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1. Introduction
The emphasis on renewables, such as the goal set by the
Department of Energy to have 20% of electric power from
wind by 2030, has raised the importance of efficiently man-
aging wind and understanding the factors that affect the
cost of using wind. Currently, wind energy accounts for a
small fraction in the market, and the grid operators allow
the wind energy producers to deliver any amount of energy
they produce at a given time. However, as the share of wind
energy in the market grows, such a policy will become
impractical, and grid operators will need to make commit-
ments on the amount of wind energy that will be delivered
in advance. Unfortunately, making commitments is compli-
cated by the inherent uncertainty of wind. This uncertainty
can be mitigated by the presence of storage, which also
introduces the dimension of losses due to the conversion
needed to store and retrieve energy.

We address the problem of making a commitment at
time t to deliver energy from wind during the time interval
[t1 t + 1). The model is most easily applied in the hour-
ahead market, although it can be used in an approximate
fashion in the day-ahead market. Energy storage has long
been recognized as an important technology for smoothing
the variability of wind (Castronuovo and Lopez 2004, and
Korpaas et al. 2003, García-González et al. 2008, Brunetto
and Tina 2007, Ibrahim et al. 2008). We assume that we
store energy when the available energy from wind exceeds
the commitments we have made, but we may incur signif-
icant conversion losses. The problem has cosmetic simi-
larities with classical inventory problems (storing product

to meet demand), but with some fundamental differences.
Inventory problems are typically trying to control the sup-
ply of product to meet an exogenous demand (Axsäter
2000, Zipkin 2000). In our problem, we have exogenous
supply (energy generated from wind) to meet demand by
making advance commitments. This problem is similar to
the reservoir management problem, which is characterized
by random rainfall (see Nandalal and Bogardi 2007 for
an excellent review of dynamic programming models for
reservoir management). Our problem is distinguished by
the need to make advance commitments, along with our
interest in a simple, analytical solution that can be used in
economic models.

In this paper, we derive an optimal policy for mak-
ing energy commitments from wind in the presence of an
energy storage device. We then use this policy to study
the economics of storage capacity in this setting. Given the
richness of the application, we analyze a stylized version
of the problem, which allows us to derive the optimal pol-
icy in a simple, analytic form. Our model captures some
important dimensions of the real problem, such as the stor-
age capacity constraints, storage conversion losses, and a
mean-reverting process for real-time electricity prices. At
the same time, we make a number of simplifying assump-
tions. Some of these include:

• We assume that we are a small player in a large mar-
ket, making it possible to sell all of the energy we produce
as long as we make advance commitments. In addition, we
assume that if the energy from wind (plus what is available
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in storage) falls below our commitment, we can make up
the entire shortfall using the current spot price.

• If the model is applied in a day-ahead market, we
ignore the ability to make hour-ahead adjustments.

• We capture storage capacity and conversion losses, but
we otherwise ignore the physics of energy storage, such
as the relationship between the rate of storage and storage
capacity, and the impact of full discharges on battery life.

• We assume mean-reverting electricity prices and sta-
tionarity in the errors in wind forecasts.

• Our analytical model assumes that wind follows a uni-
form distribution, although we then quantify this error in
experimental comparisons using actual wind patterns.

More realistic models require an algorithmic solution. A
goal of our research is a simple policy that can be used in
economic models without requiring the complex machinery
of stochastic optimization algorithms.

The goal of a wind farm operator is to maximize the
cumulative profit over time by computing the amount
of electricity to commit to sell during the time inter-
val 6t1 t + 15 at each time t0 Brown and Matos (2008),
Brunetto and Tina (2007), Castronuovo and Lopez (2004),
and Korpaas et al. (2003) attempt to solve the problem by
solving a deterministic optimization problem given a par-
ticular sample path over a finite horizon and then averag-
ing the results over the sample paths. The sample paths
are drawn from a fixed (T + 1)-dimensional distribution
describing the electricity generated from the wind farm
during the time interval 6t1 t + 15 for each t = 0111 0 0 0 1 T .
However, this approach does not produce a valid, admis-
sible policy. In practice, we need a policy that allows the
wind farm operator to compute at time t the amount of elec-
tricity to commit to sell during the time interval [t1 t + 1)
based on the state of the environment at time t. The objec-
tive of this paper is to find such a policy and analyze it.

The contributions of this paper are as follows: (1) We
derive an analytical expression for an optimal policy, and
the value of storage, for a stylized model of an energy
storage process in the presence of intermittent generation
requiring advance commitments. (2) We establish assump-
tions on the electricity price and the distribution of wind,
size of the storage, and the decision epoch intervals that
allow us to derive the optimal policy for energy commit-
ment in a closed form and explain the implications of those
assumptions. (3) Under those assumptions, we derive the
optimal policy for advance energy commitment in a sim-
ple, analytical form, when we have storage with an arbi-
trary round-trip efficiency, and when electricity prices are
mean reverting. The optimal policy obtained under such
assumptions resembles the optimal policy for the well-
known newsvendor problem (Khouja 1999, Petruzzi and
Dada 1999). (4) We obtain the stationary distribution of
the storage level corresponding to the optimal policy, from
which we find the economic value of the storage as the rel-
ative increase in the expected revenue due to the existence

of storage. (5) We test our policy using wind energy gener-
ated from truncated Gaussian distributions and demonstrate
that the error introduced by assuming a uniform distribution
for wind is reasonably small.

This paper is organized as follows. In §2, we model the
wind energy storage problem as an MDP with continuous-
state and control variables. In §3, we present our assump-
tions and the structural properties of the optimal value
function of the MDP. In §4, the optimal policy for the
infinite-horizon problem for a storage with general round-
trip efficiency is obtained. Then, the stationary distribution
of the storage level corresponding to the optimal policy
is obtained, from which the economic value of the stor-
age as the relative increase in revenue due to existence of
storage is derived. In §5, we compute the economic value
of storage using the wind speed data obtained from the
North American Land Data Assimilation System (NLDAS)
project (Cosgrove et al. 2003) and the electricity price data
provided by a utility company. In §6, we summarize our
conclusions.

2. The Model
Operating a wind farm depends on two markets: the elec-
tricity spot market and the regulating market. We sell to
the spot market and pay a penalty when we fail to meet
our commitment. The grid operator buys energy from the
regulating market when we fail to meet our commitment.
In the spot market, the energy producers make their com-
mitments to deliver (sell) electricity in advance, whereas
the regulating market is a marketplace for reserve energy
in which the producers have the ability to sell electricity on
a shorter notice than the spot market (Korpaas et al. 2003,
MacKerron and Pearson 2000, Morthorst 2003). As a wind
farm operator, when the electricity production exceeds our
expectation and we have an excess amount of electricity left
over after fulfilling the contractual commitment, we store
the excess amount. On the other hand, when the electricity
production falls too short to meet the contractual commit-
ment, we have to pay a premium, a penalty for failing to
meet the commitment, while the producers in the regulat-
ing market make up for the gap. Therefore, if we commit
too much, we can actually lose money. We have revenues
from our sale on the spot market and costs from tapping
into the regulating market when we fail to meet our com-
mitment for delivery on the spot market (see MacKerron
and Pearson 2000, Chapter 16, for a detailed exposition of
the market system).

At each time t, the market participants submit their bid
for the supply and demand for electricity that must be deliv-
ered during the time interval [t1 t+1). The market overseer
collects the bidding information and determines the spot
market and the regulating market price for the time inter-
val [t1 t+1) shortly after the participants submit their bids.
Therefore, as a wind farm operator, we do not know what
the prices will be when we are making our commitments.
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We make the following assumptions. First, we assume
that at each time t we have a probability distribution of
the electricity we will generate during the time interval
6t1 t + 15. Second, we assume that we are a small partici-
pant in the market such that the market can always absorb
our supply, and the effect of our bidding on the expected
spot market and the regulating market prices of the electric-
ity is negligible. Then, the prices can be treated as exoge-
nous variables and we only need to determine the amount
of electricity to commit to sell. Third, we assume that the
spot market price of the electricity is mean reverting and the
ratio of the expected spot market price over the expected
regulating market price is always less than the round-trip
efficiency of our storage with the discount factor. Other-
wise, the cost of using the storage, which can be measured
by the conversion loss, will be greater than the expected
cost of tapping into the reserve energy in the regulating
market, negating the purpose of using a storage device in
the first place. The third assumption is crucial in maintain-
ing the concavity of the optimization problem.

2.1. System Parameters

Rmax = upper limit on the storage. (unit: storage energy
capacity unit)

�R = coefficient used to convert the generated electric-
ity to potential energy in the storage. (unit: storage
unit/electricity unit)

�E = coefficient used to convert the potential energy
in the storage to electricity. (unit: electricity
unit/storage unit)

Note that 0 <�E�R < 1, where �E�R denotes the round-
trip efficiency. Throughout this paper, 1 − �E�R is referred
to as the conversion loss from storage. �R�E is around 0.6–
0.8 for most of the existing storage systems (Sioshanshi
et al. 2009).
�p = mean of the spot market price of the electricity. (unit:

dollar/electricity unit)
�p = standard deviation of the change in spot market price

of the electricity. (unit: dollar/electricity unit)
�= mean-reversion parameter for the spot market price

of the electricity. � is proportional to the expected
frequency at which the spot market price crosses the
mean per unit time. (unit: 1/time unit)

ã� = time interval between decision epochs.
m= slope of the penalty cost for overcommitment.
b = intercept of the penalty cost for overcommitment.

(unit: dollar/electricity unit)
That is, when the spot market price of the electricity

is pt , the penalty for overcommitment is mpt + b.
�Y = mean of the electricity generated from the wind farm

per unit time. (unit: electricity unit/time unit)
�Y = standard deviation per unit time of the electricity gen-

erated from the wind farm. (unit: electricity unit/time
unit)

� = discount factor in the MDP model. 0 <� < 1.

2.2. State Variables

Let t ∈ �+ be a discrete time index corresponding to the
decision epoch. The actual time corresponding to the time
index t is tã� .

Rt = storage level at time t. 0 ¶Rt ¶Rmax1 ∀ t.
Yt = electricity generated from the wind turbines during

the time interval [t − 11 t). Yt ¾ 01 ∀ t.
pt = spot market price for electricity delivered during the

time interval [t − 11 t). pt ¾ 01 ∀ t.
Wt = 44Yt′51¶t′¶t1 pt5= exogenous state of the system.
St = 4Rt1Wt5= state of the system at time t0

2.3. Decision (Action) Variable

xt = amount of electricity we commit to sell on the spot
market during the time interval [t1 t + 1) determined
by signing the contract at time t. xt ¾ 0.

Because we are making an advance commitment, xt is
not constrained by Rt . The lack of an upper bound on xt
indicates that we are a small player in the market, and
hence there will always be enough demand in the market
to absorb our supply as long as we are making an advance
commitment.

2.4. Exogenous Process

ŷt = noise that captures the random evolution of Yt0 Specif-
ically,

Yt+1 =�Yã� +

M−1
∑

i=0

�i4Yt−i −�Yã�5+ ŷt+1 (1)

for some order M and coefficients �i for 0 ¶ i ¶
M −1. (ŷt5t¾1 and (Yt5t¾1 must be proportional to 4� .

p̂t = noise that captures the random evolution of pt . Specif-
ically, we use a discrete-time version of the Ornstein-
Uhlenbeck process:

pt+1 −pt = �4�p −pt54� + p̂t+10

Let ì be the set of all possible outcomes and let F be
a �-algebra on the set, with filtrations Ft generated by the
information given up to time t:

Ft = �4S01 x01 Y11 S11 x11 Y21 S21 x21 0 0 0 1 Yt1 St1 xt50

� is the probability measure on the measure space (ì1F).
Throughout this paper, a variable with subscript t is
unknown (random) at time t−1 and becomes known (deter-
ministic) at time t. In other words, a variable with subscript
t is Ft-measurable. We have defined the state of our system
at time t as all variables that are Ft-measurable and needed
to compute our decision at time t.
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2.5. Storage Transition Function

Rt+1 =



















































Rmax1 if Rt+�R4Yt+1 −xt5¾Rmax0

Rt+�R4Yt+1 −xt51

if xt<Yt+11Rt+�R4Yt+1 −xt5<Rmax0

Rt−
1
�E

4xt−Yt+151 if Yt+1¶xt<�ERt+Yt+10

01 if xt¾�ERt+Yt+10

(2)

If Yt+1 exceeds the commitment xt , we store the excess
amount Yt+1 − xt with a conversion factor, �R. If Yt+1 is
less than xt , the potential energy in the storage must be
converted into electricity with a conversion factor, �E , to
fulfill the gap, xt − Yt+1. If the amount of electricity gen-
erated during the time interval [t1 t+ 1) plus the electricity
that can be obtained by converting the potential energy in
storage is not enough to cover the contractual commitment,
we deplete our storage, and we have to pay for the gap. It is
important to note the difference between the storage transi-
tion function shown above and the transition functions that
generally appear in traditional inventory management and
resource allocation problems (Axsäter 2000, Zipkin 2000).
Unlike many of the transition functions that appear in tra-
ditional problems, here Rt+1 is not a concave or convex
function of xt or Rt , which makes the concavity of the
optimization problem not obvious.

2.6. Contribution (Revenue) Function

The profit we make during the time interval [t1 t + 1) is
given by

Ĉt+1 =















pt+1xt1 if xt <�ERt + Yt+10

pt+1xt − 4mpt+1 + b56xt − 4�ERt + Yt+1571

if xt ¾ �ERt + Yt+10

pt+1xt is the profit we earn by delivering xt amount of
electricity to the market during the time interval [t1 t + 1),
and mpt+1 + b is the penalty we pay in the case of over-
commitment. Assume

m¾ �

�E�R

and b¾ �

�E�R

�p0 (3)

Then, the cost of using the storage, which can be mea-
sured by the conversion loss, is less than the cost of
overcommitment. Otherwise, for the purpose of maximiz-
ing the revenue, there will be no reason to use a storage
in the first place. This affine penalty is sufficient to ensure
the concavity of the stochastic optimization problem. Note
that these lower bounds on the penalty factor are unfavor-
able assumptions—they make the environment in which we

operate more adverse and lead to a more conservative pol-
icy. If we have to operate in an environment where the
above assumptions do not hold, the optimal policy derived
in this paper under the above assumptions may not be opti-
mal in maximizing revenue, but it should still be robust
with limited risk—we lose less money than expected in the
case of overcommitment. Define

C4St1 xt5 2= Ɛ6Ĉt+1 � St1 xt7

= 6�p + 41 −�4�54pt −�p57

·

[

xt −m ·

∫

0¶y¶xt−�ERt

Ft4y5dy

]

− b
∫

0¶y¶xt−�ERt

Ft4y5dy1 (4)

where

Ft4y5=�6Yt+1 ¶ y �Ft70

C4 · 5 is known as the contribution, or the reward function.
See §1 in the e-companion to this paper for the derivation
of (4). An electronic companion to this paper is available
as part of the online version that can be found at http://or
.journal.informs.org/.

2.7. Objective Function

Let ç be the set of all policies. A policy is an Ft-meas-
urable function X�4St5 that describes the mapping from the
state at time t1 St , to the decision at time t1 xt . For each
� ∈ç, let

G�
t 4St5 2= Ɛ

[ T
∑

t′=t

�t′−tC4St′ 1X
�4St′55

∣

∣

∣

St

]

1 ∀0 ¶ t ¶ T 1

where 0 <� < 1 is the discount factor and T indicates the
end of the horizon. The objective, then, is to find an optimal
policy � =�∗ that satisfies

G�∗

t 4St5= sup
�∈ç

G�
t 4St51

for all 0 ¶ t ¶ T .

3. Main Assumptions and
Structural Result

The main contribution of this paper is the closed-form rep-
resentation of the optimal policy for advance intermittent
energy commitments that also allows us to express the
value of the energy storage in a closed form. In order to
achieve the results, we need assumptions on the probability
distribution of the spot market electricity price and wind
energy, limit on the storage size, and the decision epoch
intervals.
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3.1. Electricity Price and Wind Energy

First, we assume that 4p̂t5t¾0 and (ŷt)t¾1 are independent
in (ì1F1�). It is well known that the price of the elec-
tricity mainly depends on the demand as well as the main
source of energy that is controllable, for example, electric-
ity generated from coal plants. It is fairly reasonable to
assume that the fluctuation in the electricity price is not
significantly influenced by the fluctuation in the uncontrol-
lable and unpredictable energy supply from our wind farm,
especially if we are a small player in the market. In most
cases, intermittent energy plays a minor role in the elec-
tricity markets, anyway.

Next, assume (p̂t)t¾0 are i.i.d. with distribution N(01�2
p ).

Then, (pt5t¾0 is a standard mean-reverting process and

Ɛ6pt+n �Ft7=�p+41−�4�5n4pt−�p51 ∀n1t∈�+0 (5)

It is common to use a mean-reverting process to model
electricity prices, as shown in Eydeland and Wolyniec
(2003). Similarly, assume (ŷt)t¾1 are 0-mean and i.i.d. with
standard deviation �Yã� . Then, in most cases, the distri-
butions of (ŷt)t¾1 are assumed to be truncated Gaussian
with mean 0 and standard deviation �Yã� . However, in
this paper we assume that (ŷt)t¾1 are uniformly distributed
with mean 0 with standard deviation �Yã� . Assuming that
(ŷt)t¾1 are uniformly distributed allows us to explicitly
compute various expectations that are needed to derive the
optimal policy in a closed form. Because a truncated Gaus-
sian distribution is bounded, as long as we match the mean
and the variance, a uniform distribution can be a statis-
tically robust substitute for the truncated Gaussian distri-
bution in the context of optimizing a value function. This
fact is demonstrated in §5 where we conduct numerical
experiments in which we apply the optimal policy derived
under the assumption of uniformly distributed (ŷt)t¾1 to the
data generated from truncated Gaussian distributions. Then,
given Ft , Yt+1 ∼U(�t1 �t +�), where

� 2= 2
√

3�Yã�

and

�t 2=�Yã� +

M−1
∑

i=0

�i4Yt−i −�Yã�5−
�

2
1 ∀ t0 (6)

The cumulative density function (CDF) of Yt+1 computed
at time t is given by

Ft4y5=�6Yt+1 ¶ y �Ft7=























01 if y < �t

y− �t
�

if �t ¶ y ¶ �t +�

11 if y > �t +�0

The expected contribution function C4 · ) is not indexed
by t because the CDF Ft4 · ) is determined by �t , which
is a deterministic function of St . The expected contribu-
tion is completely determined by St and xt . However, it
is important to note that �t and � do not necessarily have

to be defined as shown above. The results obtained in this
paper are applicable as long as we use a forecasting model
that predicts that the electricity produced during the time
interval [t1 t + 1) is uniformly distributed given Ft .

3.2. Size of the Storage

Next, we need an assumption on the size of the storage.
Because the electricity price is mean reverting, if we have
an infinitely large storage, a naive policy that stores the
energy when the expected spot market price is less than
some fixed price and commits to sell the energy in stor-
age plus the energy we are certain to produce when the
spot market price is greater than some fixed price will be a
riskless arbitrage policy. Arbitrage here means that there is
zero probability of losing money due to overcommitment or
losing energy due to the storage being full. There is always
a significant conversion loss. Such a case is comparable to
trading a stock whose price is mean reverting. In reality, a
storage with reasonably good round-trip efficiency that can
be charged and discharged in a short amount of time will
be expensive to build and maintain, and we need an intelli-
gent way of determining the appropriate size of the storage.
We propose that the size of the storage be determined in
comparison to �, given by:

� 2= �R

�Y

�
2
√

3 min
[

m− 1
m

1
b

b+�E�R��p

]

0 (7)

It is obvious that as the penalty factors m and b become
larger, we need to allow for a larger storage because our
commitment level will be more conservative and we will
end up storing more energy. Also, if the round-trip effi-
ciency of the storage �E�R is small, we must allow for a
larger storage in order to compensate for the energy that
will be lost in conversion. Next, because ��p is the dis-
counted expected spot market price of the electricity, if ��p

is small, we need to allow for a larger storage because our
commitment level will be more conservative.

What makes � interesting is the term �Y /�. Recall that
� is proportional to the expected number of times the price
crosses the mean per-unit time. Then, 1/� is proportional
to the expected amount of time between two consecutive
crossings. Therefore, �Y /� is proportional to the volatility
in the wind energy that is produced while the spot mar-
ket price “completes a cycle.” Because Rmax determines
our ability to accumulate energy while the price moves,
we must allow for a larger storage when �Y /� gets larger.
If Rmax = �, we can implement an arbitrage policy, as
explained above. If Rmax ¶ �, we must implement a more
active risk taking policy that considers the movement of the
price towards the mean but not “count on” the price reach-
ing a desirable level within a desirable amount of time.
The middle regime in which � < Rmax < � will demand
the most complicated policy that mixes risk-taking with
arbitrage. Finding the optimal policy in this middle regime
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will be an interesting research topic, but it is beyond the
scope of this paper. For this paper, we assume

Rmax ¶ �R

�Y

�
2
√

3 min
[

m− 1
m

1
b

b+�E�R��p

]

0 (8)

(8) is necessary in order to derive (10) shown in the next
section, which in turn is necessary to prove lemma (18) that
is used to derive the marginal value function in a closed
form. However, even though (8) is imposed for mathemat-
ical convenience, numbers come out reasonable, as shown
in §5. If we use real data to obtain �Y 1 �1�p1 �E�R and
use m and b that satisfy (3), if we let
Rmax

�Y�R

= 1071

for example, (8) is satisfied. That is, we can have the size
of Rmax in the same order of magnitude of the standard
deviation in wind energy. Having a storage of limited size
allows us to obtain the optimal policy in a closed form
and provide us with various insights, as is shown in §4.
Moreover, before investing a significant amount of capital
to build a large storage, it is reasonable to assume that
wind farm operators will start with a small storage, study
its effects, and then subsequently make the investment for
additional storage. This paper derives the optimal policy
for energy commitment and the corresponding value of the
storage when the storage is small.

As will be shown in §4, the optimal policy under the
assumption (8) will still depend on the mean of the elec-
tricity price and how far the price is away from the mean.
However, the optimal policy will be based on the premise
that the storage is not large enough to allow us to avoid
the risk of overcommitment by waiting for the price to rise
without facing the risk of losing energy due to the storage
being full. Thus, (8) forces us to always balance the risk of
overcommitment and the risk of undercommitment. We not
only want to avoid paying the penalty for overcommitment,
but we also want to avoid committing too little and losing
energy due to conversion and the storage being full.

Suppose we have a large storage device and (8) is vio-
lated, but we choose to implement the policy derived in this
paper that is optimal under the assumption of small stor-
age, anyway. Then, the cost of overcommitment will not
change, but the risk of undercommitment will be smaller
than expected because we are less likely to lose energy
due to the storage being full. Therefore, the optimal policy
derived in this paper will still be robust when the assump-
tion (8) does not hold.

3.3. Decision Epoch Interval

Finally, we need an assumption on how often we make our
commitment decisions. We can rearrange the terms from (8)
to obtain

max
[

Rmax4m−�E�R�5

2
√

34m− 15�R�Y −Rmax�E�R��
1

Rmaxb

2
√

3�R�Y b−Rmax�E�R���p

]

¶ 1
�
0

We assume that the time interval ã� between our decision
epochs satisfies the following:

max
[

Rmax4m−�E�R�5

2
√

34m− 15�R�Y −Rmax�E�R��
1

Rmaxb

2
√

3�R�Y b−Rmax�E�R���p

]

¶ã� ¶ 1
�
0 (9)

(9) ensures that the price always moves toward the mean
in expectation, but does not overshoot and move pass the
mean in expectation. The lower bound can be rearranged
to be written as

Rmax ¶ �R�min
[

m− 1
m−�E�R�41 −�4�5

1

b

b+�E�R��4��p

]

0 (10)

Because we have a limit on the size of our storage, as
shown in our assumption (8), if ã� is too large, the amount
of electricity that is produced between our decisions can
be too large and we are likely to lose energy due to the
storage being full. (9) gives us a reasonable decision epoch
time interval ã� .

3.4. Structural Results

In this section, we show some structural results of the value
function. Let V �

t 4St5 be a function that satisfies

V �
T 4ST 5=C4ST 1X

�
T 4ST 551

V �
t 4St5=C4St1X

�
t 4St55+�Ɛ6V �

t+14St+15 � St71

∀0 ¶ t ¶ T − 10

Then, V �
t 4St5 = G�

t 4St5, ∀0 ¶ t ¶ T . For 0 ¶ t ¶ T , let
Vt4St5 satisfy the following:

VT 4ST 5= max
x∈�+

C4ST 1 x51

Vt4St5= max
x∈�+

8C4St1 x5+�Ɛ6Vt+14St+15 � St1 x791

∀0 ¶ t ¶ T − 10

Vt4St5 is known as the value function. According to Put-
erman (1994), Vt4St5=G�∗

t 4St5, ∀0 ¶ t ¶ T . Denote

V x
t 4St1 x5 2= Ɛ6Vt+14St+15 � St1 x71 ∀0 ¶ t ¶ T 0

The augmented value function V x
t 4St1 x5 is an example

of a Q-factor. Let

x∗

t 2= arg max
x∈�+

8C4St1 x5+�V x
t 4St1 x59

=X�∗

4St51 ∀0 ¶ t ¶ T 0
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Then,

Vt4St5= max
x∈�+

8C4St1 x5+�V x
t 4St1 x59

=C4St1 x
∗

t 5+�V x
t 4St1 x

∗

t 51 ∀0 ¶ t ¶ T 0

At the end of the horizon, we can show that

d

dRT

VT 4ST 5= �E6�p + 41 −�4�54pT −�p571 (11)

and hence

d2

dR2
T

VT 4ST 5= 00 (12)

See §2 in the e-companion to this paper for the derivation
of (11) and (12).

Now that we have defined the value function, we present
its structure. The structural results are mainly attributable
to the storage transition function and the contribution func-
tion, and they follow from three of the aforementioned
assumptions: 4ŷt5t¾1 and 4p̂t5t¾1 are independent, 4pt5t¾1 is
mean reverting as shown in (5), and

m¾ �

�E�R

and b¾ �

�E�R

�p0

Then, ∀0 ¶ t ¶ T − 11 we have:

Structural Result 1. C4St1 x5 + �V x
t 4St1 x5 is a con-

cave function of 4Rt1 x50

Structural Result 2. The optimal decision x∗
t is posi-

tive and finite and

¡

¡x
C4St1 x

∗

t 5+�
¡

¡x
V x
t 4St1 x

∗

t 5= 00 (13)

Structural Result 3.

d

dRt

Vt4St5= �E6�p + 41 −�4�54pt −�p57

+�Ɛ

[(

�E

¡Rt+1

¡x
+

¡Rt+1

¡Rt

)

d

dRt+1

Vt+14St+15
∣

∣

∣

St1 x
∗

t

]

0 (14)

Structural Result 4. Vt4St5 is a concave function of Rt0

Structural Result 5.

�E6�p + 41 −�4�54pt −�p57

¶ d

dRt

Vt4St5¶
1
�R

6�p + 41 −�4�54pt −�p570 (15)

See §2 in the e-companion to this paper for the proof of
the above results.

In Structural Result 3, which shows the recursive rela-
tionship between the marginal value functions, the meaning
of the term

�E6�p + 41 −�4�54pt −�p57

is obvious; if we had an extra ãRt amount of energy in
storage, we can commit to sell it and gain

ãRt�E6�p + 41 −�4�54pt −�p57

in expected revenue. However, the second term requires
some analysis. From (2), we know that

�E

¡Rt+1

¡x
+

¡Rt+1

¡Rt

∣

∣

∣

∣

x=x∗
t

=

{

1 −�E�R1 if x∗
t <Yt+11 Rt +�R4Yt+1 − x∗

t 5 < Rmax1

01 otherwise,

describes the conversion loss that occurs when we use the
energy that is put into the storage when we generate more
electricity than we need to satisfy the commitment. There-
fore, the term

Ɛ

[(

�E

¡Rt+1

¡x
+

¡Rt+1

¡Rt

)

d

dRt+1

Vt+14St+15
∣

∣

∣

St1 x
∗

t

]

can be seen as the expected portion of the marginal future
value function that is saved by not having to go through
the process of energy conversion.

4. Main Result—Infinite-Horizon Analysis
In this section, we derive the marginal value function
and the corresponding optimal policy for advance energy
commitment that maximizes the expected revenue in the
infinite-horizon case. However, although we can obtain the
value of always having a storage as shown in this paper, it
is important to note that the cost of always having storage
is not the cost of installing the storage once in the begin-
ning. Batteries have finite lifetime, and we might have to
reinstall them every 10 years, for example. We let T −→ �

and drop the index t from the value function:

V 4St5= lim
T−→�

Ɛ

[ T
∑

t′=t

�t′−tC4St′ 1X
�∗

4St′55
∣

∣

∣

St

]

0

Then, V (St) satisfies

V 4St5= max
x∈�+

{

C4St1 x5+�Ɛ6V 4St+15
∣

∣St1 x7
}

=C4St1 x
∗

t 5+�V x4St1 x
∗

t 50

Because the structural properties shown in the previous
section hold true for all T 1V 4St5 maintains those structural
properties. In §4.1, we derive the optimal policy using the
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main assumptions stated in §2 and the structural results
shown in §3. We first state

Theorem 1. The optimal policy, when the electricity gen-
erated from the wind farm is uniformly distributed from �t
to �t +�, is given by

x∗

t =X�∗

4St5

= �ERt + �t +
�pK1 + 4pt −�p541 −�4�5K2

m6�p + 4pt −�p541 −�4�57+ b
� (16)

where

K1 = 1 −�
�R�E

1 −�R�E

(

exp
[

�41 −�R�E5
1
�

Rmax

�R

]

− 1
)

1

and

K2 = 1 −�41 −�4�5
�R�E

1 −�R�E

·

(

exp
[

�41 −�4�541 −�R�E5
1
�

Rmax

�R

]

− 1
)

0

Before proving (16), we first analyze its components.
Because �ERt is the amount of electricity that can be pro-
duced by converting the energy in storage and �t is the
amount of electricity that is certain to be produced, �ERt +

�t can be seen as the riskless term. Because there is a limit
on the size of the storage and we lose energy if the storage
is full, we always want to commit to sell at least �ERt +�t .
The issue is then how much more to commit relative to this
base level. Overcommitment is costly because the expected
penalty always exceeds the expected spot price. Undercom-
mitment is costly for two reasons. First, excess production
must be stored and storage is not free because the round-
trip efficiency is less than 1. Second, because there is a limit
on the amount of energy you can store, Rmax, if we commit
too little and produce too much we lose the production that
cannot be stored. Therefore, the optimal extra commitment
over the base level must balance the cost of overcommit-
ment and undercommitment. � is the uncertainty in the
electricity production, and committing

�pK1 + 4pt −�p541 −�4�5K2

m6�p + 4pt −�p541 −�4�57+ b
(17)

fraction of � achieves the balance between the cost of over-
commitment and the cost of undercommitment. Note that
the solution to a typical newsvendor problem states that the
vendor should always try to satisfy a fixed fraction of the
random demand (Khouja 1999, Petruzzi and Dada 1999).
However, in our case, the fraction is a function of the price
because we can speculate on the movement of the price
that is mean reverting.

In §4.2, we obtain the stationary distribution of the stor-
age level corresponding to the optimal policy. In §4.3, we
derive the economic value of the storage as the relative
increase in average revenue due to the existence of the
storage.

4.1. Optimal Policy

In this section, we prove the optimal policy (16) by
first deriving the marginal value function. From Structural
Result 2, we know that the optimal decision x∗

t must satisfy

¡

¡x
C4St1 x

∗

t 5+
¡

¡x
V x4St1 x

∗

t 5

=
¡

¡x
C4St1 x

∗

t 5+�Ɛ

[

¡Rt+1

¡x

d

dRt+1

V 4St+15
∣

∣

∣

St1 x
∗

t

]

= 00

Therefore, in order to compute x∗
t , we only need to

know the derivative of V 4St+15 with respect to Rt+1,
and we do not need to know V 4St+15 itself. To derive
4d/dRt+15V 4St+15, we need the following lemma:

Lemma 1.

x∗

t +
Rmax −Rt

�R

¶ �t +�1 ∀ t0 (18)

Proof. See §3 in the e-companion to this paper. The proof
utilizes the inequality (10). �

We know that �t + � − x∗
t is the maximum amount of

excess electricity that can be left over after fulfilling the
commitment. Suppose that the inequality (18) does not
hold. Then, �R4�t + � − x∗

t 5 ¶ Rmax − Rt , indicating that
there is always enough room left in the storage to accom-
modate all of the excess electricity, implying that there
is no risk of undercommitment at all. However, we have
restricted the size of the storage as shown in (10) precisely
to avoid such a situation. We know that the optimal policy
ought to balance the risk of undercommitment and the risk
of overcommitment. The above lemma allows us to com-
pute 4d/dRt5V 4St5, from which we can derive the optimal
policy. We first state

Theorem 2.

d

dRt

V 4St5=�E�pexp
[

�41−�R�E5
1
�

(

Rmax −Rt

�R

)]

+�E4pt−�p541−�4�5

·exp
[

�41−�4t541−�E�R5
1
�

(

Rmax −Rt

�R

)]

0

(19)

Proof. Here we show a condensed version of the proof by
omitting various algebraic steps. See §4 in the e-companion
to this paper for a detailed proof. We prove the theorem
by using backward induction in the finite-horizon setting
and letting T go to infinity. First, we make the induction
hypothesis that

d

dRT−i

VT−i4ST−i5

= �E�p

i
∑

j=0

1
j!

[

�41 −�R�E5
1
�

(

Rmax −RT−i

�R

)]j
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+�E4pT−i −�p541 −�4�5

·

i
∑

j=0

1
j!

[

�41 −�4t541 −�R�E5
1
�

(

Rmax −RT−i

�R

)]

(20)

for some i¾ 0, and prove that

d

dRT−4i+15

VT−4i+154ST−4i+155

= �E�p

i+1
∑

j=0

1
j!

[

�41 −�R�E5
1
�

(

Rmax −RT−i

�R

)]j

+�E4pT−4i+15 −�p541 −�4�5

·

i+1
∑

j=0

1
j!

[

�41 −�4t541 −�R�E5
1
�

(

Rmax −RT−4i+15

�R

)]j

0

From (11), we know that

d

dRT

VT 4ST 5= �E�p +�E4pT −�p541 −�4�50

Therefore, the expression for 4d/dRT−i5VT−i4ST−i5 shown
above is true for i = 0. From (2), we can show that
(

�E

¡Rt+1

¡x
+

¡Rt+1

¡Rt

)

1
j!

(

Rmax −Rt+1

�R

)j ∣
∣

∣

∣

x=x∗
t

=



















41 −�E�R5
1
j!

[

Rmax −Rt

�R

− 4Yt+1 − x∗

t 5

]j

1

if x∗
t <Yt+11Rt +�R4Yt+1 − x∗

t 5 < Rmax

01 otherwise.

Next, by (18),

ft4y5=
1
�
1 ∀x∗

t ¶ y ¶ x∗

t +
Rmax −Rt

�R

0

Then, we can show

Ɛ

[(

�E

¡Rt+1

¡x
+

¡Rt+1

¡Rt

)

1
j!

(

Rmax −Rt+1

�R

)j
∣

∣

∣

St1 x
∗

t

]

= 41 −�E�R5
1
�

1
4j + 15!

(

Rmax −Rt

�R

)j+1

0

From Structural Result 3,
d

dRT−4i+15

VT−4i+154ST−4i+155

= �E4�p + 41 −�4�54pT−4i+15 −�p55

+�Ɛ

[(

�E

¡RT−i

¡x
+

¡RT−i

¡RT−4i+15

)

·
d

dRT−i

VT−i4ST−i5
∣

∣

∣

ST−4i+151 x
∗

T−4i+15

]

= �E�p

i+1
∑

j=0

1
j!

[

�41 −�R�E5
1
�

(

Rmax −RT−4i+15

�R

)]j

+�E4pT−4i+15 −�p541 −�4�5

·

i+1
∑

j=0

1
j!

[

�41 −�4�5 · 41 −�R�E5
1
�

(

Rmax −RT−4i+15

�R

)]j

0

Therefore, (20) is true for ∀ i ¾ 00 Next, substitute t for
T − 4i+ 150 Then,

d

dRt

Vt4St5

= �E�p

T−t
∑

j=0

1
j!

[

�41 −�R�E5
1
�

(

Rmax −Rt

�R

)]j

+�E4pt −�p541 −�4�5

·

T−t
∑

j=0

1
j!

[

�41 −�4�5 · 41 −�R�E5
1
�

(

Rmax −RT−4i+15

�R

)]j

1

∀ t ¶ T 0 If we let T go to infinity,

d

dRt

V 4St5

= lim
T−→�

d

dRt

Vt4St5

=�E�pexp
[

�41−�R�E5
1
�

(

Rmax −Rt

�R

)]

+�E4pt−�p541−�4�5

·exp
[

�41−�4�541−�R�E5
1
�

(

Rmax −Rt

�R

)]

1 ∀t0 �

To compute the optimal decision x∗
t at time t, all we

need to know is 4d/dRt+15V 4St+15. Because we now know
what 4d/dRt+15V 4St+15 is, we are ready to prove (16).

Proof of (16). From (19),

Ɛ

[

¡Rt+1

¡x

d

dRt+1

V 4St+15
∣

∣

∣

St1 x

]

= −�p

�R�E

1 −�R�E

(

exp
[

�41 −�R�E5
1
�

Rmax

�R

]

− 1
)

− 4pt −�p541 −�4�52 �R�E

1 −�R�E

·

(

exp
[

�41 −�4�5 · 41 −�R�E5
1
�

Rmax

�R

]

− 1
)

1 (21)

∀x¾ �ERt +�t0 To see the derivation of (21), see §5 in the
e-companion to this paper. Then, from Structural Result 2,
we know that the optimal decision x∗

t must satisfy

¡

¡x
C4St1 x

∗

t 5+�
¡

¡x
V x4St1 x

∗

t 5

= pt1 t+1 − 4mpt1 t+1 + b5Ft4x
∗

t −�ERt5

+�Ɛ

[

¡Rt+1

¡x

d

dRt+1

V 4St+15
∣

∣

∣

St1 x
∗

t

]

= 01

where

pt1 t+1 2= Ɛ6pt+1 �Ft7=�p + 41 −�4�54pt −�p50
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Therefore,

4mpt1 t+1 + b5
1
�
4x∗

t −�ERt − �t5

= pt1 t+1 +�Ɛ

[

¡Rt+1

¡x

d

dRt+1

V 4St+15
∣

∣

∣

St1 x
∗

t

]

=�p + 4pt −�p541 −�4�5

−��p

�R�E

1 −�R�E

(

exp
[

�41 −�R�E5
1
�

Rmax

�R

]

− 1
)

−�4pt −�p541 −�4�52 �R�E

1 −�R�E

·

(

exp
[

�41 −�4�541 −�R�E5
1
�

Rmax

�R

]

− 1
)

=�pK1 + 4pt −�p541 −�4�5K20

Then,

x∗

t = �ERt + �t +
�pK1 + 4pt −�p541 −�4�5K2

m6�p + 4pt −�p541 −�4�57+ b
�0 �

Note that both K1 and K2 increases when �R�E , Rmax,
or � is reduced. We know that the optimal amount should
naturally depend on the penalty, the round-trip efficiency,
the maximum storage limit, and the discount factor as
follows. First, it should decrease with increasing penalty,
because being short incurs the penalty. Second, it should
increase with reduced round-trip efficiency, because being
long implies paying to store (losing energy). Third, it
should decrease with increasing maximum storage. If our
storage capacity is greater, we lose less of the energy we
do not sell, and we can afford to be more conservative and
commit less. Fourth, it should increase with decreasing dis-
count factor, because the value of what we store now to
use in the future decreases with the discount factor.

Next, suppose storage devices with sufficient capaci-
ties become ubiquitous in the future, and hence electricity
becomes a very liquid asset just like stocks. Then, arbi-
traguers taking advantage of predictable patterns such as
mean reversion will cause the electricity prices to behave
more and more like a martingale.

Corollary 1. If �= 0, implying that 4pt5t¾0 is a martin-
gale, then K1 =K2 and

x∗

t = �ERt + �t +
pt

mpt + b
K1�0 (22)

If the price is a martingale, it is “stochastically constant”
and we cannot speculate on the future movement of the
price. Then, the fraction is just directly proportional to the
ratio between the current expected spot market price and
the penalty price.

4.2. Stationary Distribution of the Storage Level

Now that we have the optimal policy (16), we want to
assess the expected value of storage corresponding to the

policy. In order to obtain a closed-form expression for the
expected value of storage, we must analyze the dynamics
of our system at the steady state and derive the stationary
distribution of the storage level. Denote

Zt 2=
�pK1 + 4pt −�p541 −�4�5K2

m6�p + 4pt −�p541 −�4�57+ b
1 ∀ t0

From (2), we know that Rt+1 is a function of
(Rt1 x

∗
t 1 Yt+1). Because Yt+1 is a function of �t and x∗

t is
a function of 4Rt1Zt1 �t5 as shown in (16), we can think
of Rt+1 as a function of 4Rt1Zt1 �t5. However, because �t
is the amount of electricity that we are certain to produce
and commit, we know that Rt+1 in fact does not depend
on �t . Thus, Rt+1 is a function of 4Rt1Zt5. Therefore, if the
random process 4Zt5t¾0 is stationary ergodic, the process
4Rt5t¾0 will reach a steady state. Because 4Zt5t¾1 is driven
by 4pt5t¾1, we first need to know the distribution of 4pt5t¾1

in steady state. Here we use the term “steady state” to refer
to the unconditional process.

Proposition 1. At steady state,

pt ∼N

(

�p1
�2
p

1 − 41 −�ã�52

)

0 (23)

Proof. We know that (23) is true if and only if (23) implies

pt+1 ∼N

(

�p1
�2
p

1 − 41 −�ã�52

)

0

Suppose (23) is true. Then,

41 −�ã�54pt −�p5∼N

(

01
41 −�ã�52�2

p

1 − 41 −�ã�52

)

0

Because p̂t+1 is independent from pt and p̂t+1 ∼N
(

01�2
p

)

,

41 −�ã�54pt −�p5+ p̂t+1 ∼N

(

01
�2
p

1 − 41 −�ã�52

)

0

Then,

pt+1 =�p + 41 −�ã�54pt −�p5

+ p̂t+1 ∼N

(

�p1
�2
p

1 − 41 −�ã�52

)

0 �

Because Zt is a deterministic function of pt , 4Zt5t¾1

reaches steady state when 4pt5t¾1 reaches steady state.
Although real-time electricity spot prices can be negative
due to tax subsidies, it will be extremely rare for the day-
ahead forecast price to be negative. Thus, in practice, we
may assume that the price is always going to be positive.
The first and second moments of Zt at steady state given
pt ¾ 0 is

Z̄1 2= Ɛ

[

�pK1 + 4�−�p541 −�4�5K2

m6�p + 4�−�p541 −�4�57+ b

∣

∣

∣

�¾ 0
]

1 (24)
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and

Z̄2 2=Ɛ

[(

�pK1 +4�−�p541−�4�5K2

m6�p+4�−�p541−�4�57+b

)2
∣

∣

∣

�¾0
]

(25)

where

�∼N

(

�p1
�2
p

1 − 41 −�ã�52

)

0

Also, define

Z̃1 2= Ɛ

[

�p + 4�−�p541 −�4�5

m6�p + 4�−�p541 −�4�57+ b

∣

∣

∣

�¾ 0
]

1

and

Z̃2 2= Ɛ

[(

�p + 4�−�p541 −�4�5

m6�p + 4�−�p541 −�4�57+ b

)2
∣

∣

∣

�¾ 0
]

1

corresponding to the case where Rmax = 01 which makes
K1 = K2 = 10 Z̄11 Z̄21 Z̃1, and Z̃2 can be easily computed
via Monte Carlo simulation using sample realizations of �
greater than zero.

Proposition 2. Then, the stationary distribution of Rt cor-
responding to the steady state is

fRt
4r5=

d

dr
�6Rt ¶ r7

= Z̄1�4r5+

(

Z̄1 +
�R�E

1 −�R�E

)

1 −�R�E

�R�

· exp
[

1 −�E�R

�R�
r

]

180¶r¶Rmax9
+

1
1 −�E�R

·

(

1 − 4�R�E + Z̄11 −�E�R5

· exp
[

1 −�E�R

�R�
Rmax

])

�4r −Rmax51 (26)

where �4 · 5 denotes the Dirac-delta function.

Proof. Here, we show a condensed version of the proof by
omitting various algebraic steps. See §6 in the e-companion
to this paper for a detailed proof. From (2) and (16), we
can show that

�6Rt+1 = 0 �Rt7=�6Rt+1 = 07= Z̄1

and

�6Rt+1 =Rmax �Rt7= 1 − Z̄1 −
Rmax

�R�
+

41 −�E�R5Rt

�R�

in the steady-state. Also from (2), we can show that

fRt+1�Rt
4u �Rt5=















�E

�
if 0 <u<Rt

1
�R�

if Rt ¶ u<Rmax0

Therefore, we can write the conditional probability density
function as

fRt+1 �Rt
4u �Rt = r5

= Z̄1�4u5+
�E

�
180¶u<r9 +

1
�R�

18r¶u¶Rmax9

+

(

1 − Z̄1 −
Rmax

�R�
+

41 −�E�R5r

�R�

)

�4u−Rmax51

where �4 · 5 denotes the Dirac-delta function. Because

�6Rt = 07= Z̄1

in the steady state, we know that the stationary distribution
can be written as

fRt
4r5= Z̄1�4r5+ g4r5180¶r¶Rmax9

+

(

1 − Z̄1 −

∫ Rmax

r=0
g4r5dr

)

�4r −Rmax51

for some function g4r5. By definition, the stationary distri-
bution must satisfy

fRt+1
4u5=

∫ Rmax

r=0
fRt+11Rt

4u1 r5dr

=

∫ Rmax

r=0
fRt+1 �Rt

4u �Rt = r5fRt
4r5dr = fRt

4u50

By computing the integral and matching the terms, we can
show that

g4u5=
Z̄141 −�R�E5

�R�
+

�R�E

�R�
+

1 −�R�E

�R�

∫ u

r=0
g4r5dr0

Taking the derivative with respect to u on both sides gives

g′4u5=
1 −�R�E

�R�
g4u50

Then, we can show that

g4r5=

(

Z̄1 +
�R�E

1 −�R�E

)

1 −�R�E

�R�
exp

[

1 −�E�R

�R�
r

]

and

1 − Z̄1 −

∫ Rmax

r=0
g4r5dr

=
1

1 −�E�R

(

1 − 4�R�E + Z̄11 −�E�R5

· exp
[

1 −�E�R

�R�
Rmax

])

0 �

The stationary distribution (26) shows that if the round-
trip efficiency is lower, the probability of hitting the capac-
ity limit Rmax is lower while the probability of depleting
the storage is higher, as expected.
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4.3. Economic Value of the Storage

Using the stationary distribution of the storage level
obtained in the previous section, we can compute the
following:

Corollary 2. In steady state,

Ɛ6Rt7=
Rmax

1 −�R�E

−

(

Z̄1 +
�R�E

1 −�R�E

)

�R�

1 −�R�E

·

(

exp
[

1 −�R�E

�R�
Rmax

]

− 1
)

(27)

and the expected revenue in steady state is

C
Rmax
SS 2= Ɛ6C4St1 x

∗

t 57=�p�EƐ6Rt7+�pƐ6�t7

+�pZ̄1�− 4m�p + b5
�

2
Z̄2

=
�p�ERmax

1 −�R�E

−�p�

(

Z̄1 +
�R�E

1 −�R�E

)

�E�R

1 −�R�E

·

(

exp
[

1 −�R�E

�R�
Rmax

]

− 1
)

+�p�

·

(

Z̄1 −m
Z̄2

2
−

1
2

)

+�p�Y − b�
Z̄2

2
0 (28)

See §7 in the e-companion to this paper for the derivation
of (27) and (28). We know that K1 = K2 = 1 if Rmax = 0.
Therefore, from (28), if we do not have a storage and
Rmax = Rt = 0, ∀ t1 the expected revenue at steady-state
would be

C0
SS 2=�p�

(

Z̃1 −m
Z̃2

2
−

1
2

)

+�p�Y − b�
Z̃2

2
0

Then, the relative increase in the expected revenue in
steady state due to the existence of storage is

� 2=
C

Rmax
SS −C0

SS

C0
SS

=

{

�E�R

1 −�R�E

Rmax

��R

−

(

Z̄1 +
�R�E

1 −�R�E

)

·
�E�R

1 −�R�E

(

exp
[

41 −�R�E5
Rmax

�R�

]

− 1
)

+ 4Z̄1 − Z̃15−
1
2

(

m+
b

�p

)

4Z̄2 − Z̃25

}

·

{

Z̃1 −m
Z̃2

2
−

1
2

+
�Y

�
−

b

�p

Z̃2

2

}−1

0 (29)

5. Numerical Results
In the previous section, we derived the optimal commitment
policy and the corresponding value of the storage, assuming
that the forecast of electricity generated from the wind farm
is uniformly distributed. However, the hourly wind speed

data obtained from the North American Land Data Assim-
ilation System (NLDAS) project shows that when forecast-
ing the cube of the speed of the wind, a truncated Gaussian
distribution fits the data better than a uniform distribution.
In this section, we simulate the wind energy process using
a truncated Gaussian distribution and compare the relative
increase in revenue due to the existence of storage com-
puted numerically by implementing our policy (16) to the
one computed theoretically from Equation (29).

From the NLDAS project, we extracted wind speed data
from 22 locations across the United States. Because the
wind characteristics vary throughout the year due to sea-
sonal effects, it is common to assume that the wind process
is time invariant over a one-month period, but not beyond
that (Ettoumi et al. 2003). Therefore, we use separate model
parameters and corresponding policies for each month. We
found that the third-order correlation is very small com-
pared to the first- and second-order correlations, and repre-
sent 4Yt5t¾1, the energy generated from our wind farm, as
a second-order AR process:

Yt+1 =�Y +�04Yt −�Y 5+�14Yt−1 −�Y 5+ ŷt+11 (30)

for some �Y 1�0, and �1. When we implement our pol-
icy (16), we assume 4ŷt5t¾1 is i.i.d. with distribution
U4−�/21�/251 for some �. � is computed by matching
�2/12 to the variance of the residual in the AR process,
4ŷt5t>1. �Y s (in m3/s35 for the selected 22 locations com-
puted using the January 2000 data, for example, are given
in Table 1 and �s (in m3/s35 are given in Table 2. From
Tables 1 and 2, we can see that �Y s and �s are compara-
ble in magnitude, implying that wind energy production is
highly volatile.

After we compute �Y 1�01�1, and � using the NLDAS
data, we generate wind energy processes 4Yt5t¾1 from Equa-
tion (30) where 4ŷt5t>1 is i.i.d. and ŷt ∼ N401�2/125, ∀ t.
However, when we are computing our commitment from
our policy (16), we assume ŷt ∼U4−�/21�/25. From (6),

�t =�Y +�04Yt −�Y 5+�14Yt−1 −�Y 5−
�

2
0

Next, we fit the hourly spot market price provided by a
utility company to the process

pt+1 =�p + 41 −�4�54pt −�p5+ p̂t+11 (31)

where 4p̂t5t¾0 are i.i.d. with distribution N401�2
p5. In our

experiments, we use �E�R = 0075, � = 0099, �p = 4909,
�p = 47046, 4� = 1, � = 004182, m = 106, b = 6705,
and 4Rmax5/4�R�5 = 005. Then, Z̄1 = 001912, Z̄2 = 000467,
Z̃1 = 003270, and Z̃2 = 001139. This gives

� =
001893

�Y /�− 003411
0 (32)

We implemented our policy (16) 100 times by generating
the prices from (31) and the wind energy process from (30)
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Table 1. Mean of the cube of the speed of the wind in January 2000.

120.0725 �W 111.3225 �W 102.5725 �W 93.8225 �W 85.0725 �W 76.3225 �W

51.8125 �N 18107084 13200368 14404341 17207166 27602300 35106345
46.1875 �N 17303216 11907605 31807690 34701192 48202868 53108000
40.5625 �N 15604102 23101095 N/A 38006635 40107359 49108443
34.9375 �N 12107831 N/A 22407323 21208919 19802480 72800436

Table 2. Spread of the cube of the speed of the wind in January 2000.

120.0725 �W 111.3225 �W 102.5725 �W 93.8225 �W 85.0725 �W 76.3225 �W

51.8125 �N 25003154 10306640 18601639 12705475 15006440 24104260
46.1875 �N 15901172 8601458 29404335 30505882 32909655 44700356
40.5625 �N 15007949 15100185 N/A 45605994 35400033 50100571
34.9375 �N 16709374 N/A 29401367 24208136 17506343 49402871

using the coefficients �, �0, �1, and �. Then, we computed
the relative increase in revenue due to the existence of stor-
age for each implementation of our policy and found the
average of those values over the 100 experiments. Next,
we computed the relative increase in revenue directly from
Equation (29). The relative increase in revenue computed
by implementing our policy (16), averaged over 36 months,
is given in Table 3. The relative increase in revenue com-
puted from (29), and hence (32), is given in Table 4.

From the above tables, we can see that the relative
increase in revenue obtained through a sample run imple-
menting our policy (16) is comparable to the relative
increase in revenue computed using the closed-form Equa-
tion (29), even though the wind energy processes are actu-
ally generated from a truncated Gaussian distribution.

Figure 1 shows the relationship between the numeri-
cal results from Table 3 and the theoretical results from
Table 4. There are 22 data points corresponding to each
of the 22 locations. For each data point, the x-coordinate
corresponds to the theoretical value computed from (29)
and the y-coordinate corresponds to the numerical value
computed from our policy (16). The error bar covers two
standard deviations. In Figure 1, one can see that almost all

Figure 1. Plot of theoretical value of storage computed
from (16) vs. value of storage computed
numerically.

0

0.1

0.2

0.3

0.4

0.6

Theoretical vs. numerical

y = x

0.5

0.150.10 0.20 0.25 0.30 0.35
ψ

0.40 0.45 0.50 0.55

of the data points are slightly below the line y = x. That is,
the relative increase in revenue computed from our policy
(16) is almost always slightly less than the relative increase
in revenue computed from (29). This is because the theoret-
ical values were computed assuming that the wind energy
process is generated from a uniform distribution, which
makes our policy optimal, while the actual experiment used
wind energy processes generated from a truncated Gaussian
processes, making our policy suboptimal. The difference is
approximately 15.6% on average.

6. Conclusions
In this paper, we have derived an optimal policy for mak-
ing advance commitments of energy from an intermittent
source such as wind, in the presence of a finite storage
buffer, energy conversion losses, and a mean-reverting pro-
cess for electricity prices. The goal of the paper was an
analytical result that could be easily applied by energy
economists, or as a heuristic within a simulation-based
model. For this reason, we studied a stylized model that
introduced several simplifying assumptions to make the
problem analytically tractable. In addition to deriving an
optimal policy for our stylized model, we were also able
to derive an expression for the value of storage, making it
possible to understand the interaction of volatility in wind,
the capacity of the storage device, and storage losses.

Our model requires a number of assumptions such as sta-
tionarity in the wind and price processes, and the assump-
tion of uniformly distributed errors in the wind forecast.
It would be nice if we could show that the optimal policy
always has a form similar to the newsvendor problem as
shown in (16), regardless of the distribution of wind energy.
Another dimension arises in risk mitigation when modeling
heavy-tailed behaviors in electricity prices.

If the model were to be applied in the context of mak-
ing day-ahead commitments, we have ignored the ability to
make adjustments in the hour-ahead market. An important
extension would be the derivation of a policy that captured
the hour-ahead market within the day-ahead market.

Real-world energy storage tends to exhibit more complex
physics than are assumed in simple inventory models. For
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Table 3. Relative increase in revenue computed by implementing our policy (16).

120.0725 �W 111.3225 �W 102.5725 �W 93.8225 �W 85.0725 �W 76.3225 �W

51.8125 �N 003682 001813 003378 001727 001213 001584
46.1875 �N 002185 001630 002191 002073 001538 001969
40.5625 �N 002245 001436 N/A 002985 002028 002394
34.9375 �N 003457 N/A 003211 002722 002005 001444

Table 4. Relative increase in revenue computed from (29).

120.0725 �W 111.3225 �W 102.5725 �W 93.8225 �W 85.0725 �W 76.3225 �W

51.8125 �N 004919 002030 004356 001869 001268 001697
46.1875 �N 002530 001804 002553 002382 001689 002231
40.5625 �N 002719 001592 N/A 003843 002385 002955
34.9375 �N 004929 N/A 004476 003534 002403 001673

example, storage losses can be a function of the rate of
energy production (which varies with the cube of the wind
speed), and the amount of energy that can be stored in
some devices can depend on the rate at which the energy
has been stored. Finally, some devices such as compressed
air require increasing amounts of energy as the device gets
close to capacity (compressed air storage devices can reach
pressures of 3,000 psi or more).

It is unlikely that we can derive analytical solutions for
more general problems (for example, those that capture
nonstationarities in the wind or price processes), but it is
possible that a numerical solution could be used to calibrate
an analytical model such as ours to reduce the errors due
to these effects. Ultimately, there will always be a need for
accurate models that will have to be solved using numerical
methods, but at the same time we feel that there will also be
interest in analytical models that are easy to compute and
that provide insights into trade-offs between parameters.

It is possible that some of the issues that arise in the anal-
ysis of energy problems may spark new interest in prob-
lems in classical inventory theory that may share similar
properties. For example, there are applications in classical
supply chain management where the supply of product is
random, and where vendors may have to make commit-
ments to deliver product, using stored inventories to help
smooth over supply problems.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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