
REINFORCEMENT LEARNING
AND STOCHASTIC OPTIMIZATION
A unified framework for sequential decisions

Warren B. Powell

August 22, 2021

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright�2021 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created ore extended by sales
representatives or written sales materials. The advice and strategies contained herin may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Optimization Under Uncertainty: A unified framework
Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CONTENTS

Preface xxi

Acknowledgments xxv

1 Sequential decision problems 1

1.1 The audience 5

1.2 The communities of sequential decision problems 5

1.3 Our universal modeling framework 7

1.4 Designing policies for sequential decision problems 11

1.4.1 Policy search 11

1.4.2 Policies based on lookahead approximations 12

1.4.3 Mixing and matching 13

1.4.4 Optimality of the four classes 14

1.4.5 Pulling it all together 14

1.5 Learning 15

1.6 Themes 16

1.6.1 Blending learning and optimization 16

1.6.2 Bridging machine learning to sequential decisions 16

1.6.3 From deterministic to stochastic optimization 18

1.6.4 From single to multiple agents 20

1.7 Our modeling approach 21

1.8 How to read this book 21

v

vi CONTENTS

1.8.1 Organization of topics 21

1.8.2 How to read each chapter 25

1.8.3 Organization of exercises 25

1.9 Bibliographic notes 26

Exercises 27

2 Canonical Problems and Applications 31

2.1 Canonical problems 31

2.1.1 Stochastic search - derivative-based and derivative-free 32

2.1.2 Decision trees 35

2.1.3 Markov decision processes 36

2.1.4 Optimal control 37

2.1.5 Approximate dynamic programming 39

2.1.6 Reinforcement learning 40

2.1.7 Optimal stopping 42

2.1.8 Stochastic programming 44

2.1.9 The multiarmed bandit problem 45

2.1.10 Simulation optimization 48

2.1.11 Active learning 48

2.1.12 Chance constrained programming 49

2.1.13 Model predictive control 49

2.1.14 Robust optimization 50

2.2 A universal modeling framework for sequential decision problems 51

2.2.1 Our universal model for sequential decision problems 51

2.2.2 A compact modeling presentation 54

2.2.3 MDP/RL vs. optimal control modeling frameworks 54

2.3 Applications 55

2.3.1 The newsvendor problems 55

2.3.2 Inventory/storage problems 57

2.3.3 Shortest path problems 60

2.3.4 Some fleet management problems 62

2.3.5 Pricing 63

2.3.6 Medical decision making 64

2.3.7 Scientific exploration 65

2.3.8 Machine learning vs. sequential decision problems 65

2.4 Bibliographic notes 66

Exercises 71

3 Online learning 83

3.1 Machine learning for sequential decisions 84

3.1.1 Observations and data in stochastic optimization 84

CONTENTS vii

3.1.2 Indexing input xn and response yn+1 85

3.1.3 Functions we are learning 85

3.1.4 Sequential learning: from very little data to . . . more data 87

3.1.5 Approximation strategies 87

3.1.6 From data analytics to decision analytics 89

3.1.7 Batch vs. online learning 90

3.2 Adaptive learning using exponential smoothing 90

3.3 Lookup tables with frequentist updating 91

3.4 Lookup tables with Bayesian updating 92

3.4.1 The updating equations for independent beliefs 92

3.4.2 Updating for correlated beliefs 93

3.4.3 Gaussian process regression 96

3.5 Computing bias and variance* 97

3.6 Lookup tables and aggregation* 99

3.6.1 Hierarchical aggregation 100

3.6.2 Estimates of different levels of aggregation 102

3.6.3 Combining multiple levels of aggregation 106

3.7 Linear parametric models 107

3.7.1 Linear regression review 108

3.7.2 Sparse additive models and Lasso 110

3.8 Recursive least squares for linear models 111

3.8.1 Recursive least squares for stationary data 112

3.8.2 Recursive least squares for nonstationary data* 113

3.8.3 Recursive estimation using multiple observations* 115

3.9 Nonlinear parametric models 115

3.9.1 Maximum likelihood estimation 115

3.9.2 Sampled belief models 116

3.9.3 Neural networks - parametric* 117

3.9.4 Limitations of neural networks 121

3.10 Nonparametric models* 122

3.10.1 K-nearest neighbor 123

3.10.2 Kernel regression 124

3.10.3 Local polynomial regression 126

3.10.4 Deep neural networks 126

3.10.5 Support vector machines 127

3.10.6 Indexed functions, tree structures and clustering 128

3.10.7 Comments on nonparametric models 129

3.11 Nonstationary learning* 130

3.11.1 Nonstationary learning I - Martingale truth 130

3.11.2 Nonstationary learning II - Transient truth 131

3.11.3 Learning processes 132

3.12 The curse of dimensionality 133

viii CONTENTS

3.13 Designing approximation architectures in adaptive learning 135

3.14 Why does it work?** 136

3.14.1 Derivation of the recursive estimation equations 136

3.14.2 The Sherman-Morrison updating formula 137

3.14.3 Correlations in hierarchical estimation 138

3.14.4 Proof of Proposition 3.14.1 141

3.15 Bibliographic notes 142

Exercises 144

4 Introduction to stochastic search 151

4.1 Illustrations of the basic stochastic optimization problem 153

4.2 Deterministic methods 155

4.2.1 A “stochastic” shortest path problem 156

4.2.2 A newsvendor problem with known distribution 156

4.2.3 Chance-constrained optimization 157

4.2.4 Optimal control 157

4.2.5 Discrete Markov decision processes 158

4.2.6 Remarks 159

4.3 Sampled models 159

4.3.1 Formulating a sampled model 160

4.3.2 Convergence 162

4.3.3 Creating a sampled model 164

4.3.4 Decomposition strategies* 165

4.4 Adaptive learning algorithms 166

4.4.1 Modeling adaptive learning problems 167

4.4.2 Online vs. offline applications 168

4.4.3 Objective functions for learning 169

4.4.4 Designing policies 172

4.5 Closing remarks 172

4.6 Bibliographic notes 173

Exercises 174

5 Derivative-Based Stochastic Search 183

5.1 Some sample applications 185

5.2 Modeling uncertainty 187

5.2.1 Training uncertainty W 1, . . . ,WN 187

5.2.2 Model uncertainty S0 188

5.2.3 Testing uncertainty 189

5.2.4 Policy evaluation 189

5.2.5 Closing notes 190

5.3 Stochastic gradient methods 190

CONTENTS ix

5.3.1 A stochastic gradient algorithm 191

5.3.2 Introduction to stepsizes 191

5.3.3 Evaluating a stochastic gradient algorithm 193

5.3.4 A note on notation 194

5.4 Styles of gradients 194

5.4.1 Gradient smoothing 194

5.4.2 Second-order methods 195

5.4.3 Finite differences 195

5.4.4 SPSA 197

5.4.5 Constrained problems 198

5.5 Parameter optimization for neural networks* 199

5.5.1 Computing the gradient 199

5.5.2 The stochastic gradient algorithm 201

5.6 Stochastic gradient algorithm as a sequential decision problem 202

5.7 Empirical issues 204

5.8 Transient problems* 204

5.9 Theoretical performance* 205

5.10 Why does it work? 205

5.10.1 Some probabilistic preliminaries 206

5.10.2 An older proof* 207

5.10.3 A more modern proof** 210

5.11 Bibliographic notes 215

Exercises 216

6 Stepsize policies 223

6.1 Deterministic stepsize policies 225

6.1.1 Properties for convergence 226

6.1.2 A collection of deterministic policies 227

6.2 Adaptive stepsize policies 231

6.2.1 The case for adaptive stepsizes 231

6.2.2 Convergence conditions 232

6.2.3 A collection of stochastic policies 233

6.2.4 Experimental notes 236

6.3 Optimal stepsize policies* 236

6.3.1 Optimal stepsizes for stationary data 237

6.3.2 Optimal stepsizes for nonstationary data - I 239

6.3.3 Optimal stepsizes for nonstationary data - II 240

6.4 Optimal stepsizes for approximate value iteration* 243

6.5 Convergence 245

6.6 Guidelines for choosing stepsize formulas 246

6.7 Why does it work* 248

6.7.1 Proof of BAKF stepsize 248

x CONTENTS

6.8 Bibliographic notes 250

Exercises 250

7 Derivative-Free Stochastic Search 259

7.1 Overview of derivative-free stochastic search 261

7.1.1 Applications and time scales 261

7.1.2 The communities of derivative-free stochastic search 262

7.1.3 The multiarmed bandit story 263

7.1.4 From passive learning to active learning to bandit problems 264

7.2 Modeling derivative-free stochastic search 266

7.2.1 The universal model 266

7.2.2 Illustration: optimizing a manufacturing process 268

7.2.3 Major problem classes 269

7.3 Designing policies 270

7.4 Policy function approximations 273

7.5 Cost function approximations 274

7.6 VFA-based policies 276

7.6.1 An optimal policy 276

7.6.2 Beta-Bernoulli belief model 278

7.6.3 Backward approximate dynamic programming 279

7.6.4 Gittins indices for learning in steady state 281

7.7 Direct lookahead policies 285

7.7.1 When do we need lookahead policies? 285

7.7.2 Single period lookahead policies 287

7.7.3 Restricted multiperiod lookahead 289

7.7.4 Multiperiod deterministic lookahead 290

7.7.5 Multiperiod stochastic lookahead policies 292

7.7.6 Hybrid direct lookahead 294

7.8 The knowledge gradient (continued)* 295

7.8.1 The belief model 296

7.8.2 The knowledge gradient for maximizing final reward 297

7.8.3 The knowledge gradient for maximizing cumulative reward 302

7.8.4 The knowledge gradient for sampled belief model* 302

7.8.5 Knowledge gradient for correlated beliefs 306

7.9 Learning in batches 310

7.10 Simulation optimization* 312

7.10.1 An indifference zone algorithm 313

7.10.2 Optimal computing budget allocation 313

7.11 Evaluating policies 314

7.11.1 Alternative performance metrics* 314

7.11.2 Perspectives of optimality* 320

7.12 Designing policies 322

CONTENTS xi

7.12.1 Characteristics of a policy 323

7.12.2 The effect of scaling 324

7.12.3 Tuning 325

7.13 Extensions* 325

7.13.1 Learning in nonstationary settings 326

7.13.2 Strategies for designing time-dependent policies 326

7.13.3 A transient learning model 327

7.13.4 The knowledge gradient for transient problems 328

7.13.5 Learning with large or continuous choice sets 329

7.13.6 Learning with exogenous state information - the contextual

bandit problem 331

7.13.7 State-dependent vs. state-independent problems 333

7.14 Bibliographic notes 334

Exercises 336

8 State-dependent problems 353

8.1 Graph problems 355

8.1.1 A stochastic shortest path problem 355

8.1.2 The nomadic trucker 356

8.1.3 The transformer replacement problem 357

8.1.4 Asset valuation 358

8.2 Inventory problems 360

8.2.1 A basic inventory problem 360

8.2.2 The inventory problem - II 361

8.2.3 The lagged asset acquisition problem 362

8.2.4 The batch replenishment problem 363

8.3 Complex resource allocation problems 365

8.3.1 The dynamic assignment problem 365

8.3.2 The blood management problem 368

8.4 State-dependent learning problems 373

8.4.1 Medical decision making 373

8.4.2 Laboratory experimentation 374

8.4.3 Bidding for ad-clicks 375

8.4.4 An information-collecting shortest path problem 375

8.5 A sequence of problem classes 375

8.6 Bibliographic notes 377

Exercises 377

9 Modeling sequential decision problems 383

9.1 A simple modeling illustration 387

9.2 Notational style 390

xii CONTENTS

9.3 Modeling time 392

9.4 The states of our system 394

9.4.1 Defining the state variable 394

9.4.2 The three states of our system 397

9.4.3 Initial state S0 vs. subsequent states St, t > 0 400

9.4.4 Lagged state variables* 401

9.4.5 The post-decision state variable* 402

9.4.6 A shortest path illustration 404

9.4.7 Belief states* 406

9.4.8 Latent variables* 407

9.4.9 Rolling forecasts* 408

9.4.10 Flat vs. factored state representations* 408

9.4.11 A programmer’s perspective of state variables 409

9.5 Modeling decisions 410

9.5.1 Types of decisions 411

9.5.2 Initial decision x0 vs. subsequent decisions xt, t > 0 412

9.5.3 Strategic, tactical and execution decisions 412

9.5.4 Constraints 413

9.5.5 Introducing policies 414

9.6 The exogenous information process 414

9.6.1 Basic notation for information processes 414

9.6.2 Outcomes and scenarios 416

9.6.3 Lagged information processes* 417

9.6.4 Models of information processes* 418

9.6.5 Supervisory processes* 420

9.7 The transition function 421

9.7.1 A general model 421

9.7.2 Model-free dynamic programming 422

9.7.3 Exogenous transitions 423

9.8 The objective function 424

9.8.1 The performance metric 424

9.8.2 Optimizing the policy 425

9.8.3 Dependence of optimal policy on S0 425

9.8.4 State-dependent variations 426

9.8.5 Uncertainty operators 427

9.9 Illustration: An energy storage model 428

9.9.1 With a time-series price model 429

9.9.2 With passive learning 430

9.9.3 With active learning 430

9.9.4 With rolling forecasts 431

9.10 Base models and lookahead models 431

9.11 A classification of problems* 432

CONTENTS xiii

9.12 Policy evaluation* 435

9.13 Advanced probabilistic modeling concepts** 437

9.13.1 A measure-theoretic view of information** 438

9.13.2 Policies and measurability 440

9.14 Looking forward 442

9.15 Bibliographic notes 443

Exercises 445

10 Uncertainty modeling 459

10.1 Sources of uncertainty 460

10.1.1 Observational errors 461

10.1.2 Exogenous uncertainty 463

10.1.3 Prognostic uncertainty 463

10.1.4 Inferential (or diagnostic) uncertainty 465

10.1.5 Experimental variability 467

10.1.6 Model uncertainty 467

10.1.7 Transitional uncertainty 469

10.1.8 Control/implementation uncertainty 469

10.1.9 Communication errors and biases 470

10.1.10 Algorithmic instability 470

10.1.11 Goal uncertainty 471

10.1.12 Political/regulatory uncertainty 471

10.1.13 Discussion 472

10.2 A modeling case study: the COVID pandemic 472

10.3 Stochastic modeling 472

10.3.1 Sampling exogenous information 472

10.3.2 Types of distributions 474

10.3.3 Modeling sample paths 475

10.3.4 State/action dependent processes 475

10.3.5 Modeling correlations 476

10.4 Monte Carlo simulation 477

10.4.1 Generating uniform [0, 1] random variables 477

10.4.2 Uniform and normal random variable 478

10.4.3 Generating random variables from inverse cumulative

distributions 480

10.4.4 Inverse cumulative from quantile distributions 480

10.4.5 Distributions with uncertain parameters 481

10.5 Case study: modeling electricity prices 483

10.5.1 Mean reversion 483

10.5.2 Jump-diffusion models 484

10.5.3 Quantile distributions 485

10.5.4 Regime shifting 486

xiv CONTENTS

10.5.5 Crossing times 486

10.6 Sampling vs. sampled models 488

10.6.1 Iterative sampling: A stochastic gradient algorithm 488

10.6.2 Static sampling: Solving a sampled model 488

10.6.3 Sampled representation with Bayesian updating 489

10.7 Closing notes 489

10.8 Bibliographic notes 490

Exercises 490

11 Designing policies 495

11.1 From optimization to machine learning to sequential decision problems 497

11.2 The classes of policies 498

11.3 Policy function approximations 501

11.4 Cost function approximations 503

11.5 Value function approximations 504

11.6 Direct lookahead approximations 505

11.6.1 The basic idea 505

11.6.2 Modeling the lookahead problem 507

11.6.3 The policy-within-a-policy 508

11.7 Hybrid strategies 509

11.8 Randomized policies 513

11.9 Illustration: An energy storage model revisited 514

11.9.1 Policy function approximation 515

11.9.2 Cost function approximation 515

11.9.3 Value function approximation 515

11.9.4 Deterministic lookahead 515

11.9.5 Hybrid lookahead-cost function approximation 516

11.9.6 Experimental testing 516

11.10 Choosing the policy class 517

11.10.1 The policy classes 517

11.10.2 Policy complexity-computational tradeoffs 521

11.10.3 Screening questions 522

11.11 Policy evaluation 525

11.12 Parameter tuning 526

11.12.1 The soft issues 527

11.12.2 Searching across policy classes 528

11.13 Bibliographic notes 529

Exercises 529

12 Policy function approximations and policy search 537

12.1 Policy search as a sequential decision problem 539

CONTENTS xv

12.2 Classes of policy function approximations 540

12.2.1 Lookup table policies 540

12.2.2 Boltzmann policies for discrete actions 541

12.2.3 Linear decision rules 541

12.2.4 Monotone policies 542

12.2.5 Nonlinear policies 543

12.2.6 Nonparametric/locally linear policies 544

12.2.7 Contextual policies 545

12.3 Problem characteristics 545

12.4 Flavors of policy search 546

12.5 Policy search with numerical derivatives 548

12.6 Derivative-free methods for policy search 550

12.6.1 Belief models 550

12.6.2 Learning through perturbed PFAs 551

12.6.3 Learning CFAs 553

12.6.4 DLA using the knowledge gradient 555

12.6.5 Comments 555

12.7 Exact derivatives for continuous sequential problems* 555

12.8 Exact derivatives for discrete dynamic programs** 558

12.8.1 A stochastic policy 558

12.8.2 The objective function 559

12.8.3 The policy gradient theorem 560

12.8.4 Computing the policy gradient 560

12.9 Supervised learning 562

12.10 Why does it work? 563

12.10.1 Derivation of the policy gradient theorem 563

12.11 Bibliographic notes 565

Exercises 566

13 Cost function approximations 575

13.1 General formulation for parametric CFA 577

13.2 Objective-modified CFAs 578

13.2.1 Linear cost function correction 578

13.2.2 CFAs for dynamic assignment problems 578

13.2.3 Dynamic shortest paths 580

13.2.4 Dynamic trading policy 582

13.2.5 Discussion 585

13.3 Constraint-modified CFAs 585

13.3.1 General formulation of constraint-modified CFAs 586

13.3.2 A blood management problem 587

13.3.3 An energy storage example with rolling forecasts 588

13.4 Bibliographic notes 595

xvi CONTENTS

Exercises 596

14 Exact dynamic programming 605

14.1 Discrete dynamic programming 606

14.2 The optimality equations 608

14.2.1 Bellman’s equations 608

14.2.2 Computing the transition matrix 612

14.2.3 Random contributions 612

14.2.4 Bellman’s equation using operator notation* 613

14.3 Finite horizon problems 613

14.4 Continuous problems with exact solutions 616

14.4.1 The gambling problem 616

14.4.2 The continuous budgeting problem 618

14.5 Infinite horizon problems* 619

14.6 Value iteration for infinite horizon problems* 621

14.6.1 A Gauss-Seidel variation 622

14.6.2 Relative value iteration 622

14.6.3 Bounds and rates of convergence 624

14.7 Policy iteration for infinite horizon problems* 626

14.8 Hybrid value-policy iteration* 627

14.9 Average reward dynamic programming* 628

14.10 The linear programming method for dynamic programs** 629

14.11 Linear quadratic regulation 630

14.12 Why does it work?** 632

14.12.1 The optimality equations 632

14.12.2 Convergence of value iteration 636

14.12.3 Monotonicity of value iteration 639

14.12.4 Bounding the error from value iteration 640

14.12.5 Randomized policies 641

14.13 Bibliographic notes 643

Exercises 643

15 Backward approximate dynamic programming 655

15.1 Backward approximate dynamic programming for finite horizon

problems 656

15.1.1 Some preliminaries 657

15.1.2 Backward ADP using lookup tables 658

15.1.3 Backward ADP algorithm with continuous approximations 660

15.2 Fitted value iteration for infinite horizon problems 662

15.3 Value function approximation strategies 664

15.3.1 Linear models 664

CONTENTS xvii

15.3.2 Monotone functions 665

15.3.3 Other approximation models 667

15.4 Computational observations 667

15.4.1 Experimental benchmarking of backward ADP 667

15.4.2 Computational notes 671

15.5 Bibliographic notes 672

Exercises 672

16 Forward ADP I: The value of a policy 679

16.1 Sampling the value of a policy 680

16.1.1 Direct policy evaluation for finite horizon problems 680

16.1.2 Policy evaluation for infinite horizon problems 681

16.1.3 Temporal difference updates 683

16.1.4 TD(λ) 684

16.1.5 TD(0) and approximate value iteration 685

16.1.6 TD learning for infinite horizon problems 686

16.2 Stochastic approximation methods 689

16.3 Bellman’s equation using a linear model* 690

16.3.1 A matrix-based derivation** 691

16.3.2 A simulation-based implementation 693

16.3.3 Least squares temporal differences (LSTD) 693

16.3.4 Least squares policy evaluation (LSPE) 694

16.4 Analysis of TD(0), LSTD and LSPE using a single state* 695

16.4.1 Recursive least squares and TD(0) 695

16.4.2 LSPE 696

16.4.3 LSTD 696

16.4.4 Discussion 697

16.5 Gradient-based methods for approximate value iteration* 697

16.5.1 Approximate value iteration with linear models** 697

16.5.2 A geometric view of linear models* 701

16.6 Value function approximations based on Bayesian learning* 703

16.6.1 Minimizing bias for infinite horizon problems 703

16.6.2 Lookup tables with correlated beliefs 704

16.6.3 Parametric models 704

16.6.4 Creating the prior 705

16.7 Learning algorithms and stepsizes 705

16.7.1 Least squares temporal differences 706

16.7.2 Least squares policy evaluation 707

16.7.3 Recursive least squares 707

16.7.4 Bounding 1/n convergence for approximate value iteration 708

16.7.5 Discussion 709

16.8 Bibliographic notes 710

xviii CONTENTS

Exercises 711

17 Forward ADP II: Policy optimization 717

17.1 Overview of algorithmic strategies 718

17.2 Approximate value iteration and Q-learning using lookup tables 721

17.2.1 Value iteration using a pre-decision state variable 721

17.2.2 Q-learning 722

17.2.3 Value iteration using a post-decision state variable 724

17.2.4 Value iteration using a backward pass 725

17.3 Styles of learning 728

17.3.1 Offline learning 729

17.3.2 From offline to online 730

17.3.3 Evaluating offline and online learning policies 731

17.3.4 Lookahead policies 732

17.4 Approximate value iteration using linear models 732

17.5 On-policy vs off-policy learning and the exploration-exploitation

problem 734

17.5.1 Terminology 735

17.5.2 Learning with lookup tables 736

17.5.3 Learning with generalized belief models 736

17.6 Applications 739

17.6.1 Pricing an American option 739

17.6.2 Playing “lose tic-tac-toe” 742

17.6.3 Approximate dynamic programming for deterministic

problems 744

17.7 Approximate policy iteration 744

17.7.1 Finite horizon problems using lookup tables 745

17.7.2 Finite horizon problems using linear models 745

17.7.3 LSTD for infinite horizon problems using linear models 746

17.8 The actor-critic paradigm 748

17.9 Statistical bias in the max operator* 750

17.10 The linear programming method using linear models* 753

17.11 Finite horizon approximations for steady-state applications 756

17.12 Bibliographic notes 757

Exercises 758

18 Forward ADP III: Convex resource allocation problems 767

18.1 Resource allocation problems 769

18.1.1 The newsvendor problem 770

18.1.2 Two-stage resource allocation problems 770

18.1.3 A general multiperiod resource allocation model* 773

CONTENTS xix

18.2 Values versus marginal values 775

18.3 Piecewise linear approximations for scalar functions 776

18.4 Regression methods 779

18.5 Separable piecewise linear approximations 781

18.6 Benders decomposition for nonseparable approximations** 783

18.6.1 Benders’ decomposition for two-stage problems 783

18.6.2 Asymptotic analysis of Benders with regularization** 787

18.6.3 Benders with regularization 790

18.7 Linear approximations for high-dimensional applications 791

18.8 Resource allocation with exogenous information state 792

18.9 Closing notes 793

18.10 Bibliographic notes 793

Exercises 795

19 Direct lookahead policies 805

19.1 Optimal policies using lookahead models 807

19.2 Creating an approximate lookahead model 811

19.2.1 Modeling the lookahead model 812

19.2.2 Strategies for approximating the lookahead model 813

19.3 Modified objectives in lookahead models 817

19.3.1 Managing risk 817

19.3.2 Utility functions for multiobjective problems 822

19.3.3 Model discounting 822

19.4 Evaluating DLA policies 823

19.4.1 Evaluating policies in a simulator 824

19.4.2 Evaluating risk-adjusted policies 824

19.4.3 Evaluating policies in the field 826

19.4.4 Tuning direct lookahead policies 826

19.5 Why use a DLA? 827

19.6 Deterministic lookaheads 828

19.6.1 A deterministic lookahead: shortest path problems 830

19.6.2 Parameterized lookaheads 831

19.7 A tour of stochastic lookahead policies 833

19.7.1 Lookahead PFAs 833

19.7.2 Lookahead CFAs 834

19.7.3 Lookahead VFAs for the lookahead model 835

19.7.4 Lookahead DLAs for the lookahead model 835

19.7.5 Discussion 836

19.8 Monte Carlo tree search for discrete decisions 836

19.8.1 Basic idea 837

19.8.2 The steps of MCTS 837

19.8.3 Discussion 841

xx CONTENTS

19.8.4 Optimistic Monte Carlo tree search 842

19.9 Two-stage stochastic programming for vector decisions* 844

19.9.1 The basic two-stage stochastic program 844

19.9.2 Two-stage approximation of a sequential problem 845

19.9.3 Discussion 848

19.10 Observations on DLA policies 848

19.11 Bibliographic notes 849

Exercises 851

20 Multiagent modeling and learning 859

20.1 Overview of multiagent systems 860

20.1.1 Dimensions of a multiagent system 860

20.1.2 Communication 862

20.1.3 Modeling a multiagent system 863

20.1.4 Controlling architectures 866

20.2 A learning problem - flu mitigation 867

20.2.1 A static model 867

20.2.2 Variations of our flu model 868

20.2.3 Two-agent learning models 871

20.2.4 Transition functions for two-agent model 874

20.2.5 Designing policies for the flu problem 875

20.3 The POMDP perspective* 879

20.4 The two-agent newsvendor problem 881

20.5 Multiple independent agents - An HVAC controller model 885

20.5.1 Model 886

20.5.2 Designing policies 887

20.6 Cooperative agents - A spatially distributed blood management

problem 888

20.7 Closing notes 891

20.8 Why does it work? 891

20.8.1 Derivation of the POMDP belief transition function 891

20.9 Bibliographic notes 893

Exercises 894

PREFACE

Preface to Reinforcement Learning and Stochastic Optimization: A unified framework for
sequential decisions

This books represents a lifetime of research into what I now call sequential decision

problems, which dates to 1982 when I was introduced to the problem arising in truckload

trucking (think of Uber/Lyft for trucks) where we have to choose which driver to assign to

a load, and which loads to accept to move, given the high level of randomness in future

customer demands, representing requests to move full truckloads of freight.

It took me 20 years to figure out a practical algorithm to solve this problem, which

led to my first book (in 2007) on approximate dynamic programming, where the major

breakthrough was the introduction of the post-decision state and the use of hierarchical

aggregation for approximating value functions to solve these high-dimensional problems.

However, I would argue today that the most important chapter in the book (and I recognized

it at the time), was chapter 5 on how to model these problems, without any reference to

algorithms to solve the problem. I identified five elements to a sequential decision problem,

leading up to the objective function which was written

max
π

E

{
T∑

t=0

C(St, X
π(St))|S0

}
.

It was not until the second edition (in 2011) that I realized that approximate dynamic

programming (specifically, policies that depend on value functions) was not the only way

to solve these problems; rather, there were four classes of policies, and only one used

value functions. The 2011 edition of the book listed three of the four classes of policies

xxi

xxii PREFACE

that are described in this book, but most of the book still focused on approximating value

functions. It was not until a 2014 paper (“Clearing the Jungle of Stochastic Optimization”)

that I identified the four classes of policies I use now. Then, in 2016 I realized that the

four classes of policies could be divided between two major strategies: the policy search

strategy, where we search over a family of functions to find the one that works best, and

the lookahead strategy, where we make good decisions by approximating the downstream

impact of a decision made now.

Finally, I combined these ideas in a 2019 paper (“A Unified Framework for Stochastic

Optimization” published in the European Journal for Operational Research) with a better

appreciation of major classes of problems such as state-independent problems (the pure

learning problems that include derivative-based and derivative-free stochastic search) and

the more general state-dependent problems; cumulative and final reward objective func-

tions; and the realization that any adaptive search algorithm was a sequential decision

problem. The material in the 2019 paper is effectively the outline for this book.

This book builds on the 2011 edition of my approximate dynamic programming book,

and includes a number of chapters (some heavily edited) from the ADP book. It would be

nice to call this a third edition, but the entire framework of this book is completely different.

“Approximate dynamic programming” is a term that still refers to making decisions based

on the idea of approximating the downstream value of being in a state. After decades

of working with this approach (which is still covered over a span of five chapters in this

volume), I can now say with confidence that value function approximations, despite all the

attention they have received, is a powerful methodology for a surprisingly narrow set of

decision problems.

By contrast, I finally developed the confidence to claim that the four classes of policies

are universal. This means that any method for making decisions will fall in one of these

four classes, or a hybrid of two or more. This is a game changer, because it shifts the

focus from an algorithm (the method for making decisions) to the model (specifically the

optimization problem above, along with the state-transition function and the model of the

exogenous information process). This means we write out the elements of a problem before
we tackle the problem of designing policies to decisions. I call this:

Model first, then solve.

The communities working on sequential decision problems are very focused on methods,

just as I was with my earlier work with approximate dynamic programming. The problem

is that any particular method will be inherently limited to a narrow class of problems. In

this book, I demonstrate how you can take a simple inventory problem, and then tweak the

data to make each of the four classes work best.

This new approach has opened up an entirely new way of approaching a problem class

that, in the last year of writing the book, I started calling “sequential decision analytics,”

which is any problem consisting of the sequence:

Decision, information, decision, information,

I allow decisions to range from binary (selling an asset) to discrete choices (favored

in computer science) to the high-dimensional resource allocation problems popular in

operations research. This approach starts with a problem, shifts to the challenging task

of modeling uncertainty, and then finishes with designing policies to make decisions to

optimize some metric. The approach is practical, scalable, and universally applicable.

PREFACE xxiii

It is exciting to be able to create a single framework that spans 15 different communities,

and which represents every possible method for solving sequential decision problems.

While having a common language to model any sequential decision problem, combined

with the general approach of the four classes of policies, is clearly of value, this framework

has been developed by standing on the shoulders of the giants who have laid the foundational

work for all of these methods. I have had to make choices regarding the best notation and

modeling conventions, but my framework is completely inclusive of all the methods that

have been developed to solve these problems. Rather than joining the chorus of researchers

promoting specific algorithmic strategies (as I once did), my goal is to raise the visibility

of all methods, so that someone looking to solve a real problem is working with the biggest

possible toolbox, rather than just the tools developed within a specific community.

A word needs to be said about the title of the book. As this is being written, there is a

massive surge of interest in “reinforcement learning,” which started as a form of approximate

dynamic programming (I used to refer to ADP and RL as similar to American English and

British English). However, as the RL community has grown and started working on harder

problems, they encountered the same experience that I and everyone else working in ADP

found: value function approximations are not a panacea. Not only is it the case that they

often do not work, they usually do not work. As a result, the RL community branched

out (just as I did) into other methods such as “policy gradient methods” (my “policy

function approximations” or PFA), upper confidence bounding (a form of “cost function

approximation” or CFA), the original Q-learning (which produces a policy based on “value

function approximations” or VFA), and finally Monte Carlo tree search (a policy based on

“direct lookahead approximations” or DLA). All of these methods are found in the second

edition of Sutton and Barto’s landmark book Reinforcement Learning: An introduction,

but only as specific methods rather than general classes. This book takes the next step and

identifies the general classes.

This evolution from one core method to all four classes of policies is being repeated

among other fields that I came to call the “jungle of stochastic optimization.” Stochastic

search, simulation-optimization, and bandit problems all feature methods from each of

the four classes of policies. Over time, I came to realize that all these fields (including

reinforcement learning) were playing catchup to the grandfather of all of this work, which

is optimal control (and stochastic control). The field of optimal control was the first to

introduce and seriously explore the use of value function approximations (they call these

cost-to-go functions), linear decision rules (a form of PFA), and the workhorse “model

predictive control” (a great name for a simple rolling horizon procedure, which is a “direct

lookahead approximation” in this book). I also found that my modeling framework was

closest to that used in the optimal control literature, which was the first field to introduce

the concept of a transition function, a powerful modeling device that has been largely

overlooked by the other communities. I make a few small tweaks such as using state St

instead of xt, and decision xt (widely used in the field of math programming) instead of

ut.

Then I introduce one big change, which is to maximize over all four classes of policies.

Perhaps the most important innovation of this book is to break the almost automatic link

between optimizing over policies, and then assuming that we are going to compute an

optimal policy from either Bellman’s equation or the Hamilton-Jacobi equations. These

are rarely computable for real problems, which then leads people to assume that the

natural next step is to approximate these equations. This is simply false, supported by

decades of research where people have developed methods that do not depend on HJB

equations. I recognize this body of research developing different classes of policies by

xxiv PREFACE

making the inclusion of all four classes of policies fundamental to the original statement of

the optimization problem above.

It will take some time for people from the different communities to learn to speak this

common language. More likely, there will be an adaptation of existing modeling languages

to this framework. For example, the optimal control community could keep their notation,

but learn to write their objective functions as I have above, recognizing that the search over

policies needs to span all four classes (which, I might point out, they are already using).

I would hope that the reinforcement learning community, which adopted the notation for

discrete action a, might learn to use the more general x (as the bandit community has

already done).

I have tried to write this book to appeal to newcomers to the field, as well as people

who already have training in one or more of the subfields that deal with decisions and

uncertainty; recognizing these two broad communities was easily the biggest challenge

while writing this book. Not surprisingly, the book is quite long. I have tried to make it

more accessible to people who are new to the field by marking many sections with an * as

an indication that this section can be skipped on a first-read. I also hope that the book will

appeal to people from many application domains. However, the core audience is people

who are looking to solve real problems by modeling applications and implementing the

work in software. The notation is designed to facilitate writing computer programs, where

there should be a direct relationship between the mathematical model and the software.

This is particularly important when modeling the flow of information, something that is

often overlooked in mainstream reinforcement learning papers.

WARREN B. POWELL

Princeton, New Jersey

August, 2021

ACKNOWLEDGMENTS

The foundation of this book is a modeling framework for sequential decision problems that

involves searching over four classes of policies for making decisions. The recognition that

we needed all four classes of policies came from working on a wide range of problems

spanning freight transportation (almost all modes), energy, health, e-commerce, finance,

and even materials science (!!).

This research required a lot of computational work, which was only possible through

the efforts of the many students and staff that worked in CASTLE Lab. Over my 39 years

of teaching at Princeton, I benefited tremendously from the interactions with 70 graduate

students and post-doctoral associates, along with nine professional staff. I am deeply

indebted to the contributions of this exceptionally talented group of men and women who

allowed me to participate in the challenges of getting computational methods to work on

such a wide range of problems. It was precisely this diversity of problem settings that

led me to appreciate the motivation for the different methods for solving problems. In the

process, I met people from across the jungle, and learned to speak their language not just

by reading papers, but by talking to them and, often, working on their problems.

I would also like to acknowledge what I learned from supervising over 200 senior theses.

While not as advanced as the graduate research, the undergraduates helped expose me to an

even wider range of problems, spanning topics such as sports, health, urban transportation,

social networks, agriculture, pharmaceuticals, and even optimizing Greek cargo ships. It

was the undergraduates who accelerated my move into energy in 2008, allowing me to

experiment with modeling and solving a variety of problems spanning microgrids, solar

arrays, energy storage, demand management and storm response. This experience exposed

me to new challenges, new methods, and most important, new communities in engineering

and economics.

xxv

xxvi

Hugo Simao, 1987
Instituto Tecnologico de Aeronautica, Brazil

Warren B. Powell
Academic family tree – 1981-2021

Yiannis Koskosidis, 1988
City University of New York

Judy Farvolden, 1989
University of Toronto

Raymond K.-M. Cheung, 1993
Iowa State University

Zhi-Long Chen, 1997
University of Pennsylvania

Huseyin Topaloglu, 2001
Cornell University

Katerina Papadaki, 2002
London School of Economics

Kazutoshi Yamazaki, 2009
Osaka University

Peter Frazier, 2009
Cornell University

Lauren Hannah, 2010
Columbia University

Daniel Jiang, 2016
University of Pittsburgh

Linos Frantzeskakis, 1990
AT&T Bell Laboratories

Tassio Carvalho, 1996
IBM Watson Research Labs

Tongqiang Wu, 2004
Lawrence Livermore National Lab.

Abraham George, 2005
AT&T Bell Laboratories

Joel Shapiro, 1999
i2 Technologies

Arun Marar, 2002
Amaranth Advisers

Gregory Godfrey,2007
Metron, Inc.

Juliana Nascimento, 2008
McKinsey Consulting

Johannes Enders, 2008
Louis Dreyfus Highbridge Energy

Jun Ma, 2011
Hedge fund

Jae Ho Kim (EE), 2011
Alliance Bernstein

Warren R. Scott, 2012
Energy finance startup

Daniel Salas (CBE), 2014
Thomson Reuters

Mary-Ellen Noyes, 1993

Derek Gittoes, 1994

Tony Snow, 1996

Sheraz Shere, 1996

Mike Towns, 1997

Karthik Sarma, 1998

Tom Dong, 1998

Jayanth Marasanapalle, 2000

Dennis Panos, 2007

Ekaterina Jager, 2008

Martijn Mes, 2012-2013
University of Twente, Netherlands

Boris Defourny, 2010-2013
Lehigh University

Stephan Meisel, 2012-2013
University of Muenster, Germany

Arta Jamshidi, 2011-2013
University of Tehran, Iran

Ricardo Collado, 2011-2013
Stevens Institute of Technology

Somayeh Moazeni, 2012-2014
Stevens Institute of Technology

Javad Khazaei, 2012-2015
EDF Renewable Energy.

Haitham Bou-Ammar 2015-2016
American University of Beirut.

Si Chen (EE), 2017
Goldman Sachs

Bolong (Harvey) Cheng (EE), 2017
Sigopt.com

1993:
Jennifer S.W. Wang,
Eric L. Hu
William A. Clark, Jr.
Keita M.K. Hammonds

1994:
Joffrey
Spencer
Paige
Chen

1996:
Paul
Kundrat
Akira Bell
Jacob
Pollack
Steven
Rodriguez

1997:
Korli Kamara
Michael
Applebaum
Brian
Corocran
Paul Hanson

1998:
Brian
Krasovec
Jamie
Weinstein
Stephen
Woolbert
Courtney
Jones
Bradley
Mitchell

1999:
Ian Todd
Erica Breckner
James Liu

2000:
Elizabeth Cervantes
Owen Stockdale
Julia Dranoff
Alan Mattamana
Kevin White

2001:
Xabier
Vazquez-Gil
Stephen
Anan
David
Atchison
Michael Hsu
Philip
Viergutz
Frances Kim
Adrianne del
Sol

2002:
Anand
Ahuja
Craig
Brown
Dana
Caragine
Heather
Fleming
Edward
Colburn

2003:
Scott Lescher
Jason
DeRoulet
Catherine
Farmer

2004:
Whitney
Karfeld
Elizabeth
Bramwell
Ann Verbin
Sandhya
Bondada
Vincent Ng
Aaron
Zimmerman
Daniel Cohen

2005:
Julie Toran
Michael Ortiz
Joshua
Johnson
Xiaolin Cui
John Andrews

2006:
John Basler
Ariel Melendez
Jonathan
Brosterman
Sophia Kim
William Brown
Vikram
Bellapravalu
Lindsay Cant
Jessica
Blankshain

2007:
Meera
Krishnan
Filippos
Chasparis
Vincent Yu
Evgenia Raikh
Edward
Tostanoski
Peter Yates
Blake Dixon

2008:
Alanna
Gregory
Stephen
Tavares
Bryan Gartner

2009:
Diana
Negoescu
Martin Valdez-
Vivas
Ilya Tsinis
Yintao Sun
Kimlee Wong

2010:
Jerry Peng
Daphne Earp
Alex Escoriaza
Katie Hsih
Merritt
Hummer
Christine
Schoppe
Jenniver
Schoppe
Victoria Shue
Nicholas
Tagher
Eva Wei
Vanessa Yu
Jessica Zhou

2012:
Yu-Sung
Huang
Kevin Kim
Huanqi Deng
Dao Mi
Daniel Dix
Claudine
Fernandez
Stephen Chen
Atanas Petkov

2013:
Cosmo Zhong
Daniel Elkind
Kelly
Funderburk
Shreyashi
Ghosh
Taman
Narayan
Alexander
Ogier
Tarun Sinha
Timothy
Wenzlau

2014:
Kevin Cen
Henry Chai
Daniel Chen
Luke Cheng
Mark
Holekamp
Kevin Lin
Oladoyin
Phillips

2015:
Erick Chen
Saumya Singh

2016:
Sankalpa
Banerjee
Kabo Kula
Zachary
Koerbel
Chandler Gay
Mohamed El
Tonbari
Olabode
Adunbarin
Natalie Carthy
Raina Sun
Bryan Oslin

Ph.D. – academic
and research labs

Post-docs

Ph.D. - Industry

MSE

Tsvetan Asamov, 2014-2016

2011:
Xiaoyang
Long
Hui (CinCin)
Fang
Sarah
Gershkon
Kathy Huang
Vince Jeong
Lawrence
Manning
Ben Sheng
Gerald van
den Berg
Megan Wong
Sami Yabroudi
Peck Yang
Florina Yezril
Rui Zhang

Undergraduate senior theses Undergraduate senior theses - 213

~50 theses 1981-1992

Lina al-Kanj, 2014-2019
ZS Associates

Kris Reyes, 2014-2017
University of Buffalo

Hugo Simao, 1990-2020

Juliana Nascimento, 2016-2020
Optimal Dynamics

Belgacem Bouzaiene-Ayari, 1996-2015
United Parcel Service

Marcos Leone Filho, 2013
University Campinas, Brazil.

Sanjay Melkote 2000-2003

Selcuk Avci, 1999-2003

Gunter Schemmanm, 2001-2002

David Cape ’87, 1987-1988

Kenneth Nickerson ’84, 1984-1986

Yan Li, 2016
IBM TJ Watson

Professional staff

Yinzhen Jin (CEE), 2013

Boyang Song, 2014

Michael J. Spivey, 2001
Univ. Puget Sound, Math

Ilya Ryzhov, 2011
University of Maryland

“Take care of your students, and the research will take care of itself.”

Yingfei Wang, 2017
University of Washington

Xinyu He (EE), 2017
Jump Trading

Raymond Perkins, 2018
T. Rowe Price

2017:
Andy Deng
Ginevra Guzzi
Raj Patel
Aaron
Schwartz
Eric Schneider
Conner Werth

2018:
Joseph Carlstein
Steven Sobel
Anid Laoui
Evan Wood
Nicholas Yang
Woramot (Earning)
Yamjinda

Dionysios Kalogerias, 2017-2019
Yale University

Saeed Ghadimi, 2018-2020
University of Waterloo

Ph.D. - Current
Brian Cheung
Xiaohe Luo
Larry Thul (EE)

Nana (Kobby) Aboagye, 2018
Air Liquide

Donghun Lee, 2019
Korea University

Weidong Han, 2019
Two-Sigma

2019:
Emma Corless
Sadie McGirr
Greg Kernisan
Stephanie Ward
Emily Kallfelz
Amanda Brown
Selina Pi
Amy Zhang

Joseph Durante, 2020
Optimal Dynamics

Larry Thul (EE), 2021
Optimal Dynamics

The group of students and staff who participated in CASTLE Lab is much too large

to list in this acknowledgment, but I have included my academic family tree above. To

everyone in this list, my warmest thanks!

I owe a special thanks to the sponsors of CASTLE Lab, which included a number of

government funding agencies including the National Science Foundation, the Air Force

Office of Scientific Research, DARPA, the Department of Energy (through Columbia

University and the University of Delaware), and Lawrence Livermore National Laboratory

(my first energy sponsor). I would particularly like to highlight the Optimization and

Discrete Mathematics Program of AFOSR that provided me with almost 30 years of

unbroken funding. I would like to express my appreciation to the program managers

of the ODM program, including Neal Glassman (who gave me my start in this program),

Donald Hearn (who introduced me to the materials science program), Fariba Fahroo (whose

passion for this work played a major role in its survival at AFOSR), and Warren Adams.

Over the years I came to have a deep appreciation for the critical role played by these

program managers who provide a critical bridge between academic researchers and the

policy makers who have to then sell the work to Congress.

I want to recognize my industrial sponsors and the members of my professional staff

that made this work possible. Easily one of the most visible features of CASTLE Lab

was that we did not just write academic papers and run computer simulations; our work

was implemented in the field. We would work with a company, identify a problem, build

a model and then see if it worked, and it often did not. This was true research, with a

process that I once documented with a booklet called “From the Laboratory to the Field,

xxvii

and Back.” It was this back and forth process that allowed me to learn how to model and

solve real problems. We had some early successes, followed by a period of frustrating

failures as we tackled even harder problems, but we had two amazing successes in the early

2000s with our implementation of a locomotive optimization system at Norfolk Southern

Railway using approximate dynamic programming, and our strategic fleet simulator for

Schneider National (one of the largest truckload carriers in the U.S.). This software was

later licensed to Optimal Dynamics which is implementing the technology in the truckload

industry. My industrial sponsors received no guarantees when they funded our research,

and their (sometimes misplaced) confidence in me played a critical role in our learning

process.

Working with industry from a university research lab, especially for a school like

Princeton, introduces administrative challenges that few appreciate. Critical to my ability

to work with industry was the willingness of a particular grants officer at Princeton, John

Ritter, to negotiate contracts where companies funded the research, and were then given

royalty-free licenses to use the software. This was key, since it was through their use

of the software that I learned what worked, and what did not. John understood that the

first priority at a university is supporting the faculty and their research mission rather than

maximizing royalties. I think that I can claim that my �50 million in research funding over

my career paid off pretty well for Princeton.

Finally, I want to recognize the contributions of my professional staff who made these

industrial projects possible. Most important is the very special role played by Hugo Simao,

my first Ph.D. student who graduated, taught in Brazil, and returned in 1990 to help start

CASTLE Lab. Hugo played so many roles, but most important as the lead developer on a

number of major projects that anchored the lab, notably the multidecade relationship with

Yellow Freight System/YRC. He was also the lead developer of our award-winning model

for Schneider National that was later licensed to Optimal Dynamics, in addition to our big

energy model, SMART-ISO, which simulated the PJM power grid. This is not work that can

be done by graduate students, and Hugo brought his tremendous skill to the development

of complex systems, starting in the 1990s when the tools were relatively primitive. Hugo

also played an important role guiding students (graduate and undergraduate) with their

software projects, given that I retired from programming in 1990 as the world transitioned

from Fortan to C. Hugo brought talent, patience, and an unbelievable work ethic that

provided the foundation in funding that made CASTLE Lab possible. Hugo was later

joined by Belgacem Bouzaiene-Ayari who worked at the lab for almost 20 years and was

the lead developer on another award-winning project with Norfolk Southern Railway, along

with many other contributions. I cannot emphasize enough the value of the experience of

working with these industrial sponsors, but this is not possible without talented research

staff such as Hugo and Belgacem.

W. B. P.

PART I - INTRODUCTION

We have divided the book into 20 chapters organized into six parts. Part I includes four

chapters that set the foundation for the rest of the book:

• Chapter 1 provides an introduction to the broad field that we are calling “sequential

decision analytics.” It introduces our universal modeling framework which reduces

sequential decision problems to one of finding methods (rules) for making decisions,

which we call policies.

• Chapter 2 introduces fifteen major canonical modeling frameworks that have been

used by different communities. These communities all approach sequential decision

problems under uncertainty from a different perspectives, using eight different mod-

eling systems, typically focusing on a major problem class, and featuring a particular

solution method. Our modeling framework will span all of these communities.

• Chapter 3 is an introduction to online learning, where the focus is on sequential

vs. batch learning. This can be viewed as an introduction to machine learning, but

focusing exclusively on adaptive learning, which is something we are going to be

doing throughout the book.

• Chapter 4 sets the stage for the rest of the book by organizing sequential decision

problems into three categories: 1) problems that can be solved using deterministic

mathematics, 2) problems where randomness can be reasonably approximated using

a sample (and then solved using deterministic mathematics), and 3) problems that can

only be solved with adaptive learning algorithms, which is the focus of the remainder

of the book.

xxviii

xxix

Chapter 1 provides an overview of the universal modeling framework that covers any

sequential decision problem. It provides a big picture of our entire framework for modeling

and solving sequential decision problems, which should be of value to any reader regardless

of their background in decisions under uncertainty. It describes the scope of problems, a

brief introduction to modeling sequential decision problems, and sketches the four classes

of policies (methods for making decisions) that we use to solve these problems.

Chapter 2 summarizes the canonical modeling frameworks for each of the communities

that address some form of sequential decision problem, using the notation of that field.

Readers who are entirely new to the field might skim this chapter to get a sense of the

variety of approaches that have been taken. Readers with more depth will have some level

of expertise in one or more of these canonical problems, and it will help provide a bridge

between that problem and our framework.

Chapter 3 covers online learning in some depth. This chapter should be skimmed, and

then used as a reference source as needed. A good starting point is to read section 3.1, and

then skim the headers of the remaining sections. The book will repeatedly refer back to

methods in this chapter.

Finally, chapter 4 organizes stochastic optimization problems into three categories:

1) Stochastic optimization problems that can be solved exactly using deterministic math-

ematics.

2) Stochastic optimization problems where uncertainty can be represented using a fixed

sample. These can still be solved using deterministic mathematics.

3) Stochastic optimization problems that can only be solved using sequential, adaptive

learning algorithms. This will be the focus of the rest of the book.

This chapter reminds us that there are special cases of problems that can be solved

exactly, possibly by replacing the original expectation with a sampled approximation. The

chapter closes by setting up some basic concepts for learning problems, including making

the important distinction between online and offline problems, and by identifying different

strategies for designing policies for adaptive learning.

CHAPTER 1

SEQUENTIAL DECISION PROBLEMS

A sequential decision problem, simply stated, consists of the sequence

decision, information, decision, information, decision, . . .

As we make decisions, we incur costs or earn rewards. Our challenge is how to represent

the information that will arrive in the future, and how to make decisions, both now and in

the future. Modeling these problems, and making effective decisions in the presence of the

uncertainty of new information, is the goal of this book.

The first step in sequential decision problems is to understand what decisions are being

made. It is surprising how often it is that people faced with complex problems, which spans

scientists in a lab to people trying to solve major health problems, are not able to identify

the decisions they face.

We then want to find a method for making decisions. There are at least 45 words in the

English language that are equivalent to “method for making a decision,” but the one we

have settled on is policy. The term policy is very familiar to fields such as Markov decision

processes and reinforcement learning, but with a much narrower interpretation than we will

use. Other fields do not use the term at all. Designing effective policies will be the focus

of most of this book.

Even more subtle is identifying the different sources of uncertainty. It can be hard

enough trying to identify potential decisions, but thinking about all the random events that

might affect whatever it is that you are managing, whether it is reducing disease, managing

inventories, or making investments, can seem like a hopeless challenge. Not only are there

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell

Copyright� 2021 John Wiley & Sons, Inc.

1

2 SEQUENTIAL DECISION PROBLEMS

a wide range of sources of uncertainty, but there is also tremendous variety in how they

behave.

Making decisions under uncertainty spans an exceptionally rich set of problems in

analytics, arising in fields such as engineering, the sciences, business, economics, finance,

psychology, health, transportation, and energy. It encompasses active learning problems,

where the decision is to collect information, that arise in the experimental sciences, medical

decision making, e-commerce, and sports. It also includes iterative algorithms for stochastic

search, which arises in machine learning (finding the model that best fits the data) or finding

the best layout for an assembly line using a simulator. It also includes two-agent games

and multiagent systems. In fact, we might claim that virtually any human enterprise will

include instances of sequential decision problems.

Decision making under uncertainty is a universal experience, something every human

has had to manage since our first experiments trying new foods when we were two years

old. Some samples of everyday problems where we have to manage uncertainty in our own

lives include:

• Personal decisions - These might include how much to withdraw from an ATM

machine, finding the best path to a new job, and deciding what time to leave to make

an appointment.

• Food shopping - We all have to eat, and we cannot run to the store every day, so

we have to make decisions of when to go shopping, and how much to stock up on

different items when we do go.

• Health decisions - Examples include designing diet and exercise programs, getting

annual checkups, performing mammograms and colonoscopies.

• Investment decisions - Which mutual fund should you use? How should you allocate

your investments? How much should you put away for retirement? Should you rent

or purchase a house?

Sequential decision problems are ubiquitous, and as a result come in many different

styles and flavors. Decisions under uncertainty span virtually every major field. Table 1.1

provides a list of problem domains and a sample of questions that can arise in each of these

fields. Not surprisingly, a number of different analytical fields have emerged to solve these

problems, often using different notational systems, and presenting solution approaches that

are suited to the characteristics of the problems in each setting.

This book will provide the analytical foundation for sequential decision problems using

a “model first, then solve” philosophy. While this is standard in fields such as deterministic

optimization and machine learning, it is not at all standard in the arena of making decisions

under uncertainty. The communities that work on sequential decision problems tend to

come up with a method for solving a problem, and then look for applications. This can

come across as if we have a hammer looking for a nail.

The limitation of this approach is that the different methods that have been developed

can only serve a subset of problems. Consider one of the simplest and most classical

sequential decision problems: managing an inventory of product to serve demands over

time. Let Rt be our inventory at time t, xt is how much we order (that arrives instantly),

to serve a demand D̂t+1 that is not known at time t. The evolution of the inventory Rt is

given by

Rt+1 = max{0, Rt + xt − D̂t+1}. (1.1)

3

Field Questions

Business What products should we sell, with what features? Which supplies should

you use? What price should you charge? How should we manage our fleet

of delivery vehicles? Which menu attracts the most customers?

Economics What interest rate should the Federal Reserve charge given the state of

the economy? What levels of market liquidity should be provided? What

guidelines should be imposed on investment banks?

Finance What stocks should a portfolio invest in? How should a trader hedge a

contract for potential downside? When should we buy or sell an asset?

Internet What ads should we display to maximize ad-clicks? Which movies attract

the most attention? When/how should mass notices be sent?

Engineering How to design devices from aerosol cans to electric vehicles, bridges to

transportation systems, transistors to computers?

Materials science What combination of temperatures, pressures and concentrations should we

use to create a material with the highest strength?

Public health How should we run testing to estimate the progression of a disease? How

should vaccines be allocated? Which population groups should be targeted?

Medical research What molecular configuration will produce the drug which kills the most

cancer cells? What set of steps are required to produce single-walled nan-

otubes?

Supply chain management When should we place an order for inventory from China? What mode of

transportation should be used? Which supplier should be used?

Freight transportation Which driver should move a load? What loads should a truckload carrier

commit to move? Where should drivers be domiciled?

Information collection Where should we send a drone to collect information on wildfires or invasive

species? What drug should we test to combat a disease?

Multiagent systems How should a large company in an oligopolistic market bid on contracts,

anticipating the response of its competitors? How should a submarine behave

given the presence of adversarial submarines?

Algorithms What stepsize rule should we use in a search algorithm? How do we

determine the next point to evaluate an expensive function?

Table 1.1 A list of application domains and decisions that need to be made.

For this problem, we might use the following policy: when the inventory falls below a

value θmin, order enough to bring it up to θmax. All we have to do is to determine the

parameter vector θ = (θmin, θmax). The policy is quite simple, but finding the best value

of θ can be quite challenging.

Now consider a series of inventory problems with increasing complexity, illustrated by

the setting in figure 1.1 of a warehouse in the southeastern United States ordering inventory:

1) The inventory we order comes from China, and might take 90 to 150 days to arrive.

2) We have to serve demand that varies seasonally (and dramatically changes around

the Christmas holiday season).

3) We are given the option to use air freight for a particular order that reduces the time

by 30 days.

4 SEQUENTIAL DECISION PROBLEMS

Figure 1.1 Illustration of shipments coming from China to the U.S. with a threat of a storm.

4) We are selling expensive gowns, and we have to pay special attention to the risk of

a stockout if there is a delay in either the production (which we can handle by using

air freight) or a delay in offloading at the port.

5) The gowns come in different styles and colors. If we run short of one color, the

customer might be willing to accept a different color.

6) We are allowed to adjust the price of the item, but we do not know precisely how the

market will respond. As we adjust the price and observe the market response, we

learn from this observation and use what we learn to guide future pricing decisions.

Each of these modifications would affect our decision, which means a modification of the

original policy in some way.

The simple inventory problem in equation (1.1) has just a single decision, xt, specifying

how much inventory to order now. In a real problem, there is a spectrum of downstream

decisions that might be considered, including

• How much to order, and the choice of delivery commitment that determines how

quickly the order arrives: rush orders, normal, relaxed.

• Pricing of current inventory while waiting for the new inventory to arrive.

• Reservations for space on cargo ships in the future.

• The speed of the cargo ship.

• Whether to rush additional inventory via air freight to fill a gap due to a delay.

• Whether to use truck or rail to move the cargo in from the port.

Then, we have to think about the different forms of uncertainty for a product that might

take at least 90 days to arrive:

• The time to complete manufacturing.

• Weather delays affecting ship speeds.

• Land transportation delays.

THE AUDIENCE 5

• Product quality on arrival.

• Currency changes.

• Demand for inventory on hand between now and the arrival of new inventory.

If you set up a toy problem such as equation (1.1), you would never think about all of

these different decisions and sources of uncertainty. Our presentation will feature a rich

modeling framework that emphasizes our philosophy:

Model first, then solve.

We will introduce, for the first time in a textbook, a universal modeling framework for

any sequential decision problem. We will introduce four broad classes of methods, known

as policies, for making decisions that span any method that might be used, including

anything in the academic literature or used in practice. Our goal is not to always choose

the policy that performs the best, since there are multiple dimensions to evaluating a policy

(computational complexity, transparency, flexibility, data requirements). However, we will

always choose our policy with one eye to performance, which means the statement of an

objective function will be standard. This is not the case in all communities that work on

sequential decision problems.

1.1 THE AUDIENCE

This book is aimed at readers who want to develop models that are practical, flexible,

scalable, and implementable for sequential decision problems in the presence of different

forms of uncertainty. The ultimate goal is to create software tools that can solve real

problems. We use careful mathematical modeling as a necessary step for translating real

problems into software. The readers who appreciate both of these goals will enjoy our

presentation the most.

Given this, we have found that this material is accessible to professionals from a wide

range of fields, spanning application domains (engineering, economics, and the sciences)

to those with more of a methodological focus (such as machine learning, computer science,

optimal control, and operations research) with a comfort level in probability and statistics,

linear algebra, and, of course, computer programming.

Our presentation emphasizes modeling and computation, with minimal deviations into

theory. The vast majority of the book can be read with a good course in probability and

statistics, and a basic knowledge of linear algebra. Occasionally we will veer into higher

dimensional applications such as resource allocation problems (e.g. managing inventories

of different blood types, or trading portfolios of assets) where some familiarity with linear,

integer and/or nonlinear programming will be useful. However, these problems can all be

solved using powerful solvers with limited knowledge of how these algorithms actually

work.

This said, there is no shortage of algorithmic challenges and theoretical questions for

the advanced Ph.D. student with a strong background in mathematics.

1.2 THE COMMUNITIES OF SEQUENTIAL DECISION PROBLEMS

Figure 1.2 shows some prominent books from various methodological communities in the

sequential decision-making field. These communities, which are discussed in greater depth

6 SEQUENTIAL DECISION PROBLEMS

Stochastic
programming

Markov
decision
processes

Reinforcement
learning

Optimal
control

Model
predictive
control

Robust
optimization

Approximate
dynamic
programming

Online
computation
Stochastic
optimization

Stochastic
search

Decision

analysis

Stochastic
control

Simulation
optimization

Dynamic
Programming
and
control

Optimal
learning

Bandit
problems

Figure 1.2 A sampling of major books representing different fields in stochastic optimization.

in chapter 2, are listed in table 1.2 in the approximate order in which the field emerged. We

note that there are two distinct fields that are known as derivative-based stochastic search,

and derivative-free stochastic search, that both trace their roots to separate papers published

in 1951.

Each of these communities deals with some flavor of sequential decision problems,

using roughly eight notational systems, and an overlapping set of algorithmic strategies.

Each field is characterized by at least one book (often several), and thousands of papers

(in some cases, thousands of papers each year). Each community tends to have problems

that best fit the tools developed by that community, but the problem classes (and tools) are

continually evolving.

The fragmentation of the communities (and their differing notational systems) dis-

guises common approaches developed in different areas of practice, and challenges cross-

fertilization of ideas. A problem that starts off simple (like the inventory problem in (1.1))

lends itself to a particular solution strategy, such as dynamic programming. As the problem

grows in realism (and complexity), the original technique will no longer work, and we need

to look to other communities to find a suitable method.

1) Derivative-based stochastic search 9) Stochastic programming

2) Derivative-free stochastic search 10) Multiarmed bandit problem

3) Decision trees 11) Simulation optimization

4) Markov decision processes 12) Active learning

5) Optimal control 13) Chance constrained programming

6) Approximate dynamic programming 14) Model predictive control

7) Reinforcement learning 15) Robust optimization

8) Optimal stopping

Table 1.2 Fields that deal with sequential decisions under uncertainty.

OUR UNIVERSAL MODELING FRAMEWORK 7

We organize all of these fields under the title of “reinforcement learning and stochastic

optimization.” “Stochastic optimization” refers generally to the analytical fields that address

decisions under uncertainty. The inclusion of “reinforcement learning” in the title reflects

the growing popularity of this community, and the use of the term to apply to a steadily

expanding set of methods for solving sequential decision problems. The goal of this book

is to provide a unified framework that covers all of the communities that work on these

problems, rather than to favor any particular method. We refer to this broader field as

sequential decision analytics.

Sequential decision analytics requires integrating tools and concepts from three core

communities from the mathematical sciences:

Statistical machine learning - Here we bring together the fields of statistics, machine

learning and data sciences. Most (although not all) of our applications of these tools

will involve recursive learning. We will also draw on the fields of both frequentist

and Bayesian statistics, but all of this material is provided here.

Mathematical programming - This field covers the core methodologies in derivative-

based and derivative-free search algorithms, which we use for purposes ranging from

computing policies to optimizing the parameters of a policy. Occasionally we will

encounter vector-valued decision problems that require drawing on tools from linear,

integer and possibly nonlinear programming. Again, all of these methods are intro-

duced and presented without assuming any background in stochastic optimization.

Stochastic modeling and simulation - Optimizing a problem in the presence of uncertainty

often requires a careful model of the uncertain quantities that affect the performance

of a process. We include a basic introduction to Monte Carlo simulation methods,

but expect a background in probability and statistics, including the use of Bayes

theorem.

While our presentation does not require advanced mathematics or deep preparation in

any methodological area, we will be blending concepts and methods from all three of these

fields. Dealing with uncertainty is inherently more subtle than deterministic problems, and

requires more sophisticated modeling than arises in machine learning.

1.3 OUR UNIVERSAL MODELING FRAMEWORK

Central to the entire book is the use of a single modeling framework, as is done in de-

terministic optimization and machine learning. Ours is based heavily on the one widely

used in optimal control. This has proven to be the most practical and flexible, and offers

a clear relationship between the mathematical model and its implementation in software.

While much of our presentation will focus on modeling sequential decision problems and

developing practical methods for making decisions, we also recognize the importance of

developing models of the different sources of uncertainty (a topic that needs a book of its

own).

Although we revisit this in more detail in chapter 9, it helps to sketch our universal

modeling framework. The core elements are:

• State variables St - The state variable contains everything we know, and only what

we need to know, to make a decision and model our problem. State variables

include physical state variables Rt (the location of a drone, inventories, investments

8 SEQUENTIAL DECISION PROBLEMS

in stocks), other information It about parameters and quantities we know perfectly

(such as current prices and weather), and beliefs Bt, in the form of probability

distributions, describing parameters and quantities that we do not know perfectly

(this could be an estimate of how much a drug will lower the blood sugar in a new

patient, or how the market will respond to price).

• Decision variables xt - A decision variable can be binary (hold or sell), a discrete

set (drugs, products, paths), a continuous variable (such as a price or dosage), and

vectors of discrete and continuous variables. Decisions are subject to constraints

xt ∈ Xt, and we make decisions using a method we call a policy Xπ(St). We

introduce the notation for a policy, but we defer the design of the policy until after

we complete the model. This is the basis of what we call model first, then solve.

• Exogenous information Wt+1 - This is the information that we learn after we make a

decision (market response to a price, patient response to a drug, the time to traverse

a path), that we did not know when we made the decision. Exogenous information

comes from outside whatever system we are modeling. (Decisions, on the other hand,

can be thought of as an endogenous information process since we make decisions, a

form of information, internally to the process.)

• The transition functionSM (St, xt,Wt+1)which consists of the equations required to

update each element of the state variable. This covers all the dynamics of our system,

including the updating of estimates and beliefs for sequential learning problems.

Transition functions are widely used in control theory using the notation f(x, u, w)
(for state x, control u and information w); our notation, which stands for the “state

transition model” or “system model” helps us avoid using the popular letter f(·).
• The objective function - This first consists of the contribution (or reward, or cost, ...)

we make each time period, given by C(St, xt), where xt = Xπ(St) is determined by

our policy, and St is our current state, which is computed by the transition function.

As we are going to demonstrate later in the book, there are different ways to write

the objective function, but our most common will be to maximize the cumulative

contributions, which we write as

max
π

E

{
T∑

t=0

C(St, X
π(St))|S0

}
. (1.2)

where the expectation E means “take an average over all types of uncertainty” which

might be uncertainty about how a drug will perform, or how the market will respond

to price (captured in the initial state S0), as well as the uncertainty in the information

W1, . . . ,Wt, . . . that arrives over time. The maximization over policies simply

means that we want to find the best method for making decisions. Most of this book

is dedicated to the challenge of searching over policies.

Once we have identified these five elements, we still have two remaining steps to complete

before we are done.

• Stochastic modeling (also known as uncertainty quantification) - There can be uncer-

tainty about parameters and quantities in the state variable (including the initial state

S0), as well as our exogenous information process W1,W2, . . . ,Wt, In some

instances, we may avoid modeling the Wt process by observing a physical system.

OUR UNIVERSAL MODELING FRAMEWORK 9

Otherwise, we need a mathematical model of the possible realizations of Wt+1 given

St and our decision xt (either of which can influence Wt+1).

• Designing policies - Only after we are done with modeling do we turn to the problem

of designing the policy Xπ(St). This is the point of departure between this book

and all the books in our jungle of stochastic optimization. We do not pick policies

before we develop our model; instead, once the modeling is done, we will provide a

roadmap to every possible policy, with guidelines of how to choose among them.

The policy π consists of some type of function f ∈ F , possibly with tunable

parameters θ ∈ Θf that are associated with the function f , where the policy maps

the state to a decision. The policy will often contain an imbedded optimization

problem within the function. This means that we could write (1.2) as

max
π=(f∈F,θ∈Θf)

E

{
T∑

t=0

C(St, X
π(St))|S0

}
. (1.3)

This leaves the question: How do we search over functions? Most of this book is

dedicated to describing precisely how to do this.

Using this notation, we can revise our original characterization of a sequential decision

problem, which we earlier described as decision, information, decision, information, as

the sequence

(S0, x0,W1, S1, x1,W2, . . . , St, xt,Wt+1, . . . , ST),

where we now write the triplet “state, decision, new information” to capture what we know

(the state variable St), which we use to make a decision xt, followed by what we learn after

we make a decision, the exogenous information Wt+1. We earn a contribution C(St, xt)
from our decision xt (we could say we earn a reward or incur a cost), where the decision

comes from a policy Xπ(St).
There are many problems where it is more natural to use a counter n (the nth experiment,

the nth customer arrival), in which case we would write our sequential decision problem as

(S0, x0,W 1, S1, x1,W 2, . . . , Sn, xn,Wn+1, . . . , SN).

There are even settings where we use both, as in (Sn
t , x

n
t ,W

n
t+1) to capture, for example,

decisions in the nth week at hour t.
We note in passing that there are problems that consist of “decision, information, stop,”

“decision, information, decision, stop,” “information, decision, information, decision, . . .,”
and problems where the sequencing proceeds over an infinite horizon. We use a finite

sequence as our default model.

We can illustrate our modeling framework using our simple inventory problem that we

started with above.

• State variables St - For the simplest problem this is the inventory Rt.

• Decision variables xt - This is how much we order at time t, and for now, we assume

it arrives right away. We also introduce our policy Xπ(St), where xt = Xπ(St),
which we will design after we create our model.

• Exogenous information Wt+1 - This would be the demand D̂t+1 that arises between

t and t+ 1.

10 SEQUENTIAL DECISION PROBLEMS

• The transition function SM (St, xt,Wt+1) - This would be the evolution of our

inventory Rt, given by

Rt+1 = max{0, Rt + xt − D̂t+1}. (1.4)

• The objective function - This is an example of a problem where it is more natural to

write the single-period contribution function after we observe the information Wt+1

since this contains the demand D̂t+1 that we will serve with the inventory xt we

order in period t. For this reason, we might write our contribution function as

C(St, xt,Wt+1) = pmin{Rt + xt, D̂t+1} − cxt.

where p is the price at which we sell our product, and c is the cost per unit of product.

Our objective function would be given by

max
π

E

{
T∑

t=0

C(St, X
π(St),Wt+1)|S0

}
,

where xt = Xπ(St), and we have to be given a model of the exogenous information

process W1, . . . ,WT . Since the exogenous information is random, we have to take

the expectationE of the sum of contributions to average over all the possible outcomes

of the information process.

Our next step would be to develop a mathematical model of the distribution of demand

D̂1, D̂2, . . . , D̂t, . . . which draws on tools that we introduce in chapter 10.

To design our policy Xπ(St), we might turn to the academic literature that shows, for

this simple problem, that the policy has an order-up-to structure given by

XInv(St|θ) =
{

θmax −Rt if Rt < θmin,

0 otherwise.
(1.5)

This is a parameterized policy, which leaves us the challenge of finding θ = (θmin, θmax)
by solving

max
θ

E

{
T∑

t=0

C(St, X
Inv(St|θ),Wt+1)|S0

}
. (1.6)

Here we chose a particular class of policy, and then optimized within the class.

We pause to note that using our modeling approach creates a direct relationship between

our mathematical model and computer software. Each of the variables above can be

translated directly to a variable name in a computer program, with the only exception that

the expectation operator has to be replaced with an estimate based on simulation (we show

how to do this). This relationship between mathematical model and computer software

does not exist with most of the current modeling frameworks used for decisions under

uncertainty, with one major exception - optimal control.

Earlier in the chapter we proposed a number of generalizations to this simple inventory

problem. As we progress through the book, we will show that our five-step universal

modeling framework holds up for modeling much more complex problems. In addition,

we will introduce four classes of policies that will span any method that we might want to

consider to solve more complex versions of our problem. In other words, not only will our

modeling framework be able to model any sequential decision problem, we will outline

four classes of policies that are also universal: they encompass any method that has been

studied in the research literature or used in practice. The next section provides an overview

of these four classes of policies.

DESIGNING POLICIES FOR SEQUENTIAL DECISION PROBLEMS 11

1.4 DESIGNING POLICIES FOR SEQUENTIAL DECISION PROBLEMS

What often separates one field of stochastic optimization from another is the type of policy

that is used to solve a problem. Possibly the most important aspect of our unified framework

in this book is how we have identified and organized different classes of policies. These are

first introduced in chapter 7 in the context of derivative-free stochastic optimization (a form

of pure learning problem), and then in greater depth in chapter 11 on designing policies,

which sets the stage for the entire remainder of the book. In this section we are going to

provide a peek at our approach for designing policies.

The entire literature on making decisions under uncertainty can be organized along two

broad strategies for creating policies:

Policy search - This includes all policies where we need to search over:

• Different classes of functions f ∈ F for making decisions. For example, the

order-up-to policy in equation (1.5) is a form of nonlinear parametric function.

• Any tunable parameters θ ∈ Θf that are introduced by function f . θ =
(θmin, θmax) in equation (1.5) is an example.

If we select a policy that contains parameters, then we have to find the set of

parameters θ to maximize (or minimize) an objective function such as (1.6).

Lookahead approximations - These are policies formed so we make the best decision

now given an approximation of the downstream impact of the decision. These are the

policy classes that have attracted the most attention from the research community.

Our order-up-to policy XInv(St|θ) is a nice example of a policy that has to be optimized

(we might say tuned). The optimization can be done using a simulator, as is implied in

equation (1.6), or in the field.

Each of these two strategies produce policies that can be divided into two classes,

creating four classes of policies. We describe these below.

1.4.1 Policy search

Policies in the policy search class can be divided into two subclasses:

1) Policy function approximations (PFAs) - These are analytical functions that map a

state (which includes all the information available to us) to a decision (the order-up-

to policy in equation (1.5) is a PFA). These are discussed in greater depth in chapter

12.

2) Cost function approximations (CFAs) - CFA policies are parameterized optimization

models (typically deterministic optimization models) that have been modified to

help them respond better over time, and under uncertainty. CFAs have an imbedded

optimization problem within the policy. The concept of CFAs are presented in this

book for the first time as a major new class of policies. CFAs are introduced and

illustrated in chapter 13.

PFAs are any analytical function that maps what we know in the state variable to a decision.

These analytical functions come in three flavors:

Lookup tables - These are used when a discrete state S can be mapped to a discrete action,

such as:

12 SEQUENTIAL DECISION PROBLEMS

• If the patient is male, over 60 with high blood sugar, then prescribe metformin.

• If your car is at a particular intersection, turn left.

Parametric functions - These describe any analytical functions parameterized by a vector

of parameters θ. Our order-up-to policy is a simple example. We might also write it

as a linear model such as

XPFA(St|θ) = θ1φ1(St) + θ2φ2(St) + θ3φ3(St) + θ4φ4(St).

where φf (St) are features extracted from information in the state variable. Neural

networks are another option.

Nonparametric functions - These include functions that might be locally linear approxi-

mations, or deep neural networks.

The second class of functions that can be optimized using policy search is called paramet-

ric cost function approximations, or CFAs, which are parameterized optimization problems.

A simple CFA used in learning problems is called interval estimation and might be used

to determine which ad gets the most clicks on a website. Let X = {x1, . . . , xM} be the

set of ads (there may be thousands of them), and let μ̄n
x be our current best estimate of the

probability that ad x will be clicked on after we have run n observations (across all ads).

Then let σ̄n
x be the standard deviation of the estimate μ̄n

x . Interval estimation would choose

as the next ad

XCFA(Sn|θ) = argmax
x∈X

(
μ̄n
x + θσ̄n

x

)
, (1.7)

where “argmaxx” means to find the value of x that maximizes the expression in paren-

theses. The distinguishing features of a CFA is that it requires solving an imbedded

optimization problem (the max over ads), and there is a tunable parameter θ.

Once we introduce the idea of solving an optimization problem within the policy (as we

did with the policy in (1.7)), we can solve any parameterized optimization problem. We

are no longer restricted to the idea that x has to be one of a set of discrete choices; it can be

a large integer program, such as those used to plan airline schedules with schedule slack

inserted to handle possible weather delays, or planning energy generation for tomorrow

with reserves in case a generator fails (both of these are real instances of CFAs used in

practice).

1.4.2 Policies based on lookahead approximations

A natural strategy for making decisions is to consider the downstream impact of a decision

you make now. There are two ways of doing this:

3) Value function approximations (VFAs) - One popular approach for solving sequential

decision problems applies the principles of a field known as dynamic programming
(or Markov decision processes). Imagine our state variable tells us where we are

on a network where we have to make a decision, or the amount of inventory we are

holding. Assume that someone tells us that if we are in state St+1 at time t+ 1 (that

is, we are at some node in the network or will have some level of inventory), that

Vt+1(St+1) is the “value” of being in state St+1, which we can think of as the cost

of the shortest path to the destination, or our expected profits from time t+1 onward

if we start with inventory St+1.

DESIGNING POLICIES FOR SEQUENTIAL DECISION PROBLEMS 13

Now assume we are in a state St at time t and trying to determine which decision xt

we should make. After we make the decision xt, we observe the random variable(s)

Wt+1 that take us to St+1 = SM (St, xt,Wt+1) (for example, our inventory equation

(1.4) in our example above). Assuming we know Vt+1(St+1), we can find the value

of being in state St by solving

Vt(St) = max
xt

(
C(St, xt) + EWt+1{Vt+1(St+1)|St}

)
, (1.8)

where it is best to think of the expectation operator EWt+1
as averaging over all

outcomes of Wt+1. The value of x∗
t that optimizes equation (1.8) is then the

optimal decision for state St. The first period contribution C(St, x
∗
t) plus the future

contributions EWt+1{Vt+1(St+1)|St} gives us the value Vt(St) of being in state St

now. When we know the values Vt(St) for all time periods, and all states, we have a

VFA-based policy given by

XV FA
t (St) = argmax

xt

(
C(St, xt) + EWt+1

{Vt+1(St+1)|St}
)
, (1.9)

where “argmaxxt” returns the value xt that maximizes (1.9).

Equation (1.9) is a powerful way of computing optimal policies, but it is rarely

computable in practical problems (chapter 14 presents some problem classes that

can be solved exactly). For this reason, a number of communities have developed

ways of approximating the value function under names such as approximate dynamic

programming, adaptive dynamic programming or, most visibly, reinforcement learn-

ing. These fields replace the exact value function Vt+1(St+1) with an approximation

V t+1(St+1) estimated using machine learning.

VFA-based policies have attracted considerable attention from the research litera-

ture, and are possibly the most difficult of the four classes of policies. We cover

approximations over four chapters (chapters 15 - 18).

4) Direct lookahead approximations (DLAs) - The easiest example of a lookahead pol-

icy is a navigation system which plans a path to your destination, and then tells you

which turn to take next. As new information arrives, the path is updated.

This is an example of a deterministic lookahead for a stochastic problem. While

deterministic lookaheads are useful in some applications, there are many where we

have to explicitly consider uncertainty as we make a decision, which means we have

to solve a stochastic optimization problem within our direct lookahead policy! There

are entire fields of research focused on specific methods for solving direct lookahead

models under uncertainty. We present a general framework for modeling and solving

direct lookahead policies in chapter 19.

1.4.3 Mixing and matching

It is possible to create hybrid policies by blending strategies from multiple classes. We

can create a lookahead policy H periods into the future, and then use a value function

approximation to approximate the states at the end of the planning horizon. We can use

a deterministic lookahead, but introduce tunable parameters to make it work better under

uncertainty. We can combine a PFA (think of this as some analytical function that suggests

a decision), and weight any deviation of the decision from the PFA and add it to any other

14 SEQUENTIAL DECISION PROBLEMS

optimization-based policy. When we get to stochastic lookaheads in chapter 19, we may

end up using all four classes at the same time.

An example of a hybrid policy is determining both the path to drive to a destination,

and the time of departure. Navigation systems use a deterministic lookahead, solving a

shortest path problem using point estimates of the travel times on each link of a network.

This path might produce an estimated travel time of 40 minutes, but when do you actually

leave? Now you are aware of the uncertainty of traffic, so you might decide to add in a

buffer. As you repeat the trip, you may adjust the buffer up or down as you evaluate the

accuracy of the estimate. This is a combined direct lookahead (since it plans a path into

the future) with a tunable parameter for the departure time (making it a form of PFA).

As we said, we cannot tell you how to solve any particular problem (the diversity is

simply too great), but we will give you a complete toolbox, with some guidelines to help

in your choice.

1.4.4 Optimality of the four classes

There is a widespread misconception in the academic research literature that equation

(1.8) (known either as Bellman’s equation, or the Hamilton-Jacobi equation) is the basis

for creating optimal policies, and that any path to designing good (that is, near optimal)

policies have to start with Bellman’s equation. This is simply not true.

Any of the four classes of policies can contain the optimal policy for specific problem

classes. The problem that arises is purely computational. For example, for the vast majority

of real applications, Bellman’s equation (1.8) is simply not computable. Trying to replace

the true value function Vt+1(St+1) in equation (1.8) with some approximation V t+1(St+1)
may work quite well, but there are many settings where it is just not going to produce

effective policies. In addition, once you start talking about using approximations of the

value function, you open yourself up to the possibility that any of the other three classes of

policies may work just as well or (often) better. This is the reason that there are so many

people making decisions over time, in the presence of new information, and who do not

use (and have not even heard of) Bellman’s equation.

1.4.5 Pulling it all together

We claim that the four classes of policies (PFAs, CFAs, VFAs and DLAs) are universal,

and cover every method that has been proposed by any of the communities listed earlier, as

well as anything used in practice.

Of the four classes, the academic community has focused primarily on VFAs and various

forms of DLAs (both deterministic and stochastic). By contrast, our belief is that PFAs

and CFAs are much more widely used in practice. CFAs in particular have been largely

overlooked in the academic community, but are widely used in practice in an ad hoc way

(they are typically not tuned). PFAs and CFAs (that is, the policy search classes) are

preferred in practice because they are simpler, but as we will see over and over again:

The price of simplicity is tunable parameters, and tuning is hard!

LEARNING 15

1.5 LEARNING

A significant part of decision analytics involves learning. Traditional machine learning

involves being given a dataset consisting of inputs xn and the associated response yn, and

then finding a function f(x|θ) which might be a linear model such as

f(x|θ) = θ0 + θ1φf (x) + θ2φf (x) + . . .+ θFφF (x)

where the functions φf (x) extract features from the data in x. The inputs x might be the

words in a document, a patient history, weather data, or customer data such as personal data

and recent buying history. We might also look at nonlinear models, hierarchical models,

and even a neural network. We then have to fit the model by solving the optimization

problem

min
θ

1

N

N∑
n=1

(yn − f(xn|θ))2.

This is classical batch learning.

When we are making decisions sequentially, we also learn sequentially. We might have

a patient arrive with medical history hn; we then decide on treatment xtreat,n using a

policy Xπ(Sn) (where Sn includes the patient history hn). After choosing the treatment,

we wait to observe the response, which we would index by yn+1 for the same reason that

after making decision xn we observe Wn+1. The index “n+ 1” indicates that this is new

information not contained in any variable indexed by n.

Our belief state Bn (within the state variable Sn) contains all the information we need

to update our estimate θn using the new observation yn+1. All of this updating is buried in

the transition

Sn+1 = SM (Sn, xn,Wn+1),

just as yn+1 is contained within Wn+1. The methods for doing this adaptive updating

are all covered in chapter 3 on online learning, which is the term the machine learning

community uses for learning in a sequential, versus batch, setting.

There are a number of opportunities for using online learning in sequential decision

analytics:

1) Approximating the expectation of a function EF (x,W) to be maximized.

2) Creating an approximate policy Xπ(S|θ).
3) Approximating the value of being in a state St which we typically represent by V t(St).

4) Learning any of the underlying models in a dynamic system. These include:

4a) The transition function SM (St, xt,Wt+1) which might describe how a future

activity depends on the past.

4b) The cost or contribution functions which might be unknown if we are trying to

replicate human behavior.

5) Parametric cost function approximations, where we use learning to modify the objective

function and/or constraints imbedded in the policy.

The tools for estimating these functions are covered in chapter 3, but we visit the specific

settings of these different problems throughout the rest of the book.

16 SEQUENTIAL DECISION PROBLEMS

1.6 THEMES

Our presentation features a series of themes that run through the book. This section reviews

some of these.

1.6.1 Blending learning and optimization

Our applications will typically involve some mixture of decisions that influence learning

(directly or indirectly) and decisions (perhaps the same decisions) that influence what we

learn. It helps to think of three broad classes of problems:

• Pure learning problems - In this problem class decisions only control the informa-

tion that we acquire for learning. This might arise in laboratory experimentation,

computer simulations, and even market tests.

• State-dependent problems without learning - We will occasionally encounter prob-

lems where decisions impact a physical system, but where there is no learning. Using

a navigation system to tell us which way to turn might be an example where the de-

cisions affect the physical system (planning the path of our car) but where there is

no learning.

• Hybrid problems - We will see many settings where a decision both changes the

physical system as well as influences information we acquire for learning. There

will also be systems with multiple decisions, such as physical decisions for allocating

vaccines and testing decisions that guide information collection about the spread of

disease or the efficacy of a drug.

1.6.2 Bridging machine learning to sequential decisions

Finding the best policy is the same as finding the best function that achieves the lowest

cost, highest profits or best performance. Analogs to this stochastic optimization problem

appear in statistics and machine learning, where a common problem is to use a dataset

(xn, yn), where xn = (xn
1 , . . . , x

n
K) is used to predict yn. For example, we might specify

a linear function of the form:

yn = f(xn|θ) = θ0 + θ1x
n
1 + . . .+ θnKxn

K + εn, (1.10)

where εn is a random error term that is often assumed to be normally distributed with mean

0 and some variance σ2.

We can find the parameter vector θ = (θ1, . . . , θK) by solving

min
θ

1

N

N∑
n=1

(
yn − f(xn|θ))2. (1.11)

Our problem of fitting a model to the data, then, involves two steps. The first is to choose

the function f(x|θ), which we have done by specifying the linear model in equation (1.10)

(note that this model is called “linear” because it is linear in θ). The second step involves

solving the optimization problem given in (1.11). The only difference is the specific choice

of performance metric.

Now consider how we approach sequential decision problems. Assume we are mini-

mizing costs C(Sn, xn) that depend on our decision xn as well as other information that

THEMES 17

Statistical learning Stochastic optimization

(1)
Batch estimation:

minθ
1
N

∑N
n=1(y

n − f(xn|θ))2
Sample average approximation:

minx∈X 1
N

∑N
n=1 F (x,W (ωn))

(2)
Online learning:

minθ EF (Y − f(X|θ))2
Stochastic search:

minθ EF (X,W)

(3)
Searching over functions:

minf∈F,θ∈Θf EF (Y − f(X|θ))2
Policy search:

minπ E
∑T

t=0 C(St, X
π(St))

Table 1.3 Comparison of classical problems faced in statistics (left) versus similar problems

in stochastic optimization (right).

we carry in the state variable Sn. Decisions are made with a policy xn = Xπ(Sn|θ)
parameterized by θ which is analogous to the statistical model f(xn|θ) that is used to

predict (or estimate) yn+1 before it becomes known. Our objective function would then be

min
θ

E

N−1∑
n=0

C(Sn, Xπ(Sn|θ)). (1.12)

whereSn+1 = SM (Sn, Xπ(Sn),Wn+1), and where we are given a source of the sequence

(S0,W 1, . . . ,WN).
When we compare (1.11) to (1.12), we see that both are searching over a set of functions

to minimize some metric. In statistical modeling, the metric requires a dataset (xn, yn)Nn=1,

while our decision problem just requires a contribution (or cost) function C(S, x), along

with the transition function Sn+1 = SM (Sn, xn,Wn+1) and a source of the exogenous

information process W 1, . . . ,WN . The tools for searching for θ to solve (1.11) or (1.12)

are the same, but the input requirements (a training dataset, or a model of the physical

problem) are quite different.

Our statistical model may take any of a wide range of forms, but they are all in the broad

class of analytical models that might be a lookup table, parametric or nonparametric model.

All of these classes of functions fall in just one of our four classes of policies that we refer

to as policy function approximations.

Table 1.3 provides a quick comparison of some major problem classes in statistical

learning, and corresponding problems in stochastic optimization. The first row compares

the standard batch machine learning problem to our canonical stochastic optimization

problem (for a state-independent problem). The second row compares online learning

(where we have to adapt to data as it arrives) to online decision making. We use expectations

in both cases since the goal is to make decisions now that work well in expectation after

the next observation. Finally, the third row is making clear that we are searching for

functions in both machine learning and stochastic optimization, where we use the canonical

expectation-based form of the objective function. As of this writing, we feel that the research

community has only begun to exploit these links, so we ask the reader to be on the lookout

for opportunities to help build this bridge.

18 SEQUENTIAL DECISION PROBLEMS

1.6.3 From deterministic to stochastic optimization

Our approach shows how to generalize a deterministic problem to a stochastic one. Imagine

we are solving the inventory problem above, although we are going to start with a deter-

ministic model, and we are going to use standard matrix-vector math to keep the notation

as compact as possible. Since the problem is deterministic, we need to make decisions

x0, x1, . . . , xt, . . . over time (xt may be a scalar or vector). Let Ct(xt) be our contribution

in period t, given by

Ct(xt) = ptxt

where pt is a (known) price at time t. We also require that the decisions xt satisfy a set of

constraints that we write generally as:

Atxt = Rt, (1.13)

xt ≥ 0, (1.14)

Rt+1 = Btxt + R̂t+1. (1.15)

We wish to solve

max
x0,...,xT

T∑
t=0

Ct(xt), (1.16)

subject to equations (1.13)-(1.15). This is a math program that can be solved with a number

of packages.

Now assume that we wish to make R̂t+1 a random variable, which means it is not

known until time t + 1. In addition, assume that the price pt varies randomly over time,

which means we do not learn pt+1 until time t+ 1. These changes turn the problem into a

sequential decision problem under uncertainty.

There are some simple steps to turn this deterministic optimization problem into a fully

sequential one under uncertainty. To begin, we write our contribution function as

Ct(St, xt) = ptxt

where the price pt is random information in the state St. We then write the objective

function as

max
π

E

{
T∑

t=0

Ct(St, X
π(St))|S0

}
, (1.17)

where Xπ(St) has to produce decisions that satisfy the constraints (1.13) - (1.14). Equation

(1.15) is represented by the transition function SM (St, xt,Wt+1), where Wt+1 includes

R̂t+1 and the updated price pt+1. We now have a properly modeled sequential decision

problem.

We made the transition from deterministic optimization to a stochastic optimization

formulation by making four changes:

• We replaced each occurrence of xt with the function (policy) Xπ(St).

• We made the contribution function Ct(xt) depend on the state St to capture infor-

mation (such as the price pt) that is evolving randomly over time.

THEMES 19

• We now take the expectation of the sum of the contributions since the evolution

St+1 = SM (St, xt,Wt+1) depends on the random variable Wt+1. It is helpful to

think of the expectation operator E as averaging all the possible outcomes of the

information process W1, . . . ,WT .

• We replace the maxx0,...,xT
with maxπ , which means we switch from finding the

best set of decisions, to finding the best set of policies.

Care has to be taken when converting constraints for deterministic problems to the format

we need when there is uncertainty. For example, we might be allocating resources and have

to impose a budget over time that we can write as

T∑
t=0

xt ≤ B,

where B is a budget for how much we use over all time periods. This constraint cannot

be directly used in a stochastic problem since it assumes that we “decide” the variables

x0, x1, . . . , xT all at the same time. When we have a sequential decision problem, these

decisions have to be made sequentially, reflecting the information available at each point

in time. We would have to impose budget constraints recursively, as in

xt ≤ B −Rt, (1.18)

Rt+1 = Rt + xt. (1.19)

In this case, Rt would go into our state variable, and the policy Xπ(St) would have to be

designed to reflect the constraint (1.18), while constraint (1.19) is captured by the transition

function. Each decision xt = Xπ(St) has to reflect what is known (captured by St) at the

time the decision is made.

In practice, computing the expectation is hard (typically impossible) so we resort to

methods known as Monte Carlo simulation. We introduce these methods in chapter 10.

That leaves us with the usual problem of designing the policy. For this, we return to section

1.4.

All optimization problems involve a mixture of modeling and algorithms. With integer

programming, modeling is important (especially for integer problems), but modeling has

always taken a back seat to the design of algorithms. A testament of the power of modern

algorithms is that they generally work well (for a problem class) with modest expertise in

modeling strategy.

Sequential decision problems are different.

Figure 1.3 illustrates some of the major differences between how we approach deter-

ministic and stochastic optimization problems:

Models - Deterministic models are systems of equations. Stochastic models are often

complex systems of equations, numerical simulators, or even physical systems with

unknown dynamics.

Objectives - Deterministic models minimize or maximize some well defined metric such

as cost or profit. Stochastic models require that we deal with statistical performance

measures and uncertainty operators such as risk. Many stochastic dynamic problems

20 SEQUENTIAL DECISION PROBLEMS

Figure 1.3 Deterministic vs. stochastic optimization

Deterministic Stochastic

Models System of equations Complex functions, numerical sim-

ulations, physical systems

Objective Minimize cost Performance metrics, risk measures

What we are Real-valued vectors Functions (policies)

searching for

What is hard Designing algorithms 1) Modeling

2) Designing policies

are quite complicated (think of managing supply chains, trucking companies, energy

systems, hospitals, fighting diseases) and involve multiple objectives.

What we are searching for - In deterministic optimization, we are looking for a determin-

istic scalar or vector. In stochastic optimization, we are almost always looking for

functions that we will refer to as policies.

What is hard - The challenge of deterministic optimization is designing an effective

algorithm. The hardest part of stochastic optimization, by contrast, is the modeling.

Designing and calibrating a stochastic model can be surprisingly difficult. Optimal

policies are rare, and a policy is not optimal if the model is not correct.

1.6.4 From single to multiple agents

We close the book by extending these ideas to multiagent systems. Multiagent modeling is

effective for breaking up complex systems such as supply chains (where different suppliers

operate independently), as well as large transportation networks such as major carriers in

trucking and rail. Multiagent modeling is essential in military applications, adversarial

settings such as homeland security, oligopolies that describe markets with a small number

of competitors, and a host of other applications.

Multiagent modeling is important in problems involving robots, drones and underwater

vehicles, which are often used for distributed information collection. For example, a drone

might be used to identify areas where wildfires are burning to guide planes and helicopters

dropping fire retardant. Robots can be used to sense landmines, and underwater vehicles

might be used to collect information about fish populations.

Multiagent settings almost always require learning, since there is an unavoidable com-

partmentalization of knowledge. This in turn introduces the dimension of communication

and coordination, where coordination may be through a central agent, or where we wish to

design policies that encourage agents to work together.

We use this chapter to compare our modeling strategy to the most widely used modeling

and algorithmic framework for learning systems, known as partially observable Markov

decision processes, or POMDPs. This is a mathematically sophisticated theory which does

not lead to scalable algorithms. We are going to use our multiagent framework to clarify

OUR MODELING APPROACH 21

knowledge of the transition function, and then draw on all four classes of policies to develop

practical, scalable, implementable solutions.

1.7 OUR MODELING APPROACH

The five elements in the modeling framework (section 1.3) can be used to model any
sequential decision problem, recognizing that there are a variety of objective functions that

can be used (these will be covered later). The four classes of policies in section 1.4 cover

any method that might be used to make decisions in a sequential decision problem.

The four classes of policies are central to our modeling framework in section 1.3. We

claim that any method used to make decisions for a sequential decision problem (and we

mean any sequential decision problem) will be made with one of these four classes (or a

hybrid of two or more). This represents a major change compared to the approaches used

by the communities listed in section 1.2, which are typically associated with a particular

solution approach (sometimes more than one).

We note that our approach precisely parallels that used in deterministic optimization,

where people write out an optimization model (with decision variables, constraints and an

objective) before searching for a solution. This is exactly what we are doing: we are writing

out our model without specifying the policy, and then we search for effective policies. We

call this approach:

Model first, then solve.

The generality of the four classes of policies is what allows us to separate the process

of designing the model (in section 1.3) from the solution of the model (that is, finding an

acceptable policy). We will first see this applied in the context of pure learning problems

in chapter 7. Next, chapter 8 will present a much richer set of applications, followed by

a greatly expanded version of the modeling framework given in chapter 9. Then, after

touching on modeling uncertainty in chapter 10, chapter 11 revisits the four classes of

policies in more detail. Chapters 12 - 19 describe each of the four classes of policies in

depth before transitioning to multiagent systems.

1.8 HOW TO READ THIS BOOK

The book has been carefully designed to present topics in a logical order, with a progression

from simpler to more sophisticated concepts. This section provides a guide to how to

approach this material.

1.8.1 Organization of topics

The book is organized into six parts, as follows:

Part I - Introduction and foundations - We start by providing a summary of some of

the most familiar canonical problems, followed by an introduction to approximation

strategies which we draw on throughout the book.

• Canonical problems and applications (chapter 2) - We begin by listing a series

of canonical problems that are familiar to different communities, primarily

22 SEQUENTIAL DECISION PROBLEMS

using the notation familiar to those communities. This is a chapter that can be

skimmed by readers new to the general area of stochastic optimization.

• Online learning (chapter 3) - Most books on statistical learning focus on batch

applications, where a model is fit to a static dataset. In our work, learning

is primarily sequential, known as “online learning” in the machine learning

community. Our use of online learning is purely endogenous, in that we do not

need an external dataset for training.

• Introduction to stochastic search (chapter 4) - We begin with a problem we

call the basic stochastic optimization problem which provides the foundation

for most stochastic optimization problems. In this chapter we also provide

examples of how some problems can be solved exactly. We then introduce

the idea of solving sampled models before transitioning to adaptive learning

methods, which will be the focus of the rest of the book.

Part II - State-independent problems - There is a wide range of optimization problems

where the problem itself is not changing over time (for any reason). All “state-

independent problems” are pure learning problems, since all that is changing as

a result of our decisions is our belief about the problem. These are also known

as stochastic search problems. We defer until Part III the study of more general

state-dependent problems, which includes the massive class of dynamic resource

allocation problems (where decisions change the allocation of resources), as well as

other settings where the problem itself is evolving over time (e.g. changing weather,

market prices, temperature in a room, ...).

• Derivative-based stochastic search (chapter 5) - Derivative-based algorithms

represent one of the earliest adaptive methods proposed for stochastic opti-

mization. These methods form the foundation of what is classically referred to

as (derivative-based) stochastic search, or stochastic gradient algorithms.

• Stepsize policies (chapter 6) - Sampling-based algorithms need to perform

smoothing between old and new estimates using what are commonly known as

stepsizes (or learning rates). Stepsize policies play a critical role in derivative-

based stochastic search, where the stochastic gradient determines the direction

in which we move to improve a parameter vector, but the stepsize determines

how far we move in the direction of the gradient.

• Derivative-free stochastic search (chapter 7) - We then transition to derivative-

free stochastic search, which encompasses a variety of fields with names such

as ranking and selection (for offline learning), response surface methods, and

multiarmed bandit problems (for online formulations). In this chapter that

we demonstrate all four classes of policies for deciding where to next make a

(typically noisy) observation of a function that we are trying to optimize.

Part III - State-dependent problems - Here we transition to the much richer class of

sequential problems where the problem being optimized is evolving over time, which

means the problem depends on information or parameters that are changing over time.

This means the objective function and/or constraints depend on dynamic data in the

state variable, where this dynamic data can depend on decisions being made (such as

the inventory or location of a drone), or may just evolve exogenously (such as market

prices or weather). These problems may or may not have a belief state.

HOW TO READ THIS BOOK 23

• State-dependent applications (chapter 8) - We begin with a series of applications

where the function is state dependent. State variables can arise in the objective

function (e.g. prices), or in the constraints, which is typical of problems that

involve the management of physical resources. We also illustrate problems

that include evolving beliefs, which introduces the dimension of active learning

(which we first encounter in chapter 7).

• Modeling sequential decision problems (chapter 9) - This chapter provides a

comprehensive summary of how to model general (state-dependent) sequential

decision problems. This is a substantial chapter, that starts by illustrating the

modeling framework in the context of a simple problem, before exposing the

full depth of the modeling framework for complex problems.

• Uncertainty modeling (chapter 10) - To find good policies, you need a good

model of uncertainty, which is arguably the most subtle dimension of modeling.

In this chapter we identify 12 different sources of uncertainty and discuss how

to model them.

• Designing policies (chapter 11) - Here we provide a more comprehensive

overview of the different strategies for creating policies, leading to the four

classes of policies that we first introduced in part I for learning problems. In

this chapter we also provide guidance into how to choose among the four classes

for a particular problem, and present the results of a series of experiments on

variations of an energy storage problem that show that we can make each of the

four classes of policies work best depending on the characteristics of the data.

Part IV - Policies based on policy search - These chapters describe policies in the “pol-

icy search” class that have to be tuned, either in a simulator or in the field.

• PFAs- Policy function approximations (chapter 12) - In this chapter we consider

the use of parametric functions (plus some variations) which directly map from

the state variable to a decision, without solving an imbedded optimization

problem. This is the only class which does not solve an imbedded optimization

problem. We search over a well-defined parameter space to find the policy that

produces the best performance over time, in either offline or online settings.

PFAs are well suited to problems with scalar action spaces, or low-dimensional

continuous actions.

• CFAs- Cost function approximations (chapter 13) - This strategy spans effective

policies for solving optimal learning problems (also known as multiarmed

bandit problems), to policies for high-dimensional problems that require the

use of solvers for linear, integer or nonlinear programs. This policy class has

been overlooked in the research literature, but is widely used (heuristically) in

industry.

Part V - Policies based on lookahead approximations - Policies based on lookahead ap-

proximations are the counterpart to policies derived from policy search. Here, we

design good policies by understanding the impact of a decision now on the future.

We can do this by finding (usually approximately) the value of being in a state, or by

planning over some horizon.

• VFAs- Policies based on value function approximations - This class covers a

very rich literature that span exact methods for special cases, and an extensive

24 SEQUENTIAL DECISION PROBLEMS

literature based on approximating value functions that are described by terms

such as approximate dynamic programming, adaptive (or neuro) dynamic pro-

gramming, and (initially) reinforcement learning. Given the depth and breadth

of the work in this area, we cover this class of policy in five chapters:

– Exact dynamic programming (chapter 14) - There are certain classes of

sequential decision problems that can be solved exactly. One of the best

known is characterized by discrete states and actions (known as discrete

Markov decision processes), a topic we cover in considerable depth. We

also briefly cover an important problem from the optimal controls literature

known as linear quadratic regulation, as well as some simple problems

that can be solved analytically.

– Backward approximate dynamic programming (chapter 15) - Backward

approximate dynamic programming parallels classical backward dynamic

programming (from chapter 14), but avoids the need to enumerate states or

compute expectations through Monte Carlo sampling and using machine

learning to estimate value functions approximately.

– Forward approximate dynamic programming I: The value of a policy (chap-

ter 16) - This is the first step using machine learning methods to approx-

imate the value of policy as a function of the starting state. This is the

foundation of a broad class of methods known as approximate (or adaptive)

dynamic programming, or reinforcement learning.

– Forward approximate dynamic programming II: Policy optimization (chap-

ter 17) - In this chapter we build on foundational algorithms such as Q-

learning, value iteration and policy iteration, first introduced in chapter 14,

to try to find high quality policies based on value function approximations.

– Forward approximate dynamic programming III: Convex functions (chap-

ter 18) - This chapter focuses on convex problems, with special emphasis

on stochastic linear programs with applications in dynamic resource allo-

cation. Here we exploit convexity to build high quality approximations of

value functions.

• DLAs- Policies based on direct lookahead approximations (chapter 19) - A

direct lookahead policy optimizes over a horizon, but instead of optimizing the

original model, we allow ourselves to introduce a variety of approximations

to make it more tractable. A standard approximation is to make the model

deterministic, which can work well in some applications. For those where

it does not, we revisit the entire process of solving a stochastic optimization

problem, but with considerably more emphasis on computation.

Part VI - Multiagent systems and learning - We close by showing how our framework

can be extended to handle multiagent systems, which inherently requires learning.

• Multiagent systems and learning (chapter 20) - We start by showing how to

model learning systems as two agent problems (a controlling agent observing

an environment agent), and show how this produces an alternative framework

to partially observable Markov decision processes (known as POMDPs). We

then extend to problems with multiple controlling agents, in particular the need

to model communication.

HOW TO READ THIS BOOK 25

1.8.2 How to read each chapter

This book covers a lot of material, which should not be surprising given the scope of the

topic. However, it has been written to “read short.” In every chapter, there are sections

marked by “*” - this is our indication of material that can be skipped on a first pass.

There are a few sections marked with ** which is our indication of mathematically

advanced material. For mathematically sophisticated readers (especially those with a

measure-theoretic probability background), there are many opportunities to approach this

material using the full range of this training. This book is not designed for these readers,

although we will occasionally hint at this material. We will say, however, that much of our

notational style has been designed with an understanding of how probabilists (in particular)

think of and approach sequential decision problems. This book will lay a proper foundation

for readers who want to use this as a launching pad into more theoretical research.

Readers new to the entire topic of sequential decision problems (and by this we mean

any form of dynamic programming, stochastic programming and stochastic control) should

start with the relatively simpler “starter” models. It is quite easy to learn how to model the

simpler problems. By contrast, complex problems can become quite rich, especially when

it comes to developing stochastic models. It is important to find the problems that you are

comfortable with, and then grow from there.

The book will talk at length about the four classes of policies. Of these, two are relatively

simple (PFAs and CFAs) and two are much richer (VFAs and stochastic DLAs). You should

not assume that you need to become an expert in all of them right away. Everyone makes

decisions over time in the presence of evolving information, and the vast majority of

these people have never heard of Bellman’s equation (VFA-based policies). Also, while

deterministic DLAs (think of navigation systems planning a path) are also relatively easy

to understand, stochastic DLAs are another matter. It is much more important to get an

understanding of the concept of a policy and tuning a policy (which you can do using PFAs

and CFAs) than it is to jump into the more complex policies that are popular in the academic

literature (VFAs and stochastic DLAs).

1.8.3 Organization of exercises

Each chapter is accompanied by a series of exercises at the end of the chapter, divided into

the following categories:

• Review questions - These are relatively simple questions drawn directly from the

chapter, without any need for creative problem solving.

• Modeling questions - These will be questions that describe an application which you

then have to put into the modeling framework given above.

• Computational exercises - These are exercises that require that you perform specific

calculations related to methods described in the chapter.

• Theory questions - From time to time we will pose classical theory questions. Most

texts on stochastic optimization emphasize these questions. This book emphasizes

modeling and computation, so theory questions play a relatively minor role.

• Problem solving questions - These questions will pose a setting and require that you

go through modeling and policy design.

26 SEQUENTIAL DECISION PROBLEMS

• Readings from Sequential Decision Analytics and Modeling - This is an online book

that uses a teach by example style. Each chapter (except for chapters 1 and 7)

illustrates how to model and solve a specific decision problem. These have been

designed to bring out the features of different classes of policies. There are Python

modules that go with most of these exercises that provide an opportunity to do

computational work. These exercises will generally require that the reader use the

Python module as a start, but where additional programming is required.

• Diary problem - This is a single problem of your choosing that you will use as a

context to answer a question at the end of each chapter. It is like “keeping a diary”

since you will accumulate answers that draw from the material throughout the book,

but using the setting of a problem that is relevant to you.

Not all of these topics will be included in the exercises for each chapter.

1.9 BIBLIOGRAPHIC NOTES

Section 1.2 - We defer to chapter 2 for a discussion of the different communities of

stochastic optimization, and review the literature there. It cannot be emphasized

enough how much our universal framework draws on all these communities.

Section 1.3 - We first articulated the five elements of the universal framework in Powell

(2011) (Chapter 5, which has always been available at http://adp.princeton.

edu), which built on the initial model from the first edition which had six elements

(Powell (2007)). Our framework draws heavily from the framework that has long

been used in optimal control (there are many books, but see Lewis & Vrabie (2012)

which is a popular reference in this field), but there are some differences. Our

framework is compared to the optimal control framework and that used in Markov

decision processes (and now reinforcement learning) in Powell (2021). Some key

differences is that the optimal control framework, which is originally based on

deterministic control, often optimizes over the controls u0, u1, . . . , uT , even when

the problem is stochastic. Our notation makes it explicit that if the problem is

stochastic, ut is a function which we call a policy (the controls people will call it a

control law), and we always optimizes over policies π.

Section 1.4 - Powell (2011) appears to be the first published reference to “four classes of

policies” for solving dynamic programs, but it did not list the four classes used here

(one class was myopic policies, and cost function approximations were overlooked).

The first reference to list the four classes of policies used here was the tutorial Powell

(2014) Clearing the Jungle of Stochastic Optimization, without recognizing that the

four classes can (and should) be divided into two major strategies. The first paper

to identify the two strategies of “policy search” and “lookahead policies” was given

in the tutorial Powell (2016). All these ideas came together in Powell (2019) which

combined the four classes of policies with the identification of state-independent

and state-dependent problem classes, along with different types of objectives such as

cumulative and final reward. This paper laid the foundation for this book.

EXERCISES 27

EXERCISES

Review questions

1.1 What are the three classes of state variables?

1.2 What are the five elements of a sequential decision problem?

1.3 What is meant by “model first, then solve”?

1.4 What is the price of simplicity? Give an example, either from the chapter or a

problem of your own choosing.

1.5 What are the two strategies for designing policies for sequential decision problems?

Briefly describe the principles behind each one.

1.6 What are the four classes of policies? Briefly describe each one.

Modeling questions

1.7 Pick three examples of sequential decision problems. Provide a brief narrative

describing the context, and list a) the decision being made, b) information that arrives after

the decision is made that is likely to be relevant to the decision, and c) at least one metric

that can be used to evaluate how well the decision has performed.

1.8 For each of the three types of state variables, do the following:

a) Give three examples of physical state variables.

b) Give three examples of information about parameters or quantities that we know

perfectly, but which would not be considered a physical state variable.

c) Give three examples of parameters or quantities that we would not know perfectly,

but could approximate with a probability distribution.

1.9 Section 1.3 shows how to model a simple inventory problem. Repeat this model

assuming that we sell our product at a price pt that changes from time period to time period

according to the equation

pt+1 = pt + εt+1,

where εt+1 is a normally distributed random variable with mean 0 and variance σ2.

Problem solving questions

1.10 Consider an asset selling problem where you need to decide when to sell an asset.

Let pt be the price of the asset if it is sold at time t, and assume that you model the evolution

of the price of the asset using

pt+1 = pt + θ(pt − 60) + εt+1,

28 SEQUENTIAL DECISION PROBLEMS

We assume that the noise terms εt, t = 1, 2, . . . are independent and identically distributed

over time, where εt ∼ N(0, σ2
ε). Let

Rt =

{
1 if we are still holding the asset at time t,
0 otherwise.

Further let

xt =

{
1 if we sell the asset at time t,
0 Otherwise.

Of course, we can only sell the asset if we are still holding it. We now need a rule for

deciding if we should sell the asset. We propose

Xπ(St|ρ) =
{

1 If pt ≥ p̄t + ρ and Rt = 1,

0 otherwise.

where

St = the information we have available to make a decision (we have to

design this),

,

p̄t = .9p̄t−1 + .1pt.

a) What are the elements of the state variable St for this problem?

b) What is the uncertainty?

c) Imagine running a simulation in a spreadsheet where you are given a sample real-

ization of the noise terms over T time periods as (ε̂)Tt=1 = (ε̂1, ε̂2, . . . , ε̂T). Note

that we treat ε̂t as a number, such as ε̂t = 1.67 as opposed to εt which is a normally

distributed random variable. Write an expression for computing the value of the

policy Xπ(St|ρ) given the sequence (ε̂)Tt=1. Given this sequence, we could evaluate

different values of ρ, say ρ = 0.75, 2.35 or 3.15 to see which performs the best.

d) In reality, we are not going to be given the sequence (ε̂)Tt=1. Assume that T = 20
time periods, and that

σ2
ε = 42,

p0 = $65,

θ = 0.1.

Write out the value of the policy as an expectation (see section 1.3).

e) Develop a spreadsheet to create 10 sample paths of the sequence (εt), t = 1, . . . , 20)
using the parameters above. You can generate a random observation of εt using

the function NORM.INV(RAND(),0,σ). Let the performance of our decision rule

Xπ(St|ρ) be given by the price that it decides to sell (if it decides to sell), averaged

over all 10 sample paths. Now test ρ = 1, 2, 3, 4, ..., 10 and find the value of ρ that

seems to work the best.

f) Repeat (e), but this time we are going to solve the problem

max
x0,...,xT

E

T∑
t=0

ptxt.

We do this by picking the time t when we are going to sell (that is, when xt = 1)
before seeing any information. Evaluate the solutions x2 = 1, x4 = 1, . . . , x20 = 1.

Which is best? How does its performance compare to the performance of Xπ(St|ρ)
for the best value of ρ?

g) Finally, repeat (f), but now you get to see all the prices and then pick the best one.

This is known as a posterior bound because it gets to see all the information in the

future to make a decision now. How do the solutions in parts (e) and (f) compare to

the posterior bound? (There is an entire field of stochastic optimization that uses this

strategy as an approximation.)

h) Classify the policies in (e), (f) and (g) (yes, (g) is a class of policy) according to the

classification described in section 1.5 of the text.

1.11 The inventory problem describes a policy where an order is made if the inventory

falls below θmin, where we order up to θmax. Which of the four classes does this represent?

Write out the objective function we would have to use to find the best value of θ.

Sequential decision analytics and modeling

These exercises are drawn from the online book Sequential Decision Analytics and Model-
ing available at http://tinyurl.com/sdaexamplesprint.

1.12 Read chapter 2 on the asset selling problem (sections 2.1 - 2.4).

a) Which of the four classes of policies introduced in section 1.4 are used for this

problem?

b) What tunable parameters are used in the policy?

c) Describe the process you might use for tuning the policy using historical data.

Diary problem

The diary problem is a single problem you chose (see chapter 1 for guidelines). An-

swer the following for your diary problem.

1.13 For this chapter, you need to pick a problem context. The ideal problem is one

with some richness (e.g. different types of decisions and sources of uncertainty), but the

best problem is one that you are familiar with, or have a special interest in. To bring out

the richness of our modeling and algorithmic framework, it would help if your sequential

29

30 BIBLIOGRAPHY

decision problem involved learning in some form. For now, prepare a 1-2 paragraph

summary of the context. You will be providing additional details in later chapters.

Bibliography

Lewis, F. L. & Vrabie, D. (2012), Design Optimal Adaptive Controllers, 3 edn, John Wiley

& Sons, Hoboken, NJ.

Powell, W. B. (2007), ‘Approximate Dynamic Programming: Solving the curses of dimen-

sionality’.

Powell, W. B. (2011), Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, 2 edn, John Wiley & Sons.

Powell, W. B. (2014), ‘Clearing the Jungle of Stochastic Optimization’, Informs TutORials
in Operations Research 2014.

Powell, W. B. (2016), A Unified Framework for Optimization under Uncertainty, in ‘In-

forms TutORials in Operations Research’, pp. 45–83.

Powell, W. B. (2019), ‘A unified framework for stochastic optimization’, European Journal
of Operational Research 275(3), 795–821.

Powell, W. B. (2021), ‘From reinforcement learning to optimal control: A unified frame-

work for sequential decisions’, Handbook on Reinforcement Learning and Optimal
Control, Studies in Systems, Decision and Control pp. 29–74.

