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Abstract—This paper addresses the formulation and solution
of an optimal energy storage management problem under risk
consideration and transaction costs of trading energy with the
power grid. The price evolves as a stochastic process, capable
of correctly explaining the seasonality effects as well as the tail
fatness and spikiness in its distribution. Transaction costs capture
the price impact of the storage operation on the electricity spot
price. A risk analysis of an optimal risk neutral deterministic
policy as well as the simple myopic policy indicates that the
realized operational cost may notably differ from the expected
cost by a considerable probability. This difference suggests that
we need to consider risk. Using the downside risk measure of
Conditional Value-at-Risk, an optimal risk averse conversion and
transmission strategy, among the grid, the renewable power gen-
eration source, and an energy storage is proposed to fully satisfy
the electricity demand and minimize the expected operational
cost as well as the risk. Our numerical study using data from
NYISO demonstrates the impacts of risk consideration and the
transaction cost parameters on the optimal strategy structure, its
expected cost, and its risk.

Index Terms—Energy storage, Risk, CVaR optimization.

NOMENCLATURE

xIJ
t Amount of energy transferred from unit I to unit J at

time step t [MWh].
β Confidence level of the downside risk measure [-].

ωE, ωρ Risk aversion parameters [-].
αGI
t Transaction costs of exchanging energy from grid to unit

I [$/MWh].
αIG
t Transaction costs of exchanging energy from unit I to

grid [$/MWh].
γ∆t Rate of energy loss over a time interval of length ∆t [-].
ηC Charging efficiency [-].
ηD Discharging efficiency [-].

Scap Maximum capacity of the storage device [MWh].
∆SC Maximum charging rate [-].
∆SD Maximum discharging rate [-].
Smax Maximum acceptable charge level [-].
Smin Minimum acceptable charge level [-].
M Number of Monte Carlo simulations.
P̃t Energy price over the tth time step [$/MWh].
Et Energy output from the wind turbine over the tth time

step [MWh].
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Dt Energy demand over the tth time step [MWh].
T Planning horizon.

TN Number of time steps.

I. INTRODUCTION

ENERGY storage systems are becoming indispensable
components of existing and future electricity grids by

improving the grid economy, reliability, and stability [1], [2].
Different types of energy storage technologies with various
response times can serve power system requirements in dif-
ferent time scales [3]. Thus, over a short time span (i.e.,
seconds to minutes), fast-response energy storage systems can
offset the short-term fluctuations in demand and intermittent
renewable power generation, and thereby improve the dynamic
performance of the power systems. Over a long time span
(i.e., hours to days), energy storage systems can potentially
offer significant economic advantages by shifting the energy
through absorbing surplus or inexpensive energy during off-
peak hours, and then discharging it during on-peak hours,
when electricity prices are typically high. In view of these
considerations, grid-scale storage has drawn the attention of
utilities throughout the world as a means to address many
challenges they are dealing with, especially at present, when
the penetration of intermittent and inflexible renewable power
sources is on the rise. Grid-scale energy storage can provide a
range of appealing benefits for the utilities, which include but
are not limited to load leveling and peak shaving, smoothing
power fluctuations, relieving transmission congestion, and
deferring network upgrades [4]. However, an effective use of
storage technology in energy and power systems is impossible
without efficient operation management, especially when their
application over a long time period is considered; this is the
main theme of the present study.

Variations of the storage operation management problem
have been previously studied in the literature. Three control
policies and their corresponding (expected) gained revenues
are analyzed in [5], assuming probabilistic models for load
and wind in the presence of the local network voltage per-
turbations. The sizing and management of a hydro pumping
storage in an island power system with renewable penetration
and deterministic generation cost are studied in [6]. The
goal is to minimize the (expected) operation and annualized
installation costs over all scenarios of wind, hydropower
production, and load. Maximization of the (expected) market
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profit of a wind farm and a hydro pumped storage owner
over a finite horizon to comply with his commitments in
the market is discussed in [7]. The problem is formulated
as a two-stage stochastic programming problem. An optimal
bidding strategy in a day-ahead market, to maximize the
(expected) discounted rewards from the bidding process for
the owner of a hybrid system of renewable power generation
and energy storage is investigated in [8]. This problem is
modeled as a continuous-state Markov decision process and
solved using approximate dynamic programming. A similar
problem of maximizing the total discounted revenue of a
storage owner when trading with the grid over a finite horizon
and in the absence of any demand is studied in [9], where a
simulation-based numerical method is proposed. An optimal
energy commitment policy for the owner of a wind farm and
a storage to maximize the (expected) revenue in an infinite
horizon is investigated in [10], where both electricity price
and wind power supply evolve as stochastic processes. In
[11], a setting that involves conventional generation with a
real time ex-ante price, renewable generation with a zero
marginal cost, and an energy storage is considered. The goal
is to fully serve elastic demand as well as to minimize the
(average) cost of used conventional generation and investment
in storage. The authors formulate the problem as a discrete
time (average) cost stochastic dynamic programming problem
over an infinite horizon and establish the existence of an
optimal stationary policy. The optimal policy suggests to store
when there is excess generation (over demand) and to extract
energy from the storage device if there is excess demand (over
generation). A virtual power plant consisting of an intermittent
source, a storage facility, and a dispatchable power plant is
considered in [12]. The virtual power plant sells and purchases
electricity in both the day-ahead and the balancing markets in
order to maximize the expected profit. The authors in [13]
consider a weekly self-scheduling of a virtual power plant
composed of intermittent renewable sources, storage system
and a conventional power plant. The virtual power plant seeks
to maximize its expected overall profit, while fulfilling its
long-term bilateral contracts.

The vast majority of the literature on operation management
of energy storage devices, including the aforementioned stud-
ies, minimize expected costs over the planning horizon, which
implies that the controller is risk neutral. This ignores the
reality that energy prices are highly volatile, exhibit pervasive
spikes of extraordinary magnitude, and follow a fat-tailed
distribution, e.g., see [14]. For example, the analysis in [15]
on the daily average price data from April 1, 1998 to March
31, 2002 for the PJM Western Hub reports a skewness of
8.0 and kurtosis of 80.8, which clearly confirm the fat tail
behavior in the electricity price distribution. The spikes may
be due to sudden changes in the slope of the supply curve at
the grid level. Indeed, price risk is the most significant risk
exposure in energy systems [16]. Therefore, merely optimizing
the expected cost (or revenue) is not sufficient and realistic
risk considerations must be incorporated when looking for an
efficient system operation strategy.

Here, we study the finite time horizon operation man-
agement of an energy system including a storage device, a

time-variant renewable power generation source, and a load
unit. The system owner is also responsible for satisfying the
demand, with the capacity to trade power with the grid. The
goal is to minimize the total operational cost and price risk
exposure of the system. This model, although simple, is a
building block in many advanced electric power systems.

The storage device is characterized by storage capacity
limitations, conversion and dissipation losses, and maximum
rates of conversion. Such a model encompasses various types
of storage technologies and explains the essential storage
behavior that arises in practice. Since wind power is one of
the fastest-growing renewable energy sources (e.g., [17], [18]),
this paper considers it for the energy generation. The time-
varying load and electricity spot prices are reasonably ex-
plained by seasonality effects. The electricity price is assumed
to evolve based on a mean reverting jump diffusion stochastic
process, which is capable of addressing the main characteris-
tics of energy prices. We calibrate the model to data for the
New York Independent System Operator (NYISO).

First, we demonstrate that the realized operational cost of an
optimal risk neutral deterministic policy as well as the myopic
policy can differ significantly from the expected cost, with a
considerable probability. For example, in almost 20% of the
cases, the actual realized operational cost of the optimal risk
neutral operation policy deviates from its expected cost by
around 18% (see the second row of Table I-PolicyE). In 10%
of the cases, the actual realized operational cost of this policy
deviates from its expected cost by around 29% (see the third
row of Table I-PolicyE). The deviation from expected costs
becomes more significant as the confidence level increases.
This clearly indicates the relevance of risk consideration in
the context of storage operation management.

Second, we suggest incorporating a downside risk measure,
such as the Conditional Value-at-Risk (CVaR) in the objective
function to properly model aversion to the (price) risk. The
CVaR risk measure enjoys nice properties such as convex-
ity [19] and has been widely used to model risk aversion
in various industries, such as finance (e.g., [20], [21]) or
electricity markets (e.g., [22], [23]). An efficient method to
find a mean-CVaR optimal (deterministic) system operation
policy is then developed. The approach relies upon a contin-
uously differentiable smoothing function to approximate the
non-differentiability from CVaR definition and an augmented
Lagrangian method.

We then analyze the structure of the computed risk averse
system operation strategy and compare it with the optimal risk
neutral strategy. The optimal risk neutral strategy has a dual-
threshold pattern; it keeps the storage level at its maximum
when the gradient of the expected cost is positive and remains
at the minimum charging status when the expected cost is
decreasing over periods (see Fig. 5). However, the optimal
risk averse strategy suggests interior levels and more frequent
charging-discharging conversions. The frequency of changes
in the charge level increases, as the CVaR confidence level
approaches one (see the plots in Fig. 6). Furthermore, while the
incurred expected operational cost of the optimal risk averse
policy is only about 1% more than the expected cost of the
optimal risk neutral policy, by adopting the optimal risk neutral
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operation policy the risk to contend with could be up to 13%
more than what the risk averse strategy would have yielded
(see Table VII). For example, the expected shortfall at 95%
level of the optimal risk neutral policy is 9.99% more than
that of the optimal risk averse storage operation policy.

In addition to risk consideration in the storage operation
management problem, we introduce transaction costs into the
model which include the cost of trading with the grid through
an intermediate entity such as a utility or a power management
company. The literature on the problem typically assumes that
the decision maker is price taker and is a small player in a
large market, i.e., the storage size is small or any demand
shortfall can be made up by buying from the grid at the current
spot price; see [6] or [9] for an explicit discussion. These
assumptions ignore the storage operation’s impact on the
electricity spot prices. This concern is also briefly pointed out
in section 7 of [9]. The introduced transaction cost parameters
in the definition of stage costs can explain effects of the storage
operation and trading activities with the grid on the electricity
spot prices. We study sensitivity of the structure of the optimal
operation strategy, its cost, and its risk to these parameters.

The remainder of the paper is structured as follows. Section
II presents the optimization model of the energy storage
operation management problem studied in this paper. Risk
analysis of the optimal risk neutral policy and myopic policy
using the most popular downside risk measure is discussed in
Section III. A computationally tractable approach to compute
an optimal risk averse energy storage policy under CVaR is
provided in Section IV. The results of our numerical experi-
ment, policy analysis, and sensitivity analysis are presented in
Section V. Concluding remarks are given in Section VI.

II. ENERGY STORAGE MANAGEMENT PROBLEM

Consider an energy system involving an electrical grid, a
renewable power generation source (e.g., wind), an energy
storage, and a demand, as shown in Fig. 1. The owner of
the power generator and storage is also responsible to satisfy
the demand for a finite planning horizon starting at time 0
and ending at time T . The time horizon [0, T ) is discretized
into TN intervals of length ∆t = T

TN
. At each of the TN time

steps, the load is served by either the wind power, energy from
the storage, or from the grid.

At the tth time step, the decision is on the following seven
dimensional vector:

Xt
def
=

(
xWD
t , xGD

t , xWG
t , xWS

t , xGS
t , xSG

t , xSD
t

)
, (1)

for t = 0, 1, · · · , TN − 1. Here, xIJ
t denotes the amount of

energy transferred from unit I to unit J at time step t. The
superscript W stands for power generator (e.g., wind), D for
demand, S for storage, and G for grid. All of these variables
are non-negative.

Let St, referred to as the storage level, denote the fraction
of the storage which is full at the tth time step. We assume S0

is given and St evolves according to:

St+1 = (1− γ∆t)St +
ηC(xGS

t + xWS
t )− (xSD

t + xSG
t )

Scap , (2)

Fig. 1: Energy system diagram.

for t = 0, 1, · · · , TN −1. Here, Scap is the maximum capacity
of the storage device. The constants 0 ≤ γ∆t ≤ 1 and 0 <
ηC ≤ 1 represent the fraction of the storage charge level which
is lost during the time interval of length ∆t and the fraction
of 1 MWh increase in the storage charge level as a result of
1-hour charging at the 1 MW input power, respectively.

By implementing Xt at the tth time step, the system owner
incurs the following cost (in dollar value) through exchanging
energy with the grid:

Ct

(
P̃t, Xt

) def
=

(
P̃GS
t + αGS

t

)
xGS
t +

(
P̃GD
t + αGD

t

)
xGD
t

− ηD
(
P̃SG
t − αSG

t

)
xSG
t −

(
P̃WG
t − αWG

t

)
xWG
t , (3)

where, P̃t = (P̃GS
t , P̃GD

t , P̃SG
t , P̃WG

t )⊤ refers to the elec-
tricity price, and 0 < ηD ≤ 1 indicates discharging efficiency.
The cost function in equation (3) assumes that the grid pays
for the amount of energy which is received, i.e., ηDxSG

t , not
the amount xSG

t discharged from the storage.
The non-negative constants αGS

t , αGD
t , αSG

t , αWG
t in equa-

tion (3) explain transaction costs of exchanging energy with
the grid. Examples of such costs include maintenance costs of
the energy storage technology (explained by αGS

t and αSG
t ), or

the maximum amount of power which can be absorbed by the
grid (addressed through αSG

t and αWG
t ). For example, when

the grid cannot absorb energy anymore, we have αSG
t = PSG

t

and αWG
t = PWG

t ; whence the system owner earns nothing
by selling energy to the grid during that time step. In addition
to these explicit costs, the system’s operation and penetrat-
ing power to the grid may impact the real-time electricity
price, especially if the storage size and amounts exchanged
are significant. This price impact is captured through the
transaction cost parameters. One may even consider impacts
on the electricity price, and consequently the transaction cost
parameters, to be functions of amount exchanged in the same
or previous time intervals. However, in this paper, we assume
that the transaction cost parameters are constants.

We refer to Ct(P̃t, Xt) as the stage cost. A negative cost
should be interpreted as revenue. The total system operational
cost over the planning horizon [0, T ) then equals:

TN−1∑
t=0

Ct

(
P̃t, Xt

)
. (4)
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Describing the uncertain nature of electricity price P̃t

and time-varying loads and energy supplies require some
modeling assumptions, which are explained next. In this
paper, similar numerical values are used for prices, i.e.,
P̃GS
t = P̃GD

t = P̃SG
t = P̃WG

t = P̃t; this is acceptable for
most market situations.

[I] Energy Price (P̃t): We assume a reduced form stochastic
model accounting for intraday, weekly, and annual seasonality
for the electricity spot prices. The deterministic seasonal
component of P̃t is composed of an hour-of-day seasonal
factor P hour

t , a day-of-week seasonal term P day
t , and a month-

of-year seasonal part, Pmonth
t . These constants P hour

t , P day
t ,

and Pmonth
t are calculated as the average electricity price,

respectively, over each of the hours of a day, over each of
the days of a week, and over each of the months of a year.
Hence, the energy price (in $/MWh) over the tth time step is
decomposed as

P̃t = P hour
t + P day

t + Pmonth
t + Ỹ P

t . (5)

This model explicitly incorporates price seasonality. The
deseasonalized price Ỹ P

t has the initial value Ỹ P
0 = P̃0 −

P hour
0 − P day

0 − Pmonth
0 .

Various reduced-form stochastic processes, as well as struc-
tural models, for Ỹ P

t have been discussed in the literature. For
a list of these processes and their characteristics, the reader is
referred to [14]. Mean-reversion and the presence of spikes
(or tail fatness) have been addressed as the main features of
the electricity spot price distribution. Therefore, to capture
these notable properties of energy prices, mean-reverting jump
diffusion models have gained popularity, e.g., see [24], [25].
As a result, we also consider a mean-reverting jump diffusion
model for Ỹ P

t in this paper:

dỸ P
t = λP (µP − Ỹ P

t )dt+ σP dW̃t + J̃tdq̃t, (6)

assuming that Ỹ P
t evolves over continuous time. Here, λP

is the speed of mean-reversion, and µP and σP denote the
mean and volatility, respectively. In equation (6), dW̃t is the
increment of the standard Brownian motion, J̃t indicates the
proportional random jump size, and dq̃t is a Poisson process
with intensity l.

[II] Time-varying Energy Demand (Dt): Similar to elec-
tricity prices, loads are modeled through the hour-of-day, day-
of-week, and month-of-year seasonal components, denoted
respectively by Dhour

t , Dday
t , and Dmonth

t . Thus a reasonable
approximation for the energy demand (in MWh) over the tth

time step can be

Dt = Dhour
t +Dday

t +Dmonth
t + E[Ỹ D

t ], (7)

where Ỹ D
t captures stochastic fluctuations in load. Often in

the literature, the deseasonalized load Ỹ D
t is addressed by a

linear autoregressive model, e.g., see [26], [27],

Ỹ D
t = ϕD Ỹ D

t−1 + σD

√
∆t ϵ̃t, ϵ̃t ∼ N (0, 1), (8)

with the initial value Y D
0 = D0−Dhour

0 −Dday
0 −Dmonth

0 , and
the given constants |ϕD| < 1 and σD. Therefore, E[Ỹ D

t ] =
ϕt
D Y D

0 and, consequently, we have

Dt = Dhour
t +Dday

t +Dmonth
t + ϕt

D Y D
0 . (9)

[III] Time-varying Energy Supply (Et): The power de-
livered by a wind turbine is often represented by its power
curve, which establishes a relation between the wind speed
and the power. Cubic or approximate cubic power curves have
been commonly used to represent the power curves of variable
speed wind turbine generators, e.g., see [28], [29]. Here,
we consider a power curve model in which the non-linear
relationship between power and wind speed is represented by
a cubic expression that saturates at the rated power output.
Namely, we let the power output p(1)

W̃t
(in MW) be given by,

p
(1)

W̃t
=

 0 if W̃t < 0 or W̃t > 25

10−6 × 1
2
AνCpW̃

3
t if 0 ≤ W̃t < vr

pr if vr ≤ W̃t ≤ 25

, (10)

where W̃t denotes the wind speed measured in m/s and vr
represents the minimal wind speed corresponding to the rated
power. In equation (10), A captures the area in m2 swept
by the rotor blades of the turbine, pr is the rated power in
MW, Cp denotes the power coefficient parameter with the
maximum theoretical value of 16

27 ≈ 0.59, and ν ≈ 1.3 kg/m3

is the density of air, e.g., see [30]. In the sequel, we make the
approximation of disregarding the possibility of having wind
speed beyond the cut-off speed.

We assume that we have 50 identical wind turbines, each
of which has the rated power of pr = 4 MW, with the power
coefficient Cp = 0.5 and A = 502π (in m2). Also, vr ≈
11.62 m/s. Velocity of the wind is assumed to be equal to
W̃t = (Ỹ E

t +µE)
2, with given W̃0 and µE . Here, Ỹ E

t evolves
according to an AR(1) model (e.g., see [31]):

Ỹ E
t = ϕE Ỹ E

t−1 + σE

√
∆t ϵ̃t, ϵ̃t ∼ N (0, 1), (11)

with the deterministic initial value Ỹ E
0 = 0 and the given

|ϕE | < 1 and σE . Using the fact that {ϵ̃i}ti=1 are independent
standard normal random variables and the 6th moment formula
of standard normals, we can compute E[W̃ 3

t ]. Thus, the (total)
wind energy output (measured in MWh) from the 50 wind
turbines over the tth time step (one hour) can approximately
be computed by,

Et = 50×min

{
502πν

2× 106
(µW (t)6 + 15µW (t)4σ2

E

(
1− ϕ2t

E

1− ϕ2
E

)
+45µW (t)2σ4

E

(
1− ϕ2t

E

1− ϕ2
E

)2

+ 15σ6
E

(
1− ϕ2t

E

1− ϕ2
E

)3

), 4

}
, (12)

where µW (t)
def
= ϕt

E Ỹ E
0 + µE .

It is worth mentioning that there are alternative approaches
for modeling the wind energy, e.g., see [32].
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A. Constraints and Admissible Energy Flows

Given the exogenous parameter values Et, Dt, and the
storage level St at time step t, the following constraints are
imposed on the energy flows in (1):

xWD
t = min{Et, Dt}, (13)

xWS
t + xWD

t + xWG
t = Et, (14)

xGD
t + ηD xSD

t + xWD
t = Dt, (15)

xSD
t + xSG

t ≤ St Scap + ηC (xGS
t + xWS

t ), (16)

ηC(xGS
t + xWS

t )− (xSD
t + xSG

t ) ≤ St Scap, (17)

xSD
t + xSG

t ≤ ∆SD Scap, (18)
ηC(xGS

t + xWS
t ) ≤ ∆SC Scap, (19)

where the maximum charging rate 0 ≤ ∆SC ≤ 1 and
the maximum discharging rate 0 ≤ ∆SD ≤ 1 are the
maximum fraction of the storage which can be charged or
discharged, respectively, over the tth time interval. Here, St =
Smax − (1− γ∆t)St and St = (1− γ∆t)St − Smin represent
the maximum charging and discharging potential in one time
step. The non-negative constants Smin and Smax indicate the
minimum and maximum acceptable charge levels, which are
percentages of the maximum capacity Scap. These constants,
respectively, reflect the maximum depth of discharge due to
cycle life considerations and storage degradation over time
that precludes reaching to the maximum storage capacity.
Constraint (15) implies that the demand is fully satisfied
through the grid, the storage, or the wind power generator.
Constraint (16) ensures St+1 ≥ Smin and constraint (17)
guarantees that St+1 ≤ Smax. Constraints (18) and (19)
prevent the storage device from charging or discharging faster
than what is allowed.

The model described above permits concurrent charge and
discharge of the storage within the same time step. However,
routing energy from the grid to the user via the storage might
not be efficient, and some literature such as [33] circumvent
it. Such a round-trip flow is, however, unlikely to happen at
an optimal strategy of our model, as typically ηCηD < 1 and
transaction cost parameters have reasonable values.

The system (13)-(19) is always feasible, since X̄t, whose
elements are defined as below, satisfies the set of constraints.

x̄WD
t = Ft, x̄GD

t = Dt − Ft, x̄SD
t = 0, (20)

x̄WG
t = Et − Ft, x̄WS

t = 0, x̄GS
t = 0, x̄SG

t = 0,

where Ft
def
= min{Et, Dt}. This strategy is the unique

feasible strategy to serve the demand Dt, in the absence of a
storage device, i.e., Scap = 0 MWh.

From the equality constraints (13)-(15), the three decision
variables xWD

t , xWS
t , and xSD

t can be fully determined using
the other four decision variables. Denote

xt
def
=

(
xGS
t , xGD

t , xSG
t , xWG

t

)⊤
. (21)

Therefore, a feasible xt can be explained using constraints
(16)-(19), stated in terms of xt in (21), and the two additional
inequality constraints

Et −min{Et, Dt} ≥ xWG
t , (22)

Dt −min{Et, Dt} ≥ xGD
t , (23)

to ensure xWS
t ≥ 0 and xSD

t ≥ 0. These constraints together
imply that at every time step t, xGD

t = 0 or xWG
t = 0.

Given Et, Dt, and St, the constraints (16)-(19) and (22)-
(23) can be presented as a system of linear inequalities Axt ≤
bt. Throughout this paper, we refer to the set of xt ∈ R4

+

satisfying Axt ≤ bt by Xt, which is bounded and convex.

B. Myopic and Optimal Risk Neutral Policies

At any time step t, a naive approach to adopt a system
operation strategy is to simply minimize the tth stage cost and
solve the following linear programming problem:

min
xt∈Xt

Ct(P̃t, xt). (24)

This policy, referred to as the myopic policy and denoted
henceforth by PolicyM , discharges the storage as quickly as
possible. While computing the myopic policy is straightfor-
ward, it entirely ignores the influence of decisions on the future
state of the storage charge level, and hence the total operational
cost. Hence, it is not a practically interesting strategy.

An alternative to the myopic policy, in which the total cost
over the planning horizon is taken into account, is a solution
of the following problem

min
x0∈X0,··· ,xTN−1∈XTN−1

E

[
TN−1∑
t=0

Ct

(
P̃t, xt

)]
, (25)

which is referred to as an optimal risk neutral strategy and
is denoted by PolicyE . When the transaction cost parameters
are constants (i.e., do not depend on xt), and parameters
Dt and Et can be approximated well by some deterministic
(but time-varying) values, problem (25) is reduced to a linear
programming problem.

Similar to the myopic policy, a solution for problem (25) can
be computed easily either through a closed-form formula (for
special cases) or using linear programming solution techniques
and solvers.

Whether constraints are treated deterministically or proba-
bilistically, PolicyE does not depend on the assumed stochastic
dynamics model for Ỹ P

t and, consequently, for the price P̃t.
However, the energy price, appearing in the objective function,
is known to be highly volatile and spiky, e.g., see [14]. This
fat tail behavior of the energy prices motivates the importance
of using some downside risk (tail risk) measure, when looking
for an optimal storage operation management strategy.

III. RISK ANALYSIS AND DOWNSIDE RISK MEASURES

The price risk is one of the most significant risks in
the energy industry [16]. One of the most widely used risk
measures is Value-at-Risk (VaR), e.g., see [16] or [34]. This
downside risk measure is particularly appropriate for loss
distributions with fat tail behavior such as that in the energy
prices. For a given time horizon and confidence level β, the
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Fig. 2: Probability distribution function of operational cost.

value-at-risk at the confidence level β is the smallest cost
(loss in market value) over the time horizon that is exceeded
with probability (no greater than) 1 − β, e.g., see [19]. In
other words, VaRβ(cost) is the level β-quantile of the loss
distribution, i.e.,

VaRβ(cost) = inf {ℓ ∈ R : Pr(cost ≤ ℓ) ≥ β} . (26)

Figure 2 illustrates the probability distribution function of the
total system operational cost, using the input data presented
in Section V and PolicyE . Here we assumed that all of the
transaction cost parameters are equal to 0. Table I reports the
VaR values of the total costs corresponding to PolicyE and
PolicyM . As the results in this table indicate, while by min-
imizing the expected operational cost and adopting PolicyE ,
one expects to incur an operational cost of $15, 458, 318.42,
for example by looking at VaR90%, in 10% of cases the
incurred cost will be $4, 542, 409.45 (around 29.38%) more
than what is expected. Thus, to obtain an operation plan with
less exposure to market risk and variations in the electricity
spot price, it is important to include a downside risk measure
in the objective function.

While VaR is still a firm-wide measure of risk in calculating
regulatory and economic capital, the VaR function is non-
convex, non-smooth, and has many local minima, see e.g.,
[19]. An attractive alternative to VaR is the coherent risk
measure Conditional Value-at-Risk (CVaR), also known as
average Value-at-Risk, mean excess loss, or mean shortfall.

For a given time horizon t̄ and confidence level β, CVaRβ

is the conditional expectation of the loss above VaRβ for the
time horizon t̄. Thus, CVaRβ can be defined as

CVaRβ(cost) = E [cost : cost ≥ VaRβ(cost)] . (27)

Without referencing to VaR, a more direct way of defining
CVaR is, see, e.g., [35]:

CVaRβ(cost) = min
α

(
α+

1

1− β
E
[
[cost − α]+

])
, (28)

where [z]+ = max(z, 0). Minimizing CVaR typically leads
to a strategy with a small VaR. Next, we discuss the CVaR
risk consideration for the system operational cost of interest.

TABLE I: VaRβ of the system operational cost corresponding
to PolicyE and PolicyM over 168 hours computed using
20, 000 Monte Carlo paths. Expected values of the total cost
corresponding to PolicyE and PolicyM equal $15, 458, 318.42
and $15, 530, 033.15, respectively.

PolicyE
β [%] VaRβ [$] Absolute Relative

Difference [$] Difference [%]

75 17, 659, 736.25 2, 201, 417.83 14.24

80 18, 241, 611.01 2, 783, 292.59 18.01

85 19, 049, 807.51 3, 591, 489.10 23.23

90 20, 000, 727.86 4, 542, 409.45 29.38

95 21, 877, 231.73 6, 418, 913.31 41.52

99 25, 336, 499.63 9, 878, 181.21 63.90

99.90 30, 041, 183.60 14, 582, 865.19 94.34

PolicyM
β [%] VaRβ [$] Absolute Relative

Difference [$] Difference [%]

75 17, 715, 420.01 2, 185, 386.86 14.07

80 18, 291, 168.95 2, 761, 135.81 17.78

85 19, 100, 810.54 3, 570, 777.39 22.99

90 20, 137, 750.95 4, 607, 717.80 29.67

95 21, 815, 224.10 6, 285, 190.96 40.47

99 25, 496, 654.67 9, 966, 621.52 64.18

99.90 30, 118, 873.21 14, 588, 840.06 93.94

IV. OPTIMAL RISK AVERSE ENERGY STORAGE POLICY

An optimal risk averse (deterministic) policy can be derived
by solving the following problem:

min ωE E

[
TN−1∑
t=0

Ct

(
P̃t, xt

)]
+ ωρ ρ

[
TN−1∑
t=0

Ct

(
P̃t, xt

)]
,

s.t. x0 ∈ X0, · · · , xTN−1 ∈ XTN−1. (29)

Here, ρ[·] is a risk measure. The non-negative parameters
ωE and ωρ, where ωE + ωρ = 1, capture the aversion of the
decision maker to the price risk. We focus on the conditional
value-at-risk as the risk measure. Using equation (28), a
mean-CVaR optimal deterministic energy storage policy is
determined by:

min
x∈R4T

+

ωE E[c̃⊤x] + ωρ CVaRβ [c̃
⊤x] (30)

= min
α∈R, x∈R4T

+

ωE E[c̃⊤x] + ωρα+
ωρ

1− β
E
[
[c̃⊤x− α]+

]
,

where x = (x0, · · · , xTN−1)
⊤ and c̃ = (c̃0, · · · , c̃TN−1)

⊤.
To solve problem (30), [35] suggest to replace the piecewise
linear function [z]+ with a set of linear constraints, as below,

min
α∈R, x∈

∏TN−1
t=0 Xt

ωE E[c̃⊤x] + ωρα+
ωρ

M(1− β)

M∑
ℓ=1

zℓ (31)

zℓ − x⊤c̃(ℓ) + α ≥ 0, ℓ = 1, · · · ,M,

zℓ ≥ 0, ℓ = 1, · · · ,M.

Here, M denotes the number of Monte Carlo scenario paths.
Here, the Monte Carlo simulation is used to approximate the
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mathematical expectations (for mean as well as the expected
value in the definition of CVaR) in the objective function.

This approach can quickly become computationally rather
expensive and inefficient as the number of simulation paths
increases; each new scenario path introduces a new decision
variable zℓ and a new constraint to the optimization problem.
However, to have an accurate estimation of the tail of the cost
distribution, a large number of Monte Carlo paths is required.

Alternatively, using the smoothing technique in [36], the
function [z]+ can be approximated with a continuously dif-
ferentiable piecewise quadratic function ϱϵ(z) using a small
resolution parameter ϵ > 0:

ϱϵ(z) =


z if z > ϵ
z2

4ϵ
+ 1

2
z + 1

4
ϵ if − ϵ ≤ z ≤ ϵ

0 if z < −ϵ
(32)

Note that ϱϵ(z) ≥ 0 for every z. It is shown in [36] that
this smoothing approach can be significantly more efficient
than the linear programming formulation (31) for the CVaR
minimization problem. The convergence of stationary points
of the smoothed sample average approximation problem, with
the increase of sample size, has been investigated in [37].
More precisely, [37] proves that accumulation points of the
stationary points of the smoothed sample average approxima-
tion problem, to solve the ϱϵ-smoothed problem, are almost
surely weak stationary points of their counterparts in the true
problem, as the sample size increases.

Applying function (32), the objective function in (30) is
then reduced to the following convex and continuously differ-
entiable piecewise quadratic function:

ωE E[c̃⊤x] + ωρα+
ωρ

1− β
E
[
ϱϵ(c̃

⊤x− α)
]

(33)

= ωE E[c̃]⊤x+ ωρα+
ωρ

M(1− β)

M∑
ℓ=1

ϱϵ
(
x⊤c̃(ℓ) − α

)
.

We refer to a solution of problem (29) with an objective
function as in (33) by PolicyC . In this formulation, the number
of decision variables or the constraints do not depend on
the number of Monte Carlo sample paths. This problem can
be solved using an augmented Lagrangian method, e.g., see
Section 17.3 of [38]. The augmented Lagrangian, denoted by
LA(x, s, α, λ;µ), for this problem can be written as below:

ωE E[c̃]⊤x+ ωρα+
ωρ

M(1− β)

M∑
ℓ=1

ϱϵ
(
x⊤c̃(ℓ) − α

)
(34)

−
TN−1∑
t=0

λ⊤
t (Axt − bt + st) +

µ

2

TN−1∑
t=0

∥Axt − bt + st∥22,

where xt ≥ 0 and the slack variables st ≥ 0. The vector
λt includes the Lagrange multipliers corresponding to the
constraints Axt + st = bt. At every iteration k, the algorithm
then fixes the penalty parameter µ(k) > 0, fixes the Lagrange
multipliers at the current estimate λ(k), and performs mini-
mization of the augmented Lagrangian with respect to x, s,
and α. The computed approximate minimizer is then used to
update the penalty parameter and Lagrange multipliers. Such
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Fig. 3: Load over the time horizon (168 hours).
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Fig. 4: Wind energy (average of 50 simulated paths).

a minimizer can be calculated using an interior point method
[39] for nonlinear minimization with bound constraints.

V. NUMERICAL ILLUSTRATION

We use five-minute prices (in $/MWh) and hourly demands
(in MW) for NYISO from 12 am of January 1, 2007 (Monday)
to 12 am of December 31, 2011 (Saturday). These data sets are
publicly available at NYISO website. We replace the negative
prices with $1/MWh, and take the average of 12 measurements
from five-minute prices for each hour to derive hourly prices.
The estimation process for the deterministic seasonal trend
is then as follows: (1) For every hour of a day, P hour

t is set
as the mean of the price of that hour over all of the days
in our data set. Then for every hour, the computed P hour

t is
subtracted from the hourly prices to derive hourly residual
prices. (2) For each day in a week, P day

t is computed as the
mean of the average hourly residual prices per day over all of
the weeks in the historical data set. Then for each hour this
value is subtracted from the hourly residual prices to obtain
updated hourly residual prices. (3) For each month of a year,
Pmonth
t is the mean of the average updated hourly residual

prices per month over the five years 2007 to 2011. This value
is then subtracted from each updated hourly residual price
to attain deseasonalized hourly prices. A similar process is
carried out for loads. The estimated values for seasonal terms
are presented in Tables II, III, and IV.

Using the maximum likelihood method, we then obtain
estimations for the parameters in Ỹ P

t and Ỹ D
t . This is reported
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TABLE II: Hour of Day Seasonality Factors

Hour Time Interval Demand Dhour
t [MW] Price P hour

t [$/MWh]

0 [12 am , 1 am) 5159.62 52.92

1 [1 am , 2 am) 4943.20 47.81

2 [2 am , 3 am) 4819.20 43.88

3 [3 am , 4 am) 4781.16 42.30

4 [4 am , 5 am) 4885.42 44.07

5 [5 am , 6 am) 5225.77 48.49

6 [6 am , 7 am) 5713.78 57.95

7 [7 am , 8 am) 6160.71 61.54

8 [8 am , 9 am) 6515.21 66.08

9 [9 am , 10 am) 6756.23 71.13

10 [10 am , 11 am) 6898.87 72.75

11 [11 am , 12 pm) 6973.70 73.00

12 [12 pm , 1 pm) 7006.82 75.05

13 [1 pm , 2 pm) 7015.28 77.30

14 [2 pm , 3 pm) 7017.51 80.85

15 [3 pm , 4 pm) 7029.42 81.30

16 [4 pm , 5 pm) 7036.35 85.72

17 [5 pm , 6 pm) 6974.70 88.22

18 [6 pm , 7 pm) 6881.89 82.30

19 [7 pm , 8 pm) 6773.92 80.02

20 [8 pm , 9 pm) 6595.16 77.30

21 [9 pm , 10 pm) 6309.24 68.12

22 [10 pm , 11 pm) 5918.03 61.52

23 [11 pm , 12 am) 5492.11 56.51

TABLE III: Day of Week Seasonality Factors
Day Demand Dday

t [MW] Price P day
t [$/MWh]

Monday 174.19 2.43

Tuesday 266.76 2.49

Wednesday 263.84 3.42

Thursday 224.28 1.17

Friday 146.66 0.34

Saturday -468.64 -3.65

Sunday -592.24 -5.45

TABLE IV: Month of Year Seasonality Factors
Month Demand Dmonth

t [MW] Price Pmonth
t [$/MWh]

January -221.78 10.29

February -253.70 6.04

March -520.57 -2.71

April -682.52 -0.97

May -454.68 1.69

June 659.15 10.29

July 1454.98 13.99

August 1147.22 -0.79

September 297.15 -8.56

October -524.26 -14.23

November -627.55 -15.38

December -307.61 0.23

TABLE V: Parameters for Ỹ P
t , Ỹ D

t , and Et

µP = 4.35 λP = 37.48 σP = 2.08

ϕD = 0.97 σD = 138.08

ϕE = 0.95 σE = 0.9 µE = 3

TABLE VI: Parameters for Energy Storage
Smin = 0.1 ∆SC = 0.2 ηC = 0.75

Smax = 0.9 ∆SD = 0.25 ηD = 0.9

S0 = Smin Scap = 1, 000 [MWh] γ∆t = 0
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Fig. 5: Storage levels corresponding to PolicyE (dotdashed
blue line) and PolicyM (solid black line). The dashed blue
line indicates the expected price (scaled by 1

2P0
).

in Table V, with l = 0.27, and J̃t ∼ N (0.03, 0.41) for Ỹ P
t . We

let Ỹ P
0 = −5.88 and Ỹ D

0 = −63.63, which are the deseasonal
demand and price at hour 12 am of January 1, 2007. In the
first week of January 2007, the maximum load and minimum
load had been 7, 003.60 MW and 4, 223.10 MW, respectively.
We assume that the energy demand to be served by the system
owner is 25% of the demand calibrated from historical data
from NYISO. Demand over the time horizon of our study is
illustrated in Fig. 3.

Furthermore, in our numerical studies, to approximate Et

we assume Ỹ E
0 = 0, and ϕE , σE , µE as in Table V. In

addition, for the energy storage we use the values in Table
VI. We then use the average of 50 path samples as Et in
our case study. The energy Et over the time horizon 168
hours is illustrated in Fig. 4. Next, in V-A, different policies
are compared. Sensitivity to the transaction cost parameters is
investigated in V-B.

A. Policy Analysis

Figure 5 illustrates storage levels corresponding to PolicyE
and PolicyM , when all of the transaction cost parameters
are equal to zero. The dashed line in this plot indicates the
scaled expected price. PolicyM discharges the storage to the
minimum level SminScap as fast as possible (in this example,
in the first time step) and keeps it at the minimum level for
the rest of the planning horizon. In contrast, PolicyE increases
the storage level toward the maximum level SmaxScap when
the gradient of the expected price is positive, but discharges it
toward the minimum level SminScap when the expected price
is decreasing. The speed of switching between Smin and Smax

depends on ∆SC and ∆SD. For example, when ∆SC ≥ 0.8
and SD ≥ 0, PolicyE is a two-threshold policy with abrupt
changes in St and moves with the gradient of the expected
price, when all of the transaction cost parameters are equal
to zero. For ∆SC = 0.20 and ∆SD = 0.25, as assumed
in Table VI, switching between the maximum and minimum
charge levels requires four time steps (hours). Note that the
configurations of both PolicyE and PolicyM depend on neither
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(c) β = 99.00%
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(d) β = 99.90%

Fig. 6: Storage levels corresponding to PolicyC (solid red line) and PolicyE (dotdashed blue line). In these plots ωE = 1
51 and

ωρ = 50
51 and the transaction cost parameters equal zero.

the stochastic fluctuations of Ỹ P
t nor the average of spikes in

the set of generated scenario paths.
Figure 6 depicts the storage levels of PolicyC for several

confidence levels β, when ωE = 1
51 and ωρ = 50

51 . Unlike
PolicyE , PolicyC is not a two-threshold policy, even when all
of the transaction cost parameters are zero; by implementing
PolicyC , St may remain in other (interior) storage levels.
However, this pattern depends highly on the chosen confidence
level β. As the value of the confidence level increases, the
storage profile deviates more from the two-threshold configu-
ration.

The costs and risks of the three policies PolicyC , PolicyE ,
and PolicyM are presented in Table VII. Here, εCVaRβ

and
εmean denote the relative difference between the CVaR and
expected costs of policies, respectively. As the table indicates,
by implementing PolicyC the incurred operational cost is only
about 1% more than the optimal expected cost. However, by
adopting PolicyE the risk to contend with could be up to 13%
more than what PolicyC would have yielded.

B. Sensitivity to Transaction Cost Parameters

In this section, we consider nonzero transaction cost param-
eters and investigate impacts of changes in the transaction cost
parameters on the strategies PolicyE and PolicyC .

TABLE VII: Expected value and CVaRβ of the operational
cost.

PolicyC PolicyE PolicyM
ωE = 0, ωρ = 1

Mean 15, 483, 053.51 15, 458, 318.42 15, 530, 033.15

εmean 0.16% − 0.46%

CVaR85% 21, 216, 461.07 21, 529, 402.82 21, 576, 631.39

εCVaR85%
− 1.47% 1.70%

Mean 15, 522, 149.73 15, 458, 318.42 15, 530, 033.15

εmean 0.41% − 0.46%

CVaR90% 21, 521, 120.95 22, 546, 664.41 22, 593, 562.81

εCVaR90%
− 4.77% 4.98%

Mean 15, 591, 503.39 15, 458, 318.42 15, 530, 033.15

εmean 0.86% − 0.46%

CVaR95% 23, 782, 833.07 26, 158, 851.56 26, 290, 658.08

εCVaR95%
− 9.99% 10.54%

Mean 15, 625, 009.39 15, 458, 318.42 15, 530, 033.15

εmean 1.07% − 0.46%

CVaR99.90% 30, 946, 785.70 35, 127, 905.09 35, 288, 053.30

εCVaR99.90%
− 13.51% 14.02%

Figure 7 illustrates the storage levels associated with the
optimal storage policies for three instances of these parame-
ters, when β = 90%, ωE = 1

51 , and ωρ = 50
51 . A comparison
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of these plots with the plot (b) in Fig. 6 clearly suggests that
the transaction cost parameters directly influence the structure
of the optimal storage policy and its storage level. In Fig.
7 (a), the profile of the storage corresponding to PolicyE is
exactly the same of the storage level of PolicyE in Fig 6(b),
which had been obtained under the assumption that all of
the transaction cost parameters are equal to zero. However,
even for this small change in the transaction cost parameters,
PolicyC yields a different storage profile within the time steps
64 − 67 and 123 − 140, and 151 − 162. As αGS increases,
PolicyE differs from the risk-neutral policy in Fig 6(b) over
the time steps 31−43, in which the storage will not be charged
as it would have been previously. It makes sense since now
buying energy from the grid to store in the storage device for
next time steps incurs additional cost due to the transaction
cost αGS > 0, and would no longer be beneficial. As this
transaction cost increases, for example to αGS = 6, as in
Fig. 7 (c), the storage level further decreases during the time
steps 3 − 16, 28 − 43, 75 − 91, 99 − 115, and 123 − 139.
By increasing the transaction cost parameter αGS , the storage
level corresponding to PolicyC is further pushed toward the
interior levels. This analysis suggests the importance of includ-
ing the transaction cost parameters and their estimation in the
energy storage management problem, particularly when a risk
averse policy is sought and the objective function includes the
CVaR risk measure with a positive risk aversion parameter
ωρ. A thorough analysis on the impact of these parameters,
when the objective function and constraints are linear, can be
derived using the results from parametric linear programming
(e.g., see [40]).

VI. CONCLUSIONS AND FUTURE WORK

An optimal energy storage management problem under
the headings of risk consideration and transaction costs of
exchanging energy with an electrical grid was studied in
this paper. A renewable power generation source and energy
storage are managed to fully satisfy an energy load with
the capability to trade energy with the grid. The fat tail
behavior of energy prices and a risk analysis of the optimal
risk neutral strategy were provided to motivate downside risk
consideration in the problem. An efficient method to compute
mean-CVaR optimal strategies was developed based on a
smoothing piecewise quadratic function and an augmented
Lagrangian method. Using the real world data from NYISO,
we showed that the optimal risk aversion strategy can be quite
different from the optimal risk neutral strategy. This difference
becomes more prominent as the CVaR confidence level β
increases. A sensitivity analysis of the optimal storage policies,
their expected costs, and price risks was provided.

Several issues are left for future investigation. Extending
this study for more general storage models, e.g., considering
the impact of full charges or discharges on the storage life
or constraints regarding safety concerns or time varying effi-
ciency parameters, is an interesting direction for future work.
Extending and applying the developed methodology and risk
analysis for more realistic settings, e.g., other applications
or other distributional model assumptions for the uncertain
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Fig. 7: Storage levels corresponding to PolicyC (solid red line)
and PolicyE (dotdashed green line) with three non-zero values
for αGS . Other transaction cost parameters are equal to zero.

demands and particularly energy prices would also be a
beneficial study. Furthermore, when reasonable values for
loads and energy supplies are not available, the constraints
determining admissible energy flows can be replaced with their
corresponding chance constraints. Investigating the structure of
the optimal risk averse and risk neutral policies with chance
constraints to define admissible policies over the planning hori-
zon would be insightful. Solution techniques such as [41] can
then be adopted. Including capital cost and opportunity cost
in the total operational cost within the risk averse operation
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management framework can be another research avenue.
For managing the operation of an energy storage, one may

adopt a robust optimization approach with an appropriate
uncertainty set, e.g., see [42], [43] for the latest research on the
theory of robust optimization, and [44], [45] for applications
of this approach for planning purposes in energy and power
systems. It is interesting to compare the configuration and
performance of the robust risk-averse energy storage operation
management policy with those of the nominal risk-averse
policy.
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