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Least squares policy iteration with instrumental variables
vs. direct policy search: comparison against optimal
benchmarks using energy storage

Somayeh Moazenia , Warren R. Scottb and Warren B. Powellb

aSchool of Business, Stevens Institute of Technology, Hoboken, NJ, USA; bDepartment of Operations
Research and Financial Engineering, Princeton University, Princeton, NJ, USA

ABSTRACT
This article studies least-squares approximate policy iteration (API)
methods with parametrized value-function approximation. We
study several variations of the policy evaluation phase, namely,
Bellman error minimization, Bellman error minimization with
instrumental variables, projected Bellman error minimization, and
projected Bellman error minimization with instrumental variables.
For a general discrete-time stochastic control problem, Bellman
error minimization policy evaluation using instrumental variables
is equivalent to both variants of the projected Bellman error mini-
mization. An alternative to these API methods is direct policy
search based on knowledge gradient. The practical performance
of these three approximate dynamic programming methods, (i)
least squares API with Bellman error minimization, (ii) least
squares API with Bellman error minimization with instrumental
variables, and (iii) direct policy search, are investigated in the con-
text of an application in energy storage operations management.
We create a library of test problems using real-world data and
apply value iteration to find their optimal policies. These optimal
benchmarks are then used to compare the developed approxi-
mate dynamic programming policies. Our analysis indicates that
least-squares API with instrumental variables Bellman error mini-
mization prominently outperforms least-squares API with Bellman
error minimization. However, these approaches underperform our
direct policy search implementation.
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1. Introduction

It is long recognized that the powerful theory of discrete Markov decision processes
(Puterman 1994) is limited by the well-known curse of dimensionality, which can be
traced to the need to compute the value of being in each discrete state or, more prob-
lematically, the probability of transitioning from one discrete state to another given
an action. Known as a flat representation in computer science, even small problems
quickly blow up using this model. The field of approximate dynamic programming

CONTACT Somayeh Moazeni smoazeni@stevens.edu School of Business, Stevens Institute of Technology,
Hoboken, NJ 07030, USA
� 2019 Canadian Operational Research Society (CORS)

INFOR: INFORMATION SYSTEMS AND OPERATIONAL RESEARCH
https://doi.org/10.1080/03155986.2019.1624491

http://crossmark.crossref.org/dialog/?doi=10.1080/03155986.2019.1624491&domain=pdf&date_stamp=2019-06-17
http://orcid.org/0000-0003-3631-563X
https://doi.org./10.1080/03155986.2019.1624491
http://www.tandfonline.com


(Bertsekas and Tsitsiklis 1996; Powell 2011; Bertsekas 2012) and reinforcement learn-
ing (Sutton and Barto 1998; Szepesvari 2010) have offered the hope of partially over-
coming this problem by replacing the value function using a statistical approximation
(in particular, linear regression), allowing us to draw on approximate versions of
powerful algorithmic strategies such as value iteration and policy iteration
(Puterman 1994).

Somewhat surprisingly, while we have found in our own work that approximate
value iteration (AVI) works well for very specific problem classes (Topaloglu and
Powell 2006; Simao et al. 2009; He et al. 2012; Nascimento and Powell 2013), it does
not work as a general algorithmic strategy; our success with AVI has always been in
the context of problems where we could exploit convexity. The computer science
community has focused considerable efforts on a strategy called Q-learning, which
involves learning the value of a state-action pair rather than just the value of being in
a state (Sutton and Barto 1998). Q-learning enjoys rigorous convergence theory for
lookup table representations (Tsitsiklis 1994), but this does not scale even to small
problems. Approximating Q-factors with linear models is more art than science.
Convergence results (Sutton et al. 2009b; Maei et al. 2009) do not contain any per-
formance guarantees and are focused on establishing convergence of a particular
approximating architecture. In addition, empirical comparisons against optimal
benchmarks are scarce.

Perhaps for this reason, approximate policy iteration (API) has attracted consider-
able recent attention, see, e.g. (Bertsekas 2012; Busoniu et al. 2012) and the review in
Powell and Ma (2011). API avoids the need to approximate the value of a state-action
pair, and enjoys stronger convergence theory, although this always involves assump-
tions that are unlikely to be perfectly satisfied in practice. However, we are still
unaware of any comparisons against optimal benchmarks.

This article uses the setting of a class of energy storage problems that requires bal-
ancing power from the grid and power from a stochastic, renewable source, to serve
a load (that is sometimes time varying), with access to an energy storage device. The
software containing these benchmark problems is available at https://castlelab.prince-
ton.edu/datasets. We solve the created problems to obtain optimal policies, which
provide us with rigorous benchmarks to accurately assess the quality of the solutions
produced by different algorithmic strategies.

In this article, we focus on the use of linear architectures for approximating the
value function, a strategy that has received the most attention in the literature. We
model our problem in steady state, which allows us to use a powerful algorithmic
strategy called least-squares policy iteration (LSPI), introduced by Lagoudakis and
Parr (2003). This approach builds on the least-squares temporal-difference (LSTD)
learning algorithm (see, e.g. Section 8 of Powell (2011)), proposed by Bradtke and
Barto (1996) to estimate the value of a fixed policy. The LSTD method is one of the
batch variants of the temporal difference (TD) learning. LSTD tends to be statistically
efficient and extracts more information from training experiences and converges
faster, compared to other typical TD learning methods. Lagoudakis and Parr (2003)
introduce the idea of using sample experiences and linear approximation architectures
for incremental policy improvement within a policy-iteration framework. To learn the
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state-action value function, Lagoudakis and Parr (2003) discusses and compares two
policy evaluation methods: (i) Bellman error minimizing approximation which mini-
mizes the L2 norm of the Bellman error, i.e., the difference between the left-hand side
and the right-hand side of the Bellman equation, (ii) least-squares fixed-point
approximation which seeks an approximate fixed point of the Bellman operator con-
sidering the orthogonal projection. The least-squares fixed-point approximation mini-
mizes the projection of the distance that the Bellman error minimizing
approximation minimizes. We investigate integrating instrumental variables into these
two policy evaluation methods. We formally show that the policy evaluation with
instrumental variables is equivalent to the policy evaluation with projected Bellman
error minimization, as well as the hybrid policy evaluation combining both instru-
mental variables and projected Bellman error minimization.

Although our focus is on using exact benchmarks to derive insights into different
algorithmic strategies, our choice of energy storage is motivated by the importance of
this problem class. This dynamic optimization problem can be considered an exten-
sion of the stochastic inventory management problem, see, e.g. Porteus (2002).
Growing interests in renewables and advances in energy storage technology have
increased the interest in the energy storage operation optimization. For example,
Barton and Infield (2004) analyzes three control policies and their corresponding
expected revenues, assuming probabilistic models for load and wind, and a load-price
curve for the electricity price. Carmona and Ludkovski (2005) and Lai et al. (2010)
investigate the operation and valuation of a gas storage device. Greenblatt et al.
(2007) and Swider (2007) discuss incorporating a compressed air energy storage with
wind power generation in energy systems. Maximization of the expected market
profit of a wind farm and hydro pumped storage over a finite horizon to comply
with commitments in the market is addressed in Gonzalez et al. (2008). This problem
is formulated as a two-stage stochastic optimization problem with uncertain prices
and wind generation. Hu and Defourny (2017) investigate optimization of grid-level
battery storage under battery aging consideration. A computationally efficient nonsta-
tionary direct policy search approach is developed in Moazeni et al. (2017) to opti-
mize the operation of energy storage in the presence of a renewable resource to serve
a load, while taking market risk into consideration. The problem of commodity stor-
age management using high-dimensional models for forward prices is studied in
Nadarajah et al. (2015), where approximate linear programing approaches for the
resulting dynamic programming problem are investigated. Optimal operation an
energy storage unit under random allowed operation times over a finite time horizon
is studied in Moazeni and Defourny (2018). For a thorough review of this growing
literature, we refer the reader to Moazeni et al. (2015), Halman et al. (2018), and the
references therein.

For our energy storage application, we created a library of test problems using
realistic data, constrained by the goal of creating optimal benchmarks. Optimal poli-
cies for these problems are computed using exact value iteration (Puterman 1994).
While these problems are relatively simple, CPU times to estimate these policies typ-
ically ranged around two weeks. These benchmarks are then used to compare the
approximate policies based on least-squares API and direct policy search. These
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experiments show that least-squares API with instrumental variables Bellman error
minimization performs significantly better than the least-squares API with the
Bellman error minimization without instrumental variables. Yet even this advanced
algorithmic strategy falls far short of optimal. Direct policy search outperforms (in
terms of achieving percentage of optimality) both least-squares API policies by a wide
margin. Since the structure of the policy in the policy improvement phase is identical
in all algorithms, the issue is not the accuracy of the approximating architecture for
the value function, but rather the estimation procedure, calling into question the val-
idity of Bellman error minimization.

This article makes the following contributions. 1) We introduce and prove the
consistency of a hybrid policy based on least squares API that combines instrumental
variables and projected Bellman error minimization. 2) We develop a set of bench-
mark problems using the important context of energy storage where we are able to
derive optimal policies. 3) We calculate approximate policies using least-squares API
with basic Bellman error minimization, least-squares API with instrumental variables
Bellman error minimization, and direct policy search, and compare the results against
optimal benchmark policies and the myopic policy.

We provide an overview of API in Section 2, where several policy evaluation meth-
ods based on Bellman error minimization are also discussed. Direct policy search and
knowledge gradient are presented in Section 3. The energy storage management prob-
lem, its underlying stochastic processes, and its stochastic dynamic optimization for-
mulation are explained in Section 4. Performance of the computed approximate
dynamic programming policies is investigated and compared with benchmark prob-
lems in Section 5. Limitations of the present study are discussed in Section 6.
Concluding remarks are given in Section 7.

2. Approximate policy iteration algorithm

Stochastic dynamic programming for maximizing expected revenues relies on the
Bellman optimality equation given by

V Stð Þ ¼ max
x2X t

EWtþ1 C St; xð Þ þ c V Stþ1ð ÞjSt
� �

: (1)

Here, St refers to the state variable at time step t, CðSt; xÞ is the contribution func-
tion at state St and action x, X t is the feasible region for decisions at time t, Vð�Þ is
the value function (around the pre-decision state St), and 0 � c<1 is the discount fac-
tor. The expectation in Equation (1) is over the exogenous random changes, denoted
by Wtþ1; in the state of the system. The state variable at the next step is then
obtained by the transition function T ; i.e., Stþ1 ¼ T ðSt; x;Wtþ1Þ: Throughout, we use
the convention that any variable indexed by t is known at time t.

Computing the expected value of VðStþ1Þ is often challenging and needs to be
approximated. To avoid this, a modified version of the Bellman equation based on
the postdecision state variables can be adopted, see, e.g. Judd (1998), Bertsekas (2012)
and Section 4.6 of Powell (2011) for a thorough discussion of postdecision states. The
postdecision state variable, denoted by Sxt ; refers to the state immediately after being
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in the pre-decision state St and taking the action x, but before any exogenous infor-
mation (randomness) from the state transition has been revealed. The value of being
in the postdecision state Sxt is denoted by VxðSxt Þ; and is related to the value function
as follows:

Vx Sxt
� �

¼def EWtþ1 V Stþ1ð Þ j Sxt
� �

:

Thus, the Bellman Equation (1) around the postdecision state variables can be
written as

Vx0 Sx0t�1

� �
¼ EWt max

x2X t

C St; xð Þ þ c Vx Sxt
� �� �

j Sx0t�1

h i
: (2)

The expectation being outside of the maximum operator allows us to solve the
inner maximization problem using deterministic optimization techniques. The policy
optimal with respect to the postdecision value function is then given by

Xp Stð Þ 2 argmaxx2X t
C St; xð Þ þ c Vx Sxt

� �� �
: (3)

For most applications, however, when the state variable is multidimensional and
continuous, Bellman Equations (1) or (2) cannot be solved exactly; as a result a large
field of research on approximation techniques has evolved, see, e.g. Bertsekas and
Tsitsiklis (1996), Sutton and Barto (1998), Szepesvari (2010), Powell (2011). We focus
on the widely used approach of approximating the value function with linear archi-
tectures of the form

V̂
x
Sxt
� �

¼def
XK
k¼1

hk /k Sxt
� �

¼ h>/ Sxt
� �

; (4)

where f/kðSxt Þg
K
k¼1 is a set of K given basis functions, /ðSxt Þ is the column feature

vector with elements /kðSxt Þ; and h is the column parameter vector associated with
the basis functions. For further discussion on basis functions, see, e.g. Menache et al.
(2005), Heuberger et al. (2005), Konidaris et al. (2011). Substituting approximate
postdecision value functions (4) into Equations (2) and (3), we get

h>/ Sx0t�1

� �
�E C St; xð Þ þ c h>/ Sxt

� �
j Sx0t�1; x ¼ Xp̂ Stjhð Þ

h i
; (5)

where

Xp̂ Stjhð Þ 2 argmaxx2X t
C St; xð Þ þ c h>/ Sxt

� �h i
: (6)

A value of the weight vector h, at which Equation (5) holds for all states, would yield
the optimal value function and an optimal policy. However, in general, a fixed point
satisfying this equation does not exist (De Farias and Van Roy 2000), and only a
value of h which approximately solves Equation (5) can be sought.
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The approximate policy iteration (API) approach alternates between a policy evalu-
ation phase which approximately evaluates the current policy by estimating the value
function, and a policy improvement phase in which a new (improved) policy is gener-
ated. For API with linear architectures to approximate the value functions, the policy
improvement phase employs Equation (6), while the development of a policy evalu-
ation step relies on Equation (5). The procedure is repeated for M iterations, where
M is a user-controlled parameter, allowing to generate improving policies that con-
verge to the optimal policy.

2.1. Least-squares approximate policy iteration algorithm

A family of API algorithms, referred to as least-squares approximate policy iteration
(LSPI), was introduced in Lagoudakis and Parr (2003). Assuming finite states and
actions, LSPI approximates the value of state-action pairs (Q-factors) with a linear
architecture, and incrementally improves the policy within a policy-iteration frame-
work. Several methods of approximately solving the Bellman equation and their geo-
metric interpretations are discussed in Lagoudakis and Parr (2003). Instances of the
LSPI algorithmic family differ in the specific policy evaluation procedure employed.
This algorithm extends the least-squares temporal-difference (LSTD) learning algo-
rithm of Bradtke and Barto (1996) to control problems. For further discussion on the
convergence of TD learning and the LSPI method, the reader is referred to Tsitsiklis
and Van Roy (1997), De Farias and Van Roy (2000), Lagoudakis and Parr (2003).

We draw on the foundation provided in Bradtke and Barto (1996), adopted for the
postdecision state. We focus on the off-policy case, where a set of N postdecision
states fSx0nt�1;ng

N
n¼1 are generated randomly, and then for each sample n, we simulate

the state St;n and the corresponding next state decision xn ¼def Xp̂ðSt;njhÞ computed by
Equation (6). For a set of N samples fðSx0nt�1;n; St;n; xn;CðSt;n; xnÞ; Sxnt;nÞ j n ¼
1; 2; :::;Ng; define

Ct ¼
def

C St;1; x1ð Þ
..
.

C St;N ; xNð Þ

2
664

3
775; Ut ¼

def

/ Sx1t;1
� �>
..
.

/ SxNt;N
� �>

2
664

3
775: (7)

Here, Ct is a column vector of dimension N, while Ut is a matrix of size N�K.
Each row of Ut contains the value of all basis functions for a certain post decision
state variable Sxnt;n: Similarly, the nth row of the matrix Ut�1 is /ðSx0nt�1;nÞ

>: Variations
of the least-squares API algorithm aim to find a weight vector h that satisfies the
Bellman equation as closely as possible by solving a least-squares problem (see
Section 2.2) for the following over-constrained linear system

Ct � Ut�1 � cUtð Þh: (8)

For a given value of h, we refer to Ct�ðUt�1 � cUtÞh as Bellman errors or Bellman
residuals, which expresses the difference between the left-hand side and the right-
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hand side of the Bellman equation. An overview of the least-squares API algorithm is
given in Figure 1.

Next, we elaborate on the policy evaluation step.

2.2. Policy evaluation procedures

We focus on policy evaluation approaches based on LSTD and investigate variants of
policy evaluation algorithms using Bellman error minimization and projected Bellman
error minimization. The following assumption is made to rule out redundant parame-
ters in the value function approximation architecture:

Assumption 2.1. The matrices Ut�1; ðUt�1�cUtÞ, and U>
t�1ðUt�1�cUtÞ have full

rank, and K � N:

For least-squares Bellman error minimization, the objective is to minimize the
Euclidean norm of the Bellman errors,

min
h

kCt � Ut�1 � cUtð Þhk22: (9)

Applying the typical method of least-squares, a solution of Equation (9) equals

ĥLSBEM ¼def Ut�1�cUtð Þ> Ut�1 � cUtð Þ
� 	�1

Ut�1�cUtð Þ>Ct; (10)

to which we refer as the least-squares bellman error minimization (LSBEM) estimator.
The matrix of regressors, ðUt�1�cUtÞ; is not deterministic (Ut is not deterministic
because we cannot calculate E½/ðSxt ÞjSxt�1�); we can only simulate /ðSxt Þ given Sxt�1

and, as a result, the least-squares estimator for h will typically be inconsistent.
A class of simple and computationally efficient techniques to obtain consistent esti-

mates, without modeling the noise, is instrumental variable methods. An instrumental
variable is a variable that is correlated with the regressors, but uncorrelated with the
errors in the regressors and the observations, see, e.g. Durbin (1954), Kendall and
Stuart (1961), S€oderstr€om and Stoica (1983), Bowden and Turkington (1984), Young
(2011). Appendix A provides a brief overview of instrumental variable methods.
Instrumental variables have been previously used in the context of API algorithms,

Figure 1. Least-squares API algorithm.
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see, e.g. Bradtke and Barto (1996), but otherwise have not received much attention,
even in the reinforcement learning literature. The method of instrumental variables is
used in LSTD to compensate for the use of Monte Carlo simulation to approximate
the expected cost in �Ct;i ¼

def
E½CðSt;i;X~pðSt;ijhÞÞjSxt�1;i�: This results in the instrumental

variables bellman error minimization (IVBEM) vector,

ĥIVBEM ¼def U>
t�1 Ut�1 � cUtð Þ

� ��1
U>

t�1Ct: (11)

It can be proved that the linear least-squares function approximation with the
instrumental variables method leads to a consistent estimator (ĥIVBEM ! h as N !
1; with probability one). The proof references the consistency properties of the
method of instrumental variables by showing that the columns of Ut�1 are appro-
priate instrumental variables (see Lemma 2 in Bradtke and Barto (1996) and
Appendix A). Note that the matrix ðU>

t�1ðUt�1 � cUtÞÞ could have negative eigen-
values, unlike ððUt�1�cUtÞ>ðUt�1 � cUtÞÞ:

The idea of projected Bellman error minimization, also called least-squares fixed-
point approximation, is to first project the Bellman errors down onto the space
spanned by the basis functions defining the value function and then minimize the
Bellman errors, see Lagoudakis and Parr (2003), Sutton et al. (2009a). Define the pro-
jection operator

Pt�1 ¼ Ut�1 U>
t�1Ut�1

� ��1
U>

t�1; (12)

on the space spanned by the basis functions; see Tsitsiklis and Van Roy (1997) for
the original derivation of this mapping, or Section 8.2.3 of Powell (2011). It follows
from Assumption 2.1 that the matrix Ut�1 has full column rank, and hence Pt�1 is
well-defined. We refer to Pt�1Ct�Pt�1ðUt�1�cUtÞh as the projected Bellman error.
Taking a least squares approach, we find h by minimizing the norm of the projected
Bellman error

min
h

kPt�1Ct �Pt�1 Ut�1 � cUtð Þhk2: (13)

The least-squares estimator of h then yields the least-squares projected bellman
error minimization (LSPBEM) estimator, given by

ĥLSPBEM ¼def Pt�1 Ut�1 � cUtð Þð Þ> Pt�1 Ut�1 � cUtð Þð Þ
� 	�1

Pt�1 Ut�1 � cUtð Þð Þ>Pt�1Ct;

(14)

To establish a consistent estimator for h, similar to the derivation of Equation
(11), Z ¼ Ut�1 can be used as an instrumental variable, see Appendix A or the proof
in Bradtke and Barto (1996). We refer to the resulting estimator as the instrumental
variables projected bellman error minimization (IVPBEM),

ĥIVPBEM ¼def U>
t�1Pt�1 Ut�1 � cUtð Þ

� ��1
U>

t�1Pt�1Ct: (15)
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Consistency of the IVPBEM estimator is established in Theorem B.1 in Appendix
B. For similar results on the consistency of LSTD methods, the reader is referred
to Kolter (2011), Yu (2012), Dann et al. (2014). We note that Pt�1Ut�1 could also
have been used as the instrumental variable instead of Ut�1: However, it is easy
to see that the obtained estimator would be equivalent to that in Equation (15).

The following proposition formalizes the relationship among the three estimators
in Equations (11), (14), and (15), under Assumption 2.1.

Proposition 2.1. The policy evaluation algorithms IVBEM, LSPBEM, and IVPBEM
are equivalent.

A proof of Proposition 2.1 is provided in Appendix C. This result was also noted
in Antos et al. (2008), and further discussed in Szepesvari (2010) and Dann et al.
(2014). Our numerical results in Section 5 indicate that the LSBEM is not equivalent
to IVBEM, and whence, the two others.

3. Direct policy search

An alternative approximate dynamic programming approach to find the policy par-
ameter vector h is direct policy search. Consider policies parameterized by h of the
form in Equation (6), in which the value function has been replaced by a function
approximator linear in adjustable parameters and a feature vector representing states.
In contrast to policy iteration or value iteration methods, the goal in direct policy
search is not necessarily to estimate the value at every state which is close (with
respect to some norm) to the true value function; the objective is to find a parameter
vector h for which the parametrized policy performs well, i.e., it solves the following
stochastic optimization problem

max
h

Vp S0ð Þ; (16)

given the policy structure XpðStjhÞ; and the initial state S0. The value of h which
maximizes Equation (16) produces the best policy within the class of polices,
XpðStjhÞ: Solving this problem becomes challenging, particularly as the dimension
of h grows. Furthermore, the optimization problem given by Equation (16) is typ-
ically nonconvex and nonseparable. For further discussion on direct policy search

Figure 2. The energy system diagram.
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methods and computational approaches, see Moazeni et al. (2016, 2017). Note that,
in direct policy search, we only need to consider features which are functions of
the decisions.

Classic stochastic optimization algorithms can be used to sequentially choose
policies to simulate. When the dimension of h is small, the Knowledge Gradient
for Continuous Parameters (KGCP) policy has been shown to work well for effi-
ciently optimizing h, see, e.g. Scott et al. (2011). In our experiments, h is limited
to two or three dimensions. The KGCP approach is explained next.

3.1. The knowledge gradient for direct policy search

For a given hi, a noisy observation of the objective in (16) can be obtained by simu-
lating

l hið Þ ¼def
X1
t¼0

ctCt St;X
p Stjhi
� �� �

: (17)

The KGCP policy for optimizing h treats the objective function lðhÞ as a Gaussian
process regression. This policy relies on a criterion which chooses the next value of h
for which a noisy observation of lðhÞ is simulated. The KGCP quantifies how much
the maximum of the objective is expected to increase by getting an additional noisy
observation of lðhÞ at a particular value of h.

More formally, let F n be the sigma-algebra generated by h0; :::; hn�1 and the corre-
sponding noisy observations of lðh0Þ; :::; lðhn�1Þ: Denote the updated expected values
of l at hi, conditioned on F n; by lnðhiÞ: Define the KGCP quantity as

�KG;n hð Þ ¼def E max
i¼0;::;n

lnþ1 hið ÞjF n; hn ¼ h

 �

� max
i¼0;::;n

ln hið Þjhn¼h: (18)

The next sampling decision is then chosen to maximize the KGCP quantity,

hn 2 argmax
h

�KG;n hð Þ: (19)

After N observations, the implementation decision h� is chosen by maximizing
lNðhÞ; i.e.,

h� 2 argmax
h

lN hð Þ:

In the Gaussian process regression framework, lnþ1ðhÞ given F n is normally distrib-
uted for each value of h, and consequently the KGCP quantity and the KGCP policy can
be calculated exactly, see Scott et al. (2011) or Chapter 16 of Powell and Ryzhov (2012).
The KGCP policy converges asymptotically to the optimal value of h for problem (16).
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4. Benchmark application: energy storage operation

Consider a power system as shown in Figure 2, involving an intermittent energy sup-
ply, an electricity demand, an interconnecting grid, and a battery storage device. At
time t, the energy flows are given by the vector xt ¼defðxWR

t ; xGRt ; xRDt ; xWD
t ; xGDt Þ; where

xIJt denotes the amount of energy transferred from I to J at time step t. The super-
script W stands for energy source (wind), D for demand, R for storage, and G for
grid. These entities are assumed to be nonnegative except xGRt : A negative value for
xGRt refers to selling electricity from the storage to the grid.

Denote the total electricity demand (in MWh) over the time period starting at
t�Dt and ending at t, by Dt. At every time step, the demand Dt must be served
through the wind energy, available energy from the storage device, or energy pur-
chased from the grid,

xGDt þ gdischargexRDt þ xWD
t ¼ Dt: (20)

Here, gdischarge 2 ð0; 1Þ denotes the discharging efficiency rate.
The wind energy generated during the time period ½t�Dt; tÞ; denoted by Et, first

serves the demand and the surplus is charged into the storage device for the future
use, i.e.,

xWD
t ¼ min Et; Dtf g; (21)

xWR
t þ xWD

t ¼ Et: (22)

Let Rcap indicate the total capacity of the storage device. Define the constants
DRmin and DRmax as the minimum and maximum fractions of the storage device that
can be charged over Dt: For example, for a lead acid battery with a C=10 maximum
charge and discharge rates, and Dt ¼ 15min;DRmin ¼ �1=40 and DRmax ¼ 1=40: To
avoid charging or discharging the storage device faster than the permitted rates, xGRt
must satisfy:

DRminRcap

gdischarge
� xGRt � DRmaxRcap

gcharge
; (23)

where gcharge 2 ð0; 1Þ is the charging efficiency rate. Similarly, to ensure that the stor-
age device is not discharged faster than allowed when sending energy from the stor-
age unit to the demand, we include the constraint

0 � xRDt � DRmaxRcap: (24)

Since both gdischarge<1 and gcharge<1; transmitting energy from the grid to the
demand via the storage would be less efficient and more costly than directly sending
energy from the grid to the demand. The energy flow xt yield the next storage state
RtþDtðxtÞ equal to
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RtþDt xtð Þ ¼ max Rmin; min Rt þ
gcharge xGRt þ xWR

t

� �
�xRDt

Rcap
; 1

� 
� 

; (25)

where Rmin is the minimum fraction of the capacity of the storage device that must
remain full. For example, stationary lead-acid batteries with tubular plates, which are
one of the lowest cost technologies for energy storage, should not be discharged
below 20% of their capacity, i.e., Rmin ¼ 0:20; see, e.g. Brunet (2011).

Constraints (20)–(25), together with the standard measurability conditions, define
the set of admissible policies. Uncertainties in the energy supply (wind), demand, and
prices are expressed through stochastic processes, to be explained in the following
subsections.

4.1. Wind energy

The energy output from the wind turbine over ½t; t þ DtÞ is computed by Et ¼
10�8

72 Cp q 502p w3
t Dt; see, e.g. MacKay (2009), Moazeni et al. (2015). Here, q ¼

1:225 kg=m3 is the density of air, Cp ¼ 0:45 is the power coefficient, wt denotes
the wind speed measured in meters per second, and Dt is stated in seconds.
Velocity of the wind, wt is given by wt ¼ ðYE

t þ lEÞ2: Here, YE
t evolves by an

AR(1) model (see, e.g. Brown et al. (1984)), YE
t ¼ /EY

E
t�Dt þ rE

ffiffiffiffiffi
Dt

p
~�t; where

~�t 	Nð0; 1Þ: Using 15-min data from the wind speeds at Maryneal, Texas and
applying the Yule-Walker equations (see, e.g. Carmona (2004)) to fit the above
model, we obtain lE ¼ 1:4781;/E ¼ 0:7633; rE ¼ 0:4020:

4.2. Electricity prices

Similar to Cartea and Figueroa (2005), we model the real-time electricity prices by
Pt ¼ exp ðYs

t þ Yds
t Þ�c; with a deterministic seasonal component Ys

t : The deseasonal-
ized log prices are modeled by a discretized mean reverting jump diffusion process
Yds
t ¼ Yds

t�Dt þ kPðlP�Yds
t�DtÞDt þ rP

ffiffiffiffiffi
Dt

p
~�t þ Jt; where lP is the long term equilib-

rium price, kP is the mean reversion rate, ~�t 	Nð0; 1Þ; and Jt denotes the jump over
the interval ½t�Dt; tÞ: The jumps are modeled by the i.i.d. process, Jt ¼ ~aJt1ð~ut < pJÞ:
Here, ~aJt 	Nð0;rJÞ is the jump size, pJ is the probability of a jump over a time inter-
val of length Dt; and ~ut 	 unifð0; 1Þ: The constant parameter c equals one minus the
minimum value of Pt in the data set. We use the approach in Cartea and Figueroa
(2005) to estimate the model parameters. For the real time electricity prices at the
PJM Western Hub dataset, we get rJ ¼ 0:4229; pJ ¼ 0.0170, kP ¼ 1800:9; lP ¼
4:1995; rP ¼ 11:0971; and c¼ 27.2531.

4.3. Electricity demand

Eydeland and Wolyniec (2003) outline typical models for residential, commercial, and
industrial power demands. While industrial power demand is relatively stable, residential
power demand is highly dependent upon the temperature and exhibits seasonal varia-
tions. Various load models and forecasting methods are discussed in Feinberg and
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Genethliou (2010). Similar to Pirrong and Jermakyan (2008), Moazeni et al. (2015), we
adopt a demand model with seasonality components Dt ¼ mhour

t þmmonth
t þ Dds

t : Here,
mhour

t and mmonth
t indicate the hour-of-week seasonal and the month-of-year seasonal

components, and Dds
t is the deseasonalized load. The deseasonalized load Dds

t evolves
with a linear autoregressive model YD

t ¼ /DY
D
t�Dt þ rD

ffiffiffiffiffi
Dt

p
~�t For the hourly ERCOT

energy load data we obtained, /D ¼ 0:9636; r2D ¼ 914870:

4.4. Stochastic dynamic optimization formulation

We formulate this multistage stochastic optimization problem using stochastic
dynamic programming. The contribution function at every time step t then is the
dollar value of energy sold minus the amount bought from the grid, assuming that
an identical energy price is used for both withdrawal and injection:

C St; xtð Þ ¼ PtDt�Pt xGRt þ xGDt
� �

: (26)

The goal is to find a policy which maximizes the accumulated expected discounted
future rewards,

max
p

E

X1
t¼0

ctC St;X
p Stð Þð Þ

" #
: (27)

We define the state variable, St ¼ ðRt; Et; Dt; PtÞ; and the postdecision state
variable, Sxt ¼ ðRtþDtðxÞ; Et; Dt; PtÞ: Recall that Rt is the fraction of the storage
device that is full, Et is the current amount of wind energy, Dt indicates the current
energy demand, and Pt is the current spot price of electricity selling to (or purchasing
from) the electrical grid. The exogenous information process is defined as the random
changes in the state of the system, WtþDt ¼ fÊtþDt; D̂tþDt; P̂tþDtg; explaining exogen-
ous changes in Et, Dt and Pt, that can may be state dependent as well as
time dependent.

Similar power system models have been studied in Moazeni et al. (2015) and
Moazeni et al. (2017) for illustrating other algorithmic strategies. Proposition 3 in
Moazeni et al. (2017) establishes a closed-form solution for the exact stochastic
dynamic optimization in the finite time horizon setting, under the assumptions that
charging and discharging efficiency rates are one gcharge ¼ gdischarge ¼ 1 and the stor-
age device can be fully charged and discharged over Dt: Under these assumptions,
Proposition 3 in Moazeni et al. (2017) shows that the optimal policy is a two-thresh-
old policy, ruled by the sign of Pt�E½Ptþ1jSt�; i.e., charge the storage device if Pt �
E½Ptþ1jSt� and discharge if Pt 
 E½Ptþ1jSt�:

Next section explains our computational results from the least-squares API algo-
rithms in Section 2, the direct policy search described in Section 3, for problem (27),
and compares the performance of the computed policies to the optimal policies from
exact stochastic dynamic optimization.
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5. Numerical experiments

Our main objective in this section is to assess the performance of the two variants of
the least-squares API, and direct policy search. Throughout, the time step is Dt ¼
15 min and the discount factor is c ¼ 99:90%: We found that discount factors of c ¼
99% or smaller produce policies that are relatively myopic, and do not store energy
for extended periods.

5.1. Benchmark problems with discrete state spaces

We first consider finite, discretized state and action spaces with a fixed probability
transition matrix. An exact solution for an infinite horizon problem can be found
using the value iteration method, see, e.g. Puterman (1994). Computing these optimal
policies typically requires approximately two weeks of CPU time. In this method,
V0ðsÞ is initialized to a constant for all states s in the state space, and at each iteration
n, the algorithm updates the value function at each state using

Vn sð Þ ¼ max
x

C s; xð Þ þ c
X
s02S

Vn�1 s0ð ÞPr s0js; x
� �� 


; for every s 2 S:

To establish a set of benchmark problems, we consider 20 instances of the energy
storage operation optimization problem explained in Section 4. Table 1 summarizes
these problems. Here, problem type “Full” refers to the problem in Figure 2 with
energy from the wind source and the grid serving an electricity demand. In the
absence of a wind source and demand, the storage device is used solely to buy/sell
the electricity from/to the grid. This model considers only trading between the

Table 1. Benchmark problems with discrete state spaces: number of discretization levels for time
(1¼ steady state) and load (1¼ deterministic).
Problem Number of discretization levels Parameters

Number Type Time Resource Price Demand Wind Wind Storage RTE Charge
st Rt Pt Dt Et

Et
Dt

Rt
Dt

Rate

1 Full 1 33 20 1 10 0.1 2.5 0.81 C/10
2 Full 1 33 20 1 10 0.1 2.5 0.81 C/1
3 Full 1 33 20 1 10 0.1 2.5 0.70 C/10
4 Full 1 33 20 1 10 0.1 2.5 0.70 C/1
5 Full 1 33 20 1 10 0.2 2.5 0.81 C/10
6 Full 1 33 20 1 10 0.2 2.5 0.81 C/1
7 Full 1 33 20 1 10 0.2 2.5 0.70 C/10
8 Full 1 33 20 1 10 0.2 2.5 0.70 C/1
9 Full 1 33 20 1 10 0.1 5.0 0.81 C/10
10 Full 1 33 20 1 10 0.1 5.0 0.81 C/1
11 Full 1 33 20 1 10 0.1 5.0 0.70 C/10
12 Full 1 33 20 1 10 0.1 5.0 0.70 C/1
13 Full 1 33 20 1 10 0.2 5.0 0.81 C/10
14 Full 1 33 20 1 10 0.2 5.0 0.81 C/1
15 Full 1 33 20 1 10 0.2 5.0 0.70 C/10
16 Full 1 33 20 1 1 0.2 5.0 0.70 C/1
17 BA 96 33 20 1 1 – – 0.81 C/10
18 BA 96 33 20 1 1 – – 0.81 C/1
19 BA 96 33 20 1 1 – – 0.70 C/10
20 BA 96 33 20 1 1 – – 0.70 C/1
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storage and the grid to take advantage of price variations and is referred to as the
battery arbitrage problem. In Table 1, the problem type “BA” refers to a battery arbi-
trage problem. We discretized the state space in the benchmark problems and then
created fixed probability transition matrices for the exogenous information process in
order to create a true discrete process. Table 1 also reports how finely each state vari-
able is discretized (the size of the state space for a particular problem is the product
of each of the discretization levels). We then list the average maximum wind capacity
divided by the load, the storage capacity divided by the load over an hour, the round
trip efficiency (RTE) of the storage device, and the maximum charge and discharge
rate of the storage device. For example, C=10 indicates that the storage device can be
fully charged or discharged within 10 hours. The transition matrix of the electricity
prices was fitted using the PJM Western Hub real time prices (with and without time
of day). The transition matrix of the load was fitted using the load of the PJM Mid-
Atlantic Region (with time of day). The transition matrix for the wind was fitted
using data from wind speeds near the Sweetwater Wind Farm. For Problems 1�16
the state space is resource level, wind energy, and electricity price, i.e., St ¼
ðRt;Et; PtÞ: For these experiments, time and demand are held fixed in order to keep
the benchmark problems computationally tractable, as the exact value iteration, even
for these simplified problems, requires approximately two weeks on a 3Ghz proces-
sor. For Problems 17�20; the state variable is given by St ¼ ðst;Rt; PtÞ; where st is
the time-of-day (96 corresponding to 15-minute intervals in a day), Rt is the resource
level, and Pt is the electricity price. To implement the least-squares API methods,
quadratic basis functions (/kðSÞ ¼ SiSj for i; j ¼ 1; :::; jSj) are used.

To specify reasonable values for the maximum number of policy evaluation and
policy improvement iterations, M and N in Figure 1, we implement the LSAPI
method using instrumental variables Bellman error minimization (IVBEM) on the
17th benchmark problem several times. For this test problem, as illustrated in Figure
3, most of the improvement has occurred before N¼ 5000 iterations of policy evalua-
tions and M¼ 30 iterations of policy improvement step. Thus, in the rest of this sec-
tion, we fix N¼ 5000 and M¼ 30.

5.2. Least-squares API and direct policy search for benchmark problems

This section compares the least-squares API methods, the myopic policy, and the dir-
ect policy search based on KGCP. Subsequently, the policy computed by the algo-
rithm 1 with the policy evaluation ĥLSBEM; in Equation (10), is referred to as LSAPI.
We also refer to the policy computed by the algorithm 1 with the policy evaluation
ĥIVBEM in Equation (11) by IVAPI. The myopic policy discharges the storage device
as quickly as possible and keeps the charge level at its minimum allowed level since
then. The value of the myopic policy is still positive due to the wind source.

We run each algorithm 100 times. For each run of the algorithms, the final policies
computed by each algorithm are evaluated on the same set of sample paths, x 2 X;
where x is generated from the discretized exogenous information process. We then
record the average percentage of optimality across the 100 runs. For a policy p, the
average percentage of optimal is computed by
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% of optimality ¼ 1
jXj
X
x2X

V̂
p
S0 xð Þð Þ

V� S0 xð Þð Þ ; (28)

where x is a sample path of the randomness in the state transitions, and S0ðxÞ is the
starting state which has been randomly generated from a uniform distribution. Here,
V̂

pðS0ðxÞÞ is the value of the policy p run on the sample path x, starting at the state
S0ðxÞ: In Equation (28), V�ðS0ðxÞÞ is the true value of the optimal policy for state
S0ðxÞ computed using the exact value iteration method.

Similarly, we implement the direct policy search using KGCP 100 times, and compute
the average percent of optimal and its standard deviation. To implement direct policy
search using KGCP, we budget ourselves to simulating 50 sequentially chosen policies,
after which the KGCP algorithm must choose what it believes to be the best policy.

Figure 4 illustrates the percentage of optimal corresponding to each of these poli-
cies for the benchmark problems. This figure shows that IVAPI significantly outper-
forms LSAPI for all benchmark problems, but still underperforms the optimal policy
by a wide margin. Direct policy search produces solutions that are on average 91.80%
of optimal, and are always at least 70% of optimal for Problems 1�16: This suggests
that for the benchmark problems on the application of interest, direct policy search is
more robust relative to the least-squares API methods.

In order to reduce the number of basis functions in the algorithms, one may consider
smaller dimensions for the postdecision state when constructing the value function
approximation. Figure 5 shows the results using three value function approximations: (1)
all three state variables Rt, Et, and Pt, (2) Rt and Pt, (3) Rt. It is observed that using Rt as
the only domain of the postdecision value function results in quite poor performances
for most benchmark problems. Using both Rt and Pt appears to do fairly well overall,
although using all of the state variable dimensions yields the best results.

5.3. Benchmark problems with continuous state spaces

In this section, we consider a set of 10 problems with continuous state spaces, con-
tinuous actions, and the state transitions for the energy storage optimization problem

Figure 3. Progress of the least-squares API method using IVBEM policy evaluation for benchmark
problem 17, as a function of N (left plot) for M¼ 30, and as a function of M (right plot)
for N¼ 5000.
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in Section 4. Table 2 summarizes these problems. For Problems 1–3, the electricity
prices and demands are time-dependent and stochastic. Problems 4–10 are continu-
ous steady-state problems. For these problems an optimal policy is not available.
However, we compare both least-squares API policies and the myopic policy.

Figure 6 illustrates the average objective value for the 10 problems described in Table
2. This figure shows that IVAPI consistently outperforms LSAPI, suggesting that again
the use of instrumental variables for the policy evaluation phase of the least-squares API
method brings value. Even for some of these problems, the myopic policy outperforms
the LSAPI policy.

Figure 4. Performance (percentage of optimality) and 95% confidence intervals of different policies
for 20 benchmark problems in Table 1. Policies: least-squares API with instrumental variables
(IVAPI), least-squares API with least-squares Bellman error minimization (LSAPI), myopic policy
(myopic), direct policy search (direct).

Figure 5. Performance (percentage of optimality) and 95% confidence intervals of the IVAPI policy
for the 20 benchmark problems in Table 1, when only certain dimensions of the poststate are
included in the poststate value function approximation.
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Given that the IVAPI outperforms the alternative least-squares API approach,
Figure 7(a) depicts a sample path of the IVAPI policy for Problem 1 in Table 1. The
storage device is charged when electricity prices are low and discharged when electri-
city prices are high. We also note that the storage device fully discharges (below 20%)
relatively infrequently. Figure 7(b) illustrates the electricity price and Rt from imple-
menting the IVAPI policy for Problem 5 in Table 2 on one random sample path.
Similar to the previous case, this plot shows that the policy tends to start charging
the battery at night when electricity prices are low and then discharges the storage
device throughout the day when electricity prices are higher.

6. Discussion and limitations

The findings in the previous section suggest that for our benchmark problems and
implementation choices, IVAPI is a promising and scalable algorithm. The direct pol-
icy search approach, which directly seeks the parameters of a policy function

Table 2. Benchmark problems with continuous states.
Problem Number of discretization levels Parameters

Number Type Time Resource Price Demand Wind Wind Storage RTE Charge
st Rt Pt Dt Et

Et
Dt

Rt
Dt

Rate

1 Full 96 Cont. Cont. Cont. Cont. 0.1 2.5 0.81 C/10
2 Full 96 Cont. Cont. Cont. Cont. 0.1 5.0 0.81 C/10
3 BA 96 Cont. Cont. 1 1 – – 0.81 C/10
4 Full 1 Cont. Cont. Cont. Cont. 0.1 5.0 0.81 C/10
5 Full 1 Cont. Cont. Cont. Cont. 0.1 2.5 0.81 C/1
6 Full 1 Cont. Cont. Cont. Cont. 0.1 2.5 0.70 C/1
7 BA 1 Cont. Cont. 1 1 – – 0.81 C/10
8 Full 1 Cont. Cont. Cont. Cont. 0.1 5.0 0.81 C/1
9 Full 1 Cont. Cont. Cont. Cont. 0.1 5.0 0.70 C/1
10 Full 1 Cont. Cont. Cont. Cont. 0.2 2.5 0.81 C/1

Problems 1–3 have time-dependent stochastic demands and prices. Problems 4–10 are steady-state.

Figure 6. Average objective (in millions) corresponding to the IVAPI, LSAPI, and myopic policies for
the benchmark problems with continuous states described in Table 2.
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approximation, is capable to come closer to optimality compared to the other ADP
algorithms considered in this article. However, direct policy search quickly becomes
intractable as the number of parameters in the policy function approximation
increases. This challenge arises for example for non-stationary problems or as the
number of basis functions in the value function approximation grows. In addition,
choosing an appropriate search domain for direct policy search is another significant
complication as the number of basis functions increases. A computationally tractable
approach for the direct policy search is proposed Moazeni et al. (2017), where a suffi-
cient condition for the optimality of the direct search policy and a bound on the sub-
optimality are theoretically established.

There are several limitations associated with our findings. The computational com-
parison in this article is limited to a subset of approximate dynamic programming
methods, namely, two least-squares API methods, direct policy search, and myopic
policy. There are alternative dynamic programming approaches based on various vari-
eties of value iteration (Puterman 1994; de Farias and Van Roy 2000; Bertsekas and
Tsitsiklis 1996) with approximate value functions, as well as the approximate linear
programming approach, made to handle approximations based on basis functions (de
Farias and Van Roy 2003, 2004).

Another limitation of our study is that our findings are based on some choices in
the implementation of these algorithms. A least-squares API method uses as parame-
ters the number of policy improvements and simulation sample size, M and N. While
we chose conservatively large values for these parameters, and used them consistently
for all benchmark problems, further sensitivity analysis study could be done to assess
the robustness of the findings with respect to these choices. Furthermore, as with any
simulation-based approach, the outcomes and standard errors estimated from replica-
tions remain sensitive to the underlying stochastic processes and set of
drawn samples.

Similarly to most other approximate dynamic programming techniques, the API
methods and direct policy search rely on a parametrized value function approxima-
tion architecture. As Lagoudakis and Parr (2003) states, “the choice of basis functions
is a fundamental problem in itself.” The present study was carried out using a linear

Figure 7. Electricity price and storage level Rt corresponding to the IVAPI policy for one benchmark
problem from Table 1 (left plot) and one problem from Table 2 (right plot).
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architecture with quadratic basis functions, which is a frequent choice in the literature
Bradtke and Barto (1996), Lagoudakis and Parr (2003), Wang et al. (2015), but many
other options exist for the basis functions. While we conducted sensitivity analysis on
the degree and number of basis functions before opting for quadratic basis functions,
our comparisons and findings are based on the value function approximation archi-
tecture that was adopted.

The energy storage problem can be cast as a type of inventory management model
with multiple sources of uncertainty. The findings in this article are limited to bench-
mark problems developed for the energy storage model. Additional computational
studies and comparisons against other optimal benchmark problems could also be
insightful and broaden the applicability of the findings.

We fixed the inputs of the algorithms (such as basis functions, discount factor,
number of simulations, etc) across the benchmark problems and across the algo-
rithms. Therefore differences in performances observed between these 3 algorithms
are merely attributed to the choice of the algorithm, and not the implementation
details (such as basis functions).

7. Conclusions

This article studies four variants of LSAPI methods, based on Bellman error mini-
mization policy evaluation. We consider least-squares Bellman error minimization,
Bellman error minimization using instrumental variables, least-squares projected
Bellman error minimization, and projected Bellman error minimization using instru-
mental variables. Policy evaluations using Bellman error minimization with instru-
mental variables is equivalent to projected Bellman error minimization policy
evaluations.

The LSAPI methods were then evaluated numerically using a stochastic dynamic
optimization problem arising in energy storage control. We create a library of bench-
mark problems to compare the different algorithmic strategies including least-squares
API with two variants of the policy evaluation phase, as well as a Knowledge
Gradient based direct policy search method.

Several interesting conclusions can be drawn from our numerical work. Bellman
error minimization using instrumental variables appears to improve significantly over
the least-squares API method with basic Bellman error minimization, but otherwise
did not work well when compared to the optimal benchmark, producing results that
ranged between 60% and 80% of optimal. Direct policy search performed much bet-
ter, with results averaging over 90% of optimal. Given that this is a problem that is
ideally suited to least-squares API, it calls into question whether this is a method that
can be counted on to produce good results.

This research suggests that there are clear advantages to using direct policy search,
possibly in conjunction with approximate policy iteration. We suggest using least-
squares API to find good values of the regression parameters, and then apply direct
policy search to improve the policy in the region of the fitted regression parameters.
For certain problems, it may actually be advantageous to leave variables out of the
value function approximation to simplify the policy search process. The challenge is
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that in its derivative-free form, policy search does not scale easily with the dimension
of the parameter space. This may be a major limitation in time-dependent applica-
tions, where we may need to estimate a different set of parameters for each
time period.
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Appendix A: The instrumental variable method

The instrumental variable method (IVM) is a well-known technique for dealing with errors in
the explanatory variables of a regression problem, and provides a way to obtain consistent par-
ameter estimates, see, e.g. Cameron and Trivedi (2005), Young (2011). Consider the linear
model in the matrix form Y ¼ Xh; where Y is a N � 1 vector of response variables, X is a
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N�K matrix of explanatory variables, and h is a K � 1 vector of weights. Let X0 and Y 0 be
observable values of the true values X and Y. Denote the errors in the observed values of X
and Y by X00 and Y 00; respectively. Hence we have X0 ¼ X þ X00 and Y 0 ¼ Y þ Y 00: When the
observation of X and the error in X are correlated, the least squares estimator can be biased
and inconsistent, see, e.g. Chapter 4 of Cameron and Trivedi (2005). A properly chosen instru-
mental variable can yield a consistent estimator for h. Suppose that an instrumental variable,
Zj, exists such that it is correlated with the true Xl, the lth column of X, but uncorrelated with
the errors in the observations of X and Y.

Denote Rjl :¼ Cov½Zj;Xl�; for j; l ¼ 1; :::;K: Assume that the matrix R has full rank K. For
the instrument Z, the instrumental variables (IV) estimator is defined as

ĥIV ¼ Z>X0ð Þ�1
Z>Y 0: (A1)

Note that ĥIV is uniquely defined when Z>X0 has full rank K.

Proposition A.1. Consider the model Y ¼ Xh with observable values X0 and Y 0, and error
terms X00 and Y 00. Suppose that the noise in X and Y satisfy E½Y 00� ¼ 0, and E½X00

ij � ¼ 0, for every

i ¼ 1; :::;N and j ¼ 1; :::;K. Suppose that limN!1
1
N

PN
i¼1 ZijXil ¼ Rjl, for j; l ¼ 1; :::;K, and

Cov½Zij;Y 00
i � ¼ Cov½Zij;X00

il � ¼ 0, for every i ¼ 1; :::;N; and j ¼ 1; :::;K. In addition assume that

limN!1
1
N

PN
i¼1 ZijY 00

i ¼ limN!1
1
N

PN
i¼1 ZijX00

il ¼ 0, for every j ¼ 1; :::;K. Then the IV estimator

ĥIV is a consistent estimator of h, i.e., ĥIV ! h with probability one, as N ! 1:
For a proof of Proposition A.1 and further discussion on IV estimators, see Cameron and

Trivedi (2005).

Appendix B: Consistency of IVPBEM policy evaluation

This appendix shows that ĥIVPBEM in Equation (15) is consistent (converges in probability to
the true weights). The following discussion remains valid even when the state space is continu-
ous or the discount factor is c¼ 1. More formally, we aim to show that ĥIVPBEM is a consistent
estimator for projected Bellman equation. Using the notations in Appendix A, define

X ¼def Pt�1 Ut�1�cE cUtj Sxt�1

� �� �� �
; (B1)

X0 ¼def Pt�1 Ut�1�cUtð Þ; (B2)

Y ¼def Pt�1�Ct; (B3)

Y 0 ¼def Pt�1Ct; (B4)

where �Ct is the vector with entries �Ct;n ¼def E½CðSt;n;Xp̂ðSt;njhÞÞjSxt�1;n�: Recall that Ut�1;Ut; and
Ct are as in Equation (7) corresponding to the policy p̂:

Theorem B.1. Let assumption 2.1 hold and the covariance matrix R, with elements
Rjl ¼ Cov½ðUt�1Þj; Xl�, have full rank K. Suppose that the rows of Ut�1 are i.i.d.,
E½jðUt�1ÞijðY 0�YÞij�<1, and E½jðUt�1ÞijðX0�XÞilj�<1, for j; l ¼ 1; :::;K. Then the estimator
ĥIVPBEM in equation (15) is a consistent estimator.

Proof. Define the instrumental variable Z ¼def Ut�1. It thus follows the notations X0 and Y 0 in equa-
tions (B2) and (B4) that ĥIVPBEM in equation (15) has the form ðZ>X0Þ�1Z>Y 0. According to
Proposition A.1 in Appendix A the IV estimators are consistent estimators of h for the model
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Y ¼ Xh. Therefore, to complete the proof of Theorem B.1, it is sufficient to show that the assumptions
for Proposition A.1 hold.

From the description of Y and Y 0 in (B3) and (B4), we have Y 00 ¼ Y 0�Y ¼ Pt�1ðCt��CtÞ.
Therefore,

E Y 00½ � ¼ E Pt�1 Ct��Ctð Þ½ �

¼ E E Pt�1 Ct � �Ctð Þj Sxt�1

� �h ih i
¼ E Pt�1E Ct��Ctð Þj Sxt�1

� �h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

2
4

3
5 ¼ 0:

(B5)

Next, it follows from Equations (B1) and (B2) that the mean of the noise in the observation
of the explanatory variables, X00 ¼ X0�X, equals zero:

E X00½ � ¼ E X0�X½ �
¼ E Pt�1 Ut�1 � cUtð Þ �Pt�1 Ut�1 � E cUtj Sxt�1

� �� �� �� �
¼ cE Pt�1 E Utj Sxt�1

� �� �
� Ut

� �� �
:

Therefore, using E½Pt�1 E UtjfSxt�1g
� �

� Ut
� �

� ¼ E½E Pt�1 E UtjfSxt�1g
� �

� Ut
� �

jfSxt�1g
� �

�, we
have

E X00½ � ¼ cE Pt�1E E Utj Sxt�1

� �� �
� Utj Sxt�1

� �� �� �
¼ cE Pt�1 E Utj Sxt�1

� �� �
�E Utj Sxt�1

� �� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

 !" #
¼ 0: (B6)

We next show that Cov½Zij;Y 00
i � ¼ 0, for every i, j:

Cov Zij;Y
00
i

� �
¼ E ZijY

00
i

� �
�E Zij
� �

E Y 00
i

� �|fflfflffl{zfflfflffl}
¼0

¼ E Ut�1ð Þij Pt�1 Ct��Ctð Þð Þi
h i

¼ E Ut�1ð Þije>i Pt�1 Ct��Ctð Þ
h i

;

where ei denotes the column vector of all zeros except at the ith element which equals 1.
Therefore,

Cov Zij;Y
00
i

� �
¼ E E Ut�1ð Þije>i Pt�1 Ct � �Ctð Þj Sxt�1

� �h ih i
¼ E Ut�1ð Þije>i Pt�1E Ct��Ctj Sxt�1

� �h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

2
4

3
5 ¼ 0: (B7)

Next we show that for every i, j, and l, Cov½Zij;X00
il � ¼ 0 :

Cov Zij;X
00
il

� �
¼ E ZijX

00
il

� �
�E Zij
� �

E X00
il

� �|fflfflffl{zfflfflffl}
¼0

¼ E Zij X
0
il�Xil

� �� �
¼ E Zije

>
i X0�Xð Þel

h i
:
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Hence,

Cov Zij;X
00
il

� �
¼ cE Ut�1ð Þije>i Pt�1 E Utj Sxt�1

� �� �
�Ut

� �
el

h i
¼ cE E Ut�1ð Þije>i Pt�1 E Utj Sxt�1

� �� �
�Ut

� �
elj Sxt�1

� �h ih i
¼ cE Ut�1ð Þije>i Pt�1E E Utj Sxt�1

� �� �
�Utj Sxt�1

� �� �
el

h i
¼ cE Ut�1ð Þije>i Pt�1 E Utj Sxt�1

� �� �
�E Utj Sxt�1

� �� �� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

el
" #

¼ 0:

(B8)

The assumptions stated in the theorem and the law of large numbers imply that
limN!1

1
N

PN
i¼1 ZijXil ¼ Cov½Zj;Xl�, and for every j ¼ 1; :::;K; limN!1

1
N

PN
i¼1 ZijY 00

i ¼ 0 and

limN!1
1
N

PN
i¼1 ZijX00

il ¼ 0. Thus, Proposition A.1 can be applied.

Appendix C: Proof of Proposition 2.1

Proof: We first show that IVBEM and IVPBEM estimators in equations (11) and (15) are
equal. Recall that Pt�1 ¼ Ut�1ðU>

t�1Ut�1Þ�1U>
t�1: Starting with equation (15), we have

ĥIVPBEM ¼ Ut�1ð Þ>Pt�1 Ut�1 � cUtð Þ
� 	�1

Ut�1ð Þ>Pt�1Ct

¼ Ut�1ð Þ> Pt�1Ut�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Ut�1

� cPt�1Ut

 ! !�1
Ut�1ð Þ>Ut�1 Ut�1ð Þ>Ut�1

� 	�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IK�K

U>
t�1Ct

¼ U>
t�1Ut�1 � c Ut�1ð Þ>Ut�1 Ut�1ð Þ>Ut�1

� 	�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IK�K

Ut�1ð Þ>Ut

2
4

3
5�1

U>
t�1Ct

¼ U>
t�1 Ut�1 � cUtð Þ

� ��1
U>

t�1Ct ¼ ĥIVBEM:

Next, we show Equations (11) and (14) are equivalent. We have

ĥLSPBEM ¼ Pt�1 Ut�1 � cUtð Þð Þ> Pt�1 Ut�1 � cUtð Þð Þ
� 	�1

Pt�1 Ut�1 � cUtð Þð Þ>Pt�1Ct

¼ Ut�1�cUtð Þ>P>
t�1Pt�1 Ut�1 � cUtð Þ

� 	�1
Ut�1�cUtð Þ> Pt�1ð Þ>Pt�1Ct:

It follows from Pt�1 ¼ Ut�1ðU>
t�1Ut�1Þ�1U>

t�1 that ðPt�1Þ>Pt�1 ¼ Pt�1 ¼ P>
t�1: Hence,

ĥLSPBEM equals

Ut�1�cUtð Þ>Pt�1 Ut�1 � cUtð Þ
� 	�1

Ut�1�cUtð Þ>Pt�1Ct

¼ Ut�1 � cUtð Þ>Ut�1 U>
t�1Ut�1

� ��1
U>

t�1 Ut�1 � cUtð Þ
� 	�1

Ut�1�cUtð Þ>Ut�1 U>
t�1Ut�1

� ��1
U>

t�1Ct

¼
�
U>

t�1ðUt�1 � cUtÞ
	�1

U>
t�1Ut�1

� ��1
� 	�1

Ut�1�cUtð Þ>Ut�1

� 	�1
Ut�1�cUtð Þ>Ut�1 U>

t�1Ut�1

� ��1
U>

t�1Ct

¼
�
U>

t�1 Ut�1 � cUtð Þ
	�1

U>
t�1Ut�1

� �
Ut�1�cUtð Þ>Ut�1

� 	�1
Ut�1�cUtð Þ>Ut�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

IK

U>
t�1Ut�1

� ��1
U>

t�1Ct

¼ U>
t�1 Ut�1 � cUtð Þ

� ��1
U>

t�1Ut�1

� �
U>

t�1Ut�1

� ��1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IK

U>
t�1Ct ¼ ĥIVBEM:

This completes the proof of ĥLSPBEM ¼ ĥIVBEM: w
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