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Abstract—We are interested in optimizing the use of battery
storage for multiple applications, in particular energy arbitrage
and frequency regulation. The nature of this problem requires the
battery to make charging and discharging decisions at different
time scales while accounting for the stochastic information
such as load demand, electricity prices, and regulation signals.
Solving the problem for even a single-day operation would be
computationally intractable due to the large state space and
the number of time steps. We propose a dynamic programming
approach that takes advantage of the nested structure of the
problem by solving smaller subproblems with reduced state
spaces, over different time scales.

Index Terms—Energy storage, frequency regulation, energy
arbitrage, dynamic programming

I. INTRODUCTION

HE increase in renewable energy sources such as wind

and solar in recent years poses challenges to the robust-
ness and resiliency of the electricity grid. Energy storage plays
a significant role in meeting these challenges by improving the
operation of the electricity grid while minimizing infrastruc-
ture investments. The earliest discussion of grid level storage
can be traced back to [1], which presents storage in the context
of a vertically integrated utility to mitigate peak generation
through load shifting. A more recent report from EPRI pro-
vides a comprehensive overview of storage technologies and
usages. Among many goals, it clearly addresses that energy
storage of the future “should be recognized for its value in
providing multiple benefits simultaneously” [2].

There is an abundance of research on the use of storage
for the application of energy arbitrage, the buying and selling
of electricity by exploiting the wholesale electricity price
movement. Early studies such as [3] and [4] have outlined the
economic benefits for energy storage through energy arbitrage.
However, the results from these studies are inflated since
they both assume the electricity prices are known before
making storage decisions. [5] expands upon this work by
relaxing the assumption of perfect price information. It uses
a “back-casting” heuristic that assumes historical price and
load patterns are repeated. A separate line of this research
focuses on the interaction between storage and renewables. [6]
found that compressed air energy storage is a better choice as

Bolong Cheng is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ, 08544.

Warren B. Powell is with the Department of Operations Research and
Financial Engineering, Princeton University.

Manuscript received [DATE] 2015.

a supplemental resource to wind generation in comparison to
natural gas turbines when the green house gas emissions tax is
high. [7] presents a wind energy commitment problem given
storage and then analytically determines the optimal policy for
the infinite horizon case. [8] studies the planning and operation
of a wind energy storage system in an electricity market using
forecasts of the prices. [9] develops a near-optimal policy for
managing wind-generation with energy storage in the presence
of finite transmission capacity and negative electricity prices.

In recent years, the market has come to recognize that
energy arbitrage by itself is not enough to justify the in-
vestment cost of a battery. [5] shows that large scale energy
storage can dampen the price difference between on- and
off-peak hours, thus reducing the arbitrage value of a price-
taking device. Furthermore, it suggests that device owners
can increase the value of storage by co-optimizing between
different markets such as frequency regulation and spinning
reserves. [10] observes that frequency regulation offers higher
profits than energy arbitrage. [4] and [11] also have shown
frequency regulation can be a substantial revenue source for
energy storage.

Frequency regulation is an important ancillary service for
the maintenance of electricity grid stability. It helps mitigate
the constant fluctuation in the supply and demand balance,
usually caused by load variation or output variation from
intermittent renewable resources, such as wind and solar
[12]. Battery storage is an ideal technology for frequency
regulation due to its almost instantaneous response time. There
are many studies on integrating charging electric vehicles to
provide frequency regulation services ([13], [14], and [15]).
[16] optimizes the value of battery storage for frequency
regulation. It models both the state of charge and voltage,
reflecting the energy conversion capabilities of the battery.
This line of literature only focuses on regulation service and
does not consider multiple revenue streams. [10] analyzes the
economics of using storage device for both energy arbitrage
and frequency regulation service. The results showed “high
probability of positive NPV (net present value)” in the New
York City region for both energy arbitrage and regulation.
However, this work does not have an optimization model
and rather relies on heuristics derived from price duration
patterns. [17] co-optimizes compressed air energy storage
(CAES) for both energy and reserve market, but it does not
fully account for the uncertain interactions between providing
energy and ancillary service. Using a single storage device
for multiple revenue streams requires jointly optimizing within
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fixed capacity and power constraints. [18] co-optimizes energy
storage for multiple applications such as energy, capacity, and
back up services. The problem is formulated as a stochastic
dynamic program that solves for an hourly optimal decision.
In reality, frequency regulation requires decisions at the sub-
minute level (typical every two or four seconds). In [18],
the regulation capacity and signal dispatch is modeled only
on an hourly aggregation using the dispatch-to-contract ratio.
Co-optimizing across frequency regulation and other streams
is important, because frequency regulation offers the highest
revenue stream. At the same time, it is quite difficult because
the time scales are so different.

Frequency regulation is typically an easy control problem
at the aggregate level (if a difficult engineering challenge)
because it requires simply following the frequency regulation
signal from the grid operator. However, optimizing across
frequency regulation and energy shifting means that the in-
struction to follow the frequency regulation signal has to be
replaced with a decision of whether to follow the signal,
and how closely. How closely the frequency regulation signal
should be followed depends on the current price for following
the signal (which varies over time), the penalty for not
following it, the current price of electricity (the LMP), and
the time of day.

Given these limitations of existing storage models, this
paper describes a Markov decision process (MDP) model
that co-optimizes for both frequency regulation and energy
arbitrage. We model the operation of the battery down to
the two-second increment. Furthermore, our model accounts
for the stochastic electricity price and regulation signals, thus
accurately reflecting the time dependent nature of the problem.
As a result of the small time steps, we have to discretize
the state variable at a fine level to capture the small changes
in the level of storage. A textbook application of dynamic
programming would require computing and storing 41,200
matrices (the value functions in the dynamic program), each
of which requires 1.6 gigabytes of storage, for a total of 66
terabytes.

We considered using approximate dynamic programming
[19], but extensive empirical research did not give us con-
fidence that ADP could handle this demanding application
[20]. Instead, we first divided the problem into three time
scales (daily, hourly, and five minutes), which limited the
state space to three dimensions. Even this decomposition
required 60 terabytes to solve the three-dimensional matrices
every 2 seconds. To overcome this hurdle, we used singular
value decomposition that reduced the disk space required for
the value functions by a factor of 100, with near optimal
performance.

This paper is organized as follows. In Section II, we
first provide an overview of the PJM frequency regulation
market. We then formulate the problem as a Markov decision
process. In Section III, we present a modified model that takes
advantage of the nested structure of the problem. In Section
IV, we discuss the challenges for computing and storing the
value functions and our low rank approach for approximating
the value functions. In Section V, we describe the benchmark
experiments and discuss circumventing computation limitation

Fig. 1: Sample paths of the RegD signals over an hour

using low rank matrix approximation. We compare our method
to strategies currently employed in the industry. Section VI
concludes the paper.

II. BATTERY STORAGE MODEL

In this section, we first outline the mechanism of the PJM
regulation market. We explain the rules and operation of the
market from which we derive our mathematical model. We
then focus our attention on the control of the battery for co-
optimizing frequency regulation and energy arbitrage, where
we formulate the problem naturally as a Markov decision
process (MDP).

A. Overview of the PJIM Regulation Market

The PIM frequency regulation market provides participants,
e.g. generators and various types of energy storage, with
a market-based system to provide grid ancillary service in
exchange for regulation credits. The PIM regulation market is
a day-ahead market: resource owners wishing to sell regulation
service must submit the offer by 6:00 p.m. the day prior
to operation. An offer includes regulation capability, signal
type, regulating hours, and various parameters of the resource.
PJM clears the regulation market throughout the operating day
and posts the results 30 minutes prior to the start of every
operating hour. During the operating hour, PJIM sends the
regulation signal to the cleared resources. The RegD signal
is the high pass filtered output of Area Control Error (ACE),
which is a measure of the imbalance between sources and uses
of power in the grid. It is specifically developed for energy
storage with fast-response but limited energy capacities. The
RegD signal is sent to the resource every two seconds. Fig.
1 shows three sample paths of the RegD signal over the
period of an hour. PJIM tracks the response of the resource
and computes a performance score at the end of each service
hour. The amount of regulation credit settlement received by
the resource is based on this performance score. We discuss
PJM’s formulation of the performance score in detail in section
II-F. PJM Manual 11 provides a complete overview of the
market rules and operations [21].

B. Static Parameters

We take the perspective of the battery operator and model
the storage problem over a finite-time horizon of one day.
For our problem, we only focus on the control of the battery
throughout the operating day; we assume that it has already
cleared the bidding process. We also assume that the battery
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is a price-taker in the energy market. The following is a list
of parameters used to characterize the device:

e R™#*: The energy capacity of the battery in MWh.

o 1% n?: The charging and discharging efficiency of the
device, respectively.

e [3: The charging and discharging power capacity of the
device.

o K: The assigned regulation (AReg) capacity in MW dur-
ing period [0, T']. This is the maximum capacity assigned
by PIM.

In the following subsections, we outline the five fundamental
components of our model.

C. State Variables

Let H = {0,1,...,23} be the set denoting the hours within
a day and let T = {0, At, 2At,...,1800A¢} index the incre-
ments of two seconds (At) within an hour. We can index the
entire day with the cross product of (h,t) € H x T. Naturally,
the inter-hour transition follows (h, 1800At+At) = (h+1,0).
Since the model is the same for all hours, we fix the operating
hour h and describe the model for one hour. We temporarily
drop h from the subscript for brevity.

We define S; = (Ry, Dy, PE,G) as the state of the system
at time ¢. R; is the amount of energy in the battery at time ¢ in
MWh. D, represents the RegD signal at time ¢ in MW, which
changes every two seconds. A positive D, signal requires the
battery to discharge and a negative value asks the battery to
charge. PF is the spot energy market price (LMP) at time ¢ in
$/MWh, which is updated every five minutes. G; models the
performance score at time ¢. This is a measurement of how
well the battery follows the regulation signal. PJM evaluates
the score at the end of each hour.

We also define PP as the hourly regulation market clearing
price for IMW regulation capacity. The PJM regulation market
clearing price has two components: capacity and performance;
we use the sum of the two components as PP here to simplify
the notation. Since PP is constant for the entire hour and
is only used at the end of the hour, we remove it from the
state variable. It can be considered as a latent variable of
the problem. In the following sections, variables with the
superscript D are related to the frequency regulation market;
those with the superscript F, the energy market.

D. The Decisions

At every time step ¢, our decision is given by the vector z; =
(xP, 2F). The 2P component is our response (in MW) to the
regulation signal at time ¢, which changes every two seconds.
The zF component is the economic basepoint of the device
at time ¢. It is the base charge/discharge rate of the battery.
The regulation signal is modulated around the basepoint. PJM
allows the resources to adjust its economic basepoint every
five minutes. A positive value of (2 + ) means the battery
is charging and a negative value means it is discharging. When
a battery is perfectly following the RegD signal, |D; + x| =
0. The economic basepoint is adjusted every five minutes to
respond to the change in LMP. Alternatively, it can also be

adjusted when the resource level is too high or too low from
following the regulation signal.

At time ¢, we require that the total amount of energy stored
in the device does not exceed its energy capacity:

0< Ry + (2P +2F)- At < R™>, (1)

The total amount of energy charged to or discharged from the
battery is bounded by the maximum charging and discharging
power capacity:

o + a7’ < B. 2

Lastly, we require the economic basepoint to stay constant for
the duration of the five minute interval.

xf =P A, if (t mod 150At) # 0. 3)

E. The Exogenous Information Process

The variable W, = (D,, PF) is a vector that contains
exogenous information processes. D, is the change in the
RegD signal between times t — At and ¢, which changes every
two seconds. PtE is the change in the LMP between times
t — At and t. Note that the real-time LMP is updated every
five minutes.

F. The Transition Function

We let Siyas = SM(S;, 21, Wiy a¢) be the mapping from a
state Sy to the next state S;1 Ay, given the decision x; and new
information W, a;. The state variables D, and PtE evolve
randomly according to the following transition functions:

Diyat = Di + Diyas, €]
Pfrm =P+ Pfrm- )

We discuss the modeling of these two processes in detail in
later sections. The transition function for the energy stored in
the device is given by:

Riint = R + ('rtD + xf) (l{x?+m,{5<0}
Flapapsop) - A, ©)

where 1y,, is the indicator function. Note that the discharge
efficiency 7)° reflects the loss in energy charged to the battery.
Equation (6) holds for the transition from Ry, 1800a: t0 Rp41,0
across the boundaries at the end of each hour.

We next describe the dynamics of the PIM performance
score. The performance score is a weighted sum of three
components: correlation, delay, and precision. It is computed
at the end of the regulation hour. The correlation and de-
lay components measure the temporal shift of the signal
and response. They are computed together using five-minute
rolling correlations of the signal D; and the response zP.
The precision score measures the signal/response deviation.
It is computed by normalizing the hourly absolute deviation
between signal and response at every measurement interval.
The calculation used by PJM is unsuitable for our model since
it requires storing a history of D; and x;.

We propose a simplified version of the performance score
that can be computed recursively. A battery storage unit will
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typically have correlation and delay scores close to 1 since
it can ramp up or down instantaneously. Therefore we drop
these two components and focus on the precision score. We
denote G as the precision score of the hour and it is computed
by PJM using the formula

+
1800At . [(z +D¢) 1t mod 5at=01|
t—o  min ((1 — e , 1

360

G:

(7

This can be viewed as an average of the normalized sig-
nal/response deviation, taken at 10 second intervals (5A¢). If
we want to update this formula iteratively, we first have to
capture snapshots at every interval At. We reformulate the
transition function for G; as

Dy, d
. }It (n 1{m?<0}+1{mtD>O})+Dt‘
min e ,1
= Gt —

1800  ®)
where Gy = 1. Essentially, we are tracking the degradation
of G; every time step. G; is non-increasing in ¢ in this
formulation. Moreover, G1500a: = G if we change the PIM
sampling interval from equation (7) to 2 seconds.

Gt—i—At

G. The Revenue Function

The function C(S,x;) represents the from being in the
state S; and making the decision z; at time ¢. We denote
T = 1800At as the end of the hour. The rewards earned
during the hour can be characterized by

C(Staxt) = _PtE(l‘tD + xtE) (ndl{x?+xtE<0}
+1(,0 +ItE>0}) ALV < T, )
Cr = KPPGr - 1{G,>0.43- 10)

Equation (9) indicates the payment in the energy market
for charging/discharging in the grid. The discharge efficiency
n reflects the loss of energy discharged from the battery.
The hourly settlement that we receive for providing frequency
regulation service is described by (10). A resource with a per-
formance score lower than 0.4 will not receive the regulation
credit and can be disqualified from the regulation market.

We add back the hour-index h and let X7, (Sp,+) be a policy
that outputs a decision xp; given state Sy ;. The objective
function for the horizon of 24 hours can be written as

23 T
Fj = maxE ;;cwhmxg,t(sh,m Soo|. (D)

where II is the space of all admissible policies. Let V}*, (St
be the optimal value function for a pre-decision state Sp, ;.
The optimal policy is characterized by Bellman’s optimality
equation, which is given by

V]Zt(sh,t) = max {C(Sh’t, .’Eh’t)

Th,tEXn,t
+ E[V;;k,t+At(Sh,t+At) |Sh,t]}a V(h, t)’

where the terminal value V53 7 = 0. Note that the hourly RegD
settlement in (10) is embedded in the optimality equation.

(12)

The conditional expectation is taken over the random variable
Wh.t+a¢ and the optimal decision is given by the arg max.
We can obtain the optimal policy by computing (12) traversing
backward through time. For our time horizon of one day, this
requires 24 x 1800 x |S;| computations. Our experiment has
over 70 million states per time ¢; solving this problem directly
becomes computationally intractable.

We notice that the two decisions happen at two different
time scales: the economic basepoint is set every five minutes
and the RegD response happens every two seconds. This
allows us to decouple the two decisions, and formulate a nested
model of the problem. We describe this new model in the
following section.

ITI. A NESTED DYNAMIC PROGRAMMING MODEL

We want to formulate the problem as a nested dynamic
program. In particular, we have to model the control problem
on three different levels. We need to compute the value of
storage for the entire day in five minute increments. Within
each hour, we want to find the optimal economic basepoint
every five minutes. Lastly, we need to know the best response
decision every two seconds. Now we outline the mathematical
model of each subproblem.

A. The Hourly Resource Model

First, we need to address the problem of representing the
value of energy stored at the end of each hour. We formulate an
MDP as a simplified version of the storage problem presented
in [22]. We denote 7 £ 150At, the equivalent of a five-
minute interval and let 752 = {0,7,27,...,127} be the set
marking the increments of five-minutes within an hour. For
this problem, we let the time index be (h,t) € H x TEE for
the horizon of 24 hours in five-minute increments.

In the resource model, the state variable consists of .S fit =
(R 1, P,ft), where the battery only responds to the LMP. The
decision xﬁt is the amount of energy to charge or discharge
every five minutes. It must satisfy the energy capacity and
power capacity constraints of the battery:

0 < Rpg +xp'y < R™,
[z, < B+ 150At.

13)
(14)

The transition functions for the state variables are as follows
(15)
(16)

Rpu4r = Rug + 27 (0°Lon S0y + Lion o),
Pirir = Py + Pilpyr,
where Pt’iT is the only exogenous variable of the model.

The revenue function simply computes the revenue from
discharging/charging, i.e.

CR(Sf?,tvxﬁ,t) = _Plftxﬁt (1{m,{{t>0} + ndl{zgt@}) .

a7
The objective function is defined as
23
7-|-R
max B Y Y CR(SH, X (SIS | (18)
h=0tcTEB
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where X;{f:(Sﬁt) is a policy that maps the state )7, to the
decision xfit and the space of all admissible policies for this
subproblem is defined by IT%.

B. The Five-Minute Economic Basepoint (EB) Model

In the EB model, we are interested in setting the economic
basepoint for energy arbitrage. We assume the decision x”
follows a certain policy 7' 7. Since the horizon of this sub-
problem is one hour, we fixed the hour-index h and temporarily
drop it from the subscript. The time index ¢ € T2 denotes
the increments of five minutes.

We need to modify the system model according to the five-
minute dynamics. Within every five minute increment, the
change in the storage due to following the regulation signal
can be represented as a random variable. We augment the
state space with two new exogenous variables RJr and Rt .
We define Rt ", as the total amount of energy charged to the
battery due to performing frequency regulation between ¢ and
t+7, and Rt_ . is the total amount of energy discharged over
the same interval. The transition function for the resource state
R; then becomes

Riyr = Ri+af - 7(1,m oy + Lursoy°)

+ R+ Ry (19)
The LMP process PtE remains the same as in (16). The
RegD signal D, is omitted from the state variable for this
subproblem since we only model frequency regulation on an
aggregated level. The performance score Gy now becomes a
random process that depends on the policy 7%, We modify
the transition accordingly, where

Girr = Gi + Goyr (20)

In this subproblem, the economic basepoint zZ is the only
intrinsic decision that we have to make; however, we need to
add a decision to represent the trade-off between frequency
regulation and energy arbitrage. Let & € [0,1] denote the
limit of the degradation in G; from ¢ to ¢ + 7, where a:tG =0
represents that we must strictly follow the signal from within
the five minute interval and z¢ = 1 allows us to disobey the
signal completely. We thus derive a new set of constraints for
this subproblem:

0< R+ ((1 — o) K(1up 50y
“Lapany) +af ) T SRM QD)

2 VK (1,p50y — 1{z§<o})’ <p
0<zf <1

21— (22)

(23)

Equation (21) enforces the battery to satisfy the energy ca-
pacity limit, even when the regulation signal requires char-
ing/discharging at the full rate for the entire five minutes.
Equation (22) guarantees the battery never exceeds the power
capacity even in the worst case. In summary, the state vari-
able for the five minute problem is SFZ = (R;, Gy, PF)
and the exogenous variable that becomes available at time
tis W, = (R, R;,Gy, PF). The state transition function

oL Cr = KPPGrla, 04y
[l »
T >
t t+7 t+27 t+ 37 T=t+127
Gy
_________ Giir Giior Giisr Gr
77777777777777777777777777777
“—
l l l 1 »
| | | ) =
t t+T7 t+27 t+ 37 T=t+127

Fig. 2: Model of the economic basepoint problem. In the
first figure, the slope of the blue lines can be viewed as
the economic basepoint, and the dotted line represents the
actual supply/demand due to following regulation signal. In
the second figure, the vertical axis is the performance score
G:. It decreases over the first time period but remains constant
in the next two.

SEB = SM(SEB xy,Wyy,) is characterized by equations
(19), (20), and (5) respectively. We illustrate the economic
basepoint model in Fig. 2. Finally we modify the revenue
function to fit into the new time scale.

CEB(SFBvxtv Wigr) = —PtE (ItE(Udl{a:Em} + l{m{5>0}) T

TR0 +Rt+7), vt < T.
(24

The contribution from hourly regulation credit (10) remains
unchanged for T'. Our goal is to find the optimal policy 7%
defined by the objective function:

FR

max E”
rEBCIIEB

Z CEB(StEB>XtTr (St]EB)thJrT)'S(J)EB

teTEB

(25)

The superscript 71" over the expectation implies that the fre-
quency regulation policy influences the underlying stochastic
processes of this subproblem. This subproblem needs to be
computed for every hour h € H.

C. The Two-Second Frequency Regulation (FR) Model

Now we turn our attention to the frequency regulation
problem at the two-second time scale with a time horizon of
five minutes. Since the LMP is constant over the five minute
interval, P¥ is treated as a latent variable for the subproblem,
i.e. the value function is implicitly a function of P¥. We
are left with a three dimensional state S'? = (R;, Gy, D;).
Our only decision for this subproblem is the response to the
regulation signal, 2”. The transition functions for the three
state variables remain the same from equations (6), (8), and (4)
respectively. We already know the optimal economic basepoint
2P and the maximal single-period degradation x for the
entire horizon. We need to add one more constraint, where

mm( |:ct + Dy, (26)
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Dy
D, < T
N
7‘Tr,D
| | | | | »
I | | | | I g
t t+ At t+ 2At t+ 3At t+T1
Rf R1+Ai Rt+2A(
(&
Girat Giiant Griant
T
| | | | [ »
| | | | I g
t t+ At t+ 2At t + 3At t+7

Fig. 3: Model of the frequency regulation problem. In the first
figure, the solid line is D; and the dotted line is —z”. When
we deviate from the signal, we can see a decrease in G, as
shown in the second figure.

Combining with (23), we can rewrite the above expression as

% 2 + Dy| < 2¢ (27)
For this subproblem, the set of constraints is described by (1),
(2), and (27). We illustrate the FR model in Fig. 3. The revenue
function follows (9). The objective function for finding the
optimal policy 7f'® is written as,

t'+1

> CPR(SER XT(SIR)ISER, 2, PP

t=t’

max E
xFREIIFR

(28)

given the economic basepoint ¥ and the LMP P¥ for the

five minute interval.

IV. COMPUTING THE VALUE FUNCTIONS

The nested model offers a more tractable solution to opti-
mize the battery over the horizon of one day. In this section,
we describe our algorithm for computing the value functions.
We also discuss additional computational challenges resulting
from discretization of the state space and our solution.

A. Algorithmic Approach

We have described three MDP’s that operate at different
time scales; we can solve them individually by computing
the Bellman equations recursively backward through time. A
standard algorithm can be found in all standard textbooks
on the subject such as [23]. We focus our attention on how
to link the three levels of MDP’s together in order to find
the optimal decisions. Our approach is outlined in Algorithm
1. We denote SolveR in Step 2 as the MDP model for the
problem described in Section III-A. The optimal value function
is defined recursively by Bellman’s equation:

Vh}?t(sfljt) max {C (Silz%,t»wh,t)
’ Th, tEX hot
+ E[Vh,t—i-‘r(S}}L%,t—&-T”Si}f,t]}?v(h7 t) € H x TEB
(29)

Algorithm 1 Algorithm for Solving the Value Functions
Step 1 Initialize Vo4 12, = 0.
Step 2 Compute SolveR, obtain V;7,(S1,), for (h
TEE, ’
Step 3For h =10,...,23
3a  Initialize V;EB(SFB) =
KPE GTI{GT20.4}
3b Compute SolveEBy,, obtain V (S
teTEB.
Step 4For h =0,...,23, forn=0,1,...,11.
4a For all Pft and a:f ;» Iinitialize termi-
nal value function Vh 1) (Sfr (nt1)r) =
Vi (J?wrl) (SE,(n+1)T)
4b  Compute all SolveFRhyt(P,ft, tht)

,t) € Hx

Vh}?i-l,o(si?-&-l,o) +

5), for

where Va4 12, = 0. This step gives us the value of storage for
the entire day and we can move on to the next level. In step 3,
we denote SolveEBy, as the MDP model for the EB problem.
Similarly, for each hour h € H we compute the optimal five-
minute value function via

V (S,, ot )= mea;)(( {CEB(Shf s Thits Whtgr)

E[ hEﬁT( Sity)SKe 1}

Vte TEB Vh e H, (30)

where V}EB(S 7) = Vh+1 O(Sh+1 o) HKPEGrlg, 1>0.4)-
The expectatlon is taken over the exogenous variable
Whirr = (ZEL’;HT,]EL’;HT,G;L¢+T,If’,§t+7). The terminal
value functions for the EB problem is the sum of the hourly
value function of the resource problem and the hourly set-
tlement from the frequency regulation market. We have now
computed the value functions down to five-minute increments
for the entire day. We have also obtained the optimal economic
basepoint decision. Lastly, we let SolveFR;, ;(PZ z%) be
the model for the MDP outlined in Section III-C. Recall
that this is a function of the LMP variable P¥ and the
economic basepoint 2 implicitly; therefore, we have to solve
24 x 12 x |P¥| x |2F| subproblems. Now we can derive the
optimal response decision x” by solving

Vit (She) = max {CTF( Sh £ Tht)
’ XFR
[ Vit ae(ShiradlShell G
where the terminal value functions are V[t = V,"Z(S),

for ' € TP and h € H. The expectation is taken with
respect to the only exogenous variable D; i a;.

B. Computational Challenges and Solution

We discretize the state space and action space in order to
solve the problem. In order to track the movement of resource
R and the performance score GG at two-second increments,
we need to discretize the state very finely. We find a good
discretization of the state space to be |R| x |G| x |D| =
901 x 601 x 21 for the FR problem. Assuming each element of
V(ST is stored as a single-precision floating point number,
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Fig. 4: Sample value function plots for the FR problem

we need 4 bytes/state x |\S| x 150 ~ 6 GB to store the value
functions from SolveFR for one combination of PZ and z%.
Suppose that we discretize the prices P¥ to 7 levels and
basepoints zF to 5 levels, we need at least 60 TB of disk
space to store the value functions for all possible states for
the time horizon of one day.

Although we can compute the value functions through
parallelization, we do not have enough disk space to store the
value functions for even one single scenario of RegD clearing
price P”. We observe that the value functions form smooth
surfaces in all three dimensions, as shown in Fig. 4. We can
represent the value function V' as a matrix with |R| rows and
the cross product |G x D] columns. Fig. 4 indicates that the
difference between adjacent columns of V' is close to constant
for any fixed row R, hinting that V' is not a full rank matrix
and can be approximated with a low-rank matrix 1%4 using
singular value decomposition. SVD factors the matrix V' into
the following form:

VvV =U2Q",

where U is a |R| X |R| unitary matrix, ¥ is a |R| by |G x D|
diagonal matrix, and Q7 is a |G x D| by |G x D| unitary
matrix. The diagonal entries of X are singular values o1 >
02 2 -+ 2 O|R] > 0.

SVD guarantees the best rank k approximation under the
Frobenius norm, i.e. it is the solution to ming ||V — V||r
subject to rank(V') < k [24]. Let V}, be the rank k approxima-
tion of V obtained from SVD. We plot the residual ||V — Vi || ¢
in Fig. 5a, and the normalized residual ||V — Vi||z/||V]|F in
Fig. 5b for the first 10 singular values. As we can see, the
error quickly diminishes after rank 5, with the relative error
lower than 0.02%. Choosing a rank of 10 will only require us
to store the first 10 columns of U and the first 10 rows Q7
taking only 73 MB of disk space comparing to 6 GB without
changing discretization, a factor of almost 100 reduction in
storage requirement. Now we can finally compute and store all
the value functions. In the next section, we further explore the
empirical trade-off between rank £ and optimality in greater
details.

V. NUMERICAL RESULTS

In this section, we present the results of our algorithm by
comparing against the frequency regulation policy used in the
industry, which is a greedy policy that only maximizes the

0 2 4 6 8 10 2 4 6 8 10

k k

(a) Residual for the first 10 singular(b) Residual in percentage for the
values first 10 singular values

Fig. 5: Residual from low rank approximation using the first
10 singular values

FR revenue. We also evaluate the quality of the solution when
limiting the SVD approximation to different ranks.

To accelerate the computational testing, we use a time step
At in the frequency regulation problem of 10 seconds, which
reduces CPU time and storage by a factor of 5. This choice
does not change the policies; in addition we kept the state
space the same (that is, we used the same discretization of all
the state variables), which reduced rounding and truncation
error.

A. Benchmark Problems

First, we consider the case of a battery of 500 KWh capacity
with a power capacity of 5 = 1MW and a roundtrip efficiency
of 0.9 x 0.9 = 0.81. We assume the battery has cleared for
the FR market for the entire day, with K = 1MW regulation
capacity. Over-bidding the actual battery capacity is typically
done in practice to take advantage of the dynamic nature of
the RegD signal.

We train our LMP data from 60 sample paths of historical
prices from Jan. 13, 2013 to Mar. 12, 2013. This data is used
to estimate the value functions which produces a policy that is
then tested on 10 sample paths selected from the same period.
We also use the historical RegD signals from the same days.
To solve the EB problems, we need to model the other three
exogenous variables. We model R;" ©, and Rt_ L, using the
empirical distribution of the positive and negative RegD signal
aggregated at five minute increments. G, is a discrete uniform
random variable on the finite support [G; — 2§ /12, G¢]. In the
FR problems, we modeled our D, process using a bounded
first-order Markov chain, where we assume ﬁt_H from equa-
tion (4) is a random variable with discrete pseudonormal
distribution, as described in [22]. Furthermore, we assume
the regulation market clearing price (PP) is constant for the
entire operating horizon. This assumption allows us to test the
behavior of the policy for different values of the RegD price.
For example, we expect to see closer compliance to the RegD
signal as the RegD price increases.

For the pure-FR policy, the battery maintains the economic
basepoint at 0 and strictly follows the D; signal unless it
violates one of the physical constraints described in sec. II-D.
In this case, the policy is defined by arg minmtD |zP + Dy).
We present our simulation results for the two policies in
Table I. The co-optimization policy outperforms the greedy
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TABLE I: Comparing revenues between co-optimization and
pure frequency regulation

RegD price | co-opt pure-FR absolute im-  relative im-
($/MW) ($/day) ($/day) provement provement
5 180.35 100.61 79.74 79.26%

10 289.29 219.22 70.07 31.96%

20 512.18 456.42 55.76 12.22%

40 978.21 930.82 47.39 5.09%

100 2395.28 2354.03 41.25 1.75%

pure-FR policy in all price settings. The greatest proportional
increase in revenue occurs when the RegD clearing price
is low ranging from an 80% increase when PP = 5 to
a 1.75% increase when PP = 100. Keep in mind that
the FR revenue is much higher when the RegD price is
high. In absolute terms, this translates to roughly $187,000
in yearly revenue for co-optimization when PP = 20 and
$357,000 when PP = 40. We want to emphasize that this
is not an economic assessment of co-optimization, but rather
a benchmark to validate our model and algorithm. For a fair
economic assessment, we need to test on separate price data
and consider correlations between RegD price and the LMP
(thus discarding our constant P” assumption) in addition to
other factors, which we will consider in future studies.

We note that the co-optimization policy produces increased
revenue at all price levels. While this is to be expected, it is
important to realize that when the RegD price is $100, the
behavior almost exactly follows a pure FR policy, but using
an algorithmic strategy that is dramatically different. It is our
judgment that this would be very difficult to achieve with
heuristic policies.

As we have assumed, when PP is sufficiently higher than
the LMP, the battery sets the economic basepoint at 0 most
of the time and strictly follows the D; signal. In contrast,
when PP is low comparing to the LMP, the battery adjusts
the economic basepoint more frequently and emphasizes on
energy arbitrage. In Fig. 6, the PP = 100 sample path (in blue
solid) mainly discharges during the price spikes and strictly
follows the RegD signal with economic basepoint set at O
the rest of the time. The PP = 20 sample path (in red
dotted) adjusts the economic basepoint more frequently to take
advantage of every price spike. Note that the battery buys back
most of the resource immediately after the first high LMP
period in anticipation of later price spikes. For the PP = 100
scenario, the battery is recharged following the discharge due
to the price spike, but the recharging occurs more slowly

In Fig. 7, we also observe that the co-optimization policy
automatically adjusts the resource level, selling when it is at
full capacity (exhibited at around tick 7500). As a result, the
battery can follow the regulation signal closer without hitting
the boundaries, evidenced by the higher overall performance
scores.

B. Low Rank Approximation and Optimality

Next, we experiment with policies computed using different
assumptions for the rank in the singular value decomposition.
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Fig. 6: A sample path for co-optimization comparing RegD
clearing prices PP = 20/MW (red dotted) and PP =
100/MW (blue solid). The first plot shows the resource level of
the battery. The second plot displays the performance scores.
The economic point is shown in the third plot: a positive value
means the basepoint has a charging bias; a negative value,
discharging bias. The last plot shows the LMPs for the sample
path.
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Fig. 7: A sample path comparing co-optimization (blue) and
pure FR (red) policies for RegD clearing prices PP =
100/MW.

We use the same experimental settings from the first bench-
mark problem but vary the rank k£ over the range 1, 2, 5 and
10. We present the results in Fig. 8. As the rank k decreases,
the policies produce less optimal decisions. When we reduce
the rank from & = 10 to & = 5, the decrease in revenue ranges
from 0.2% (when PP = 100) to 1.0% (when PP = 10). Note
that £ = 5 decreases the disk space usage by another factor
of 2, but still requires the same amount of computation time.
For the policies computed using rank-1 approximation, the
revenue decreases by as much as 10% for the PP = 5 setting.
However, the decrease in revenue is not significant (around
1%) for cases where PP is greater than $20/MWh. Lastly,
we observe that even when using rank-1 approximation, the
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Fig. 8: Comparing the optimality of policies computed using
different rank k£ approximation. The results are compared to
the k = 10 revenue.

co-optimization model still outperforms the pure FR policy.

VI. CONCLUSION

This paper introduces a nested MDP model that co-
optimizes a storage device for energy arbitrage and frequency
regulation down to two-second increments, which is the fre-
quency of the regulation signal. This model produces an opti-
mal policy for controlling the charging response for frequency
regulation and setting the appropriate economic basepoint for
energy arbitrage, taking into account the stochastic LMP prices
and the RegD signal for the entire day. In order to store the
value functions for all the states, we implemented a low-rank
approximation using singular value decomposition.

We implemented our model and experimented on historical
LMP and regulation signal data. We make the assumption that
the RegD clearing price is constant during the operating day,
allowing us to test the effect of the RegD price on the behavior
of the policy. Our policy outperforms the pure-FR policy
currently employed in the industry, especially when the RegD
clearing price is low. We also experimented with different rank
k in the SVD approximation. While the revenue decreases
when we lower the rank k, our co-optimization method using
a rank-1 approximation still outperforms the pure FR policy.

We close by emphasizing that our experiments are intended
only to evaluate the performance of the algorithm. We assert,
for example, that producing small but positive profits from co-
optimization when the RegD price is $100 (the level at which
the optimal policy is to closely follow the RegD signal) is a
significant achievement, given that the mechanics of the opti-
mized policy are so different. However, the cost improvements
in Table I should be viewed only as a demonstration that the
algorithm works. A careful analysis of the economic benefits
of a co-optimized policy requires testing under more realistic
conditions.
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