2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING 1

A Comparison of Approximate Dynamic
Programming Techniques on Benchmark Energy
Storage Problems: Does Anything Work?

Daniel R. Jiang, Thuy V. Pham, Warren B. Powell, Daniel F. Salas, and Warren R. Scott

Abstract—As more renewable, yet volatile, forms of energy like
solar and wind are being incorporated into the grid, the problem
of finding optimal control policies for energy storage is becoming
increasingly important. These sequential decision problems are
often modeled as stochastic dynamic programs, but when the
state space becomes large, traditional (exact) techniques such as
backward induction, policy iteration, or value iteration quickly
become computationally intractable. Approximate dynamic pro-
gramming (ADP) thus becomes a natural solution technique
for solving these problems to near—optimality using significantly
fewer computational resources. In this paper, we compare the
performance of the following: various approximation architec-
tures with approximate policy iteration (API), approximate value
iteration (AVI) with structured lookup table, and direct policy
search on a benchmarked energy storage problem (i.e., the
optimal solution is computable).

I. INTRODUCTION

N this paper, we investigate the effectiveness of several

techniques that fall under the realm of approximate dy-
namic programming (ADP) on a simple energy storage and
allocation problem (previously described in [1] and [2]): we
seek to optimally control (profit maximization) a storage
device that interacts with both the grid and an uncertain
energy supply (i.e., wind) in order to meet demand. In our
benchmarks, we consider a stochastic wind supply, stochastic
electricity prices (from the grid), and a deterministic demand.
We use this problem class because it can be simplified through
discretization (and possibly dimensionality reduction) to ob-
tain benchmark problems that can be solved optimally. The
idea is to use these benchmark problems to provide insights
into the performance of a variety of ADP strategies (for an
overview of traditional methods in ADP, see e.g., [3], [4], [5]).
A precise formulation of this problem is given in Section III.

Algorithmically, we consider solution techniques that are
variants of approximate policy iteration (API) and approximate
value iteration (AVI). The basis for both of these algorithms is
a value function approximation (VFA) (the value function is
also known as the cost-to—go function) and thus, by altering
the approximation architecture, we arrive at a family of ADP
algorithms.

For API, we test several methods typically found in the
machine learning (ML) literature to approximate the value
function: support vector regression (SVR), Gaussian process
regression (GPR), local parametric methods (LPR), and a
clustering method called Dirichlet cloud with radial basis
functions (DCR). In the case of AVI, we consider lookup table
techniques that exploit the structural properties of the problem

at hand: monotonicity (the use of the natural concavity in this
problem was studied previously in [2]). Although lookup table
itself can be a very limited method, we find that the additional
knowledge of problem structure makes it an extremely effec-
tive solution method, even when compared to more advanced
statistical estimation methods.

This paper reports on the performance of a variety of ap-
proximation methods that have been developed in the approx-
imate dynamic programming community, tested using a series
of optimal benchmark problems drawn from a relatively simple
energy storage application. These suggest that methods based
on Bellman error minimization, using both approximate value
iteration and approximate policy iteration, work surprisingly
poorly if we use approximation methods drawn from machine
learning. Pure table lookup also works poorly. By contrast,
a simple cost function approximation estimated using policy
search works remarkable well, hinting that the problem is not
the approximation architecture (though this method does not
scale to more complex policies). In addition, lookup table
methods that exploit convexity or monotonicity (if applicable)
work extremely well, but do not scale to complex state—of—
the-world variables. The implications for many current ADP
algorithms are not encouraging, which signals the need for
further work in this area.

The paper is organized as follows. In Section II, we give a
brief literature review. Section III provides the mathematical
formulation for the problem and discusses its inherent struc-
ture. Next, Sections IV-V give an overview of the algorith-
mic techniques that we employ, followed by numerical work
(including previous work) in Sections VI-X. We conclude in
Section XI.

II. LITERATURE REVIEW

The problem of energy storage, and its closely related
problems in inventory and asset management, has been widely
studied. For example, in [6], the authors derive, under an
assumption on the distribution of wind energy, an analytical
solution to an energy commitment problem in the presence of
storage. The mathematical formulation is similar regardless
of the exact application; [7] and [8], for example, present
different techniques (including optimal switching and ADP)
to study control policies of natural gas storage facilities.
Moreover, [9] and [10] study the optimization of a hydro—
electric reservoir, with the additional complication of bidding
day—ahead. The second paper, [10], uses a method based on

2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING 2

stochastic dual dynamic programming (SDDP). SDDP and its
related methods use Benders cuts, but the theoretical work in
this area uses the assumption that random variables only have
a finite set of outcomes [11] (and thus difficult to scale to
larger problems).

Taking a slightly different point of view, [12] considers
the capacity value of energy storage by solving a dynamic
program. Broader works include [13], [14], [15], and [16], all
of which solve related problems that involve storage and an
generic asset or commodity.

Simple, scalar storage (or inventory) problems can be easily
solved using backward dynamic programming (see [17]), but
these methods quickly become intractable as we add additional
state—of—the—world variables, leading us to consider the use
of approximate dynamic programming. [1] uses approximate
policy iteration with parametric linear model (i.e., basis func-
tions), least—squares temporal difference (LSTD), and Bellman
error minimization to solve the same energy allocation prob-
lem that we consider here. [18] takes an alternative approach
to the policy evaluation step and uses neural networks (in
this paper, we use nonparametric models). [2] uses the natural
concavity of the value functions to speed up the convergence
of a TD(1) algorithm (see [19]). [16] takes a similar approach
of exploiting concavity for a generic problem with a scalar
resource, but within an approximate value iteration framework.
Moreover, [20] considers a simple storage problem motivated
by mutual fund management and solves it using a lookup
table approach exploiting concavity. Also taking advantage of
structure, [21] exploits the monotonicity in the value functions
in a lookup table approach to solving an optimal bidding and
storage problem. In both the cases of [20] and [21], pure
lookup table without structure does not work in practice within
reasonable time constraints. [7] solves the natural gas storage
control problem through the discretization of a continuous
time model and applying a basis function approximation of the
value function. One of few works to consider a nonparametric
approximation of the value function, [15] employs Dirichlet
process mixture models to cluster states and then uses a convex
model within each cluster.

As can be seen from the literature, it is generally the case
that a specific algorithm is applied to a specific application.
The contribution of this paper is to empirically compare the
effectiveness of several popular ADP methods on common set
of problems derived from a energy storage application.

III. MATHEMATICAL FORMULATION

We now formulate the energy storage and allocation prob-
lem as a Markov decision process (MDP). Let t € N be a
discrete time index representing the decision epochs of the
MDP (in this problem, ¢ could be measured in hours or
days). Over a finite horizon from ¢t = 0 to t = T, our
goal is to find a policy that maximizes expected profits. Let
R € % = [0, Rimax] be the level of energy in storage at time ¢,
that has charge and discharge efficiencies denoted by 3¢ and
5%, respectively, with both 3¢ and 5% in (0, 1). Also, let v¢ and
+¢ be the maximum amount of energy that can be charged or
discharged, respectively, from the storage device. For example,

suppose that our storage device is a 1 MW battery (meaning
that it can charge and discharge at a rate of 1| MW) and we
make allocation decisions every hour. In this case, we have
that v¢ = 4% = 1 MWh.

Let E; be the amount of energy available from wind at time
t and P; be the spot price of electricity. Finally, suppose Dy is
the amount of demand that must be satisfied at time ¢. To allow
for different models (either deterministic or stochastic), we
also define £, P, and D7 to be the state variables associated
with the respective processes at time £. As an example, if F;
is modeled as a Markov process, then Ef = F,; and if Dy is
modeled as a deterministic process, then D7 = {}. Hence, the
state variable for the problem is S; = (R;, By, PS, Dy). To
abbreviate, let W, = (E, P?, D) € # and S; = (Ry, W).
Throughout this paper, we operate under the assumption that
the process W, is independent of R;. Next, we define the
exogenous information, Wt+1, to be the change in W;:

Wi = Wy + Wt+1;

which of course is model dependent (the specific processes
we use for benchmarking are defined in Section VI).

The decision problem is that, while anticipating the future
value of storage, we must combine energy from the following
three sources in order to fully satisfy the demand:

1) energy currently in storage, constrained by ~¢, ¢, and
R; (represented by a decision x9);

2) newly available wind energy, constrained by F; (repre-
sented by a decision z}'%);

3) and energy from the grid, at a spot price of P; (repre-
sented by a decision z27).

Additional allocation decisions are z}'*, amount of wind energy
to store; z;°, the amount of energy to sell to the grid at price
Py; and z¥', the amount of energy to buy from the grid and
store. These allocation decisions are summarized by the six—
dimensional, nonnegative decision vector,

wd _gd rd

o rg\T
1‘,5:(t Lt ’xtvxyr7x%’$tg) >0, (D

and the constraints are as follows:

oy 4+ plald + aft = Dy,)
i+ of < Ry, 3

)" + 28 < Rpax — Ry, 4)

x4 m}”d < E, 5)

o)+ 2§ <4 (6)

o +af <A (7)

The first constraint guarantees that demand is fully satisfied;
(3) and (4) are storage capacity constraints; (5) states that
the maximum amount of energy used from wind is bounded
by F,; and finally, (6) and (7) constrain the decisions to
within the storage transfer rates. Let us denote the feasible set,
determined by the constraints (1)—~(7), by X (.S;). Suppressing
the dependence on S; for ease of notation, define X; = X' (.S;).
See Figure 1 below for an illustrative summary of the problem,
annotated with the components of z;.

2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING 3

Fig. 1. Illustration of the Energy Storage/Allocation Problem

Let ¢ = (0,0,—1, 3% 3¢ —1)T be a vector containing the
flow coefficients of a decision x; with respect to the storage
device. Then, the transition function is:

Riy1 =R+ ¢ 2y 8)

Note that there is no dependence on any random informa-
tion, allowing us to easily take advantage of the post—decision
formulation of this problem, to be made clear below.

Now, we define the contribution function. For a given state
S; and decision x;, we define:

C(S,) =P, - (D + ﬂdxig — g — x%d)a

the profit realized at time ¢ (we get paid for satisfying demand
and for selling to the grid, but we must pay for any energy
that originates from the grid). Using Bellman’s optimality
equation, we define value functions through the following set
of recursive equations. Let V;f(Sy) =0 and for ¢t <T — 1,

Vi(Se) = Jnax [C(Se,20) + BV (Se+1)1S)], 9
where it is understood that S;,; depends on both S; and
x;. For simulation and computational purposes, it is often
troublesome to deal with an expectation operator within a
maximum operator. As described in detail in [3], this can
be remedied by appealing to the post—decision formulation
of Bellman’s equation. Essentially, the post—decision state
S§ € .7 is the state immediately after the decision x; is made
but before any new information has arrived, where . is the
post—decision state space. The canonical form of the post—
decision state is simply S§ = (S, x¢), but oftentimes, it can
be written in a more condensed way. Mathematically, it must
be the case that S;41|S7 4 St+1|St, x4+ (equal in distribution).
Let RY = R;11 as defined in (8); for our problem, due to the
fact that R,y depends solely on R; and z;, the post—decision
state is given by:

Sf = (Rf,Ef,PtS,Df) = (RtajaWt)'

We define the post—decision value function as V;*(S¥) =
E(V/1(Si+1)|S7), which gives us the following two rela-
tions:

Vi(Se) = max [C (S, 24) + VF(SP)] (10)
and
ViEs(S70) = B max [O(S,20) + V(5] [si] -

Equation (10) is useful for simulating a policy induced by a set
of value functions and equation (11) is used in the simulation
steps of the various ADP algorithms.

In [2], the concavity of the post—decision value functions
is exploited as the VFAs are learned by the ADP algorithm.
For this paper, in addition to the API variants, we consider
for comparison a more recent algorithm that takes advantage
of monotonicity, called Monotone—ADP (see [22]). To do so,
we give the following proposition.

Proposition 1. For each time t < T — 1, the post—decision
value function V¥ (R7,W,) is nondecreasing in RY.

Proof. We proceed by induction. Since V5 (St) = 0, it is clear
that VZ_,(S%_,) = 0 by definition and hence satisfies mono-
tonicity. Assume that V;*(S7) satisfies the monotonicity prop-
erty (induction hypothesis) and consider (11). At time ¢—1, fix

two states S7 | = (R7_;,W;_1) and S7 | = (R}_,, W;_1),
with both R |, R¥ | € %, such that R¥ ; < R¥ ;. Let
e=R{ - R{ . _ _

Denote St = (Rt7Wt) = (Rf—la Wf) and St = (Rt, Wf) =
(R¥_,,W,), with S¥ and S? be the corresponding post—
decision states. As before, let X} = X'(S;), but also let
X; = X(S;). We aim to show that the following inequality
holds for any outcome of Wy |W;_; (note that Wy|S¥ | <

Wi SZ 4 Wi |W;_1, so the distribution of the exogenous
information is the same in both situations):
max [C(S;, z) + V7 (57)]
< max [C(Sy,) + V7 (S7)].
Tt EXL
Note the differing feasible sets X' and X;. Denote the optimal
solution to the left hand side of the inequality as x; and the
optimal value of the objective as F'. Now, there are two cases:

1) z; € X,. Using this same decision on the right hand side
as well, we see that since R; < R;, we have RY < RY.
Using C(Sy,z¢) = C(St, ;) and the induction hypoth-
esis, we conclude that C(Sy,z;) + V;*(S¥) > F. Since
there exists a feasible solution, namely z;, in the new
decision space X, that achieves the objective value greater
than or equal to F', the inequality is verified.

2) xy & X;. To get from X; to X,, constraint (3) is relaxed
by € and constraint (4) is tightened by e. Therefore, it
must be the case that constraint (4) is violated by x:

o)+ 28 > Rpax — R,
= Rpax — Ry — €.

To construct a feasible solution Z; € X, from x, let us
simply decrease z}" + x¥" until (4) is satisfied. That is,
choose " and 7" such that T\ + 7 = Rpay — Ry It
is clear that:

(23" +af) — (@ +7f) <
and thus, from the resource transition function (8), we see
that R? > R?. Also, O(S;,x;) = C (S, Z4), so by the
induction hypothesis, we have shown the existence of a
feasible solution z; in X; such that C(S;, z;)+V,*(S¥) >
F, the original inequality is verified.

Because this is true for any realization of W;, monotonicity
holds in expectation as well and the proof is complete. O

2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING 4

Monotonicity often exists in the state—of—the—world dimen-
sions as well, but this depends® on the model of the random
processes used. We show how to take advantage of this
structural property in Section V.

IV. APPROXIMATE POLICY ITERATION

Exact policy iteration involves two main steps: policy eval-
uation and policy improvement (see, e.g., [5]). The (exact)
policy evaluation step can be completed using a matrix inver-
sion (solving Bellman’s optimality equations), but this is often
intractable. One option for approximating the policy evaluation
step is to apply exact value iteration for a large number of
iterations, but even this is difficult for complex problems
with large state spaces and impossible when the problem
admits a continuous state space. In our implementation of
the approximate policy evaluation step (for a finite horizon
model), we take a simulation approach where we first generate
observations of the value function for the fixed policy and then
fitting a model to the observations.

Consider a fixed policy m = (w1, m2,...,7r) and a general
approximation architecture (), which takes a set of samples
Z = {(:cl,yz)f‘il} (with x; € X and y; € V) and produces a
model Q(Z,) that maps from X to). Figure 2 provides the
precise steps taken to perform approximate policy evaluation,
given 7, @), and the number of samples desired, M. The idea
is that we simulate the policy 7 from various initial states,
keeping track of both the (post—decision) states S, that we
visit and contributions CJ* = C(S;",z}") that we receive.
From this, we produce a set of samples Z; (see Step 5 of
Figure 2) that is used by @ to produce an approximation.

Approximate Policy Evaluation
(Inputs: policy 7r, approximation @, sample size M)

Step 0. Setm = 1.
Step 1. Select an initial post—decision state Sg’m.
Step2. Fort =1,2,...,(T —1):

Step 2a. Sample W and set pre—decision state:

S = (Ry™, Wy).
Step 2b. Apply policy to receive decision and compute contribution:
@] = me(S7): O = C(ST" 2}

Step 2d. Compute next post—decision state Sy’ using (8).

Step 3. Compute observations of the time dependent value function. For each ¢, set:

T—1
mo_ m
vy = E cr.
=t

P
Step 4. If m < M, increment m and return to Step 1.
Step 5. Denote the set of samples by:

x,m m\M
Ze = {(St' SV =1 -

Using the approximation model, return V¥ (1) = Q(Z¢, -).

Fig. 2. Approximate Policy Evaluation Step for API

With the policy evaluation step defined, we define the API
algorithm by essentially replacing the exact policy evaluation
step in traditional policy iteration with the approximate ver-
sion. As mentioned above, the algorithm iterates the two steps
of policy evaluation and improvement, shown in Figure 3.

A. Choices of Approximation Architecture ()

In this section, we give a brief introduction for each of
the following approximation architectures) (for a detailed

Approximate Policy Iteration
(Inputs: approximation @, sample size M , iterations N)

Step 0. Set initial policy w0 setn = 1.

Step 1. Use Approximate Policy Evaluation with arguments (7™~ 1, Q, M) to compute V?’n_ !
for each t.

Step 2. Policy improvement step:

77 (St) = arg max[(C(Sy, @) + V™8]]
Ty EXg

Step 3. If n < N, increment n and return to Step 1.

Fig. 3. Approximate Policy Iteration Algorithm

treatment, see the corresponding literature). The motivation
for choosing nonparametric estimators is that they are popular
in the statistics and machine learning community, but have
received relatively limited attention in the ADP and RL
communities. The more traditional technique of LSTD was
tested on the same problem in [1]. Assume that the notation
is self—contained for each of the following sub—sections; in
addition, for purposes of presentation, we have removed the
subscript and superscript from the notation V;*(s) and use
V(s) instead.

Support vector regression (SVR), originally introduced
in [23], is an extension of the well-known support vector
machine (SVM) algorithm for classification to the problem of
regression. Also see [24] for an overview of SVR and imple-
mentations. Given a linear model, V(s) = >_,c z0rds(s) =
(07, 0(s)), where F is a set of features, ¢, are basis
functions, and 6; are weights. Let the training dataset be
represented by (S, ym) for m = 1,2,... M. The essential
idea of SVR is to choose a hyperplane defined by the weights
0f, so that most of the training pairs fall within € of the
hyperplane while keeping the hyperplane as “flat” or as
“simple” as possible, by minimizing 0] = (6, 6) (given two
models that explain the training data, we prefer the simpler
one that is less affected by noise in s,,). The optimization
problem can be written as follows:

M

.. 1 X
minimize §||0H2 +n- mz::l(fm + @n)
Ym — <9a¢(5m)> <e+t&m
subject to § —y, — (0, 0(sm)) < e+ &,

In the numerical work, we leverage the oft—used and versatile
Gaussian radial basis kernel. SVR is implemented using svm
of the R package e1071 (with A = 10 and € = 0.01).
Gaussian process regression (GPR) is a Bayesian ma-
chine learning technique (see [25] for a thorough description)
that allows us to model the unknown value function by a
Gaussian process indexed by elements s of the state space
. A Gaussian process V' ~ GP(m,k), specified by a
mean function m(s) = E[V(s)] and covariance function
k(s,s") = Cov][V(s),V(s')], is a (possibly infinite) collection
of random variables such that any finite set of them is jointly
Gaussian. For the prior, a typical choice of mean function
is m(s) = 0 (note that the posterior mean is not necessarily
zero). In our work, we choose k to be the Gaussian radial basis

2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING 5

_ <2
function, k(s,s’) = \/%exp (— lo—s |
o

observe y = V(s) + ¢, where ¢ ~ N(0,02). The essential
step in GPR is computing the posterior Gaussian process by
conditioning on the observed values. We implement GPR using
gausspr of the R package kernlab.

Local Polynomial Regression (LPR), or more specif-
ically, locally weighted scatterplot smoothing (LOESS),
is a nonparametric technique used for smooth functions
[26]. As before, let (S,y) be the training set and sup-
pose we are interested in estimating the value of V(s).
Let 6(s) = (V(s),V'(s),...,VW(s)) and U(u) =
(1,u,u?/2!,...,ut/l!). For any s; € S near s, the value V(s;)
can be approximated using (Taylor expansion) 8(s)TU (s; —s).
The LOESS estimator for 6 is defined by:

), and assume we

0(s) = argming [yi —0TU(s; — s)rK (51' - S) .

feRl+1

In our numerical work, we use a second—order local polyno-
mial fit (I = 2). LOESS is implemented using loess of the
R package stats.

Dirichlet Cloud - Radial Basis Functions (DCR) is a
method, developed in [27], that performs local regressions
on clusters of data. As each training point is processed, a
cluster for the point is chosen and the local (low—degree)
polynomial functions is updated recursively. Once again, we
use the Gaussian radial basis function; using the notation from
[27], let ¢(r) = \/% exp(—72/2). Let N, be the total number
of clusters, ¢; be the centroid of the i—th cluster, and p; be
the polynomial fitted to the i¢—th cluster. The model can be
summarized by the following equation; for a new state s:

S pi(s)(ls — ail)

S o(lls = eill)

a weighted average of the predictions of each of the individual
clusters. For a detailed description of when and how new
clusters are created and the precise equations for the fitting
of local polynomials, see [27]. This method is implemented
in R.

As we can see, LPR and DCR are similarly motivated by
local approximations, while SVR and GPR are significantly
different: SVR is a more sophisticated version of the basis
function technique, while GPR is a Bayesian method of
modeling a function as a random process.

V(s) =

)

V. APPROXIMATE VALUE ITERATION WITH
MONOTONICITY PRESERVATION

We now move away from API and consider another main
ADP technique, approximate value iteration (AVI). The ver-
sion of AVI for finite horizon problems that we consider
is a forward simulation method that iteratively updates the
VFA based on each new observation. A weakness of this
method is that it requires a lookup table representation of the
state space, something that the API methods do not require.
Nevertheless, in this paper, all problems are discretized in
order to compare to optimal benchmark. We present a version
of the AVI that exploits the monotone structure of the problem
(see Proposition 1), called Monotone-ADP (MADP) [22].

First, we define some notation. Let V" (s) be the estimate
of the (post—decision) value function evaluated at s € . at
iteration n of the algorithm. The state that the algorithm visits
on iteration n and time ¢ is denoted S;"". Also, let o} be
a possibly stochastic stepsize sequence, with of'(s) = af -
Lispr=sy-

Consider two states s = (r,w) € . and s’ = (', v') € .7,
with 7,7’ € Z and w,w’ € #'. We say that s < s if and only
if r <7’ and w = w’ — the necessary conditions to invoke
Proposition 1. Now we define the monotonicity preservation
operator, II,; (see Figure 4 for an illustration). In the following
definition, suppose that v is the previous estimate of the value
of a particular state s and that z{* is a new observation of the
value of the currently visited state S;"". We define:

z,n . _ qQx,mn
2 it s=5.",

27" Voo if SPT s, s £ SPT
(S, 20", s,0) = '
MLt 5=t 59 z,n . z,n z,n
z Av if s ST, s #£ ST,
v otherwise.

The precise description of the algorithm is given in Figure 5.

————— : true value function o0o: VFA (discretized)

o
oo o0 ©°

P

rrrrrrrrrr

current estimate of value
N
o

resource level

te of value

monotonicity violation
st
7 o Ry

resource level resource level

Fig. 4. Illustration of the Monotonicity Preservation Operator in the Resource
Dimension (i.e., for a fixed ¢ and fixed outcome of W)

We remark that Monotone—ADP is a provably convergent algo-
rithm under certain technical conditions (see [22]). Although
we do not describe the details of the convergence theory in
this paper, it can be easily checked that the problem at hand,
after discretization, satisfies the conditions for convergence.

VI. BENCHMARK PROBLEMS

The problems that we use as optimal benchmarks to the pro-
posed algorithms originated from [2]. For all of the benchmark
problems, we choose Ry.x = 30, 5¢ = Bd =1,7= ’yd =25,
and 7" = 100. The deterministic demand is assumed to have
a seasonal structure:

Dy = |max {0,3 — 4sin (ZF£) }].

We now define two parameters that determine the support of
the price processes, Pnin = 30 and Ppn,x = 70. Moreover,
[2] defines a discrete distribution called the pseudonormal
distribution, characterized by five parameters, u, o2, a, b,
and A. Let X be pseudonormally distributed (written X ~
PN (u,02%,a,b, A)). The support of X is defined to be X =

2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING 6

Monotone—ADP Algorithm

Step Oa. InilializeV‘f'O(s) = Oforeacht < T —lands € S.
Step Ob. SetV;’"(s) = Oforeachs € Sandn < N.
Step Oc. Setn = 1.
Step 1. Select an initial state Sg’" = (R‘S’", Wo).
Step2. Fort =0,..., (T —1):
Step 2a. Sample St"+1 and get a noisy observation:
SEST™) = max{O(S]y me) + VI ST}
Step 2b. Smooth new observation with previous value:
Z:,n(sf,n) — (1_(1?71(5':,71)) . Vf.7171(sf,71)
+aPTh(SEmy - aT(SEM).

Step 2¢. Enforce monotonicity. Foreach s € S:

VT (s) = My (S5, 28,8, VE " 1(9)).

x,n

Step 2d. Choose the next state S T
Step 3. If n < N, increment n and return Step 1.

Fig. 5. Monotone—ADP Algorithm using Post—Decision States

{a,a+A,a+2A,...,b—A} and for z; € X, we have P(X =
w;) = fzisp,0®)/ 3, cx flajip o), where f(:p,0%)
is the pdf of a normal random variable with mean p and
variance o2. Three types of price processes are considered. Let
el ~ PN(up,0%,-8,8,1), ¢ ~ PN(0,50%,—40,40,1)
(for jumps), and u; ~ U(0,1) be i.i.d. random variables.

1) Sinusoidal.

. . 5mt
P, = m1n{max{40—10 sin <2T>
+ €ty Pmin}a Pmax}~

Note that since the P; is independent of history, P = {}.
2) Markov chain. Let Py = Py, and

Pt+1 = min {max {Pt + €t+1, Pmin} 5 Pmax} .

In this case, P = P;.
3) Markov chain with jumps. Let Py = P, and

P = min{maX{Pt + €141
+ 1{ut+1§p}61{+17 Pmin}» Pmax}~

Again, Pts = P.

We consider a Markov chain model for the wind process,
E;. Define Fnn = 1 and Eu. = 7. The support of
E; are the values between FE,, and FE,,c discretized at a
level of a parameter AE. Let ¢” ii.d. random variables
that can be either uniformly or pseudonormally distributed,

PN(ME, 0125, —37 3, AE)
Et+1 = min {max {Et + €t+1, Emin} 9 Emax} .

Lastly, suppose that Y takes values between 0 and Rp,x,
discretized at a level AR.

Table I summarizes the stochastic benchmark problems; for
ef and ef , since a, b, and A are defined the same way across
all problems, we use PN (i, 0?) as shorthand.

VII. NUMERICAL RESULTS

Due to the more complex nature of the various approx-
imation architectures, there are more computational issues
associated with the API algorithms than the AVI algorithm.

TABLE I
PARAMETER CHOICES FOR STOCHASTIC BENCHMARK PROBLEMS [2]

Problem AR AFE etE Price Process ef
s1 05 05 U(—1,1) Sinusoidal PN (0, 25%)
) 05 05 PN(0,0.5%) Sinusoidal PAN(0,252)
S3 05 05 PN(0,1.0%) Sinusoidal PAN(0,252)
S4 05 05 PN(0,1.52) Sinusoidal PAN(0,25%)
S5 1 1 U(-1,1) MC+Jump PN(0,0.5%)
S6 1 1 Uu(-1,1) MC +Jump PN (0,1.02%)
s7 1 1 U(-1,1) MC+Jump PN(0,2.5%)
S8 1 1 U(-1,1) MC +Jump PN (0,5.0%)
S9 1 I PN(0,0.5%2) MC+Jump PAN(0,5.0%)
S10 1 1 PN(0,1.02) MC+Jump PN(0,5.0%)
Sl 1 1 PN(0,1.5%) MC+Jump PAN(0,5.0%)
s12 1 1 PN(0,2.02) MC+Jump PN(0,5.0%)
s13 1 1 PN(0,0.52) MC+Jump PAN(0,1.0%)
S14 1 1 PN(0,1.0%) MC+Jump PAN(0,1.0%)
s1s 1 1 PN(0,1.5%) MC+Jump PN(0,1.0%)
S16 1 1 PN(0,0.52%) MC PN(0,1.0%)
S17 1 1 PN(0,1.0%) MC PN(0,1.0%)

The main difficulty arises in the policy improvement step
(given in Step 2 of Figure 3 but the computational cost
is actually realized in Step 2b of Figure 2). Due to the
existence of local optima when solving Step 2 of Figure 3,
the maximization problem is solved using grid—search, a com-
putationally expensive method. Because of these limitations,
we are able to use approximately 12.5% of the state space
for policy evaluation purposes and 10 policy improvement
steps. On the other hand, the MADP algorithm uses matrix
operations to manipulate a simple lookup table representation
of states and can finish 5 - 10% iterations within 2 days of
computation time.

For a given post—decision VFA, VZ, we define the ap-
proximate policy as X7 (S;) = argmax,,cy, [C(Si,z:) +
Ve (Sf)] To compute the value of the policy, we generate
1000 sample paths of the wind and price processes, and for
each sample path, we follow the policy and sum the contribu-
tions. The value of the policy is then the average contribution
over the 1000 sample paths. The percent of optimality is
defined to be the value of the approximate policy divided by
the value of the optimal (backward dynamic programming)
policy. See [3, Section 4.94] for a detailed description of
determining a policy’s value.

The results are given in Figure 6. SVR and MADP gen-
erate the highest quality policies, but it is noteworthy to
see that SVR does not use problem specific information
while MADP does. Despite this, when considering the relative
simplicity of the energy storage problem when compared to
other real-world problems, results of 90% are not necessarily
encouraging (GPR, LPR, and DCR often perform significantly
worse than 90%). This suggests that care needs to be taken
when combining API with a general purpose approximation
architecture—not any approximation method will work.

VIII. EXPLOITING CONCAVITY

It needs to be pointed out that neither SVR nor MADP
perform at the level of the ADP algorithm of [2] (98-99%
optimality, see Figure 7), which exploits the piecewise linear
concave nature of the value functions; the algorithm of [2]

2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING 7

100

% Optimality

s2 S3 S4 S5 S6

Fig. 6. Benchmark Results

also uses a specific backward pass designed with this energy
storage application in mind.

Although experiments are not shown in this paper, we want
to stress that, while convergence theory exists, unstructured
lookup table with AVI does not work for any reasonably
large problems (the convergence rate is far too slow to be of
any practical use). [20] and [21] show the benefits of taking
advantage of structure, respectively. We would also like to
note that AVI can also be used with other approximations
beyond lookup table (with or without structure), such as basis
functions, but it is shown in [28] that there is often a lack of
a fixed—point.

Our results in this paper suggest that structured, problem—
specific lookup table techniques also outperform other, more
general approaches, such as API paired with a generic ap-
proximation technique. At this point, the numerical results
suggest that structured lookup table is consistently effective
on moderately sized problems, unlike any other methods that
we tested.

The caveat, of course, is that lookup table techniques do
not scale to larger state spaces due to the requirement of
storing a value estimate for every state. Not only that, it
is typically the case that structure exists in only 1 or 2
dimensions of higher dimensional state variable (state—of—the—
world variables quickly add dimensionality and there is no
guarantee that they contain structure).

100

99 -

=]
=)

% Optimality
=)
-

=]
=

95 4

1 2 3 4 5 & 7 8 9

0 11 12 13 14 15

Stochastic Benchmark Problem

Fig. 7. Results from ADP Exploiting Concavity, [2]

S7_ S8 S9 S10
Stochastic Benchmark Problem

HlsVR

[IMADP

S11 Ss12 S13 S14 S15 S16 S17

IX. DIRECT POLICY SEARCH

In this section, we review the somewhat surprising result
from [1] that direct policy search (over a low—dimensional
parametrized space of policies) yields better results than API
based algorithms. Several versions of API are discussed in
the original paper [1]; here, we only reproduce the results
for best performing version, API with instrumental variables
(IVAPI). The other version considered in [1] is least squares
API (LSAPI). Quadratic basis functions are used for the
approximation. Direct policy search is implemented using the
knowledge gradient for continuous parameters (KGCP, see
[29]). The structure of the policy is:

X7(8:|0) = arg n}(ax[C(Sh 1) + ¢(S7) 7],
Tt EXt

where ¢ is the vector of basis functions and 6 is a vector
of weights (the parameter of the policy). Note that although
the second term resembles a VFA, the policy search technique
has no notion of minimizing the distance between ¢(S7)76 to
Vi (ST). The reproduced results are shown below in Figure 8.
Although direct policy search seems robust in this application,
we emphasize that this type of direct search does not easily
scale to higher dimensional parameter spaces.

- - - T
n - n - n N n n |[HEIVAPI
ooa [IDirect

=)
S}
T

% Optimality

N WA O D N ® ©

S &8 &5 8 3 &5 & &

L e e e e
|
|
|

T R R R N S

=)
T
L

o

1 2 3 4 5 6 2 13 14 15 16 17 18 19 20

7 8 9 10 11 1
Benchmark Problem (see [1])

Fig. 8. Direct Policy Search vs. IVAPI, [1]

X. API SAMPLING DISTRIBUTION

In the implementations of API discussed in this paper, the
sampling distribution used for Step 1 of the approximate
policy evaluation step of Figure 2 is chosen to be a uniform
distribution over the state space. One hypothesis to explain

2014 IEEE SYMPOSIUM ON ADAPTIVE DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING 8

APT’s relatively poor performance is that instead of sampling
uniformly, we can sample from the distribution of states visited
under the optimal policy (say, given a deterministic initial
state, S§). In most cases, this distribution is unknown; how-
ever, we are able to test this hypothesis on a simple problem
with a computable optimal policy. We consider a version of our
energy storage problem where the state variable is the scalar
resource state, Y combined with a quadratic approximation.
When sampling uniformly, we consistently achieve policies
that are 90%-95% optimal, but when sampling from the
optimal policy’s state distribution, we obtain policies that are
anywhere from 40%-70% optimal. The primary reason that
we observed for such low—quality policies is that the optimal
policy visits some states with very low to zero probability,
causing the quadratic approximation to be very accurate for a
portion of the state space but at the same time very poor in
other portions of the state space. This often leads to policy
oscillations (or chattering, see [30] for a discussion on this
issue). Besides these preliminary observations, the issue of
the correct sampling distribution remains a work in progress.

XI. CONCLUSION

In this paper, we describe a simple finite-horizon energy
storage and allocation problem that is subject to stochastic
prices and wind supply, with the purpose of comparing the
performance of several ADP algorithms. We consider API
algorithms that take advantage of the following approximation
architectures: SVR, GPR, LPR, and DCR. In addition, we test
an AVI algorithm that exploits the known monotonicity of the
problem, MADP. We draw the following conclusions from this
and related papers:

o API performs decently well with SVR, but poorly with
the other approximation architectures that we considered.
However, given the simplicity of the problem, even the
results from SVR are not too encouraging.

o Pure lookup table AVI performs poorly in practice, de-
spite convergence theory (see [21], [20]).

o Structured lookup table AVI (concavity or monotonicity,
but especially concavity) works extremely well, but is
limited to a low—dimensional state—of—the—world variable
(see [2]).

« Direct policy search also displays superior performance
compared to API based methods (see [1]), but cannot
scale to policies requiring a large number of parameters.
In particular, direct policy search is generally not suitable
for time—dependent policies.

From this, we can conclude that none of these techniques work
reliably in a way that would scale to more complex problems.
Therefore, we believe that new theory and methodology need
to be developed in order to reliably solve real-world sequential
decision problems, which are becoming increasingly difficult.

REFERENCES

[11 W. Scott and W. B. Powell, “Approximate Dynamic Programming
for Energy Storage with New Results on Instrumental Variables and
Projected Bellman Errors,” (working paper), 2012.

[2] D. Salas and W. B. Powell, “Benchmarking a Scalable Approximation
Dynamic Programming Algorithm for Stochastic Control of Multidi-
mensional Energy Storage Problems,” (working paper), 2013.

[3]
[4]

[5]
[6]

[7]
[8]

[9]
(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]
(23]
[24]
[25]
[26]

[27]

(28]

[29]

(30]

W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, 2nd ed. Wiley, 2011.

F. L. Lewis and D. Vrabie, “Learning and Adaptive Dynamic Program-
ming for Feedback Control,” IEEE Circuits Syst. Mag., vol. 9, no. 3,
pp. 32-50, 20009.

D. P. Bertsekas and J. N. Tsitsiklis, Neuro—Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

J. H. Kim and W. B. Powell, “Optimal Energy Commitments with
Storage and Intermittent Supply,” Operations Research, vol. 59, no. 6,
pp. 1347-1360, 2011.

R. Carmona and M. Ludkovski, “Valuation of energy storage: An
optimal switching approach,” Quantitative Finance, pp. 1-29, 2010.
M. Thompson, M. Davison, and H. Rasmussen, “Natural gas storage
valuation and optimization: A real options application,” Naval Research
Logistics, vol. 56, no. 3, pp. 226-238, 2009.

G. Pritchard, B. Philpott, and J. Neame, “Hydroelectric reservoir opti-
mization in a pool market,” vol. 461, pp. 445-461, 2005.

N. Lohndorf, D. Wozabal, and S. Minner, “Optimizing Trading Deci-
sions for Hydro Storage Systems Using Approximate Dual Dynamic
Programming,” Operations Research, vol. 61, no. 4, pp. 810-823, 2013.
A. Philpott and Z. Guan, “On the convergence of stochastic dual dy-
namic programming and related methods,” Operations Research Letters,
vol. 36, no. 4, pp. 450-455, 2008.

R. Sioshansi, S. H. Madaeni, and P. Denholm, “A Dynamic Program-
ming Approach to Estimate the Capacity Value of Energy Storage,” [EEE
Transactions on Power Systems, vol. 29, no. 1, pp. 395-403, 2013.

J. M. Nascimento and W. B. Powell, “An Optimal Approximate Dynamic
Programming Algorithm for the Lagged Asset Acquisition Problem,”
Mathematics of Operations Research, vol. 34, no. 1, pp. 210-237, 2009.
N. Secomandi, “Optimal Commodity Trading with a Capacitated Storage
Asset,” Management Science, vol. 56, no. 3, pp. 449-467, 2010.

L. Hannah and D. Dunson, “Approximate dynamic programming for
storage problems,” Proceedings of the 29th International Conference on
Machine Learning, 2012.

J. M. Nascimento and W. B. Powell, “An Optimal Approximate Dynamic
Programming Algorithm for Concave, Scalar Storage Problems With
Vector-Valued Controls,” IEEE Transactions on Automatic Control,
vol. 58, no. 12, pp. 2995-3010, 2013.

M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. New York: Wiley, 1994.

D. Liu and Q. Wei, “Policy Iteration Adaptive Dynamic Programming
Algorithm for Discrete-Time Nonlinear Systems for Discrete-Time Non-
linear Systems,” vol. 25, no. 3, pp. 621-634, 2014.

R. S. Sutton and A. G. Barto, Introduction to reinforcement learning.
MIT Press, 1998.

J. M. Nascimento and W. B. Powell, “Dynamic Programming Models
and Algorithms for the Mutual Fund Cash Balance Problem,” Manage-
ment Science, vol. 56, no. 5, pp. 801-815, 2010.

D. R. Jiang and W. B. Powell, “Optimal hour-ahead bidding in the real-
time electricity market with battery storage using approximate dynamic
programming,” arXiv preprint arXiv:1402.3575, 2014.

——, “An Approximate Dynamic Programming Algorithm for Mono-
tone Value Functions,” arXiv preprint arXiv:1401.1590, 2014.

H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik,
“Support vector regression machines,” Advances in neural information
processing systems, no. 9, pp. 155-161, 1997.

A. J. Smola and B. Scholkopf, “A Tutorial on Support Vector Regres-
sion,” 2003.

C. E. Rasmussen, “Gaussian processes for machine learning,” 2006.
W. Cleveland and S. Devlin, “Locally Weighted Regression: An Ap-
proach to Regression Analysis by Local Fitting,” Journal of the Ameri-
can Statistical Association, vol. 83, no. 403, pp. 596-610, 1988.

A. A. Jamshidi and W. B. Powell, “A recursive local polynomial
approximation method using Dirichlet clouds and radial basis functions,”
(working paper), 2013.

D. De Farias and B. Van Roy, “On the Existence of Fixed Points
for Approximate Value Iteration and Temporal-Difference Learning,”
Journal of Optimization theory and Applications, vol. 105, no. 3, pp.
589-608, 2000.

W. Scott, P. I. Frazier, and W. B. Powell, “The Correlated Knowledge
Gradient for Simulation Optimization of Continuous Parameters using
Gaussian Process Regression,” SIAM Journal on Optimization, vol. 21,
no. 3, p. 996, 2011.

D. P. Bertsekas, “Approximate Policy Iteration : A Survey and Some
New Methods,” Journal of Control Theory and Applications, no. June,
2011.

