterministic
optimization). Our problem would then be written

min
x

C(x). (6.3)
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We can use this style for our shortest path problem, where x = (xij)
is the vector of flows over the network. We would let

xij =


1 if link (i, j) is in the shortest path tree to the

destination.

0 Otherwise

We would then write our objective function as

C(x) =
∑
i,j

cijxij , (6.4)

where cij is the cost of traversing link (i, j). The problem with this
formulation is that the optimal solution is C(x) = 0 since we would just
set xij = 0. We need to introduce constraints so that we guarantee that
our optimal solution returns a shortest path from the origin r to the
destination s. We do this by introducing constraints which would be
written ∑

j

xij −
∑

i

xij = 0 for i, j ̸= r or s, (6.5)

∑
j

xij −
∑

i

xij = 1 for i = r, (6.6)

∑
j

xij −
∑

i

xij = −1 for i = s. (6.7)

We then typically impose the requirement that xij cannot be negative
by writing

xij ≥ 0. (6.8)

We often want to include upper bounds uij . In our shortest path
problem, equations (6.5)–(6.7) would allow a solution where xij > 1
implying a path that is running in circles (which is clearly not a good
idea). If we want upper bounds, we would then write

xij ≤ uij . (6.9)

Equations (6.5)–(6.7) can be written in matrix form

Ax = b (6.10)
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by suitably constructing the matrix A and the vector b. By doing this,
we can now write our optimization problem in the form

min
x

C(x) =
∑
ij

cijxij = cT x, (6.11)

subject to the constraints

Ax = b, (6.12)

x ≤ u, (6.13)

x ≥ 0. (6.14)

Equations (6.11)–(6.14) is a fairly standard way of writing a static
optimization problem. What is most important about this framework is
that it is a language for thinking about a very large class of decision
problems.

An important dimension of modeling optimization problems is the
use of constraints such as (6.12)–(6.14). We first saw constraints in
our shortest path problem, but these were enforced by the concept
of finding a path. The optimization problems in Topics 1 and 2 were
unconstrained. Linear programs (which we introduce in Topic 7) are
meaningless without constraints. In fact, we are going to see that
expressing problem characteristics through constraints is an art form
that is a necessary skill for people who want to use linear programs.

Constraints represent a major feature of static optimization problems.
They come in a number of flavors:

• Unconstrained problems, which we saw in Topic 1 for machine
learning.

• Upper and lower bounds (also known as “box” constraints), such
as (6.13) and (6.14).

• General linear constraints such as (6.12). With some creativity,
we can handle a wide range of constrained problems using linear
constraints. For our network problem, linear constraints are nat-
ural, but later (in Topic 10, section 10.3) we are going to need
some creativity to express constraints using linear equations.
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• Nonlinear constraints – An example might be xi(1 − xj) = 0. We
do not deal with nonlinear constraints in this course.

Easily the most widely used algorithmic search strategy depends
on gradients. The simplest search algorithms are gradient-based, as we
saw in section 1.2 for optimizing the parameters of a nonlinear machine
learning model, and again in topic 3 for our newsvendor problem. In
Topic 7, we are going to see how to use a gradient-based algorithm in
the presence of linear constraints using a method that is widely known
as the simplex algorithm.

The literature on optimization problems is incredibly rich, but often
ignores that an optimization problem is just solving a decision problem
at one point in time, whereas the real application involves decisions
that are made sequentially over time.

6.2 Modeling Sequential Decision Problems

Modeling any sequential decision problem starts by answering three
questions:

1. What are the performance metrics?

2. What types of decisions are being made (and for larger problems,
who makes each type of decision)?

3. What are the sources of uncertainty?

The answers to these three questions lay the foundation for building
our model.

Any model of a sequential decision problem can be broken down
into five components:

1. State variables St – A “state variable” St is all the information we
need to model the system from time t onward. In other words, the
state variable can be viewed as the “state of information” or, more
precisely, the “state of knowledge,” capturing everything we know
or believe that we need to (a) compute the objective function (e.g.
changing prices and costs), (b) make a decision, which means the
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information needed to represent the available set of actions (e.g.
what product to choose among those that are available) or the
constraints that determine the feasibility of x, and (c) any other
information needed to model the evolution of information in (a)
or (b) (see the “transition function” below).
It is useful to distinguish between the initial state S0 that might
include static information that never changes (such as the maxi-
mum speed of a truck), from the dynamic state variables St, t > 0
which includes information that is changing over time such as
the location of a vehicle moving over a network, the amount of
inventory being held, or the evolving prices of an asset.
State variables come in three flavors:

• Rt = Vector of physical and financial aresources (people,
product, equipment, facilities). This can be inventories, or
the location of a person or piece of equipment that is mov-
ing around. It can also be the amount of cash on hand,
investments of different kinds, loans, . . .

• It = Other information about the system not included in Rt

such as prices, weather, market conditions.
• Bt = Beliefs about quantities and parameters that are not

known perfectly. This could be the mean and variance of
a normal distribution, a vector of probabilities of discrete
values of parameters such as a cost or constraint (we first
saw belief state variables in Topic 4).

There is tremendous (and surprising) confusion about state vari-
ables in the academic literature. There are entire fields (Markov
decision processes, reinforcement learning) that never even define
a state variable. For a more in-depth discussion see the webpage

https://tinyurl.com/onstatevariables/

2. Decision variables xt – These are the variables that we are control-
ling. We distinguish between initial decisions x0 which are made

https://tinyurl.com/onstatevariables/
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once (called design decisions), versus xt, t > 0 which are made over
time (called control decisions). We represent the feasible decisions
by creating a set Xt that can be a feasible set of actions (e.g.
what link to traverse, which person to hire) or the feasible region
defined by constraints such as (6.12)–(6.14). Finally, we introduce
a function Xπ(St|θ), which we call a policy, which determines how
we make a decision from the information available in the state
variable St. Our policies usually depend on tunable parameters θ

(but not always). Most important: We will determine the policy
later!

3. Exogenous information Wt+1 – This is information that we did not
know at time t, but which became available by time t+1 when we
have to determine the decision xt+1. In our examples above, the
information W1, . . . , Wt, . . . , WT is generated in advance, either
from history (as we did with the asset selling example) or from
Monte Carlo simulation, as we did in the inventory planning
example. Although we created this information in advance, we
never made a decision xt using the information in Wt+1 or later.

Up to now, we have generated a single random sequence of the
sequence of observations W1, . . . , Wt, . . . , WT , which we then used
just as we used the training data in our machine learning problems
in Topic 1. However, there are settings where Wt+1 depends on
the state variable St, or the decision xt, or both. We can still
use a sample of the sequence W1, . . . , Wt, . . . , WT , but we cannot
generate it in advance. Instead, we have to generate it as the
system evolves.

Sometimes (in fact, frequently) we want to explicitly capture that
there may be more than one sequence of exogenous information.
Imagine that we are generating the demands for our inventory
problem. Instead of generating one sample, we generate 10 as
shown below. Following standard practice from the modeling
literature, we let the Greek letter ω (“omega”) index the sample
paths. So, if we generate 10 samples of the demands, ω would
range from 1 to 10.
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ω D1 D2 D3 D4 D5 D6 D7 D8 D9
1 18 16 13 10 17 6 4 15 16
2 12 7 17 15 5 3 4 14 8
3 6 18 7 9 1 13 4 4 7
4 2 11 16 16 1 2 13 0 13
5 18 5 0 6 10 17 8 3 2
6 3 18 5 20 13 16 18 11 10
7 12 14 4 11 19 3 20 19 18
8 6 15 15 14 2 7 14 1 11
9 19 10 5 19 13 14 16 11 17
10 18 15 14 4 6 17 16 10 9

To indicate a particular realization of Wt, we would write Wt(ω)
(if we are using demands Dt, we would write Dt(ω)). We can use
this notation to compute, say, the average demand at time t using

Dt = 1
10

10∑
ω=1

Dt(ω). (6.15)

4. Transition function – This is the function that describes how the
information in the state variable evolves over time. We write this
function using

St+1 = SM (St, xt, Wt+1). (6.16)

In other words, given what we know (or believe) which is captured
in St, the decision we made xt, and the new information that
arrived from outside the system (which is not known at time t),
given by Wt+1, the transition function returns the updated state
variable St+1. The notation SM (·) stands for “state transition
model” (or if you like, “system model”).

A transition function can be a single equation such as the inven-
tory equation (2.4) for our inventory planning problem. However,
for complex systems (supply chains, trucking companies, energy
systems, health systems) the transition function may require many
thousands of lines of code.
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5. Objective function – With deterministic optimization, objective
functions are very straightforward, typically summing costs that
are minimized, or it might be some performance metric to be
maximized.
With sequential decision problems, objective functions can come
in different styles. We start by assuming that we are maximizing
the cumulative contribution (or reward) over time, as we did in
the problems in Topic 2. Let’s start by writing the contribution
in each time period as

C(St, xt) = the contribution from decision xt made at time t,
using the information in St such as a dynamically
varying cost or price, such as the price pt in our asset
selling problem.

We may write the contribution using C(St, Xπ(St|θ)) to reflect
the dependence on the policy, since xt = Xπ(St|θ).
Now imagine that we have created in advance a random sample
of the information sequence W1, . . . , WT as we did in our asset
selling example or the inventory planning example. Our objective
function would then be written

F (θ) ≈
T∑

t=0
C(St, Xπ(St|θ)) (6.17)

where the transition function St+1 = SM (St, xt = Xπ(St|θ), Wt+1)
is computed with our sampled set of observations W1, . . . , WT .
If we wish to use more than one sample of W1, . . . , WT , we can
assume we have a set Wt(ω) for ω = {ω1, . . . , ωn, . . . , ωN }. Now we
would model our transition function by reflecting the dependence
on the sample ω which we can write using

St+1(ω) = SM (St(ω), xt(ω) = Xπ(St(ω)|θ), Wt+1(ω)). (6.18)

We then calculate an estimate of our objective function using

F (θ) ≈ 1
N

N∑
n=1

T∑
t=0

C(St(ωn), Xπ(St(ωn)|θ))] (6.19)
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Here we are just running N simulations and taking an average.
However we compute the objective function, our optimization
problem is then written

min
θ

F (θ) (6.20)

Instead of listing constraints as we did in our static objective
function (these are built into the design of our policy Xπ(St|θ)),
we would follow the statement of the objective in (6.20) with the
transition function (6.16) (or (6.20)) and the information given to
the model in the form of the initial state S0 and the information
W1, . . . , WT .

We see that modeling a sequential decision problem is much richer
than a static optimization model, but it is roughly a mathematical
statement of the simulations that we have already illustrated in Topic 2.

Our modeling framework can be used to model any sequential
decision problem, although there are other choices for the objective
function. Next we are going to turn to the issue of designing policies,
which is a little richer than we have indicated above.

6.3 Designing Policies

Above, we wrote our policy as Xπ(St|θ) which seems to imply that we
already have some functional form for the policy, and then have to tune
the parameters θ. However, just as we have to choose between different
models in machine learning (such as the linear and nonlinear models
we saw in Topic 1), we also have to choose among different functional
forms for policies. However, the set of choices becomes much broader.

We can divide all the different types of policies into four classes
which cover every possible method for making decisions. These are
organized into two broad strategies as follows:

Strategy I: Policy Search. This strategy searches over parameterized
functions to identify the ones that work best over time. These come in
two classes:



Topic 6: General Concepts 57

1. Policy function approximations (PFAs). Analytical functions
that map the information in the state variable direction to a
decision. Some examples are:

a. Buy low, sell high policies in finance – see asset selling in
Topic 2.

b. Order-up-to policies for inventories: If the inventory is be-
low θmin order up to θmax and we then have to tune θ =
(θmin, θmax) – see inventory planning in Topic 2.

c. Linear decision rules are special problems where we can write
a policy as:

Xπ(St|θ) =
∑
g∈G

θgϕg(St).

d. A PFA can be any lookup table, parametric function (linear
or nonlinear including neural networks) or nonparametric
function.

We note that PFAs include every possible functional form that
we might use in machine learning.

2. Cost function approximations (CFAs). A parameterized opti-
mization problem that is typically a deterministic approximation,
in which parameters have been introduced to make it work well
under uncertainty (see [7] for an introduction). CFAs are widely
used in industry in an ad-hoc way, but I have not been able to
find this strategy formally studied in the research literature. Some
examples include:

a. Solving the shortest path over a network with random link
times, but use the θ-percentile of the travel times (instead
of the mean) – see Dynamic shortest paths in Topic 5.

b. Scheduling aircraft using an integer program, while inserting
slack in the schedule to account for weather delays.

c. Scheduling nurses but limiting their time to 32 hours per
week to provide slack in case emergencies arise.
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Strategy II: Lookahead approximations. These policies identify
good decisions by optimizing across the current cost or contribution
plus an approximation of the effect of a decision now on the future.
Again, these come in two classes:

3. Value function approximations (VFAs). Policies based on
VFAs cover all methods based on Bellman’s equation, which
approximates the downstream value of landing in a state. This
approach has attracted tremendous attention under names such as
approximate dynamic programming, adaptive dynamic program-
ming, neurodynamic programming, and most commonly today,
reinforcement learning. We illustrate Bellman’s equation in Static
shortest paths (Topic 5, section 5.1), but here the value functions
are exact, since we take advantage that our “state” variable is
simply which node where the traveler is located.
We can formulate virtually any sequential decision problem using
Bellman’s equation, but the vast majority cannot be solved exactly.
There is by now a substantial literature for estimating value
functions approximately, although this approach is more popular
in the academic literature rather than used in practice. An in-
depth investigation of this strategy is beyond the scope of this
course.

4. Direct lookahead approximations (DLAs). This is where we
explicitly plan into the future to help make a decision now. DLAs
can be split into two subclasses:

a. Deterministic DLAs are when we ignore uncertainty to create
a deterministic lookahead model, a strategy that is often
called a rolling (or receding) horizon procedure, or model
predictive control. We do this in Dynamic Shortest Paths
(section 5.2).
It is possible to parameterize the lookahead to help make it
more robust to uncertainty, producing a hybrid CFA/DLA,
as we do in section 5.2.

b. Stochastic DLAs create an approximate stochastic lookahead
model, typically using sampled approximations of random
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outcomes. This covers stochastic programming (with scenario
trees), robust optimization and approximate dynamic pro-
gramming, which can be used to solve a simplified stochastic
lookahead. This policy is beyond the scope of this course.

These four (meta)classes of policies are universal – they include any
method proposed in the research literature or used in practice. None of
these methods is a panacea – depending on the specific characteristics
of a problem, any one of these may work best. However, some are more
useful than others. If we divide DLAs into two classes (deterministic
lookahead and stochastic lookahead), we have five types of policies.
These can be organized into three categories, ranging from the most to
least widely used:

• Category 1: PFAs, CFAs and deterministic DLAs – This category
is absolutely the most widely used. The choice of PFA, CFA and
deterministic DLA tends to be obvious from the application.

• Category 2: Stochastic DLAs – There is a handful of problems
where we need to plan into the future, and where we have to
recognize that the future is uncertain.

• Category 3: Policies based on VFAs – Value function approxima-
tions are incredibly popular in the academic literature, but the
number of applications in practice for VFAs is quite small.

This course focuses primarily on the policies in Category 1. These
are by far the most widely used, and therefore are most appropriate for
an introductory course on optimization. Categories 2 and 3 are useful
for very special classes of problems, but are beyond the scope of an
introductory course.

6.4 Evaluating Policies

The most common way to evaluate a policy is to simulate its performance
using historical data as we did with the asset selling example, or simu-
lated data as we did for inventory planning (see equation (6.17)). If we
have access to multiple samples of the information process W1, . . . , WT
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which we represented using Wt(ω) for ω = {ω1, . . . , ωN }, we can use
the average performance in equation (6.19). Both versions sum the
contributions over the time periods t = 0, 1, . . . , T .

There are times when we are running a series of experiments as we
did in Topic 4 for finding the best treatment. Now imagine that we
are trying to find the best combinations of chemicals to produce a new
material, or we are testing different processes to create a new drug that
we are evaluating in a lab. Alternatively, we might be using a simulator
in a computer to test different sizes of a fleet of

These are settings where we do not care how well we do along the
way – instead we just care how well we do at the end.

There are two objective functions we can use to evaluate a policy:

• Optimize the cumulative cost or contribution – Here we add
up costs (or contributions) to evaluate the policy over time (or
experiments). I like to call this the “cumulative reward” objective.

• Optimize the final cost or contribution – Here we run a series of
experiments where we learn from the experiments, but we are not
concerned with how well we do. Then, after using up our budget
for learning, we have to make a final decision of what is the best
choice, and then evaluate the performance of this choice. I call
this the “final reward” objective.

A second issue we have to recognize is that we often have to distin-
guish between how well we expect to perform, and the risk that the
performance might trigger a red flag that we would like to avoid. For
example:

• In an inventory problem, we may want to minimize average costs
(where we have a cost for lost demand), but where we want to
make sure we cover at least 97 percent of demands.

• In a financial problem, we may want to place special emphasis on
avoiding loses beyond some acceptable amount when we sell our
asset.

We have seen an example of risk in our dynamic shortest path
problem where we need to minimize the risk of arriving late for an
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appointment. This is handled in equation (5.3) where we add a penalty
for late arrivals.

Risk is a very rich issue, but is beyond what should be covered in
an introductory course.
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Topic 7: Linear Programming

We finally get to linear programming. Unlike traditional optimization
courses that might start with linear programming, we recognize that
these are complex problems that only arise in very specialized situations.
By this point in the course, students have seen optimization problems
that everyone encounters. Now we are going to move into an important
class of resource allocation problems that are much higher dimensional.
These problems are important and arise in many business settings, but
it is unlikely that students will have experienced these problems.

Linear programming is initially presented as a static problem, where
we formulate a problem as a linear program, solve it, get the optimal
solution, and then implement it (in some way). Virtually all of the orig-
inal motivating applications for linear programs are, in fact, sequential
decision problems, which means the linear program is actually a policy
where the decisions are implemented over time, almost always in the
presence of some form of uncertainty. We address this perspective after
we treat the static problem.

We are going to progress in three steps:

• Section 7.1 – We are going to use a basic resource allocation
problem to illustrate a linear program. This will be the first
time that we address a decision that is in the form of a vector.
We are going to illustrate the simplex algorithm using a purely
graphical approach (networks make this easy). I would note that
I do not think it is necessary to teach the simplex algorithm, but
it is popular material, and it does help in understanding dual
variables.

• Section 7.2 – In this section I repeat the simplex algorithm but
this time I show how to perform each step using linear algebra.
I consider this material completely optional, but for faculty who
enjoy presenting the simplex algorithm, the network problem
makes it very easy to walk through the steps without having to
resort to a two-dimensional linear program.

• Section 7.3 – Now we show that our so-called static linear program
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is a sequential decision problem, which means that our original
LP is actually a policy for a sequential decision problem. This
exactly parallels the transition from a static shortest path problem
(section 5.1) to a dynamic shortest path problem (section 5.2).

7.1 As a Static Problem – The Simplex Algorithm I

There are many ways to illustrate the need for a linear program – one is
the network problem below where we have supplies of resources at three
locations, and we need to satisfy demands at four locations. Finding
the optimal way to distribute these supplies to meet the demands
can be solved as a linear program. In this section we illustrate the
simplex algorithm applied to networks (this is known as “network
simplex”) where the entire presentation is graphical – no linear algebra.
In section 7.2 I repeat the steps, but this time I include the linear
algebra that goes with each step.

Using what we learned in Topic 6, we can write this out as a linear
program using our canonical model

Ax = b, (7.1)

x ≤ u, (7.2)

x ≥ 0. (7.3)
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Writing out the constraints gives us∑
j

xij = Ri for i = 1, 2, 3. (7.4)

∑
i

xij ≤ Dj for j = 4, 5, 6, 7. (7.5)

xij ≥ 0 for i = 1, 2, 3 and j = 4, 5, 6, 7. (7.6)

If you want to teach the simplex method, a nice way is to use the
network above and show the steps of simplex graphically, rather than
the usual treatment using matrices. We are going to start by having all
the flows exit through a super sink with zero-cost links moving from
each destination node (nodes 4–7) with upper bounds equal to the
demand at the node:

The supersink, while not necessary for the algorithm, will help to
simplify the presentation.

We first need an initial feasible solution, and this solution has to
represent what is known as a basis. A basis (for a network problem) is
a set of links with flows that satisfy all flow conservation constraints,
along with all upper and lower bounds.

There are different ways to get an initial feasible solution. For this
network problem, we can start by putting the required flow into each
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destination node (nodes 4–7) on the link into the supersink. Then, we
start at node 4, find a link from a supply node (node 1), and put as
much flow on this link as we can. Since the demand at node 4 is only
15, we cannot put more than 15. Also, since the supply at node 1 is 30,
we have to take the smaller of 30 and 15 and put this amount (15) on
the link (1–4).

Now we go to node 1 where we still have 15 units of unassigned flow.
Node 5 needs 35 units of flow, but we only have 15 remaining, so we put
15. Next we go to node 5, where we still have an unsatisfied demand
of 20, and look to the next supply node, node 2, which has 45 units of
available flow. We take 20 of these to put on the link (2–5) which now
gives us our required flow of 35 into node 5.

Next we move to node 2 where we still have 25 unassigned units of
flow. We turn to node 6 that needs 30 units of flow, and push all 25
units of flow from 2 to 5. We still need 5 more units of flow at node 6,
so we move down to node 3 and take 5 out of the available 25 units of
flow.

Finally, we move the remaining 20 units of flow at node 3 to node 7.
We are not quite done. To be a basis (for a network), the set of links

in the basis must satisfy two conditions:

1. All links with flow strictly between the upper and lower bound
must be in the basis.
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2. The set of links in the basis must form of tree.

So, we quickly see our links fail condition 2 – the set of links with
flow do not form a tree. But we are not required to keep links with flow
if the flow is at the upper or lower bound. Of the four links into the
supersink, only one can be in the basis, so we are going to arbitrarily
choose the first one, which gives us the basis:

We are not claiming that this is optimal (it is not), but we now have
a way of finding the optimal solution. The first step is to compute a
“value” (known as a “dual variable”) which is the cost of moving a unit
of flow from each node to the supersink. Remember that all the links
directly attached to the supersink have 0 cost. So, the value at node 4
would be 0, since this is the cost of the path from 4 to SS.

To get from node 1 to SS, we have to move 1–4 (cost 4) and then
4-ss (cost 0) which is a cost of 4. A better way to get the dual at node
1 is to see that the path moves from 1 to 4 (at a cost of 4), and then
just add the dual at 4 (which is 0).

To get from node 5 to SS, we first have to go backwards on the link
(1–5), so this is a cost of minus 12. The dual at 1 is 4, so the dual at 5
is −12 + 4 = −8.

The dual at node 2 would be the cost of 2 to get 2–5, plus the dual
at 5 = −8, so the dual at 2 = 2 + (−8) = −6. Continuing this logic for
the remaining nodes gives us the duals:
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You can quickly check that each dual vi is the cost from that node
to the supersink, following links that are in the basis.

Note at the same time there is always a single path from each node
to the basis. This is a key property of the basis, which we are about to
exploit.

Now let’s optimize. We are going to do this by looking at the nonbasic
links without flow, and ask: What is the value of increasing flow on a
nonbasic link?

Let’s take the link (1–6). To move one more unit of flow from 1 to
6, we are going to first add the flow from 1–6 (at a cost of 7), then we
are going to move one unit of flow from 6 to the super sink, at a cost
v6 = −16 (the dual variable for node 6), and then we are going to move
one unit of flow from the super sink back to node 1. The cost of moving
flow from SS to node 1 is negative the dual for node 1 (since this is the
cost to go from 1 to SS). This means moving a unit of flow from 1 to 6,
then 6 to SS, and finally SS back to 1, is

c16 = c16 + v6 − v1.

The cost c16 is called the reduced cost since the cost is “reduced” by
the changes needed to guarantee that we still satisfy all the constraints.
This is a very simple calculation, which means we can do this calculation
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for every link that is not in the basis (note that the reduced cost for
any link in the basis is equal to zero). For link 1–6, the reduced cost is

c16 = c16 + v6 − v1 = 7 + (−16) − 4 = −13.

The reduced cost captures the change in all the costs if we add one
more unit of flow from 1 to 6, and then make all the other adjustments
needed to ensure that we are still satisfying all the other constraints.
Since the reduced cost is negative, this means that for each unit of flow,
total costs will go down by 13, which means we get a better solution.

Now we just have to figure out how much flow we can move. We
first note that adding one unit of flow from 6 to SS, and then moving
one unit of flow from SS to 1, means there is no change on links 1–4
and 4-SS. The only links where flow actually changes are the links on
the path along the links in the basis from 6 back to 1. This means flow
increases on the links 1–6 and 2–5, while flow decreases on links 1–5
and 2–6. We want to move flow until the first link hits its lower bound
(or upper bound if we had these, but we don’t). The link 1–5 has 15
units of flow, while link 2–6 has 25 units of flow, so link 1–5 will be
the first link to hit zero. This means we can move 15 units of flow, at
which point we would stop and drop link 1–5 from the basis (since it
no longer has flow), while we now add link 1–6 to the basis.
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We now have a new basis which means we have to update all our
dual variables vi. There are ways to do this very quickly, but these are
technical issues that are not important for our discussion. Remember –
we are not trying to teach students how to code the simplex algorithm –
we are trying to teach important concepts in optimization.

With the new dual variables, we now have to recompute the reduced
costs for all the nonbasic links (note that linear programming packages
have tricks to do this very quickly). If we find another link with a
negative reduced cost, then we have to repeat this exercise. We keep
doing this until we no longer find any links with a negative reduced
cost. At this point, we have found the optimal solution.

It is possible that when we route flow around the cycle, two links
may hit zero at the same time. If this happens, we drop only one from
the basis, and leave the other link with zero flow in the basis. This is
known as a degenerate basis. A byproduct of a degenerate basis is that
it is possible that we may find that the amount of flow we can move
around the cycle (when we find a nonbasic link with negative reduced
cost) is zero. Nothing wrong with this – it is actually fairly common.

This is a peek into the simplex method for network problems. The
simplex algorithm works for linear programs that are not networks, and
in this case we cannot draw these pretty pictures. But the basic idea
is the same. Modern implementations of the simplex algorithm involve
a vast array of engineering tricks to make the algorithm extremely
fast. What is most important for students to understand is that we
have exceptionally fast algorithms for solving linear programs, and free
software is widely available.

Next, we are going to illustrate a dynamic inventory problem where
we repeatedly solve linear programs over time.

7.2 The Simplex Algorithm II – with the Matrix Linear Algebra

For a first course on optimization, I do not think it is necessary to
show the matrix linear algebra behind the simplex algorithm, but
there will be instructors who will want to include this material. This
section includes all the slides from one of my lectures that presents
the network simplex algorithm alongside the matrix calculations. You
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can download the PowerPoint slides that contain this material from
https://tinyurl.com/PowellNetworkSimplex/.

The illustration below uses the network in section 7.1, but without
the supersink. We choose node 1 arbitrarily to be the root node (and
we explain why we need the concept of a “root node” for networks in
the discussion below).

A generic linear programming model for a network problem is written
as follows:

min
x

∑
supplies i

∑
demands j

cijxij

subject to the constraints:∑
j xij = Si = Supply at node i∑

i xij = Dj = Demand at node j
xij ≥ 0

We can write these constraints in matrix form as

Ax = b,

x ≥ 0.

Now assume we are going to solve the numerical example below.
Our constraints would look like

x14 + x15 + x16 = 12

x24 + x25 + x26 + x27 = 18

x36 + x37 = 15

−x14 − x24 = −8

−x15 − x25 = −19

−x16 − x26 − x36 = −12

−x27 − x37 = −6

x14, x15, x16, x24, x25, x26, x27, x36, x37 ≥ 0

https://tinyurl.com/PowellNetworkSimplex/
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We would write our constraint matrix A with a row for each con-
straint, and a column for each variable xij , giving us the ematrix:

Some notes:

• If we add the rows of the matrix A, they sum to zero. This means
that one of the rows is redundant. . . . If we drop one of the rows,
all the constraints will still be satisfied. In other words, if we have
a network with n nodes, we need n − 1 constraints.

• The simplest way to illustrate this property of networks is to
consider a network with two nodes and one link:

• If we enforce flow conservation at node 1, this means we will be
sending 6 units of flow from 1 to 2, which automatically satisfies
the flow conservation constraint at node 2.

• So, for larger networks, we can pick any node and drop its con-
straint. This node is called the root node. If r is the root node,
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then the dual variable vr = 0 (remember – this is the cost of
moving a unit of flow from that node to the root node).

• For our network above, we can arbitrarily pick node 1 as the root
node. This gives us the following constraint matrix:

A =

1 − 4 1 − 5 1 − 6 2 − 4 2 − 5 2 − 6 2 − 7 3 − 6 3 − 7


2 0 0 0 1 1 1 1 0 0
3 0 0 0 0 0 0 0 1 1
4 −1 0 0 −1 0 0 0 0 0
5 0 −1 0 0 −1 0 0 0 0
6 0 0 −1 0 0 −1 0 −1 0
7 0 0 0 0 0 0 −1 0 −1

The simplex algorithm for linear programming requires that we start
with a basis which is a set of variables xij which we are going to adjust
to guarantee that the constraints are satisfied any time we change a
variable that is not in the basis. Our only requirement for a nonbasic
variable is that it must be at its lower or upper bound. In our numerical
example (without the supersink), we do not have any variables with
upper bounds, so all nonbasic variables must equal 0.

These concepts are best explained by example.
We have to start by creating our basis. We need to find a set of flows

that satisifes the constraints. We do not care about the quality of the
solution – our simplex algorithm can start with any feasible solution
that satisfies the rules for our basic and nonbasic variables.

Professional linear programming packages have sophisticated logic
for creating starting solutions. For our simple problem, we are going
to use a simple strategy called the “northwest corner rule” where we
literally start in the northwest corner of our graph (that is, node 1), and
start assigning flow to the northeast corner (which would be node 4).
We assign as much as we can (that is, the smaller of either the supply
at node 1 or the demand at node 4). We then move to either the next
supply node (if we allocated all the supply from node 1) or the next
demand node (if we satisfied all the demand at node 4), and keep
repeating the process using the remaining nodes with unused supply or
unsatisfied demand.
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This process produces the network below, along with the basic vector
xB (the vector of links xij for links in the basis) and the nonbasic vector
xN (the links not in the basis):

xB =



1 − 4
1 − 5
2 − 5
2 − 6
3 − 6
3 − 7


xN =

1 − 6
2 − 4
2 − 7



We can now partition our A-matrix into a square matrix AB of the
basic variables (it will always be square) and the remaining matrix AN

comprised of the non-basic columns:

AB =

1 − 4 1 − 5 2 − 5 2 − 6 3 − 6 3 − 7



2 0 0 1 1 0 0
3 0 0 0 0 1 1
4 −1 0 0 0 0 0
5 0 −1 −1 0 0 0
6 0 0 0 −1 −1 0
7 0 0 0 0 0 −1

AN =

1 − 6 2 − 4 2 − 7



2 0 1 1
3 0 0 0
4 0 −1 0
5 0 0 0
6 −1 0 0
7 0 0 −1

We can now restate our constraints using the vectors of basic and
nonbasic variables, and the corresponding columns of the A− matrix.
The constraints

Ax = b



74 Lectures

becomes

[AB AN ]
[

xB

xN

]
= b

which is the same as
ABxB + AN xN = b.

We can now solve for thebasic variables xB in terms of the basic vari-
ables xN :

xB = [AB]−1[b − AN xN ].

For our network problem, we have no upper bounds so xN = 0, but
this will not always be the case. Note that we can guarantee that the
matrix AB is, in fact, invertible by how we have constructed the basis.

For general linear programming problems we need some reasonably
sophisticated linear algebra to handle the matrix inversion [AB]−1.
Remember that linear programming models have been solved with
millions of variables. In fact, network problems (which have a lot of
structure) can be solved even with tens of millions of variables. We
would not even be able to store a matrix AB with millions of rows and
columns. This is where specialists use a lot of tricks.

In fact, we are going to show you how you can invert the basis
matrix AB for our network problem by inspection!

Recall that each row of the basis matrix AB corresponds to a node,
while each column corresponds to a link (that is, a decision variable
xij). This is why we often call AB a “node-arc incidence matrix.” It
turns out that each row of the inverse [AB]−1 corresponds to a link,
while each column corresponds to a path from a node to the root node.
The element of the matrix [AB]−1 indicates if the link for that row is
in the path from the node for that column. We use 0 if the link is not
in the path, and then +1 or −1 to indicate if the link is in the path,
and whether you have to traverse the link in the forward direction or
backwards. The choice of whether it is +1 or −1 depends on what sign
convention you have used in your flow conservation constraints (that
is, did you write flow out minus flow in, or the reverse). Below is the
inverse that we get for our problem.

To verify that [AB]−1 is in fact the inverse of AB, we can perform
the multiplication AB[AB]−1 to verify that we get the identity matrix.
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This is done below:

AB



0 0 1 1 0 0
0 0 0 0 1 1

−1 0 0 0 0 0
0 −1 −1 0 0 0
0 0 0 −1 −1 0
0 0 0 0 0 −1

×

[AB]−1



0 0 −1 0 0 0
−1 −1 0 −1 −1 −1
1 1 0 0 1 1
0 −1 0 0 −1 −1
0 1 0 0 0 1
0 0 0 0 0 −1

=

I



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Note that if we perform this multiplication and find we get −I then
you just have to switch your sign convention. Obviously you only have
to check this for one element.

We can rewrite our objective function using

Min
x

cT x = (cB)T
xB + (cN )T

xN
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= (cB)T ([AB}−1(b − AN xN )) + (cN )T
xN

= (cB)T [Ab]−1
b − (cB)T [AB]−1

AN xN + (cN )T
xN

= (cB)T [AB]−1
b + cN xN

where cN is the vector of “reduced costs” for the nonbasic links given by

cN = (cN )T − (cB)T [AB]−1
AN

Reduced costs tell us if we should increase the flow on a nonbasic link,
while adjusting flows on all the basic links so that the flow conservation
(plus upper and lower bound) constraints are satisfied. For our numerical
example above, the reduced costs are calculated as follows:

cN = [c16 c24 c27] − [c14 c15 c25 c26 c36 c37]

“paths”[ ]
2 3 4 5 6 7



0 0 −1 0 0 0
−1 −1 0 −1 −1 −1
1 1 0 0 1 1
0 −1 0 0 −1 −1
0 1 0 0 0 1
0 0 0 0 0 −1

Nonbasic
links

1 − 6 2 − 4 2 − 7



0 1 1
0 0 0
0 −1 0
0 0 0

−1 0 0
0 0 −1

Continuing the calculations:

cN = [c16 c24 c27] − [c14 c15 c25 c26 c36 c37]

0 0 −1 0 0 0
−1 −1 0 −1 −1 −1
1 1 0 0 1 1
0 −1 0 0 −1 −1
0 1 0 0 0 1
0 0 0 0 0 −1





0 1 1
0 0 0
0 −1 0
0 0 0

−1 0 0
0 0 −1


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= [c16 c24 c27] −
(cB)T [AB ]−1︷ ︸︸ ︷

[v2 v3 v4 v5 v6 v7]



0 1 1
0 0 0
0 −1 0
0 0 0

−1 0 0
0 0 −1


= [c16 c24 c27] − [−v6 v2 − v4 v2 − v7]

= [c16 − v1 + v6 c24 − v2 + v4 c27 − v2 + v7]

We see that (cB)T [AB]−1 is the inner product of the link costs (for
basic links) times the link-path incidence matrix [AB}−1. This means
that (cB)T [AB]−1 is the vector of dual variables, which as we have seen
are the path costs along the basis from each node to the root node. All
of this reduces to the simple relationship (for networks) between costs
and reduced costs for nonbasic links

cN = [c16 − v1 + v6 c24 − v2 + v4 c27 − v2 + v7].

We can compute the path costs (dual variables) vi just by following
the path along the basis from each node to the supersink (node 1).
Remember we have to subtract the cost for any link that we traverse in
the reverse direction of the link. This gives us

v1 = 0

v2 = 16 − 8 = 8

v3 = 8 − 4 + 16 − 8 = 12

v4 = −14

v5 = −8

v6 = −4 + 16 − 8 = 4

v7 = −5 + 8 − 4 + 16 − 8 = 7

The reduced costs on the nonbasic links are then

cN = [c16 c24 c27]
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= [c16 − v1 + v6 c24 − v2 + v4 c27 − v2 + v7]

= [9 − 0 + 4 15 − 8 + (−14) 17 − 8 + 7]

= [13 − 7 16]

The reduced cost tells us how much total costs will change if we
increase the flow on each nonbasic link. If the reduced cost is negative,
then we have found a nonbasic link where we can increase the flow and
reduce total costs. We now search for nonbasic links with a negative
reduced cost, since this means increasing the flow on that link, and then
adjusting the flows on the basic links so we maintain flow conservation,
will reduce total costs.

There are different strategies for choosing the nonbasic link, since
networks can be quite large (from many thousands of links to millions
of links). It makes sense to choose the nonbasic link with the most
negative reduced cost, but this would mean calculating all the reduced
cost and finding the smallest. Computer scientists have refined these
strategies to balance the time required to find the best nonbasic link
that produces the fastest convergence.

From our list of reduced costs above, we see that the only nonbasic
link with a negative reduced cost is link (2,4). We want to increase
flow from 2 to 4. Then, to maintain flow conservation, for each unit of
flow we push from 2 to 4, we want to push a unit from 4 to the root
node (node 1), and then from the root node to node 2, always limiting
ourselves to links in the basis. We note that there is always exactly one
path between any node and the root node.

As we see the graph to the right, the path from 4 to the root node
means reducing a unit of flow on the link from 1 to 4. Then, we have to
push a unit of flow from node 1 to node 2, which means increasing flow
on link (1,5) and then decreasing flow on link (2,5).

The next step is that we have to figure out how much flow to move.
The answer to this is simple: we move as much as possible. We look at
each link that is losing flow, and then calculate how much flow is on
these links, and take the link with the smallest flow. If links have upper
bounds, then we also look at each link that is gaining flow, and take
the link that can increase flow by the smallest amount before hitting
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the upper bound. Finally, we choose the link losing flow where we can
lose the smallest amount of flow, and compare it to the links gaining
flow, and choose the link that can gain the least. Finally, we choose the
link that can lose (or gain) the smallest amount of flow, and that link
determines how much flow we can lose. The constraining link is also the
link that we drop from the basis.

After we complete the process of adding the new nonbasic link
and dropping the constraining link, we have to recompute the dual
variables vi. Again, we note that commercial software uses a variety of
programming tricks to accelerate this process.

Some notes:

• It is possible that there may be a tie – two links losing flow have
the same amount of flow, or the link that can lose the least flow
matches the link that can gain the least flow. In case of ties, we
just pick one link arbitrarily to drop from the basis. After adding
the new nonbasic link, we regain a valid basis (that is, all the
links in the basis always form of a tree).

• It is also possible that the amount of flow that we can move is
zero. This can (and will) happen, and is known as a “degenerate
pivot.” Even when the amount of flow we can move is zero, we still
go through the same process of adding the new nonbasic link to
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the network, and dropping one of the constraining links (if there
is more than one).

We note that all of our calculations seem to depend on our choice
of root node. It turns out that changing the root node has the effect
of changing all of the dual variables by a constant, which means that
the reduced costs, which all involve differences between dual variables,
are not affected. Below are two networks with different root nodes to
illustrate this property.

This nice property also hints at a limitation in the interpretation
of a dual variable. It is common to think of a dual variable vi as being
the marginal value of the resources entering or leaving the network at
node i. Since the sum of the supplies and demands for our network
problem must sum to zero, it does not make sense to perturb the flow
entering or leaving the network at node i, since we also have to specify
the change in the flow at some other node so that the supplies and
demands remain balanced. We have actually addressed this problem
by dropping one of the constraints (the root node). This means that
if we perturb the supply or demand at some node i, we are implicitly
balancing this change by adding or subtracting the same amount of
flow at our root node so that the sum of supplies and demands remain
balanced.

7.3 As a Policy for a Dynamic Problem

Let’s start with the same network problem we used above, but now
assume that we are using this to match available inventories of products
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in distribution centers to the demands of retailers looking to restock their
inventories. We might reasonably solve this problem daily (or weekly),
but in this case we are now solving a sequential decision problem, where
our “policy” requires solving the linear programming problem.

Recognizing that we are solving this problem each time period, our
optimization problem at time t would be written

min
xt

∑
i,j

ctijxtij

subject to ∑
j

xtij = Rti for i = 1, 2, 3, (7.7)

∑
i

xtij ≤ Dtj for j = 4, 5, 6, 7, (7.8)

xtij ≥ 0 for i = 1, 2, 3 and j = 4, 5, 6, 7, (7.9)

where the supplies at time t are given by Rti and the demands are given
by Dtj . We have also allowed our costs ct to be time-dependent. We
quickly see that we can minimize costs by not satisfying any demand,
so a better model might be to maximize profits. Let

ptj = the price we receive for satisfying a unit of demand at node j.

Our objective function would then be

max
xt

∑
j

ptj

(
min

{
Dtj ,

∑
i

xtij

})
−
∑
i,j

ctijxtij

 (7.10)

A more realistic model needs to be modified to reflect the possibility
that total supply may be greater than total demand, or less than total
demand. We have already written the demand constraint (7.8) as an
inequality. However, we need to add the option that allows us to hold
excess inventory until time t + 1. In fact, we may even want to hold
inventory while not satisfying demand. Remember that in our model
we are allowing costs and prices to vary over time. There may be a time
period where costs rise and/or prices drop, at which point we prefer to



82 Lectures

hold our inventory for a future time period when prices and costs may
be more favorable.

We may face uncertainty in our available inventories (these might
include inventories arriving soon, but perhaps they are delayed), or the
demands (which may be higher or lower than expected). We might,
then, replace constraints (7.7)–(7.9) with

∑
j

xtij = θRRti for i = 1, 2, 3. (7.11)

∑
i

xtij ≤ θDDtj for j = 4, 5, 6, 7. (7.12)

xtij ≥ 0 for i = 1, 2, 3 and j = 4, 5, 6, 7. (7.13)

The objective function (7.10) with constraints (7.11)–(7.13) looks
like another optimization problem, but there is an important difference.
This is just a problem at time t, where we want to maximize profits
over time, not just at a point in time. If we choose to maximize (7.10)
to get our decisions of what to do at time t, then we would say that
this problem is now a policy which should be written

Xπ(St|θ) = argmax
xt

∑
j

ptj

(
min

{
Dtj ,

∑
i

xtij

})
−
∑
i,j

ctijxtij


(7.14)

which has to be solved subject to the constraints (7.11)–(7.13), where the
coefficient θR and θD are chosen to improve the performance of the policy
over time. Thus, we can use our simplex algorithm to find the optimal
solution of our linear program, but solving (7.14) is not an optimal
policy!

We might create a more sophisticated policy by optimizing into the
future, just as we did in our dynamic shortest path problem where we
would plan a path to the destination, which would then be updated as
new information came in. Such a direct lookahead (DLA) policy could
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be written

Xπ
t (St|θ) = argmax

x̃tt,,...,x̃t,t+H,

t+H∑
t′=t

∑
j

p̃tt′j

(
min

{
D̃tt′j ,

∑
i

x̃tt′ij

})

−
∑
i,j

c̃tt′ij x̃tt′ij

 (7.15)

subject to, for t′ = t, t + 1, . . . t + H:∑
j

x̃tt′ij = θRR̃t′ti for i = 1, 2, 3, (7.16)

∑
i

x̃tt′ij ≤ θDD̃tt′j for j = 4, 5, 6, 7, (7.17)

x̃tt′ij ≥ 0 for i = 1, 2, 3 and j = 4, 5, 6, 7. (7.18)

Note that we have put tilde’s on all the variables used to plan into
the future. Also, each of the tilde-variables has two time indices: time
t, since we are solving the problem at time t, and time t′, which is the
time we are planning into the future. Other variables such as prices or
demands are forecasts of future prices or demands made at time t.

Note that we do not care about the entire optimal solution over
the horizon t, . . . , t + H. We are only going to implement the first time
period, which means we would set

xt = x̃tt.

Note that our DLA policy in (7.15)–(7.18) is still not an optimal
policy, but it might be quite good. One challenge is that we have to
tune the parameters

θ = (θR, θD).

We need to first write out how we would simulate our policy Xπ
t (St|θ).

This requires identifying how random events (e.g. random demands,
travel times, . . . ) affect how the solution xt behaves in practice. This
is a key step that is almost always overlooked when modeling and
solving linear programs. What you have to do is to imagine that you are
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simulating the process. These equations represent the transition function
in our sequential decision model which we represent compactly as

St+1 = SM (St, xt, Wt+1).

Assume as we have done before that we can generate a series of
sample paths where the nth sample path is

ωn = (W n
1 , W n

2 , . . . , W n
T ).

Let Sn
t be the state at time t while we are following sample path ωn.

Specifying ωn refers to a specific sample of anything random (demands,
prices, travel times, . . . ). The value of the policy for sample path ωn

might be written

F n(θ) =
T∑

t=0
C(St(ωn), Xπ

t (St(ωn)|θ)),

where Xπ
t (St(ωn)|θ) is the policy computed from (7.15)–(7.18). If we

generate n = 1, . . . N sample paths, we can evaluate the policy by taking
an average

F
π(θ) = 1

N

N∑
n=1

T∑
t=0

C(St(ωn), Xπ
t (St(ωn)|θ)).

There are, of course, different ways to parameterize the policy. This
means that when we optimize over policies, it requires designing different
parameterizations, and then tuning each one. Let f ∈ F be a family of
parameterizations (we have to make these up by hand), and let θ ∈ Θf

be the parameters for parameterization f . Our policy π = (f, θ) consists
of the parameterization and its tunable parameters.

We can now write out our optimization problem as

min
π=(f,θ)

F
π(θ).

This discussion has illustrated that we are going to need to identify
and compare different types of policies (such as (7.15)–(7.18)) as well as
tuning any parameters that we have inserted. Coming up with different
types of policies parallels choosing between the linear and nonlinear
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models we illustrated in Topic 1 on machine learning. Tuning the
parameters for the policies parallels fitting our parametric models in
machine learning.

While this process may seem ad hoc, it is no more ad hoc than
searching among different statistical models in machine learning. Fur-
thermore, this is precisely how the vast majority of sequential decision
problems are solved in practice.
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Topic 8: Dynamic Inventory Problems – Energy Storage

Readings: SDAM Chapter 9.
Here we address a more complex energy storage problem:

We have to decide how much to draw from a windfarm (with variable
supply), the grid (with variable prices), to meet a predictable load
(demand) for a building, using an energy storage device to absorb
variations. We have rolling forecasts of wind which change quite a bit
from hour to hour:

We are going to solve this much as we solve our dynamic shortest
path problem, where we look into the future and pretend the various
forecasts (such as wind) are perfectly accurate. This “lookahead model”
is another example of a linear program. Even though the decision at
each point in time is a scalar, we have to optimize the decisions over
the entire horizon, which means we have to optimize over the entire
vector of decisions.
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Now, to handle uncertainty, we insert a coefficient θt′−t for our
forecast of wind made at time t, of what the energy from the wind
farm will be at time t’. Note that θt′−t is not a function of t, it is just a
function of the difference t′ −t. So if we look 24 hours into the future, we
would have 24 coefficients. A simpler strategy to get us started would
be to assume that there is just one coefficient for all forecasts. The
modified lookahead linear program looks like:

This closely parallels the idea of solving a shortest path with modified
costs. We solved that problem using our shortest path algorithm. This
time, we need the full power of a linear program that we introduced in
Topic 7.

Our next challenge is to tune the parameter vector θ which could be
a scalar (if we use one parameter for all the forecasts) or, in our case, a
24-dimensional vector (one for each hour into the future). We first need
to write out how we are going to evaluate our policy. If XD−LA

t (St|θ)
is our policy above, assume that it returns a decision vector xt that
determines what to do right now.

Let C(St, xt) be our performance metric (e.g. total costs) that occur
just at time t. Now let W1, W2, . . . , Wt, . . . , WT be a sample realization
of all the new information arriving, where Wt is the information that
arrives between t − 1 and t. This would include energy from the wind
farm, the grid price, along with the latest set of rolling forecasts of
demands, grid prices and the energy from wind. If we have access to
real data, we could use that. Otherwise, we would likely use Monte
Carlo simulation which we described in Topic 2.
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We need to write a simulator that we represent using our transition
function

St+1 = SM (St, xt, Wt+1),

where St captures everything we know at time t, our decision comes
from our policy xt = XD−LA

t (St|θ), and the new information Wt+1
comes from our historical data or simulation. The transition function
describes how our state variable changes over time (for example, this is
where we update how much energy is in our storage device).

Running the simulation on the data Wt, with decisions from the
policy XD−LA

t (St|θ), allows us to estimate the performance of the policy:

F D−LA(θ) =
T∑

t=0
C(St, xt = XD−LA

t (St|θ)).

Next we have to turn to algorithms to search for the best value of
θ. If we assume there is only a single parameter θ for all time periods
in the future, this would just be a one-dimensional search. If it is a
vector, we could use a gradient-based search such as what we illustrated
in Topic 1 for nonlinear models. [See section 5.4 in RLSO for a more
thorough discussion of how to compute gradients numerically.]

We can set up our simulation so that the rolling forecast is perfectly
accurate. In this case, we would expect the best value of θ to be 1.0.
The figure below confirms this.
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Now run the experiment where the rolling forecasts (say of wind) is
not accurate, as would occur in practice. In this case, we get the graph
below, where the best values of θ are quite different from 1.0.

The figure below shows that we can achieve approximately a 30 percent
improvement using optimized θ.
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This application illustrates the very powerful idea of parameteriz-
ing an optimization problem. I suspect that there is a wide array of
optimization problems that are actually policies for fully sequential
problems. The idea of parameterizing an optimization problem is widely
used in industry, but in an ad hoc way.
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Topic 9: Integer Programming

We now introduce integer programming, using the classic problem of a
facility location problem. Some schools teach entire courses on integer
programming, so this lecture is more of a placeholder. An instructor
can cover this material very briefly (e.g. at the level of these notes),
or delve into the richer modeling challenges. We note that as of this
writing, the best integer programming solvers (such as Gurobi or Cplex)
are quite powerful for a wide range of problems.

As we did with linear programming, we are going to start with a basic
integer programming problem which can be solved using commercial
packages. It is for this reason that, as with linear programming, the
traditional emphasis on algorithms is simply not appropriate for an
introductory course.

We are going to introduce integer programming using a classical
(and widely used) application of optimizing a set of locations to build
or lease warehouses. This is a problem that can be solved to near
optimality by high quality commercial packages. Unlike linear programs,
integer programs come in different flavors, some of which are easier to
solve while others still require specialized algorithms. In section 9.2 we
provide a summary of some of the major classes of integer programming
problems.

As we did with linear programming, we start with static models to
illustrate integer programming. We follow in Topic 10 by extending the
facility location problem to a dynamic setting.

9.1 Static Facility Location

A problem faced by many companies is locating facilities – these might
be manufacturing points, distribution centers, warehouses, and even
retail locations (if the company is a retailer).

Imagine that we are trying to design the network in the graphic
below. We might assume we have a known manufacturing location in
Mexico, but we have to optimize the location of distribution centers
(black squares) and local warehouses (the smaller circles). To model
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this problem, let:

I facility = Set of candidate locations for distribution centers and
warehouses (to be chosen).

Iprod = Set of production facilities (fixed in advance).

Iretail = Set of retailers where product is sold (fixed in advance).

xtrans
ij = Flow of goods (in pounds per quarter) from i to j.

xtrans = (xtrans
ij )

i,j
.

xfacility
i =

{
1 if we build facility i

0 Otherwise
, i ∈ I facility.

xfacility = (xfacility
i )i∈Ifacility .

We can combine these into a single vector:

x = (xtrans, xfacility).

Next define the costs:

cfacility
i = Cost per quarter to lease/operate facility i.
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ctrans
ij = Transportation cost per pound for moving freight (in

pounds) from i to j.

We have to move the freight from places where we have supplies,
which includes initial inventories as well as the ability to produce the
product (presumably only at the manufacturing facility). For this we let

qprod
i = Production capacity of manufacturing facility i ∈ Imanuf ,

where we assume there is sufficient production capacity to meet
the total market demand.

We then have to satisfy demands, given by

Di = Demand for goods (in pounds) at retailer i over the quarter.

Our optimization problem to find the location of facilities can then
be stated as

min
x=(xtrans,xfacility)

∑
i∈Ifacility

cfacility
i xfacility

i +
∑

i,j∈Ifacility

ctrans
ij xtrans

ij (9.1)

This has to be optimized subject to the constraints:∑
j∈Ifacility

xtrans
ij ≤ qprod

i for all i ∈ Iprod (9.2)

∑
k∈Ifacility

xtrans
ki = Di for all i ∈ Iretail (9.3)

∑
i∈Iprod

xtrans
ij ≤ qfacilityxfacility

j for all j ∈ I facility (9.4)

∑
k∈Iretail

xtrans
jk ≤ qfacilityxfacility

j for all j ∈ I facility (9.5)

xtrans
ij ≥ 0 for all i, j ∈ Iprod , I facility, iretailer ,

(9.6)

xfacility
i ∈ (0, 1) for all i, j ∈ I facility (9.7)

Equation (9.2) makes sure the total flow out of each production
facility does not exceed the production capacity. Equation (9.3) requires
that we meet the retail demand.
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Equations (9.4) and (9.5) make sure that we do not ship out of or
into any facility that has not been built, and if it has been built, that
we do not exceed its capacity.

Equation (9.6) imposes the obvious condition that flows cannot be
negative.

Equation (9.7) is where we insist that the facility variables xfacility
i

must be 0 or 1, and nothing in between. It is this constraint that makes
this an integer programming problem.

Prior to year 2000, optimization problems with integer variables
such as this could not be solved using commercial packages, and you can
still find textbook authors referring to these problems as “hard.” Today,
commercial packages such as Gurobi (I think this is the leader) or its
predecessor, Cplex, can handle a wide range of integer programming
problems. The solution times will be slower than similar sized problems
without integer variables, but the best packages can handle problems
of realistic size without difficulty. Students do need to understand
that while there are a number of freeware packages for solving linear
programs, integer programs are harder, and the best packages may be
quite a bit better than free software that you can get from the internet.

While we do make an attempt to indicate how linear programs can
be solved with the simplex method (although I consider this optional – it
really depends on the types of students), algorithms for integer programs
are quite tedious. I strongly recommend leaving these to more advanced
courses. Students learning optimization for the first time just have to
understand that the complexity of integer programs means that more
care has to be used when choosing a package.

9.2 Types of Integer Programs

It is important to recognize that there are major classes of integer
programs, ranging from those that are no harder than solving a linear
program to exceptionally hard problems that typically require special-
ized algorithms. Below is a list of some major classes of integer programs:

• Assignment problems (people/equipment to task) – These are
problems where we are assigning discrete resources (people, ma-
chines) to discrete tasks. All the flows are 0 or 1. As long as a
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resource can only be assigned to at most one task, and each task
requires only one resource, this is an easy problem that can be
solved using a general purpose linear programming code and be
guaranteed that the optimal decisions will be 0 or 1.

• Network flow problems as we illustrated in Topic 7 – This is
another example of problems that can be solved using general
purpose linear programming solvers, and still be guaranteed that
the optimal solution will be integer as long as all the supplies,
demands, and upper or lower bounds, are integer. Network flow
problems are not limited to settings where a resource can cover
just one task – the only limitation is that there can only be two
types of constraints: flow conservation (flow out = flow in) and
upper/lower bounds on flows.

• Network design (as we illustrated above) – Our facility design
problem used to be considered a hard integer programming prob-
lem, but today the most advanced solvers (such as Gurobi or
Cplex) can handle these problems. Run times will be much slower
than if we drop the integrality constraints, but reasonable-sized
problems (hundreds, even thousands of integer variables) can be
solved with reasonable times.

• Vehicle routing problems – The simplest routing problem is the
traveling salesman problem, and even this problem is beyond the
capability of standard integer programming solvers. The problem
arises when specifying constraints. It is easy to see that we need
flow conservation constraints so that the flow into each node
equals the flow out, but if we just include these constraints, it is
possible to create cycles where a vehicle goes from city 1 to city 2
to city 3 back to city 1, without ever passing through the home
depot for the vehicle. We can eliminate these “subtours” with
“subtour elimination constraints” but we need an exponentially
large number of these. Much harder problems include vehicles
that have to make multiple stops to deliver goods. Even harder
are problems where the vehicle must visit cities within a time
window. There is an extensive literature on these problems.
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• Sequencing and scheduling problems – These are arguably the
hardest class of integer programming problems. These often arise
when determining when to use a machine or trained technician to
perform a set of jobs within time constraints (loose constraints
are harder than tight ones). These problems tend to be solved
using a class of methods known as constraint programming.
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Topic 10: Dynamic Facility Location

The optimization problem we formulated in Topic 9 for our facility
location problem is possibly one of the most standard problems used
to illustrate integer programming. It is also widely used in industry, so
we need to emphasize that this is a very useful model. However, it is
important to understand how these decisions are actually made over
time, and how the resulting network actually performs.

We begin by transitioning our original static, deterministic facility
location problem into a two-stage problem where we first make the
decision of locating facilities using forecasted demands to produce an
estimate of the flows. Then, after we see the real demands, we reoptimize
the flows. Our choice of where to locate facilities ignores the effect of
these decisions on the future.

We then build on this “two-stage” model and use it as a policy for a
fully sequential problem (in section 10.3) where decisions about which
facilities to open or close are made sequential over time.

We start by describing the notation that we use.

10.1 Notation

To prepare for our dynamic models, we are going to begin by indexing
all of our variables by t. So, our decision variables become:

xfacility
ti = 1 if we decide to activate facility i ∈ I facility at time t

(we assume it becomes active right away). If it is already active,
then xfacility

ti = 1 means to keep it active, while xfacility
ti = 0 means

to deactivate it.

x̃trans
t,t+1,ij = the estimated flow of product from i to j in period

(t, t+1), using forecasted demands since this is all we know at time
t. We are not going to implement these flows – these are estimates
of what we think the flows might be using the information that
does not become available until time t+1, using our best estimate
(the forecast) at time t. We put a tilde on this variable so that it
does not become confused with the decision variables that we are
implementing (such as where to put a facility). We use a double
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time time index – the first index t indicates when we are making
the decision which controls what we know, while the second time
index captures the time period being modeled.

D̂t+1,i = the demand at retailer i that does not become known
until time t + 1.

fD
t,t+1,i = the forecast of the demand D̂t+1,i that is made at time t.

We need a variable for the flows that are made after we learn D̂t+1,i.
We use:

xtrans
t+1,ij = the actual flows that we determine after we see D̂t+1,i.

Just as the facility decision xfacility
ti is implemented using the

information known at time t, xtrans
t+1,ij would be the transportation

flows that actually happen, given that they are computed using
the actual demands D̂t+1,i.

We are next going to introduce variables for the state of facilities
which we model using:

Rfacility
ti =

{
1 if facility i is operating at time t

0 Otherwise

We can now make a decision to bring a facility into the network
(if Rfacility

ti = 0) or force it to leave the network (if Rfacility
ti = 1). Our

facility decision is then

xfacility
t =

{
1 If we want facility i in the network at time t + 1
0 If we want facility i out of the network at time t + 1

Of course, we can only add a facility if Rfacility
ti = 0, and we can only

drop a facility if Rfacility
ti = 1.

We assume that if we add a facility at time t that it becomes available
for the flows that are moved between t and t + 1 while meeting the
demands D̂t+1. We could introduce a longer delay, but it just complicates
the model.
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We have different costs for adding a facility to the network versus
dropping it from the network, so we define:

cadd
ti = Cost of adding facility i at time t.

cdrop
ti = Cost of dropping facility i at time t.

We need variables that indicate whether we added or dropped facility
i, or made no change, so we introduce

xadd
ti = 1 if we add a facility at i, 0 otherwise.

xdrop
ti = 1 if we drop a facility at i, 0 otherwise.

We then need to compute these variables using the “language” of
linear constraints. We can do this with the following (remember that
we want the smallest possible value of xadd

ti and xdrop
ti ):

xadd
t ≥ xfacility

ti − Rfacility
ti ,

xadd
t ≥ 0,

xdrop
t ≥ Rfacility

ti − xfacility
ti ,

xdrop
t ≥ 0.

We have to record the facility decision at time t in the facility state
variable at time t + 1 :

Rfacility
t+1 = xfacility

ti .

10.2 Single-period Model with Uncertain Demands

In this section, we are going to argue that people often overlook the
process of how a facility location problem is implemented. Typically it
is understood that we solve the problem, and use the facility variables
xfacility

i to determine where we open or close facilities. On the other hand,
we do not actually implement the flows contained in the flow variables
xflow

ij which are included in the model only as an approximation of what
will actually happen in the field.

For example, the optimal solution might specify that a retailer gets
their product from a particular warehouse (as indicated in the figure
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below), but on a particular day the warehouse may stock out, and
the retailer would get their product from the next closest warehouse.
We do not model these dynamics in the facility location model simply
because it would make the model too large and complex. However, this
means that our objective function (9.1) is nothing more than a rough
approximation of how well the solution will perform in practice.

It is possible that the objective function (9.1) is a reasonable approx-
imation, but not necessarily. A student used this model in a business
game I was teaching at Princeton (famously known as the “orange juice
game”) to determine which of 50 possible locations should be used for
warehouses. The cost of shipping to the warehouses was much lower
than the cost of shipping from warehouses to retailers. As a result,
the optimization model produced a solution recommending building a
warehouse at each of the 50 locations.

The solution worked terribly in practice since it ignored the random-
ness in demands. When the solution was implemented, there were many
stockouts because the model had not made any effort to capture the
effects of random demands. When there are 50 warehouses, buffer stocks
have to be larger in proportion to the averages. Using 5 warehouses
means the flow through each warehouse is much larger, which produces
a solution that is less sensitive to variations in the flow.

We are going to capture the effect of uncertainty by first assuming
that we are going to locate our facilities using only forecasted demands.

Using our new notation, the constraints (9.2)–(9.7) in the static
model become, at time t:∑

j∈Ifacility

xtrans
tij ≤ qprod

ti for all i ∈ Iprod , (10.1)

∑
k∈Ifacility

x̃trans
t,t+1,ki = fD

t,t+1,i for all i ∈ Iretail , (10.2)

∑
i∈Iprod

x̃trans
t,t+1,ij ≤ qfacilityRfacility

t,j for all j ∈ I facility, (10.3)

∑
k∈Iretail

x̃trans
t,t+1,jk ≤ qfacilityRfacility

t,j for all j ∈ I facility, (10.4)

x̃trans
t,t+1,ij ≥ 0 for all i, j ∈ I facility. (10.5)
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Finally, we include the allowed values of xfacility
ti : for i ∈ I facility:

xfacility
t =

{
1 If we want facility i in the network at time t + 1
0 If we want facility i out of the network at time t + 1

(10.6)
The optimization problem for facilities is given by

min
xfacility

t

minx̃trans
t,t+1

∑
i∈Ifacility

cfacility
i xfacility

ti +
∑

i,j∈Ifacility

ctrans
ij x̃trans

t,t+1,ij

.

(10.7)

Solving (10.7) gives us the facility decisions xfacility
t (which are

implemented), and the planned transportation decisions x̃trans
t,t+1 which

are not implemented.
Once we make the decisions xt = (xfacility

t , x̃trans
t,t+1), we then have

to evaluate the quality of the solution. The planned transportation
decisions x̃trans

t,t+1 were made based on forecasted demands fD
t,t+1. However,

we are going to assume that the actual transportation decisions are only
made after we see the actual demands D̂t+1.

We first need to update the facility state variable Rfacility
t using the

decisions xfacility
t computed from solving (9.15) using

Rfacility
t+1,i = Rfacility

t,i + xfacility
ti . (10.8)

To find the actual transportation decisions, we let

xtrans
t+1,ij = the actual transportation flows based on the demands

D̂t+1.

We do this by solving the problem above using the actual demands,
and where the facility decisions have already been made (but not yet
implemented). We can write this problem as

minxtrans
t+1

∑
i,j∈Ifacility

ctrans
ij xtrans

t+1 (10.9)



102 Lectures

which has to be solved subject to the constraints∑
j∈Ifacility

xtrans
t+1,ij ≤ qprod

ti for all i ∈ Iprod , (10.10)

∑
k∈Ifacility

xtrans
t+1,ki = D̂t+1,i for all i ∈ Iretail , (10.11)

∑
i∈Iprod

xtrans
t+1,ij ≤ qfacilityRfacility

t+1,j for all j ∈ I facility, (10.12)

∑
k∈Iretail

xtrans
t+1,jk ≤ qfacilityRfacility

t+1,j for all j ∈ I facility, (10.13)

x̂trans
t+1,ij ≥ 0 for all i, j ∈ I facility. (10.14)

Note that equation (10.11) is using the actual demands D̂t+1,i,
whereas before we were using the forecasted demands fD

t,t+1,i in equa-
tion (9.9).

We now want to evaluate the solution (xfacility
t , xtrans

t+1 ). Our perfor-
mance metrics can be divided between facility costs (including the cost
of adding and dropping facilities), and the actual transportation costs.
Facility costs are given by

Cfacility(xfacility
t ) =

∑
i∈Ifacility

(cfacility
i xfacility

ti + cadd
i xadd

ti + cdrop
i xdrop

ti ),

(10.15)

Ctrans(xtrans
t+1 , D̂t+1) =

∑
i,j∈Ifacility

ctrans
ij xtrans

t+1,ij . (10.16)

We assume that xfacility
t is the optimal solution from solving (10.7),

and xtrans
t+1 is the optimal solution from solving (10.9)–(10.14). Of course,

this means that we cannot compute Ctrans(xtrans
t+1 , D̂t+1) until after we

have observed D̂t+1. Let the total costs be

C(xt, D̂t+1) = Cfacility(xfacility
t ) + Ctrans(xtrans

t+1 , D̂t+1). (10.17)

To evaluate our facility decision xfacility
t , we have to simulate different

values of D̂t+1, and from this create different values of xtrans
t+1 . Assume

we create n = 1, . . . , N samples of the vector D̂t+1 which we designate

D̂1
t+1, D̂2

t+1, . . . , D̂n
t+1, . . . , D̂N

t+1.
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For each sample D̂n
t+1, we compute a new set of transportation flows

xtrans,n
t+1 which allows us to compute a new set of costs Ctrans(xtrans,n

t+1 , D̂n
t+1).

Finally, we evaluate the cost of our facilities decision xfacility
t using

C
facility(xfacility

t ) = Cfacility(xfacility
t ) + 1

N

N∑
n=1

Ctrans(xtrans,n
t+1 , D̂n

t+1)

(10.18)

In the next section, we are going to recognize that we do not make
facility decisions just once – these are made repeatedly over time. Since
the decisions we make at time t depend on what facilities have already
been created (and which have not), this means that our decisions now
will impact the future, and need to understand how a decision now affects
future decisions. In other words, it is a sequential decision problem!

10.3 Evaluating the Policy for a Multiperiod Problem

In the section above we evaluated the facility location policy for a single
time period t, which illustrates the need to compute the transportation
flows twice: first using forecasted demands, which we do in the opti-
mization model where we choose the facilities, and then after we see
the actual demands.

This realization highlights that we may not be doing as well as we
could when we optimize facilities, since we are using point estimates
of the demands that could produce a solution to the facility location
problem that is vulnerable to variations in demands. We are going to
address this issue in this section, but first we are going to transition to
a full multiperiod setting, recognizing that we are not going to solve
our facility location problem just once – we will need to keep solving it
over and over.

In practice, it is likely that we would optimize flows daily, while we
might reoptimize facilities monthly or quarterly. To keep the notation
as simple as possible, we will continue to assume that we solve both
problems at each time period.

In the previous section we averaged over N samples of D̂t+1. Here,
we are going to simulate our policy over time, using just a single sample
of D̂t+1 for time t + 1. This time, however, we will simulate over a



104 Lectures

planning horizon t = 0, 1, . . . T. We are going to introduce a minor
notational change – we are now going to explicitly model state variables
which capture the information we need when we make a decision. Since
we have two decisions (and therefore two policies), we have two state
variables: the facility state variable that captures the information we
use to optimize facilities

Sfacility
t = (Rfacility

t , fD
t ),

and the transportation state variable which we use to optimize flows
after the demands D̂t+1 have become known (at time t + 1):

Strans
t+1 = (Rfacility

t+1 , D̂t+1).

We now write the optimization problem for determining the facilities
(10.7) in the form of a policy

X facility
t (Sfacility

t ) = argmin
xfacility

t

minx̃trans
t,t+1

∑
i∈Ifacility

cfacility
i xfacility

ti

+
∑

i,j∈Ifacility

ctrans
ij x̃trans

t,t+1,ij

. (10.19)

Note that we are only interested in xfacility
ti ; we do not care about our

determination of x̃trans
t,t+1,ij since we are only computing the transportation

flows to help us find xfacility
ti .

After we optimize facilities, we update the vector that stores where
we have facilities:

Rfacility
t+1,i = Rfacility

t,i + xfacility
ti . (10.20)

After we determine xfacility
t , we assume we see the demands D̂t+1.

This information, along with the decision xfacility
ti , determines the state

for the transportation decision.
We next write the optimization problem for determining the flows

(9.16) in the form of a policy

X trans
t+1 (Strans

t+1 ) = argminxtrans
t+1

∑
i,j∈Ifacility

ctrans
ij xtrans

t+1 . (10.21)
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Solving our transportation problem gives us xtrans
t+1 . We then return

to choosing the facilities xfacility
t+1 for time t + 1, where we assume we are

given a new set of forecasts fD
t+1,t+2.

To evaluate our policies X facility
t (Sfacility

t ) and X trans
t+1 (Strans

t+1 ), we
simply extend what we did in the previous section to multiple periods.
We can simulate a single sequence of demands D̂1, D̂2, . . . , D̂T (for this
problem, the demands do not depend on decisions, so we can generate
these in advance). Using these simulated demands, we can evaluate the
performance of our policies using

F̂ π =
T∑

t=0
(Cfacility(X facility

t (Sfacility
t )) + Ctrans(X trans

t+1 (Strans
t+1 ), D̂t+1)).

(10.22)

This approach evaluates the policy based on a single sample real-
ization, which is just what we did in our machine learning problems in
Topic 1, as well as the asset selling and inventory planning problems in
Topic 2. We could create a sequence of samples

D̂n
1 , D̂n

2 , . . . , D̂n
t , . . . , D̂n

T , for n = 1, . . . , N.

We would then let Sfacility,n
t and Strans,n

t+1 be the state variables
created when following the nth set of demands. We then simulate our
policy N times and take an average:

F = 1
N

N∑
n=1

T∑
t=0

(Cfacility(X facility
t (Sfacility,n

t ))

+ Ctrans(X trans
t+1 (Strans,n

t+1 ), D̂n
t )). (10.23)

At this point we can comment on the quality of the solution produced
by our policies.

We note that the decision xfacility
ti impacts both Sfacility

t+1 as well as
Strans

t+1 . If we assume that inventory is not held from one time period to
the next, then it would mean that the transportation decisions xtrans

t+1
do not impact the future, which means that our myopic policy (10.9)–
(10.14) is optimal; otherwise, we can improve the policy by capturing
the impact of decisions at time t on the future.
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The facility policy X facility
t (Sfacility

t ) in (10.19) is not optimal because
facility decisions definitely impact the future. In fact, we anticipate that
we could improve this policy significantly by capturing the impact of
decisions on the future.

Our challenge now is designing better policies. However we design
the policies, we can evaluate them using equation (10.23).

10.4 Alternative Facility Location Policies

There are two reasons why our policy for optimizing facilities is not
optimal:

1. The transportation flows – Although we are not implementing
the estimates of the flows xtrans

t,t+1, it is still the case that our
facility decisions xfacility

t depends on our approximate model of the
transportation flows which depends on the forecasted demands
rather than the actual demands.

2. Facility decisions made at time t, which depends on the facilities
that are in use from the previous time period, Rfacility

t−1 . The facility
decisions xfacility

t then have an impact on Rfacility
t+1 , which would

then have an impact on the facility decisions xfacility
t+1 in the next

time period. Our policy does not capture the impact of decisions
now on the future, so while we may be solving an optimization
problem at time t, it would not be an optimal policy.

Below we introduce two new policies. The first is designed to handle
the random demands as we did in section 10.2 for the single period
model. The second policy is designed to handle limits on how many
facilities we can add or drop in any time period. This constraint requires
that we plan into the future. We illustrate this strategy using a simple
deterministic lookahead model, paralleling how we solved the dynamic
shortest path problem in section 5.2. Both of these policies would still
need to be evaluated using the objective function in (10.23) which uses
the average performance of the policy over N simulations.
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10.4.1 Adjustment for random demands

We can modify our policy in a simple way to help with errors from
using the forecasted demands fD

t,t+1 instead of the actual demands D̂t+1.
Using point estimates means we may not be prepared to handle sudden
spikes in demand. Our constraints (10.12) and (10.13) require that we
cannot exceed the capacity of the facilities, but while we might satisfy
these constraints for the forecasted demands when we are making our
facility decisions (as we did with equations (10.1)–(10.5)), we still have
to satisfy the corresponding constraints (10.12) and (10.13) when we
are using the actual demands.

A simple way to resolve this problem would be to introduce a buffer
θfacility < 1 that factors down the capacity qfacility within the facility
policy, giving us modified versions of constraints (10.12) and (10.13):∑

i∈Iprod

xtrans
tij ≤ θfacilityq

facility
Rfacility

t,j for all j ∈ I facility, (10.12a)

∑
k∈Iretail

xtrans
tjk ≤ θfacilityq

facility
Rfacility

t,j for all j ∈ I facility. (10.13a)

Our facility policy X facility
t (Sfacility

t ) (equation (10.19)) now depends
on the parameter θfacility, which means we should write it as a pa-
rameterized policy X facility

t (Sfacility
t |θfacility). We would then write our

objective function (10.22) as

F̂ (θfacility) =
T∑

t=0
(Cfacility(Sfacility

t , X facility
t (Sfacility

t |θfacility))

+ Ctrans(Strans
t+1 , Xtrans

t+1 (Strans
t+1 ), D̂t+1)). (10.24)

This gives us a new optimization problem, just as we have seen
earlier (for example, in Topic 2) where we have to optimize the tunable
parameter θfacility. We might write this as

min
θ

F̂ (θfacility). (10.25)

For this optimization problem to make sense we would have to
introduce penalties for not satisfying demands in the event that total
demand exceeds the capacities of the facilities.
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The optimization problem in (10.25) is no different than any of the
other parameter tuning problems we have seen for machine learning
in Topic 1, or the parameter optimization problems for the policies in
Topic 2.

There are other strategies we might introduce to capture the effect of
changes to facilities at time t on future time periods, but the presentation
here communicates the idea that a so-called optimal solution to an
integer program does not mean that it is an optimal policy (and in fact
it will virtually never be).

10.4.2 Deterministic lookahead model

A more realistic model of facility location would recognize that we are
not going to open (or close) an entire set of facilities all at once. This
is especially true if we actually have to construct the facility, but let’s
say we are just leasing space. However, let’s say we have a limit on
how many new facilities we can open or close each time period. We do
this for simplicity; we might instead have a constraint on how much
we can spend opening and closing facilities, but this simpler model will
illustrate a way of planning into the future.

Recall from section 10.1 that xadd
ti = 1 if we open facility i, and

xdrop
ti = 1 if we close facility i. We express the constraint on the number

of openings and closing using∑
i∈Ifacility

(xadd
ti + xdrop

ti ) ≤ U facility
t (10.26)

Given the constraint (10.26), to make a decision of what to build now,
we could optimize over a horizon t, . . . , t+H. This is a lookahead model,
so we use tilde’s to indicate that these are variables for the lookahead
model rather than the base model. Our decision variables are given by
x̃facility

t,t′,i and x̃trans
t,t′,i , where the index t captures that we are solving this

problem at time t to determine the facility decisions xfacility
ti = x̃facility

t,t,i .
We optimize the decisions x̃facility

t,t′,i for t′ = t + 1, . . . , t + H just to help
us make the decision x̃facility

t,t,i that is actually implemented (as xfacility
ti ).

We still have to optimize the transportation decisions x̃trans
t,t′,i but, as
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before, we have to model the transportation decisions to capture the
interaction of facility location decisions on transportation costs.

We are going to solve this just as we solved the dynamic shortest
path problems (section 5.2) where we optimize into the future, but only
implement the decision in the first time period. We use a single set of
forecasted demands made at time t, for all the time periods into the
future:

X facility
t (Sfacility

t ) = argmin
x̃facility

t,t′,
,x̃trans

t,t′ ,t′=t,...,t+H

t+H∑
t′=t

 ∑
i∈Ifacility

cfacility
i x̃facility

t,t′,i

+
∑

i,j∈Ifacility

ctrans
ij x̃trans

t,t′,ij

 , (10.27)

subject to the constraints for t′ = t, . . . , t + H :∑
j∈Ifacility

x̃trans
t,t′,jk ≤ qprod

t′,i for all i ∈ Iprod , (10.28)

∑
k∈Ifacility

x̃trans
t,t′,i = fD

t,t′,i for all i ∈ Iretail , (10.29)

∑
i∈Iprod

x̃trans
t,t′,ij ≤ qfacilityRfacility

t′,j for all j ∈ I facility, (10.30)

∑
k∈Iretail

x̃trans
t,t′,jk ≤ qfacilityRfacility

t′,j for all j ∈ I facility, (10.31)

x̃trans
t,t′,ij ≥ 0 for all i, j ∈ I facility. (10.32)

We then add a version of our constraint on the number of facilities
to add or drop:∑

i∈Ifacility

(x̃add
t,t′,i + x̃drop

t,t′,i) ≤ U facility
t′ for all i, j ∈ I facility. (10.33)

This problem is easy to write down, although solving it may be
challenging even for commercial solvers. It was a major breakthrough
when we could solve a single facility location problem which might be
optimizing over 100 (or several hundred) possible locations for facilities.
Now, we are multiplying that problem by the number of time periods
in our planning horizon.
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Assuming that we can solve the lookahead model, the policy X facility
t

(Sfacility
t ) needs to be simulated and evaluated using equation (10.23)

just as we evaluated our original myopic policy. We can also intro-
duce parameters as we did in section (10.2) to help accommodate the
uncertainty in the flows.
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Topic 11: Nonlinear Programming

As with linear and integer programming, we are going to start with clas-
sical “static” nonlinear programming problems, where we will introduce
the formulation of portfolio optimization as a quadratic programming
problem. We will then transition to solving this in a fully sequential
manner.

11.1 Static Portfolio Optimization

Readings: This model is a streamlined version of the model in RLSO,
section 13.2.4.

We are going to address a real problem solved by financial funds
which requires that they continuously make decisions about how much
to invest in a set of assets. The approach we describe here is based on
an actual policy. It starts looking like a basic quadratic programming
problem, but we are then going to see that it is really solved sequentially,
and as a result it is a policy that needs to be tuned over multiple time
periods as we have been doing in topics 7, 8 and 10.

We start by providing some notation:

Ri = Amount currently invested in asset i ∈ Iasset.

R0 = Current cash on hand.

pi = Current price of asset i.

pfcast
i = Projected price in the future (say, 3 months out).

ctrans
i = Transaction cost for buying or selling a share of asset i.

xi = Number of shares of asset i purchased (if xi > 0) or sold
(xi < 0).

Our purchases and sales have to respect our available cash on hand,
given by the constraint: ∑

i

pixi ≤ R0. (11.1)

https://tinyurl.com/RLandSO/
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The total transaction costs are given by

Ctrans(x) =
∑

i

ctrans
i |xti |, (11.2)

where we take the absolute value since buying and selling transactions
cost the same. To eliminate the absolute value (which complicates the
formulation as an optimization problem), We first introduce a variable
xtrans

i = |xi| that we compute by introducing two constraints:

xtrans
i ≥ xi, (11.3)

xtrans
i ≥ −xi. (11.4)

Using this new variable, our transaction costs can now be written

Ctrans(x) =
∑

i

ctrans
i xtrans

i . (11.5)

A major issue in portfolio management is minimizing risk, which we
measure by the standard deviation of the total return of the portfolio
since the future price p̂i of asset i will deviate from its current price pi.
We can use past data to compute the covariance matrix Σ of the prices
of the stocks, where element Σij is

Σij = Cov(p̂i, p̂j). (11.6)

The covariance Cov(p̂i, p̂j) has units of “dollars squared.” One way
this information is sometimes presented is using the correlation coeffi-
cient ρij . To compute this, we calculate the standard deviation of price
p̂i using

σi =
√

Var(p̂i), (11.7)

ρij = Cov(p̂i, p̂j)
σiσj

. (11.8)

The correlation coefficient has the property that

−1 ≤ ρij ≤ +1, (11.9)

where ρij = 1 means that the prices of assets i and j are perfectly
correlated. Highly correlated stocks increase the volatility of the overall
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portfolio since if one stock drops, then other stocks that are highly
correlated also crop, increasing the overall volatility of the portfolio.

We have two objectives when optimizing a portfolio. One is to
maximize the return on the portfolio, where pfcast

i − pi is our estimate
of how much the price might be increasing (or decreasing). If we have
Ri shares and purchase (or sell) xi, we would then have ri + xi, and a
measure of our total return would be

Creturn(R, x) =
∑

i

((Ri + xi)(pfcast
i − pi)) − Ctrans(x). (11.10)

The variance of the return of the portfolio is given by the quadratic
formula

Crisk(R, x) =
∑

i

∑
j

RiRjCov(pi, pj)

= (R + x)T Σ(R + x). (11.11)

We combine the return and risk in a single objective function that
we write as

Ctotal(R, x|θrisk) = Creturn(R, x) − θriskCrisk(R, x). (11.12)

Note that we subtract Crisk(R, x) since this is something we wish
to minimize. The parameter θrisk handles the scaling problem since the
units of Creturn(R, x) and Crisk(R, x) are different.

Our optimization problem to determine the allocation x is given by

max
x

Ctotal(R, x|θrisk). (11.13)

The optimization problem in (11.10) is a quadratic programming
problem, which can be solved with several available packages. Of course,
one algorithmic strategy is the methods we used in section 1.2 for fitting
nonlinear machine learning models.

Setting the risk parameter θrisk typically involves solving (11.13)
for a range of values of θrisk and then plotting Creturn(R, x) versus
Crisk(R, x) and then choosing the value of θrisk that seems to strike the
right balance for a particular situation.

Instructor: at this point go into as much detail as you want for
nonlinear programming. Possible topics are:
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• Gradient-based search, unconstrained and then constrained.

• Performing one-dimensional searches for gradient-based search

• Starting points

• Second-order algorithms.

• Mirror descent

• Nonconvex problems

11.2 Dynamic Portfolio Optimization

Readings: Section 13.2.4 from RLSO
The portfolio optimization problem in section 11.1 is clearly a prob-

lem that has to be solved repeatedly, over time, as new information
is arriving. In other words, just as we illustrated with linear and in-
teger programming, this is a sequential decision problem, where the
optimization problem is actually a policy.

As with our facility location problem, we have to begin by indexing
all the variables that are changing with a time index. This gives us the
following notation:

Rti = Amount currently invested in asset i ∈ Iasset at time t.

Rt0 = Current cash on hand at time t.

pti = Current price of asset i.

pfcast
ti = Projected price in the future (say, 3 months out) given

what we know at time t.

xti = Number of shares of asset i purchased (if xi > 0) or sold
(xi < 0).

We are going to add an adjustment term that contains variables
which we feel helps to reflect economic conditions. Examples of these
variables might be

yti1 = producer price index for asset i,
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yti2 = index of retailer inventories associated with asset i

yti3 = manufacturing index for asset i.

As before, our transactions are limited by our budget constraint∑
i

ptixti ≤ Rt0. (11.14)

For a dynamic system, we need to define the state variable St that
captures all the relevant information at time t. For our problem, this
would be

St = (Rt, pt, pfcast
t , yt).

We still have our transaction variables

xtrans
ti ≥ xti , (11.15)

xtrans
ti ≥ −xti , (11.16)

which allows us to calculate our transaction costs using

Ctrans(xt) =
∑

i

ctrans
i xtrans

ti . (11.17)

Our portfolio return is still given by

Creturn(St, xt) =
∑

i

((Rti + xti)(pfcast
ti − pti) − Ctrans(xt)). (11.18)

We are going to include an adjustment term using the economic
variables yt. We may want to modify each of these (square, log, . . . ), so
we are going to write our adjustment term as

Cadj(yt|θfcas) =
∑

i

∑
k

θadj
ik ϕk(ytik). (11.19)

We still have our risk component that we wish to minimize:

Crisk(St, xt) = (Rt + xt)T Σt(Rt + xt), (11.20)

where the covariance matrix Σt is computed from a rolling set of
observations from time periods t − H, . . . , t.
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The total adjusted return that we wish to optimize is now

Ctotal(St, xt|θrisk , θadj) = Creturn(St, xt) + Cadj(yt|θfcas)

− θriskCrisk(Rt, xt). (11.12)

Our policy is then to solve the following problem at time t:

Xπ(St|θrisk , θadj) = argmaxxt
Ctotal(Rt, xt|θrisk , θadj). (11.13)

The way we can evaluate our policy is a process known in finance as
“back testing” which is to take a historical sequence of prices for each
asset i

pt−H,i, . . . , pt−1,i, pti ,

along with a historical sequence of forecasts pfcast
ti

pfcast
t−H,i, . . . pfcast

t−1,i, p
fcast
ti ,

and the economic variables ytk

yt−H,k, . . . , yt−1,k, ytk.

Using this data from history, we can evaluate our policy using

F̂ π(θrisk , θadj) =
t∑

t′=t−H

Ctotal(Rt′ , xt′ = Xπ(St′ |θrisk , θadj)|θrisk , θadj).

We assume that we have chosen a value for the risk parameter θrisk

as we described for the static model, but we can tune the parameters
θadj using the optimization problem

max
θadj

F̂ π(θrisk , θadj).

Once again we are tuning a policy that is itself a deterministic
optimization problem, but this time it is a nonlinear programming
problem.
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