
This article was downloaded by: [140.180.252.105] On: 12 April 2017, At: 10:53
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Parallel Nonstationary Direct Policy Search for Risk-Averse
Stochastic Optimization
Somayeh Moazeni, Warren B. Powell, Boris Defourny, Belgacem Bouzaiene-Ayari

To cite this article:
Somayeh Moazeni, Warren B. Powell, Boris Defourny, Belgacem Bouzaiene-Ayari (2017) Parallel Nonstationary Direct Policy
Search for Risk-Averse Stochastic Optimization. INFORMS Journal on Computing 29(2):332-349. http://dx.doi.org/10.1287/
ijoc.2016.0733

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2017, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/ijoc.2016.0733
http://dx.doi.org/10.1287/ijoc.2016.0733
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMS JOURNAL ON COMPUTING
Vol. 29, No. 2, Spring 2017, pp. 332–349

http://pubsonline.informs.org/journal/ijoc/ ISSN 1091-9856 (print), ISSN 1526-5528 (online)

Parallel Nonstationary Direct Policy Search for
Risk-Averse Stochastic Optimization
Somayeh Moazeni,a Warren B. Powell,b Boris Defourny,c Belgacem Bouzaiene-Ayarib
a
School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, New Jersey 07030;

b
Department of Operations Research and

Financial Engineering, Princeton University, Princeton, New Jersey 08544;
c
Department of Industrial and Systems Engineering,

Lehigh University, Bethlehem, Pennsylvania 18015

Contact: smoazeni@stevens.edu (SM); powell@princeton.edu (WBP); defourny@lehigh.edu (BD); belgacem@princeton.edu (BB-A)

Received: March 16, 2015
Revised: January 11, 2016; July 1, 2016;
September 11, 2016
Accepted: September 13, 2016
Published Online: April 12, 2017

http://dx:doi.org/10.1287/ijoc.2016.0733

Copyright: © 2017 INFORMS

Abstract. This paper presents an algorithmic strategy to nonstationary policy search for

finite-horizon, discrete-time Markovian decision problems with large state spaces, con-

strained action sets, and a risk-sensitive optimality criterion. The methodology relies on

modeling time-variant policy parameters by a nonparametric response surface model

for an indirect parametrized policy motivated by Bellman’s equation. The policy struc-

ture is heuristic when the optimization of the risk-sensitive criterion does not admit a

dynamic programming reformulation. Through the interpolating approximation, the level

of nonstationarity of the policy, and consequently, the size of the resulting search prob-

lem can be adjusted. The computational tractability and the generality of the approach

follow from a nested parallel implementation of derivative-free optimization in conjunc-

tion with Monte Carlo simulation. We demonstrate the efficiency of the approach on an

optimal energy storage charging problem, and illustrate the effect of the risk functional

on the improvement achieved by allowing a higher complexity in time variation for the

policy.

History: Accepted by Alice Smith, Area Editor for Heuristic Search.

Funding: This research was supported, in part, by a grant from the Lawrence Livermore National

Laboratory and a postdoctoral fellowship fromNatural Sciences and Engineering Research Council

of Canada [Grant NSERC-PDF-438978-2013].

Supplemental Material: The online supplement is available at https://doi.org/10.1287/ĳoc.2016.0733.

Keywords: dynamic optimization • risk-averse stochastic optimization • parallel optimization • derivative-free optimization • direct policy search •
learning • energy storage

1. Introduction
This paper addresses computational challenges aris-

ing in the direct policy search approach to approx-

imate dynamic programming (ADP) for problems

where the optimal policy is known to be nonstationary.

ADP allows the application of dynamic programming

to large-scale Markov decision processes (MDPs) by

using approximations and simulation (Bertsekas and

Tsitsiklis 1996, Sutton and Barto 1998, Powell 2011,

Bertsekas 2012).

Direct policy search broadly refers to methods in

ADP where the policy is represented by a function

approximator, including some tuning parameters to

be optimized. Direct policy search methods differ by

the approximation architecture and by the stochastic

optimization method used to tune the policy param-

eters. For nonstationary policies, which can change

at each decision stage, the dimension of this embed-

ded stochastic search problem grows linearly with

the time horizon (see, e.g., Powell 2011). The high

dimensionality of the parameter space complicates

the optimization of the approximate policy tremen-

dously. In addition, depending on the policy function

approximation architecture, the stochastic search prob-

lem typically becomes a nonconvex or semi-infinite

optimization problem.

To address these challenges, we study direct pol-

icy search with a nonstationary policy that minimizes

a parametric cost function approximation. We let the

time-dependent parameters vary according to an inter-

polating response surface model. More precisely, we

assume that the policy is parameterized by a relatively

low dimensional vector θ at each point in time t. Each
element θi(t) can then be modeled using an interpo-

lating response surface model. In our work, we use

spline functions, which have been demonstrated to

be a versatile approximation architecture for solving

dynamic programs (Johnson et al. 1993, Chen et al.

1999). The nonstationarity of the policy can then be

adjusted through the number of interpolating knots

over the time horizon. This approximation consider-

ably reduces the size of the search problem and enables

the model user to actively control the dimensional-

ity and to balance the trade-off between accuracy and

computational cost.

332

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://pubsonline.informs.org/journal/ijoc/
mailto:smoazeni@stevens.edu
mailto:powell@princeton.edu
mailto:defourny@lehigh.edu
mailto:belgacem@princeton.edu
https://doi.org/10.1287/ijoc.2016.0733

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 333

The cost function approximation-based policy,

which we describe in detail later on, readily ensures

that for a given state and set of tuning parameters,

the computed action is feasible. This feature makes the

direct policy search framework amenable to handling

a large set of constraints on the actions. In addition,

computing optimal feasible actions associated with a

set of states and policy parameters can be parallelized.

We use the fact that any orderpreserving transfor-

mation of the value function can yield optimal deci-

sions. Hence, a near-optimal policy does not necessar-

ily rely on a near-optimal representation of the value

function. Furthermore, when an appropriate archi-

tecture is applied in the policy function approxima-

tor, this policy parametrization is compatible with an

exact dynamic programming solution, assuming that

the minimization of the optimality criterion admits a

dynamic programming reformulation. Otherwise, the

dynamic programming-inspired policy structure could

be viewed as a heuristic to minimize a general risk-

sensitive objective.

The policy parameters are often tuned to optimize a

real-valued function of the costs. Examples of criteria

for MDPs include the expected value or a given risk

measure of the total cumulated cost over the planning

horizon. In this paper, we do not make any assump-

tion on the structure (e.g., separability, convexity, or

differentiability) of this optimality criterion. In addi-

tion, due to the minimization operator in the policy

function approximation, the search for a set of near-

optimal tuning parameters becomes less structured

and has a nonconvex feasible space, even when state

spaces are convex and compact. To keep the general-

ity of the approach to handle any optimality criterion,

we resort to derivative-free optimization approaches,

which admit a parallel implementation, see, e.g., Bert-

sekas and Tsitsiklis (1989), Dixon and Jha (1993), Golub

and Ortega (1993), Yamakawa and Fukushima (1996),

Censor and Zenios (1998), and Rios and Sahinidis

(2013). In this paper, we adopt a multistart pattern

search framework (Audet and Dennis 2002) combined

with Monte Carlo simulation.

The use of derivative-free search on the interpolat-

ing knots of the parameter vector of the cost func-

tion approximation enables us to massively parallelize

the direct policy search and take advantage of high

performance computing. Our parallel implementation

includes three layers of parallelization; namely, for

the starting points, optimization iterations, and the

objective function evaluations. The three levels of par-

allelization significantly improve the efficiency and

speed of the algorithm implemented on a multiclus-

ter supercomputer, as demonstrated by the numeri-

cal experiments reported in this paper. Our parallel

programming model is a hybrid model of message-

passing model (distributed parallel computing) and

multithreading. The multithreaded component of the

program allows us to adopt the framework and get

some speed up on computer systems with multicore

processors.

We investigate the efficiency and tractability of the

approach by using an example from energy storage

operation management. We study optimal charging

policies for a storage device in the presence of a non-

stationary stochastic electricity price process, nonsta-

tionary stochastic load evolution, and an intermittent

renewable energy resource. The goal is to find an opti-

mal storage charging policy over a finite-time horizon,

which minimizes some risk functional of the total sys-

tem operations cost, while fully serving the electricity

load.

We first formulated the problemwith a stylized stor-

age model, in which the device is fast ramping and

fully efficient. As a contribution of independent inter-

est, we provide a solution for the exact risk-neutral

stochastic dynamic programming policy and its corre-

sponding optimal value function. We use this closed-

form solution as a reference solution to benchmark

our approach. In particular, we show that by using

the proposed direct policy search strategy, the policy

converges to an exact optimal solution to the dynamic

program. Next, we investigate the proposed compu-

tational stochastic optimization framework to mini-

mize the value at visk (VaR), conditional value at risk

(CVaR), and expectation of the cost. TheVaR is awidely

used and standard risk measure in various fields, such

as finance (Duffie and Pan 1997) or energy (Burger et al

2008), but it is a nonconvex, nonsmooth risk measure

(Rockafellar and Uryasev 2000). We observe that the

impact of the nonstationarity assumption depends on

the risk functional. Increasing the level of nonstation-

arity can significantly improve the performance of the

computed charging policy under the VaR.

The proposed approach is implemented on theHype-
rion cluster from the Lawrence Livermore National

Laboratory and the Tower cluster of CASTLE Labs at

PrincetonUniversity. The impact of usingmultiple pro-

cessors on the runtime of the developed methodology

is reported.

The main research contribution of our paper is

to address computational challenges in direct policy

search when the policy is parameterized indirectly

using a minimization operator, the policy parameters

are time dependent, the state space is high dimen-

sional, the actions are constrained, and a risk measure

is used in the objective. In our direct policy search

approach, there is no attempt to estimate the value

function.

The presentation is organized as follows. We review

the relevant literature in Section 2. In Section 3, we

present the basic components of MDPs and formalize

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
334 INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS

the concept of level of nonstationarity for nonstation-

ary direct policy search. The proposed cost function

approximation policy and the proposed nested hybrid

massively parallel implementation of the approach are

also described in this section. The motivating appli-

cation in the context of energy storage operations

management is discussed in Section 4. The results of

the numerical study on computational tractability and

algorithmic performance are reported in Section 5. We

conclude the paper in Section 6.

2. Literature Review
Our work is related to several areas of research, as we

now describe. Direct policy search methods have been

the subject of several studies in the machine learn-

ing and operations research communities (Busoniu

et al. 2010, Giuliani et al. 2015). When the gradient of

the policy function approximation with respect to the

policy parameters can be estimated, a class of tech-

niques, called policy-gradient methods, performs gra-

dient descent to find local optima in the parameter

space. For applications of policy-gradient methods in

direct policy search, see, e.g., Sutton et al. (2000), Baxter

and Bartlett (2001), Kakade (2002), Peters et al. (2005),

Kober and Peters (2009), Silver et al. (2014), and the ref-

erences therein. Policy-gradient methods assume that

the policy is differentiable in its parameters. In addi-

tion, they are often very slow and require a large num-

ber of iterations to converge, when the dimension of

parameter space increases, which is the case in non-

stationary policy search. Ng and Jordan (2000) apply

exhaustive enumeration to find the best policy for a

finite set of actions. For a sigmoidal policy parame-

terization, they adopt a gradient descent to optimize

over the policy parameters. Strens and Moore (2003)

investigate the use of paired statistical tests for com-

paring policies, aiming to find a globally optimal pol-

icy, without estimating a gradient. They illustrate the

approach when the parameterized policy is given by a

thresholded polynomial in the state with two parame-

ters. Mannor et al. (2003) use the cross entropy method

for optimization in the policy space, assuming that

the policy is parameterized by a small number of

parameters, e.g., a threshold policy. Kormushev and

Caldwell (2012) propose an algorithmbased on particle

filtering to perform global search in policy parameter

space. They validate the technique on one- and two-

dimensional problems. Actor-only methods in actor-

critic reinforcement learning, surveyed in Grondman

et al. (2012), also work with a parameterized family of

policies and optimize the cost directly over the policy

parameter space. This class of methods uses an indirect

parametrization that has similarities with the policy

representation studied in the present paper; however,

the present work differs in that the updates in actor-

critic methods are generally performed based on a

policy-gradient formula, and that the policy optimizes

a state-action value function approximation. The liter-

ature on computational aspects or optimality of para-

metric policies has been mainly concerned with affine

policies, see, e.g., Bertsimas et al. (2010), Kuhn et al.

(2011), Bertsimas and Goyal (2012), and Moazeni et al.

(2016). For stationary policy search with a small num-

ber of parameters, Scott et al. (2014) use the knowledge

gradient for continuous parameters policy (Scott et al.

2011) to find policy parameters.

Variations of the optimal storage charging manage-

ment problem have been studied in the literature. The

sizing and management of a hydro pumping storage

unit in an island power system with renewable pen-

etration are studied in Brown et al. (2008). The objec-

tive is to minimize the expected operation and annu-

alized installation costs over all scenarios of wind,

hydropower production, and load. Gonzalez et al.

(2008) discuss the maximization of the profit of a

wind farm and a hydro pumped storage unit owner

over a finite horizon, in compliance with commitments

in the market. The problem is formulated as a two-

stage stochastic programming problem. The problem

of maximizing the total discounted revenue of a stor-

age facility owner, assuming an exogenous stochas-

tic process for the electricity price, is investigated in

Carmona and Ludkovski (2010), and a simulation-

based numerical method is proposed. Lai et al. (2010)

study the problem of the real option valuation for nat-

ural gas storage, in the presence of capacity constraints

and uncertainty in the natural gas price dynamics.

They develop a tractable ADP approach, coupled with

Monte Carlo simulation, to compute bounds on the

storage value. An optimal energy commitment policy

for the owner of a wind farm and storage resources

to maximize the revenue in an infinite-time horizon

is studied in Kim and Powell (2011), where electric-

ity price and wind power supply evolve as stochastic

processes. Harsha and Dahleh (2015) consider a setting

that involves conventional generation with a real-time

price, renewable generation with a zero marginal cost,

and energy storage. The goal is to minimize the cost of

generation and investment in storage, while fully serv-

ing the demand. The authors formulate the problem as

a discrete-time stochastic dynamic programming prob-

lem over an infinite horizon and establish the existence

of an optimal stationary policy. Zhou et al. (2014) con-

sider the colocation of wind generation and electricity

storage facilities with uncertain wind and stochastic

prices, limited transmission capacity, and the option of

buying power from the market. They model the wind-

storage management problem as a finite-horizon MDP

and establish some structural results. Moazeni et al.

(2015) discuss the importance of downside risk consid-

erations in managing energy storage systems exposed

to price risk, due to the fat-tailed distribution of energy

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 335

prices. Scott et al. (2014) show that, in the context of

a storage problem, direct policy search, even for sta-

tionary policies, can outperform several approximate

policy iteration algorithms. In this paper, we adopt a

model similar to the ones considered in Moazeni et al.

(2015) and Scott et al. (2014).

3. Nonstationary Direct Policy Search and
Risk Aversion

We consider a discrete-time dynamic optimization

problem described by the following components:

• States: The state St , valued in a subset ³t of a state-

space ³.
• Decisions: The vector-valued decision xt , to be in

the feasible set ¸t(St). The notation stresses that ¸t(St)
can depend on the state St and time t.

• Exogenous information: The random vector Wt+1
,

assumed to be independent of St and xt . The distribu-

tion of Wt+1
depends on the period index t.

• Transition function: The next state is described by

the model St+1
� SM

t+1
(St , xt ,Wt+1

). The time index in

SM
t+1

stresses that the transition function is nonsta-

tionary.

• Cost function: The cost function is described by

Ct(St , xt). The time index in Ct stresses that the cost

function is nonstationary.

The dynamic optimization problem under consider-

ation is written as

minimize Jπ(s) def� ρ
(T−1∑

t�0

Ct(St ,X
π
t (St))

���� S
0
� s

)
. (1)

The optimization is over a class Π of nonstationary

policies π � (π
0
, . . . , πT−1

). The policy π is said to be

stationary if πt is independent of t. We write Xπ
t (St) to

indicate that the decision Xt is a function of the state St
determined by the policy π at time step t. The optimal

value of problem (1) is denoted by J(s) def� minπ∈Π Jπ(s).
The objective function is expressed with the risk

functional ρ, which maps the random cost

Bπ(S
0
) def�

T−1∑
t�0

Ct(St ,X
π
t (St)) (2)

to a real number. We write Bπ
and Jπ to stress that

the distribution of the random return depends on the

policy π.
In the literature on MDPs, often the expectation Ɛ

plays the role of the risk functional ρ. Alternative

examples of risk functionals include the variance,

the semivariance, the VaR, and the CVaR. Positive

weighted sums of risk functionals also define risk func-

tionals. It is well known that the MDPs with certain

risk functionals, such as the VaR, is not amenable

to stochastic dynamic programming techniques and

an appropriate recursive optimality equation using

value functions cannot be established, as it can be

done with the expectation, see, e.g., Shapiro (2012)

or the examples given in Defourny et al. (2008) and

Rudloff et al. (2014).

In the present work, we therefore focus on direct

policy search methods, which seek to find a best pol-

icy within a class of parameterized policies, by directly

optimizing the performance measure ρ over the time-

varying policy parameters simultaneously. To deal

with the computational challenges posed by the large

number of policy parameters and constraints on the

decisions in direct policy search, we consider a class of

policies, which captures the effect of the risk-adjusted

“value” of the distribution of the next state, condi-

tioned on the current state, by an approximation archi-

tecture where the time-varying policy parameters fol-

low an interpolating response surface model over time.

These steps are explained in the following sections.

3.1. Cost Function Approximation Policy
We carry out policy search over a class of nonstationary

deterministic policies given by

Xπ
t (st | θ) ∈ argmin

xt∈¸t (st)
{Ct(st , xt)+�θt

(SM
t+1
(st , xt ,Wt+1

))},

t �0, . . . ,T −1, (3)

where �θt
gives a risk-adjusted value of the distribu-

tion of the next state St+1
� SM

t+1
(st , xt ,Wt+1

) given the

current state st and decision xt . The risk-adjusted value

depends on the parameter vector θt . When the risk

functional is the expectation,�θt
(SM

t (st , xt ,Wt+1
)) plays

the role of the expected value function at the next state.

We refer to

Kθt
(st , xt)

def

��θt
(SM

t+1
(st , xt ,Wt+1

)) (4)

as the correction function.
When Kθt

(st , xt) ≡ 0 is chosen in (3) for t � 0, . . . ,
T − 1, Xπ

t (st | θ) is reduced to the myopic policy, i.e.,

the decision maker has simply chosen to ignore the

fact that decisions at every time step may impact the

future system state and total cost. Therefore the func-

tion Kθt
(st , xt) can be interpreted as a correction to

adjust the myopic policy to capture the effect of future

costs.

We assume that theminimizations in (3) are attained.

This assumption holds, for example, when ¸t(st) is a

compact set and Ct(st , xt) +Kθt
(st , xt) is a continuous

function of x.
A natural choice to represent the correction func-

tion Kθt
is a linear approximation architecture. This

model is described by a linear combination of basis

functions taken from a finite collection {φk(s , x)}Kk�1
of

functions, assumed to be specified beforehand and eas-

ily computable,

Kθt
(st , xt)�

K∑
k�1

θt , k φk(st , xt). (5)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
336 INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS

It turns out that only basis functions with ∇xφk(st , xt)
, 0 may influence the computation of Xπ

t (st | θ). This
is because (i) minimizers are insensitive to adding

a constant and (ii) shifting the correction function rel-

ative to different states or times has no impact on

other correction functions since correction functions

are not computed recursively. We note that the lin-

ear approximation architecture is not the only choice.

The optimization approach developed in this paper can

accommodate other types of approximation, as long

as the minimizations in (3) remain computationally

tractable.

The cost function approximation in Equation (3)

using the linear approximation architecture (5) is then

fully defined by the K × (T − 1) parameters θt , k , which

will govern (along with the initial choice of basis func-

tions) the performance of the policy. We assume that

θ def

� (θ
0
, . . . , θT−1

) can be valued in a compact set Θ
def

�

Θ
0
× · · · ×ΘT−1

, and describe the optimization as

min

θ
0
,..., θT−1

ρ

(T−1∑
t�0

Ct(St ,X
π
t (St | θ))

���� S
0
� s

)
s.t. θt ∈Θt , t � 0, . . . ,T − 1.

(6)

The optimal value of problem (6) is denoted by
ˆJ(s) def�

minπ∈Hπ Jπ(s), where Hπ
denotes the space of policies

expressed as in (3). A sufficient condition for
ˆJ(s) �

J(s) is Hπ
�Π. Recall that J(s) is the optimal value of

problem (1). Problem (6), along with the parametric

cost function approximation in Equation (3), aims to

heuristically solve problem (1).

As an interesting feature of the policy parametriza-

tion in (3), the argmin operator takes into account the

constraints defining admissible decisions, and thereby

ensures that the computed decision is feasible. There-

fore, problem (6) only includes constraints in Θt , e.g.,

only box constraints.

Alternative constraints on policy parameters may

also be included in problem (6). For instance, we can

impose that the policy be stationary up to the time step

T − 2 and be myopic at T − 1 through the additional

constraints θ
0
� · · · � θT−2

and θT−1
� 0.

Appropriate assumptions on the correction func-

tionKθt
and the parameter setsΘt ensure that an exact

stochastic dynamic programming policy is included as

a feasible policy in problem (6). This is more precisely

stated in Proposition 1 below. In this proposition, we

do not assume a linear approximation architecture and

a general correction function Kθt
is considered.

Supposemomentarily that the riskmeasure ρ admits

the dynamic programming equations

Qt(s , x)
def

�Ct(s , x)+ρ(Vt+1
(SM

t+1
(st , x ,Wt+1

)) | st � s), (7)

Vt(s)� min

x∈¸t (s)
Qt(s , x), t �T −1, . . . ,0, (8)

where VT(ST) ≡ 0. This happens for example when ρ
is the expectation, or the maximum over the possible

realizations of the cost to go, see, e.g., Bertsekas (2005),

Riedel (2004), Shapiro (2012). As a result, the notion of

exact stochastic dynamic programing solution will be

well-defined.

Proposition 1. Suppose the risk functional ρ admits dy-
namic programming Equations (7) and (8). Let the feasible
sets be defined by linear inequalities,

¸t(st)� {x ∈ �n
: A(st)x ≤ b(st)}, (9)

for some state-dependent matrix A(st) and vector b(st). Sup-
pose that for every s ∈ ³t , the functions Qt(s , x) are contin-
uously differentiable and convex in x on ¸t(s). In addition,
assume that there exists a set of parameters { ¯θ

0
, . . . , ¯θT−1

}
in Θ

0
× · · · ×ΘT−1

such that
• the functions Ct(s , x)+K ¯θt

(s , x) are continuously

differentiable in x, for each s ∈ ³t , and

• the following equality on the gradient of the Q-

function (7) and the gradient of the correction function

holds at x̄t(s)
def

� Xπ
t (s | ¯θt):

∇x(Ct(s , x̄t(s))+K ¯θt
(s , x̄t(s)))�∇x Qt(s , x̄t(s)),

∀ s ∈³t . (10)

Then, {x̄t}T−1

t�0
is an exact optimal stochastic dynamic pro-

gramming solution.

A proof for Proposition 1 is provided in Appendix A.

Proposition 1 establishes a sufficient condition for

the correction term to ensure that an optimal policy is

included in the search problem. Admittedly, this con-

dition might not be easy to verify since we do not have

the optimal Q-function, but the existence of this suffi-

cient condition implies that an appropriate correction

term does not need to be equal to the value function.

The class of policies in (3) for the expectation is

referred to as cost function approximation in Powell

(2011). Other popular classes of policies in ADP are

policies based on value function approximations and

policy function approximations. In the former class,

the value function in Bellman’s equation is approxi-

mated using a linear model with parameters attempt-

ing to approximate the value of being in a state.

In contrast to this class of policies, the correction

term in the cost function approximation policies is

not intended to approximate the value function and

is being tuned only to produce a better policy. Pol-

icy function approximation-based policies are analytic

functions, mapping states to actions, without using

an embedded optimization problem. Parametric affine

functions or polynomials belong to this class of poli-

cies. While parametric analytic functions can be used

in the framework of direct policy search, when the fea-

sible set ¸t(st) includes a large number of inequality

constraints on decisions Xπ
t (st), direct policy search for

policy function approximation policies poses limita-

tions, see, e.g., Moazeni et al. (2016).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 337

In the rest of this section, we investigate the closeness

to optimality of the policy obtained by the direct pol-

icy search, where the policy function approximation is

expressed as in (3). Similar to the existing error bounds

for the ADP solution (see, e.g., Bertsekas and Tsitsiklis

1996, Munos 2003, Yu and Bertsekas 2010), we consider

a stationary MDP evolving over infinite-time horizon

on a state-space ³, with the action space ¸ and the cost

function C(st , xt) to minimize an expected discounted

cost objective. Under this assumption, the optimal pol-

icy corresponding to the fixed point of the Bellman

operator is stationary; whence θ is time invariant. For

an infinite-time horizon MDP, the direct policy search

solves the following problem:

min

θ∈Θ
Ɛ

(∞∑
t�0

γt C(St ,X
π(St | θ))

���� S
0
� s

)
. (11)

Here, γ < 1 is a discount factor, and Xπ(St | θ) is defined
as in (3).

Supposewe are given a finite collection of basis func-

tions {φk : ³→ �}Kk�1
to specify the correction func-

tion behind the expectation over the next state. Let the

hypothesis space of the policies in (3) be described by

Hπ
�

{
πθ: ³→¸ such that πθ(s)
∈ arg min

x∈¸(s)
{C(s , x)+ γƐS′ | s , x(θ>Φ(S′))},

θ ∈Θ
}
. (12)

Here, Φ(S′) is the column vector with the basis func-

tions φk evaluated at the next state S′. Denote the

hypothesis space for the value functions, induced by

the basis functionsΦ and the parameter spaceΘ byHV
:

HV def

� {V : ³→� such that V � θ>Φ, θ ∈Θ}. (13)

LetΠξ denote a projection operator, that maps an arbi-

trary function f : ³→ � to the closest element of the

hypothesis space HV
, according to certain weighted

norm ‖ · ‖ξ . Therefore

Πξ f � arg min

v∈HV

‖v − f ‖ξ � θ>ξ, fΦ. (14)

If ξ is the steady-state probability vector of the Markov

chain under the policy being evaluated, then ΠξT is

a contraction mapping and has a fixed point denoted

by
¯V (see Proposition 6.3.1 of Bertsekas 2012), i.e.,

¯V �

ΠξT ¯V . Here, T is the Bellman operator, i.e.,

(TV)(s) def� min

x∈¸(s)
C(s , x)+ γƐS′ | x ,s[V(S′)].

Projection approaches and linear approximation archi-

tectures are used, for instance, in approximate pol-

icy iteration, see, e.g., Bertsekas and Tsitsiklis (1996),

Powell (2011), Bertsekas (2012).

The following proposition provides an error bound

on the expected value of the policy obtained using

direct policy search (11). Note that the value of the pol-

icy is a notion well distinct from the approximate value

function that this policy could use to produce deci-

sions at each state it visits. Let θξ, ¯V
def

� arg minθ ‖T ¯V −
θ>Φ‖ξ . In the following Proposition, Vπθξ, ¯V denotes

the true value of the policy πθξ, ¯V
∈ Hπ

, which selects

decisions according to πθξ, ¯V
(s)� arg minx∈¸(s){C(s , x)+

γƐS′ | s , x[θ>ξ, ¯V
Φ(S′)]}.

Proposition 2. Let V ∗ denote the optimal value function of
the exact stochastic dynamic optimization, i.e.,V ∗�TV ∗, and
let Vπθ∗ (s) be the value of the policy in the policy hypothesis
space Hπ produced by the direct policy search method, where
the policy is described as πθ∗(s)�argminx∈¸(s){C(s ,x)+
γƐS′ | s ,x[θ∗>Φ(S′)]}, and θ∗ is selected by optimizing (11).
Then, the loss of optimality Vπθ∗ (s)−V ∗(s) satisfies

0 ≤ Vπθ∗ (s) −V ∗(s) ≤ Vπθξ, ¯V (s) −V ∗(s), (15)

where Vπθξ, ¯V is the true value of the policy πθξ, ¯V
. Addi-

tionally, if the fixed point of the projected Bellman operator
satisfies Vπθξ, ¯V (s)� ¯V(s)�ΠξT ¯V(s), then

Vπθ∗ (s)−V ∗(s) ≤ ‖V ∗−ΠξT ¯V ‖∞
≤ 1

1−γ ‖V
∗−ΠξV ∗‖∞. (16)

A proof for Proposition 2 is provided in Appendix B.

This bound is determined by the discount fac-

tor γ and supremum norm of the approximation error

of the projected Bellman equation. Inequality (15)

remains valid when the correction function includes

the expectation; for further discussion, see the remark

in Appendix B.

3.2. Interpolating Surface Model Approximation:
Level of Nonstationarity

To manage the size of problem (6), for every k �

1, . . . ,K in Equation (3), we let the tuning parameters

(θ
0, k , θ1, k , . . . , θT−2, k) follow an interpolating response

surface model with (τ + 1) interpolation knots Tk
def

�

{t
0, k � 0, t

1, k , . . . , tτ−1, k , tτ, k �T−2}, placedwith respect

to time on the interval [0,T − 2], i.e.,
θt , k �ITk

(t), t � 0, . . . ,T − 2. (17)

We refer to τ as the level of nonstationarity. The choice
of τ � T − 2 is equivalent to a full nonstationary pol-

icy, whereas τ � 0 implies a stationary policy. This fea-

ture allows the model user to adjust the stationarity

of the policy depending on the available resources to

solve the resulting stochastic optimization problem. In

our numerical investigation, we consider splines with

equidistant interpolation nodes, i.e., we let each θt , k be

the value of a (piecewise-polynomial real) spline func-

tion ITk
(t), i.e.,

ITk
(t) def�


I

1, k(t) t
0, k ≤ t ≤ t

1, k
...

Iτ, k(t) tτ−1, k ≤ t ≤ tτ, k .

(18)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
338 INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS

Each Il , k(t) is a polynomial function from [tl−1, k , tl , k)
to �. The highest order of these polynomials is said to

be the order of the spline ITk
(t). The most commonly

used splines are cubic splines, i.e., each Il k(t) is a cubic
polynomial

Il , k(t)� al , k(t − tl , k)3 + bl , k(t − tl , k)2 + cl , k(t − tl , k)+ dl , k .

In our computational investigation in Section 5, we

focus on natural cubic splines, with equidistant sets of

interpolation knots, i.e., tl , k � ((T − 2)/τ)l.
Each spline function ITk

is uniquely determined by

its values at the spline knots. Hence, to determine

ITk
(t), and consequently, θt , k , it suffices to find the val-

ues y
0, k , . . . , yτ, k of the splines at their τ + 1 knots, i.e.,

ITk
(tl , k)� yl , k for l �0, . . . , τ and k �1, . . . ,K. Therefore,

using the approximation (17), the number of decision

variables in the optimization problem (6) is reduced to

K × (τ+ 1).
Response surface models have found great use

as approximating functions in various contexts. The

reader is referred to Jones (2001) for an excellent

overview and comparison of surface models. Interpo-

lating response surfacemodels aremore favorable than

noninterpolating surfaces, because they are often more

reliable and can better capture the shape of the func-

tion. Furthermore, in contrast to noninterpolating sur-

faces, for interpolating methods such as the natural

cubic splines adding additional points often leads to

a more accurate surface, which eventually converges

to the true function. In stochastic dynamic program-

ming, response surface models have often been used

to approximate the future value functions between

some discrete points in the state space for stochas-

tic dynamic programming problems with continu-

ous state and decision variables, e.g., Johnson et al.

(1993) employs tensor product splines and Chen et al.

(1999) adopts a method based onmultivariate adaptive

regression splines for approximating the future value

functions, in the contexts of water resources applica-

tion and inventory forecasting problem, respectively. In

Coleman et al. (1999), a two-dimensional spline func-

tional is used to directly approximate a local volatil-

ity function.

In contrast to the use of surface models for estimat-

ing the value function, in this paper, an interpolating

surface model is adopted to approximate the pattern

of decision variables and project the feasible space of

problem (6) into the onewith a lower dimension.While

this method has been used in someworks such as Cole-

man et al. (2007) to approximate the optimal policy

µt(St) itself, to the best of our knowledge, its appli-

cation to estimate nonstationary policy parameters is

novel.

Our developed approach involves three approxima-

tion aspects; namely, approximating the policy func-

tion, approximating the correction functions through

architecture of basis functions, and approximating the

tuning parameters with an interpolating response sur-

face model. Solving the resulting search problem (6) is

discussed next.

3.3. Nested Hybrid Parallel Derivative-Free
Optimization

One common practice to estimate the expected value or

risk in the objective function ρ(Bπ(S
0
)) in problem (6)

is to draw N scenarios for exogenous state variables

and approximate the criterion around these scenarios.

This is also akin to generating N Monte Carlo trajecto-

ries or calling a generative model as in Ng and Jordan

(2000). When N sample trajectories are used to approx-

imate the objective function, each function evaluation

ρ(Bπ(S
0
)) corresponding to a set of policy parameters

requires solving N × T minimizations of type (3). This

is computationally rather expensive.

To overcome this computational intensity, we take

advantage of high performance computing. Our paral-

lel model includes three levels of parallelism with 1 +

cS(1 + cI cN) processes. The processors’ assignment for

the developed parallel programmingmodel is depicted

in Figure 1.

In the first level, the master processor receives a set of

starting points {θ(0, 1) , . . . , θ(0,m)} and distributes them

in subsets among cS manager nodes. The master pro-

cessor eventually collects the m computed solutions

from the manager nodes and returns the best solu-

tion θ∗. In the second level, each manager processor

receives the corresponding initial points, implements

a parallel derivative-free optimization for each start-

ing point one at a time, records the computed opti-

mal points, and sends them back to the master node.

Each manager node is provided with cI cN worker nodes
to do the optimization process. The manager node is

also responsible for reconstructing the solution from

the interpolating response surface model. The function

evaluations at search directions are done in parallel by

cN worker processors, each of which solves a subset of

the N × T minimizations of type (3). This constitutes

the third layer of parallelization. The manager node

communicates only with one of these cN worker nodes,

to which we refer as the head worker node. Each head

worker processor assigns trajectories to worker nodes

in its group, collects all of the solutions from them,

evaluates the objective function of problem (6), and

returns its value to its corresponding manager proces-

sor. The communications among processes in the first

and second layers of parallelization are message pass-

ing, while the third layer of parallelism is expressed by

multithreading.

One of the derivative-free optimizationmethods that

can be perfectly parallelized is the multistart pattern

search framework combined with Monte Carlo simu-

lation. Pattern search methods choose a certain set of

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 339

Figure 1. Parallel Programming Model for Nonstationary Direct Policy Search

1

2

1

2

1

2

···

···
Parallel

derivative-free
optimization

Parallel
function

evaluation

1

2

1

2

1

2

···

Output
Starting
points

1

�
(0,1), �(0,2), ... , �(0,m)

�1 �2 �cI �1

�*

�2 �cI

CS

CN CN CN CN CN CN

search directions at each iterate and search for a point

that improves the objective function, see, e.g., Nocedal

and Wright (2006). If a point with a significantly lower

function value is found, it is adopted as the new iterate,

and the center of the frame is shifted to this new point.

This approach can be simply and effectively imple-

mented on a parallel processing system, by evaluating

the objective function at different directions simultane-

ously, see, e.g., Hough et al. (2001), Kolda (2005). The

parallel pattern search we use in this paper is demon-

strated in Figure 2. Here, γtol
indicates the convergence

tolerance, 0 ≤ βc ≤ 1 is the contraction factor, βe ≥ 1

is the expansion factor, the function ς(·) is the suffi-

cient decrease function from [0,∞) to the set of real

numbers, D � {di}i is the set of search directions, γ
0
is

the |D|-vector of initial step sizes, and Imax

denotes the

maximum number of iterations. In Figure 2, γl , i refers

to the ith element of the vectors γl . We note that |D|
is not necessarily equal to cI , and the candidate points

{θ(l+1, i)} |D|i�1
will be distributed almost equally among

the head worker nodes. In addition, the points θ(`)

and y(`) are understood to be vectorized versions of

{θ(`)t , k}t�0,...,T−2, k�1,...,K and {y(`)t , k}t�0,..., τ, k�1,...,K .

Global convergence and robustness characteristics of

some variations of this class of methods have been

discussed in Torczon (1997), Lewis et al. (1998, 2000),

Audet and Dennis (2002). In addition, the success of

multistart direct search algorithms for a variety of

test problems has been reported in Rios and Sahinidis

(2013). The global convergence to a stationary point of

the generalized pattern search method for an uncon-

strained problem with a continuously differentiable

objective function is established in Torczon (1997).

Audet and Dennis (2002) prove the existence of a limit

point for any generalized pattern search method iter-

ation, even if the objective function is not continuous.

Further global convergence properties are analyzed in

Dolan et al. (2003).

This parallel implementation to solve problem (6) is

employed and assessed in connection with an optimal

energy storagemanagement problem, described in Sec-

tion 4.

4. Application: Optimal Storage
Charging Management

We adopt the model studied in Moazeni et al. (2015),

in which a renewable power generation source (e.g.,

wind) and an energy storage device are integrated into

an electrical grid to minimize the total cost of serving

a demand over a finite-planning horizon [0,T).
We discretize the time horizon [0,T) into T inter-

vals of length ∆t � 1. The state of the system at time t
is expressed by the state variable St

def

� (˜Dt , ˜Et , ˜Pt ,Rt),
where

˜Dt ,
˜Et , and

˜Pt , respectively, refer to the exoge-

nously varying energy demand, energy supply, and

energy price. Here, Rt is the fraction of the storage that

is full at time t. The initial state S
0
� (˜D

0
, ˜E

0
, ˜P

0
,R

0
) is

known.

The energy supply
˜Et is first used to serve the de-

mand
˜Dt . Given the state variable St , the decision to

be made at the beginning of the time interval [t , t + 1)
includes energyflows, xGD

t , xWG
t , xWR

t , xGR
t , xRG

t , and xRD
t ,

where xI J
t denotes the amount of energy transferred

from I to J at time step t. The superscript W stands for

wind,D fordemand,R for storage, andG forgrid.These

nonnegative energy flows should satisfy the following

constraints:

xWR
t + xWG

t � ˜Et −min{ ˜Et , ˜Dt}, (19)

xGD
t + xRD

t � ˜Dt −min{ ˜Et , ˜Dt}, (20)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
340 INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS

Figure 2. Parallel Nonstationary Direct Policy Search with the Level of Nonstationarity τ, and Parallel Pattern Search as the

Parallel Derivative-Free Optimization Subroutine

Require: γtol

, βc , βe , ς(·), D� {di}i , γ0
, Imax

, {θ(0, 1) , . . . , θ(0,m)}, Θt � [θmin , θmax] for 0 ≤ t ≤ T − 2.

(00) master processor sends the initial points θ(0, (n−1)bm/cS c+1) , . . . , θ(0, nbm/cS c) to manager nodes n � 1, . . . , cS − 1,

and sends θ(0, (cS−1)bm/cS c+1) , . . . , θ(0,m) to the manager processor cS .

(01) for n � 1, 2, . . . , cS , do
(02) manager processor n receives the starting points and does the following:

(03) for s � (n − 1)
⌊

m
cS

⌋
+ 1, . . . , n

⌊
m
cS

⌋
, do

[invoking some parallel derivative-free optimization subroutine]

(04) initialize ` � 0, θ(`) � θ(0, s), and compute y(`) from θ(`) at spline knots.

(05) f (`) � ρ
(T−1∑

t�0

Ct(St ,X
π
t (St | θ(`))) | S0

� s
)
, where Xπ

t (St | θ) is as in Equation (3) with the correction

function as in Equation (5).

(06) while ‖γ` ‖2

2
> γtol or ` ≤ Imax

, do
(07) for i � 1, . . . , |D|, do
(08) y(`+1, i) � y(`) + γ`, i di

(09) manager node n uses the interpolation models {ITk
}K

k�1
to reconstruct θ(`+1, i)

from y(`+1, i)
.

(10) θ(`+1, i) � min(max(θ(`+1, i) , θmin), θmax)
(11) end for
(12) manager processor n distributes the |D| candidate iterates θ(`+1, 1) , . . . , θ(`+1, |D|)

among the cI head

worker processors. Head workers employ other cN − 1 worker processes to evaluate

f (`+1, i) � ρ

(T−1∑
t�0

Ct(St ,X
π
t (St | θ(`+1, i))) | S

0
� s

)
and return to manager node n.

(13) if f (`+1, i) < f (`) − ς(γ`, i) for some di ∈D, do
(14) y(`+1) � y(`) + γ`, i di , f (`+1) � f (`+1, i)

, and γ`+1, i � βeγ`, i
(15) else
(16) y(`+1) � y(`) and γ`+1, i � βcγ`, i for all i � 1, . . . , |D|.
(17) end if
(18) ` � ` + 1

(19) end while
(20) manager processor sets and records θ(∗, s) � θ(`+1)

, f (∗, s) � f (`+1)
.

(21) end for
(22) manager processor n sends solutions θ(∗, (n−1)bm/cS c+1)

, θ(∗, (n−1)bm/cS c+2) , . . . , θ(∗, nbm/cS c),

and their objective values f (∗, s) to the master node.

(23) end for
(24) master processor receives θ(∗, 1) , θ(∗, 2) , . . . , θ(∗,m) from manager nodes.

(25) master processor returns the point θ∗ with minimum objective value among all.

(26) master processor broadcasts the termination of the algorithm to all other processors.

1

ηD (x
RD
t + xRG

t) ≤ ∆RDRcap , (21)

ηC(xGR
t + xWR

t) ≤ ∆RCRcap , (22)

where Rcap
denotes the maximum capacity of the stor-

age device, and the maximum charging rate ∆RC ∈ [0, 1]
and maximum discharging rate ∆RD ∈ [0, 1] are the max-

imum fraction of the storage, which can be charged

or discharged, respectively, over the tth time interval.

Here,
¯Rt

def

� Rmax−(1−γ∆t)Rt and Rt
def

� (1−γ∆t)Rt −Rmin

,

where γ∆t ∈ [0, 1] is the dissipation loss constant. The

nonnegative constants Rmin

and Rmax

indicate the min-

imum and maximum acceptable charge levels, which

are percentages of the maximum capacity Rcap
. The

constants ηD ∈ (0, 1] and ηC ∈ (0, 1] capture the charging
efficiency and discharging efficiency rates, respectively.

In a completely efficient storage device, we have ηC � 1

and ηD � 1.

Constraint (20) ensures that the demand is fully

satisfied using the grid, the storage, or the wind

turbine. Constraints (21) and (22) ensure that the stor-

age device is not charged or discharged faster than

allowed.

In addition to constraints (19)–(22), a feasible set of

energy flows should imply that the storage level in the

next time step, Rt+1
, computed by

Rt+1

def

� (1− γ∆t)Rt

+
1

Rcap

(
ηC(xGR

t + xWR
t) −

1

ηD (x
RD
t + xRG

t)
)
,

t � 0, 1, . . . ,T − 1, (23)

satisfies Rt+1
≥ Rmin

and Rt+1
≤ Rmax

.

By using the equality constraints (19) and (20) to

solve for the two decision variables xWR
t , xRD

t and incor-

porating appropriate constraints to ensure xWR
t ≥ 0,

and xRD
t ≥ 0, the set of admissible decisions on energy

flows over the time interval [t , t + 1) can be expressed

in terms of xt � (xGR
t , xGD

t , xRG
t , xWG

t)>, the coefficient

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 341

matrix A, and the right-hand side vector b(st), as

follows:

¸t(st)
def

� {xt ∈ �4

+
: Axt ≤ b(st)}.

Clearly, ¸t(st) is a bounded and convex set, for every

realization st of state St . The stage cost at time step t
incurred by the system owner (decision maker) to fully

serve the demand equals

Ct(St , xt)
def

� ˜Pt x
GR
t + ˜Pt x

GD
t − ˜Pt x̄

RG
t − ˜Pt x

WG
t − ˜Pt

˜Dt , (24)

where
˜Pt ≥ 0 is the energy price. The decision maker’s

objective is addressed by ρ(Bπ(S
0
)), where Bπ(S

0
) is as

in Equation (2).

We consider stochastic processes as in Moazeni et al.

(2015) to model the three sources of uncertainty in the

problem. These models are described next.

4.1. Data Models
Energy Price (˜Pt): The energy price (in $/MWh) at

time t is modeled by

˜Pt � Phour

t +Pday

t +Pmonth

t + exp(˜YP
t),

where the deterministic constants Phour

t , Pday

t , and

Pmonth

t address the hour of day, day of week, and

month of year seasonality effects. The deseasonalized

log-price
˜YP

t is estimated using a discretized mean-

reverting jump diffusion process, with normally dis-

tributed jumps:

˜YP
t � µP + (˜YP

t−1
− µP)e−βP∆t

+ σP

(
1− e−2βP∆t

2βp

)
1/2

εt +

q̃t∑
i�1

˜Jt , i .

Here, εt ∼ N(0, 1), ˜Jt , i ∼ N(µ J , σJ), and q̃t is a Poisson

random variable with parameter λ J .

Energy Demand (˜Dt): The energy demand (in MWh)

for the time interval [t , t + 1) is approximated by

˜Dt � Dhour

t +Dday

t +Dmonth

t + ˜YD
t ,

where Dhour

t , Dday

t , and Dmonth

t denote the hour of day,

day of week, and month of year seasonal components,

and the deseasonalized demands are modeled by the

linear autoregressive (AR) model
˜YD

t � φD
˜YD

t−1
+ σD ε̃t ,

where ε̃t ∼ N(0, 1). The constant parameters |φD | < 1

and σD , and the initial demand
˜D

0
are given.

The values of the parameters in the models for the

price
˜Pt and demand

˜Dt have been estimated using

the New York Independent SystemOperator data from

12 a.m. of January 1, 2007 (Monday) to 11:55 a.m. of

December 31, 2011 (Saturday). These values are pre-

sented in Moazeni et al. (2015, Tables II–V).

Wind Energy (˜Et): We assume that the wind farm has

50 identical wind turbines, each of which has an output

p(1)
˜Wt
given by

p(1)
˜Wt
�


0 if

˜Wt < 0 or
˜Wt > 25

10
−6× 1

2

AνCp
˜W3

t if 0≤ ˜Wt < vr

pr if vr ≤ ˜Wt ≤ 25,

(25)

where
˜Wt denotes the wind speed measured in m/s.

Here, we let the rated power be pr � 4 MW, the power

coefficient Cp � 0.5, A � 50
2π (in m

2

), the density of

air ν ≈ 1.3 kg/m
3

, and the minimal wind speed corre-

sponding to the rated power vr ≈ 11.62 m/s, see, e.g.,

MacKay (2009) and Moazeni et al. (2015). Velocity of

the wind is assumed to be equal to
˜Wt � (˜YE

t + µE)2,
with given

˜W
0
and µE. Here,

˜YE
t evolves according to

an AR(1) model
˜YE

t � φE
˜YE

t−1
+ σE

√
∆t ε̃t , where ε̃t ∼

N(0, 1) and the deterministic initial value
˜YE

0
� 0 and

the given |φE | < 1 and σE. Therefore the (total) wind

energy output (measured in MWh) from the 50 wind

turbines over the time interval [t , t + 1) (one hour) can

be approximated by 50× p(1)
˜Wt
.

4.2. Exact Stochastic Dynamic
Programming Solution

In this section, we provide a closed-form represen-

tation for an exact stochastic dynamic programming

solution for a stylized fully efficient storage device

model, when solely the expected cost is concerned, i.e.,

the risk functional ρ is the expectation Ɛ. This result is
presented in Proposition 3.

We assume that all of the expectations and con-

ditional expectations are well defined. Throughout,

denote the vertical vector (1, 1,−1,−1)> by e and let

Ɛt[·]
def

� Ɛ[· | St]. In addition, define

x+

t
def

� (¯Rt R
cap , ˜Et −min{ ˜Et , ˜Dt}, ˜Dt −min{ ˜Et , ˜Dt},0), (26)

x−t
def

� (0, ˜Dt −min{ ˜Et , ˜Dt}, Rt Rcap , ˜Et −min{ ˜Et , ˜Dt}). (27)

Proposition 3. Let ηD � ηC � 1, ∆RD � ∆RC � 1, and
γ∆t � 0. Then at timesteps t � 0, . . . ,T − 2, the function
Qt(s , x) equals

Qt(s , x) � (˜Pt − Ɛ[˜Pt+1
| St � s])e>x − Ɛ[˜Pt+1

| St � s]
· (Rt Rcap

+ ˜Et − ˜Dt)+ Bt(Rmax −Rmin)Rcap

−
T−1∑

i�t+1

Ɛ[˜Pi
˜Ei | St � s]. (28)

where BT−2
� 0 and

Bt �Pr[˜Pt+1
≥ Ɛt+1

[˜Pt+2
] | ˜Pt]

·Ɛt[(˜Pt+1
−Ɛt+1

[˜Pt+2
]) | ˜Pt+1

≥ Ɛt+1
[˜Pt+2
]]+Ɛt[Bt+1

]. (29)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
342 INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS

In addition, for t � 0, . . . ,T − 2, an optimal decision is
given by {

x+

t if ˜Pt ≤ Ɛ[˜Pt+1
| St],

x−t if ˜Pt > Ɛ[˜Pt+1
| St].

At the last time step t �T−1, the myopic decision is optimal.

A proof for Proposition 3 is provided in Appendix C.

Under the assumptions of Proposition 3, the decision

x−t yields Rt+1
� Rmin

, while x+

t implies Rt+1
� Rmax

.

The derivation of the exact solution in Proposi-

tion 3 relies on strong assumptions on the characteris-

tics of the storage device. In practice, often ηDηC < 1,

∆RD∆RC < 1, and γ∆t > 0. For more realistic storage

models, finding an exact solution to the stochastic

dynamic programming problem is, in general, difficult.

Solving such problems numerically can become quite

challenging when the dimension of the state space

increases and actions are constrained; hence we should

resort to approximation techniques such as the direct

policy search from ADP.

5. Computational Experiments
In this ection, we investigate the performance and lim-

itations of the developed methodology and parallel

implementations in terms of handling nonstationar-

ity and arbitrary risk functionals ρ(·), for the optimal

energy storage management application described in

Section 4.

The computations are carried out partially on

the Hyperion cluster from the Lawrence Livermore

National Laboratory (https://hyperionproject.llnl

.gov/index.php) and the Tower cluster of CASTLE

Labs at Princeton University. The Java implementation

uses the Java message-passing interface library MPJ
Express (Shafi et al. 2009).

The base model in our experiments is formulated

over a planning horizon of T � 168 hours, with Rmin �

0.1, Rmax � 0.9, R
0
� 0.1 and Rcap � 1,000 [MWh] (capac-

ity parameters), ∆RC � 0.2 and ∆RD � 0.25 (charge

and discharge maximum rates), ηC � 0.75 and ηD � 0.9
(charge and discharge inefficiencies), and γ∆t � 0 (no

leakage). These values for the storage device are sim-

ilar to those in Table VI in Moazeni et al. (2015). Full

details on the parameter estimation methods and on

the data sets for the models in Section 4.1 are provided

in the online supplement to this paper.

A policy based on a cost function approximation

Xπ
t (st | θt) is considered, as in Equation (3). The stage

cost Ct(st , xt) is given by (24). A linear approximation

architecture of the form (5) is adopted for the correc-

tion function:

Kθt
(st , xt)� θt , 1φ1

(st , xt). (30)

This approximation uses a single basis function φ
1
,

defined as

φ
1
(st , xt) � (−ηD(1− γ∆t)RcapRt − ηCηD(xGR

t + xWR
t)

+ (xRD
t + xRG

t))Ɛ[˜Pt+1
| St � st]. (31)

The time-varying weights θt , 1 can take values in

[−2, 4]. The variability of θt , 1 over time is controlled

by the level of nonstationarity parameter τ. At the last

stageKθT−1

(ST−1
, θT−1

) is set to 0, indicating that the pol-

icy will behavemyopically. For the analyses reported in

this section, the conditional expectation in (31) is com-

puted in closed form for the price model in Section 4.1.

The basis function (31) is found to be able to pro-

duce a range of objectives that can give more or less

importance to discharging now versus discharging

later, depending on the value of the weight θt , 1. For

example, with θt , 1 � 0, the one-stage cost minimization

is the only goal, resulting in a tendency to discharge

quickly. With a large value for θt , 1, the objective essen-

tially reduces tomaximizing the next storage-level Rt+1
,

resulting in a tendency to charge as much as possible

to be able to discharge at the next time step.

We study three risk functionals for the objective

function in the direct policy search: Ɛ[·] (the expecta-

tion), VaRβ (the VaR at confidence-level β), and CVaRβ

the conditional VaR at confidence-level β with β set

to 95%.

When the risk functional is the expectation, we know

the optimal value of the problem, as established in

Proposition 3. Therefore the suboptimality of the solu-

tions produced with our methodology can be rigor-

ously assessed (see Section 5.1). We are not making

any claim that our proposed methodology is com-

putationally more effective than other ADP methods

optimized for that purpose. When the objective func-

tion is the VaR or the CVaR, there does not exist a

stochastic dynamic programming reformulation able

to minimize those objectives. As a result, it would not

be possible to apply other standard ADP methods,

which rely on the existence of the recursive dynamic

programming equations, for the purpose of comparing

relative performances.

For the implementation of the parallel multistart pat-

tern search, we use N � 10,000 simulated paths. The

initial step sizes are set to γ
0, i � 1.5 for all directions i.

The sufficient decrease function ς(·) that is set to the

constant-valued function 0.1. The expansion parame-

ter βe and the contraction parameter βc that control the

relative change of the step sizes are set to βe � 2 and

βc � 0.5, respectively. Those choices are typical in the

literature, see, e.g., Nocedal andWright (2006). The tol-

erance parameter specified by the stopping criterion is

set to γtol�10
−3

and themaximumnumber of iterations

is set to Imax � 25.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://hyperionproject.llnl.gov/index.php
https://hyperionproject.llnl.gov/index.php

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 343

Figure 3. (Color online) Improvement in the Objective Function of Problem (6) Over Optimization Iterations (y-Axis,

in Millions)

Iterations

E
xp

ec
te

d
va

lu
e

0 10 20 30 40 50

–1.56

–1.54

–1.52

–1.50

–1.48

–1.46

–1.44

–1.42

–1.40

–1.38

Iterations

C
on

di
tio

na
l v

al
ue

-a
t-

ris
k

0 10 20 30 40 50

7.92
7.94
7.96
7.98
8.00
8.02
8.04
8.06
8.08
8.10
8.12
8.14
8.16
8.18
8.20

Iterations

V
al

ue
-a

t-
ris

k

0 10 20 30 40 50
5.25

5.30

5.35

5.40

5.45

5.50

5.55

5.60

(a) � = 3

(b) � = 14

Iterations

E
xp

ec
te

d
va

lu
e

0 10 20 30 40 50

–1.56

–1.52

–1.48

–1.44

–1.40

Iterations

C
on

di
tio

na
l v

al
ue

-a
t-

ris
k

0 10 20 30 40 50

7.92

7.96

8.00

8.04

8.08

8.12

8.16

8.20

Iterations

V
al

ue
-a

t-
ris

k

0 10 20 30 40 50

5.28

5.32

5.36

5.40

5.44

5.48

5.52

5.56

5.60

Notes. In each plot, each curve indicates the objective function improvements associated with a randomly generated initial point θ
0
for the

optimization.

To evaluate the impact of the stopping criterion, we

conducted an analysis of the improvement in the objec-

tive function over 50 iterations, for five different ran-

dom starting points and for the special value 0. We

replicated the experiment for two values of the level of

nonstationarity τ. The simulation results are presented

in Figure 3.

The conclusion of this study is that in all cases,

25 iterations are enough to obtain a solution reason-

ably close to solutions obtained with more iterations.

In general, with a higher level of nonstationarity, the

maximum number of iterations should increase. We

also observe that the objective function stops improv-

ing sooner with the VaR criterion. This suggests that

with the VaR, it is more effective to choose a tighter

stopping criterion and try more initial starting points.

For the expectation and CVaR, it is expected that the

search algorithm should be less sensitive to the starting

points, thanks to the convergence properties resulting

from the convexity of those functionals.

Next, we investigate the impact of the number

of scenarios N on the single-thread computational

time for the objective evaluation. Table 1 reports the

averaged time required to evaluate each objective func-

tion ρ(Bπ(S
0
)), over 200 nonstationary policies, for the

three risk functionals and for different numbers of sam-

ples. We generated the policy parameters randomly,

and replicated the experiment for two values of the

parameter τ. Our conclusion is that the computational

time for each objective function evaluation growsmore

or less linearly with the number of simulated paths,

and this holds true for each of the three risk functionals

we studied.

5.1. Quality of the Policy: Accuracy and the Impact
of Level of Nonstationarity

We first address the question of evaluating the quality

of the computed policies. We start by using the special

case of the energy storage charging problem, for which

a closed-form representation of the optimal solution

is established in Proposition 3. Namely, we set ηD � 1,

ηC � 1, γ∆t � 0, and ∆RD � 1, while the other param-

eter values remain as before. According to Proposi-

tion 3, our choice of the correction functional Kt in

Equations (31) and (10), the optimal parameter values

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
344 INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS

Table 1. Average Single-Thread Runtimes to Evaluate the Objective Function of Problem (6)

(a) τ � 3 (b) τ � 14

Objective Objective

N Ɛ CVaR
95%

VaR
95%

N Ɛ CVaR
95%

VaR
95%

100 11.45 11.87 12.16 100 11.44 11.48 11.49

500 78.69 78.22 80.03 500 58.04 57.84 57.91

1,000 115.85 116.09 114.56 1,000 115.37 113.84 114.58

5,000 585.84 583.22 579.11 5,000 581.39 572.96 574.96

10,000 1,144.85 1,133.29 1,161.69 10,000 1,153.12 1,148.52 1,167.97

Note. The reported evaluation times are averaged over 200 randomly generated policy parameter vectors

(θ
1
, . . . , θT−1

).

must be θ∗t � 1.0 for t � 0, . . . ,T − 2. We observe that

our computational approach is able to recover the opti-

mal parameter values θ∗t � 1.0 for t � 0, . . . ,T − 2. In

addition, to study whether the convergence to the opti-

mal policy is robust with respect to the selected start-

ing point, we conduct a sensitivity analysis relative to

the initial starting points. Simulations from this experi-

ment are reported in Figure 4. This study indicates that

the developed approach consistently returns the opti-

mal policy for the test case, where we could actually

determine an optimal policy theoretically.

Next, we investigate the impact of the interpolating

surface parameter τ on the computed policy and its

corresponding objective value, when we are not able to

establish and refer to an exact optimal policy. We focus

on the relative improvement that can be achievedwhen

optimizing over nonstationary policies for increasing

levels of complexity of the policy space. Table 2 reports

the results of our experiments for three values of the

parameter τ that controls the potential nonstationarity
of the policies and for the alternative risk functionals.

The improvements are particularly visible on the VaR

functional, which is in principle the most challenging

risk measure among the three to optimize. Our con-

clusion is that increasing the level of nonstationarity,

Figure 4. (Color online) Iterations of the Algorithm of Figure 2 for the Expected Value Risk Functional (y-Axis, in Millions)

Iterations

E
xp

ec
te

d
va

lu
e

(in
 m

ill
io

ns
)

0 5 10 15 20 25 30 35 40 45 50

–1.70

–1.65

–1.60

–1.55

–1.50

–1.45

–1.40
� (0,3)

� (0,1)

� (0,2)

θ∗ θ(∗, 1) θ(∗, 2) θ(∗, 3)

1.0 1.01171 1.00858 1.03196

1.0 0.99991 1.00908 0.99909

1.0 1.00144 0.99312 1.00721

1.0 1.01079 1.03148 1.00878

Notes. Runs from the starting points θ(0, 1) � (1, 1, 1, 1), θ(0, 2) � (0, 0, 0, 0), and a randomly generated θ(0, 3) � (0.0417, 2.5799, 0.0734, 3.8421)
converge to the exact solution θ∗ established in Proposition 3.

and thus the number of parameters to optimize, may

significantly improve the quality of the policies; the

achieved improvement depends on the risk functional.

The runtime of the multithreading parallel implemen-

tation that tunes the stationary policy when N � 10,000

is around 88%–91% of the runtime of the nested hybrid

parallel implementation that tunes the nonstationary

policy, as reported in Table 5. This ratio is found to

be consistent for the three objectives and for different

values of τ.
The corresponding computed nonstationary policy

parameters θt are illustrated in Figure 5. In these

plots, the optimal parameter for the stationary policy

is depicted by the straight thick red line. In Figure 5,

left plots illustrate the nonstationary policy parameter

curve, when the risk functional ρ is Ɛ, and the right

plots correspond to the nonstationary policy parameter

curve, when the risk functional ρ is VaR
95%

. A com-

parison between the left plots and the right plots indi-

cates that the deviation of the nonstationary policy

parameter curve from the stationary policy parameter

is larger for VaR
95%

than for the expectation, at some

timesteps. That can be the reason for the significant rel-

ative improvement in the objective function for VaR
95%

,

when the policy is let be nonstationary.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 345

Table 2. Relative Improvement in the Objective Function of the Nonstationary Policy for

Several Values of τ

(a) Relative to the optimal stationary policy (b) Relative to the myopic policy

Objective Objective

τ Ɛ (%) CVaR
95%

(%) VaR
95%

(%) τ Ɛ (%) CVaR
95%

(%) VaR
95%

(%)

3 0.25 1.34 14.67 3 15.49 3.41 1,328.49

9 0.43 1.52 27.08 9 15.69 3.59 1,483.17

14 1.26 1.87 28.83 14 16.66 3.93 1,504.92

Figure 5. (Color online) Computed Policy Parameters θ
0
, . . . , θ

166
for Different Choices of τ

(a) � = 3

(b) � = 9

(c) � = 14

Time step Time step

0 24 48 72 96 120 144 168

Time step

0 24 48 72 96 120 144 168

Time step

0 24 48 72 96 120 144 168

0 24 48 72 96 120 144 168

Time step

0 24 48 72 96 120 144 168

Time step

0 24 48 72 96 120 144 168

1.03

1.04

1.05

1.06

1.07

1.08

1.09

�t

�t

�t

�t

�t

�t

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

2.0

2.5

1.0

1.1

1.2

1.3

1.4

1.5

–2.0
–1.5
–1.0
–0.5

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Notes. In left-hand plots the risk functional ρ is Ɛ. In right-hand plots the risk functional ρ is VaR
95%

. In all plots, the straight thick red line

indicates parameter of the optimal stationary policy. Green circles on the nonstationary policy parameter curve show the solutions at the

spline knots.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
346 INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS

5.2. Parallel Implementation Analyses
To evaluate our parallel implementation model for

the three different nested levels of parallelism, as de-

scribed in Section 3.3, we conduct several experiments

explained.

To study the computational benefits brought by

our multithreading implementation at the level of the

objective evaluation, we first replicate the single-thread

experiments of Table 1, this time with 32 threads. The

results obtained on the Hyperion supercomputer are

reported in Table 3. Compared to the single-thread

implementation, we observe a reduction of objective

evaluation times by roughly a fivefold factor.

Next, we explore the computational benefits of dif-

ferent types of parallel implementations; namely, the

multithreading implementation at the level of objec-

tive evaluation parallelization (cS � 1, cI � 1, cN � 32),

the message-passing parallel implementation for the

search optimization problem inwhich cI � 2(τ+ 1) pro-
cesses communicate by message-passing while cN � 1

and cS � 1, and a hybrid model with nested lay-

ers of parallelization, including multithreading and

message-passing (cI � 2(τ + 1), cN � 32, cS � 1). Table 5

reports the improvements in the runtime of these par-

allel implementations relative to the sequential imple-

mentation computed by

100×
(
1−

runtime of parallel implementation

runtime of sequential implementation

)
.

The runtimes of the sequential implementation with

the single-thread model for the objective evaluations

are reported in Table 4. Time limits for the sequential

and multithread experiments are set to 86,340 seconds

(� 23 hours 59 minutes) and 18,000 seconds (� 5 hours),

respectively. This has resulted in the zeros in Table 5.

The results in Table 5 indicate that the multithread-

ing implementation for the objective evaluations could

reduce the computational time of the whole direct

search approach by a factor around 5, as well. Improve-

ment in computational time with message passing for

the optimization step is more pronounced than the

Table 3. Study of the Evaluation Times in Terms of the

Number of Samples, Using 32 Threads: Average Time Over

200 Randomly Generated Nonstationary Policies

(a) τ � 3 (b) τ � 14

Objective Objective

N Ɛ CVaR
95%

VaR
95%

N Ɛ CVaR
95%

VaR
95%

100 2.72 2.86 2.75 100 2.84 2.89 2.86

500 14.04 14.04 14.13 500 14.25 14.21 14.28

1,000 28.74 28.56 29.45 1,000 28.67 28.85 29.92

5,000 145.20 144.68 143.54 5,000 145.72 145.41 145.33

10,000 287.32 286.13 286.84 10,000 289.76 287.58 296.90

Table 4. Runtime (in Seconds) of Sequential Implemen-

tations of Direct Policy Search (cS � 1, cI � 1, cN � 1)

Sequential implementation

τ

N 3 9 14

Ɛ
100 2,624 6,575 8,956

500 17,856 30,816 45,074

1,000 26,229 60,618 >86,340
5,000 >86,340 >86,340 >86,340

CVaR
95%

100 2,908 6,113 8,988

500 17,730 30,567 44,923

1,000 26,298 61,480 >86,340
5,000 >86,340 >86,340 >86,340

VaR
95%

100 2,899 8,409 8,987

500 18,143 30,480 44,976

1,000 25,939 60,602 >86,340
5,000 >86,340 >86,340 >86,340

improvement realized frommultithreading at the level

of objective function evaluations. This observation sug-

gests that when a limited number of processes are

available, it would be more efficient to allocate them to

the second level of parallelization than the third layer.

In addition, while the runtime of the sequential imple-

mentation increases when the parameter τ increases,

the runtime of themessage-passing parallel implemen-

tation is almost in the same range of magnitude as τ
and cI increases. The results in the last block of Table 5

(nested hybrid) show that a parallel implementation

with nested layers of parallelization can decrease the

computational time to 5% (first row) to 30% (last row)

of the sequential runtime.

6. Concluding Remarks
The current literature on direct policy search methods

for multistage dynamic optimization problems typi-

cally assumes that the policy parameters are stationary

or that the search is restricted to the class of affine

policies. In this work, we develop a computational

approach to approximate nonstationary policy param-

eters for a fairly general class of policy approximators.

A prominent feature of our cost function approxima-

tion policy is that it can handle a large number of

constraints on the feasible actions, and thereby avoid-

ing some limitations of affine policies in the context

of constrained dynamic optimization problems. No

assumption is made on the differentiability of the cor-

rection term or the objective function of the stochastic

search problem, which makes the approach suitable

for a large variety of risk measures, such as the VaR.

The computational tractability of the framework fol-

lows from a nested hybrid parallel model including

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 347

Table 5. Relative Improvements [%] in Runtime of Different Parallel Implementations

Parallel implementations

τ

Multithreading Message passing Nested hybrid

N 3 9 14 3 9 14 3 9 14

Ɛ
100 71.00% 74.78 73.49 68.52% 87.54 93.21 85.40% 93.96 95.92

500 81.04 74.84 74.94 83.31 90.36 93.36 92.72 95.61 97.28

1,000 74.56 74.70 74.01 69.05 86.82 93.10 85.36 93.73 95.73

5,000 61.73 12.12 0 79.15 79.15 79.15 85.18 84.76 85.05

10,000 24.55 0 0 79.15 79.15 79.15 70.42 70.48 70.66

CVaR
95%

100 72.97 72.83 73.32 79.20 86.60 93.20 87.83 93.55 95.99

500 80.90 74.70 75.03 83.16 86.70 93.30 92.58 95.25 96.95

1,000 74.80 75.07 74.02 69.10 90.27 93.07 85.29 93.75 95.62

5,000 61.86 11.44 0 79.15 79.15 79.15 85.05 85.55 84.74

10,000 24.86 0 0 79.15 79.15 79.15 70.88 70.13 70.80

VaR
95%

100 73.85 79.83 73.52 79.13 92.81 90.80 88.13 95.43 95.74

500 81.39 74.55 73.52 77.92 86.77 93.37 92.87 95.38 97.29

1,000 74.43 73.84 73.25 68.85 90.14 93.10 85.04 93.70 95.62

5,000 62.18 11.41 0 79.15 79.15 79.15 84.92 84.75 84.81

10,000 24.68 0 0 79.15 79.15 79.15 71.15 69.85 70.91

Notes. In Multithreading Parallel Implementation cS � 1, cI � 1, and cN � 32. In Message-Passing Parallel Implementation cS � 1, cI � 2(τ + 1),
and cN � 1. In Nested Hybrid Parallel Implementation cS � 1 and cI � 2(τ+ 1), and cN � 32.

the use of multistart parallel derivative-free optimiza-

tion, and parallel function evaluations. The method

and its efficiency are investigated on an energy stor-

age charging management problem for three risk func-

tionals. To model the trade-off between accuracy and

computational effort, we represent the policy parame-

ters through an interpolating response surface model

over time and introduce the concept of level of nonsta-

tionarity. This allows the decision maker to adjust the

nonstationarity-level based on the available resources.

Investigating optimal placement of interpolating

knots remains as future work. In our implementation,

we use an equal number of knots τ + 1 for all k. How-

ever, one may choose different numbers of knots for

different k; that is, τk + 1. For example, if a given

basis function seems more effective at approximating

the policy function, we may choose a larger num-

ber of knots for that basis function, while selecting

a smaller number of knots for other basis functions.

Using other response surfaces to model nonstation-

ary policy parameters suggests another future research

direction. In this paper, we assume that the architecture

for the correction term in the policy function approxi-

mation is given. It would be fruitful to investigate the

impact of the specification of the architecture on the

computed policy and its performance (Tsitsiklis and

Roy 1996, Keller et al. 2006, Yu and Bertsekas 2009).

Finally, further theoretical analyses on the cost func-

tion approximation might be possible and remain as

future work. For instance, it would be of interest to be

able to identify sufficient conditions on the correction

term under which the policy approximator is reduced

to an affine function of the policy parameters, beyond

classical control problems where the value function is

known to be quadratic in the state variables.

Acknowledgments
The authors thank the area editor and referees whose com-

ments led to significant improvements in the paper.

References
Audet C, Dennis JEJ (2002) Analysis of generalized pattern searches.

SIAM J. Optim. 13(3):889–903.
Baxter J, Bartlett PL (2001) Infinite-horizon policy-gradient estima-

tion. J. Artificial Intelligence Res. 15(1):319–350.
Bertsekas DP (2005)Dynamic Programming and Optimal Control, Vol. 1

3rd ed. (Athena Scientific, Belmont, MA).

Bertsekas DP (2012) Dynamic Programming and Optimal Control,
Vol. II, 4th ed., Approximate Dynamic Programming (Athena

Scientific, Belmont, MA).

Bertsekas D, Tsitsiklis (1989) Parallel and Distributed Computation:
Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ).

Bertsekas DP, Tsitsiklis J (1996) Neuro-Dynamic Programming, 1st ed.
(Athena Scientific, Belmont, MA).

Bertsimas D, Goyal V (2012) On the power and limitations of affine

policies in two-stage adaptive optimization. Math. Programming
134(2):491–531.

Bertsimas D, Iancu DA, Parrilo PA (2010) Optimality of affine poli-

cies in multistage robust optimization. Math. Oper. Res. 35(2):
363–394.

Brown PD, Lopes JAP, Matos MA (2008) Optimization of pumped

storage capacity in an isolated power system with large renew-

able penetration. IEEE Trans. Power Systems 23(2):523–531.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Moazeni et al.: Parallel Nonstationary Direct Policy Search
348 INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS

Burger M, Graeber B, Schindlmayr G (2008) Managing Energy Risk:
An Integrated View on Power and Other EnergyMarkets (JohnWiley

and Sons, Chichester, UK).

Busoniu L, Babuska R, Schutter BD, Ernst D (2010) Reinforcement
Learning and Dynamic Programming Using Function Approxima-
tors, 1st ed. (CRC Press, Boca Raton, FL).

Carmona R, Ludkovski M (2010) Valuation of energy storage: An

optimal switching approach. Quant. Finance 10(4):359–374.
Censor Y, Zenios SA (1998) Parallel Optimization: Theory, Algorithms,

and Applications (Oxford University Press, New York).

Chen VCP, Ruppert D, Shoemaker CA (1999) Applying experimental

design and regression splines to high-dimensional continuous-

state stochastic dynamic programming. Oper. Res. 47(1):38–53.
Coleman TF, Li Y, Patron C (2007) Total risk minimization using

Monte Carlo simulations. Birge JR, Linetsky V, eds. Hand-
books in Operations Research and Management Science (Elsevier,

Amsterdam), 593–635.

Coleman TF, Li Y, Verma A (1999) Reconstructing the unknown local

volatility function. J. Comput. Finance 2(3):77–102.
Defourny B, Ernst D, Wehenkel L (2008) Risk-aware decision mak-

ing and dynamic programming. Proc. 22nd Annual Conf. Neural
Inform. Processing Systems, Vancouver, Canada, 1–8.

Dixon LCW, JhaM (1993) Parallel algorithms for global optimization.

J. Optim. Theory Appl. 79(2):385–395.
Dolan ED, Lewis RM, Torczon V (2003) On the local convergence of

pattern search. SIAM J. Optim. 14(2):567–583.
Duffie D, Pan J (1997) An overview of value at risk. J. Derivatives

4(3):7–49.

Giuliani M, Castelletti A, Pianosi F, Mason E, Reed P (2015) Curses,

tradeoffs, and scalable management: Advancing evolutionary

multiobjective direct policy search to improve water reservoir

operations. J. Water Resources Planning Management 142(2): Arti-

cle no. 04015050.

Golub G, Ortega JM (1993) Scientific Computing: An Introduction with
Parallel Computing (Academic Press, San Diego).

Gonzalez JG, de la Muela RMR, Santos LM, Gonzalez AM (2008)

Stochastic joint optimization of wind generation and pumped-

storage units in an electricity market. IEEE Trans. Power Systems
23(2):460–468.

Grondman I, Busoniu L, Lopes GAD, Babuska R (2012) A survey of

actor-critic reinforcement learning: Standard and natural policy

gradients. IEEE Trans. Systems, Man, Cybernetics—Part C: Appl.
Rev. 42(6):1291–1307.

Harsha P, Dahleh M (2015) Optimal management and sizing of

energy storage under dynamic pricing for the efficient inte-

gration of renewable energy. IEEE Trans. Power Systems 30(3):

1164–1181.

Hough PD, Kolda TG, Torczon VJ (2001) Asynchronous parallel pat-

tern search for nonlinear optimization. SIAM J. Sci. Comput.
23(1):134–156.

Johnson SA, Stedinger JR, Shoemaker CA, Li Y, Tejada-Guibert JA

(1993) Numerical solution of continuous-state dynamic pro-

grams using linear and spline interpolation. Oper. Res. 41(3):
484–500.

Jones DR (2001) A taxonomy of global optimization methods based

on response surfaces. J. Global Optim. 21(4):345–383.
Kakade SM (2002) A natural policy gradient. Dietterich TG, Becker S,

Ghahramami Z, eds. Proc. 14th Internat. Conf. Neural Inform. Pro-
cessing Systems: Natural Synthentic (MIT Press, Cambridge, MA),

1531–1538.

Keller PW, Mannor S, Precup D (2006) Automatic basis function con-

struction for approximate dynamic programming and reinforce-

ment learning. Proc. 23rd Internat. Conf. Machine Learn. (ACM,

New York), 449–456.

Kim JH, Powell WB (2011) Optimal energy commitments with stor-

age and intermittent supply. Oper. Res. 59(6):1347–1360.
Kober JR, Peters JR (2009) Policy search for motor primitives in

robotics. Koller D, Schuurmans D, Bengio Y, Bottou L, eds. Adv.
Neural Inform. Processing Systems 21 (Curran Associates, Inc., Red

Hook, NY), 849–856.

Kolda TG (2005) Revisiting asynchronous parallel pattern search for

nonlinear optimization. SIAM J. Optim. 16(2):563–586.

Kormushev P, Caldwell DG (2012) Direct policy search reinforcement

learning based on particle filtering. 10th Eur. Workshop Reinforce-
ment Learn. (EWRL 2012), Edinburgh, UK.

Kuhn D, Wiesemann W, Georghiou A (2011) Primal and dual lin-

ear decision rules in stochastic and robust optimization. Math.
Programming 130(1):177–209.

Lai G, Margot F, Secomandi N (2010) An approximate dynamic pro-

gramming approach to benchmark practice-based heuristics for

natural gas storage valuation. Oper. Res. 58(3):564–582.
Lewis RM, Torczon V, Trosset MW (1998) Why pattern search works.

Optima (59):1–7.
Lewis RM, Torczon V, Trosset MW (2000) Direct search methods:

Then and now. J. Comput. Appl. Math. 124(1):191–207.
MacKay DJ (2009) Sustainable Energy-Without the Hot Air, 1st ed. (UIT

Cambridge Ltd., Cambridge, UK).

Mannor S, Rubinstein R, Gat Y (2003) The cross entropy method

for fast policy search. Proc. 20th Internat. Conf. Machine Learn.
(ICML-2003), Washington, DC, 512–519.

Moazeni S, Coleman TF, Li Y (2016) Smoothing and parametric rules

for stochasticmean-CVAR optimal execution strategy.Ann. Oper.
Res. 237(1):99–120.

Moazeni S, Powell WB, Hajimiragha AH (2015) Mean-conditional

value-at-risk optimal energy storage operation in the pres-

ence of transaction costs. IEEE Trans. Power Systems 30(3):

1222–1232.

Munos R (2003) Error bounds for approximate policy iteration. Proc.
20th Internat. Conf. Machine Learn. (ICML-2003), Washington, DC,
560–567.

Ng AY, Jordan M (2000) PEGASUS: A policy search method for

large MDPs and POMDPs. Proc. 16th Conf. Uncertainty Artificial
Intelligence (Morgan Kaufmann Publishers Inc., San Francisco),

406–415.

Nocedal J, Wright S (2006) Numerical Optimization, 2nd ed. (Springer,

New York).

Peters J, Vĳayakumar S, Schaal S (2005) Natural actor-critic. Gama J,

Camacho R, Brazdil PB, Jorge AM, Torgo L, eds. Machine Learn-
ing: ECML 2005: 16th Eur. Conf. Maching Learn., Lecture Notes in

Computer Science, Vol. 3720 (Springer, Berlin), 280–291.

Powell WB (2011) Approximate Dynamic Programming: Solving the
Curses of Dimensionality, 2nd ed. (JohnWiley & Sons, New York).

Riedel F (2004) Dynamic coherent risk measures. Stochastic Processes
Their Appl. 112(2):185–200.

Rios LM, Sahinidis NV (2013) Derivative-free optimization: A review

of algorithms and comparison of software implementations.

J. Global Optim. 56(3):1247–1293.
Rockafellar RT, Uryasev S (2000) Optimization of conditional value-

at-risk. J. Risk 2(3):21–41.
Rudloff B, Street A, Valladao DM (2014) Time consistency and risk

averse dynamic decision models: Definition, interpretation and

practical consequences. Eur. J. Oper. Res. 234(3):743–750.
Scott WR, Frazier P, Powell WB (2011) The correlated knowledge

gradient for simulation optimization of continuous parame-

ters using Gaussian process regression. SIAM J. Optim. 21(3):
996–1026.

Scott WR, Powell WB, Moazeni S (2014) Least squares policy

iteration with instrumental variables vs. direct policy search:

Comparison against optimal benchmarks using energy storage.

http://arxiv.org/pdf/1401.0843v1.pdf.

Shafi A, Carpenter B, Baker M (2009) Nested parallelism for multi-

core HPC systems using java. J. Parallel Distributed Comput.
69(6):532–545.

Shapiro A (2012) Time consistency of dynamic risk measures. Oper.
Res. Lett. 40(6):436–439.

Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M

(2014) Deterministic policy gradient algorithms. Proc. 31st Inter-
nat. Conf. Machine Learn., Beĳing, I-387–I-395.

Strens MJA, Moore AW (2003) Policy search using paired compar-

isons. J. Machine Learn. Res. 3(3):921–950.
Sutton R, Barto A (1998) Reinforcement Learning: An Introduction (MIT

Press, Cambridge, MA).

Sutton RS, McAllester D, Singh S, Mansour Y (2000) Policy

gradient methods for reinforcement learning with function

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://arxiv.org/pdf/1401.0843v1.pdf

Moazeni et al.: Parallel Nonstationary Direct Policy Search
INFORMS Journal on Computing, 2017, vol. 29, no. 2, pp. 332–349, ©2017 INFORMS 349

approximation. Advances in Neural Information Processing Sys-
tems, Vol. 12 (MIT Press, Cambridge, MA), 1057–1063.

Torczon V (1997) On the convergence of pattern search algorithms.

SIAM J. Optim. 7(1):1–25.
Tsitsiklis JN, Roy BV (1996) Feature-based methods for large scale

dynamic programming. Machine Learn. 22(1):59–94.
Yamakawa E, Fukushima M (1996) A block-parallel conjugate gra-

dient method for separable quadratic programming problems.

J. Oper. Res. Soc. Japan 39(3):407–427.

Yu H, Bertsekas DP (2009) Basis function adaptation methods for

cost approximation in MDP. IEEE Sympos. Adaptive Dynam. Pro-
gramming Reinforcement Learn., Nashville, TN, 74–81.

Yu H, Bertsekas DP (2010) Error bounds for approximations from

projected linear equations. Math. Oper. Res. 35(2):306–329.
Zhou Y, Scheller-Wolf A, Secomandi N, Smith S (2014) Managing

wind-based electricity generation in the presence of storage and

transmission capacity. Tepper Working Paper 2011-E36 1–38,

Carnegie Mellon University, Pittsburgh, PA.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

14
0.

18
0.

25
2.

10
5]

 o
n

12
 A

pr
il

20
17

, a
t 1

0:
53

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

	Introduction
	Literature Review
	Nonstationary Direct Policy Search and Risk Aversion
	Cost Function Approximation Policy
	Interpolating Surface Model Approximation: Level of Nonstationarity
	Nested Hybrid Parallel Derivative-Free Optimization

	Application: Optimal Storage Charging Management
	Data Models
	Exact Stochastic Dynamic Programming Solution

	Computational Experiments
	Quality of the Policy: Accuracy and the Impact of Level of Nonstationarity
	Parallel Implementation Analyses

	Concluding Remarks

