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PART I - INTRODUCTION

We begin our journey by providing an overview of the diversity of optimization problems
under uncertainty. These have been introduced over the years by a number of different
communities, motivated by different applications. Many of these problems have motivated
entire fields of research under names such as dynamic programming, stochastic program-
ming, optimal control, stochastic search, ranking and selection, and multiarmed bandit
problems.

xix





CHAPTER 1

DECISIONS AND UNCERTAINTY

ρ{...},E{...}

There are few problems that offer the richness and diversity of making decisions in
the presence of uncertainty. Decision making under uncertainty is a universal experience,
something every human has had to manage since our first experiments trying new foods
when we were two years old. Some samples of everyday problems where we have to
manage uncertainty include:

• Personal decisions - These might include how much to withdraw from an ATM
machine, finding the best path to a new job, and deciding what time to leave to make
an important appointment.

• Health decisions - Examples include joining a health club, getting annual checkups,
having that mole checked, using dental floss, and scheduling a colonoscopy.

• Investment decisions - What mutual fund should you use? How should you allocate
your investments? How much should you put away for retirement? Should you rent
or purchase a house?

• Professional decisions - These are the decisions we have to make as part of our jobs,
or whether to take a job.

Decisions under uncertainty span virtually every major field. Samples include

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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2 DECISIONS AND UNCERTAINTY

Figure 1.1 A sampling of major books representing different fields in stochastic optimization.

• Business - What products to sell, with what features? Which supplies should you
use? What price should you charge? How should we manage our fleet of delivery
vehicles? Which menu attracts the most customers?

• Internet - What ads to display to maximize ad-clicks? Which movies attract the most
attention? When/how should mass notices be sent?

• Engineering - How to design devices from aerosol cans to an electric vehicle, bridges
to transportation systems, transistors to computers?

• Materials science - What combination of temperatures, pressures and concentrations
should we use to create a material with the highest strength?

• Medical research - What molecular configuration will produce the drug which kills
the most cancer cells? What set of steps are required to produce single-walled
nanotubes?

• Economics - What interest rate should the Federal Reserve charge? What levels
of market liquidity should be provided? What guidelines should be imposed on
investment banks?

Needless to say, listing every possible type of decision is an impossible task. However, we
would argue that in the context of a particular problem, listing the decisions is easier than
identifying all the sources of uncertainty.

There has been a historical pattern to pick up the modeling styles and solution approaches
used in the different books captured in figure 1.1. These fields include:

• Decision analysis - This community generally works with discrete actions, possi-
bly discrete random outcomes, but often features complex utility functions and the
handling of risk. Problems are relatively small.

• Stochastic search (derivative based) - This field is centered on the basic problem
minx EF (x,W ) where x is continuous (scalar or vector), W is a random variable,
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and where the expectation typically cannot be computed. However, we assume we
can compute gradients∇xF (x,W ) for a known W .

• Ranking and selection (derivative free) - This field is also focused on minx EF (x,W ),
but now we assume thatx can take on one of a finite set of outcomes {x1, x2, . . . , xM}.

• Simulation-optimization - This community evolved from within the setting of discrete
event simulations, where we need to use a simulator (such as one of a manufacturing
system) to compare different designs. The field of simulation optimization started
with the ranking and selection problem, but has evolved to span a wider range of
problems.

• Online computation - This field describes methods where decisions are made which
simply react to information as it comes in, without considering the impact of decisions
now on the future. This field was originally motivated by mobile applications where
energy and computing capacity was limited.

• Optimal control - The roots of this community are in engineering, focusing on
the control of aircraft, spacecraft, and robots, but has expanded to economics and
computer science. The original problems were written in continuous time with
continuous controls, but is often written in discrete time (typically with discrete
controls), since this is how computation is done. Problems are typically deterministic,
possibly with uncertain parameters, and possibly with additive noise in the transition
function, but this community has been widely adopted, especially in finance where
problems are purely stochastic.

• Robust optimization - This is an extension of stochastic search with roots in engi-
neering, where the goal is to find the best design x (of a building, an aircraft, a
car) that works under the worst instance of a random variable W (which could be
wind, temperature, crash conditions). Instead of minx EF (x,W ), robust optimiza-
tion problems seek to solve minx maxw F (x,w). For example, we might want to
design a wing to handle the worst possible wind stresses.

• Optimal stopping - This is an important problem in finance, where we have to study
when to stop and sell (or buy) an asset. It also arises in engineering when we have to
decide when to stop and repair a piece of machinery. The problem is to find a time τ
to sell or repair, where τ can only depend on the information available at that time.
The problem is popular within the applied probability community.

• Markov decision processes - This community evolved primarily within applied prob-
ability, and describes a system that takes on a discrete state s, and transitions to
s′ when we take (discrete) action a with (known) probability p(s′|s, a). At the
heart of Markov decision processes involving calculating the value V (s) of being
in a (discrete) state s ∈ S. The problem is that when s is a vector, the number of
possible states |S| grows exponentially, a behavior widely known as “the curse of
dimensionality.”

• Approximate/adaptive dynamic programming - Several communities have developed
ways of overcoming the “curse of dimensionality” inherent in the tools of discrete
Markov decision processes by using simulation-based methods to develop approxi-
mations V (s) of the value of being in state s.
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• Reinforcement learning - This field started by modeling animal behavior seeking
to solve a problem (such as finding a path through a maze), where experiences
(in the form of successes or failures) were captured by estimating the value of
a state-action pair, given by Q(s, a) using a method known as Q-learning. In
the 1990’s, reinforcement learning was a different form of approximate dynamic
programming, but this has evolved as researchers found that Q-learning did not
always work (the same could be said of approximate dynamic programming). As
of this writing, “reinforcement learning” has grown to represent the broad problem
class of sequential decision problems, which can be solved using any of the solution
approaches that are presented in this book. In fact, some would describe this entire
book as “reinforcement learning.”

• Stochastic programming - This community evolved from math programming with
the desire to insert random variables into linear programs. The classical problem is
the two-stage problem where you pick x0 (e.g. how many Christmas trees to plant),
after which we learn random information W1, and then we make a second decision
x1 (e.g. shipping Christmas trees to customers).

• Sequential kriging - This community evolved within geosciences, where we need to
learn the largest value of a continuous function f(x) through expensive experiments
(originally field experiments). The vector x was originally a two-dimensional point
in space, where f(x) might be the amount of oil or natural gas yield by drilling a
hole at x.

• Multiarmed bandit problems - The roots of this problem come from applied proba-
bility, where the goal is to identify a discrete alternative (known as an “arm” in this
community) that yields the highest reward, where we do not know the value of each
“arm.” We learn the value through repeated experimentation, accumulating rewards
as we progress.

This list provides a sense of the different communities that have been drawn into the arena
of making decisions under uncertainty. Some of these communities have their roots in
deterministic problems (optimal control, stochastic programming), while others have their
roots in communities such as applied probability and simulation. A byproduct of this
confluence of communities is a variety of notational systems and mathematical styles.

This diversity of languages disguises common approaches developed in different com-
munities. Less important than this process of re-invention of methods is the potential for
cross-fertilization of ideas across communities. Indeed, as of this writing there persists a
fair amount of competition between communities where proponents of one methodological
approach will insist that their approach is better than another.

We organize all of these fields under the broad term “stochastic optimization and learn-
ing” which captures not just the communities listed above that deal with decisions under
uncertainty, but also the fields that address the many learning problems that arise in most
(but not all) solution approaches. In addition, we also have to recognize the importance
of developing stochastic models of the underlying problem. Thus, stochastic optimization
requires integrating three core communities from the mathematical sciences:

Mathematical programming This field covers the core methodologies in derivative-based
and derivative-free search algorithms, including the broad fields of linear, nonlinear
and integer programming. We will draw on the tools of math programming in settings
to find the best decision, or to find the parameters that produce the best model.
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Statistical learning Here we bring together the fields of statistics, machine learning and
data sciences. Most (although not all) of our applications of these tools will involve
recursive learning. We will also draw on the fields of both frequentist and Bayesian
statistics.

Stochastic modeling Optimizing a problem in the presence of uncertainty often requires
a careful model of the uncertain quantities that affect the performance of a pro-
cess. Stochastic modeling draws tools from the fields of probability, simulation, and
uncertainty quantification.

This book is not intended to replace the much more thorough treatments of the more
specialized books that focus on specific modeling approaches and algorithmic strategies.
Rather, our goal is to provide a unified framework that provides a more comprehensive
perspective of these fields. We have found that a single problem can be reasonably
approached by techniques from multiple fields such as dynamic programming (operations
research), model predictive control (control theory) and policy search (computer science),
where any one of these methods may work best, depending on the specific characteristics
of the data. At the same time, powerful hybrid strategies can be created by combining the
tools from different fields.

1.1 WHY A UNIVERSAL FORMULATION?

The diversity of problems is so broad that one might ask: can all these problems be covered
in a single book? And even if this is possible, what is the benefit?

The problem that practitioners find when solving real problems is that the computational
tools of the different communities are fragile. By this we mean that they break down quickly
with surprisingly small changes in the characteristics of a problem. Some examples of this
include:

• The field of decision analysis uses the powerful idea of decision trees which involves
enumerating decisions and uncertainties. While the computational demands depend
on the problem, this approach might work over a horizon of, say, five time periods,
and break down entirely if we try to extend to six or seven time periods.

• The field of discrete Markov decision processes can typically handle state variables
with one or two dimensions with run times growing from seconds to minutes to an
hour or more. Going to three dimensions can push run times into the range of days to
several weeks. Four dimensions is typically impossible except in special cases. Real
problems range from a few dimensions to many thousands or millions of dimensions.

• A classical stochastic optimization problem involves deciding the best quantity x to
meet a demandD, where we sell the smaller of x andD at a price pwhile purchasing
x at a cost c. Known as the newsvendor problem, this is written as

max
x

E{pmin(x,D)− cx}

where the distribution of demandD is a random variable with an unknown distribution
(which means we cannot compute the expectation). The multiarmed bandit literature
proposes rules (policies) for testing different values of x to maximize an unknown
function.
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Now assume that before choosing the quantity xt at time t, we are given a price pt,
which means we are now solving

max
x

E{pt min(x,D)− cx}.

The price pt changes each time we need to make another decision xt. This small
change produces a fundamentally different problem which requires entirely different
algorithmic strategies.

• The field known as stochastic programming provides methods for solving stochastic
resource allocation problems under uncertainties such as random demands and prices.
However, the algorithmic strategy breaks down completely if the random demands
and prices depend on decisions (for example, selling a large quantity might depress
prices).

• The optimal control community focuses on solving the deterministic problem

min
u0,...,uT

T∑
t=0

(
(xt)

TQtxt + (ut)
TRtut

)
where the state xt (which might be the location and velocity of a robot), acted on with
a control ut (a force), evolves according to xt+1 = f(xt, ut). The optimal solution
has the form U∗(xt) = Ktxt where the matrix Kt depends on Qt and Rt. Note that
the controls are unconstrained. Introduce a single constraint such as ut ≥ 0 and this
solution is lost.

• The multiarmed bandit problem involves finding an alternative (e.g. an online ad)
that produces the greatest number of clicks (that may result in sales of a product). The
problem is to find the ad that produces the greatest number of clicks for a particular
user. A famous result known as Gittins indices gives an optimal policy by choosing
the ad with the greatest index. This result requires, however, that we are optimizing
the discounted number of ad-clicks over an infinite horizon, and that the underlying
market behavior does not change (both of these conditions are typically violated in
most problem settings).

• Reinforcement learning can be used to optimize the movement of a single taxi driver,
but the methods do not extend to handling two taxis (at the same time). Fleets in a
city might have hundreds or even thousands of vehicles.

• Approximate dynamic programming has been found to work exceptionally well
optimizing the storage of energy between 500 batteries over a grid if the only sources
of uncertainty are random supplies (e.g. from wind) and demands (which depends
on temperature). However, it struggles with even one battery if we try to model just
one or two exogenous information processes such as weather or prices.

• Inventory problems I: Consider an inventory problem where we sell buy and sell a
quantity xt from our inventory Rt at a fixed price p. For this problem the state St is
just the inventory Rt, and the problem can typically be solved in a few minutes. If
we sell at a stochastically varying price pt (where pt is independent of pt−1), then the
state is St = (Rt, pt), and the run times grow to hours. If the price evolves according
to the time series pt+1 = θ0pt+ θ1pt−1 + εt+1, then the state is St = (Rt, pt, pt−1).
Now the solution of Bellman’s equation could take a week or more.
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• Inventory problems II: Now imagine that our inventory is time-varying but that we
have a forecast of demand given by fDtt′ . We would use fundamentally different types
of solution approaches if the forecast is reasonably accurate, or very inaccurate.

In short, after learning a particular modeling and algorithmic framework, surprisingly minor
details can “break” an algorithmic approach.

Reflecting this state of affairs, different fields of stochastic optimization have grown (and
continue to grow as this is being written) into neighboring areas as the respective research
communities tackle new challenges for which the original techniques no longer work.
As a result, communities with names such as “stochastic search” (the oldest community),
“reinforcement learning,” “simulation optimization,” and “multiarmed bandit problems,” all
with their roots in very distinct problems, are steadily morphing as they discover ideas that
have been at least partly developed by their sister communities in stochastic optimization.

This book overcomes this problem by accomplishing the following:

A universal formulation - The entire range of problems suggested above can be modeled,
with perhaps a few adjustments, using a single formulation. This formulation is quite
general, and makes it possible to model a truly diverse range of problems with a high
level of realism.

Cross fertilization - Ideas developed from one problem class or discipline can be used to
help solve problems traditionally associated with different areas.

Thus, while we do not offer a magic wand that will solve all problems (this problem
class is too diverse), our approach brings together the skills and perspectives of all of the
communities. Recognizing how to bring all these fields together requires, of course, a
common modeling framework, which we provide.

We then draw on all the communities that have contributed to this broad problem class
to identify two fundamental strategies for designing policies (also known as decision rules)
for solving these problems. These two strategies each lead to two classes of policies,
producing four fundamental classes of policies which we use as a foundation for solving
all problems. Small changes to problems can lead us to move from one policy class to
another, or to build hybrids. However, the four classes of policies will form the foundation
of all of our solution approaches.

In the process, we will see that bringing the perspective of one community (say, mul-
tiarmed bandit problems) to others (such as gradient-based stochastic search or dynamic
programming) helps to identify not just new tools to solve existing problems, but also opens
up entirely new research questions.

1.2 SOME SAMPLE PROBLEMS

A few sample problems provides a hint into the major classes of decision problems that
involve uncertainty.

The newsvendor problem The newsvendor problem is one of the most widely used ex-
amples of stochastic optimization problems. Imagine that you have to decide on a
quantity x of newspapers to purchase at a unit price c that will be placed in the bin
the next day. You then sell up to a random demandD, charging a price p. Your profit
F (x,D) is given by

F (x,D) = pmin{x,D} − cx.
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We do not know the demandDwhen we decidex, so we have to findx that maximizes
the expected profits, given by

max
x

E{pmin{x,D} − cx}. (1.1)

The newsvendor problem comes in many variations, which explains its continued
popularity after decades of study. One of the most important variations depends on
whether the distribution D is known (which allows us to solve (1.1) analytically) or
unknown (or not easily computable). Prices and costs may be random (we may be
purchasing energy from the power grid at highly random prices, storing it in a battery
to be used later).

Newsvendor problems can be formulated in two ways.

Offline (terminal reward) formulation - The most classical formulation, stated
in (1.1), is one where we find a single solution x∗ which, when implemented,
solves (1.1). In this setting, we are allowed to search for the best solution without
worrying about how we arrived at x∗, which means we are only interested in
the terminal reward (that is, the quality of the solution after we have finished
our search). We can further divide this problem into two formulations:

• The asymptotic formulation - This is the formulation in (1.1) - we are
looking for a single, deterministic solution x∗ to solve (1.1).

• The finite time formulation - Imagine that we are allowed N samples of
the functionF (x,D) to find a solution x̄N , which will depend on both how
we have gone about finding our solution, as well as the noisy observations
we made along the way.

Online (cumulative reward) formulation - Now imagine that we do not know the
distribution of the demand D, but rather have to experiment by choosing x and
then observing D, after which we can figure out how much money we made
that day. The problem is that we have to maximize profits over the days while
we are learning the best solution, which means we have to live with the profits
while we are learning the right solution.

A stochastic shortest path problem Imagine that we are trying to find the best path over
an urban network. As a result of congestion, travel times on each link (i, j) joining
nodes i and j may be random. We may assume that we know the cost from i to
j as soon as we arrive at node i. We may assume the distribution of the cost cij
is known, or unknown. In addition it may be stationary (does not change with
time) or nonstationary (reflecting either predictable congestion patterns, or random
accidents).

Optimizing medical decisions During a routine medical exam, a physician realizes that
the patient has high blood sugar. Courses of treatment can include diet and exercise,
or a popular drug called metformin that is known to reduce blood sugar. Information
collected as part of the medical history can be used to guide this decision, since
not every patient can handle metformin. The doctor will have to learn how this
patient responds to a particular course of treatment, which is information that he
can use to help guide his treatment of not only this patient, but others with similar
characteristics.
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Pricing an electricity contract A utility has been asked to price a contract to sell elec-
tricity over a 5-year horizon (which is quite long). The utility can exploit 5-year
contracts on fuels (coal, oil, natural gas), which provide a forecast (by financial mar-
kets) on the price of the fuels in the future. Fuel prices can be translated to the cost
of producing electricity from different generators, each of which has a “heat rate”
that translates energy input (typically measured in millions of BTUs) and electricity
output (measured in megawatt-hours). We can predict the price of electricity by
finding the intersection between the supply curve, constructed by sorting generators
from lowest to highest cost, and the projected demand. Five years from now, there is
uncertainty in both the prices of different fuels, as well as the demand for electricity
(known as the “load” in the power community).

Inverted pendulum problem This is one of the most classical problems in engineering
control. Imagine you have a vertical rod hinged at the bottom on a cart that can
move left and right. The rod tends to fall in whatever direction it is leaning, but
this can be countered by moving the cart in the same direction to push the rod back
up. The challenge is to control the cart in a way that the rod remains upright,
ideally minimizing the energy to maintain the rod in its vertical position. These
problems are typically low-dimensional (this problem has a one- or two-dimensional
controller, depending on how the dynamics are modeled), and deterministic, although
uncertainty can be introduced in the transition (for example to reflect wind) or in the
implementation of the control.

Managing blood inventories There are eight blood types (A, B, AB, O, which can each
be either positive or negative). Blood can also be stored for up to six weeks, and
it may be frozen so that it can be held for longer periods of time. Each blood type
has different substitution options (see figure 1.2). For example, anyone can accept
O-negative blood (known as the universal donor), while A-positive blood can only be
used for people with A-positive or AB-negative (known as the universal recipient).
As a result of different substitution options, it is not necessarily the case that you
want to use, say, A-positive blood for an A-positive patient, who can also be handled
with either O-negative, O-positive, A-negative as well as A-positive blood.

Hospitals (or the Red Cross) have to periodically run blood drives, which produce
an uncertain response. At the same time, demand for blood comes from a mixture
of routine, scheduled surgeries and bursts from large accidents, storms and domestic
violence.

If the problem is modeled in weekly time increments, blood may have an age from
0 to 5 weeks. These six values times the eight blood types, times two (frozen or not)
gives us 96 values for the blood attribute. There are hundreds of possible assignments
of these blood “types” to the different patient types.

These problems are but a tiny sample of the wide range of problems we may encounter
that combine decisions and uncertainty. These applications illustrate both offline (design
first) and online (decisions have to be made and experienced over time) settings. Decisions
may be scalar, vectors (the blood), or categorical (the medical decisions). Uncertainty
can be introduced in different forms. And finally, there are different types of objectives,
including a desire to do well on average (the newsvendor problem is typically repeated
many times), as well as to handle risk (of an outage of power or a blood shortage).
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Figure 1.2 The different substitution possibilities between donated blood and patient types (from
Cant (2006)).

1.3 DIMENSIONS OF A STOCHASTIC OPTIMIZATION PROBLEM

Although we revisit this later in more detail, it is useful to have a sense of the different
types of problems classes. We provide this by running down the different dimensions of a
sequential decision problem, identifying the varieties of each of the dimensions. We wait
until chapter 9 before providing a much more comprehensive presentation of how to model
this rich problem class.

1.3.1 State variables

The state variable St captures all the information available at time t (we may also use Sn

to describe the state at iteration n) that we need to model the system from time t onward.
State variables come in different forms. While the labeling of different elements of the
state variable is not critical, there are many problems where it is natural to identify up to
three flavors of state variables:

Physical state Rt - This might be inventory, the location of a vehicle on a network, or
the amount of money invested in a stock, where Rt may be a scalar (money in the
bank), a low-dimensional vector (the inventory of different blood types) or a very
high-dimensional vector (the number of different types of aircraft described by a
vector of attributes). Physical states restrict the decisions we can make in some way.
For example, we cannot sell more shares of a stock than we own. The location on
a network determines the decisions we can make. In the vast majority of problems,
decisions affect the physical state, directly or indirectly.

Informational state It - This includes information that affects the behavior of a problem,
such as the temperature (that influences evaporation from a reservoir), economic
variables (that influence stock prices and interest rates), medical factors (e.g. whether
someone needing a knee replacement is also a smoker). An informational state
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variable is any relevant piece of information that we know perfectly, and that we
have not classified as a physical state.

Belief state Bt - The belief state (sometimes called the knowledge state) is the information
that specifies a probability distribution describing some unknown parameter. The
parameter might be an unknown response to medication, the revenue produced by
selling a product at a particular price, or the number of people with a medical
condition (which can only be observed imperfectly).

Regardless of whether the elements of the state variable are describing physical resources
such as inventories or the location of an aircraft, information such as weather or stock
prices, or uncertain parameters such as the wear and tear of an engine, the condition of
a patient, or how a market might respond to incentives, the state variable is information.
Further, the state St is all the information (and only the information) needed to model the
system from time t onward.

State variables may be perfectly controllable (as is often the case with physical states),
uncontrollable (such as the weather), or partially controllable (such as the health of a patient
being treated or the spread of treatable diseases).

1.3.2 Types of decisions

Decisions come in many different styles, and this has produced a variety of notational
systems. The most common canonical notational systems for decisions are:

Discrete action a - This notation is typically used when a is discrete (binary, integer,
categorical). This is widely used in computer science, which inherited the notation
from the Markov decision process community in operations research.

Continuous control u - In the controls community, u is typically a low-dimensional con-
tinuous vector (say 1-10 dimensions).

General vectors x - In operations research, x is typically a vector of continuous or discrete
(integer) variables, where it is not unusual to solve problems with tens or hundreds
of thousands of variables (dimensions).

Regardless of the community, decisions may come in many forms. We will use our
default notation of x, where X is the set of possible values of x.

• Binary - X = {0, 1}. Binary choices arise frequently in finance (hold or sell an
asset), and internet applications where x = 0 means “run the current website” while
x = 1 means “run the redesigned website” (this is known as A/B testing).

• Discrete - X = {1, 2, . . . ,M}.

• Subset - xmay be a vector (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1) indicating, for example, the
starting lineup of a basketball team.

• Scalar continuous - X = (a, b) for some b > a. This is typically written X = R.

• Continuous vector - x = (x1, . . . , xn) might be an n-dimensional vector, where we
may write X = Rn.

• Discrete vector - x can be a vector of binary elements, or a vector of integers (0, 1,
2, ...).



12 DECISIONS AND UNCERTAINTY

• Categorical - x may be a category such as a type of drug, or a choice of employee
described by a long list of attributes, or a choice of a movie (also described by a long
list of attributes). If we let a1, a2, . . . , aK be the different attributes of a choice, we
see that the number of possible categories can be extremely large.

The nature of the decision variable, along with properties of the objective function and the
nature of different forms of uncertainty, can have a major impact on the design of solution
strategies.

1.3.3 Types of uncertainty

The various communities working in stochastic optimization often focus on making the best
decision in the presence of some sort of uncertainty. In fact, the modeling of uncertainty is
quite important. The dimensions of uncertainty modeling are

Sources of uncertainty There are over 10 different ways in which uncertainty can en-
ter a model such as observational uncertainty, forecasting, model uncertainty, and
uncertainty in the implementation of decisions.

Distributions When we use probability distributions, we can draw on a substantial library
of distributions such as normal, exponential, Poisson and uniform (to name but a
few).

Distribution-based vs. distribution-free We may have a formal stochastic model of un-
certainty, but we often encounter problems where we do not have a probability model,
and depend instead on exogenous sources of information.

1.3.4 Models of system dynamics

Almost all of the problems we consider in this volume can be modeled sequentially, starting
with some state which is then modified by a decision and then new information, which then
leads to a new state. However, there are different ways that we can compute, measure or
observe these transitions. These include

Model-based - Here we assume we can model the transition as a system of equations. For
example, an inventory problem might include the equation

Rt+1 = Rt + xt + R̂t+1,

where Rt is our current inventory (say, water in a reservoir or product on a store
shelf), xt may represent purchases or (for water) releases, and R̂t+1 is random,
exogenous changes (rainfall or leakage, sales or returns).

Model-free - This describes situations where we can observe a state St, then take an
action at, but after that all we can do is observe the next state St+1. This might arise
whenever we have a complex process such as global climate change, the dynamics
of a complex production plant, a complex computer simulation, or the behavior of a
human being.

Both of these are very important problem classes, and there are specialized modeling and
algorithmic strategies designed for each of them.
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1.3.5 Objectives

There are many ways to evaluate the performance of a system, which may involve a single
metric, or multiple goals or objectives. Different classes of metrics include

Costs or contributions - These include financial metrics that we are minimizing (costs)
or maximizing (profits, revenue, contributions).

Performance metrics - Here we would include non-financial metrics such as strength of
a material, cancer cells killed, post-operative recovery from a surgical procedure.

Faults - We may wish to maximize a performance metric (or minimize cost), but we have
to monitor service failures, or flaws in a product.

Time - We may be trying to minimize the time required to complete a task.

We also need to consider how costs (or rewards/contributions) are being accumulated:

Cumulative rewards - We may accumulate rewards (or costs) as we progress, as would
happen in many online applications where we have to actually experience the process
(e.g. testing different prices and observing revenues, trying out different paths
through a network, or making medical decisions for patients).

Terminal rewards - We may be able to run a series of tests (in a lab, or using a computer
simulation) looking to identify the best design, and then evaluate the performance
based on how well the design works, and without regard to poor results that arise
while searching for the best design.

We next have to consider the different ways of evaluating these metrics in the presence
of uncertainty. These include

Expectations - This is the most widely used strategy, which involves averaging across the
different outcomes.

Risk measures - This includes a variety of metrics that capture the variability of our
performance metric. Examples include:

• Variance of the metric.

• A quantile (e.g. maximizing the 10th percentile of profits).

• Probability of being above, say, the 90th quantile or below the 10th quantile.

• Expected value given it is above or below some threshold.

Worst case - Often associated with robust optimization, we may wish to focus on the worst
possible outcome, as might arise in the design of an engineering part where we want
the lowest cost to handle the worst case. This is technically a form of risk measure,
but robust optimization is a distinct field.

1.3.6 Staging of information and decisions

Stochastic problems come in a variety of flavors in terms of the sequencing of information
and decisions. At one extreme is a simple “decision-information” where we make a
decision, then observe some information that we did not know when we made the decision.
At the other extreme is an infinite sequence of “decision-information-decision-information-
...”
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1.4 FORMULATING A STOCHASTIC OPTIMIZATION PROBLEM

It is useful to pause at this point and provide a hint of how we go about formulating and
solving a stochastic optimization problem. Below, we use a simple inventory problem,
and begin by contrasting how we formulate deterministic and stochastic versions of the
problem. This requires introducing the notion of a policy (the controls community would
call this a control law), which is a method for making decisions. We then briefly introduce
the notion of policies and hint at how we are going to go about creating policies.

1.4.1 A deterministic inventory problem

Imagine that we want to solve a simple inventory problem, where we have to decide how
much to order, xot , at time t. We are going to assume that when we order xot , the items
cannot be used until time t + 1. Let ct be the cost of items ordered in period t (which
can vary from one time period to the next), and assume that we are paid a price pt when
we satisfy the demand given by Dt. Let xst be the sales at time t, which is limited by the
demand Dt, and the available product which is our inventory Rt plus our orders xot , so we
can write

xst ≤ Dt, (1.2)
xst ≤ Rt, (1.3)
xst ≥ 0, (1.4)
xot ≥ 0. (1.5)

We assume that unsatisfied demand is lost. The left-over inventory is

Rt+1 = Rt + xot − xst . (1.6)

Finally, we are going to let xt = (xot , x
s
t ).

Now we formulate our optimization problem as

max
xt,t=0,...,T

T∑
t=0

(
ptx

s
t − ctxot

)
, (1.7)

subject to the constraints (1.2) - (1.6). The solution is in the form of the vector of production
and sales decisions xt, t = 0, . . . , T .

It should not come as a big surprise that we need to solve the inventory problem over
the entire horizon to make the best decision now. For example, if we specified in advance
x1, . . . , xT , then this could easily change what we do now, x0, at time 0. We revisit this
observation after we discuss how to handle the stochastic version of the problem.

1.4.2 The transition to a stochastic formulation

Now consider what happens when we make the demands Dt random. Since Dt is random,
the inventoryRt is random. This means that the order quantity xot is random, as is the sales
xst . Given this, the optimization problem in (1.7) simply does not make any sense (what
does it mean to optimize over a set of random variables?).

We fix this by replacing the decisions xt = (xot , x
s
t ) with a function, known as a policy

(or control law), that we designate Xπ(St) = (Xπ,o
t (St), X

π,s
t (St)) where St is our
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“state” variable that captures what we know (in particular, what we need to know) to make
a decision. For this simple problem, our state variable is just the inventory Rt. This allows
us to rewrite our objective function (1.7) as

max
π

E
T∑
t=0

(
ptX

π,s
t (Rt)− ctXπ,o

t (Rt)
)
. (1.8)

This equation is still solved given the constraints (1.2)-(1.6), but they are applied differently.
The policy Xπ

t (Rt) has to obey equations (1.2)-(1.5), which is easy to do because at time
t, both Rt and Dt are known. Then, after computing (xot , x

e
t ) = Xπ

t (Rt), we can compute
Rt+1 from equation (1.6), which means sampling Dt+1 from some distribution. Finally,
the expectation E in (1.8) means sampling over all the different sequences D1, . . . , DT . In
practice, we cannot actually do this, so imagine that we create a sample Ω̂ where ω ∈ Ω̂
represents a particular sequence of possible values of D1(ω), . . . , DT (ω). If we assume
that each sequence of demands is equally likely, we would approximate (1.8) using

max
π

1

N

N∑
n=1

T∑
t=0

(
ptX

π,s
t (Rt(ω

n))− ctXπ,o
t (Rt(ω

n))
)
. (1.9)

where N is the number of sample paths in Ω̂.
Equation (1.8), which we approximate using (1.9), illustrates how easily we can transi-

tion from deterministic to stochastic optimization models. There is only one hitch: how in
the world do we find these “policies”?

1.4.3 Choosing inventory policies

Before we progress too far, we have to first establish: what, precisely, is a “policy”? In a
nutshell, a policy is a function that returns a feasible decision xt (or at or ut or whatever
notation you are using) using the information in our state variable St. We have yet to
formally define state variables, but for our purposes, these include any information we need
to make a decision (they have to include some other information, but we return to this topic
in depth later).

Policies come in different forms. For our inventory problem, we might use a simple rule
such as: if the inventory Rt goes below θmin, order xot = θmax − Rt, which brings our
inventory up to θmax. Let θOrd = (θmin, θmin). We write the policy as

XOrd(St|θOrd) =

{
θmax −Rt If Rt < θmin

0 Otherwise.
(1.10)

We might then set our sales quantity xst = min{Rt, Dt}, which means we satisfy as much
demand as we can. This policy is parameterized by θOrd, so now we just have to find the
values that produce the highest profit. This means we translate our objective function (1.9)
to

max
θOrd

E
T∑
t=0

(
ptX

π,s
t (Rt|θOrd)− ctXπ,o

t (Rt|θOrd)
)
. (1.11)

Solving (1.11) may not be easy, but it is certainly easier to understand. For example, we
could simply do a grid search over all possible values of θ (discretized), using our sampled
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approximation in (1.9). In fact, solving (1.11) is itself a stochastic optimization problem.
Later we are going to describe a variety of ways of solving this problem, but an immediate
approximation is to solve a sampled model as we did in equation (1.9), which would be
stated as

max
θOrd

1

N

N∑
n=1

T∑
t=0

(
ptX

π,s
t (Rt(ω

n)|θOrd)− ctXπ,o
t (Rt(ω

n)|θOrd)
)
. (1.12)

This “order up to” policy is a particularly simple example. It is known to work well
under certain situations (in fact, it is widely used in practice). But inventory problems arise
in many settings, and an order-up-to policy would not work well in settings with highly
variable (yet predictable) demands. In such a setting, it makes more sense to use a look-
ahead policy, where we optimize a deterministic approximation over some appropriately
chosen horizon H . For this, let

D̃tt′ = The forecast of the demand Dt′ made at time t.

Now, we formulate a deterministic approximation of the problem at time t using

XLA
t (St) = arg max

x̃tt′ ,t
′=t,...,t+H

t+H∑
t′=t

(
pt′ x̃

s
tt′ − ct′ x̃ott′

)
. (1.13)

Note that we use tilde’s on all the variables in the lookahead model, to avoid confusion
with the base model. These tilde-variables are also indexed by two time variables: the time
t at which we are making the decision, and t′ which is the point in time in the future within
the lookahead model.

This problem is solved subject to modified versions of (1.2)-(1.6). For example, instead
of using the actual demandDt, we use the forecasted demand fDtt′ which is our best estimate
of Dt′ given what we know at time t. The lookahead version of these constraints would be
written

x̃stt′ ≤ fDtt′ , (1.14)
x̃stt′ ≤ R̃tt′ , (1.15)
x̃stt′ ≥ 0, (1.16)
x̃ott′ ≥ 0, (1.17)

R̃t,t′+1 = R̃tt′ + x̃ott′ − x̃stt′ . (1.18)

We are not quite done. In the lookahead model, all activities for t′ > t are basically
forecasts. For example, we are not going to actually order x̃stt′ for t′ > t; we are simply
creating a plan to help us make the best decision x̃stt which is what we are actually going
to implement.

We now have two policies, XOrd(St|θOrd) and XLA
t (St), where XOrd(St|θOrd) is

parameterized by θOrd. How do we decide which is best? We have to compute

FOrd = max
θOrd

E
T∑
t=0

(
ptX

Ord,s
t (Rt|θOrd)− ctXOrd,o

t (Rt|θOrd)
)
, (1.19)

FLA = E
T∑
t=0

(
ptX

LA,s
t (Rt)− ctXLA,o

t (Rt)
)
. (1.20)
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In other words, we compare the best policy within the class of order-up-to policies (by
searching for the best value of θOrd), and then compare it to how well the lookahead policy
works.

1.4.4 A generic formulation

Modeling sequential decision problems can be very subtle, especially considering the
richness of the problem class. This book places considerable attention on careful modeling,
but for the moment, we are going to briefly introduce some core elements. First, assume
that C(St, xt) is the contribution (or cost) of being in a state St (this could be an inventory,
or sitting at a node in the network, or holding an asset when the market price is at a certain
level) and taking an action xt (ordering more inventory, moving from one node to the next,
or holding/selling the asset).

Next, we have to describe how our system evolves over time. If we are in some state
St and make a decision xt, next assume that we observe some new information Wt+1 (this
could be the demand for our product, the travel time over a congested link in the network,
or the change in the asset price). The new information Wt+1 (we call it the exogenous
information) is random at time t but becomes known by time t+ 1. With this information,
assume we have a transition function known as the system model SM (St, xt,Wt+1) that
specifies the next state St+1, which we write using

St+1 = SM (St, xt,Wt+1). (1.21)

If we could fix the sequence x = (x0, x1, . . . , xT ) over the horizon from 0 to time period
T , we could evaluate our solution using

F̂ (x) =

T∑
t=0

C(St, xt), (1.22)

where St evolves according to (1.21). Keeping in mind that the sequenceW1,W2, . . . ,WT

is a series of random variables (such as the orders for our inventory system), the total
contribution F̂ (x) in (1.22) is a random variable. We could take the expectation and then
optimize over the vector x, giving us

F ∗ = max
x0,...,xT

E
T∑
t=0

C(St, xt). (1.23)

This would be like deciding in advance how much to order before you have learned any of
the demands. This ignores our ability to adapt to the information as it arrives, captured by
the state St of our system.

A more natural approach is to use one of our policies (such as our order-up-to policy
XOrd
t (St), or our lookahead policy XLA(St)). Let Xπ

t (St) be our generic policy. If we
run a simulation of the policy (sampling or observing a single sequence W1, . . . ,WT ), the
performance of the policy would be given by

F̂π =

T∑
t=0

C(St, X
π
t (St)). (1.24)

The quantity F̂π is a random variable, since we would get different values each time we ran
our simulation. Imagine we run our simulation n = 1, . . . , N times, and let Wn

1 , . . . ,W
n
T
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be the nth sequence of observations of the random information. Imagine this produces the
sequence of states, actions and information

(S0, x0 = Xπ(S0),Wn
1 , S

n
1 , x

n
1 = Xπ(Sn1 ),Wn

2 , . . . , S
n
t , x

n
t = Xπ(Snt ),Wn

t+1, . . .)

We could then compute an average value of our policy using

F
π

=
1

N

N∑
n=1

T∑
t=0

C(Snt , X
π
t (Snt )). (1.25)

While we often do this in practice, F
π

is still a random variable (it depends on our sample
of N sequences of random variables). We state the core problem using an expectation,
which we write as

Fπ = E

{
T∑
t=0

C(St, X
π
t (St))|S0

}
. (1.26)

This is how we go about evaluating a policy. Now we have to address the problem of
designing policies.

1.5 SOLUTION STRATEGIES

At the heart of any stochastic optimization problem is an uncertainty operator such as an
expectation (or risk measure) that introduces computational complexities. Our solution
strategies are largely organized around how we handle the uncertainty operator, which can
be organized along three broad lines:

Exact solution of original problem - Here, we exploit special structure to derive analyti-
cal solutions, or use numerical algorithms to exploit our ability to solve expectations
exactly. In chapter 4, we describe a type of stochastic shortest path problem that
reduces to a deterministic shortest path problem.

Exact solution of sampled problem - We can reduce uncertainty models that are compu-
tationally intractable (for example, a multivariate normal distribution) with a sam-
pled approximation. Thus, if a random vector W has a mean vector µi = EWi

and a covariance matrix Σ where Σij = Cov(Wi,Wj), then expectations involv-
ing W become intractable in more than two or three dimensions. However, we
can replace this distribution with a sample W 1, . . . ,WK , where we might then re-
place the original distribution with the discrete sample where we might assume that
Prob[W = W k] = 1/K (for example).

Adaptive learning algorithms - Some of the most powerful strategies use iterative,
sampling-based algorithms that work with the original probability model, apply-
ing iterative algorithms that work with one sample at a time. We may try to design
algorithms that might give the optimal solution asymptotically, or a “good” solution
within a fixed computational budget.

We cover all three strategies in this volume. Exact solutions are limited to very special
cases, but these are sometimes very important special cases that provide a foundation to
more complex problems. Sampled solution strategies represent a powerful and popular
strategy, but can lead to the need to solve very large problems. However, most of our
attention will focus on iterative algorithms which lend themselves to the richest problem
classes.
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1.6 DESIGNING POLICIES FOR SEQUENTIAL DECISION PROBLEMS

What often separates one field of stochastic programming (such as “stochastic program-
ming”) from another (e.g. ”dynamic programming”) is the type of policy that is used
to solve a problem. Possibly the most important aspect of our unified framework in this
volume is how we have identified and organized different classes of policies.

The entire literature on stochastic optimization can be organized along two broad strate-
gies for creating policies:

Policy search - This includes all policies where we need to search over a set of parameters
θ to maximize (or minimize) an objective function such as (1.11) or the sampled
version (1.12).

Policies based on lookahead approximations - Here we are going to build our policy so
that we make the best decision now given an estimate (which is typically approximate)
of the downstream impact of the decision.

Our order-up-to policyXOrd(St|θOrd) is a nice example of a policy that has to be optimized
(we might say tuned). The optimization can be done using a simulator, as is implied in
equation (1.12). The lookahead policy XLA

t (St) in (1.13) uses an approximation of the
future to find a good decision now.

1.6.1 Policy search

Policies determined through policy search can be divided into two classes:

Policy function approximations (PFAs) - These are analytical functions that map a state
(which includes all the information available to us) to an action.

Cost function approximations (CFAs) - These policies minimize or maximize some an-
alytical function (this might include analytically modified constraints).

A good example of a PFA is our order-up-to policy as a policy function approximation.
PFAs come in many forms, but these can be divided into three major classes:

Lookup tables - These are used when a discrete state S can be mapped to a discrete action,
such as:

• When you order red meat for dinner, you drink red wine; if you order chicken
or fish, you drink white wine.

• If the amount of cash in a mutual fund is Rt, the stock market index is Mt and
interest rates are It, then invest xt into equities (xt < 0 means withdraw from
equities).

Parametric functions - These describe any analytical functions parameterized by a vector
of parameters θ. Our order-up-to policy is a simple example. We might also write
it as a linear model. Let St be a state variable that captures all the information we
have (and need) to make a decision, and let (φf (St))f∈F be a set of features. For
example, our cash in a mutual fund problem has St = (Rt,Mt, It), we could create
features φ1(St) = Rt, φ2(St) = R2

t , φ3(St) = Mt, φ4(St) = log(It). We might
then write our policy as

XPFA(St|θ) = θ1φ1(St) + θ2φ2(St) + θ3φ3(St) + θ4φ4(St).
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Other examples of parametric functions include nonlinear models such as neural
networks and logistic regression.

Nonparametric functions - These include functions that might be locally smoothed es-
timates (known as kernel regression or k-nearest neighbor), or locally parametric
models, which might be linear models for different (possibly pre-specified) regions.
More advanced nonparametric models include support vector machines (we describe
these in much more detail in chapter 3).

The second class of functions that can be optimized using policy search is called para-
metric cost function approximations, or CFAs. CFAs are distinguished by the need to
minimize or maximize some function, typically subject to some set of (possibly complex)
constraints. For example, we might specify a feasible region Xt by a system of linear
equations

Xt = {x|Atxt = bt, xt ≥ 0, xt ≤ ut}.

Now imagine that we start with a simple myopic policy that tries to maximize contributions
now, ignoring the impact on the future. We would write this policy as

Xmyopic(St) = arg max
xt∈Xt

ctxt. (1.27)

We can modify this policy using a parametric term in the objective, which we might write
as

Xmyopic−CFA(St|θ) = arg max
xt∈Xt

ctxt +
∑
f∈F

θfφf (St, xt)

 , (1.28)

where (φf (St, xt))f∈F is a set of features drawn from the state St and the decision vector
xt.

Both PFAs and CFAs have to be tuned using equation (1.29). Imagine that policy π has a
tunable parameter vector θ, so we write the dependence of the policy on θ usingXπ

t (St|θ).
We now write the problem of tuning θ using

Fπ = max
θ

E

{
T∑
t=0

C(St, X
π
t (St|θ))|S0

}
. (1.29)

Thus, Fπ is the best performance of the policy π when its parameters are tuned to maximize
performance.

1.6.2 Policies based on lookahead approximations

A natural strategy for making decisions is to consider the downstream impact of a decision
you make now. There are two ways of doing this:

Value function approximations (VFAs) - Assume that you are in a state St (a node in a
network, the level of inventory), take a decision xt (or action at) (which takes you
to another node, or changes the inventory level), which produces a contribution (or
cost) C(St, xt) and you then transition to a state St+1 (the downstream node, or the
new inventory level). If you have an estimate of the value Vt+1(St+1) of starting in
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state St+1 and then proceeding until the end of the horizon, we can use this value
function to make the best decision. If the downstream state St+1 is a deterministic
function of the starting state St and the action at, then we can define a policy based
on value functions using

XV FA(St) = arg max
xt

(
C(St, xt) + Vt+1(St+1)

)
.

We are primarily interested in problems where the transition to the downstream state
St+1 involves a random variable (such as the demand in an inventory problem),
which means we have to use an expectation

XV FA(St) = arg max
xt

(
C(St, xt) + E{Vt+1(St+1)|St}

)
.

While there are special cases where we can compute these value functions exactly,
most of the time they are approximations called value function approximations (or
VFAs), producing what we call VFA-based policies.

Direct lookahead models (DLAs) - The second approach avoids the need to create an
analytical function Vt(St), and instead tries to optimize over the entire horizon from
time t until the end of the planning horizon T (or over some horizon (t, t + H).
While this is often (but not always) possible with deterministic models, there are
only a few special cases where it can be done for stochastic models, requiring that
we design and solve approximate lookahead models. The deterministic lookahead
model XLA

t (St) introduced above is a deterministic approximation of a stochastic
model.

Unlike PFAs and CFAs, policies based on direct lookahead do not have to be tuned using
optimization models such as that depicted in equation (1.29). In a very small number of
cases, we can compute the value function exactly, or solve the lookahead model exactly
(without introducing approximations), which means we can find optimal policies. We note
that there are also special cases where the optimal policy has a known, parametric form,
which means that solving equation (1.29) for the best PFA or CFA can also provide an
optimal policy.

1.6.3 Mixing and matching

It is possible to create hybrids. For example, we may wish to modify our lookahead policy
to recognize that fDtt′ is just a forecast of Dt′ , which means we have to think about the
impact of the uncertainty in the forecast. For example, we might want to factor our forecasts
as a way of hedging uncertainty. Let θLAτ be our factor for the forecast τ periods into the
future, where we are going to replace fDtt′ with θLAt′−tf

D
tt′ . If θLAt′−t < 1 then it means we are

using a more conservative forecast. Thus, we might replace (1.14) with

xstt′ ≤ θLAt′−tf
D
tt′ . (1.30)

Now we have to determine the factors θLA = (θLA1 , . . . θLAH ).
Unlike the cost function approximation introduced in equation (1.28), where we intro-

duced a parametric modification of the objective function, here we have parametrically
modified the constraints (as in equation (1.30)). Although this is a lookahead model, it is



22 DECISIONS AND UNCERTAINTY

also a cost function approximation, which means the parameters have to be tuned using
policy search by solving

FLA−CFA = max
θLA

E
T∑
t=0

(
ptX

LA,s
t (Rt|θLA)− ctXLA,o

t (Rt|θLA)
)
. (1.31)

We did not say this problem is easy, but it is well defined, and there are different algorithmic
strategies that we can draw on to help us with this (we discuss these in more depth in chapters
5 and 7).

1.6.4 Pulling it all together

In practice, problems where it is possible to find optimal policies are rare. For this reason,
solving sequential decision problems almost invariably involves a search over classes of
suboptimal policies. Historically, this has been done by pursuing the problem from the
perspective of the different communities. However, all of the approaches used in these
different communities boil down to the four classes of policies we have introduced above:
policy function approximations (PFAs), cost function approximations (CFAs), policies
based on value function approximations (VFAs), and direct lookahead policies (DLAs).

Complicating the problem of organizing the material in a natural progression was the
realization that virtually every problem can be formulated as a sequential decision problem
(that is, a dynamic program), even when the basic problem (such as the simple newsvendor
problem in (1.1)) is static. We can solve pure learning problems (no physical state) or
problems with pure physical states (e.g. blood management) as sequential problems, which
can be reasonably solved using all four classes of policies.

Despite this merger of these disparate problems, pure learning problems are the simplest
to present. These are problems where the only state variable is the belief state. We use
this problem class to establish some basic modeling and algorithmic strategies. We then
transition to problems with physical states, since this opens the door to much more complex
problems. Finally, we transition to the much harder problems which combine physical states
with knowledge states. In between are many variations that involve exogenous information
states, and high dimensional problems that exploit convexity.

1.7 A SEQUENCE OF PROBLEM CLASSES

Eventually, we are going to show that most stochastic optimization problems can be for-
mulated using a common framework. However, this seems to suggest that all stochastic
optimization problems are the same, which is hardly the case. It helps to identify major
problem classes.

• Deterministically solvable problems - These are optimization problems where the
uncertainty has enough structure that we can solve the problem exactly using deter-
ministic methods. This covers an important class of problems, but we are going to
group these together for now. All remaining problem classes require some form of
adaptive learning.

• Pure learning problems - We make a decisionxn (orxt), then observe new information
Wn+1 (or Wt+1), after which we update our knowledge to make a new decision. In
pure learning problems, the only information passed from iteration n to n + 1 (or
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from time t to time t+ 1) is updated knowledge, while in other problems, there may
be a physical state (such as inventory) linking decisions.

• Stochastic problems with a physical state - Here we are managing resources, which
arise in a vast range of problems where the resource might be people, equipment, or
inventory of different products. Resources might also be money or different types of
financial assets. There are a wide range of physical state problems depending on the
nature of the setting. Some major problem classes include

Stopping problems - The state is 1 (process continues) or 0 (process has been
stopped). This arises in asset selling, where 1 means we are still holding the
asset, and 0 means it has been sold.

Inventory problems - We hold a quantity of resource to meet demands, where
leftover inventory is held to the next period.

Inventory problems with dynamic attributes - A dynamic attribute might be spa-
tial location, age or deterioration.

Inventory problems with static attributes - A static attribute might reflect the type
of equipment or resource which does not change.

Multiattribute resource allocation - Resources might have static and dynamic at-
tributes, and may be re-used over time (such as people or equipment).

Discrete resource allocation - This includes dynamic transportation problems, ve-
hicle routing problems, and dynamic assignment problems.

• Physical state problems with an exogenous information state - While managing
resources, we may also have access to exogenous information such as prices, weather,
past history, or information about the climate or economy. Information states come
in three flavors:

– Memoryless - The information It at time t does not depend on past history, and
is “forgotten” after a decision is made.

– First-order exogenous process - It depends on It−1, but not on previous deci-
sions.

– State-dependent exogenous process - It depends on St−1 and possibly xt−1.

• Physical state with a belief state - Here, we are both managing resources while
learning at the same time.

This list provides a sequence of problems of increasing complexity.

1.8 BRIDGING TO STATISTICS

Finding the best policy is the same as finding the best function that achieves the lowest cost,
highest profits or best performance. Stochastic optimization is not the only community that
is trying to find the best function. Another important community is statistics and machine
learning, where a common problem is to use a dataset (yn, xn), where xn = (xn1 , . . . , x

n
K)

to predict yn. For example, we might specify a linear function of the form:

yn = f(xn|θ) = θ0 + θ1x
n
1 + . . .+ θnKxK + εn, (1.32)
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Statistical learning Stochastic optimization

(1)
Batch estimation:

minθ
1
N

∑N
n=1(yn − f(xn|θ))2

Sample average approximation:
x∗ = arg maxx∈X

1
N
F (x,W (ωn))

(2)
Online learning:

minθ EF (Y − f(X|θ))2
Stochastic search:
minθ EF (X,W )

(3)
Searching over functions:

minf∈F,θ∈Θf EF (Y − f(X|θ))2

Policy search:
minπ E

∑T
t=0 C(St, X

π(St))

Table 1.1 Comparison of classical problems faced in statistics (left) versus similar problems
in stochastic optimization (right).

where εn is a random error term that is often assumed to be normally distributed with mean
0 and some variance σ2.

We can find the parameter vector θ = (θ1, . . . , θK) by solving

min
θ

1

N

N∑
n=1

(
yn − f(xn|θ)

)2
. (1.33)

Our problem of fitting a model to the data, then, involves two steps. The first is to choose
the function f(x|θ), which we have done by specifying the linear model in equation (1.32)
(note that this model is called “linear” because it is linear in θ). The second step involves
solving the optimization problem given in (1.33), which precisely mirrors the optimization
problem in (1.12). The only difference is the specific choice of performance metric.

It is common, in both stochastic optimization and statistics, to pick a function such
as (1.32) or our order-up-to policy in (1.10), and then use an equation such as (1.33) or
(1.12) to find the best parameters. Of course, both communities would like to have a
method that would search over classes of functions, as well as the parameters that define a
particular function class. The stochastic optimization community has proceeded by tailoring
specific function classes that seem to be well suited to specific classes of problems. The
statistics/machine learning community has more of a culture of trying different techniques
on generic datasets, although there is still an appreciation of the characteristics of the data
guiding the choice of model.

Table 1.1 provides a brief comparison of some major problem classes in statistical
learning, and corresponding problems in stochastic optimization. As of this writing, we
feel that the research community has only begun to exploit these links, so we ask the reader
to be on the lookout for opportunities to help build this bridge.

1.9 FROM DETERMINISTIC TO STOCHASTIC OPTIMIZATION

There is a long, rich and tremendously successful tradition in the development of deter-
ministic optimization models and algorithms. The first and most visible success was in the
formulation (in tne 1930’s) and solution (in the 1940’s and 1950’s) of linear programs of
the general form

min
x

n∑
i=1

cixi,
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subject to

Ax = b,

x ≥ 0.

By the late 1980’s to early 1990’s, commercial packages such as Cplex (and later Gurobi),
combined with the advancing power of computers, had evolved into an exceptionally
powerful tool that could reliably solve a very broad class of problems. Close behind were
the dramatic successes solving problems where some or all of the elements of the vector
x had to be integer (initially 0 or 1, but then handling general integers). From the 1980’s
when integer programs were limited to perhaps a dozen integer variables, by 2000 we
could solve many classes of integer programs with tens of thousands of integer variables
(problem structure affects this tremendously). Similar advances have been made with
different classes of nonlinear programs.

All optimization problems involve a mixture of modeling and algorithms. With integer
programming, modeling is important (especially for integer problems), but modeling has
always taken a back seat to the design of algorithms. A testament of the power of modern
algorithms is that they generally work well (for a problem class) with modest expertise in
modeling strategy.

Stochastic optimization is different.
Figure 1.3 illustrates some of the major differences between how we approach deter-

ministic and stochastic optimization problems.

Models - Deterministic models are systems of equations. Stochastic models are often
complex systems of equations, numerical simulators, or even physical systems with
unknown dynamics.

Objective - Deterministic models minimize or maximize some well defined metric such
as cost or profit. Stochastic models require that we deal with statistical performance
measures and uncertainty operators such as risk

Searching for - In deterministic optimization, we are looking for a deterministic scalar or
vector. In stochastic optimization, we are almost always looking for functions that
we will refer to as policies.

Goal - The goal of deterministic optimization is to find an optimal decision. Most of the
time the challenge in stochastic optimization is to find an optimal policy, which is a
function.

What is hard - The challenge of deterministic optimization is designing an effective al-
gorithm. The hardest part of stochastic optimization, by contrast, is the modeling.
Designing and calibrating a stochastic model can be surprisingly difficult. Optimal
policies are rare, and a policy is not optimal if the model is not correct.

1.10 PEDAGOGY

The book is organized into six parts, as follows:

Part I - Introduction and foundations - We start by providing a summary of some of
the most familiar canonical problems, followed by an introduction to approximation
strategies which we draw on throughout the book.
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Figure 1.3 Deterministic vs. stochastic optimization

Deterministic Stochastic

Models System of equations Complex functions, numerical
simulations, physical systems

Objective Minimize cost Policy evaluation, risk mea-
sures

Searching for Real-valued vectors Functions (policies)

Goal Finding optimal decision Finding optimal policies

What is hard Designing algorithms Modeling

• Canonical problems (chapter 2) - We begin by listing a series of canonical
problems that are familiar to different communities, primarily using the notation
familiar to those communities.

• Learning in stochastic optimization (chapter 3) - So many approaches in stochas-
tic optimization involve some form of statistical approximation using machine
learning that we felt it best to start by giving an overview of some of the major
statistical learning approaches, where we focus primarily (if not exclusively)
on recursive methods.

Part II - Learning problems - These are stochastic optimization problems that can be
solved using an adaptive algorithm where the only information linking iterations
is the belief about the function. We also call these state-independent functions, to
distinguish them from the more general state-dependent functions we handle starting
in Part III.

• Introduction to stochastic optimization (chapter 4) - We begin with a problem we
call the basic stochastic optimization problem which provides the foundation
for most stochastic optimization problems. In this chapter we also provide
examples of how some problems can be solved exactly. We then introduce
the idea of solving sampled models before transitioning to adaptive learning
methods.

• Derivative-based stochastic optimization (chapter 5) - Derivative-based algo-
rithms represent one of the earliest adaptive methods proposed for stochastic
optimization. These methods form the foundation of what is classically referred
to as stochastic search.

• Stepsize policies (chapter 6) - Throughout the use of sampling-based algorithms
is the need to perform smoothing between old and new estimates using what
are commonly known as stepsizes (some communities refer to these as learning
rates). Stepsize policies (which are more typically known as stepsize rules) are
functions for determining stepsizes based on the state of the dynamic system,
which is our stochastic learning algorithm.

• Derivative-free stochastic optimization (chapter 7) - We then transition to
derivative-free stochastic optimization, which encompasses a variety of fields
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with names such as ranking and selection (for offline learning) and multiarmed
bandit problems (for online, or cumulative reward, formulations).

Part III - State-dependent functions - Here we transition to the much richer class of
sequential problems where the function being optimized is state dependent. These
problems may or may not have a belief state.

• State-dependent applications (chapter 8) - We begin our presentation with a
series of applications of problems where the function is state dependent. State
variables can arise in the objective function (e.g. prices), but in most of the
applications the state arises in the constraints, which is typical of problems that
involve the management of physical resources.

• Modeling general dynamic programs (chapter 9) - This chapter provides a
comprehensive summary of how to model general (state-dependent) sequential
decision problems in all of their glory.

• Modeling uncertainty (chapter 10) - To find good policies (to make good deci-
sions), you need a good model, and this means an accurate model of uncertainty.
In this chapter we identify different sources of uncertainty and discuss how to
model them.

• Policies (chapter 11) - Here we provide a more comprehensive overview of the
different strategies for creating policies, leading to the four classes of policies
that we first introduce in part I for learning problems.

Part IV - Policy search - These chapters describe policies that have to be tuned, either in
a simulator or through experience.

• Policy function approximations (chapter 12) - In this chapter we consider the
use of parametric functions (plus some variations) for directly approximating
policies. We search over a well-defined parameter space to find the policy that
produces the best performance. PFAs are well suited to problems with scalar
action spaces, or low-dimensional continuous actions.

• Parametric cost function approximations (chapter 13) - This strategy is suited
for high-dimensional stochastic optimization problems that require the use
of solvers for linear, integer or nonlinear programs. This policy class has
been overlooked in the research literature, but is widely used (heuristically) in
industry.

Part V - Policies based on lookahead approximations - Policies based on lookahead ap-
proximations are the counterpart to policies derived from policy search. Here, we
design good policies by understanding the impact of a decision now on the future.
We can do this by finding (usually approximately) the value of being in a state, or by
planning over some horizon.

• Discrete Markov decision processes (chapter 14) - There is a rich and elegant
theory for dynamic programs that are described by discrete states and actions,
where the number of states and actions is not too large. This is one of the very
important special cases where the problem can be solved optimally.

• Structured dynamic programs (chapter 15) - There are other dynamic programs
that can be solved optimally by exploiting special structure. A major example
is optimal control problems with quadratic cost functions, but there are others.
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• Backward approximate dynamic programming (chapter 16) - Classical back-
ward dynamic programming methods (which we used in the previous two
chapters) can quickly become computationally intractable, especially when us-
ing discrete states and actions, which are sensitive to the number of dimensions
in the state variable (primarily). Before we completely give up on backward
dynamic programming, we describe methods where we can do this approxi-
mately.

• Foward approximate dynamic programming I: The value of a policy (chapter 17)
- This is the first step using machine learning methods to approximate the value
of policy as a function of the starting state, which is the foundation of a broad
class of methods known as approximate (or adaptive) dynamic programming,
or reinforcement learning.

• Foward approximate dynamic programming II: Policy optimization (chapter
18) - In this chapter we build on foundational algorithms such as Q-learning,
value iteration and policy iteration, first introduced in chapter 14, to try to find
high quality policies based on value function approximations.

• Forward approximate dynamic programming III: Convex functions (chapter
19) - This chapter focuses on convex problems, with special emphasis on
stochastic linear programs. Here we exploit convexity to build high quality
approximations, where we emphasize the use of a powerful technique known
as Benders decompositions.

• Lookahead policies (chapter 20) - Often called model predictive control, looka-
head policies are what you do when all else fails (the problem is that all else fails
fairly frequently). We have already seen one-step lookahead policies in chapter
7, so here we focus on multi-step lookahead policies, where the discussion is
divided between problems with discrete actions (popular in computer science),
and those with vector-valued controls. We also consider both deterministic
lookahead (often called model predictive control or rolling/receding horizon
procedures) and more complex policies that use stochastic lookahead models.

Part VI - Risk - Risk is the next frontier in stochastic optimization.

• Risk and robust optimization (chapter 21) - An emerging area of research
involves the recognition that when uncertainty is involved, we often are more
interested in extreme events than averages. This is captured through the use
of risk measures, or, in some settings, the worst case, an area that has become
known as robust optimization.

1.11 BIBLIOGRAPHIC NOTES

• Section xx -

PROBLEMS

1.1 What are the three classes of state variables? Explain the differences.

1.2 What is meant by a “model-free” dynamic program?
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1.3 What are the two strategies for designing policies for sequential decision problems?
Give the basic equation for each.

1.4 Consider an asset selling problem where you need to decide when to sell an asset.
Let pt be the price of the asset if it is sold at time t, and assume that you model the evolution
of the price of the asset using

pt+1 = pt + θ(pt − 60) + εt+1,

We assume that the noise terms εt, t = 1, 2, . . . are independent and identically distributed
over time, where εt ∼ N(0, σ2

ε). Let

Rt =

{
1 If we are still holding the asset at time t,
0 Otherwise.

Further let

xt =

{
1 If we sell the asset at time t,
0 Otherwise.

Of course, we can only sell the asset if we are still holding it. We now need a rule for
deciding if we should sell the asset. We propose

Xπ(St|ρ) =

{
1 If pt ≥ p̄t + ρ and Rt = 1,
0 Otherwise.

where

St = The information we have available to make a decision (we have to
design this),

,

p̄t = .9p̄t−1 + .1pt.

a) What are the elements of the state variable St for this problem?

b) What is the uncertainty?

c) Imagine running a simulation in a spreadsheet where you are given a sample real-
ization of the noise terms over T time periods as (ε̂)Tt=1 = (ε̂1, ε̂2, . . . , ε̂T ). Note
that we treat ε̂t as a number, such as ε̂t = 1.67 as opposed to εt which is a normally
distributed random variable. Write an expression for computing the value of the
policy Xπ(St|ρ) given the sequence (ε̂)Tt=1. Given this sequence, we could evaluate
different values of ρ, say ρ = 0.75, 2.35 or 3.15 to see which performs the best.

d) In reality, we are not going to be given the sequence (ε̂)Tt=1. Assume that T = 20
time periods, and that

σ2
ε = 42,

p0 = $65,

θ = 0.1.

Write out the value of the policy as an expectation (see section 1.3).

e) Develop a spreadsheet to create 10 sample paths of the sequence (εt), t = 1, . . . , 20)
using the parameters above. You can generate a random observation of εt using
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the function NORM.INV(RAND(),0,σ). Let the performance of our decision rule
Xπ(St|ρ) be given by the price that it decides to sell (if it decides to sell), averaged
over all 10 sample paths. Now test ρ = 1, 2, 3, 4, ..., 10 and find the value of ρ that
seems to work the best.

f) Repeat (e), but now we are going to solve the problem

max
x0,...,xT

E
T∑
t=0

ptxt.

We do this by picking the time t when we are going to sell (that is, when xt = 1)
before seeing any information. Evaluate the solutions x2 = 1, x4 = 1, . . . , x20 = 1.
Which is best? How does its performance compare to the performance of Xπ(St|ρ)
for the best value of ρ?

g) Finally, repeat (f), but now you get to see all the prices and then pick the best one.
This is known as a posterior bound because it gets to see all the information in the
future to make a decision now. How do the solutions in parts (e) and (f) compare to
the posterior bound? (There is an entire field of stochastic optimization that uses this
strategy as an approximation.)

h) Classify the policies in (e), (f) and (g) (yes, (g) is a class of policy) according to the
classification described in section 1.5 of the text.



CHAPTER 2

CANONICAL PROBLEMS AND
APPLICATIONS

It helps when learning a field such as optimization under uncertainty to have example
problems to relate to. This chapter lists a wide range of problems with which we have
worked on. We encourage readers to at least skim these, and to pay attention to problem
characteristics. One important problem feature is the dimensionality of the decisions,
which are either discrete (sometimes binomial) action spaces, or possibly high-dimensional
vectors.

Another important but more subtle dimension is the nature of the state variable, which
may consist of some combination of physical state variables, informational state variables,
and distributional information (belief state). Different classes of state variables include the
following combinations:

Pure learning - These are problems where we are just trying to learn an unknown function
f(x). Examples include:

• The function f(x) = EF (x,W ) where F (x,W ) is known, but either the dis-
tribution of W is unknown, or the expectation is not computable (for example,
W might be multi-dimensional).

• The function f(x) is unknown. Examples include the behavior of a complex,
black box simulation model (for example, of the operations of a company, or
the dynamics of a chemical process), or an actual physical system (for example,
estimating the market response to a price, or measuring the reduction in CO2
resulting from restrictions on generation from coal plants).

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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What characterizes these problems is that we can choosexn, learn a noisy observation
f̂n, and then try to update our belief F

n
(x) about f(x). All we carry from iteration

n to n+ 1 is our updated belief F
n+1

.

Pure physical state - There are many problems where we are managing resources. It
might be a single resource such as a vehicle moving over a graph, or an inventory
system, or even a robot. Typically the decisions we can make at time t depend on
the state of the resource.

Physical plus information state - We may be managing a set of resources (water in a
reservoir, a fleet of driverless taxis, investments in stock funds) which evolves in a way
that reflects other sources of information such as weather, humidity, or information
about the economy. There are several important classes of information process:

• Independent of past history - The customers available to a taxi just after she
finishes a trip may be completely independent of past history. These processes
may be called “zeroth order Markov,” “memoryless,” i.i.d. (independent and
identically distributed, although the key description is independent), or they
may be described as exhibiting “intertemporal independence.”

• First order Markov - These are the most common information processes, and
describe problems where the information It+1 is conditionally dependent only
on It.

• History-dependent - This generalizes the first-order Markov process, and ex-
presses problems where the distribution of It+1 depends on the entire history.

Physical/information plus learning - There are problems where our distribution of belief
about functions or processes evolve as information is observed. These generally
apply to problems where we are making observations from an exogenous source (field
experiments, laboratory simulations) where the underlying distribution is unknown
(this describes all the pure learning problems).

We encourage readers to try to classify each sample problem in terms of the problem types
we first introduced in section 1.3, as well as the variations listed above.

2.1 CANONICAL PROBLEMS

Each community in stochastic optimization has a canonical problem that they use to
illustrate their problem domain. Often, these canonical problems lend themselves to
an elegant solution technique which then becomes a hammer looking for a nail. While
these tools are typically limited to a specific problem class, they often illustrate important
ideas that become the foundation of powerful approximation methods. For this reason,
understanding these canonical problems helps to provide an important foundation for
stochastic optimization.

2.1.1 Stochastic search

As we are going to learn, if there is a single problem that serves as a single umbrella for
almost all stochastic optimization problems (at least, all the ones that use an expectation),
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it is a problem that is often referred to as stochastic search, which is written

max
x

EF (x,W ), (2.1)

where x is a deterministic variable (or vector), and where the expectation is over the random
variable W . Some authors like to make the random variable explicit by writing

max
x

EWF (x,W ).

While probabilists frown on this habit, any notation that improves clarity should be encour-
aged. We are also going to introduce problems where it is useful to express the dependence
on an initial state variable S0, which is done by writing

max
x

E{F (x,W )|S0} = ES0
EW |S0

F (x,W ). (2.2)

Initial state variables can express the dependence of the problem on either deterministic
or probabilistic information (say, a distribution about an unknown parameter). There are
problems where the initial state S0 may change each time we solve a problem. For example,
S0 might capture the medical history of a patient, after which we have to make a decide
on a course of treatment, and then we observe medical outcomes. We will sometimes use
the style in (2.1) for compactness, but as a general style, we are going to use (2.2) as our
default style (the motivation for this becomes more apparent when you start working on
real applications).

We assume that the expectation cannot be computed, either because it is computationally
intractable, or because the distribution of W is unknown (but can be observed from an
exogenous source). We are going to refer to (2.1) as the asymptotic reward version of our
stochastic search problem.

This basic problem class comes in a number of flavors, depending on the following:

• Initial state S0 - The initial state will include any deterministic parameters, as well
as initial distributions of uncertain parameters. If S0 is a set of fixed, deterministic
parameters, we typically ignore it. However, there are problems where the initial
state changes from one problem instance to another.

• Decision x - x can be binary, discrete (and finite, and not too large), categorical
(finite, but a potentially very large number of choices), continuous (scalar or vector),
or a discrete vector.

• Random information W - The distribution of W may be known or unknown, and
the distribution can take on a variety of distributions ranging from nice distributions
such as the normal or exponential, or one with heavy tails, spikes, and rare events.

• The function F (x,W ) may be characterized along several dimensions:

– Derivative-based or derivative-free - If we can compute gradients ∇xF (x,W )
given W , then we have access to derivatives (known as stochastic gradients,
since they depend on the informationW ) and can design algorithms accordingly.
If we do not have access to derivatives, then we assume that we can observe
samples of F (x,W ).

– The cost of a function evaluation - The function F (x,W ) may be easy to
evaluate (fractions of a second to seconds), or more expensive (minutes to
hours to days to weeks).
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– Search budget - May be finite (for example, we are limited to N evaluations
of the function or its gradient), or infinite (obviously this is purely for analysis
purposes - real budgets are always finite). There are even problems where a
rule determines when we stop, which may be exogenous or dependent on what
we have learned (these are called anytime problems).

– Final-reward vs. cumulative reward - Equation (2.1) is the final-reward version,
which means that we only care about how well a solution x performs at the end
of the search. Often, we are going to need to search for the best answer, and
we may care about how well we do while we are searching, in which case we
obtain the cumulative reward formulation.

Problem (2.1) is the asymptotic form of the basic stochastic optimization problem. In
both chapters 5 and 7, we are going to introduce and analyze algorithms that asymptotically
will return deterministic solutions x∗ that solve (2.1) using derivative-based and derivative-
free algorithmic strategies, respectively. Eventually we will show that we can also reduce
sequential decision problems to this format, but this requires learning how to interpret x as
a function that serves as a policy for making decisions.

2.1.1.1 Terminal reward formulation We start with what we are going to call the
terminal reward formulation of our stochastic search problem. This is often referred to as
the ranking and selection problem.

Let Sn represent what we know about the function after n iterations, and let Xπ(Sn)
be the rule we use to choose the next point xn = Xπ(Sn) to test, after which we observe
Wn+1 (we may just be able to observe Fn = F (xn,Wn+1)). We show later that our rule
Xπ(Sn) may be an algorithm, or what we are going to characterize as a policy. Regardless
of how we describe it, the policy is a function that uses what we know to determine what
point to test x.

Imagine now that we fix our “policy”Xπ(Sn), and then use this to observeW 1,W 2, . . . ,
WN , producing a final decision xπ,N (we have no problem if the outcome Wn depends
on the previous decision xn−1). For example, we might be looking to find the best
capacity for a battery or transmission line, the capacity of a dam, or even the strength of an
airplane wing, all of which represent decisions that have to be made before any information
becomes known. Since xπ,N depends on our realizations of W 1,W 2, . . . ,WN , it is a
random variable.

This problem requires that we recognize possibly four sets of random variables:

• The initial state S0, which may include distributions about uncertain parameters.

• The sequence of observations W 1, . . . ,WN guided by our policy Xπ(Sn).

• The implementation decision xπ,N determined after N experiments.

• The uncertainty Ŵ when evaluating the function given xπ,N .

Recognizing all these sources of uncertainty means that we can expand the expectation in
(2.2) to obtain the objective function

max
π

ES0
EW 1,...,WN |S0

Exπ,N |W 1,...,WNE
Ŵ |xπ,NF (xπ,N , Ŵ ). (2.3)

We refer to (2.3) as the terminal reward version of our basic stochastic optimization problem
since we are only evaluating the final implementation decision xπ,N .
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A special case of our terminal reward formulation is when x is limited to a finite set of
alternatives X = {x1, x2, . . . , xM}, where M is the number of alternatives. The terminal
reward problem defined over the finite setX is known as the ranking and selection problem,
a problem class that has been studied since the 1950’s.

The ranking and selection problem became quite popular in what is known as the
“simulation-optimization” community, a group of people who use Monte Carlo simulation
(which we introduce in some depth in chapter 10) to evaluate complex systems. A popular
early application was to model the flow of jobs in a manufacturing operation that makes
different component that have to move from one process to another. The problem would
be to evaluate different designs. The earliest simulation optimization problems involved
evaluating perhaps dozens of different design configurations. Early computers could run
just one simulation at a time, and run times were much longer than they are now. The
problem was to determine how much time to allocate to evaluating each design.

2.1.1.2 Cumulative reward Now assume that we want to find a policy that maximizes
our total reward over our horizon of N days of sales, which we write as

max
π

EW 1,...,WN

N−1∑
n=0

F (Xπ(Sn),Wn+1). (2.4)

We refer to (2.4) as the cumulative reward version of our elementary stochastic optimization
problem. If x = Xπ(Sn) belongs to a discrete set X = {x1, . . . , xM}, then this would be
called the multiarmed bandit problem.

We show how we can close the circle if we let

G(x, Z) =

N−1∑
n=0

F (Xπ(Sn),Wn+1), (2.5)

where Z = (W 1, . . . ,WN ). This allows us to write (2.4) as

max
π

EZG(xπ,N , Z). (2.6)

Finally, imagine that we can let our policy π (or Xπ(S)) be represented by a choice of
function f , and any parameters θ that are needed to determine the function, which means
we can write y = (f, θ). This means we can rewrite (2.6) as

max
y

EZG(xy,N , Z). (2.7)

Comparing (2.7) to (2.1), all we need is a slight change of variables to write (2.7) as (2.1).
This little exercise will allow us to reduce virtually all stochastic optimization problems

into the same basic form. This observation hides some serious computational issues, which
is why we will not be able to solve all problems the same way.

2.1.2 Robust optimization

A variant of the basic stochastic optimization problem is one where we need to make a
decision, such as the design of a device or structure, that works under the worst possible
settings of the uncontrollable parameters. Examples where robust optimization might arise
are
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EXAMPLE 2.1

A structural engineer has to design a tall building that minimizes cost (which might
involve minimizing materials) so that it can withstand the worst storm conditions in
terms of wind speed and direction.

EXAMPLE 2.2

An engineering designing wings for a large passenger jet wishes to minimize the
weight of the wing, but the wing still has to withstand the stresses under the worst
possible conditions.

The classical notation used in the robust optimization community is to let u be the
uncertain parameters, where we assume that u falls within an uncertainty set U . The robust
optimization problem is stated as

min
x∈X

max
u∈U

F (x, u). (2.8)

Creating the uncertainty set U can be a difficult challenge. For example, if u is a vector
with element ui, one way to formulate U is the box:

U = {u|uloweri ≤ ui ≤ uupperi , ∀i}.

The problem is that the worst outcome in U is likely to be one of the corners of the box,
where all the elements ui are at their upper or lower bound. In practice, this is likely to
be an extremely rare event. A more realistic uncertainty set captures the likelihood that a
vector u may happen.

2.1.3 The multiarmed bandit problem

The classic information acquisition problem is known as the bandit problem which is a
colorful name for our cumulative reward problem introduced above. This problem has
received considerable attention since it was first introduced in the 1950’s, attracting the
attention of many hundreds of papers.

Consider the situation faced by a gambler trying to choose which slot machine x ∈ X =
{1, 2, ...,M} to play. Now assume that the winnings may be different for each machine,
but the gambler does not know the distributions. The only way to obtain information is to
actually play a slot machine. To formulate this problem, let

xn =

{
1 The machine we choose to play next after finishing the nth trial,
0 otherwise.

Wn
x = Winnings from playing slot machine x = xn−1 during the nth trial.

We choose what arm to play in the nth trial after finishing the n− 1st trial. We let Sn be
the belief state after playing n machines. For example, let

µx = A random variable giving the true expected winnings from machine x,
µ̄nx = Our estimate of the expected value of µ after n trials,
σ2,n
x = The variance of our belief about µx after n trials.
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Now assume that our belief about µ is normally distributed (after n trials) with mean µnx
and variance σ2,n

x . We can write our belief state as

Sn = (µnx , σ
2,n
x )x∈X .

Our challenge is to find a policy Xπ(Sn) that determines which machine xn to play for
the n+ 1st trial. We have to find a policy that allows us to better learn the true means µx,
which means we are going to have to sometimes play a machine xn where the estimated
reward µnx is not the highest, but where we acknowledge that this estimate may not be
accurate. However, we may end up playing a machine whose average reward µx actually
is lower than the best, which means we are likely to incur lower winnings. The problem is
to find the policy that maximizes winnings over time.

One way to state this problem is to maximize expected discounted winnings over an
infinite horizon

max
π

E
∞∑
n=0

γnWn+1
Xπ(Sn),

where γ < 1 is a discount factor. Of course, we could also pose this as a finite horizon
problem (with or without discounting).

An example of a policy that does quite well is known as the interval estimation policy,
given by

XIE,n(Sn|θIE) = arg max
x∈X

(
µnx + θIE σ̄2,n

x

)
,

where σ̄2,n
x is our estimate of the variance of µnx , given by

σ̄2,n
x =

σ2,n
x

Nn
x

.

This is parameterized by θIE which determines how much weight to put on the uncertainty
in the estimate µnx . If θIE = 0, then we have a pure exploitation policy where we are
simply choosing the alternative that seems best. As θIE increases, we put more emphasis
on the uncertainty in the estimate. As we are going to see in chapter 7, effective learning
policies have to strike a balance between exploring (trying alternatives which are uncertain)
and exploiting (doing what appears to be best).

The multiarmed bandit problem is an example of an online learning problem (that is,
where we have to learn by doing), where we want to maximize the cumulative rewards.
Some examples of these problems are

EXAMPLE 2.1

Consider someone who has just moved to a new city and who now has to find the
best path to work. Let Tp be a random variable giving the time he will experience
if he chooses path p from a predefined set of paths P . The only way he can obtain
observations of the travel time is to actually travel the path. Of course, he would like
to choose the path with the shortest average time, but it may be necessary to try a
longer path because it may be that he simply has a poor estimate. The problem is
identical to our bandit problem if we assume that driving one path does not teach us
anything about a different path (this is a richer form of bandit problem).
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EXAMPLE 2.2

A baseball manager is trying to decide which of four players makes the best designated
hitter. The only way to estimate how well they hit is to put them in the batting order
as the designated hitter.

EXAMPLE 2.3

A doctor is trying to determine the best blood pressure medication for a patient. Each
patient responds differently to each medication, so it is necessary to try a particular
medication for a while, and then switch if the doctor feels that better results can be
achieved with a different medication.

Multiarmed bandit problems have long history as a niche problem in applied probability
(going back to the 1950’s) and computer science (starting in the mid 1980’s). The bandit
community (the researchers who use the vocabulary of “bandits” (for a problem) and “arms”
(for an alternative) has broadened to consider a much wider range of problems. We revisit
this important problem class in chapter 7.

2.1.4 Decision trees

Decision trees are easily one of the most familiar ways to depict sequential decision prob-
lems, with or without uncertainty. Figure 2.1 illustrates a simple problem of determining
whether to hold or sell an asset. If we decide to hold, we observe changes in the price of
the asset and then get to make the decision of holding or selling.

Figure 2.1 illustrates the basic elements of a decision tree. Square nodes represent
points where decisions are made, while circles represent points where random information
is revealed. We solve the decision tree by rolling backward, calculating the value of being
at each node. At an outcome node, we average across all the downstream nodes (since
we do not control which node we transition to), while at decision nodes, we pick the best
decision based on the one-period reward plus the downstream value.

Almost any dynamic program with discrete states and actions can be modeled as a
decision tree. The problem is that they are not practical when there are a large number
of states, actions and random outcomes, since the tree grows extremely quickly. The
breakthrough known as “dynamic programming” was the recognition that there were many
applications where the number of states was not that large, and this could be exploited to
keep the decision tree from exploding. The inventory/storage problems considered next
are an example of this problem class.

2.1.5 Online computation

There is an entire field of research known as online computation which was originally
motivated by the need to make decisions very quickly, with limited computational resources.
Such situations arise, for example, when a thermostat has to make a decision about whether
to turn an air conditioner on or off, or how to respond to a military situation in the field
on mobile devices. However, this is also precisely the setting that arises today when Uber
assigns drivers to customers, or when Google has to decide what ad to display next to
search results.
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3

Figure 2.1 Decision tree illustrating the sequence of decisions (hold or sell an asset) and new
information (price changes).

The setting of online computation is typically described as one where there is no infor-
mation about the environment, with no access to a forecast or a model of future events.
Decisions might be made using simple rules (for example, turn the air conditioner on if
the temperature is greater than 72 degrees F, and turn it off when it falls to 70 degrees F).
Alternatively, we might look at a section of actions (such as picking Uber drivers to serve
a customer) where we want to pick the best action. Let C(St, x) be the cost of choosing
driver x in a set Xt (the eight closest drivers), which depends on the state St. We might
choose the best driver by solving

xt = arg min
x∈Xt

C(St, x).

The online computation community will insist that they cannot make decisions that
consider the impact on the future because they do not know anything about the future. The
research community likes to prove bounds on the regret, which quantifies how much better
you might do with perfect information about the future.
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2.1.6 Two-stage stochastic programming

Imagine that we have a problem where we have to decide how many Christmas trees to
plant which will determine our inventory five years into the future. Call this decision
x0 (we suppress the year we are planning for), which may be a vector determining the
plantings at different wholesalers around a region. Then, when we arrive at the sales year
(five years later), we see the demand D1 for Christmas trees and the prices p1 that the
retailers are willing to pay and then have to make shipping decisions x1 to each retailer. Let
W1 = (D1, p1) represent this random information, and let ω refer to a sample realization
ofW1, so thatW1(ω) = (D1(ω), p1(ω)) is one possible realization of demands and prices.
We make the decision x1 after we see this information, so we have a decision x1(ω) for
each possible realization. Assume that c0 is the costs of producing trees at each location,
and c1 are the costs associated with the vector x1.

Assume for the moment that Ω = (ω1, ω2, . . . , ωK) is a (not too large) set of possible
outcomes for the demand D1(ω) and price p1(ω). Our second stage decisions x1(ω) are
constrained by what we planted in the first stage x0, and we are limited by how much we
sell. These two constraints are written as

A1x1(ω) ≤ x0,

B1x1(ω) ≤ D1(ω).

Let X1(ω) be the feasible region for x1(ω) defined by these constraints. This allows us to
write our problem over both stages as

max
x0

(
−c0x0 +

∑
ω∈Ω

p(ω) max
x1(ω)∈Xt(ω)

(
(p1(ω)− c1)x1(ω)

))
. (2.9)

In the language of stochastic programming, the second stage decision variables, x1(ω), are
called “recourse variables” since they represent how we may respond as new information
becomes available (which is the definition of “recourse”). Two-stage stochastic programs
are basically deterministic optimization problems, but they can be very large deterministic
optimization problems, albeit ones with special structure.

For example, imagine that we allow the first stage decision x0 to “see” the information
in the second stage, in which case we would write it as x0(ω). In this case, we obtain a
series of smaller problems, one for each ω. However, now we are allowing x0 to cheat by
seeing into the future. We can overcome this by introducing a nonanticipativity constraint
which might be written

x0(ω)− x0 = 0.

Now, we have a family of first stage variables x0(ω), one for each ω, and then a single
variablex0, where we are trying to force eachx0(ω) to be the same (at which point we would
say that x0 is “nonanticipative”). Algorithmic specialists can exploit the nonanticipacity
constraint by relaxing it, then solving a series of smaller problems (perhaps in parallel),
and then introducing linking mechanisms so that the overall procedure converges toward a
solution that satisfies the nonanticipativity constraint.

2.1.7 Chance constrained problems

There are problems where we have to satisfy a constraint that depends on uncertain infor-
mation at the time we make a decision. For example, we may wish to allocate inventory
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with the goal that we cover demand 80 percent of the time. Alternatively, we may wish to
schedule a flight so that it is on time 90 percent of the time. We can state these problems
using the general form

min
x
f(x), (2.10)

subject to the probabilistic constraint (often referred to as a chance constraint)

P[C(x,W ) ≥ 0] ≤ α, (2.11)

where 0 ≤ α ≤ 1. The constraint (2.11) is often written in the equivalent form

P[C(x,W ) ≤ 0] ≥ 1− α. (2.12)

Here, C(x,W ) is the amount that a constraint is violated (if positive). Using our examples,
it might be the demand minus the inventory which is the lost demand if positive, or the
covered demand if negative. Or, it could be the arrival time of a plane minus the scheduled
time, where positive means a late arrival.

Chance constrained programming is a method for handling a particular class of con-
straints that involve uncertainty, typically in the setting of a static problem: make decision,
see information, stop. Chance constrained programs convert these problems into deter-
ministic, nonlinear programs, with the challenge of computing the probabilistic constraint
within the search algorithm.

2.1.8 Optimal stopping

A classical problem in stochastic optimization is known as the optimal stopping problem.
Imagine that we have a stochastic process Wt (this might be prices of an asset) which
determines a reward f(Wt) if we stop at time t (the price we receive if we stop and sell the
asset). Let ω ∈ Ω be a sample path of W1, . . . ,WT (we are going to limit our discussion
to finite horizon problems, which might represent a maturation date on a financial option).
Let

Xt(ω) =

{
1 If we stop at time t,
0 Otherwise.

Let τ be the time t when Xt = 1 (we assume that Xt = 0 for t > τ ). This notation creates
a problem, because ω specifies the entire sample path, which seems to suggest that we are
allowed to look into the future before making our decision at time t (don’t laugh - this
mistake is not just easy to make, it is actually a fairly standard approximation in the field
of stochastic programming which we revisit in chapter 20).

To fix this, we require that the function Xt be constructed so that it depends only on the
history W1, . . . ,Wt. When this is the case τ is called a stopping time. The optimization
problem can then be stated as

max
τ

EXτf(Wτ ), (2.13)

where we require τ to be a “stopping time.” Mathematicians will often express this by
requiring that τ (or equivalently, Xt) be an “Ft-measurable function.” This language is
familiar to students with training in measure-theoretic probability, which is not necessary
for developing models and algorithms for stochastic optimization. Later, we are going to
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provide an easy introduction to these ideas (in chapter 9, and then explain why we do not
need to use this vocabulary.

More practically, the way we are going to solve the stopping problem in (2.13) is that
we are going to create a function Xπ(St) that depends on the state of the system at time
t. For example, imagine that we need a policy for selling an asset. Let Rt = 1 if we are
holding the asset, and 0 otherwise. Assume that p1, p2, . . . , pt is the history of the price
process, where we receive pt if we sell at time t. Further assume that we create a smoothed
process p̄t using

p̄t = (1− α)p̄t−1 + αpt.

At time t, our state variable is St = (Rt, p̄t, pt). A sell policy might look like

Xπ(St|θ) =

{
1 If p̄t > θmax or p̄t < θmin,
0 Otherwise.

Finding the best policy means finding the best θ = (θmin, θmax) by solving

max
θ

E
T∑
t=0

ptX
π(St|θ).

Our stopping time, then, is the earliest time τ = t where Xπ(St|θ) = 1.
Optimal stopping problems arise in a variety of settings. Some examples include:

American options - An American option on a financial asset gives you the right to sell
the asset at the current price on or before a specified date.

Machine replacement - While monitoring the status of a (typically complex) piece of
machinery, we need to create a policy that tells us when to stop and repair or replace.

Homeland security - The National Security Administration collects information on many
people. The NSA needs to determine when to start tracking someone, when to stop
(if they feel the target is of no risk) or when to act (when they feel the target is of
high risk).

Health intervention - Public health officials are continually tracking the presence of dis-
ease in a population. They need to make the call when a pattern of occurrences
constitutes an actionable outbreak.

Optimal stopping may look like a disarmingly easy problem, given the simplicity of the
state variable. However, in real applications there is almost always additional information
that needs to be considered. For example, our asset selling problem may depend on a basket
of indices or securities that greatly expands the dimensionality of the state variable. The
machine replacement problem might involve a number of measurements that are combined
to make a decision. The homeland security application could easily involve a number of
factors (places the person has visited, the nature of communications, and recent purchases).
Finally, health decisions invariably depend on a number of factors that are unique to each
patient.
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2.1.9 Markov decision processes

Assume that our system is described a set of discrete states s ∈ S = {1, 2, . . . , |S|}, and
discrete actions a ∈ A (which might depend on the state that we are in, in which case we
might write As). Further assume we receive a reward r(s, a) if we take action a while in
state s. Finally (and this is the strongest assumption) assume that we are given a set of
transition probabilities

P (s′|s, a) = The probability that state St+1 = s′ given that we are in state St = s and take
action a.

If we are solving a finite horizon problem, let Vt(St) be the optimal value of being in
state St and behaving optimally from time t onward. If we are given Vt+1(St+1), we can
compute Vt(St) using

Vt(St) = max
a∈As

(
r(St, a) +

∑
s′∈S

P (s′|St, a)Vt+1(s′)
)
. (2.14)

Equation (2.14) may seem somewhat obvious, but when first introduced it was actually quite
a breakthrough, and is known as Bellman’s optimality equation in operations research and
computer science, or Hamilton-Jacobi equations in control theory (although this community
typically writes it for deterministic problems).

Equation (2.14) is the foundation for a major class of policies that we refer to as policies
based on value function (or VFA policies), recognizing that if we can actually compute
(2.14), then the value function is optimal, giving us a rare instance of an optimal policy.

If the one-step transition matrix P (s′|St, a) can be computed (and stored), then equation
(2.14) is quite easy to compute starting at time T (when we assume VT (ST ) is given, where
it is fairly common to useVT (ST ) = 0). Perhaps for this reason, there has been considerable
interest in this community on steady state problems, where we assume that as t→∞, that
Vt(St)→ V (S). In this case, (2.14) becomes

V (s) = max
a∈As

(
r(s, a) +

∑
s′∈S

P (s′|s, a)V (s′)

)
. (2.15)

Now we have a system of equations that we have to solve to find V (s). We review these
methods in some depth in chapter 14.

Bellman’s equation was viewed as a major computational breakthrough when it was first
introduced, because it avoids the explosion of decision trees. However, people (including
Bellman) quickly realized realized that there was a problem when the state s is a vector
(even if it is still discrete). The size of the state space grows exponentially with the number
of dimensions, typically limiting this method to problems where the state variable has at
most three or four dimensions.

Bellman’s equation actually suffers from three curses of dimensionality. In addition
to the state variable, the random information (buried in the one-step transition P (s′|s, a))
might also be a vector. Finally, the action a might be a vector x. It is common for people
to dismiss “dynamic programming” (but they mean discrete Markov decision processes)
because of “the curse of dimensionality” (they could say because of “the curses of dimen-
sionality”), but the real issue is the use of lookup tables. There are strategies for overcoming
the curses of dimensionality, but if it were easy, this would be a much shorter book.
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Figure 2.2 Finding a path through a maze.

2.1.10 Reinforcement learning

Reinforcement learning evolved out of efforts to model animal behavior, as with mice trying
to find their way through a maze to a reward (see figure 2.2). Successes were learned over
time by capturing the probability that a path from a particular point in the maze eventually
leads to a success. This work was started in the early 1980’s by Rich Sutton and his
academic adviser Andy Barto. At some point, people realized that the central ideas could
all be cast in the language of Markov decision processes, but without the use of backward
dynamic programming that are implied in the calculation of equation (2.14) above. Instead
of stepping backward in time, reinforcement learning proceeds by stepping forward in
time, but then performing backward updates. These ideas became the foundation of what
later became known as approximate (or adaptive) dynamic programming. The process of
stepping forward avoids the need to loop over all possible states, as is required if solving
equation (2.15).

Despite the similarities between reinforcement learning and what we will later introduce
as approximate dynamic programming, the reinforcement learning community had its roots
in a particular class of problems. For example, the prototypical reinforcement learning
problem is “model free” which means that we do not have access to the one-step transition
matrix P (s′|s, a) which is considered a fundamental input to a Markov decision process.
Instead, we assume that if we are in a state St and take an action at, that we would then
observe St+1 without having access to the equations that describe how we get there.

Instead of learning the value V (s) of being in a state s, the core algorithmic strategy of
reinforcement learning involves learning the value Q(s, a) of being in a state s and then
taking an action a. The basic algorithm, known as Q-learning, proceedings by computing

q̂n(sn, an) = r(sn, an) + λmax
a′

Q̄n−1(s′, a′), (2.16)

Q̄n(sn, an) = (1− αn−1)Q̄n−1(sn, an) + αn−1q̂
n(sn, an). (2.17)

To compute (2.16), we assume we are given a state sn. We then use some method to choose
an action an, which produces a reward r(sn, an). We then randomly sample a downstream
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state s′ that might result from being in a state sn and taking action an. Using our simulated
downstream state s′, we then find what appears to be the best action a′ based on our current
estimates Q̄n−1(s′, a′) (known as ”Q-factors”). We then update the estimates of the value
of being in states sn and action an. When this logic is applied to our maze in figure 2.2,
the algorithm steadily learns the state/action pairs with the highest probability of finding
the exit, but it does require sampling all states and actions often enough.

There are many variations of Q-learning that reflect different rules for choosing the
state sn, choosing the action an, what is done with the updated estimate q̂n(sn, an), and
how the estimates Q̄n(s, a) are calculated (equations (2.16) - (2.17) reflect a lookup table
representation). These basic equations would only work for problems with relatively small
states and actions, which means we could simply use equation (2.14) if we know the one-
step transition matrix (hence we see why this community typically assumes that we do not
know the transition matrix).

2.1.11 Optimal control

The optimal control community is most familiar with the deterministic form of a control
problem, which is typically written in terms of the “system model” (transition function)

xt+1 = f(xt, ut),

where xt is the state variable and ut is the control. The problem is to find ut that solves

min
u

T∑
t=0

L(xt, ut) + JT (xT ), (2.18)

where L(x, u) is a “loss function” and JT (xT ) is a terminal cost (the notation here is not
standard).

A solution strategy which is so standard that it is often stated as part of the model is
to view the transition xt+1 = f(xt, ut) as a constraint that can be relaxed, producing the
objective

min
u

T∑
t=0

(
L(xt, ut) + λt(xt+1 − f(xt, ut))

)
+ JT (xT ), (2.19)

where λt is a set of Lagrange multipliers known as “co-state variables.” The function

H(x0, u) =

T∑
t=0

(
L(xt, ut) + λt(xt+1 − f(xt, ut))

)
+ JT (xT )

is known as the Hamiltonian.
The most common stochastic version would be written

xt+1 = f(xt, ut, wt)

where wt is random at time t. Often, wt is viewed as a form of additive noise that arises
when trying to measure the state of the system, which consists of the location and speed of
an aircraft. In this setting, the noise is additive, and would be written

xt+1 = f(xt, ut) + wt. (2.20)
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When we introduce noise, we can still write the objective as (2.24), but now we have to
follow the objective function with the statement “where ut is Ft-measurable” (see section
9.12.2 for an explanation of this term). The problem with this formulation is that it does
not provide an immediate path to computation. As readers will see, the way this problem
is solved is to construct a policy, that we denote (using the notation of this example) by
Uπ(xt), which means the function has to determine a decision ut = Uπ(xt) using only
the information in the state xt. The search for solution that satisfies the requirement that
“ut be Ft-measurable” is the same as finding some function that depends on xt (which in
turn can only depend on information that has arrived before time t). A significant part of
this book is focused on describing methods for finding these functions.

A common form for the objective in (2.24) is an objective function that is quadratic in
the state xt and control ut, given by

min
π

E
T∑
t=0

(
(xt)

TQtxt + (ut)
TRtut

)
. (2.21)

Although it takes quite a bit of algebra, it is possible to show that the optimization problem
in (2.24), with either a deterministic transition or stochastic with additive noise as in (2.20),
has the form

U∗(xt) = Ktxt, (2.22)

where Kt is a suitably dimensioned matrix that depends on the matrices (Qt′ , Rt′), t
′ ≤ t.

2.1.12 Model predictive control

A popular way of solving control problems is to come up with a function that depends only
on the current state to help find the best action now. One example of this is our optimal
control policy we just presented in equation (2.22) for optimal control problems. Another
example is use of Q-factors from reinforcement learning which we calculated in equations
(2.16) - (2.17), which gives us the policy

Aπ(St) = arg max
a

Q̄n(St, a). (2.23)

These are sometimes known as “model-free” policies because they do not require a model
of the physical problem to determine an action.

There are, however, many settings where we need to think about what is going to happen
in the future. The most common form in the optimal control literature is known as model
predictive control which simply means choosing a decision now by optimizing over some
horizon, which we can write as

Uπ(xt) = arg min
ut

(
L(xt, ut) +minut+1,...,ut+H

t+H∑
t′=t

L(xt′ , ut′)

)
. (2.24)

The optimization problem in (2.24) requires a model over the horizon t, . . . , t+H , which
means we need to be able to model losses as well as the system dynamics using xt+1 =
f(xt, ut). A slightly more precise name for this might be “model-based predictive control”,
but “model predictive control” (or MPC, as it is often known) is the term that evolved in
the controls community.
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Model predictive control is most often written using a deterministic model of the future,
primarily because most control problems are deterministic. However, a common approx-
imation for stochastic problems is still to use a deterministic approximation of the future.
This is so common that model predictive control is often interpreted as a deterministic model
of the future, even when the problem being solved (such as (2.21)) is stochastic. However,
the proper use of the term refers to any model of the future (even an approximation) that is
used to make a decision now.

Model predictive control is a widely used idea, often under names such as “rolling
horizon heuristic” or “receding horizon heuristic.” When you use a navigation system to
plan the shortest path to a destination, that is a form of model predictive control where
a deterministic model of travel times is used to determine where to turn next. In fact, a
decision tree can be viewed as a form of model predictive control when it is used in a fully
sequential setting.

2.2 A SIMPLE MODELING FRAMEWORK FOR SEQUENTIAL DECISION
PROBLEMS

Now that we have covered a number of simple examples, it is useful to briefly review the
elements of a dynamic program. We are going to revisit this topic in considerably greater
depth in chapter 9, but this discussion provides a brief introduction. Our presentation
focuses on stochastic dynamic programs which exhibit a flow of uncertain information.
These problems, at a minimum, consist of the following elements:

The state variable - St This captures all the information we need to model the system from
time t onward, which means computing the cost/contribution function, constraints on
decisions, and any other variables needed to model the transition of this information
over time. The stateSt may consist of the physical resourcesRt (such as inventories),
other information It (price of a product, weather), and the belief state Bt which
captures information about a probability distribution describing uncertain variables
or parameters. It is important to recognize that the state variable, regardless of
whether it is describing physical resources, attributes of a system, or the parameters
of a probability distribution, is always a form of information.

The decision variable - xt / at / ut Decisions/actions/controls represent how we control
the process. Decisions (or actions or controls) are determined by decision functions
known as policies, also known as control laws in control theory.

Exogenous information - Wt This is the information that first becomes known at time t
from an exogenous source (for example, the demand for product, the speed of the
wind, the outcome of a medical treatment, the results of a laboratory experiment).

The transition function - This function determines how the system evolves from the state
St to the stateSt+1 given the decision that was made at time t and the new information
that arrived between t and t+ 1.

The objective function - This function specifies the costs being minimized, the contribu-
tions/rewards being maximized, or other performance metrics. The objective is to
find the

We now illustrate this framework using an asset acquisition problem.
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The state variable is the information we need to make a decision and compute functions
that determine how the system evolves into the future. In our asset acquisition problem,
we need three pieces of information. The first is Rt, the resources on hand before we
make any decisions (including how much of the demand to satisfy). The second is the
demand itself, denoted Dt, and the third is the price pt. We would write our state variable
as St = (Rt, Dt, pt).

We have two decisions to make. The first, denoted xDt , is how much of the demand Dt

during time interval t that should be satisfied using available assets, which means that we
require xDt ≤ Rt. The second, denoted xOt , is how many new assets should be acquired at
time t which can be used to satisfy demands during time interval t+ 1.

The exogenous information process consists of three types of information. The first is
the new demands that arise during time interval t, denoted D̂t. The second is the change
in the price at which we can sell our assets, denoted p̂t. Finally, we are going to assume
that there may be exogenous changes to our available resources. These might be blood
donations or cash deposits (producing positive changes), or equipment failures and cash
withdrawals (producing negative changes). We denote these changes by R̂t. We often
use a generic variable Wt to represent all the new information that is first learned during
time interval t, which for our problem would be written Wt = (R̂t, D̂t, p̂t). In addition
to specifying the types of exogenous information, for stochastic models we also have to
specify the likelihood of a particular outcome. This might come in the form of an assumed
probability distribution for R̂t, D̂t, and p̂t, or we may depend on an exogenous source for
sample realizations (the actual price of the stock or the actual travel time on a path).

Once we have determined what action we are going to take from our decision rule,
we compute our contribution Ct(St, xt) which might depend on our current state and the
action xt that we take at time t. For our asset acquisition problem (where the state variable
is Rt), the contribution function is

Ct(St, xt) = ptx
D
t − ctxOt .

In this particular model, Ct(St, xt) is a deterministic function of the state and action. In
other applications, the contribution from action xt depends on what happens during time
t+ 1.

Next, we have to specify how the state variable changes over time. This is done using a
transition function which we might represent in a generic way using

St+1 = SM (St, xt,Wt+1),

where St is the state at time t, xt is the decision we made at time t and Wt+1 is our
generic notation for the information that arrives between t and t+ 1. We use the notation
SM (·) to denote the transition function, where the superscript M stands for “model” (or
“system model” in recognition of vocabulary that has been in place for many years in the
engineering community). The transition function for our asset acquisition problem is given
by

Rt+1 = Rt − xDt + xOt + R̂t+1,

Dt+1 = Dt − xDt + D̂t+1,

pt+1 = pt + p̂t+1.

This model assumes that unsatisfied demands are held until the next time period.
Our final step in formulating a dynamic program is to specify the objective function.

Assume we are trying to maximize the total contribution received over a finite horizon
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t = (0, 1, . . . , T ). If we were solving a deterministic problem, we might formulate the
objective function as

max
(xt)Tt=0

T∑
t=0

Ct(St, xt). (2.25)

We would have to optimize (2.25) subject to a variety of constraints on the actions
(x0, x1, . . . , xT ).

If we have a stochastic problem, which is to say that there are a number of possible
realizations of the exogenous information process (Wt)

T
t=1, then we have to formulate the

objective function in a different way. If the exogenous information process is uncertain,
we do not know which state we will be in at time t. Since the state St is a random variable,
then the decision (which depends on the state) is also a random variable.

We get around this problem by formulating the objective in terms of finding the best
policy (or decision rule) for choosing decisions. A policy tells us what to do for all possible
states, so regardless of which state we find ourselves in at some time t, the policy will
tell us what decision to make. This policy must be chosen to produce the best expected
contribution over all outcomes. If we let Xπ(St) be a particular decision rule indexed by
π, and let Π be a set of decision rules, then the problem of finding the best policy would be
written

max
π∈Π

E
T∑
t=0

Ct(St, X
π(St)). (2.26)

Exactly what is meant by finding the best policy out of a set of policies is very problem
specific. Our decision rule might be to order Xπ(Rt) = S − Rt if Rt < s and order
Xπ(Rt) = 0 if Rt ≥ s. The family of policies is the set of all values of the parameters
(s, S) for s < S (here, s and S are parameters to be determined, not state variables). If
we are selling an asset, we might adopt a policy of selling if the price of the asset pt falls
below some value p̄. The set of all policies is the set of all values of p̄. However, policies
of this sort tend to work only for very special problems.

Equation (2.26) states our problem as one of finding the best policy (or decision rule,
or function) Xπ to maximize the expected value of the total contribution over our horizon.
There are a number of variations of this objective function. For applications where the
horizon is long enough to affect the time value of money, we might introduce a discount
factor γ and solve

max
π∈Π

E
T∑
t=0

γtCt(St, X
π(St)), (2.27)

where γ is a discount factor where 0 ≤ γ ≥ 1. There is also considerable interest in infinite
horizon problems of the form

max
π∈Π

E
∞∑
t=0

γtCt(St, X
π(St)). (2.28)

Equation (2.28) is often used when we want to study the behavior of a system in steady
state.

Equations such as (2.26), (2.27), and (2.28) are all easy to write on a sheet of paper.
Solving them computationally is a different matter. That challenge is the focus of this book.

This description provides only a taste of the richness of sequential decision processes.
Chapter 9 describes the different elements of a dynamic program in far greater detail.
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2.3 APPLICATIONS

We now illustrate our modeling framework using a series of applications. These problems
illustrate some of the modeling issues that can arise. We often start from a simpler problem,
and then show how details can be added. Pay attention to the growth in the dimensionality
of the state variable as these complications are introduced.

2.3.1 The newsvendor problems

A popular problem in operations research is known as the newsvendor problem, which is
described as the story of deciding how many newspapers to put out for sale to meet an
unknown demand. The newsvendor problem arises in many settings where we have to
choose a fixed parameter that is then evaluated in a stochastic setting. It often arises as a
subproblem in a wide range of resource allocation problems (managing blood inventories,
budgeting for emergencies, allocating fleets of vehicles, hiring people), it also arises in
other settings, such as bidding a price for a contract (bidding too high means you may lose
the contract), or allowing extra time for a trip.

2.3.1.1 Basic newsvendor - Terminal reward The basic newsvendor is modeled
as

F (x,W ) = pmin{x,W} − cx, (2.29)

where x is the number of newspapers we have to order before observing our random
“demand” W . We sell our newspapers at a price p (the smaller of x and W ), but we have
to buy them at a unit cost c. The goal is to solve the problem

max
x

EWF (x,W ). (2.30)

A special case of the newsvendor problem is when the distribution of W is known (see
exercise 2.1). In most cases, the newsvendor problem arises in settings where we can
observe W , but we do not known its distribution (this is often referred to as data driven).
In this setting, we assume that we have to determine the amount to order xn at the end of
day n, after which we observe demand Wn+1, giving us a profit (at the end of day n+ 1)
of

F̂n+1 = F (xn,Wn+1) = pmin{xn,Wn+1} − cxn.

After each iteration, we may assume we observeWn+1, although often we only observe
min(xn,Wn+1) (which is known as censored observations). We can devise strategies to
try to learn the distribution of W , and then use our ability to solve the problem optimally
(given in exercise 2.1).

Another approach is to try to learn the function EwF (x,W ) directly. Either way, let
Sn be our belief state (about W , or about EwF (x,W )) about our unknown quantities. Sn

might be a point estimate, but it is often a probability distribution. For example, we might
let µx = EF (x,W ) where we assume that x is discrete (say, the number of newspapers).
After n iterations, we might have estimates µ̄nx of EF (x,W ), with standard deviation
σ̄nx where we would then assume that µx ∼ N(µ̄nx , σ̄

n,2
x ). In this case, we would write

Sn = (µ̄n, σ̄n) where µ̄n and σ̄n are both vectors over all values of x.
Given our (belief) state Sn, we then have to define a policy (we might also call this a

rule, or it might be a form of algorithm) that we denote byXπ(Sn) where xn = Xπ(Sn) is
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the decision we are going to use in our next trial where we either observe Wn+1 or F̂n+1.
While we would like to run this policy until n→∞, in practice we are going to be limited
to N trials which then gives us a solution xπ,N . This solution depends on our initial state
S0, the observations W 1, . . . ,WN which occurred while we were finding xπ,N , and then
we observe W one more time to evaluate xπ,N . We want to find the policy that solves

max
π

ES0
EW 1,...,WN |S0EWF (xπ,N ,W ). (2.31)

2.3.1.2 Basic newsvendor - cumulative reward A more realistic presentation of
an actual newsvendor problem recognizes that we are accumulating profits while simulta-
neously learning about the demand W (or the function EWF (x,W )). If this is the case,
then we would want to find a policy that solves

max
π

ES0EW1,...,WT

T−1∑
t=0

F (Xπ(St),Wt+1). (2.32)

2.3.1.3 Contextual newsvendor Imagine a newsvendor problem where the price
p of our product is dynamic, given by pt, which is revealed before we have to make a
decisions. Our profits would be given by

F (x,W |St) = pt min{x,W} − cx. (2.33)

As before, assume that we do not know the distribution of W , and let Bt our belief state
about W (or about EF (x,W )). Our state St = (pt, Bt), since we have to capture both the
price pt and our state of belief Bt. We can write our problem now as

max
x

EWF (x,W |pt).

Now, instead of finding the optimal order quantity x∗, we have to find the optimal order
quantity as a function of the price pt, which we might write as x∗(pt). While x∗ is a
deterministic value, x∗(p) is a function.

One solution might be to fix p and then solve a fixed newsvendor problem, but in reality
the problem is typically not this simple. We often do not have the distribution of Wt, and
depend on an exogenous source (such as the sales of our newspapers) for samples of Wt.
This same process may also be driving the evolution of St, which in turn might affect the
distribution ofWt. For example, imagine an event has happened (such as weather problems
creating a shortage), which means that a high value of pt implies a lower distribution of
demand. This means that rather than adaptively learning the optimal solution x∗, we need
to adaptively learn the function x∗(pt).

2.3.1.4 Multidimensional newsvendor problems Newsvendor problems can be
multidimensional. One version is the additive newsvendor problem where there are K
products to serve K demands, but using a production process that limits the total amount
delivered. This would be formulated as

F (x1, . . . , xK) = EW1,...,WK

K∑
k=1

pk min(xk,Wk)− ckxk, (2.34)

where
K∑
k=1

xk ≤ U. (2.35)
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A second version arises when there are multiple products (different types/colors of cars)
trying to satisfy the same demand W . This is given by

F (x1, . . . , xK) = EW


K∑
k=1

pk min

xk,(W − k−1∑
`=1

x`

)+
− K∑

k=1

ckxk

 , (2.36)

where (Z)+ = max(0, Z).

2.3.2 Inventory/storage problems

Inventory (or storage) problems represent an astonishingly broad class of applications that
span any problem where we buy/acquire (or sell) a resource to meet a demand, where
excess inventory can be held to the next time period. Elementary inventory problems (with
discrete quantities) appear to be the first problem to illustrate the power of a compact state
space, which overcomes the exponential explosion that occurs if you try to formulate and
solve these problems as decision trees.

2.3.2.1 Inventory without lags The simplest problem allows us to order new product
xt at time t that arrives right away.

Rt = Amount of inventory left over at the end of period t,
xt = Amount ordered at the end of period t that will be available at the beginning

of time period t+ 1,

D̂t+1 = Demand for the product that arises between t and t+ 1.
ct = The unit cost of order product for product ordered at time t,
pt = The price we are paid when we sell a unit during the period (t, t+ 1).

Our basic inventory process is given by

Rt+1 = max{0, Rt + xt − D̂t+1}.

We add up our total contribution at the end of each period. Let yt be the sales during time
period (t− 1, t). Our sales are limited by the demand D̂t as well as our available product
Rt−1 + xt−1, but we are going to allow ourselves to choose how much to sell, which may
be smaller than either of these. So we would write

yt ≤ Rt−1 + xt−1,

yt ≤ D̂t.

We are going to assume that we determine yt at time t after we have learned the demands
Dt for the preceding time period. So, at time t, the revenues and costs are given by

Ct(xt, yt) = ptyt − ctxt.

If this were a deterministic problem, we would formulate it as

max
(xt,yt),t=0,...,T

T∑
t=0

(ptyt − ctxt).
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However, we often want to represent the demands D̂t+1 as being random at time t. We
might even want to allow our prices pt, and perhaps even our costs ct, to vary over time
with both predictable (e.g. seasonal) and stochastic (uncertain) patterns. In this case, we
are going to need to define a state variable St that captures what we know at time t before
we make our decisions xt and yt. Designing state variables is subtle, but for now we would
assume that it would include Rt, pt, ct, as well as the demands Dt that have arisen during
interval (t− 1, t).

Unlike the newsvendor problem, the inventory problem can be challenging even if the
distribution of demand Dt is known. However, if it is unknown, then we may need to
maintain a belief state Bt about the distribution of demand, or perhaps the expected profits
when we place an order xt.

The features of this problem allow us to create a family of problems:

Static data If the prices pt and costs ct are constant (which is to say that pt = p and
ct = c), with a known distribution of demand, then we have a stochastic optimization
problem where the state is just St = Rt.

Dynamic data Assume the price pt evolves randomly over time, where pt+1 = pt+ εt+1,
then our state variable is St = (Rt, pt).

History-dependent processes Imagine now that our price process evolves according to

pt+1 = θ0pt + θ1pt−1 + θ2pt−2 + εt+1,

then we would write the sate as St = (Rt, (pt, pt−1, pt−2).

Learning process Now assume that we do not know the distribution of the demand. We
might put in place a process to try to learn it, either from observations of demands or
sales. LetBt capture our belief about the distribution of demand, which may itself be
a probability distribution. In this case, our state variable would be St = (Rt, pt, Bt).

Now, we are going to introduce the device of a policy, which is a rule for making
decisions. Let Xπ(St) be our rule for how much we are going to order at time t, and let
Y π(St) be our rule for how much we are going to sell. For example, we may be in a period
where prices are low, and we prefer to hold back on sales so that we can use our inventory
at a later period when we think prices are high. Designing these policies is a major theme
of this book, but for now we can write our optimization problem as

max
π

E
T∑
t=0

(ptY
π(St)− ctXπ(St)).

Here, our search over policies π means searching over both buying policies Xπ(S) and
selling policies Y π(S).

2.3.2.2 Inventory planning with forecasts An important extension that arises in
many real applications is where the data (demands, prices, even costs) may follow time-
varying patterns which can be approximately forecasted. Let

fWtt′ = Forecast of some activity (demands, prices, costs) made at time t that
we think will happen at time t′.

Forecasts evolve over time. They may be given to us from an exogenous source (a
forecasting vendor), or we may use observed data to do our own updating of forecasts.
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Assuming they are provided by an external vendor, we might describe the evolution of
forecasts using

fWt+1,t′ = fWtt′ + f̂Wt+1,t′ ,

where f̂Wt+1,t′ is the (random) change in the forecasts over all future time periods t′.
When we have forecasts, the vector fWt = (fWtt′ )t′≥t technically becomes part of the

state variable. When forecasts are available, the standard approach is to treat these as latent
variables, which means that we do not explicitly model the evolution of the forecasts, but
rather just treat the forecast as a static vector. We will return to this in chapter 9.

2.3.2.3 Lagged decisions There are many applications where we make a decision
at time t (say, ordering new inventory) that does not arrive until time t′ (as a result of
shipping delays). In global logistics, these lags can extend for several months. For an
airline ordering new aircraft, the lags can span several years.

We can represent lags using the notation

xtt′ = Inventory ordered at time t to arrive at time t′.
Rtt′ = Inventory that has been ordered at some time before t that is going

to arrive at time t′.

The variable Rtt′ is how we capture the effect of previous decisions. We can roll these
variables up into the vectors xt = (xtt′)t′≥t and Rt = (Rtt′)t′≥t.

Lagged problems are particularly difficult to model. Imagine that we want to sign
contracts to purchase natural gas in month t′′ that might be three years into the future to
serve uncertain demands. This decision has to consider the possibility that we may place
an order xt′t′′ at a time t′ that is between now (time t) and time t′′. At time t, the decision
xt′t′′ is a random variable that depends not just on the price of natural gas at time t′, but
also the decisions we might make between t and t′, as well as evolving forecasts.

2.3.3 Shortest path problems

Shortest path problems represent a particularly elegant and powerful problem class, since
a node in the network can represent any discrete state, while links out of the node can
represent a discrete action.

2.3.3.1 A deterministic shortest path problem A classical sequential decision
problem is the shortest path problem. Let

I = The set of nodes (intersections) in the network,
L = The set of links (i, j) in the network,
cij = The cost (typically the time) to drive from node i to node j, i, j ∈

I, (i, j) ∈ L,

I+
i = The set of nodes j for which there is a link (i, j) ∈ L,
I−j = The set of nodes i for which there is a link (i, j) ∈ L.

A traveler at node i needs to choose the link (i, j) where j ∈ I+
i is a downstream node

from node i. Assume that the traveler needs to get from an origin node q to a destination
node r at least cost. Let

vj = The minimum cost required to get from node j to node r.
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Step 0. Let

v0
j =

{
M j 6= r,
0 j = r.

where “M” is known as “big-M” and represents a large number. Let n = 1.

Step 1. Solve for all i ∈ I,

vni = min
j∈I+

i

(
cij + vn−1

j

)
.

Step 2. If vni < vn−1
i for any i, let n = n+ 1 and return to step 1. Else stop.

Figure 2.3 A basic shortest path algorithm.

We can think of vj as the value of being in state j. At optimality, these values will satisfy

vi = min
j∈I+

i

(
cij + vj

)
.

This fundamental equation underlies all the shortest path algorithms used in our GPS
devices, although these have been heavily engineered to achieve the rapid response we
have become accustomed to. A basic shortest path algorithm is given in 2.3, although this
represents just the skeleton of what a real algorithm would look like.

Shortest path problems represent particularly attractive instances of dynamic program-
ming problems because the state space is just the set of intersections describing a network.
Even though there may be millions of intersections describing large networks such as those
in the U.S., Europe and other major regions, this is still quite manageable (production algo-
rithms use different heuristics to restrict the search). Finding the best path across a complex
transportation network will seem like a toy after we consider some of the multidimensional
problems that arise in other applications.

2.3.3.2 A stochastic shortest path problem We are often interested in shortest
path problems where there is uncertainty in the cost of traversing a link. For our trans-
portation example, it is natural to view the travel time on a link as random, reflecting the
variability in traffic conditions on each link.

There are situations where the costs or times are random. To handle this new dimension
correctly, we have to specify whether we see the outcome of the random cost on a link
before or after we make the decision whether to traverse the link. If the actual cost is only
realized after we traverse the link, then are decision at node xi that we made when we are
at node i would be written

xi = arg min
j∈I+

i

E (ĉij + vj) ,

where the expectation is over the (assumed known) distribution of the random cost ĉij . For
this problem, our state variable S is simply the node at which we are located.

If we get to make our decision after we learn ĉij , then our decision would be written

xi = E

{
arg min
j∈I+

i

(ĉij + vj)

}
,
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In this setting, the state variable S is given by S = (i, (ĉij)j) includes both our current
node, but also the costs on links emanating from node i.

2.3.3.3 The nomadic trucker A special kind of shortest path problem arises in an
industry called truckload trucking, where a single truck driver will pick up a load at A,
drive it from A to B, drop it off at B, and then has to look for a new load (there are places
to call in to get a list of available loads). The driver has to think about how much money he
will make moving the load, but he then also has to recognize that the load will move him
to a new city.

The driver is characterized at each point in time by his current or future location `t
(which is a region of the country), his equipment type Et which is the type of trailer he
is pulling (which can change depending on the needs of the freight), his estimated time of
arrival at `t (denoted by τeta), and the time τt that he has been away from his home (which
is fixed, so we exclude it from the state variable). We roll these attributes into a vector rt
given by

rt = (`t, Et, τ
eta, τhomet ).

When the driver arrives at the destination of a load, he calls a freight broker and gets a set
of loads Lt that he can choose from. This means that his state variable (the information
just before he makes a decision), is given by

St = (rt,Lt).

The driver has to choose among a set of actionsAt = (Lt, “hold”) that includes the loads
in the set Lt, or doing nothing. Once the driver makes this choice, the set Lt is no longer
relevant. His state immediately after he makes his decision is called the post-decision state
Sat = rat , which is updated to reflect the destination of the load, and the time he is expected
to arrive at this location.

The natural way for a driver to choose which action to take is to balance the contribution
of the action, which we write asC(St, at), and the value of the driver in his “post-decision”
state rat . We might write this policy, which we call Aπ(St), using

Aπ(St) = arg max
a∈At

(
C(St, a) + V

a

t (rat )
)
.

The algorithmic challenge is creating the estimates V
a

t (rat ), which is an example of what
we will call a value function approximation. If the number of possible values of the driver
attribute vector rat was not too large, we could solve this problem using the same way we
would solve the stochastic shortest path problem introduced in section 2.3.3.2. The hidden
assumption in this problem is that the number of nodes is not too large (even a million
nodes is considered manageable). When a “node” is a multidimensional vector rt, then we
may have trouble manipulating all the possible values this may take (another instances of
the curse of dimensionality).

2.3.4 Pricing

Imagine that we are trying to determine the price of a product, and that we feel that we can
model the demand for the product using a logistics curve given by

D(p|θ) = θ0
eθ1−θ2p

1 + eθ1−θ2p
.
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Figure 2.4 Illustration of a family of possible revenue curves.

The total revenue from charging price p is given by

R(p|θ) = pD(p|θ).

If we knew θ, finding the optimal price would be a fairly simple exercise. But now assume
that we do not know θ. Figure 2.4 illustrates a family of potential curves that might describe
revenue as a function of price.

We can approach this problem as one of learning the true value of θ. Let Θ =
(θ1, . . . , θK) be a family of possible values of θ where we assume that one of the ele-
ments of Θ is the true value. Let pnk be the probability that θ = θk after we have made n
observations. The state of our learning system, then, is Sn = (pnk )Kk=1 which captures our
belief about θ.

2.3.5 Medical decision making

Physicians have to make decisions about patients who arrive with some sort of complaint.
The process starts by taking a medical history which consists of a series of questions about
the patients history and lifestyle. Let an be this history captured as a set of attributes,
where an might consist of thousands of different possible characteristics (humans are
complicated!). The physician might then order additional tests which produce additional
information, or she might prescribe medication or request a surgical procedure. Let dn

capture these decisions. We can wrap this combination of patient attributes an and medical
decisions dn into a set of explanatory variables that we designate xn = (an, dn).

Now assume we observe an outcome yn which for simplicity we are going to represent
as binary, where yn = 1 can be interpreted as “success” and yn = 0 is a “failure.” We
are going to assume that we can model the random variable yn (random, that is, before we
observe the results of the treatment) using a logistic regression, which is given by

P[yn = 1|xn = (an, dn), θ] =
eθx

n

1 + eθxn
. (2.37)

This problem illustrates two types of uncertainty. The first is the attributes of the
patient an, where we typically would not have a probability distribution describing these
attributes. It is difficult (actually, impossible) to develop a probabilistic model of the
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complex characteristics captured in an describing a person, since these attributes are going
to exhibit complex correlations. By contrast, the random variable yn has a well defined
mathematical model, characterized by an unknown (and high dimensional) parameter vector
θ.

Later in the volume, we are going to use two different approaches for handling these
different types of uncertainty. For patient attributes, we are going to use an approach that
is often known as data driven. We might have access to a large dataset of prior attributes,
decisions and outcomes, that we might represent as (an, dn, yn)Nn=1. Alternatively, we
may assume that we simply observe a patient an (this is the data-driven part), then make
a decision dn = Dπ(Sn) using a decision function Dπ(Sn) that can depend on a state
variable Sn, and then observe an outcome yn which we can describe using our probability
model.

2.3.6 Scientific exploration

Scientists, looking to discover new drugs, new materials, or new designs for a wing or
rocket engine, are often faced with the need to run difficult laboratory experiments looking
for the inputs and processes to produce the best results. Inputs might be a choice of catalyst,
the shape of a nanoparticle, or the choice of molecular compound. There might be different
steps in a manufacturing process, or the choice of a machine for polishing a lens.

Then, there are the continuous decisions. Temperatures, pressures, concentrations,
ratios, locations, diameters, lengths and times are all examples of continuous parameters.
In some settings these are naturally discretized, although this can be problematic if there
are three or more continuous parameters we are trying to tune at the same time.

We can represent a discrete decision as choosing an element x ∈ X = {x1, . . . , xM}.
Alternatively, we may have a continuous vector x = (x1, x2, . . . , xK). Let xn be our
choice of x (whether it is discrete or continuous). We are going to assume that xn is the
choice we make after running the nth experiment that guides the n+ 1st experiment, from
which we observe Wn+1. The outcome Wn+1 might be the strength of a material, the
reflexivity of a surface, or the number of cancer cells killed.

We use the results of an experiment to update a belief model. If x is discrete, imagine
we have an estimate µ̄nx which is our estimate of the performance of running an experiment
with choice x. If we choose x = xn and observeWn+1, then we can use statistical methods
(which we describe in chapter 3) to obtain updated estimates µ̄n+1

x . In fact, we can use
a property known as correlated beliefs that may allow us to run experiment x = xn and
update estimates µ̄n+1

x′ for values x′ other than x.
Often, we are going to use some parametric model to predict a response. For example,

we might create a linear model which can be written

f(xn|θ) = θ0 + θ1φ1(xn) + θ2φ2(xn) + . . . , (2.38)

whereφf (xn) is a function that pulls out relevant pieces of information from the inputsxn of
an experiment. For example, if element xi is the temperature, we might have φ1(xn) = xni
and φ2(xn) = (xni )2. If xi+1 is the pressure, we could also have φ3(xn) = xni x

n
i+1 and

φ4(xn) = xni (xni+1)2.
Equation (2.38) is known as a linear model because it is linear in the parameter vector

θ. The logistic regression model in (2.37) is an example of a nonlinear model (since it
is nonlinear in θ). Whether it is linear or nonlinear, parametric belief models capture the
structure of a problem, reducing the uncertainty from an unknown µ̄x for each x (where
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the number of different values of x can number in the thousands to millions or more) down
to a set of parameters θ that might number in the tens to hundreds.

2.3.7 Statistics and machine learning

There are close parallels between stochastic optimization and machine learning. Let:

xn = The data corresponding to the nth instances of a problem (the characteristics
of a patient, the attributes of a document, the data for an image) that we want
to use to predict an outcome yn,

yn = The response, which might be the response of a patient to a treatment, the
categorization of a document, or the classification of an image,

f(xn|θ) = Our model which we use to predict yn given xn,
θ = An unknown parameter vector used to determine the model.

We assume we have some metric that indicates how well our model f(x|θ) is performing.
For example, we might use

L(xn, yn|θ) = (yn − f(xn|θ))2.

The function f(x|θ) can take on many forms. The simplest is a basic linear model of
the form

f(x|θ) =
∑
f∈F

θfφf (x),

where φf (x) is known as a feature, and F is the set of features. There may be just a
handful of features, or thousands. The statistics and machine learning communities have
developed a broad array of functions, each of which is parameterized by some vector θ
(often designated as weights w). We review these in some depth in chapter 3.

The most typical optimization problem in machine learning is to use a batch dataset to
solve the nonlinear problem

min
θ

1

N

N∑
n=1

(yn − f(xn|θ))2.

For problems where the dimensionality of θ is in the thousands, this can be a difficult
algorithmic challenge.

There is a separate class of machine learning problems that involve working with data
that arrives over time, a field that is known as online learning. For this setting, we index
our sequence of data and observations as (x0, y1), (x1, y2), . . . , (xn, yn+1). This indexing
communicates the property that we see xn before observing yn+1. In this case, we would
let θn be our estimate of θ based on the data (x0, y1, . . . , xn). There are a variety of
algorithms that we will later describe as policies Θπ(Sn) which maps what we know as
of time n (in theory this could be the entire history, but typically it is more compact) to
produce a parameter estimate θn to be used to predict yn+1. Now we have the problem of
designing policies, which is the focus of most of this book.

2.4 BIBLIOGRAPHIC NOTES

• Section xx -
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PROBLEMS

2.1 Recall our newsvendor problem

max
x

EWF (x,W )

where F (x,W ) = pmin(x,W ) − cx. Assume that W is given by a known distribution
fW (w) with cumulative distribution

FW (w) = P[W ≤ w].

You are going to show that the optimal solution x∗ satisfies

FW (x∗) =
p− c
p

. (2.39)

Do this by first finding the stochastic gradient ∇xF (x,W ) which will give you a gradient
that depends on whether W < x or W > x. Now take the expected value of this gradient
and set it equal to zero, and use this to show (2.39).

2.2 Newsvendor with random prices. Discuss modeling and convexity. Create version
with sales as a decision variable and show that the resulting problem is convex.



CHAPTER 3

LEARNING IN STOCHASTIC
OPTIMIZATION

3.1 BACKGROUND

It is useful to begin our discussion of statistical learning by describing the learning issues
that arise in the context of stochastic optimization. This section provides an overview of
the following dimensions of learning problems:

• Observations and data in stochastic optimization - While classical statistical learning
problems consists of datasets comprised of input (or independent) variables xn and
output (or dependent) variables yn, in stochastic optimization the input variables xn

are decisions that we control.

• Functions we are learning - There are a half dozen different classes of functions that
we may need to approximate in different stochastic optimization contexts.

• Approximation strategies - Here we summarize the three major classes of approx-
imation strategies from the statistical learning literature. The rest of this chapter
summarizes these strategies.

• Objectives - Sometimes we are trying to fit a function to data which minimizes errors,
and sometimes we are finding a function to maximize contributions or minimize costs.
Either way, learning functions is always its own optimization problem, sometimes
buried within a larger stochastic optimization problem.

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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• Batch vs. recursive learning - Most of the statistical learning literature focuses
on using a given dataset (and of late, these are very large datasets) to fit complex
statistical models. In stochastic optimization, we primarily depend on adaptive
learning, so this chapter describes recursive learning algorithms.

3.1.1 Observations and data in stochastic optimization

Before we present our overview of statistical techniques, we need to say a word about the
data we are using to estimate functions. In statistical learning, it is typically assumed that
we are given input data x, after which we observe a response y. Some examples include

• We may observe the characteristics x of a patient to predict the likelihood y of
contracting cancer, or the result of a treatment regime.

• We wish to predict the weather y based on meteorological conditions x that we
observe now.

• We observe the pricing behavior of nearby hotels, given by x, to predict the response
y of whether a customer books a room, y, in our hotel at a given price.

In these settings, we obtain a dataset where we associate the response yn with the observa-
tions xn, which gives us a dataset (xn, yn)Nn=1.

In stochastic optimization, x is a decision, such as a choice of drug treatment, the price of
a product, the inventory of vaccines, or the choice of movies to display on a user’s internet
account. We view x as controllable, although it can consist of a mixture of controllable
elements (such as a drug dosage), and uncontrollable elements (the characteristics of the
patient). After choosing xn, we then observe yn+1. We change the indexing so that the
index n (this could also be time t) indicates the information content. So, the decision xn is
not able to “see” the outcome yn+1. This notation is more natural for sequential learning,
as arises in stochastic optimization, than the batch datasets more familiar in statistics and
machine learning. Further, we start at n = 0, where x0 is the first decision, which we have
to make before seeing any observations.

Finally, much of our “data” is going to come from a class of methods known as Monte
Carlo simulation. This is a computational technique used for sampling from a distribution.
We introduce this field in considerably more depth in chapter 10. In a nutshell, imagine
that we have a mathematical function (this could be an analytical function, or a complex
computer simulation), which depends on controllable inputs x, and a series of random
(uncontrollable) inputs W . For example, W might represent a sequence of requests by
customers who log into the website of a hotel looking to book a room. Now let y be the
number who actually book a room, which reflects the price that the hotel sets (which is the
decision x). We can represent the sequence of decisions x, informationW and observations
y as

(x0,W 1, y1, x1,W 2, y2, x2, . . . , xn,Wn+1, yn+1, . . . ,WN , yN ).

Often, it will be more natural to index using time. In this case, we would write

(x0,W1, y1, x1,W2, y2, x2, . . . , xt,Wt+1, yt+1, . . . ,W
T , yT ).

In stochastic optimization, we are going to design various ways of determining what x
should be. Sometimes, we will do this using traditional observations of a physical process
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(the best examples of this are found in chapter 7 on derivative-free stochastic optimization).
Often, we are doing this in a computer, where we have to simulateW rather than observe it
(or observe y directly). We can create samples of W using Monte Carlo simulation, which
is easily the most powerful computational tool for modeling stochastic systems.

3.1.2 Functions we are learning

The need to approximate functions arise in a number of settings in stochastic optimization.
Some of the most important include:

1) Approximating the expectation of a function EF (x,W ) to be maximized, where we
assume that we have access to unbiased observations F̂ = F (x,W ) for a given
decision x, which draws on a major branch of statistical learning known as supervised
learning.

2) Creating an approximate policy Xπ(S|θ) (or Aπ(S|θ) or Uπ(S|θ)). We may fit these
functions using one of two ways. We may assume that we have an exogenous source
of decisions x that we can use to fit our policy Xπ(S|θ) (this would be supervised
learning). More frequently, we are tuning the policy to maximize a contribution (or
minimize a cost), which is sometimes referred to as reinforcement learning.

3) Approximating the value of being in a state S, which we first saw in section 2.1.9. Let
Vt(St) be the value of being in state St at time t and then following some policy from
time t onward. We wish to find an approximation V t(St) that approximates Vt(St).
This is supervised learning, but requires that we estimate our value function using
biased observations (we get into this in much more detail in chapters 17 and 18).

4) Later we will introduce a class of policies that we call parametric cost function approx-
imations where we have to learn two types of functions:

4a) Parametric modifications of cost functions (for example, a penalty for not serving
a demand now but instead holding it for the future).

4b) Parametric modifications of constraints (for example, inserting schedule slack
into an airline schedule to handle uncertainty in travel times).

Each of these parametric modifications have to be tuned (which is a form of function
estimation) to produce the best results over time.

5) Learning any of the underlying models in a dynamic system. These include:

5a) The transition function that describes how the system evolves over time, which
we will write as SM (St, xt,Wt+1) which is used to compute the next state
St+1. This arises in complex environments where the dynamics are not known,
such as modeling how much water is retained in a reservoir, which depends in a
complex way on rainfall and temperature. We might approximate losses using
a parametric model that has to be estimated.

5b) The cost or contribution functions (also known as rewards, gains, losses, utility
function). This might be unknown if a human is making a decision to maximize
an unknown utility, which we might represent as a linear model with parameters
to be determined from observed behaviors.
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5c) The evolution of exogenous quantities such as wind or prices, where we might
model an observation Wt+1 as a function of the history Wt,Wt−1,Wt−2, . . .,
where we have to fit our model from past observations.

The first case is the simplest and purest setting, which involves estimating a function F

F (x) ≈ EF (x,W ),

based on noisy observations of the function F̂n which we assume are unbiased observations
of EF (x,W ). In this problem, we have to learn the function F (x) so that we can solve the
optimization problem

max
x

EF (x,W ). (3.1)

The goal is to find an accurate approximation F so that we can replace the optimization
problem (3.1) with

max
x

F (x).

This approach is typically performed in the context of an iterative algorithm where we
solve an approximation F

n
(x) obtained after n iterations, and use this to guide the choice

of what to observe in the n + 1st iteration. Having access to the unbiased but sampled
estimates F̂n of EF (x,W ) means that this is a form of supervised learning.

The second setting is where we wish to find a policy Xπ(St) that gives us an action
xt = Xπ(St). Later we are going to show that there are four major classes of policies, one of
which, policy function approximations, come in the form of parametric (or sometimes non-
parametric) functions. For example, assume that the state consists of St = (St1, St2, St3)
where St1 might be, for example, the amount of oil in storage, St2 might be the forecast
of temperatures (indicating whether the upcoming winter will be unusually cold), and St3
might be a global economic variable. We may then be trying to estimate how many barrels
of oil we should store. We may try to write our decision function as

Xπ(St|θ) = θ0 + θ1St1 + θ2St2 + θ3St3 + θ4S
2
t1 + θ5St1St3.

We then tune θ by solving the problem

max
θ

E
T∑
t=0

C(St, X
π(St|θ)). (3.2)

This is a classical stochastic optimization problem which we first cover in chapters 4, 5
(for derivative-based stochastic search), and 7 (for derivative-free stochastic search). This
would be unsupervised learning, but is sometimes referred to as reinforcement learning (a
term that originated in the setting of approximating value functions for dynamic programs).

Equation (3.2) is the most widely used starting point for finding policies, but there are
settings where we are simply trying to mimic another decision-maker (possibly human, but
perhaps a computationally complex model). If we had access to a source of decisions, that
source would be known as the “supervisor” (which is the origin of the term). However, we
aspire to doing even better.

The third and most difficult setting is when we need to estimate the value Vt(St) of
starting in a state St, typically following some rule or policy from time t onward. If we
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can write the state St+1 as a function of the current state St, a decision xt, and some new
random informationWt+1, then we can find a good (possibly optimal) action xt by solving

max
xt

(
C(St, xt) + E{V t+1(St+1)|St}

)
, (3.3)

where V t+1(St+1) is a statistical approximation of Vt+1(St+1). A challenge we almost
always incur in this setting is that we have to approximate V t+1(St+1) using biased
estimates of the value of being in state St+1. This is the basis of an algorithmic strategy
known broadly as approximate dynamic programming (or reinforcement learning) which
we introduce starting in chapters 17 and 18.

The unknown function F (x), the value function V t(St), and the decision function
Xπ(St|θ), are all examples of functions that we may need to estimate using statistical
methods. This chapter is an overview of some of the tools from statistics/machine learning
that can be used, where we have limited our attention to methods that can be implemented
in a recursive manner. This is an important problem setting, since it complicates the use of
popular methods such as Lasso, an important statistical method that helps to identify the
most important variables in models where there is a large library of potential explanatory
variables.

3.1.3 Approximation strategies

Our tour of statistical learning makes a progression through the following methods:

Lookup tables Here we estimate a function f(x) where x falls in a discrete region X
given by a set of points x1, x2, . . . , xM . A point xm could be the characteristics
of a person, a type of material, or a movie. Or it could be a point in a discretized,
continuous region. In most applications, lookup tables work well in one or two
dimensions, then become difficult (but feasible) in three or four dimensions, and then
quickly become impractical starting at four or five dimensions (this is the classical
“curse of dimensionality”). Our presentation focuses on using aggregation, and
especially hierarchical aggregation, both to handle the curse of dimensionality, but
also to manage the transition in recursive estimation from initial estimates with very
little data, to produce better estimates as more data becomes available.

Parametric models There are many problems where we can approximate a function using
an analytical model in terms of some unknown parameters. The simplest is a linear
model that might look like

f(x|θ) = θ0 + θ1x1 + θ2x2 + . . . . (3.4)

Often it is useful to define a set of features φf (x), f ∈ F where φf (x) extracts a
specific piece of information from x which could be a vector, or the data describing
a movie or ad. Equation (3.4) is called a linear model because it is linear in θ (it may
be highly nonlinear in x). Alternatively, we may have a nonlinear model such as

f(x|θ) = e
∑
f∈F θfφf (x).

Parametric models may be low-dimensional (1-100 parameters), or high-dimensional
(e.g. several hundred to thousands of parameters).

Nonparametric models Nonparametric models create estimates by building a structure
directly from the data. A simple example is where we estimate f(x) from a weighted
combination of nearby observations drawn from a set (fn, xn), n = 1, . . . , N .
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Notably missing from this chapter is approximation methods for convex functions. There
are many applications where F (x,W ) is convex in x. This function is so special that
we defer handling this problem class until chapter 5 (and especially chapter 19) when we
address stochastic convex (or concave) stochastic optimization problems such as linear
programs with random data.

We begin our presentation with lookup tables, which are the simplest way to represent
a function without assuming any structure. We begin by presenting lookup tables from
both frequentist and Bayesian perspectives. Bayesian and frequentist approaches have two
fundamental differences. First, Bayesian statistics starts with a prior distribution of belief
about a parameter (or set of parameters). This is useful in settings where obtaining an
observation of the function is expensive (it might involve an expensive simulation, or a
laboratory or field experiment). We may even need to choose what observation to make
before we have collected any data.

Second, a Bayesian belief about a set of parameters is always in the form of a proba-
bility distribution. In Bayesian statistics, the truth is viewed as a random variable, where
experiments refine the distribution, converging (with enough experiments) to a single truth.
By contrast, in the frequentist perspective, there is one truth, and we use the variability in
the observations to make statistical statements about where the truth lies.

In stochastic optimization, we need both belief models. As a general rule, Bayesian
models are best when we have access to some prior, and where function evaluations are
expensive (remember, that a “function” is not always a mathematical function - it might be
a field experiment). By contrast, frequentist models tend to be useful when we have access
to a relatively large number of observations (typically where data is not that difficult to
collect), and where we do not have access to a prior.

3.1.4 Objectives

Learning in stochastic optimization comes in two forms:

• Learning a function - We might want to learn an approximation of a function such
as an objective function EF (x,W ), or a value function V (s) or perhaps even the
transition function SM (s, x,W ). In these settings, we assume we have a source
of observations of our function that may be noisy, and even biased. For example,
we might have access to f̂n+1 which is a noisy observation of EF (xn,W ) that
we are going to approximate with some function f(x|θ). If we collect a dataset
(x0, f̂1, x1, f̂2, . . . , xn−1, f̂n), we would look to find θ that minimizes the error
between the observations f̂ and f(x|θ) using

min
θ

1

n

n−1∑
m=0

(f̂m − f(xm+1|θ)2. (3.5)

• Maximizing rewards (or minimizing costs) - We can search for a policyXπ(s|θ) that
maximizes a contribution function C(s, x) using

max
θ

N∑
n=0

C(sn, Xπ(sn|θ)), (3.6)

where the states evolve according to a known transition function sn+1 = SM (sn, xn,Wn+1).
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3.1.5 Batch vs. recursive learning

Equation (3.5) (or (3.6)) are the standard problems that arise in batch learning problems,
where we use a fixed dataset (possibly a very large one in the modern era of “big data”)
to fit a model (increasingly high-dimensional models such as neural networks which we
introduce below).

While batch learning can arise in stochastic optimization, the most common learning
problems are adaptive. Imagine that after n iterations (or samples), we have the sequence

(x0,W 1, y1, x1,W 2, y2, x2, . . . ,Wn, yn).

Assume that we use this data to obtain an estimate of our function that we call F
n
(x). Now

assume we use this estimate to make a decision xn, after which we experience exogenous
information Wn+1 and then the response yn+1. We need to use our prior estimate F

n
(x)

along with the new information (Wn+1, yn+1) to produce a new estimate F
n+1

(x).
We could, of course, just solve a new batch problem with one more observation, most

of the time we are going to be able to do this recursively, where our history is captured in
a compact way. In fact, this chapter focuses primarily on recursive learning.

3.2 ADAPTIVE LEARNING USING EXPONENTIAL SMOOTHING

The most common method we will use for adaptive learning is known by various names,
but is popularly referred to as exponential smoothing. Assume we have a sequence of
observations of some quantity, which might be the number of people booking a room, the
response of a patient to a particular drug, or the travel time on a path. Let µ be the unknown
truth, which could be the average number of people booking a room at a particular price,
or the probability a patient responds to a drug, or the average travel time of our path. We
want to estimate the average from a sequence of observations.

Let Wn be the nth observation of the quantity we are trying to estimate, and let µ̄n be
our estimate of the true mean µ after n observations. The most widely used method for
computing µ̄n+1 given µ̄n and a new observation Wn+1 is given by

µ̄n+1 = (1− αn)µ̄n + αnW
n+1. (3.7)

The variable αn is known variously as a learning rate, smoothing factor or (in this book) a
stepsize (we will see the motivation for the term stepsize in chapter 5).

Equation (3.7) is so intuitive that people often use it without realizing that it has a
foundation in formal optimization concepts. Assume that f(x) is some nonlinear function
in x (which may be a vector), with gradient ∇xf(x) given by

∇xf(x) =

∂f(x)
∂x1
∂f(x)
∂x2

...
∂f(x)
∂xK

.

If we wish to minimize f(x) (which we will assume is a nice, smooth, concave function)
we might use a classical steepest ascent algorithm with a basic update

xn+1 = xn − αn∇xf(xn). (3.8)
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The vector∇xf(x) points in the direction of steepest ascent, so we use −∇xf(x) to point
in the direction of steepest descent. Now we need to determine how far to move in this
direction. This is determined by αn, which is the reason that it is often called a stepsize. If
we know the function f(x), we would find the stepsize by solving

αn = arg max
α≥0

f(xn − α∇xf(xn)). (3.9)

We can use this idea to formulate our problem of finding the best estimate µ̄ of the mean
of our random variable W as an optimization problem using

min
µ
f(µ) = E

1

2
(µ−W )2. (3.10)

If we could compute the expectation, we could find f(µ) and use our steepest descent
algorithm. Since we cannot compute f(µ), we are going to use a simple adaptation known
as a stochastic gradient, where we pick

Let f(µ) = E 1
2 (µ −W )2, and let f(µ,W ) = 1

2 (µ −W )2. We cannot compute the
expectation needed to find the function f(µ), which prevents us from directly applying our
steepest ascent algorithm. However, we can still use the basic idea, where we replace the
gradient with a “stochastic gradient.” Assume our current estimate of µ is µ̄n, and then we
run the n + 1st experiment and obtain Wn+1. Now compute ∇f(µ̄n,Wn+1) which, for
our problem, is given by

∇µf(µ,W )|µ=µ̄n,W=Wn+1 = (µ̄n −Wn+1). (3.11)

Equation (3.11) is called a “stochastic gradient” because it depends on the random variable
Wn+1. This is a bit misleading, because we only compute (3.11) after Wn+1 becomes
known. We still use it in the same way as our steepest descent algorithm in equation (3.9),
allowing us to write

µ̄n+1 = µ̄n + αn∇F (µ̄n,Wn+1 (3.12)
= µ̄n + αn(µ̄n −Wn+1) (3.13)
= (1− αn)µ̄n + αnW

n+1. (3.14)

This brief derivation shows us that our simple exponential smoothing method in equation
(3.7) is really the same as our stochastic gradient algorithm.

This just leaves the question: how do we find the stepsize? So, it turns out that we can
no longer find the optimal stepsize by solving the optimization problem in (3.9), primarily
because we cannot compute the expectation Ef(µ,W ), which means we cannot find the
function f(µ). The good news is that we are limited to relatively simple formulas. For
example, we will often be using

αn =
1

n
.

In other settings, we may just use αn = α where 0 < α ≤ 1 is a fixed parameter. Larger
values of α naturally put more weight on more recent observations, which is a desirable
property if the data Wn is coming from a physical system that is changing dynamically
over time. For example, imagine that Wn is the price of a stock responding to market
forces. We could use equation (3.7) to produce a smoothed estimate, with larger values
of α putting more weight on recent data so that it responds to recent conditions (but at a
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price of introducing more volatility into the estimate µ̄n). Chapter 6 is an entire chapter
dedicated to different stepsize formulas.

Equation (3.7) is often referred to as exponential smoothing, although it arises in so
many settings that it has picked up a number of names. It is easily the most widely used
formula in stochastic optimization and learning.

3.3 LOOKUP TABLES WITH FREQUENTIST UPDATING

The frequentist view is arguably the approach that is most familiar to people with an
introductory course in statistics. Assume we are trying to estimate the mean µ of a random
variable W which might be the performance of a device or policy. Let Wn be the nth
sample observation, such as the sales of a product or the blood sugar reduction achieved by
a particular medication. Also let µ̄n be our estimate of µ, and σ̂2,n be our estimate of the
variance of W . We know from elementary statistics that we can write µ̄n and σ̂2,n using

µ̄n =
1

n

n∑
m=1

Wm (3.15)

σ̂2,n =
1

n− 1

n∑
m=1

(Wm − µ̄n)2. (3.16)

The estimate µ̄n is a random variable (in the frequentist view) because it is computed from
other random variables, namely W 1,W 2, . . . ,Wn. Imagine if we had 100 people each
choose a sample of n observations of W . We would obtain 100 different estimates of µ̄n,
reflecting the variation in our observations of W . The best estimate of the variance of the
estimator µ̄n is easily found to be

σ̄2,n =
1

n
σ̂2,n.

Note that as n→∞, σ̄2,n → 0, but σ̂2,n → σ2 where σ2 is the true variance of W . If σ2

is known, there would be no need to compute σ̂2,n and σ̄2,n would be given as above with
σ̂2,n = σ2.

We can write these expressions recursively using

µ̄n =

(
1− 1

n

)
µ̄n−1 +

1

n
Wn, (3.17)

σ̂2,n =

{
1
n (Wn − µ̄n−1)2 n = 2,
n−2
n−1 σ̂

2,n−1 + 1
n (Wn − µ̄n−1)2 n > 2.

(3.18)

We will often speak of our belief state which captures what we know about the parameters
we are trying to estimate. Given our observations, we would write our belief state as

Bn =
(
µ̄n, σ̂2,n, n

)
.

Equations (3.17) and (3.18) describe how our belief state evolves over time.

3.4 LOOKUP TABLES WITH BAYESIAN UPDATING

The Bayesian perspective casts a different interpretation on the statistics we compute which
is particularly useful in the context of learning when observations are expensive (imagine
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having to run expensive simulations or field experiments). In the frequentist perspective,
we do not start with any knowledge about the system before we have collected any data. It
is easy to verify from equations (3.17) and (3.18) that we never use µ̄0 or σ̂2,0.

By contrast, in the Bayesian perspective we assume that we begin with a prior distribution
of belief about the unknown parameter µ. In other words, any number whose value we do
not know is interpreted as a random variable, and the distribution of this random variable
represents our belief about how likely µ is to take on certain values. So if µ is the true
but unknown mean of W , we might say that while we do not know what this mean is, we
think it is normally distributed around θ0 with standard deviation σ0. Thus, the true mean
µ is treated as a random variable with a known mean and variance, but we are willing to
adjust our estimates of the mean and variance as we collect additional information. If we
add a distributional assumption such as the normal distribution, we would say that this is
our initial distribution of belief, known generally as the Bayesian prior.

The Bayesian perspective is well suited to problems where we are collecting information
about a process where observations are expensive. This might arise when trying to price a
book on the internet, or plan an expensive laboratory experiment. In both cases, we can be
expected to have some prior information about the right price for a book, or the behavior
of an experiment using our knowledge of physics and chemistry.

We note a subtle change in notation from the frequentist perspective, where µ̄n was
our statistic giving our estimate of µ. In the Bayesian view, we let µ̄n be our estimate
of the mean of the random variable µ after we have made n observations. It is important
to remember that µ is a random variable whose distribution reflects our prior belief about
µ. The parameter µ̄0 is not a random variable. This is our initial estimate of the mean of
our prior distribution. After n observations, µ̄n is our updated estimate of the mean of the
random variable µ (the true mean).

Below we first use some simple expressions from probability to illustrate the effect of
collecting information. We then give the Bayesian version of (3.17) and (3.18) for the case
of independent beliefs, where observations of one choice do not influence our beliefs about
other choices. We follow this discussion by giving the updating equations for correlated
beliefs, where an observation of µx for alternative x tells us something about µx′ . We
round out our presentation by touching on other important types of distributions.

3.4.1 The updating equations for independent beliefs

We begin by assuming (as we do through most of our presentation) that our random variable
W is normally distributed. Let σ2

W be the variance of W , which captures the noise in our
ability to observe the true value. To simplify the algebra, we define the precision of W as

βW =
1

σ2
W

.

Precision has an intuitive meaning: smaller variance means that the observations will be
closer to the unknown mean, that is, they will be more precise. Now let µ̄n be our estimate
of the true mean µ after n observations, and let βn be the precision of this estimate. That
is, having already seen the values W 1,W 2, ...,Wn, we believe that the mean of µ is µ̄n,
and the variance of µ is 1

βn . We say that we are “at time n” when this happens; note
that all quantities that become known at time n are indexed by the superscript n, so the
observation Wn+1 is not known until time n + 1. Higher precision means that we allow
for less variation in the unknown quantity; that is, we are more sure that µ is close to µ̄n.



LOOKUP TABLES WITH BAYESIAN UPDATING 71

After observing Wn+1, the updated mean and precision of our estimate of µ is given by

µ̄n+1 =
βnµ̄n + βWWn+1

βn + βW
, (3.19)

βn+1 = βn + βW . (3.20)

Equation (3.19) can be written more compactly as

µ̄n+1 = (βn+1)−1
(
βnµ̄n + βWWn+1

)
. (3.21)

There is another way of expressing the updating which provides insight into the structure
of the flow of information. First define

σ̃2,n = Varn[µ̄n+1]

= Varn[µ̄n+1 − µ̄n] (3.22)

where Varn[·] = V ar[· |W 1, ...,Wn] denotes the variance of the argument given the
information we have through n observations. For example,

Varn[µ̄n] = 0

since, given the information after n observations, µ̄n is a number that we can compute
deterministically from the prior history of observations.

The parameter σ̃2,n can be described as the variance of µ̄n+1 given the information
we have collected through iteration n, which means the only random variable is Wn+1.
Equivalently, σ̃2,n can be thought of as the change in the variance of µ̄n as a result
of the observation of Wn+1. Equation (3.22) is an equivalent statement since, given the
information collected up through iteration n, µ̄n is deterministic and is therefore a constant.
We use equation (3.22) to offer the interpretation that σ̃2,n is the change in the variance of
our estimate of the mean of µ.

It is possible to write σ̃2,n in different ways. For example, we can show that

σ̃2,n = σ2,n − σ2,n+1 (3.23)

=
(σ2,n)

1 + σ2
W /σ

2,n
(3.24)

= (βn)−1 − (βn + βW )−1. (3.25)

Equations (3.24) and (3.25) come directly from (3.23) and (3.20), using either variances or
precisions.

Just as we let Varn[·] be the variance given what we know after n measurements, let En
be the expectation given what we know after n measurements. That is, if W 1, . . . ,Wn are
the first n measurements, we can write

Enµ̄n+1 ≡ E(µ̄n+1|W 1, . . . ,Wn) = µ̄n.

We note in passing that Eµ̄n+1 refers to the expectation before we have made any mea-
surements, which means W 1, . . . ,Wn are all random, as is Wn+1. By contrast, when
we compute Enµ̄n+1, W 1, . . . ,Wn are assumed fixed, and only Wn+1 is random. By
the same token, En+1µ̄n+1 = µ̄n+1, where µ̄n+1 is some number which is fixed because
we assume that we already know W 1, . . . ,Wn+1. It is important to realize that when we
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write an expectation, we have to be explicit about what we are conditioning on. In practice,
conditioning on history occurs implicitly when we collect a sequence of observations. In
particular, if we have made n observations and have not yet made the (n+ 1)st observation,
then W 1, . . . ,Wn is known and Wn+1 is random.

Using this property, we can write µ̄n+1 in a different way that brings out the role of σ̃n.
Assume that we have made n observations and let

Z =
µ̄n+1 − µ̄n

σ̃n
.

We note that Z is a random variable only because we have not yet observed Wn+1.
Normally we would index Z = Zn+1 since it is a random variable that depends on Wn+1,
but we are going to leave this indexing implicit. It is easy to see that EnZ = 0 and
V arnZ = 1. Also, since Wn+1 is normally distributed, then Z is normally distributed,
which means Z ∼ N(0, 1). This means that we can write

µ̄n+1 = µ̄n + σ̃nZ. (3.26)

Equation (3.26) makes it clear how µ̄n evolves over the observations. It also reinforces the
idea that σ̃n is the change in the variance due to a single observation.

Equations (3.19) and (3.20) are the Bayesian counterparts of (3.17) and (3.18), although
we have simplified the problem a bit by assuming that the variance of W is known. The
belief state in the Bayesian view (with normally distributed beliefs) is given by the belief
state

Bn = (µ̄n, βn).

If our prior belief about µ is normally distributed with mean µ̄n and precision βn, and ifW
is normally distributed, then our posterior belief after n + 1 observations is also normally
distributed with mean µ̄n+1 and precision βn+1. We often use the term Gaussian prior,
when we want to say that our prior is normally distributed. We also allow ourselves a
slight abuse of notation: we use N

(
µ, σ2

)
to mean a normal distribution with mean µ

and variance σ2, but we also use the notation N (µ, β) when we want to emphasize the
precision instead of the variance.

Needless to say, it is especially convenient if the prior distribution and the posterior
distribution are of the same basic type. When this is the case, we say that the prior and
posterior are conjugate. This happens in a few special cases when the prior distribution
and the distribution of W are chosen in a specific way. When this is the case, we say that
the prior distribution is a conjugate family. The property that the posterior distribution is
in the same family as the prior distribution is called conjugacy. The normal distribution is
unusual in that the conjugate family is the same as the sampling family (the distribution
of the measurement W is also normal). For this reason, this class of models is sometimes
referred to as the “normal-normal” model (this phraseology becomes clearer below when
we discuss other combinations).

In some cases, we may impose conjugacy as an approximation. For example, it might
be the case that the prior distribution on µ is normal, but the distribution of the observation
W is not normal (for example, it might be nonnegative). In this case, the posterior may
not even have a convenient analytical form. But we might feel comfortable approximating
the posterior as a normal distribution, in which case we would simply use (3.19)-(3.20) to
update the mean and variance and then assume that the posterior distribution is normal.
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3.4.2 Updating for correlated beliefs

We are now going to make the transition that instead of one number µ, we now have a
vector µx1

, µx2
, . . . , µxM . We can think of an element of µ as µx, which might be our

estimate of a function Ef(x,W ) at x. Often, µx and µx′ are correlated, as might happen
when x is continuous, and x and x′ are close to each other. But there are a number of
examples that exhibit what we call correlated beliefs:

EXAMPLE 3.1

We are interested in finding the price of a product that maximizes total revenue. We
believe that the function R(p) that relates revenue to price is continuous. Assume
that we set a price pn and observe revenueRn+1 that is higher than we had expected.
If we raise our estimate of the function R(p) at the price pn, our beliefs about the
revenue at nearby prices should be higher.

EXAMPLE 3.2

We choose five people for the starting lineup of our basketball team and observe total
scoring for one period. We are trying to decide if this group of five people is better
than another lineup that includes three from the same group with two different people.
If the scoring of these five people is higher than we had expected, we would probably
raise our belief about the other group, since there are three people in common.

EXAMPLE 3.3

A physician is trying to treat diabetes using a treatment of three drugs, where she
observes the drop in blood sugar from a course of a particular treatment. If one
treatment produces a better-than-expected response, this would also increase our
belief of the response from other treatments that have one or two drugs in common.

EXAMPLE 3.4

We are trying to find the highest concentration of a virus in the population. If the
concentration of one group of people is higher than expected, our belief about other
groups that are close (either geographically, or due to other relationships) would also
be higher.

Correlated beliefs are a particularly powerful device in learning functions, allowing us to
generalize the results of a single observation to other alternatives that we have not directly
measured.

Let µ̄nx be our belief about alternative x after n measurements. Now let

Covn(µx, µy) = the covariance in our belief about µx and µy .

We let Σn be the covariance matrix, with element Σnxy = Covn(µx, µy). Just as we defined
the precision βnx to be the reciprocal of the variance, we are going to define the precision
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matrix Bn to be

Bn = (Σn)−1.

Let ex be a column vector of zeroes with a 1 for element x, and as before we let Wn+1 be
the (scalar) observation when we decide to measure alternative x. We could label Wn+1

as Wn+1
x to make the dependence on the alternative more explicit. For this discussion, we

are going to use the notation that we choose to measure xn and the resulting observation
is Wn+1. If we choose to measure xn, we can also interpret the observation as a column
vector given by Wn+1exn . Keeping in mind that µ̄n is a column vector of our beliefs
about the expectation of µ, the Bayesian equation for updating this vector in the presence
of correlated beliefs is given by

µ̄n+1 = (Bn+1)−1
(
Bnµ̄n + βWWn+1exn

)
, (3.27)

where Bn+1 is given by

Bn+1 = (Bn + βW exn(exn)T ). (3.28)

Note that ex(ex)T is a matrix of zeroes with a one in row x, column x, whereas βW is a
scalar giving the precision of our measurement W .

It is possible to perform these updates without having to deal with the inverse of the
covariance matrix. This is done using a result known as the Sherman-Morrison formula.
If A is an invertible matrix (such as Σn) and u is a column vector (such as ex), the
Sherman-Morrison formula is

[A+ uuT ]−1 = A−1 − A−1uuTA−1

1 + uTA−1u
. (3.29)

Let λW = σ2
W = 1/βW be the variance of our measurement Wn+1. We are going to

simplify our notation by assuming that our measurement variance is the same across all
alternatives x, but if this is not the case, we can replace λW with λWx throughout. Using
the Sherman-Morrison formula, and letting x = xn, we can rewrite the updating equations
as

µ̄n+1(x) = µ̄n +
Wn+1 − µ̄nx
λW + Σnxx

Σnex, (3.30)

Σn+1(x) = Σn − Σnex(ex)TΣn

λW + Σnxx
. (3.31)

where we express the dependence of µ̄n+1(x) and Σn+1(x) on the alternative x which we
have chosen to measure.

To illustrate, assume that we have three alternatives with mean vector

µ̄n =

 20
16
22

 .
Assume that λW = 9 and that our covariance matrix Σn is given by

Σn =

 12 6 3
6 7 4
3 4 15

 .
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Assume that we choose to measure x = 3 and observe Wn+1 = Wn+1
3 = 19. Applying

equation (3.30), we update the means of our beliefs using

µ̄n+1(3) =

 20
16
22

+
19− 22

9 + 15

 12 6 3
6 7 4
3 4 15

 0
0
1


=

 20
16
22

+
−3

24

 3
4
15


=

 19.625
15.500
20.125

 .
The update of the covariance matrix is computed using

Σn+1(3) =

 12 6 3
6 7 4
3 4 15

−
 12 6 3

6 7 4
3 4 15

 0
0
1

 [0 0 1]

 12 6 3
6 7 4
3 4 15


9 + 15

=

 12 6 3
6 7 4
3 4 15

− 1

24

 3
4
15

 [3 4 15]

=

 12 6 3
6 7 4
3 4 15

− 1

24

 9 12 45
12 16 60
45 60 225


=

 12 6 3
6 7 4
3 4 15

−
 0.375 0.500 1.875

0.500 0.667 2.500
1.875 2.500 9.375


=

 11.625 5.500 1.125
5.500 6.333 1.500
1.125 1.500 5.625

 .
These calculations are fairly easy, which means we can execute them even if we have
thousands of alternatives. But we will run up against the limits of computer memory if the
number of alternatives is in the 105 range or more, which arises when we consider problems
where an alternative x is itself a multidimensional vector.

3.4.3 Gaussian process regression

A common strategy for approximating continuous functions is to discretize them, and then
capture continuity by noting that the value of nearby points will be correlated, simply
because of continuity. This is known as Gaussian process regression.

Assume that we have an unknown function f(x) that is continuous in x which for the
moment we will assume is a scalar that is discretized into the values (x1, x2, . . . , xM ).
Let µ̄n(x) be our estimate of f(x) over our discrete set. Let µ(x) be the true value of
f(x) which, with our Bayesian hat on, we will interpret as a normally distributed random
variable with mean µ̄0

x and variance (σ0
x)2 (this is our prior). We will further assume that
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Figure 3.1 Illustration of a series of functions generated using Gaussian process regression
(correlated beliefs) for different values of α.

µx and µx′ are correlated with covariance

Cov(µx, µx′) = (σ0)2eα‖x−x
′‖, (3.32)

where ‖x − x′‖ is some distance metric such as |x − x′| or (x − x′)2 (if x is a scalar) or√∑I
i=1(xi − x′i)2 if x is a vector. If x = x′ then we just pick up the variance in our belief

about µx. The parameter α captures the degree to which x and x′ are related as they get
further apart.

Figure 3.1 illustrates a series of curves randomly generated from a belief model using
the covariance function given in equation (3.32) for different values of α. Smaller values
of α produce smoother curves with smaller undulations, because a smaller α translates to a
higher covariance between more distant values of x and x′. As α increases, the covariance
drops off and two different points on the curve become more independent.

Gaussian process regression (often shortened to just “GPR”) is a powerful approach
for approximating low-dimensional functions that are continuous but otherwise have no
specific structure. We present GPR here as a generalization of lookup table belief models,
but it can also be characterized as a form of nonparametric statistics which we discuss
below. In chapter 7 we will show how using GPR as a belief model can dramatically
accelerate optimizing functions of continuous parameters such as drug dosages for medical
applications, or the choice of temperature, pressure and concentration in a laboratory
science application.

3.5 COMPUTING BIAS AND VARIANCE

Before we present our methods for hierarchical aggregation, we are going to need some
basic results on bias and variance in statistical estimation. Assume we are trying to estimate
a true but unknown parameter µ which we can observe, but we have to deal with both bias
β and noise ε, which we write as

µ̂n = µ+ β + εn. (3.33)
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Both µ and β are unknown, but we are going to assume that we have some way to make
a noisy estimate of the bias that we are going to call β̂n. Later we are going to provide
examples of how to get estimates of β.

Now let µ̄n be our estimate of µ after n observations. We will use the following recursive
formula for µ̄n

µ̄n = (1− αn−1)µ̄n−1 + αn−1µ̂
n.

We are interested in estimating the variance of µ̄n and its bias β̄n. We start by computing
the variance of µ̄n. We assume that our observations of µ can be represented using equation
(3.33), where Eεn = 0 and Var[εn] = σ2. With this model, we can compute the variance
of µ̄n using

Var[µ̄n] = λnσ2, (3.34)

where λn can be computed from the simple recursion

λn =

{
(αn−1)2, n = 1,
(1− αn−1)2λn−1 + (αn−1)2, n > 1.

(3.35)

To see this, we start with n = 1. For a given (deterministic) initial estimate µ̄0, we first
observe that the variance of µ̄1 is given by

Var[µ̄1] = Var[(1− α0)µ̄0 + α0µ̂
1]

= (α0)2Var[µ̂1]

= (α0)2σ2.

For µ̄n for n > 1, we use a proof by induction. Assume that Var[µ̄n−1] = λn−1σ2. Then,
since µ̄n−1 and µ̂n are independent, we find

Var[µ̄n] = Var
[
(1− αn−1)µ̄n−1 + αn−1µ̂

n
]

= (1− αn−1)2Var
[
µ̄n−1

]
+ (αn−1)2Var[µ̂n]

= (1− αn−1)2λn−1σ2 + (αn−1)2σ2 (3.36)
= λnσ2. (3.37)

Equation (3.36) is true by assumption (in our induction proof), while equation (3.37)
establishes the recursion in equation (3.35). This gives us the variance, assuming of course
that σ2 is known.

Using our assumption that we have access to a noisy estimate of the bias given by βn,
we can compute the mean-squared error using

E
[(
µ̄n−1 − µ̄n

)2]
= λn−1σ2 + (βn)2. (3.38)

See exercise 5.5 to prove this. This formula gives the variance around the known mean,
µ̄n. For our purposes, it is also useful to have the variance around the observations µ̂n. Let

νn = E
[(
µ̄n−1 − µ̂n

)2]
be the mean squared error (including noise and bias) between the current estimate µ̄n−1

and the observation µ̂n. It is possible to show that (see exercise 5.6)

νn = (1 + λn−1)σ2 + (βn)2, (3.39)
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where λn is computed using (3.35).
In practice, we do not know σ2, and we certainly do not know the bias β. As a result,

we have to estimate both parameters from our data. We begin by providing an estimate of
the bias using

β̄n = (1− ηn−1)β̄n−1 + ηn−1β
n,

where ηn−1 is a (typically simple) stepsize rule used for estimating the bias and variance.
As a general rule, we should pick a stepsize for ηn−1 which produces larger stepsizes than
αn−1 because we are more interested in tracking the true signal than producing an estimate
with a low variance. We have found that a constant stepsize such as .10 works quite well
on a wide range of problems, but if precise convergence is needed, it is necessary to use a
rule where the stepsize goes to zero such as the harmonic stepsize rule (equation (6.12)).

To estimate the variance, we begin by finding an estimate of the total variation νn. Let
ν̄n be the estimate of the total variance which we might compute using

ν̄n = (1− ηn−1)ν̄n−1 + ηn−1(µ̄n−1 − µ̂n)2.

Using ν̄n as our estimate of the total variance, we can compute an estimate of σ2 using

(σ̄n)2 =
ν̄n − (β̄n)2

1 + λn−1
.

We can use (σ̄n)2 in equation (3.34) to obtain an estimate of the variance of µ̄n.
If we are doing true averaging (as would occur if we use a stepsize of 1/n), we can get

a more precise estimate of the variance for small samples by using the recursive form of
the small sample formula for the variance

(σ̂2)n =
n− 2

n− 1
(σ̂2)n−1 +

1

n
(µ̄n−1 − µ̂n)2. (3.40)

The quantity (σ̂2)n is an estimate of the variance of µ̂n. The variance of our estimate µ̄n

is computed using

(σ̄2)n =
1

n
(σ̂2)n.

We are going to draw on these results in two settings, which are both distinguished by
how estimates of the bias βn are computed:

Hierarchical aggregation We are going to estimate a function at different levels of ag-
gregation. We can assume that the estimate of the function at the most disaggregate
level is noisy but unbiased, and then let the difference between the function at some
level of aggregation and the function at the most disaggregate level as an estimate of
the bias.

Transient functions Later, we are going to use these results to approximate value func-
tions. It is the nature of algorithms for estimating value functions that the underlying
process varies over time (see see this most clearly in chapter 14). In this setting, we
are making observations from a truth that is changing over time, which introduces a
bias.
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3.6 LOOKUP TABLES AND AGGREGATION

Lookup table representations are the simplest and most general way to represent a function.
If we are trying to model a function f(x) = EF (x,W ), or perhaps a value function Vt(St),
assume that our function is defined over a discrete set of values x1, . . . , xM (or discrete
states S = {1, 2, . . . , |S|}). We wish to use observations of our function, whether they be
fn = F (xn,Wn+1) (or v̂nt , derived from simulations of the value of being in a state St),
to create an estimate F

n+1
(or V

n+1

t (St)).
The problem with lookup table representations is that if our variable x (or state S) is a

vector, then the number of possible values becomes exponentially larger with the number
of dimensions. This is the classic curse of dimensionality. One strategy for overcoming
the curse of dimensionality is to use aggregation, but picking a single level of aggregation
is generally never satisfactory. In particular, we typically have to start with no data, and
steadily build up an estimate of a function.

We can accomplish this transition from little to no data, to increasing numbers of obser-
vations, by using hierarchical aggregation. Instead of picking a single level of aggregation,
we work with a family of aggregations which are hierarchically structured.

3.6.1 Hierarchical aggregation

Lookup table representations of functions often represent the first strategy we consider
because it does not require that we assume any structural form. The problem is that it
requires that we discretize the domain X of the function f(x). If x = x1, . . . , xd is
multidimensional, then the number of elements in X grows exponentially with the number
of dimensions, often limiting the number of dimensions to around three. If the elements xd
are continuous, we can limit the growth by using a coarse discretization, but this introduces
discretization errors (a topic that has received considerable attention in the literature on
functional approximations). Even more important for adaptive learning algorithms is that
this approach does not help with the transition from very few observations (in the early
stages of an algorithm) to later stages, where we may actually have quite a few observations,
at least in some regions of the function.

One powerful strategy that makes it possible to extend lookup tables is the use of
hierarchical aggregation. Rather than simply aggregating a state space into a smaller space,
we pose a family of aggregations, and then combine these based on the statistics of our
estimates at each level of aggregation. This is not a panacea (nothing is), and should not
be viewed as a method that “solves” the curse of dimensionality, but it does represent a
powerful addition to our toolbox of approximation strategies.

We can illustrate hierarchical aggregation using our nomadic trucker example that we
first introduced in section 2.3.3.3. In this setting, we are managing a truck driver who
is picking up and dropping off loads (imagine taxicabs for freight), where the driver has
to choose loads based on both how much money he will make moving the load, and the
value of landing at the destination of the load. Complicating the problem is that the driver
is described by a multidimensional attribute vector r = (r1, r2, . . . , rd) which includes
attributes such as the location of a truck (which means location in a region), his equipment
type (the type of trailer he is hauling, such as a regular “van” for freight, a refrigerated van
or a flatbed), and his home location (again, a region).

If our nomadic trucker is described by the state vector St = rt which we act on
with an action at (moving one of the available loads), the transition function St+1 =
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SM (St, at,Wt+1) may represent the state vector at a high level of detail (some values may
be continuous). But the decision problem

max
at∈A

(
C(St, at) + γE{V t+1(G(St+1))|St}

)
(3.41)

uses a value function V t+1(G(St+1)), where G(·) is an aggregation function that maps
the original (and very detailed) state S into something much simpler. The aggregation
function G may ignore a dimension, discretize it, or use any of a variety of ways to reduce
the number of possible values of a state vector. This also reduces the number of parameters
we have to estimate. In what follows, we drop the explicit reference of the aggregation
function G and simply use V t+1(St+1). The aggregation is implicit in the value function
approximation.

Some examples of aggregation include:

Spatial - A transportation company is interested in estimating the value of truck drivers at
a particular location. Locations may be calculated at the level of a five-digit zip code
(there are about 55,000 in the United States), three-digit zip code (about 1,000), or
the state level (48 contiguous states).

Temporal - A bank may be interested in estimating the value of holding an asset at a point
in time. Time may be measured by the day, week, month, or quarter.

Continuous parameters - The state of an aircraft may be its fuel level; the state of a
traveling salesman may be how long he has been away from home; the state of a
water reservoir may be the depth of the water; the state of the cash reserve of a
mutual fund is the amount of cash on hand at the end of the day. These are examples
of systems with at least one dimension of the state that is at least approximately
continuous. The variables may all be discretized into intervals of varying lengths.

Hierarchical classification - A portfolio problem may need to estimate the value of in-
vesting money in the stock of a particular company. It may be useful to aggregate
companies by industry segment (for example, a particular company might be in the
chemical industry, and it might be further aggregated based on whether it is viewed
as a domestic or multinational company). Similarly, problems of managing large
inventories of parts (for cars, for example) may benefit by organizing parts into part
families (transmission parts, engine parts, dashboard parts).

The examples below provide additional illustrations.

EXAMPLE 3.1

The state of a jet aircraft may be characterized by multiple attributes which include
spatial and temporal dimensions (location and flying time since the last maintenance
check), as well other attributes. A continuous parameter could be the fuel level,
an attribute that lends itself to hierarchical aggregation might be the specific type
of aircraft. We can reduce the number of states (attributes) of this resource by
aggregating each dimension into a smaller number of potential outcomes.
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Aggregation level Location Fleet type Domicile Size of state space

0 Sub-region Fleet Region 400× 5× 100 = 200, 000

1 Region Fleet Region 100× 5× 100 = 50, 000

2 Region Fleet Zone 100× 5× 10 = 5, 000

3 Region Fleet - 100× 5× 1 = 500

4 Zone - - 10× 1× 1 = 10

Table 3.1 Examples of aggregations of the state space for the nomadic trucker problem. ‘-’
indicates that the particular dimension is ignored.

EXAMPLE 3.2

The state of a portfolio might consist of the number of bonds which are characterized
by the source of the bond (a company, a municipality or the federal government), the
maturity (six months, 12 months, 24 months), when it was purchased, and its rating
by bond agencies. Companies can be aggregated up by industry segment. Bonds can
be further aggregated by their bond rating.

EXAMPLE 3.3

Blood stored in blood banks can be characterized by type, the source (which might
indicate risks for diseases), age (it can be stored for up to 42 days), and the current
location where it is being stored. A national blood management agency might want
to aggregate the state space by ignoring the source (ignoring a dimension is a form
of aggregation), discretizing the age from days into weeks, and aggregating locations
into more aggregate regions.

EXAMPLE 3.4

The value of an asset is determined by its current price, which is continuous. We can
estimate the asset using a price discretized to the nearest dollar.

There are many applications where aggregation is naturally hierarchical. For example, in
our nomadic trucker problem we might want to estimate the value of a truck based on three
attributes: location, home domicile, and fleet type. The first two represent geographical
locations, which can be represented (for this example) at three levels of aggregation: 400
sub-regions, 100 regions, and 10 zones. Table 3.1 illustrates five levels of aggregation that
might be used. In this example, each higher level can be represented as an aggregation of
the previous level.

Aggregation is also useful for continuous variables. Assume that our state variable is
the amount of cash we have on hand, a number that might be as large as $10 million dollars.
We might discretize our state space in units of $1 million, $100 thousand, $10 thousand,
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$1,000, $100, and $10. This discretization produces a natural hierarchy since 10 segments
at one level of aggregation naturally group into one segment at the next level of aggregation.

Hierarchical aggregation is often the simplest to work with, but in most cases there is no
reason to assume that the structure is hierarchical. In fact, we may even use overlapping
aggregations (sometimes known as “soft” aggregation), where the same state s aggregates
into multiple elements in Sg . For example, assume that s represents an (x, y) coordinate
in a continuous space which has been discretized into the set of points (xi, yi)i∈I . Further
assume that we have a distance metric ρ((x, y), (xi, yi)) that measures the distance from
any point (x, y) to every aggregated point (xi, yi) , i ∈ I. We might use an observation
at the point (x, y) to update estimates at each (xi, yi) with a weight that declines with
ρ((x, y), (xi, yi)).

3.6.2 Estimates of different levels of aggregation

Assume we are trying to approximate a function f(x), x ∈ X . We begin by defining a
family of aggregation functions

Gg : X → X (g).

X (g) represents the gth level of aggregation of the domain X . Let

G = The set of indices corresponding to the levels of aggregation.

In this section, we assume we have a single aggregation function G that maps the dis-
aggregate state x ∈ X = X (0) into an aggregated space X (g). In section 3.6.3, we let
g ∈ G = {0, 1, 2, . . .} and we work with all levels of aggregation at the same time.

To begin our study of aggregation, we first need to characterize how we sample values x
at the disaggregate level. For this discussion, we assume we have two exogenous processes:
At iteration n, the first process chooses a value to sample (which we denote by xn), and
the second produces an observation of the value of being in state

f̂n(xn) = f(xn) + εn.

Later, we are going to assume that xn is determined by some policy, but for now, we can
treat this as purely exogenous.

We need to characterize the errors that arise in our estimate of the function. Let

f (g)
x = The true estimate of the gth aggregation of the original function f(x).

We assume that f (0)(x) = f(x), which means that the zeroth level of aggregation is the
true function.

Let

f̄ (g,n)
x = The estimate of the value of f(x) at the gth level of aggregation after n

observations.

Throughout our discussion, a bar over a variable means it was computed from sample
observations. A hat means the variable was an exogenous observation.

When we are working at the most disaggregate level (g = 0), the state s that we measure
is the observed state s = ŝn. For g > 0, the subscript x in f̄ (g,n)

x refers to Gg(xn), or the
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gth level of aggregation of f(x) at x = xn. Given an observation (xn, f̂n(xn)), we would
update our estimate of the f (g)(x) using

f̄ (g,n)
x = (1− α(g)

x,n−1)f̄ (g,n−1)
x + α

(g)
x,n−1f̂

n(x).

Here, we have written the stepsize α(g)
x,n−1 to explicitly represent the dependence on the

decision x and level of aggregation. Implicit is that this is also a function of the number of
times that we have updated f̄ (g,n)

x by iteration n, rather than a function of n itself.
To illustrate, imagine that our nomadic trucker is described by the vector x =

(Loc,Equip,Home, DOThrs,Days), where “Loc” is location, “Equip” denotes the type
of trailer (long, short, refrigerated), “Home” is the location of where he lives, “DOThrs” is
a vector giving the number of hours the driver has worked on each of the last eight days,
and “Days” is the number of days the driver has been away from home. We are going to
estimate the value f(x) for different levels of aggregation of x, where we aggregate purely
by ignoring certain dimensions of s. We start with our original disaggregate observation
f̂(x), which we are going to write as

f̂


Loc

Equip
Home

DOThrs
Days

 = f(x) + ε.

We now wish to use this estimate of the value of a driver with attribute x to produce value
functions at different levels of aggregation. We can do this by simply smoothing this
disaggregate estimate in with estimates at different levels of aggregation, as in

v̄(1,n)

 Loc
Equip
Home

 = (1− α(1)
x,n−1)f̄ (1,n−1)

 Loc
Equip
Home

+ α
(1)
x,n−1f̂


Loc

Equip
Home

DOThrs
Days

 ,

v̄(2,n)

(
Loc

Equip

)
= (1− α(2)

x,n−1)f̄ (2,n−1)

(
Loc

Equip

)
+ α

(2)
x,n−1f̂


Loc

Equip
Home

DOThrs
Days

 ,

v̄(3,n)
(

Loc
)

= (1− α(3)
x,n−1)f̄ (3,n−1)

(
Loc

)
+ α

(3)
x,n−1v̂


Loc

Equip
Home

DOThrs
Days

 .

In the first equation, we are smoothing the value of a driver based on a five-dimensional
state vector, given by x, in with an approximation indexed by a three-dimensional state
vector. The second equation does the same using value function approximation indexed
by a two-dimensional state vector, while the third equation does the same with a one-
dimensional state vector. It is very important to keep in mind that the stepsize must reflect
the number of times a state has been updated.

We need to estimate the variance of f̄ (g,n)
x . Let

(s2
x)(g,n) = The estimate of the variance of observations made of the function at

x, using data from aggregation level g, after n observations.



84 LEARNING IN STOCHASTIC OPTIMIZATION

(s2
x)(g,n) is the estimate of the variance of the observations f̂ when we observe the function

at x = xn which aggregates to x (that is, Gg(xn) = x). We are really interested in the
variance of our estimate of the mean, f̄ (g,n)

x . In section 3.5, we showed that

(σ̄2
x)(g,n) = Var[f̄ (g,n)

x ]

= λ(g,n)
x (s2

x)(g,n), (3.42)

where (s2
x)(g,n) is an estimate of the variance of the observations f̂n at the gth level of

aggregation (computed below), and λ(g,n)
s can be computed from the recursion

λ(g,n)
x =

{
(α

(g)
x,n−1)2, n = 1,

(1− α(g)
x,n−1)2λ

(g,n−1)
x + (α

(g)
x,n−1)2, n > 1.

Note that if the stepsize α(g)
x,n−1 goes to zero, then λ

(g,n)
x will also go to zero, as will

(σ̄2
x)(g,n). We now need to compute (s2

x)(g,n) which is the estimate of the variance of
observations f̂n at points xn for which Gg(xn) = x (the observations of states that
aggregate up to x). Let ν̄(g,n)

x be the total variation, given by

ν̄(g,n)
x = (1− ηn−1)ν̄(g,n−1)

x + ηn−1(f̄ (g,n−1)
x − f̂nx )2,

where ηn−1 follows some stepsize rule (which may be just a constant). We refer to ν̄(g,n)
x as

the total variation because it captures deviations that arise both due to measurement noise
(the randomness when we compute f̂n(x)) and bias (since f̄ (g,n−1)

x is a biased estimate of
the mean of f̂n(x)).

We finally need an estimate of the bias from aggregation which we find by computing

β̄(g,n)
x = f̄ (g,n)

x − f̄ (0,n)
x . (3.43)

We can separate out the effect of bias to obtain an estimate of the variance of the error using

(s2
x)(g,n) =

ν̄
(g,n)
x − (β̄

(g,n)
x )2

1 + λn−1
. (3.44)

In the next section, we put the estimate of aggregation bias, β̄(g,n)
x , to work.

The relationships are illustrated in figure 3.2, which shows a simple function defined
over a single, continuous state (for example, the price of an asset). If we select a particular
state s, we find we have only two observations for that state, versus seven for that section
of the function. If we use an aggregate approximation, we would produce a single number
over that range of the function, creating a bias between the true function and the aggregated
estimate. As the illustration shows, the size of the bias depends on the shape of the function
in that region.

One method for choosing the best level of aggregation is to choose the level that
minimizes (σ̄2

s)(g,n) + (β̄
(g,n)
s )2, which captures both bias and variance. In the next

section, we use the bias and variance to develop a method that uses estimates at all levels
of aggregation at the same time.

3.6.3 Combining multiple levels of aggregation

Rather than try to pick the best level of aggregation, it is intuitively appealing to use a
weighted sum of estimates at different levels of aggregation. The simplest strategy is to use

f̄nx =
∑
g∈G

w(g)f̄ (g)
x , (3.45)
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f(x)

Aggregated function

Original function

x   = point selected

 1 Bias x

Errors around disaggregate function

x

Figure 3.2 Illustration of a disaggregate function, an aggregated approximation and a set of
samples. For a particular state s, we show the estimate and the bias.

where w(g) is the weight applied to the gth level of aggregation. We would expect the
weights to be positive and sum to one, but we can also view these simply as coefficients in
a regression function. In such a setting, we would normally write the regression as

F (x|θ) = θ0 +
∑
g∈G

θg f̄
(g)
x ,

(see section 18.4.1 for a discussion of general regression methods). The problem with this
strategy is that the weight does not depend on the value of x. Intuitively, it makes sense
to put a higher weight on points x which have more observations, or where the estimated
variance is lower. This behavior is lost if the weight does not depend on x.

In practice, we will generally observe some states much more frequently than others,
suggesting that the weights should depend on x. To accomplish this, we need to use

f̄nx =
∑
g∈G

w(g)
x f̄ (g,n)

x .

Now the weight depends on the point being estimated, allowing us to put a higher weight
on the disaggregate estimates when we have a lot of observations. This is clearly the most
natural, but when the domain X is large, we face the challenge of computing thousands
(perhaps hundreds of thousands) of weights. If we are going to go this route, we need a
fairly simple method to compute the weights.

We can view the estimates (f̄ (g,n))g∈G as different ways of estimating the same quantity.
There is an extensive statistics literature on this problem. For example, it is well known
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Figure 3.3 Average weight (across all states) for each level of aggregation using equation (3.47).

that the weights that minimize the variance of f̄nx in equation (3.45) are given by

w(g)
x ∝

(
(σ̄2
x)(g,n)

)−1

.

Since the weights should sum to one, we obtain

w(g)
x =

(
1

(σ̄2
x)(g,n)

)∑
g∈G

1

(σ̄2
x)(g,n)

−1

. (3.46)

These weights work if the estimates are unbiased, which is clearly not the case. This is
easily fixed by using the total variation (variance plus the square of the bias), producing the
weights

w(g,n)
x =

1(
(σ̄2
x)(g,n) +

(
β̄

(g,n)
x

)2
)
∑
g′∈G

1(
(σ̄2
x)(g′,n) +

(
β̄

(g′,n)
x

)2
)

−1

. (3.47)

These are computed for each level of aggregation g ∈ G. Furthermore, we compute
a different set of weights for each point x. (σ̄2

x)(g,n) and β̄
(g,n)
x are easily computed

recursively using equations (3.42) and (3.43), which makes the approach well suited to
large scale applications. Note that if the stepsize used to smooth f̂n goes to zero, then the
variance (σ̄2

x)(g,n) will also go to zero as n→∞. However, the bias β̄(g,n)
x will in general

not go to zero.
Figure 3.3 shows the average weight put on each level of aggregation (when averaged

over all the states s) for a particular application. The behavior illustrates the intuitive
property that the weights on the aggregate level are highest when there are only a few
observations, with a shift to the more disaggregate level as the algorithm progresses. This
is a very important behavior when approximating functions recursively. It is simply not
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High bias Moderate bias Zero bias

v(a)

3.4a: Scalar, nonlinear function

Optimal weights

Weights assuming independence

3.4b: Weight given to disaggregate level

Figure 3.4 The weight given to the disaggregate level for a two-level problem at each of 10 points,
with and without the independence assumption (from George et al. (2008)).

possible to produce good function approximations with only a few data points, so it is
important to use simple functions (with only a few parameters).

The weights computed using (3.3) minimize the variance in the estimate f̄ (g)
x if the

estimates at different levels of aggregation are independent, but this is simply not going to
be the case. f̄ (0)

x (an estimate of s at the most disaggregate level) and f̄ (1)
x will be correlated
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Figure 3.5 The effect of ignoring the correlation between estimates at different levels of aggregation

since f̄ (1)
x is estimated using some of the same observations used to estimate f̄ (0)

x . So it is
fair to ask if the weights produce accurate estimates.

To get a handle on this question, consider the scalar function in figure 3.4a. At the
disaggregate level, the function is defined for 10 discrete values. This range is then divided
into three larger intervals, and an aggregated function is created by estimating the function
over each of these three larger ranges. Instead of using the weights computed using (3.47),
we can fit a regression of the form

f̂n(x) = θ0f̄
(0,n)(x) + θ1f̄

(1,n)(x). (3.48)

The parameters θ0 and θ1 can be fit using regression techniques. Note that while we would
expect θ0 + θ1 to be approximately 1, there is no formal guarantee of this. If we use only
two levels of aggregation, we can find (θ0, θ1) using linear regression and can compare
these weights to those computed using equation (3.47) where we assume independence.

For this example, the weights are shown in figure 3.4b. The figure illustrates that the
weight on the disaggregate level is highest when the function has the greatest slope, which
produces the highest biases. When we compute the optimal weights (which captures the
correlation), the weight on the disaggregate level for the portion of the curve that is flat
is zero, as we would expect. Note that when we assume independence, the weight on the
disaggregate level (when the slope is zero) is no longer zero. Clearly a weight of zero is
best because it means that we are aggregating all the points over the interval into a single
estimate, which is going to be better than trying to produce three individual estimates.

One would expect that using the optimal weights, which captures the correlations be-
tween estimates at different levels of aggregation, would also produce better estimates of
the function itself. This does not appear to be the case. We compared the errors between
the estimated function and the actual function using both methods for computing weights,
using three levels of noise around the function. The results are shown in figure 3.5, which
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indicates that there is virtually no difference in the accuracy of the estimates produced by
the two methods. This observation has held up under a number of experiments.

3.7 LINEAR PARAMETRIC MODELS

Up to now, we have focused on lookup-table representations of functions, where if we are at
a point x (or state s), we compute an approximationF (x) (or V (s)) that is an estimate of the
function at x (or state s). Using aggregation (even mixtures of estimates at different levels
of aggregation) is still a form of look-up table (we are just using a simpler lookup-table).
Lookup tables offer tremendous flexibility, but generally do not scale to higher dimensional
variables (x or s), and do not allow you to take advantage of structural relationships.

There has been considerable interest in estimating functions using regression methods.
A classical presentation of linear regression poses the problem of estimating a parameter
vector θ to fit a model that predicts a variable y using a set of observations (known as
covariates in the machine learning community) (xi)i∈I , where we assume a model of the
form

y = θ0 +

I∑
i=1

θixi + ε. (3.49)

The variables xi might be called independent variables, explanatory variables, or covariates,
depending on the community. In dynamic programming where we want to estimate a value
function V π(St), we might write

V (S|θ) =
∑
f∈F

θfφf (S),

where (φf (S))f∈F are known variously as basis functions or features, but are also referred
to by names such as covariates or simply “independent variables.” We might use this
vocabulary regardless of whether we are approximating a value function or the policy
itself. In fact, if we write our policy of the form

Xπ(St|θ) =
∑
f∈F

θfφf (St),

we would refer to Xπ(St|θ) as an affine policy (“affine” is just a fancy name for linear, by
which we mean linear in θ).

Linear models are arguably the most popular approximation strategy for complex prob-
lems because they handle high-dimensionality by imposing a linear structure (which also
means separable and additive). Using this language, instead of an independent variable
xi, we would have a basis function φf (S), where f ∈ F is a feature. φf (S) might be an
indicator variable (e.g., 1 if we have an ‘X’ in the center square of our tic-tac-toe board), a
discrete number (the number of X’s in the corners of our tic-tac-toe board), or a continuous
quantity (the price of an asset, the amount of oil in our inventories, the amount of AB−
blood on hand at the hospital). Some problems might have fewer than 10 features; others
may have dozens; and some may have hundreds of thousands. In general, however, we
would write our value function in the form

V (S|θ) =
∑
f∈F

θfφf (S).
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In a time dependent model, the parameter vector θ and basis functions φ may also be
indexed by time (but not necessarily).

In the remainder of this section, we provide a brief review of linear regression, followed
by some examples of regression models. We close with a more advanced presentation that
provides insights into the geometry of basis functions (including a better understanding of
why they are called “basis functions”). Given the tremendous amount of attention this class
of approximations has received in the literature, we defer to chapter 17 a full description
of how to fit linear regression models recursively for an ADP setting.

3.7.1 Linear regression review

Let yn be the nth observation of our dependent variable (what we are trying to predict)
based on the observation (xn1 , x

n
2 , . . . , x

n
I ) of our independent (or explanatory) variables

(the xi are equivalent to the basis functions we used earlier). Our goal is to estimate a
parameter vector θ that solves

min
θ

n∑
m=1

(
ym − (θ0 +

I∑
i=1

θix
m
i )

)2

. (3.50)

This is the standard linear regression problem.
Throughout this section, we assume that the underlying process from which the observa-

tions yn are drawn is stationary (an assumption that is almost never satisfied in approximate
dynamic programming).

If we define x0 = 1, we let

xn =


xn0
xn1
...
xnI


be an I+1-dimensional column vector of observations. Throughout this section, and unlike
the rest of the book, we use traditional vector operations, where xTx is an inner product
(producing a scalar) while xxT is an outer product, producing a matrix of cross terms.

Letting θ be the column vector of parameters, we can write our model as

y = θTx+ ε.

We assume that the errors (ε1, . . . , εn) are independent and identically distributed. We do
not know the parameter vector θ, so we replace it with an estimate θ̄ which gives us the
predictive formula

ȳn = (θ̄)Txn,

where ȳn is our predictor of yn+1. Our prediction error is

ε̂n = yn − (θ̄)Txn.

Our goal is to choose θ to minimize the mean squared error

min
θ

n∑
m=1

(ym − θTxm)2. (3.51)
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It is well known that this can be solved very simply. Let Xn be the n by I + 1 matrix

Xn =


x1

0

x2
0
...
xn0

x1
1

x2
1
...
xn1

. . .

x1
I

x2
I
...
xnI

 .

Next, denote the vector of observations of the dependent variable as

Y n =


y1

y2

...
yn

 .

The optimal parameter vector θ̄ (after n observations) is given by

θ̄ = [(Xn)TXn]−1(Xn)TY n. (3.52)

Solving a static optimization problem such as (3.51), which produces the elegant equa-
tions for the optimal parameter vector in (3.52), is the most common approach taken by the
statistics community. It has little direct application in approximate dynamic programming
since our problems tend to be recursive in nature, reflecting the fact that at each iteration
we obtain new observations, which require updates to the parameter vector. In addition,
our observations tend to be notoriously nonstationary. Later, we show how to overcome
this problem using the methods of recursive statistics.

3.7.2 Sparse additive models and Lasso

It is not hard to create models where there are a large number of explanatory variables.
Some examples include:

EXAMPLE 3.1

A physician is trying to choose the best medical treatment for a patient, which may
be described by thousands of different characteristics. It is unlikely that all of these
characteristics have strong explanatory power.

EXAMPLE 3.2

A scientist is trying to design probes to identify the structure of RNA molecules. There
are hundreds of locations where a probe can be attached. The challenge is to design
probes to learn a statistical model that has hundreds of parameters (corresponding to
each location).

EXAMPLE 3.3

An internet provider is trying to maximize ad-clicks, where each ad is characterized
by an entire dataset consisting of all the text and graphics. A model can be created by
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generating hundreds of features based on word patterns within the ad. The problem
is to learn which features are most important by carefully selecting ads.

In these settings, we are trying to approximate a function f(S) where S is our “state
variable” consisting of all the data (describing patients, the RNA molecule, or the features
within an ad). f(S) might be the response (medical successes or costs, or clicks on ads),
which we approximate using

F (S|θ) =
∑
f∈F

θfφf (S). (3.53)

Now imagine that there are hundreds of features in the set F , but we anticipate that θf = 0
for many of these. In this case, we would view equation (3.53) as a sparse additive model,
where the challenge is to identify a model with the highest explanatory power which means
excluding the parameters which do not contribute very much.

Imagine we have a dataset consisting of (fn, Sn)Nn=1 where fn is the observed response
corresponding to the information in Sn. If we use this data to fit (3.53), virtually every
fitted value of θf will be nonzero, producing a huge model with little explanatory power.
To overcome this, we introduce what is known as a regularization term where we penalize
nonzero values of θ. We would write the optimization problem as

min
θ

 N∑
n=1

(fn − F (Sn|θ))2 + λ
∑
f∈F

‖θf‖1

 . (3.54)

Here, we are introducing a penalty of λ‖θf‖1 which represents the regularization term. As
we increase λ, we put a higher penalty for allowing θf to be in the model. It is necessary to
increase λ, take the resulting model, and then test it on an out-of-sample dataset. Typically,
this is done repeatedly (five times is typical) where the out-of-sample observations are
drawn from a different 20 percent of the data (this process is known as cross-validation).
We can plot the error from this testing for each value of λ, and find the best value of λ.

A variant uses the L2 norm, which minimizes the sum of squares of the elements of θ,
as in

min
θ

 N∑
n=1

(fn − F (Sn|θ))2 + λ
∑
f∈F

‖θf‖2

 . (3.55)

The L2 norm is easier to solve, but allows small values of θ to enter the solution.
This procedure is known as Lasso, for “Least absolute shrinkage and selection opera-

tor.” The procedure is inherently batch, although there is a recursive form that has been
developed. The method works best when we assume there is access to an initial testing
dataset that can be used to help identify the best set of features.

A challenge with regularization is that it requires determining the best value of λ. It
should not be surprising that you will get the best fit if you set λ = 0, creating a model
with a large number of parameters. The problem is that these models do not offer the best
predictive power, because many of the fitted parameters θf > 0 reflect spurious noise rather
than the identification of truly important features.

The way to overcome this is to use cross-validation, which works as follows. Imagine
fitting the model on an 80 percent sample of the data, and then evaluating the model on the
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remaining 20 percent. Now, repeat this five times by rotating through the dataset, using
different portions of the data for testing. Finally, repeat this entire process for different
values of λ to find the value of λ that produces the lowest error.

Regularization is sometimes referred to as modern statistics. While not an issue for
very low dimensional models where all the variables are clearly important, regularization is
arguably one of the most powerful tools for modern models which feature large numbers of
variables. Regularization can be introduced into virtually any statistical model, including
nonlinear models and neural networks.

3.8 RECURSIVE LEAST SQUARES FOR LINEAR MODELS

Perhaps one of the most appealing features of linear regression is the ease with which
models can be updated recursively. Recursive methods are well known in the statistics
and machine learning communities, but these communities often focus on batch methods.
Recursive statistics is especially valuable in stochastic optimization because they are well
suited to any adaptive algorithm.

We start with a basic linear model

y = θTx+ ε,

where θ = (θ1, . . . , θI)
T is a vector of regression coefficients. We let Xn be the n × I

matrix of observations (where n is the number of observations). Using batch statistics, we
can estimate θ from the normal equation

θ = [(Xn)TXn]−1(Xn)TY n. (3.56)

We note in passing that equation (3.56) represents an optimal solution of a statistical model
using a sampled dataset, one of the major solution strategies that we are going to describe
in chapter 4 (stay tuned!).

We now make the conversion to the vocabulary where instead of a feature xi, we are
going to let x be our data and let φf (x) be a feature (also known as basis functions), where
f ∈ F is our set of features. We let φ(x) be a column vector of the features, where
φn = φ(xn) replaces xn. We also write our function approximation using

F (x|θ) =
∑
f∈F

θfφf (x) = φ(x)T θ.

Throughout our presentation, we assume that we have access to an observation f̂n of our
function F (x,W ).

3.8.1 Recursive least squares for stationary data

In the setting of adaptive algorithms in stochastic optimization, estimating the coefficient
vector θ using batch methods such as equation (3.56) would be very expensive. Fortunately,
it is possible to compute these formulas recursively. The updating equation for θ is

θn = θn−1 −Hnφnε̂n, (3.57)

where Hn is a matrix computed using

Hn =
1

γn
Bn−1. (3.58)
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The error ε̂n is computed using

ε̂n = F (x|θn−1)− ŷn. (3.59)

Note that it is common in statistics to compute the error in a regression using “actual minus
predicted” while we are using “predicted minus actual” (see equation (3.59) above). Our
sign convention is motivated by the derivation from first principles of optimization, which
we cover in more depth in chapter 5. Bn−1 is an |F| by |F| matrix which is updated
recursively using

Bn = Bn−1 − 1

γn
(Bn−1φn(φn)TBn−1). (3.60)

γn is a scalar computed using

γn = 1 + (φn)TBn−1φn. (3.61)

The derivation of equations (3.57)-(3.61) is given in section 3.13.1.
It is possible in any regression problem that the matrix (Xn)TXn (in equation (3.56))

is non-invertible. If this is the case, then our recursive formulas are not going to overcome
this problem. When this happens, we will observe γn = 0. Alternatively, the matrix may
be invertible, but unstable, which occurs when γn is very small (say, γn < ε for some small
ε). When this occurs, the problem can be circumvented by using

γ̄n = γn + δ,

where δ is a suitably chosen small perturbation that is large enough to avoid instabilities.
Some experimentation is likely to be necessary, since the right value depends on the scale
of the parameters being estimated.

The only missing step in our algorithm is initializing Bn. One strategy is to collect a
sample of m observations where m is large enough to compute Bm using full inversion.
Once we have Bm, we can then proceed to update it using the formula above. A second
strategy is to use B0 = εI , where I is the identity matrix and ε is a “small constant.” This
strategy is not guaranteed to give the exact values, but should work well if the number of
observations is relatively large.

In our stochastic optimization applications, the observations f̂n will represent obser-
vations of the value of a function, or estimates of the value of being in a state, or even
decisions we should make given a state. Our data can be a decision x (or possibly the
decision x and initial state S0), or a state S. The updating equations assume implicitly that
the estimates come from a stationary series.

There are many problems where the number of basis functions can be extremely large.
In these cases, even the efficient recursive expressions in this section cannot avoid the fact
that we are still updating a matrix where the number of rows and columns may be large.
If we are only estimating a few dozen or a few hundred parameters, this can be fine. If
the number of parameters extends into the thousands, even this strategy would probably
bog down. It is very important to work out the approximate dimensionality of the matrices
before using these methods.

3.8.2 Recursive least squares for nonstationary data

It is generally the case in approximate dynamic programming that our observations f̂n

(typically, updates to an estimate of a value function) come from a nonstationary process.
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This is true even when we are estimating the value of a fixed policy if we use TD learning,
but it is always true when we introduce the dimension of optimizing over policies. Recursive
least squares puts equal weight on all prior observations, whereas we would prefer to put
more weight on more recent observations.

It is not uncommon that our data is coming from a nonstationary series. For example,
in an online setting, our function F (x,W ) may be evolving over time. For example, x
may be a price and F (x,W ) may be the number of people buying a product or service in a
dynamic, evolving marketplace. Alternatively, if we are approximating the value of being
in a state V (S), it is not uncommon that the driving data is nonstationary (we will see this
in chapters 17 and 18).

Instead of minimizing total errors (as we do in equation (3.50)) it makes sense to
minimize a geometrically weighted sum of errors

min
θ

n∑
m=1

λn−m

(
fm − (θ0 +

I∑
i=1

θiφ
m
i )

)2

, (3.62)

where λ is a discount factor that we use to discount older observations. If we repeat the
derivation in section 3.8.1, the only changes we have to make are in the updating formula
for Bn, which is now given by

Bn =
1

λ

(
Bn−1 − 1

γn
(Bn−1φn(φn)TBn−1)

)
, (3.63)

and the expression for γn, which is now given by

γn = λ+ (φn)TBn−1φn. (3.64)

λ works in a way similar to a stepsize, although in the opposite direction. Setting λ = 1
means we are putting an equal weight on all observations, while smaller values of λ puts
more weight on more recent observations. In this way, λ plays a role similar to our use of
λ in TD(λ).

We could use this logic and view λ as a tunable parameter. Of course, a constant goal
in the design of algorithms is to avoid the need to tune yet another parameter. For the
special case where our regression model is just a constant (in which case φn = 1), we can
develop a simple relationship between αn and the discount factor (which we now compute
at each iteration, so we write it as λn). Let Gn = (Hn)−1, which means that our updating
equation is now given by

θn = θn−1 − (Gn)−1φnε̂n.

Recall that we compute the error εn as predicted minus actual as given in equation (3.59).
This is required if we are going to derive our optimization algorithm based on first principles,
which means that we are minimizing a stochastic function. The matrix Gn is updated
recursively using

Gn = λnG
n−1 + φn(φn)T , (3.65)

with G0 = 0. For the case where φn = 1 (in which case Gn is also a scalar), (Gn)−1φn =
(Gn)−1 plays the role of our stepsize, so we would like to write αn = Gn. Assume that
αn−1 =

(
Gn−1

)−1
. Equation (3.65) implies that

αn = (λnG
n−1 + 1)−1

=

(
λn
αn−1

+ 1

)−1

.
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Solving for λn gives

λn = αn−1

(
1− αn
αn

)
. (3.66)

Note that if λn = 1, then we want to put equal weight on all the observations (which would
be optimal if we have stationary data). We know that in this setting, the best stepsize is
αn = 1/n. Substituting this stepsize into equation (3.66) verifies this identity.

The value of equation (3.66) is that it allows us to relate the discounting produced by
λn to the choice of stepsize rule, which has to be chosen to reflect the nonstationarity of
the observations. In chapter 6, we introduce a much broader range of stepsize rules, some
of which have tunable parameters. Using (3.66) allows us to avoid introducing yet another
tunable parameter.

3.8.3 Recursive estimation using multiple observations

The previous methods assume that we get one observation and use it to update the parame-
ters. Another strategy is to sample several paths and solve a classical least-squares problem
for estimating the parameters. In the simplest implementation, we would choose a set of
realizations Ω̂n (rather than a single sample ωn) and follow all of them, producing a set of
estimates (f(ω))ω∈Ω̂n that we can use to update our estimate of the function F (s|θ).

If we have a set of observations, we then face the classical problem of finding a vector
of parameters θ̂n that best match all of these function estimates. Thus, we want to solve

θ̂n = arg min
θ

1

|Ω̂n|

∑
ω∈Ω̂n

(F (s|θ)− f(ω))2.

This is the standard parameter estimation problem faced in the statistical estimation com-
munity. If F (s|θ) is linear in θ, then we can use the usual formulas for linear regression.
If the function is more general, we would typically resort to nonlinear programming algo-
rithms to solve the problem. In either case, θ̂n is still an update that needs to be smoothed
in with the previous estimate θn−1, which we would do using

θn = (1− αn−1)θn−1 + αn−1θ̂
n. (3.67)

One advantage of this strategy is that in contrast with the updates that depend on the gradient
of the value function, updates of the form given in equation (3.67) do not encounter a scaling
problem, and therefore we return to our more familiar territory where 0 < αn ≤ 1. Of
course, as the sample size Ω̂ increases, the stepsize should also be increased because there
is more information in θ̂n. Using stepsizes based on the Kalman filter (sections 6.3.2 and
6.3.3) will automatically adjust to the amount of noise in the estimate.

The usefulness of this particular strategy will be very problem-dependent. In many
applications, the computational burden of producing multiple estimates v̂n(ω), ω ∈ Ω̂n

before producing a parameter update will simply be too costly.

3.9 NONLINEAR PARAMETRIC MODELS

While linear models are exceptionally powerful (recall that “linear” means linear in the
parameters), it is inevitable that some problems will require models that are nonlinear
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in the parameters. We might want to model the nonlinear response of price, dosage,
or temperature. Nonlinear models introduce challenges in model estimation as well as
learning in stochastic optimization problems.

We begin with a presentation on maximum likelihood estimation, one of the most widely
used estimation methods for nonlinear models. We then introduce the idea of a sampled
nonlinear model, which is a simple way of overcoming the complexity of a nonlinear model.
We close with an introduction to neural networks, a powerful approximation architecture
that has proven to be useful in machine learning as well as dynamic programs arising in
engineering control problems.

3.9.1 Maximum likelihood estimation

The most general method for estimating nonlinear models is known as maximum likelihood
estimation. Let f(x|θ) the function given θ, and assume that we observe

y = f(x|θ) + ε

where ε ∼ N(0, σ2) is the error with density

f ε(w) =
1√
2πσ

exp
w2

2σ2
.

Now imagine that we have a set of observations (yn, xn)Nn=1. The likelihood of observing
(yn)Nn=1 is given by

L(y|x, θ) = ΠN
n=1 exp

(yn − f(xn|θ))2

2σ2
.

It is common to use the log likelihood L(y|x, θ) = logL(y|x, θ), which gives us

L(y|x, θ) =

N∑
n=1

1√
2πσ

(yn − f(xn|θ))2, (3.68)

where we can, of course, drop the leading constant 1√
2πσ

when maximizing L(y|x, θ).
Equation (3.68) can be used by nonlinear programming algorithms to estimate the

parameter vector θ. This assumes that we have a batch dataset (yn, xn)Nn=1, which is not
our typical setting. In addition, the log likelihoodL(y|x, θ) can be nonconvex when f(x|θ)
is nonlinear in θ, which further complicates the optimization challenge.

The next section describes a method for handling nonlinear models in a recursive setting.

3.9.2 Sampled nonlinear models

A powerful strategy for estimating models that are nonlinear in the parameters assumes
that the unknown parameter θ can only take on one of a finite set θ1, θ2, . . . , θK . Let θ
be a random variable representing the true value of θ, where θ takes on one of the values
(θk)Kk=1. Assume we start with a prior set of probabilities p0

k = P[θ = θk]. This is
framework we use when we adopt a Bayesian perspective: we view the true value of θ as a
random variable θ, with a prior distribution of belief p0 (which might be uniform).

What we are now going to do is to use observations of the random variable Y to update
our probability distribution. To illustrate this, assume that we are observing successes and
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failures, so Y ∈ {0, 1}, as might happen with medical outcomes. In this setting, the vector
x would consist of information about a patient as well as medical decisions. Assume that
the probability that Y = 1 is given by a logistic regression, given by

f(y|x, θ) = P[Y = 1|x, θ] (3.69)

=
expU(x|θ)

1 + expU(x|θ) , (3.70)

where U(x|θ) is a linear model given by

U(x|θ) = θ0 + θ1x1 + θ2x2 + . . .+ θM .

We assume that θ is one of the elements (θk)Kk=1, where θk is a vector of elements
(θkm)Mm=1. Let Hn = (y1, . . . , yn) be our history of observations of the random outcome
Y . Now assume that pnk = P[θ = θk|Hn], and that we next choose xn and observe
Y = yn+1 (later, we are going to talk about how to choose xn). We can update our
probabilities using Bayes theorem

pn+1
k =

P[Y = yn+1|Hn, xn, θk]P[θ = θk]

P[Y = yn+1|Hn, xn]
. (3.71)

We start by observing thatP[θ = θk] = pnk . The conditional probabilityP[Y = yn+1|xn, θk]
comes our from our logistic regression in (7.37):

P[Y = yn+1|Hn, xn, θk] =

{
f(xn|θn) If yn+1 = 1,

1− f(xn|θn) If yn+1 = 0.

Finally, we compute the denominator using

P[Y = yn+1|Hn, xn] =

K∑
k=1

P[Y = yn+1|Hn, xn, θk]pnk .

This idea can be extended to a wide range of distributions for Y . Its only limitation
(which may be significant) is the assumption that θ can be only one of a finite set of discrete
values. A strategy for overcoming this limitation is to periodically generate new possible
values of θ, use the past history of observations to obtain updated probabilities, and then
drop the values with the lowest probability.

3.9.3 Neural networks - I

Neural networks represent an unusually powerful and general class of approximation strate-
gies that have been widely used in optimal control and statistical learning. There are a
number of excellent textbooks on the topic, so our presentation is designed only to intro-
duce the basic idea and encourage readers to experiment with this technology if simpler
models are not effective. In this section, we restrict our attention to low-dimensional neural
networks, which we describe below.

3.9.3.1 The basic idea Up to now, we have considered approximation functions of
the form

F (x|θ) =
∑
f∈F

θfφf (x),
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where F is our set of features, and (φf (x))f∈F are the basis functions which extract what
are felt to be the important characteristics of the state variable which explain the value
of being in a state. We have seen that when we use an approximation that is linear in
the parameters, we can estimate the parameters θ recursively using standard methods from
linear regression. For example, ifRi is the number of resources of type i, our approximation
might look like

F (R|θ) =
∑
i∈I

(
θ1iRi + θ2iR

2
i

)
.

Now assume that we feel that the best function might not be quadratic in Ri, but we are
not sure of the precise form. We might want to estimate a function of the form

F (R|θ) =
∑
i∈I

(
θ1iRi + θ2iR

θ3
i

)
.

Now we have a function that is nonlinear in the parameter vector (θ1, θ2, θ3), where θ1 and
θ2 are vectors and θ3 is a scalar. If we have a training dataset of state-value observations,
(f̂n, Rn)Nn=1, we can find θ by solving

min
θ

N∑
n=1

(
f̂n − F (Rn|θ)

)2

,

which generally requires the use of nonlinear programming algorithms. One challenge
is that nonlinear optimization problems do not lend themselves to the simple recursive
updating equations that we obtained for linear (in the parameters) functions. But more
problematic is that we have to experiment with various functional forms to find the one that
fits best.

Neural networks offer a much more flexible set of architectures, and at the same time
can be updated recursively. The technology has matured to the point that there are a number
of commercial packages available which implement the algorithms. However, applying
the technology to specific dynamic programming problems can be a nontrivial challenge.
In addition, it is not possible to know in advance which problem classes will benefit most
from the additional generality in contrast with the simpler strategies that we have covered
in this chapter.

Neural networks are, ultimately, a form of statistical model which can be used to
approximate the function Ef(x,W ) (or a policy Xπ(S), or a value function V (S)). We
will have an input x (or S), and we are using a neural network to predict an output f̂ (or a
decision xn, or a value fn). Using the traditional notation of statistics, let xn be a vector
of inputs which could be features φf (Sn) for f ∈ F . If we were using a linear model, we
would write

f(xn|θ) = θ0 +

I∑
i=1

θix
n
i .

In the language of neural networks, we have I inputs (we have I + 1 parameters since we
also include a constant term), which we wish to use to estimate a single output fn+1 (a
random observations of our function). The relationships are illustrated in figure 3.6 where
we show the I inputs which are then “flowed” along the links to produce f(xn|θ). After
this, we then learn the sample realization f̂n+1 that we were trying to predict, which allows
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Figure 3.6 Neural networks with a single layer.

us to compute the error εn+1 = f̂n+1−f(xn|θ). Define the random variableX to describe
a set of inputs (where xn is the value of X at the nth iteration), and let f̂ be the random
variable giving the response from input X . We would like to find a vector θ that solves

min
θ

E
1

2
(f(X|θ)− f̂)2.

LetF (θ) = E
(
0.5(f(X|θ)−f̂)2

)
, and letF (θ, f̂) = 0.5(f(X|θ)−f̂)2 where f̂ is a sample

realization of our function. As before, we can solve this iteratively using the algorithm we
first introduced in section 3.2 which gives us the updating equation

θn+1 = θn − αn∇θF (θn, f̂n+1),

where∇θF (θn, f̂n+1) = εn+1.
We illustrated our linear model by assuming that the inputs were the individual dimen-

sions of the control variable which we denoted Xn
i . We may not feel that this is the best

way to represent the state of the system (imagine representing the states of a Connect-4
game board). We may feel it is more effective (and certainly more compact) if we have
access to a set of basis functions φf (X), f ∈ F , where φf (X) captures a relevant feature
of our system given the inputs X . In this case, we would be using our standard basis
function representation, where each basis function provides one of the inputs to our neural
network.

This was a simple illustration, but it shows that if we have a linear model, we get the
same basic class of algorithms that we have already used. A richer model, given in figure
3.7, illustrates a more classical neural network. Here, the “input signal” Xn (this can be
the state variable or the set of basis functions) is communicated through several layers. Let
x(1,n) = Xn be the input to the first layer (recall that Xn

i might be the ith dimension of
the state variable itself, or a basis function). Let I(1) be the set of inputs to the first layer
(for example, the set of basis functions).
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Figure 3.7 A three-layer neural network.

Here, the first linear layer produces J outputs given by

Y
(2,n)
j =

∑
i∈I(1)

θ
(1)
ij X

(1,n)
i , j ∈ I(2).

X
(2,n)
j becomes the input to a nonlinear perceptron node which is characterized by a

nonlinear function that may dampen or magnify the input. A typical functional form for a
perceptron node is the logistics function given by

σ(y) =
1

1 + e−βy
,

where β is a scaling coefficient. The function σ(y) is illustrated in figure 3.8. The sigmoid
function σ(x) introduces nonlinear behavior into the communication of the “signal” Xn.

We next calculate

X
(2,n)
i = σ(Y

(2,n)
i ), i ∈ I(2)

and use X(2,n)
i as the input to the second linear layer. We then compute

X
(3,n)
j =

∑
i∈I(2)

θ
(2)
ij X

(2,n)
i , j ∈ I(3).
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Figure 3.8 Illustrative logistics function for introducing nonlinear behavior into neural networks.

Finally, we compute the single output using

fn =
∑
i∈I(3)

θ
(3)
i X

(3,n)
i .

As before, fn is our estimate of the response from input Xn. This is our function
approximation F

n
(s|θ) which we update using the observation fn+1. We update the

parameter vector θ = (θ(1), θ(2), θ(3)) using the same stochastic gradient algorithms we
used for a single layer network. The only difference is that the derivatives have to capture
the fact that changing θ(1), for example, impacts the “flows” through the rest of the network.
The derivatives are slightly more difficult to compute, but the logic is basically the same.

Our presentation above assumes that there is a single output, which is to say that we are
trying to match a scalar quantity f̂n+1, the observed value of a function. In some settings,
f̂n+1 might be a vector. For example, in chapter 19 (see, in particular, section 19.4), we
describe problems where f̂n+1 is the gradient of a value function, which of course would
be multidimensional. In this case, fn would also be a vector which would be estimated
using

fnj =
∑
i∈I(3)

θ
(3)
ij X

(3,n)
i , j ∈ I(4),

where |I(4)| is the dimensionality of the output layer (that is, the dimensionality of f̂n+1).
This presentation should be viewed as nothing more than a very simple illustration of

an extremely rich field. The advantage of neural networks is that they offer a much richer
class of nonlinear functions (“nonlinear architectures” in the language of neural networks)
which can be trained in an iterative way. Calculations involving neural networks exploit
the layered structure, and naturally come in two forms: feed forward propagation, where
we step forward through the layers “simulating” the evolution of the input variables to the
outputs, and backpropagation, which is used to compute derivatives so we can calculate the
marginal impact of changes in the parameters. We describe these two processes below.

3.9.3.2 Feed Forward Propagation Between every two layers the inputs from the
previous layer are, first, linearly (through the weight matrices) propagated forward and
then nonlinearly transformed (through the sigmoids) to produce an output on the successor
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layer. Recursing this process, which we refer to as feed forward propagation, over the total
layers of the network will produce an output on the final layer L. In what comes next, we
will present an efficient vectorized implementation of forward propagation.

We call the computation performed by node i in layer l an activation and denote it by
a

(l)
i = sigmoid

(∑sl−1

j=0 θ
(l−1)
ij a

(l−1)
j

)
, with a(l−1)

0 = 1, and a(l−1)
j for j ∈ {1, . . . , sl−1}

being the activations of the previous layer provided that the activations of the input (or
first layer) are the data points themselves (that is, the different dimensions of the state
variable). Clearly, a(l)

i can be written in a matrix-vector product form with the help of
θ(l−1). Essentially, the input to the sigmoidal function is a linear combination between the
ith row of the weight matrix and the activations on the previous layer:

a
(l)
i = sigmoid

(
θ

(l−1),T
i,: a(l−1)

)
=

1

1 + e−θ
(l−1),T
i,: a(l−1)

,

where θ(l−1),T
i,: denotes the ith row of θ(l−1), anda(l−1) is a vector collecting all activations

(including that of the bias term) of layer l−1, i.e.,a(l−1) =
[
1, a

(l−1)
1 , a

(l−1)
2 , . . . , a

(l−1)
sl−1

]T
.

Now, we can easily generalize the above notion to compute the activations in layer l by
considering the whole matrix θ(l−1):

a(l) = sigmoid
(
θ(l−1)a(l−1)

)

= sigmoid



θ

(l−1)
10 θ

(l−1)
12 . . . θ

(l−1)
1sl−1

θ
(l−1)
20 θ

(l−1)
21 . . . θ

(l−1)
2sl−1

...
...

...
...

θ
(l−1)
sl+10 θ

(l−1)
sl+11 . . . θ

(l−1)
sl+1sl−1




1

a
(l−1)
1

...
a

(l−1)
sl−1




=


sigmoid

(
θ

(l−1),T
1,: a(l−1)

)
sigmoid

(
θ

(l−1),T
2,: a(l−1)

)
...

sigmoid
(
θ

(l−1),T
sl+1,: a

(l−1)
)

 .

3.9.3.3 Backpropagation Having described feed forward propagation, the next step
is to detail the strategy by which neural networks determine the model parameters (i.e., the
θ(l) matrices). In standard regression or classification problems (which is to say, supervised
learning), back-propagation is the most common algorithmic approach. Given an input data
point, back-propagation commences as follows. First, forward propagation is executed and
the network is made to output a value. This value is then compared to the real output from
the data set producing an error. This error is then propagated backwards to every other
layer and used to update connecting weights. Such updates typically involve gradient-based
methods (e.g., stochastic gradients).

When attempting to apply back-propagation for neural networks in dynamic program-
ming, one is faced with the problem of determining a good performance measure since
we are trying to produce controls without knowing what the true control should be (this is
what we would have if we were using the neural network as a statistical model to fit data).
Instead, we are going to tune the weights θ to minimize cost/maximize contribution.



104 LEARNING IN STOCHASTIC OPTIMIZATION

3.9.4 Comments

It is important to emphasize that neural networks are no panacea (a statement that can
be made about almost anything). As with our simple linear models, the updating mech-
anisms struggle with scaling (the units of X and the units of fn+1 may be completely
different) which has to be handled by the parameter vectors θ(`). Neural networks are high-
dimensional models, which means they can fit almost anything. The price of this flexibility
is that they require very large datasets. This is a reason they have been so successful at
pattern matching applications such as voice recognition or identifying faces or classifying
news articles. Neural networks can be trained with vast databases.

3.10 NONPARAMETRIC MODELS

The power of parametric models is matched by their fundamental weakness: they are only
effective if you can design an effective parametric model, and this remains a frustrating
art. For this reason, nonparametric statistics have attracted recent attention. They avoid the
art of specifying a parametric model, but introduce other complications. Nonparametric
methods work primarily by building local approximations to functions using observations
rather than depending on functional approximations.

Nonparametric models are characterized by the property that as the number of obser-
vations N grows, we can approximate any function with arbitrary accuracy. While this
sounds like a fantastic property, it comes with the price that these functions need arbitrarily
large numbers of parameters (in some cases, the entire dataset).

There is an extensive literature on the use of approximation methods for continuous
functions. These problems, which arise in many applications in engineering and economics,
require the use of approximation methods that can adapt to a wide range of functions.
Interpolation techniques, orthogonal polynomials, Fourier approximations and splines are
just some of the most popular techniques. Often, these methods are used to closely
approximate the expectation using a variety of numerical approximation techniques.

We note that lookup tables are, technically, a form of nonparametric approximation
methods, although these can also be expressed as parametric models by using indicator
variables. For example, assume that X = {x1, x2, . . . , xM} is a set of discrete inputs, and
let

1{X=x} =

{
1 If X = x ∈ X ,
0 Otherwise.

be an indicator variable that tells us when X takes on a particular value. We can write our
function as

f(X|θ) =
∑
x∈X

θx1{X=x}

This means that we need to estimate a parameter θx for each x ∈ X . In principle, this is
a parametric representation, but the parameter vector θ has the same dimensionality as the
input vector x. However, the working definition of a nonparametric model is one that, given
an infinite dataset, will produce a perfect representation of the true function, a property
that our lookup table model clearly satisfies. It is precisely for this reason that we treat
lookup tables as a special case since parametric models are always used for settings where
the parameter vector θ is much lower dimensional than the size of X .
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In this section, we review some of the nonparametric methods that have received the
most attention within the approximate dynamic programming community. This is an active
area of research which offers potential as an approximation strategy, but significant hurdles
remain before this approach can be widely adopted. We start with the simplest methods,
closing with a powerful class of nonparametric methods known as support vector machines.

3.10.1 K-nearest neighbor

Perhaps the simplest form of nonparametric regression forms estimates of functions by
using a weighted average of the k-nearest neighbors. As above, we assume we have a
response yn corresponding to a measurement xn = (xn1 , x

n
2 , . . . , x

n
I ). Let ρ(x, xn) be a

distance metric between a query point x (in dynamic programming, this would be a state),
and an observation xn. Then letNn(x) be the set of the k-nearest points to the query point
x, where clearly we require k ≤ n. Finally let Ȳ n(x) be the response function, which is
our best estimate of the true function Y (x) given the observations x1, . . . , xn. When we
use a k-nearest neighbor model, this is given by

Ȳ n(x) =
1

k

∑
n∈Nn(x)

yn. (3.72)

Thus, our best estimate of the function Y (x) is made by averaging the k points nearest to
the query point x.

Using a k-nearest neighbor model requires, of course, choosing k. Not surprisingly, we
obtain a perfect fit of the data by using k = 1 if we base our error on the training dataset.

A weakness of this logic is that the estimate Ȳ n(x) can change abruptly as x changes
continuously, as the set of nearest neighbors changes. An effective way of avoiding this
behavior is using kernel regression, which uses a weighted sum of all data points.

3.10.2 Kernel regression

Kernel regression has attracted considerable attention in the statistical learning literature.
As with k-nearest neighbor, kernel regression forms an estimate Ȳ (x) by using a weighted
sum of prior observations which we can write generally as

Ȳ n(x) =

∑n
m=1Kh(x, xm)ym∑n
m=1Kh(x, xm)

(3.73)

whereKh(x, xm) is a weighting function that declines with the distance between the query
point x and the measurement xm. h is referred to as the bandwidth which plays an important
scaling role. There are many possible choices for the weighting function Kh(x, xm). One
of the most popular is the Gaussian kernel, given by

Kh(x, xm) = e
−
(
‖x−xm‖

h

)2

.

where ‖·‖ is the Euclidean norm. Here, h plays the role of the standard deviation. Note that
the bandwidthh is a tunable parameter that captures the range of influence of a measurement
xm. The Gaussian kernel, often referred to as radial basis functions in the ADP literature,
provide a smooth, continuous estimate Ȳ n(x). Another popular choice of kernel function
is the symmetric Beta family, given by

Kh(x, xm) = max(0, (1− ‖x− xm‖)2)h.
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Figure 3.9 Illustration of Gaussian, uniform, Epanechnikov and biweight kernel weighting
functions.

Here, h is a nonnegative integer. h = 1 gives the uniform kernel; h = 2 gives the
Epanechnikov kernel; and h = 3 gives the biweight kernel. Figure 3.9 illustrates each of
these four kernel functions.

We pause to briefly discuss some issues surrounding k-nearest neighbors and kernel
regression. First, it is fairly common in the ADP literature to see k-nearest neighbors
and kernel regression being treated as a form of aggregation. The process of giving a set
of states that are aggregated together has a certain commonality with k-nearest neighbor
and kernel regression, where points near each other will produce estimates of Y (x) that
are similar. But this is where the resemblance ends. Simple aggregation is actually a
form of parametric regression using dummy variables, and it offers neither the continuous
approximations, nor the asymptotic unbiasedness of kernel regression.

Kernel regression is a method of approximation that is fundamentally different from
linear regression and other parametric models. Parametric models use an explicit estimation
step, where each observation results in an update to a vector of parameters. At any point
in time, our approximation consists of the pre-specified parametric model, along with the
current estimates of the regression parameters. With kernel regression, all we do is store
data until we need an estimate of the function at a query point. Only then do we trigger the
approximation method, which requires looping over all previous observation, a step that
clearly can become expensive as the number of observations grow.

Kernel regression enjoys an important property from an old result known as Mercer’s
theorem. The result states that there exists a set of basis functions φf (S), f ∈ F , possibly
of very high dimensionality, where

Kh(S, S′) = φ(S)Tφ(S′),
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as long as the kernel function Kh(S, S′) satisfies some basic properties (satisfied by the
kernels listed above). In effect this means that using appropriately designed kernels is
equivalent to finding potentially very high dimensional basis functions, without having to
actually create them.

Unfortunately, the news is not all good. First, there is the annoying dimension of
bandwidth selection, although this can be mediated partially by scaling the explanatory
variables. More seriously, kernel regression (and this includes k-nearest neighbors), cannot
be immediately applied to problems with more than about five dimensions (and even this
can be a stretch). The problem is that these methods are basically trying to aggregate points
in a multidimensional space. As the number of dimensions grows, the density of points
in the d-dimensional space becomes quite sparse, making it very difficult to use “nearby”
points to form an estimate of the function. A strategy for high-dimensional applications
is to use separable approximations. These methods have received considerable attention
in the broader machine learning community, but have not been widely tested in an ADP
setting.

3.10.3 Local polynomial regression

Classical kernel regression uses a weighted sum of responses yn to form an estimate of
Y (x). An obvious generalization is to estimate locally linear regression models around
each point xn by solving a least squares problem which minimizes a weighted sum of least
squares. Let Ȳ n(x|xi) be a linear model around the point xk, formed by minimizing the
weighted sum of squares given by

min
θ

 n∑
m=1

Kh(xk, xm)

(
ym −

I∑
i=1

θix
m
i

)2
 . (3.74)

Thus, we are solving a classical linear regression problem, but we do this for each point
xk, and we fit the regression using all the other points (ym, xm), m = 1, . . . , n. However,
we weight deviations between the fitted model and each observation ym by the kernel
weighting factor Kh(xk, xm) which is centered on the point xk.

Local polynomial regression offers significant advantages in modeling accuracy, but
with a significant increase in complexity.

3.10.4 Neural networks - II

Low-dimensional (basically finite) neural networks are a form of parametric regression.
Once you have specified the number of layers and the nodes per layer, all that is left are
the weights in the network, which represent the parameters. However, there is a class of
high-dimensional neural networks known as deep learners. These behave as if they have
an unlimited number of layers and nodes per layer.

Deep learners have shown tremendous power in terms of their ability to capture complex
patterns in language and images. It is well known that they require notoriously large datasets
for training, but there are settings where there is massive amounts of data available such as
the results of internet searches, images of people and text searches.

As of this writing, it is not yet clear if deep learners will prove useful in stochastic
optimization, partly because our data comes from the iterations of an algorithm, and partly
because the high-dimensional capabilities of neural networks raise the risk of overfitting.
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Figure 3.10 Illustration of penalty structure for support vector regression. Deviations within the
gray area are assessed a value of zero. Deviations outside the gray area are measured based on their
distance to the gray area.

3.10.5 Support vector machines

Support vector machines (for classification) and support vector regression (for continuous
problems) have attracted considerable interest in the machine learning community. For the
purpose of fitting value function approximations, we are primarily interested in support
vector regression, but we can also use regression to fit policy function approximations, and
if we have discrete actions, we may be interested in classification. For the moment, we
focus on fitting continuous functions.

Support vector regression, in its most basic form, is linear regression with a different
objective than simply minimizing the sum of the squares of the errors. With support
vector regression, we consider two goals. First, we wish to minimize the absolute sum of
deviations that are larger than a set amount ξ. Second, we wish to minimize the regression
parameters themselves, to push as many as possible close to zero.

As before, we let our predictive model be given by

y = θx+ ε.

Let εi = yi − θxi be the error. We then choose θ by solving the following optimization
problem

min
θ

(
η

2
‖θ‖2 +

n∑
i=1

max{0, |εi| − ξ}

)
. (3.75)

The first term penalizes positive values of θ, encouraging the model to minimize values of
θ unless they contribute in a significant way to producing a better model. The second term
penalizes errors that are greater than ξ. The parameters η and ξ are both tunable parameters.
The error εi and error margin ξ are illustrated in figure 3.10.
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It can be shown by solving the dual that the optimal value of θ and the best fit Ȳ (x) have
the form

θ =

n∑
i=1

(β̄i − ᾱi)xi,

Ȳ (x) =

n∑
i=1

(β̄i − ᾱi)(xi)Txi.

Here, β̄i and ᾱi are scalars found by solving

min
β̄i,ᾱi

ξ

n∑
i=1

(β̄i + ᾱi)−
n∑
i=1

yi(β̄i + ᾱi) +
1

2

n∑
i=1

n∑
i′=1

(β̄i + ᾱi)(β̄i
′
+ ᾱi

′
)(xi)Txi

′
,

subject to the constraints

0 ≤ ᾱi, β̄i ≤ 1/η,
n∑
i=1

(β̄i − ᾱi) = 0,

ᾱiβ̄i = 0.

3.10.6 Indexed functions, tree structures and clustering

There are many problems where we feel comfortable specifying a simple set of basis
functions for some of the parameters, but we do not have a good feel for the nature of the
contribution of other parameters. For example, we may wish to plan how much energy to
hold in storage over the course of the day. Let Rt be the amount of energy stored at time
t, and let Ht be the hour of the day. Our state variable might be St = (Rt, Ht). We feel
that the value of energy in storage is a concave function in Rt, but this value depends in a
complex way on the hour of day. It would not make sense, for example, to specify a value
function approximation using

V (St) = θ0 + θ1Rt + θ2R
2
t + θ3Ht + θ4H

2
t .

There is no reason to believe that the hour of day will be related to the value of energy
storage in any convenient way. Instead, we can estimate a function V (St|Ht) given by

V (St|h) = θ0(h) + θ1(h)Rt + θ2(h)R2
t .

What we are doing here is estimating a linear regression model for each value of h = Ht.
This is simply a form of lookup table using regression given a particular value of the
complex variables. Imagine that we can divide our state variable St into two sets: the first
set, ft, contains variables where we feel comfortable capturing the relationship using linear
regression. The second set, gt, includes more complex variables whose contribution is not
as easily approximated. If gt is a discrete scalar (such as hour of day), we can consider
estimating a regression model for each value of gt. However, if gt is a vector (possibly
with continuous dimensions), then there will be too possible values.

When the vector gt cannot be enumerated, we can resort to various clustering strategies.
These fall under names such as regression trees and local polynomial regression (a form
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of kernel regression). These methods cluster gt (or possibly the entire state St) and then
fit simple regression models over subsets of data. In this case, we would create a set of
clusters Cn based on n observations of states and values. We then fit a regression function
V (St|c) for each cluster c ∈ Cn. In traditional batch statistics, this process proceeds in two
stages: clustering and then fitting. In approximate dynamic programming, we have to deal
with the fact that we may change our clusters as we collect additional data.

A much more sophisticated strategy is based on a concept known as Dirichlet process
mixtures. This is a fairly sophisticated technique, but the essential idea is that you form
clusters that produce good fits around local polynomial regressions. However, unlike tradi-
tional cluster-then-fit methods, the idea with Dirichlet process mixtures is that membership
in a cluster is probabilistic, where the probabilities depend on the query point (e.g., the
state whose value we are trying to estimate).

3.11 NONSTATIONARY LEARNING

There are a number of settings where the true mean varies over time. We begin with the
simplest setting where the mean may evolve up or down, but on average stays the same.
We then consider the situation where the signal is steadily improving up to some unknown
limit.

In chapter 7 we are going to use this in the context of optimizing functions of non-
stationary random variables, or time-dependent functions of (typically) stationary random
variables.

3.11.1 Nonstationary learning I - Martingale behavior

In the stationary case, we might write observations as

Wt+1 = µ+ εt+1,

where ε ∼ N(0, σ2
ε). This means that EWt+1 = µ, which is an unchanging truth that we

are trying to learn. We refer to this as the stationary case because the distribution of Wt

does not depend on time.
Now assume that the true mean µ is also changing over time. We write the dynamics of

the mean using

µt+1 = µt + δt+1,

where δ is a random variable with distributionN(0, σ2
δ ). This means thatE{µt+1|µt} = µt,

which is the definition of a martingale. This means that on average, the true mean µt+1

at time t + 1 will be the same as at time t, although the actual may be different. Our
observations are then made from

Wt+1 = µt+1 + εt+1.

Typically, the variability of the mean process µ1, µt, . . . , µt, . . . is much lower than the
variance of the noise of an observation W of µ.

Now assume that µt is a vector with element µtx, where x will allow us to capture the
performance of different drugs, paths through a network, people doing a job, or the price
of a product. Let µ̄tx be the estimate of µtx at time t. Let Σt be the covariance matrix at
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time t, with element Σtxx′ = Covn(µtx, µtx′). This means we can write the distribution
of µt as

µt ∼ N(µ̄t,Σt).

This is the posterior distribution of µn, which is to say the distribution of µt given our n
observations, and our prior N(µ̄0, σ0). Let Σδ be the covariance matrix for the random
vector δ describing the evolution of µ. The predictive distribution is the distribution of
µt+1 given µt, which we write as

µt+1|µt ∼ N(µ̄t, Σ̃t),

where

Σ̃t = Σt + Σδ.

Let et+1 be the error in a vector of observations Wt+1 given by

et+1 = Wt+1 − µ̄t.

Assume the errors are independent, let Σε be the covariance matrix for et+1. The updated
mean and covariance is computed using

µ̄t+1 = µ̄t + Σ̃t
(
Σε + Σ̃t)

−1et+1,

Σt+1 = Σ̃t − Σ̃t
(
Σε + Σ̃t

)
Σ̃t.

3.11.2 Nonstationary learning II - Transient behavior

A more general, but slightly more complex model, allows for predictable changes in θt.
For example, we may know that θt is growing over time (perhaps θt is related to age or the
population size), or we may be modeling variations in solar energy and have to capture the
rising and setting of the sun.

We assume that µt is a vector with element x. Now assume we have a diagonal matrix
Mt with factors that govern the predictable change in µt, allowing us to write the evolution
of µt as

µt+1 = Mtµt + δt+1.

The evolution of the covariance matrix Σt becomes

Σ̃t = MtΣtMt + Σδ.

Now the evolution of the estimates of the mean and covariance matrix µ̄t and Σt are given
by

µ̄t+1 = Mtµ̄t + Σ̃t
(
Σε + Σ̃t)

−1et+1,

Σt+1 = Σ̃t − Σ̃t
(
Σε + Σ̃t

)
Σ̃t.

Note there is no change in the formula for Σt+1 since Mt is built into Σ̃t.

3.11.3 Learning processes

There are many settings where we know that a process is improving over time up to an
unknown limit. We refer to these as learning processes since we are modeling a process
that learns as it progresses. Examples of learning processes are:
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EXAMPLE 3.1

We have to choose a new basketball player x and then watch him improve as he gains
playing time.

EXAMPLE 3.2

We observe the reduction in blood sugar due to diabetes medication x for a patient
who has to adapt to the drug.

EXAMPLE 3.3

We are testing an algorithm where x are the parameters of the algorithm. The
algorithm may be quite slow, so we have to project how good the final solution will
be.

We model our process by assuming that observations come from

Wn
x = µnx + εn. (3.76)

where the true mean µnx rises according to.

µnx(θ) = θsx + [θ`x − θsx][1− e−nθ
r
x ]. (3.77)

Here, θsx is the expected starting point at n = 0, while θ`x is the limiting value as n→∞.
The parameter θrx controls the rate at which the mean approaches θ`x. Let θ = (θs, θ`, θr)
be the vector of unknown parameters.

If we fix θr, then µnx(θ) is linear in θs and θ`, allowing us to use our equations for
recursive least squares for linear models that we presented in section 3.8. This will produce
estimates θ̄s,n(θr) and θ̄`,n(θr) for each possible value of θr.

To handle the one nonlinear parameter θr, assume that we discretize this parameter into
the values θr1, . . . , θ

r
K . Let pr,nk be the probability that θr = θrk, which can be shown to be

given by

pr,nk =
Lnk∑K

k′=1 L
n
k′

where Lnk is the likelihood that θr = θrk which is given by

Lnk ∝ e
−
(
Wn+1−µ̄nx

σε

)2

,

where σ2
ε is the variance of ε. This now allows us to write

µ̄nx(θ) =

K∑
k=1

pr,nk µ̄nx(θ|θr).

This approach provides us with conditional point estimates and variances of θ̄s,n(θr), θ̄`,n(θr)
for each θr, along with the distribution pr,n for θr.
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3.12 CHOOSING FUNCTIONAL APPROXIMATIONS

The choice of how to approximate any of the functions introduced at the beginning of this
chapter remains an art form guided by science. We close our presentation with a discussion
of the infamous “curse of dimensionality” followed by some thoughts on the design of
effective function approximations.

3.12.1 The curse of dimensionality

There are many applications where state variables have multiple, possibly continuous
dimensions. In some applications, the number of dimensions can number in the thousands.

EXAMPLE 3.1

An unmanned aerial vehicle may be described by location (three dimensions), velocity
(three dimensions) and acceleration (three dimensions), in addition to fuel level. All
13 dimensions are continuous.

EXAMPLE 3.2

A utility is trying to plan the amount of energy that should be put in storage as a
function of the wind history (six hourly measurements), the history of electricity spot
prices (six measurements), and the demand history (six measurements).

EXAMPLE 3.3

A trader is designing a policy for selling an asset that is priced against a basket of 20
securities, creating a 20-dimensional state variable.

EXAMPLE 3.4

A car rental company has to manage its inventory of 12 different types of cars spread
among 500 car rental locations, creating an inventory vector with 6,000 dimensions.

EXAMPLE 3.5

A medical patient can be described by several thousand characteristics, beginning with
basic information such as age, weight, gender, but extending to lifestyle variables
(diet, smoking, exercise) to an extensive array of variables describing someone’s
medical history.

Each of these problems has a multi-dimensional state vector, and in all but the last
example the dimensions are continuous. In the car-rental example, the inventories will be
discrete, but potentially fairly large (a major rental lot may have dozens of each type of
car).

If we have 10 dimensions, and discretize each dimension into 100 elements, our input
vector x (which might be a state) is 10010 = 1020 which is clearly a very large number. A
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(a) (b) (c)

Figure 3.11 Illustration of the effect of higher dimensions on the number of grids in an aggregated
state space.

reasonable strategy might be to aggregate. Instead of discretizing each dimension into 100
elements, what if we discretize into 5 elements? Now our state space is 510 = 9.76× 106,
or almost 10 million states. Much smaller, but still quite large. Figure 3.11 illustrates the
growth in the state space with the number of dimensions.

Each of our examples explode with the number of dimensions because we are using a
lookup table representation for our function. It is important to realize that the curse of
dimensionality is tied to the use of lookup tables. The other approximation architectures
avoid the curse, but they do so by assuming structure such as a parametric form (linear or
nonlinear).

Approximating high-dimensional functions is fundamentally intractable without ex-
ploiting structure. Beware of anyone claiming to “solve the curse of dimensionality.” Pure
lookup tables (which make no structural assumptions) are typically limited to five or six
dimensions (depending on the number of values each dimension can take). However, we
can handle thousands, even millions, of dimensions if we are willing to live with a linear
model with separable, additive basis functions.

We can improve the accuracy of a linear model by adding features (basis functions) to
our model. For example, if we use a second order parametric representation, we might
approximate a two-dimensional function using

F (x) ≈ θ0 + θ1x1 + θ2x2 + θ11x
2
1 + θ22x

2
2 + θ12x1x2.

If we have N dimensions, the approximation would look like

F (x) ≈ θ0 +

N∑
i=1

θixi +

N∑
i=1

N∑
j=1

θijxixj ,

which means we have to estimate 1 + N + N2 parameters. As N grows, this grows very
quickly, and this is only a second order approximation. If we allowN th order interactions,
the approximation would look like

F (x) ≈ θ0 +

N∑
i=1

θixi +

N∑
i1=1

N∑
i2=1

θi1i2xi1xi2 +

N∑
i1=1

N∑
i2=1

. . .

N∑
iN=1

θi1,i2,...,iNxi1xi2 · · ·xiN .
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The number of parameters we now have to estimate is given by 1+N+N2+N3+. . .+NN .
Not surprisingly, this becomes intractable even for relatively small values of N .

The problem follows us if we were to use kernel regression, where an estimate of a
function at a point s can be estimated from a series of observations (f̂ i, xi)Ni=1 using

F (x) ≈
∑N
i=1 f̂

ik(x, xi)∑N
i=1 k(x, xi)

where k(x, xi) might be the Gaussian kernel

k(x, xi) = e−
‖x−xi‖2

b

where b is a bandwidth. Kernel regression is effectively a soft form of the aggregation
depicted in figure 3.11(c). The problem is that we would have to choose a bandwidth that
covers most of the data to get a statistically reliable estimate of a single point.

To see this, imagine that our observations are uniformly distributed in anN -dimensional
cube that measures 1.0 on each side, which means it has a volume of 1.0. If we carve out
an N -dimensional cube that measures .5 on a side, then this would capture 12.5 percent
of the observations in a 3-dimensional cube, and 0.1 percent of the observations in a 10-
dimensional cube. If we would like to choose a cube that captures η = .1 of our cube, we
would need a cube that measures r = η1/N = .11/10 = .794, which means that our cube
is covering almost 80 percent of the range of each input dimension.

The problem is that we have a multidimensional function, and we are trying to capture the
joint behavior of allN dimensions. If we are willing to live with separable approximations,
then we can scale to very large number of dimensions. For example, the approximation

F (x) ≈ θ0 +

N∑
i=1

θ1ixi +

N∑
i=1

θ2ix
2
i ,

captures quadratic behavior but without any cross terms. The number of parameters is
1+2N , which means we may be able to handle very high-dimensional problems. However,
we lose the ability to handle interactions between different dimensions.

Kernel regression, along with essentially all nonparametric methods, is basically a fancy
form of lookup table. Since these methods do not assume any underlying structure, they
depend on capturing the local behavior of a function. The concept of “local,” however,
breaks down in high dimensions, where by “high” we typically mean three or more.

3.12.2 Designing approximation architectures in adaptive learning

Most solution methods in stochastic optimization are adaptive, which means that the data is
arriving over time as a sequence of inputsxn and observations f̂n+1. With each observation,
we have to update our estimate of whatever function we are approximating, which might
be the objective function EF (x,W ), a value function V (s), a policyXπ(s), or a transition
function SM (s, x,W ). This entire chapter has focused on adaptive learning, but in the
context where we used a fixed model and just adapt the parameters to produce the best fit.

Adaptive learning means that we have to start with small datasets (sometimes no data
at all), and then adapt as new decisions and observations arrive. This raises a challenge
we have not addressed above: we need to do more than just update a parameter vector θn

with new data to produce θn+1. Instead, we need to update the architecture of the function
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we are trying to estimate. Said differently, the dimensionality of θn (or at least the set of
nonzero elements of θn) will need to change as we acquire more data.

A key challenge with any statistical learning problem is designing a function that strikes
the right tradeoff between the dimensionality of the function and the amount of data available
for approximating the function. For a batch problem, we can use powerful tools such as
regularization (see equation (3.54)) for identifying models that have the right number of
variables given the available data. But this only works for batch estimation, where the size
of the dataset is fixed.

As of this writing, additional research is needed to create the tools that can help to
identify not just the best parameter vector θn, but the structure of the function itself. One
technique that does this is hierarchical aggregation which we presented in the context
of lookup tables in section 3.6. This is a powerful methodology that adaptively adjusts
from a low dimensional representation (that is, estimates of the function at a high level
of aggregation) to higher dimensional representations, which is accomplished by putting
higher weights on the more disaggregate estimates. However, lookup table belief models
are limited to relatively low dimensional problems.

3.13 WHY DOES IT WORK?**

3.13.1 Derivation of the recursive estimation equations

Here we derive the recursive estimation equations given by equations (3.57)-(3.61). To
begin, we note that the matrix (Xn)TXn is an I + 1 by I + 1 matrix where the element
for row i, column j is given by

[(Xn)TXn]i,j =

n∑
m=1

xmi x
m
j .

This term can be computed recursively using

[(Xn)TXn]i,j =

n−1∑
m=1

(xmi x
m
j ) + xni x

n
j .

In matrix form, this can be written

[(Xn)TXn] = [(Xn−1)TXn−1] + xn(xn)T .

Keeping in mind that xn is a column vector, xn(xn)T is an I + 1 by I + 1 matrix formed
by the cross products of the elements of xn. We now use the Sherman-Morrison formula
(see section 3.13.2 for a derivation) for updating the inverse of a matrix

[A+ uuT ]−1 = A−1 − A−1uuTA−1

1 + uTA−1u
,

where A is an invertible n×n matrix, and u is an n-dimensional column vector. Applying
this formula to our problem, we obtain

[(Xn)TXn]−1 = [(Xn−1)TXn−1 + xn(xn)T ]−1

= [(Xn−1)TXn−1]−1

− [(Xn−1)TXn−1]−1xn(xn)T [(Xn−1)TXn−1]−1

1 + (xn)T [(Xn−1)TXn−1]−1xn
. (3.78)



WHY DOES IT WORK?** 117

The term (Xn)TY n can also be updated recursively using

(Xn)TY n = (Xn−1)TY n−1 + xn(yn). (3.79)

To simplify the notation, let

Bn = [(Xn)TXn]−1,

γn = 1 + (xn)T [(Xn−1)TXn−1]−1xn.

This simplifies our inverse updating equation (3.78) to

Bn = Bn−1 − 1

γn
(Bn−1xn(xn)TBn−1).

Recall that

θ̄n = [(Xn)TXn]−1(Xn)TY n. (3.80)

Combining (3.80) with (3.78) and (3.79) gives

θ̄n = [(Xn)TXn]−1(Xn)TY n

=

(
Bn−1 − 1

γn
(Bn−1xn(xn)TBn−1)

)(
(Xn−1)TY n−1 + xnyn

)
,

= Bn−1(Xn−1)TY n−1

− 1

γn
Bn−1xn(xn)TBn−1

[
(Xn−1)TY n−1 + xnyn

]
+Bn−1xnyn.

We can start to simplify by using θ̄n−1 = Bn−1(Xn−1)TY n−1. We are also going to
bring the term xnBn−1 inside the square brackets. Finally, we are going to bring the last
term Bn−1xnyn inside the brackets by taking the coefficient Bn−1xn outside the brackets
and multiplying the remaining yn by the scalar γn = 1 + (xn)TBn−1xn, giving us

θ̄n = θ̄n−1 − 1

γn
Bn−1xn

[
(xn)T (Bn−1(Xn−1)TY n−1)

+ (xn)TBn−1xnyn − (1 + (xn)TBn−1xn)yn
]
.

Again, we use θ̄n−1 = Bn−1(Xn−1)TY n−1 and observe that there are two terms
(xn)TBn−1xnyn that cancel, leaving

θ̄n = θ̄n−1 − 1

γn
Bn−1xn

(
(xn)T θ̄n−1 − yn

)
.

We note that (θ̄n−1)Txn is our prediction of yn using the parameter vector from iteration
n − 1 and the explanatory variables xn. yn is, of course, the actual observation, so our
error is given by

ε̂n = yn − (θ̄n−1)Txn.

Let

Hn = − 1

γn
Bn−1.

We can now write our updating equation using

θ̄n = θ̄n−1 −Hnxnε̂n. (3.81)
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3.13.2 The Sherman-Morrison updating formula

The Sherman-Morrison matrix updating formula (also known as the Woodbury formula or
the Sherman-Morrison-Woodbury formula) assumes that we have a matrix A and that we
are going to update it with the outer product of the column vector u to produce the matrix
B, given by

B = A+ uuT . (3.82)

Pre-multiply by B−1 and post-multiply by A−1, giving

A−1 = B−1 +B−1uuTA−1. (3.83)

Post-multiply by u

A−1u = B−1u+B−1uuTA−1u

= B−1u
(
1 + uTA−1u

)
.

Note that uTA−1u is a scalar. Divide through by
(
1 + uTA−1u

)
A−1u

(1 + uTA−1u)
= B−1u.

Now post-multiply by uTA−1

A−1uuTA−1

(1 + uTA−1u)
= B−1uuTA−1. (3.84)

Equation (3.83) gives us

B−1uuTA−1 = A−1 −B−1. (3.85)

Substituting (3.85) into (3.84) gives

A−1uuTA−1

(1 + uTA−1u)
= A−1 −B−1. (3.86)

Solving for B−1 gives us

B−1 = [A+ uuT ]−1

= A−1 − A−1uuTA−1

(1 + uTA−1u)
,

which is the desired formula.

3.13.3 Correlations in hierarchical estimation

It is possible to derive the optimal weights for the case where the statistics v̄(g)
s are not

independent. In general, if we are using a hierarchical strategy and have g′ > g (which
means that aggregation g′ is more aggregate than g), then the statistic v̄(g′,n)

s is computed
using observations v̂ns that are also used to compute v̄(g,n)

s .
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We begin by defining

N (g,n)
s = The set of iterations n where Gg(ŝn) = Gg(s) (that is, ŝn aggregates to the

same state as s).

N (g,n)
s = |N (g,n)

s |
ε̄(g,n)
s = An estimate of the average error when observing state s = G(ŝn).

=
1

N
(g,n)
s

∑
n∈N (g,n)

s

ε̂(g,n)
s .

The average error ε̄(g,n)
s can be written

ε̄(g,n)
s =

1

N
(g,n)
s

 ∑
n∈N (0,n)

s

εn +
∑

n∈N (g,n)
s \N (0,n)

s

εn


=

N
(0,n)
s

N
(g,n)
s

ε̄(0)
s +

1

N
(g,n)
s

∑
n∈N (g,n)

s \N (0,n)
s

εn. (3.87)

This relationship shows us that we can write the error term at the higher level of
aggregation g′ as a sum of a term involving the errors at the lower level of aggregation g (for
the same state s) and a term involving errors from other states s′′ whereGg

′
(s′′) = Gg

′
(s),

given by

ε̄(g′,n)
s =

1

N
(g′,n)
s

 ∑
n∈N (g,n)

s

εn +
∑

n∈N (g′,n)
s \N (g,n)

s

εn


=

1

N
(g′,n)
s

N (g,n)
s

∑
n∈N (g,n)

s
εn

N
(g,n)
s

+
∑

n∈N (g′,n)
s \N (g,n)

s

εn


=

N
(g,n)
s

N
(g′,n)
s

ε̄(g,n)
s +

1

N
(g′,n)
s

∑
n∈N (g′,n)

s \N (g,n)
s

εn. (3.88)

We can overcome this problem by rederiving the expression for the optimal weights.
For a given (disaggregate) state s, the problem of finding the optimal weights (w

(g,n)
s )g∈G

is stated by

min
w

(g,n)
s ,g∈G

E

1

2

∑
g∈G

w(g,n)
s · v̄(g,n)

s − ν(g,n)
s

2
 (3.89)

subject to ∑
g∈G

w(g,n)
s = 1 (3.90)

w(g,n)
s ≥ 0, g ∈ G. (3.91)
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Let

δ̄(g,n)
s = The error in the estimate v̄(g,n)

s from the true value associated with
attribute vector s.

= v̄(g,n)
s − νs.

The optimal weights are computed using the following theorem:

Theorem 1. For a given attribute vector, s, the optimal weights, w(g,n)
s , g ∈ G, where

the individual estimates are correlated by way of a tree structure, are given by solving the
following system of linear equations in (w, λ):∑

g∈G
w(g,n)
s E

[
δ̄(g,n)
s δ̄(g′,n)

s

]
− λ = 0 ∀ g′ ∈ G (3.92)

∑
g∈G

w(g,n)
s = 1 (3.93)

w(g,n)
s ≥ 0 ∀ g ∈ G. (3.94)

Proof: The proof is not too difficult and it illustrates how we obtain the optimal weights.
We start by formulating the Lagrangian for the problem formulated in (3.89)-(3.91), which
gives us

L(w, λ) = E

1

2

∑
g∈G

w(g,n)
s · v̄(g,n)

s − ν(g,n)
s

2
+ λ

1−
∑
g∈G

w(g,n)
s



= E

1

2

∑
g∈G

w(g,n)
s

(
v̄(g,n)
s − ν(g,n)

s

)2
+ λ

1−
∑
g∈G

w(g,n)
s

 .

The first order optimality conditions are

E

∑
g∈G

w(g,n)
s

(
v̄(g,n)
s − ν(g,n)

s

)(
v̄(g′,n)
s − ν(g,n)

s

)− λ = 0 ∀ g′ ∈ G(3.95)

∑
g∈G

w(g,n)
s − 1 = 0. (3.96)

To simplify equation (3.95), we note that,

E

∑
g∈G

w(g,n)
s

(
v̄(g,n)
s − ν(g,n)

s

)(
v̄(g′,n)
s − ν(g,n)

s

) = E

∑
g∈G

w(g,n)
s δ̄(g,n)

s δ̄(g′,n)
s


=

∑
g∈G

w(g,n)
s E

[
δ̄(g,n)
s δ̄(g′,n)

s

]
.

(3.97)

Combining equations (3.95) and (3.97) gives us equation (3.92) which completes the proof.
�
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Finding the optimal weights that handle the correlations between the statistics at different
levels of aggregation requires finding E

[
δ̄

(g,n)
s δ̄

(g′,n)
s

]
. We are going to compute this

expectation by conditioning on the set of attributes ŝn that are sampled. This means
that our expectation is defined over the outcome space Ωε. Let N (g,n)

s be the number of
observations of state s at aggregation level g. The expectation is computed using:

Proposition 3.13.1. The coefficients of the weights in equation (3.93) can be expressed as
follows:

E
[
δ̄(g,n)
s δ̄(g′,n)

s

]
= E

[
β̄(g,n)
s β̄(g′,n)

s

]
+
N

(g,n)
s

N
(g′,n)
s

E
[
ε̄(g,n)2

s

]
∀g ≤ g′ and g, g′ ∈ G.

(3.98)

The proof is given in section 3.13.4.
Now consider what happens when we make the assumption that the measurement error

εn is independent of the attribute being sampled, ŝn. We do this by assuming that the
variance of the measurement error is a constant given by σε2. This gives us the following
result:

Corollary 3.13.1. For the special case where the statistical noise in the measurement of
the values is independent of the attribute vector sampled, equation (3.98) reduces to

E
[
δ̄(g,n)
s δ̄(g′,n)

s

]
= E

[
β̄(g,n)
s β̄(g′,n)

s

]
+

σ2
ε

N
(g′,n)
s

. (3.99)

For the case where g = 0 (the most disaggregate level), we assume that β(0)
s = 0 which

gives us

E
[
β̄(0,n)
s β̄(g′,n)

s

]
= 0.

This allows us to further simplify (3.99) to obtain

E
[
δ̄(0,n)
s δ̄(g′,n)

s

]
=

σ2
ε

N
(g′,n)
s

. (3.100)

3.13.4 Proof of Proposition 3.13.1

We start by defining

δ̄(g,n)
s = β̄(g,n)

s + ε̄(g,n)
s . (3.101)

Equation (3.101) gives us

E
[
δ̄(g,n)
s δ̄(g′,n)

s

]
= E

[
(β̄(g,n)
s + ε̄(g,n)

s )(β̄(g′,n)
s + ε̄(g′,n)

s )
]

= E
[
β̄(g,n)
s β̄(g′,n)

s + β̄(g′,n)
s ε̄(g,n)

s + β̄(g,n)
s ε̄(g′,n)

s + ε̄(g,n)
s ε̄(g′,n)

s

]
= E

[
β̄(g,n)
s β̄(g′,n)

s

]
+ E

[
β̄(g′,n)
s ε̄(g,n)

s

]
+ E

[
β̄(g,n)
s ε̄(g′,n)

s

]
+E

[
ε̄(g,n)
s ε̄(g′,n)

s

]
.

(3.102)
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We note that

E
[
β̄(g′,n)
s ε̄(g,n)

s

]
= β̄(g′,n)

s E
[
ε̄(g,n)
s

]
= 0.

Similarly

E
[
β̄(g,n)
s ε̄(g′,n)

s

]
= 0.

This allows us to write equation (3.102) as

E
[
δ̄(g,n)
s δ̄(g′,n)

s

]
= E

[
β̄(g,n)
s β̄(g′,n)

s

]
+ E

[
ε̄(g,n)
s ε̄(g′,n)

s

]
. (3.103)

We start with the second term on the right-hand side of equation (3.103). This term can
be written as

E
[
ε̄(g,n)
s ε̄(g′,n)

s

]
= E

[
ε̄(g,n)
s · N

(g,n)
s

N
(g′)
s

ε̄(g,n)
s

]
+ E

ε̄(g,n)
s · 1

N
(g′)
s

∑
n∈N (g′,n)

s \N (g,n)
s

εn


=

N
(g,n)
s

N
(g′)
s

E
[
ε̄(g,n)
s ε̄(g,n)

s

]
+

1

N
(g′)
s

E

ε̄(g,n)
s ·

∑
n∈N (g′,n)

s \N (g,n)
s

εn

 .
︸ ︷︷ ︸

I

.

The term I can be rewritten using

E

ε̄(g,n)
s ·

∑
n∈N (g′,n)

s \N (g,n)
s

εn

 = E
[
ε̄(g,n)
s

]
E

 ∑
n∈N (g′,n)

s \N (g,n)
s

εn


= 0

which means

E
[
ε̄(g,n)
s ε̄(g′,n)

s

]
=

N
(g,n)
s

N
(g′)
s

E
[
ε̄(g)2

s

]
. (3.104)

Combining (3.103) and (3.104) proves the proposition. �
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The second term on the right-hand side of equation (3.104) can be further simplified
using,

E
[
ε̄(g)2

s

]
= E


 1

N
(g,n)
s

∑
n∈N (g,n)

s

εn

2
 , ∀ g′ ∈ G

=
1(

N
(g,n)
s

)2

∑
m∈N (g,n)

s

∑
n∈N (g,n)

s

E [εmεn]

=
1(

N
(g,n)
s

)2

∑
n∈N (g,n)

s

E
[
(εn)2

]
=

1(
N

(g,n)
s

)2N
(g,n)
s σε

2

=
σ2
ε

N
(g,n)
s

(3.105)

Combining equations (3.98), (3.104) and (3.105) gives us the result in equation (3.99). �

3.14 BIBLIOGRAPHIC NOTES

This chapter is primarily a brief tutorial into statistical learning. Readers interested in
pursuing approximate dynamic programming should obtain a good statistical reference
such as Bishop (2006) and Hastie et al. (2009). The second reference can be downloaded
from

http://www-stat.stanford.edu/~tibs/ElemStatLearn/.

Sections 3.6 - Aggregation has been a widely used technique in dynamic programming as
a method to overcome the curse of dimensionality. Early work focused on picking
a fixed level of aggregation (Whitt (1978), Bean et al. (1987)), or using adaptive
techniques that change the level of aggregation as the sampling process progresses
(Bertsekas & Castanon (1989), Mendelssohn (1982), Bertsekas & Tsitsiklis (1996)),
but which still use a fixed level of aggregation at any given time. Much of the
literature on aggregation has focused on deriving error bounds (?, ?). A recent
discussion of aggregation in dynamic programming can be found in Lambert et al.
(2002). For a good discussion of aggregation as a general technique in modeling, see
Rogers et al. (1991). The material in section 3.6.3 is based on George et al. (2008)
and Powell & George (2006). LeBlanc & Tibshirani (1996) and Yang (2001) provide
excellent discussions of mixing estimates from different sources. For a discussion
of soft state aggregation, see Singh et al. (1995). Section 3.5 on bias and variance is
based on Powell & George (2006).

Section 3.7 - Basis functions have their roots in the modeling of physical processes. A
good introduction to the field from this setting is Heuberger et al. (2005). Schweitzer
& Seidmann (1985) describes generalized polynomial approximations for Markov
decision processes for use in value iteration, policy iteration and the linear pro-
gramming method. Menache et al. (2005) discusses basis function adaptations in the
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context of reinforcement learning. For a very nice discussion of the use of basis func-
tions in approximate dynamic programming, see Tsitsiklis & Roy (1996) and Van
Roy (2001). Tsitsiklis & Van Roy (1997) proves convergence of iterative stochastic
algorithms for fitting the parameters of a regression model when the policy is held
fixed. For section 18.4.1, the first use of approximate dynamic programming for
evaluating an American call option is given in Longstaff & Schwartz (2001), but the
topic has been studied for decades (see Taylor (1967)). Tsitsiklis & Van Roy (2001)
also provide an alternative ADP algorithm for American call options. Clément et
al. (2002) provides formal convergence results for regression models used to price
American options. This presentation on the geometric view of basis functions is
based on Tsitsiklis & Van Roy (1997).

Section ?? - There is, of course, an extensive literature on different statistical methods.
This section provides only a sampling. For a much more thorough treatment, see
Bishop (2006) and Hastie et al. (2009).

Section 3.10 - An excellent introduction to continuous approximation techniques is given
in Judd (1998) in the context of economic systems and computational dynamic
programming. Ormoneit & Sen (2002) and Ormoneit & Glynn (2002) discuss the
use of kernel-based regression methods in an approximate dynamic programming
setting, providing convergence proofs for specific algorithmic strategies. For a
thorough introduction to locally polynomial regression methods, see ?. An excellent
discussion of a broad range of statistical learning methods can be found in Hastie et
al. (2009). Bertsekas & Tsitsiklis (1996) provides an excellent discussion of neural
networks in the context of approximate dynamic programming. Haykin (1999)
presents a much more in-depth presentation of neural networks, including a chapter
on approximate dynamic programming using neural networks. A very rich field of
study has evolved around support vector machines and support vector regression.
For a thorough tutorial, see Smola & Schölkopf (2004). A shorter and more readable
introduction is contained in chapter 12 of Hastie et al. (2009). Note that SVR does
not lend itself readily to recursive updating, which we suspect will limit its usefulness
in approximate dynamic programming.

Section 3.12.1 - See Hastie et al. (2009), section 2.5, for a very nice discussion of the
challenges of approximating high-dimensional functions.

PROBLEMS

3.1 This chapter is organized around three major classes of approximation architectures:
lookup table, parametric and nonparametric, but some have argued that there should only be
two classes: parametric and nonparametric. Justify your answer by presenting an argument
why a lookup table can be properly modeled as a parametric model, and then a counter
argument why a lookup table is more similar to a nonparametric model. [Hint: What is the
defining characteristic of a nonparametric model? - see section 3.10.]

3.2 Use equations (3.30) and (3.31) to update the mean vector with prior

µ̄0 =

 10
18
12

 .
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Assume that we test alternative 3 and observeW = 19 and that our prior covariance matrix
Σ0 is given by

Σ0 =

 12 4 2
4 8 3
2 3 10

 .
Assume that λW = 4. Give µ̄1 and Σ1.

3.3 In a spreadsheet, create a 4 × 4 grid where the cells are numbered 1, 2, . . . , 16
starting with the upper left-hand corner and moving left to right, as shown below. We are

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

going to treat each number in the cell as the mean of the observations drawn from that cell.
Now assume that if we observe a cell, we observe the mean plus a random variable that
is uniformly distributed between −1 and +1. Next define a series of aggregations where
aggregation 0 is the disaggregate level, aggregation 1 divides the grid into four 2 × 2 cells,
and aggregation 2 aggregates everything into a single cell. After n iterations, let f̄ (g,n)

s be
the estimate of cell “s” at the nth level of aggregation, and let

f̄ns =
∑
g∈G

w(g)
s f̄ (g,n)

s

be your best estimate of cell s using a weighted aggregation scheme. Compute an overall
error measure using

(σ̄2)n =
∑
s∈S

(f̄ns − νs)2,

where νs is the true value (taken from your grid) of being in cell s. Also let w(g,n) be the
average weight after n iterations given to the aggregation level g when averaged over all
cells at that level of aggregation (for example, there is only one cell for w(2,n)). Perform
1000 iterations where at each iteration you randomly sample a cell and measure it with
noise. Update your estimates at each level of aggregation, and compute the variance of
your estimate with and without the bias correction.

(a) Plot w(g,n) for each of the three levels of aggregation at each iteration. Do the
weights behave as you would expect? Explain.

(b) For each level of aggregation, set the weight given to that level equal to one (in other
words, we are using a single level of aggregation) and plot the overall error as a
function of the number of iterations.

(c) Add to your plot the average error when you use a weighted average, where the
weights are determined by equation (3.46) without the bias correction.
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(d) Finally add to your plot the average error when you used a weighted average, but
now determine the weights by equation (3.47), which uses the bias correction.

(e) Repeat the above assuming that the noise is uniformly distributed between −5 and
+5.

3.4 Show that

σ2
s = (σ2

s)(g) + (β(g)
s )2 (3.106)

which breaks down the total variation in an estimate at a level of aggregation is the sum of
the variation of the observation error plus the bias squared.

3.5 In this exercise you will use the equations in section 3.8.1 to update a linear model.
Assume you have an estimate of a linear model given by

F (x|θ0) = θ0 + θ1φ1(x) + θ2φ2(x)

= −12 + 5.2φ1 + 2.8φ2.

Assume that the matrixB0 is a 3×3 identity matrix. Assume the vector φ = (φ0 φ1 φ2) =

(5 15 22) and that you observe f̂1 = 90. Give the updated regression vector θ1.

3.6 Show that E
[(
µ̄n−1 − µ(n)

)2]
= λn−1σ2 + (βn)2 (equation (3.38)). [Hint: Add

and subtract Eµ̄n−1 inside the expectation and expand.]

3.7 Show that E
[(
θ̄n−1 − θ̂n

)2
]

= (1 + λn−1)σ2 + (βn)2 (which proves equation

3.39). [Hint: See previous exercise.]

3.8 Derive the small sample form of the recursive equation for the variance given in
(3.40). Recall that if

µ̄n =
1

n

n∑
m=1

µ̂m

then an estimate of the variance of θ̂ is

Var[µ̂] =
1

n− 1

n∑
m=1

(µ̂m − µ̄n)2.



PART II - LEARNING PROBLEMS

Learning problems represent a broad class of problems that are typically grouped under
names such as stochastic search, ranking and selection, simulation optimization, and mul-
tiarmed bandit problems. We include in this part problems that are often solved using
iterative algorithms, where the only information carried from one iteration to the next is
what we have learned about the function. This is the defining characteristic of a learning
problem.

We begin in chapter 4 by providing an overview of learning problems that arise in
stochastic optimization. This chapter reminds us that there are special cases of problems
that can be solved exactly, possibly by replacing the original expectation with a sampled
approximation. The chapter closes by setting up some basic concepts for learning problems,
including making the important distinction between online and offline problems, and by
identifying different strategies for designing policies for adaptive learning.

Chapter 5 begins with derivative-based algorithms, where we describe the difference
between asymptotic and finite-time analysis. This chapter identifies the importance of
stepsizes, which are actually “decisions” in derivative-based methods. Chapter 6 provides
an in-depth discussion of stepsize policies.

We then transition to derivative-free problems in chapter 7, where there is a much richer
tradition of designing policies (compared to derivative-based methods).

By the end of Part II, we will have laid the foundation for the much richer class of
sequential decision problems that involve controllable physical states that link decisions
and dynamics from one time period to the next.
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CHAPTER 4

INTRODUCTION TO STOCHASTIC
OPTIMIZATION

Our most basic optimization problem has the core structure: make decision, learn informa-
tion, stop. This can be written

max
x∈X

EF (x,W ), (4.1)

where W is any form of random variable. This is sometimes called the static stochastic
optimization problem, because it consists of making a single decision x, then observing an
outcome W allowing us to assess the performance F (x,W ), at which point we stop. This
contrasts with fully sequential problems where, for example, we have to manage inventories
over time, consisting of a series of decisions (orders), followed by information (demands),
after which we place a new order, and so on.

While equation (4.1) is the most standard way of writing this problem, we are going to
use as our default statement

max
x∈X

E{F (x,W )|S0}, (4.2)

which allows us to express the expectation on information in an initial state S0, which can
include deterministic parameters as well as probabilistic information (which we need when
we use Bayesian belief models). For example, our problem may depend on an unknown
physical parameter θ which we believe may be one of a set θ1, . . . , θK with probability
p0
k = P[θ = θk].

There are three core strategies for solving our basic stochastic optimization problem:
(4.2):

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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Deterministic methods - There are some problems with sufficient structure that allows
us to solve the problem deterministically. In some cases problems can be solved
analytically, while others require the use of deterministic optimization algorithms.

Sampled approximations - This is a powerful and widely used approach for turning
computationally intractable expectations into tractable ones. We note that sampled
problems, while solvable, may not be easily solvable, and as a result have attracted
considerable research interest (especially for problems where x is high-dimensional,
and especially when it is integer).

Adaptive learning methods - These approaches, which will attract most of our attention
in this volume, use iterative methods to solve sequences of relatively easy problems,
with the hope that the algorithms will converge to the solution of the original problem.

We begin our presentation by discussing different perspectives of our basic stochastic
optimization problem, which encompasses fully sequential problems when we interpret “x”
as a policy π. We then observe that there are examples of stochastic optimization problems
that can be solved using standard deterministic methods, either by directly exploiting the
structure of the uncertainty (which allows us to compute the expectation directly), or by
using the powerful idea of sampled models.

We then close by setting up some preliminary discussions about adaptive learning
methods, which are then discussed in more detail in chapters 5 and 7. As we point out
below, adaptive learning methods represent a form of sequential decision problem where
the state variable Sn captures only what we know. There is no other physical process (such
as inventory) or informational process (such as a time series) which links decisions over
time. We defer until Part III of the book the handling of these more complex problems.

4.1 ILLUSTRATIONS OF THE BASIC STOCHASTIC OPTIMIZATION
PROBLEM

There is no shortage of applications of our basic stochastic optimization problem. Some
examples that illustrate applications in different settings include:

EXAMPLE 4.1

Engineering design - Here x is the design of an airplane wing where we have to create
a design that minimizes costs over a range of different conditions. We can learn from
numerical simulations, laboratory strength tests, and examining actual aircraft for
stress fractures.

EXAMPLE 4.2

Let (yn, xn)Nn=1 be a set of explanatory variables xn and response variables yn. We
would like to fit a statistical model (this might be a linear parametric model, or a
neural network) where θ is the parameters (or weights) that characterize the model.
We want to find θ that solves

min
θ

1

N

N∑
n=1

(yn − f(xn|θ))2.
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This problem, which is very familiar in statistics, is a sampled approximation of

min
θ

E(Y − f(X|θ))2,

where X is a random input and Y is the associated random response.

EXAMPLE 4.3

We would like to design an energy system where R is a vector of energy investments
(in wind farms, solar fields, battery storage, gas turbines), which we have to solve
subject to random realizations of energy from wind and solar (which we represent
using the vector W ) defined over a year. Let Ccap(R) be the capital cost of these
investments, and let Cop(R,W ) be the net operating revenue given W (computed
from a numerical simulator). Now we want to solve

max
R

E(−Ccap(R) + Cop(R,W )).

EXAMPLE 4.4

A bank uses a policyXπ(S|θ) that covers how much to move into or out of cash given
the state S which describes how much cash is on hand, the forward price/earnings
ratio of the S&P 500 (an important index of the stock market), and current 10-year
bond rates. The vector θ captures upper and lower limits on each variable that triggers
decisions to move money into or out of cash. If C(Xπ(St|θ),Wt+1) is the cash flow
given the current state St and the next-period returns Wt+1, then we want to find the
policy control parameters θ that solves

max
θ

E
T∑
t=0

e−rtC(Xπ(St|θ),Wt+1).

Each of these examples involve making some decision (the design of the airplane wing,
the model parameter θ, the energy investment R, or the parameters θ of a cash transfer
policy). In each case, we have to choose a design either to optimize a deterministic function,
a sampled approximation of a stochastic problem, or by adaptive learning (either from a
simulator, laboratory experiments or field observations).

While there are some settings where we can solve (4.2) (possibly with an approximation
of the expectation) directly, most of the time we are going to turn to iterative learning
algorithms. We will start with a state Sn that captures our belief state about the function
F (x) = E{F (x,W )|S0} after n repetitions. We then use this knowledge to make a
decision xn after which we observe Wn+1 which leads us to a new belief state Sn+1. The
problem is designing a good rule (or policy) that we call Xπ(Sn) that determines xn. For
example, we might want to find the best answer that we can with a budget of N iterations.
We pose this as one of finding the best policy to determine a solution xπ,N , which would
be formulated as

max
π

E{F (xπ,N ,W )|S0}. (4.3)
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The formulations in (4.1), (4.2) and (4.3) all focus on finding the best decision (or design)
to maximize some function. We refer to these as terminal reward formulations. This
distinction is important when we use adaptive learning policies Xπ(S), since this involves
optimizing using intelligent trial and error.

When we use adaptive learning (which is a widely used strategy), then we have to think
about our attitude toward the intermediate decisions xn for n < N . If we have to “count”
the results of these intermediate experiments, then we would write our objective as

max
π

E
N−1∑
n=0

{F (Xπ(Sn),Wn+1)|S0}. (4.4)

When we are using an adaptive learning strategy, we are going to refer to (4.3) as the
terminal reward formulation, while the objective function in (4.4) is the cumulative reward
formulation.

On first glance it appears that our adaptive optimization problem with cumulative rewards
in (4.4) is quite different from our original basic stochastic optimization problem in (4.2),
but take another look. If we assume we can represent our policy π as x (and we will), and
then simply let F (x,W ) be the summation in (4.4), then we come full circle.

The number of applications that fit the basic model given in equation (4.2) is limitless.
For discussion purposes, it is helpful to recognize some of the major problem classes that
arise in this setting:

• Discrete problems, where X = {x1, . . . , xM}. Examples might be where xm is a
set of features for a product, catalysts for a type of material, drug cocktails, or even
paths over a network.

• Concave problems, where F (x,W ) is concave in x.

• Linear programs, where F (x,W ) is a linear cost function and X is a set of linear
constraints.

• Continuous, nonconcave problems, where x is continuous.

• Expensive functions - There are many settings where computing F (x,W ) involves
running time consuming computer simulations or laboratory experience that may
take hours to days to weeks, or field experiments that may take weeks or months).

For these problems, the decision x may be finite, continuous scalar, or a vector (that may
be continuous or integer).

As we progress, we are going to see many instances of (4.1) (or (4.2)) where we
sequentially guess at a decision xn, then observe Wn+1, and use this information to make
a better guess xn+1, with the goal of solving (4.1). In fact, before we are done, we are
going to show that we can reduce our formulations of fully sequential problems such as our
inventory problem to the same form as in (4.1). For this reason, we have come to refer to
(4.2) as the basic stochastic optimization model.

4.2 DETERMINISTIC METHODS

There are a handful of stochastic optimization problems that can be solved to optimality
using purely deterministic methods. We are going to provide a brief illustration of some
examples as an illustration, but in practice, exact solutions of stochastic problems will be
quite rare.
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4.2.1 A “stochastic” shortest path problem

In section 8.1.1, we introduced a stochastic shortest path problem where a traveler arriving
to node i would see the sample realizations of the random costs Cij to each node j that can
be reached from i. Assume that on the nth day we arrive to node i and observe the sample
realization ĉnij of the random variable Cij . We would then get a sampled observation of the
value of being at node i from

v̂ni = min
j∈I+

i

(
ĉnij + V

n−1

j

)
,

where I+
i is the set of all nodes that we can reach from node i. Now assume that we do

not see the sample realization of the random variable Cij before we make our decision.
Assume we have to make the decision before we see the realization. In this case, we have
to use the expected value c̄ij = ECij , which means we are solving

v̂ni = min
j∈I+

i

E
(
Cij + V

n−1

j

)
,

= min
j∈I+

i

(
c̄ij + V

n−1

j

)
,

which is just what we would solve if we had a deterministic shortest path problem. In
other words, when we have a linear objective, if we have to make decisions before we see
information, then resulting problem reduces to a deterministic optimization problem which
can (generally) be solved exactly.

The key difference between this “stochastic” shortest path problem and the one in section
8.1.1 is how information is revealed. The problem in section 8.1.1 is harder (and more
interesting) because information is revealed just before we make the decision of the next
link to traverse. Here, information is revealed after we make a decision, which means
decisions have to be made using distributional information. Since the problem is linear in
the costs, then all we need are the means, turning our stochastic problem into a deterministic
problem.

4.2.2 A newsvendor problem with known distribution

We next consider one of the oldest stochastic optimization problems, known as the newsven-
dor problem, which is given by

max
x

EF (x,W ) = E
(
pmin{x,W} − cx

)
. (4.5)

Assume that we know the cumulative distribution FW (w) = P[W ≤ w] of the demand
W . We begin by computing the stochastic gradient, given by

∇xF (x,W ) =

{
p− c If x ≤W
−c If x > W .

(4.6)

We next observe that if x = x∗, the optimal solution, then the expectation of the gradient
should be zero. This means

E∇xF (x,W ) = (p− c)P[x∗ ≤W ]− cP[x∗ > W ],

= (p− c)P[x∗ ≤W ]− c(1− P[x∗ ≤W ]),

= 0.
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Solving for P[x∗ ≤W ] gives

P[x∗ ≤W ] =
c

p
. (4.7)

Under the (reasonable) assumption that the unit purchase cost c is less than the sales price
p, we see that the optimal solution x∗ corresponds to the point where the probability that
x∗ is less than the demand W is the ratio of the cost over the price. Thus if the cost is
low, the probability that the demand is greater than the supply (which means we lose sales)
should be low.

Equation (4.7) gives the optimal solution of the newsvendor problem. It requires that we
know the distribution of demand, and also requires that we be able to take the expectation
of the gradient and solve for the optimal probability analytically. Not surprisingly, these
conditions are rarely met in practice.

4.2.3 Chance constrained optimization

There are some problems where we can compute the expectation exactly, but the result is
(typically) a nonlinear problem that can only be solved numerically. A good illustration of
this is a method known as chance constrained programming, which is itself a rich area of
study. A classical formulation (which we first saw in section 2.1.7) poses the problem

min
x
f(x), (4.8)

subject to the constraint

p(x) ≤ α, (4.9)

where

p(x) = P[C(x,W ) ≥ 0] (4.10)

is the probability that a constraint violation, captured by C(x,W ), is violated. Thus,
C(x,W ) might be the uncovered demand for energy, or the degree to which two driver-
less cars get closer than an allowed tolerance. If we can compute p(x) (analytically or
numerically), we can draw on powerful nonlinear programming algorithms to solve (4.8)
directly.

4.2.4 Optimal control

In section 2.1.11, we formulated an optimal control problem of the form

min
u0,...,uT

T∑
t=0

Lt(xt, ut).

where states evolve according to xt+1 = f(xt, ut). We may introduce a stochastic noise
term giving us the state transition equation

xt+1 = f(xt, ut) + wt,

where (following the standard convention of the controls community) wt is random at time
t. The historical basis for this notational convention is the roots of optimal control in
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continuous time, where wt would represent the noise between t and t+ dt. In the presence
of noise, we need to introduce a policyUπ(xt). We would now write our objective function
as

min
π

E
T∑
t=0

Lt(xt, U
π
t (xt)). (4.11)

Now assume that the loss function has the quadratic form

Lt(xt, ut) = (xt)
TQtxt + (ut)

TRtut.

After quite a bit of algebra, it is possible to show that the optimal policy has the form

Uπt (xt) = Ktxt, (4.12)

where Kt is a complex matrix that depends on the matrices Qt and Rt.
This solution depends on three critical features of this problem:

• The objective function is quadratic in the state xt and the control ut.

• The control ut is unconstrained.

• The noise term wt is additive in the transition function.

Despite these limitations, this result has proved quite important for many problems in
engineering.

4.2.5 Discrete Markov decision processes

As with the field of stochastic control, there is an incredibly rich body of literature that
has grown up around the basic problem of discrete dynamic programs, a problem that we
address in much more depth in chapter 14. Imagine that we have a contribution C(s, a)
when we are in state s ∈ S and take action a ∈ A, and a one-step transition matrix p(s′|s, a)
which gives the probability that we evolve to state St+1 = s′ given that we are in state
St = s and take action a. It is possible to show that the value of being in a state St = s at
time t is given by

Vt(St) = max
a∈A

(
C(St, a) +

∑
s′∈S

p(s′|St, a)Vt+1(s′)

)
. (4.13)

We can compute (4.13) if we start at time T with some initial value, say VT (s) = 0, and
then step backward in time. This produces the optimal policy A∗t (St) given by

A∗t (St) = arg max
a∈A

(
C(St, a) +

∑
s′∈S

p(s′|St, a)Vt+1(s′)

)
. (4.14)

Again, we have found our optimal policy purely using deterministic mathematics. The
critical element of this formulation is the assumption that the one-step transition matrix
p(s′|s, a) is known (and computable). This requirement also requires that the state space
S and action space A be discrete and not too large.
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4.2.6 Remarks

These are a representative list of the very small handful of stochastic optimization problems
that can be solved either analytically or numerically, using deterministic methods. While
we have not covered every problem that can be solved this way, the list is not long. This is
not to minimize the importance of these results, which sometimes serve as the foundation
for algorithms for more general problems.

Often, the most difficult aspect of a stochastic optimization problem is the expectation
(or other operators such as risk metrics to deal with uncertainty). It should not be surprising,
then, that the techniques used to solve more general stochastic optimization problems tend
to focus on simplifying or breaking down the representation of uncertainty. The next
section introduces the concept of sampled models, a powerful strategy that is widely used
in stochastic optimization. We then transition to a discussion of adaptive sampling-based
methods that is the focus of most of the rest of this book.

4.3 SAMPLED MODELS

One of the most powerful and widely used methods in stochastic optimization is to replace
the expectation in the original model in equation (4.1), which is typically computationally
intractable, with a sampled model. The idea overcomes one of the problems of stochastic
optimization, which is that expectations, which are so easy to write, are so often very
difficult to compute.

Our newsvendor problem is a nice example of a stochastic optimization problem where
the uncertain random variable is a scalar. This means that we can write the expectation as
an integral (if the random variable is continuous) or perhaps a sum, if the random variable
is discrete or if it can be discretized. However, neither approach works when the random
variable is a vector, and there are problems where random variables may have dozens
or hundreds of dimensions (such as the random prices of stocks in a portfolio) or even
tens of thousands of dimensions (the random flows of customers or freight between pairs
of locations around a city or the country). A few examples illustrate how large random
variables can get to be:

EXAMPLE 4.1

A blood management problem requires managing eight blood types, which can be
anywhere from 0 to 5 weeks old, and may or may not be frozen, creating 6×8×2 = 96
blood types. Patients needing blood create demands for eight different types of
blood. Each week there are random supplies (96 dimensions) and random demands
(8 dimensions), creating an exogenous information variableWt with 104 dimensions.

EXAMPLE 4.2

A freight company is moving parcels among 1,000 different terminals. Since each
parcel has an origin and destination, the vector of new demands has 1,000,000
dimensions.

EXAMPLE 4.3
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Patients arriving to a doctor’s office may exhibit as many as 300 different character-
istics. Since each patient may or may not have any of these characteristics, there are
as many as 2300 ∼ 2× 1090 different types of patients.

This section provides a brief introduction to what has evolved into an incredibly rich
literature. We start by addressing the following questions:

• How do we formulate a sampled model?

• How good is the quality of the sampled solution (and how fast does it approach the
optimal as N is increased)?

• For large problems (high dimensional x), what are strategies for solving (4.15)?

• Again for large problems, what are the best ways of creating the sampleW 1, . . . ,WN?

We are going to return to sampled models from time to time since they represent such a
powerful strategy for handling expectations.

4.3.1 Formulating a sampled model

Assume that W is one of these multidimensional (and possibly very high dimensional)
random variables. Further assume that we have some way of generating a set of samples
W 1, . . . ,WN . These may be generated from a known probability distribution, or perhaps
from a historical sample. We can replace our original stochastic optimization problem (4.1)
with

max
x

1

N

N∑
n=1

F (x,Wn). (4.15)

Solving (4.15) as an approximation of the original problem in (4.1) is known as the
sample average approximation. It is important to realize that both our original stochastic
optimization problem (4.1) and the sampled problem (4.15) are deterministic optimization
problems. The challenge is computation.

Below we illustrate several uses of sampled models.

4.3.1.1 A sampled stochastic linear program As with W , the decision variable
x can be a scalar, or a very high-dimensional vector. For example, we might have a linear
program where we are optimizing the flows of freight xij from location i to location j by
solving

min
x
F (x,W ) =

∑
i,j∈I

cijxij ,

subject to a set of linear constraints

Ax = b,

x ≥ 0.

Now assume that the random information is the cost vector c (which might reflect trans-
portation costs which depend on traffic congestion) and the vector b, which reflects all the
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demands for travel. Thus, W = (A, b, c). If we have one sample of W , then we have a
straightforward linear program which may not be too hard to solve. But now imagine that
we have N = 100 samples of the data, given by (An, bn, cn)Nn=1. we could then solve

min
x

1

N

N∑
n=1

cnijxij ,

subject to, for n = 1, . . . , 100:

Anx = bn,

x ≥ 0.

If we choose a sample of N = 100 samples, then our sampled problem in (4.15) becomes
a linear program that is 100 times larger. This may be computationally difficult (in fact,
coming up with a single vector x that is feasible for all 100 samples of the data (A, b, c)
may not even be possible). A common application of this strategy arises when making a
decision to allocate a resource such as blood inventories from central blood inventories to
hospitals, before knowing the results of weekly donations of blood, and the schedule of
operations that need blood, at each hospital for the following week.

4.3.1.2 Sampled chance constrained models We can use our idea of sampling
to solve chance constrained programs. We begin by noting that a probability is like an
expectation. Let 1{E} = 1 if event E is true. Then we can write our probability as

P[C(x,W ) ≤ 0] = E1{C(x,W )≤0}.

We can replace the chance constraint in (4.10) with a sampled version, where we basically
average the random indicator variable to obtain

P[C(x,W ) ≤ 0] ≈ 1

N

N∑
n=1

1{C(x,Wn)≤0}.

If x is discrete, then each 1{C(x,Wn)} can be calculated in advance for each Wn. If x is
continuous, then it is likely that these indicator functions can be written as linear constraints.

4.3.1.3 Sampled parametric models Sampled models may take other forms. Imag-
ine that we wish to model demand as a function of price using a logistic function

D(p|θ) = D0 eθ0−θ1p

1 + eθ0−θ1p
.

We want to pick a price that maximizes revenue using

R(p|θ) = pD(p|θ).

Our problem is that we do not know θ. We might assume that our vector θ follows a
multivariate normal distribution, in which case we would want to solve

max
p

EθpD(p|θ), (4.16)



SAMPLED MODELS 139

but computing the expectation may be hard. However, perhaps we are willing to say that θ
may take on one of a set of values θ1, . . . , θK , each with probability qk. Now we can solve

max
p

K∑
k=1

pD(p|θk)qk. (4.17)

Whereas equation (4.16) may be intractable, (4.17) may be much easier.
Both (4.15) and (4.17) are examples of sampled models. However, the representation

in (4.15) is used in settings where Wn is a sample drawn from a typically large (often
infinite) set of potential outcomes, where each is drawn with equal likelihood. The model
in (4.17) is used when we have an uncertain belief about parameters, and are using the set
θ1, . . . , θK , with a probability vector q that may evolve over time. For now, we are going
to assume that we have drawn a random sample W 1, . . . ,WN where each is sampled with
equal likelihood.

4.3.2 Benders decomposition for a sampled convex problem

There are many problems where F (x,W ) is convex in x for a given value of W . An
important problem class is a variant of our basic stochastic optimization problem known
as the two-stage stochastic programming problem. In this problem, instead of making a
single decision x and then observing W , we make an initial decision x0, then observe
W1, and finally get to make one more decision x1. Both x0 and x1 are vectors subject
to linear constraints. For example, imagine that x0 involves the decision on how much
inventory Amazon should place in each of its fulfillment centers. Then, after observing the
W1 = (D1, c1), where D1 is the demand for various products and c1 are the transportation
costs, Amazon then has to decide from which fulfillment centers demands should be
satisfied.

The problem to find x0, known as the first stage problem, is given by

max
x0

(
c0x0 + EQ1(x0,W )

)
. (4.18)

This problem is solved subject to the constraints,

A0x0 = b, (4.19)
x0 ≥ 0, (4.20)

where (4.19) represents constraints on how much inventory can be placed in each fulfillment
center (captured by b). We then solve the second stage problem to determine x1, given the
first stage decisions. Assume that we observe outcome ω for the random variable W . The
resulting problem would be written

Q1(x0, ω) = max
x1(ω)

c1(ω)x1(ω), (4.21)

subject to, for all ω ∈ Ω,

A1x1(ω) ≤ B1x0, (4.22)
B1x1(ω) ≤ D1(ω), (4.23)
x1(ω) ≥ 0. (4.24)
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Equation (4.22) enforces the constraints that we cannot ship product from fulfillment
centers that have not been built (and we have to stay within the capacity of centers that
have been built). Equation (4.23) represents the demand constraints, where we assume
our contribution vector c1 is designed to give a high incentive to meet demand. Let β(ω)
be the dual variable of the resource constraint (4.22) which reflects the effect of the first
stage decision x0 on the second stage. The function Q1(x0,W ) is known in the stochastic
programming literature as the recourse function since it allows us to respond to different
outcomes using the variables x1(ω) which are chosen after choosing x1 and observing
W (ω). Thus, we might want to satisfy demand in Texas from a nearby fulfillment center
in Houston, but if that center does not have sufficient inventory, our recourse is to satisfy
demand from a more distant center in Chicago.

We face the challenge of approximating the functionQ1(x0) = EQ1(x0,W ) so that we
can solve the initial problem for x0 in equation (4.18). It would also be nice if we could do
this in a way so that we can solve the first stage problem as a linear program, which makes
it easy to handle the vector x0. There are several strategies we can draw on, but here we
are going to illustrate a powerful idea known as Benders decomposition. In a nutshell, our
second stage functionQ1(x0,W ) is a linear program, which means that it is concave in the
right hand side constraint B1x0 (because we are maximizing).

We illustrate Benders decomposition in the context of solving a sampled version of the
problem. We do this by replacing our original full sample space Ω (over which the original
expectation E is defined) with a sampled set of outcomes Ω̂ = (ω1, . . . , ωK). For each
solution, we would obtain the optimal value Q̂(x0, ω), and the corresponding dual variable
β(ω). We then define the sampled Q-function as

Q̂1(x0) =
1

K

K∑
k=1

Q1(x0, ω
k).

Benders decomposition iteratively builds up an approximation ofQ1(x0) by constructing a
series of supporting hyperplanes (we could also call these linear approximations) derived
by solving the second stage linear program for individual samples ω of the random vector
W . We do this by solving equations (4.21)-(4.24) for ω = ωk for k = 1, . . . ,K, and obtain

αk = Q(x0, ω
k),

βk = β(ωk).

where β(ωk) is the dual variable for constraint (4.22). We then solve

x∗0 = arg max
x0,z

(
c0x0 + z), (4.25)

subject to (4.19) - (4.20) and

z ≤ αk + βkx0, k = 1, . . . ,K. (4.26)

Equation (4.26) creates a multidimensional envelop, depicted in figure 4.1, which depicts the
sampled function Q̂1(x0) and the original true function Q1(x0). Note that the hyperplanes
touch the sampled function Q̂1(x0), but only approximate the true function Q1(x0).

We close by noting that this is one way of solving convex problems, but it requires
assuming that the sampled approximation will provide a good solution. This has opened a
body of literature focusing on the design of good samples, which is challenging in the high
dimensional settings of linear programs. Later, we are going to revisit this approach using
an adaptive method which iteratively samples from the full space.
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Figure 4.1 Illustration of Benders cuts shown next to exact (Q1(x0)) and sampled (Q̂1(x0))
recourse functions.

4.3.3 Convergence

The first question that arises with sampled models concerns how large N needs to be.
Fortunately, the sample average approximation enjoys some nice convergence properties.
We start by defining

F (x) = EF (x,W ),

F
N

(x) =
1

N

N∑
n=1

F (x,Wn).

The simplest (and most intuitive) result is that we get closer to the optimal solution as the
sample size grows. We write this by saying

lim
N→∞

F
N

(x)→ EF (x,W ).

Let xN be the optimal solution of the approximate function, which is to say

xN = arg max
x∈X

F
N

(x).

The asymptotic convergence means that we will eventually achieve the optimum solution,
a result we state by writing

lim
N→∞

F
N

(xN )→ F (x∗).

These results tell us that we will eventually achieve the best possible objective function
(note that there may be more than one optimal solution). The most interesting and important
result is the rate at which we achieve this result. We start by assuming that our feasible
region X is a set of discrete alternatives x1, . . . , xM . This might be a set of discrete
choices (e.g. different product configurations or different drug cocktails), or a discretized
continuous parameter such as a price or concentration. Or, it could be a random sample of
a large set of possibly vector-valued decisions.
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Now, let ε be some small value (whatever that means). The amazing result is that as
N increases, the probability that the optimal solution to the approximate problem, XN , is
more than ε from the optimal shrinks at an exponential rate. We can write this statement
mathematically as

P[F (xN ) < F (x∗)− ε] < |X |e−ηN , (4.27)

for some constant η > 0. What equation (4.27) is saying is that the probability that the
quality of our estimated solution xN , given byF (xN ), is more than ε away from the optimal
F (x∗), decreases at an exponential rate e−ηN with a constant, |X |, that depends on the
size of the feasible region. The coefficient X is quite large, of course, and we have no idea
of the magnitude of η. However, the result suggests that the probability that we do worse
than F (x∗)− ε (remember that we are maximizing) declines exponentially with the same
size N , which is comforting.

A similar but stronger result is available when x is continuous and f(x,W ) is convex,
and the feasible region X might be specified by a set of linear inequalities. In this case, the
convergence is given by

P[F (xN ) < F (x∗)− ε] < Ce−ηN , (4.28)

for given constants C > 0 and η > 0. Note that unlike (4.27), equation (4.28) does not
depend on the size of the feasible region, although the practical effect of this property is
unclear.

The convergence rate results (4.27) (for discrete decisions) or (4.28) (for convex func-
tions) tell us that as we allow our sample size N to increase, the optimal objective function
F (xN ) approaches the optimal solution F (x∗) at an exponential rate, which is a very
encouraging result. Of course, we never know the parameters η, or C and β, so we have to
depend on empirical testing to get a sense of the actual convergence rate.

The exponential convergence rates are encouraging, but there are problems such as linear
(or especially integer) programs that are computationally challenging even when N = 1.
We are going to see these later in the context of models where we use sampling to look into
the future. There are two computational issues that will need to be addressed:

Sampling - Rather than just doing random sampling to obtainW 1, . . . ,WN , it is possible
to choose these samples more carefully so that a smaller sample can be used to
produce a more realistic representation of the underlying sources of uncertainty.

Decomposition - The sampled problem (4.15) can still be quite large (it is N times
bigger than the problem we would obtain if we just used expectations for uncertain
quantities), but the sampled problem has structure we can exploit using decomposition
algorithms.

We defer until chapter 10 a more complete description of sampling methods to represent
uncertainty. We then wait until chapter 20 to show how decomposition methods can be
used in the setting of lookahead policies.

4.3.4 Decomposition strategies

From time to time, we encounter problems where the deterministic problem

max
x∈X

F (x,W ),
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where W is a point estimate of the random variable W , is reasonably difficult to solve.
For example, it might be a reasonably large integer program such as might arise when
scheduling airlines or planning when energy generators should turn on and off. In this
case, F (x,W ) would be the contribution function and X would contain all the constraints,
including integrality. Imagine that we can solve the deterministic problem, but it might not
be that easy (integer programs might have 100,000 integer variables).

If we want to capture the uncertainty of W using a sample of, say, 20 different values
of W , then we create an integer program that is 20 times larger. Even modern solvers on
today’s computers have difficulty with this. Imagine that we decompose the problem so
that there is a different solution for each possible value of W ? We are going to introduce
notation that we will use throughout the volume by letting ω1, ω2, . . . , ωN be the set of
outcomes of W where Wn = W (ωn).

Now, imagine that we are going to create a solution x(ω) for each outcome. We might
start by rewriting our sampled stochastic optimization problem (4.15) as

max
x(ω1),...,x(ωN )

1

N

N∑
n=1

F (x(ωn),W (ωn)). (4.29)

We can solve this problem by creatingN parallel problems and obtaining a different solution
x(ωn) for each ω. This is like peeking into the future and then choosing the decision you
would make after you see the uncertainty. This is like allowing the aircraft to arrive late to
an airport because we already knew that it was going to be delayed on its next leg.

The good news is that this is a starting point. What we really want is a solution where all
the x(ω) are the same. We can introduce a constraint, often known as a nonanticipativity
constraint, that looks like

x(ωn)− x̄ = 0, n = 1, . . . , N.

If we introduce this constraint, we are just back to our original (and very large) problem.
But what if we relax this constraint and add it to the objective function. For example, we
might solve

max
x(ω1),...,x(ωN )

1

N

N∑
n=1

(
F (x(ωn),W (ωn)) + λn(x(ωn)− x̄)

)
. (4.30)

What is nice about this new objective function is that, just as with the problem in (4.29),
it decomposes into N problems, which makes the overall problem solvable. Now the
difficulty is that we have to coordinate the different subproblems by manipulating the
vector λ1, . . . , λN . We are not going to address this problem in detail, but this hints at a
path for solving large scale problems using sampled means.

4.3.5 Creating a sampled model

A particularly important problem with large-scale applications is the design of the sample
W 1, . . . ,WN . The most popular methods for generating a sample are:

• From history - We may not have a formal probability model for W , but we can draw
samples from history. For example, Wn might be a sample of wind speeds over a
week, or currency fluctuations over a year.
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• Monte Carlo simulation - There is a powerful set of tools on the computer known
as Monte Carlo simulation which allow us to create samples of random variables as
long as we know the underlying distribution (we cover this in more detail in chapter
10).

In some instances we have an interest in creating a reasonable representation of the
underlying uncertainty with the smallest possible sample. For example, imagine that we
are replacing the original problem maxxEF (x,W ) with a sampled representation

max
x

1

N

N∑
n=1

F (x,Wn).

Now imagine that x is a (possibly large) vector of integer variables, which might arise if
we are trying to schedule aircraft for an airline, or to design the location of warehouses
for a large logistics network. In such settings, even a deterministic version of the problem
might be challenging, whereas we are now trying to solve a problem that is N times as
large. Instead of solving the problem over an entire sample W 1, . . . ,WN , we may be
interested in using a good representative subset (W j), j ∈ J . Assume thatWn is a vector
with elements Wn = (Wn

1 , . . . ,W
n
k , . . . ,W

n
K). One way to compute such a subset is to

compute a distance metric d1(n, n′) between Wn and Wn′ which we might do using

d1(n, n′) =

K∑
k=1

|Wn
k −Wn′k |.

This would be called an “L1-norm” because it is measuring distances by the absolute
value of the distances between each of the elements. We could also use an “L2-norm” by
computing

d2(n, n′) =

(
K∑
k=1

(Wn
k −Wn′k)2

) 1
2

.

The L2-norm puts more weight on large deviations in an individual element, rather than a
number of small deviations spread over many dimensions. We can generalize this metric
using

dp(n, n′) =

(
K∑
k=1

(Wn
k −Wn′k)p

) 1
p

.

However, other than theL1 andL2 metrics, the only other metric that is normally interesting
is the L∞-norm, which is the same as setting d∞(n, n′) equal to the absolute value of the
largest difference across all the dimensions.

Using the distance metric dp(n, n′), we choose a number of clusters J and then organize
the original set of observations W 1, . . . ,Wn into J clusters. This can be done using a
popular family of algorithms that go under names such as k-means clustering or k-=nearest
neighbor clustering. There are different variations of these algorithms which can be found
in standard libraries such as R and Matlab. The core idea in these procedures can be
roughly described as:

Step 0 Use some rule to pick J centroids. This might be suggested by problem structure,
or you can pick J elements out of the set W 1, . . . ,WN at random.
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Step 1 Now step through each W 1, . . . ,WN and assign each one to the centroid that
minimizes the distance dp(n, j) over all centroids j ∈ J .

Step 2 Find the centroids of each of the clusters and return to Step 1 until you find that
your clusters are the same as the previous iteration (or you hit some limit).

This simple process is easy to code, but we recommend using one of the standard routines
in libraries such as R or Matlab if these are available. A nice feature of this approach is
that it can be applied to even high-dimensional random variables W , as might arise when
W represents observations (wind speed, prices) over many time periods, or if it represents
observations of the attributes of groups of people (such as medical patients).

The challenge of representing uncertain events using well-designed samples is growing
into a mature literature. We refer the reader to the bibliographic notes for some guidance
as of the time that this volume is being written.

4.4 ADAPTIVE LEARNING ALGORITHMS

When we cannot calculate the expectation exactly, either through structure or resorting
to a sampled model, we have to resort to adaptive learning algorithms. This transition
fundamentally changes how we approach stochastic optimization problems, since any
adaptive algorithm can be modeled as a sequential decision problem, otherwise known as
a dynamic program.

We separate our discussion of adaptive learning algorithms between derivative-based
algorithms, discussed in chapter 5, and derivative-free algorithms, presented in chapter 7.
In between, chapter 6 discusses the problem of adaptively learning a signal, a problem
that introduces the annoying but persistent problem of stepsizes that we first encounter in
chapter 5, but which pervades the design of adaptive learning algorithms.

We begin by offering a general model of adaptive learning problems, which are basically
a simpler example of the dynamic programs that we consider later in the book. As we
illustrate in chapters 5 and 7, adaptive learning methods can be viewed as sequential decision
problems (dynamic programs) where the state variable captures only what we know about
the problem. This gives us an opportunity to introduce some of the core ideas of sequential
decision problems, without all the richness and complexity that come with this problem
class.

Below, we sketch the core elements of any sequential decision problem, and then outline
the fundamental class of policies (sometimes called algorithms) that are used to solve them.

4.4.1 Modeling adaptive learning problems

Whether we are solving a derivative-based or derivative-free problem, any adaptive learning
algorithm is going to have the structure of a sequential decision problem, which has five
core components:

State Sn - This will capture the current point in the search, and other information required
by the algorithm. The nature of the state variable depends heavily on how we are
structuring our search process. For now, the state variable will only capture the belief
about a function. In chapter 9, we tackle the problem of modeling general dynamic
programs which include states that are directly controllable (most often, these are
physical problems).
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Decision - While this is sometimes xn, the precise “decision” being made within an
adaptive learning algorithm depends on the nature of the algorithm, as we see in
chapter 5. Depending on the setting, decisions are made by a decision rule, an
algorithm, or (the term we primarily use), a policy. If x is our decision, we designate
Xπ(S) as the policy (or algorithm).

Exogenous information Wn - This is the new information that is sampled during the nth
iteration, either from a Monte Carlo simulation or observations from an exogenous
process (which could be a computer simulation, or the real world).

Transition function - The transition function includes the equations that govern the evo-
lution from Sn to Sn+1. Our default notation used throughout this volume is to
write

Sn+1 = SM (Sn, xn,Wn+1).

Objective function - This is how we evaluate how well the policy is performing. The
notation depends on the setting. We may have a problem where we make a decision
xn at the end of iteration n, then observe information Wn+1 in iteration n + 1,
from which we can evaluate our performance using F (xn,Wn+1). This is going
to be our default notation for learning problems. When we make the transition to
more complex problems with a physical state, we are going to encounter problems
where the contribution (cost if minimizing) depends on the state Sn and decision
xn, which we would write as C(Sn, xn). The contribution might also depend on
Wn+1, in which case we would write it as C(Sn, xn,Wn+1), or it might depend on
the downstream state Sn+1, in which case we would write it as C(Sn, xn, Sn+1),
a form that is popular when the transition function is unknown. We return to the
objective function below.

We are going to be able to model any sequential learning algorithm as a sequential decision
process that can be modeled as the sequence

(S0, x0 = Xπ(S0),W 1, S1, x1 = Xπ(S1),W 2, . . .).

Thus, all sequential learning algorithms, for any stochastic optimization problem, can
ultimately be reduced to a sequential decision problem, otherwise known as a dynamic
program.

For now (which is to say, chapters 5 and 7), we are going to limit our attention to
where decisions only affect what we learn about the function we are optimizing. In
chapter 8, we are going to introduce the complex dimension of controllable physical states.
Mathematically, there is no difference in how we formulate a problem where the state
consists only of what we know about a function, versus problems where the state captures
the locations of people, equipment and inventory. However, pure learning problems are
much simpler, and represent a good starting point for modeling and solving stochastic
optimization problems using sequential (adaptive) methods.

4.4.2 Online vs. offline applications

The terms “online” and “offline” are terms that are widely used in both machine learning
and stochastic optimization settings, but they take on different interpretations which can be
quite important, and which have created considerable confusion in the literature. Below
we explain the terms in the context of these two communities, and then describe how these
terms are used in this volume.
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Machine learning

Machine learning is an optimization problem that involves minimizing the error between
a proposed model (typically parametric) and a dataset. We can represent the model by
f(x|θ) where the model may be linear or nonlinear in θ (see chapter 3). The most
traditional representation is to assume that we have a set of input variables x1, . . . , xn with
a corresponding set of observations y1, . . . , yn, to which we are going to fit our model by
solving

min
θ

n∑
i=1

(yi − f(xi|θ))2, (4.31)

where we might represent the optimal solution to (4.31) by θ∗. This problem is solved as
a batch optimization problem using any of a set of deterministic optimization algorithms.
This process is classically known as offline learning in the machine learning. Once we find
θ∗, we would presumably use our model f(x|θ∗) to make forecasts in the future. Of course,
we are hoping that our model fitted using the result of solving equation (4.31) minimizes
the error between the model f(x|θ∗) and the observations y1, . . . , yn, but these errors are
not counted in our initial fitting.

In online learning, we assume that data is arriving sequentially over time. In this case,
we are going to assume that we see xn and then observe yn+1, where the use of n + 1 is
our way of showing that yn+1 is observed after seeing x0, . . . , xn. Let Dn be our dataset
at time n where

Dn = {x0, y1, x1, y2, . . . , xn−1, yn}.

We need to estimate a new value of θ, which we call θn, for each new piece of information
which includes (xn−1, yn). We would call any method we use to compute θn a learning
policy, but one obvious example would be

θn = arg min
θ

n−1∑
i=0

(yi+1 − f(xi|θ))2.

More generally, we could write our learning policy as θn = Θπ(Dn). As our dataset
evolves D1, D2, . . . , Dn, Dn+1, . . ., we update our estimate θn sequentially.

In the eyes of the machine learning community, the difference between the offline
problem in equation (4.31) and the online learning problem in (4.32) is that the first is a
single, batch optimization problem, while the second is implemented sequentially.

Optimization

Imagine that we are trying to design a new material to maximize the conversion of solar
energy to electricity. We will go through a series of experiments testing different materials,
as well as continuous parameters such as the thickness of a layer of a material. We wish
to sequence our experiments to try to create a surface that maximizes energy conversion
within our experimental budget. What we care about is how well we do in the end; trying
a design that does not work is not a problem as long as the final design works well.

Now consider the problem of actively tilting solar panels to maximize the energy pro-
duction over the course of the day, where we have to handle not just the changing angle
of the sun during the day (and over seasons), but also with changes in cloud cover. Again,
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we may have to experiment with different angles, but now we need to maximize the total
energy created while we are trying to learn the best angle.

We would treat the first problem as an offline learning problem since we are learning
in the lab. Because we are in the lab, we do not mind failed experiments as long as we
get the best result in the end. Let xn specifies our experimental choices after we have run
n experiments (types of materials, thicknesses) and let Wn+1 is the power generated by
the material from the n+ 1st experiment. Finally assume we are choosing xn using some
experimental policy Xπ(Sn) where Sn captures our belief state after n experiments. If
we run N experiments, let xπ,N be the final design given what we know (captured by SN )
after our budget of N experiments has been. We evaluate the performance of the policy
using

Fπ = EF (xπ,N ,W ),

where the expectation means testing the design over different conditions. A nice goal is to
find the policy that produces the best performance, which we might write as

max
π

Fπ.

We call this the “final reward.”
In the second problem, where x is now the tilt in the solar panel, we need to find a control

strategy (we will call it a policy) Xπ(St) given what we know at time t. Let xt = Xπ(St)
be the control used during the period t to t+1 after which we observe the energy generated
given by Wt+1. We want to pick a policy that solves

max
π

E
T∑
t=0

F (Xπ(St),Wt+1). (4.32)

We call this the “cumulative reward.”

Perspectives of offline and online

These two examples illustrate two perspectives of offline vs. online. In the machine
learning community, “offline” means batch, while ”online” means sequential, and it does
not matter if the algorithm is being run sequentially “offline” on data to estimate a model
to be used later, or if it is being used in the field where data is arriving over time (which
forces sequential updates).

In optimization problems (and yes, we know that machine learning is an optimization
problem) offline means that we need to find a design where all that matters is the final design,
and not how we got there. Further, while optimization can be done in batch (for example,
by solving a linear programming problem using a solver), there are many problems (such as
the experimental setting we described above) where offline learning might be done using a
sequential process (but in the lab). By contrast, if the optimization is being run in the field,
then we have to live with our performance over time. Thus, an optimization algorithm can
be fully sequential but run in the lab where we only care about the performance of the final
design xπ,N , or in the field where we have to live with the results of each experiment.

In this volume, we will try to use the terms “offline” and “online” in a way that is
sensitive to both perspectives. In particular, we will make the distinction between “final
reward” (or cost), and “cumulative reward” (or cost), where final reward refers to the final
design (and not how we got there), while cumulative reward means we are adding up our
performance over the learning iterations.
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4.4.3 Objective functions for learning

In contrast with the exact methods for solving stochastic optimization problems, there
are different ways to formulate the objective function for adaptive learning problems.
For learning problems, we are going to let F (x,W ) be the function that captures our
performance objective when we make decision x and then observe random information
W . In an iterative setting, we will write F (xn,Wn+1); in a temporal setting, we will
write F (xt,Wt+1). Our choice xn = Xπ(Sn) will be made by a policy that depends on
the state, but otherwise the contribution F (x,W ) depends only on the action and random
information.

The function EF (x,W ) captures the performance of our implementation decision x.
To make a good decision, we need to design an algorithm, or more precisely, a learning
policy Xπ(S), that allows us to find the best x. There are different objective functions for
capturing the performance of a learning policy:

Terminal reward - Let xπ,n = Xπ(Sn) be our solution at iteration n while following
policy π. We may analyze the policy π in two ways:

Finite time analysis - Here, we want to solve

max
π

EF (xπ,N ,W ) = EW 1,...,WNExπ,N |W 1,...,WNEWF (xπ,N ,W ). (4.33)

Asymptotic analysis - In this setting, we are trying to establish that

lim
N→∞

xπ,N → x∗

where x∗ solves maxx EF (x,W ). In both of these settings, we are only
interested in the quality of the final solution, whether it is xπ,N or x∗. We do
not care about the solutions obtained along the way.

Cumulative reward - Cumulative reward objectives arise when we are interested not just
in the performance after we have finished learning the best asymptotic design x∗, or
the best design in a finite budget N , xπ,N , or finite time T , xπT . We divide these
problems into two broad classes:

Deterministic policy - The most common setting is where we want to design a
single policy that optimizes the cumulative reward over some horizon. We can
further divide static policies into two classes:
Stationary policy - This is the simplest setting, where we wish to find a single

policy Xπ(St) to solve:

max
π

E
T−1∑
t=0

F (Xπ(St),Wt+1). (4.34)

within a finite time horizon T . We may write this in both discounted and
average reward forms:

max
π

E
T∑
t=0

γtC(St, X
π(St)). (4.35)

max
π

E
1

T

T∑
t=0

C(St, X
π(St)). (4.36)
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Both (4.35) and (4.36) can be extended to infinite horizon, where we would
replace (4.36) with

max
π

lim
T→∞

E
1

T

T∑
t=0

C(St, X
π(St)). (4.37)

Nonstationary policy - There are many problems where we need a time-
dependent policy Xπ

t (St), either because the behavior needs to vary by
time of day, or because we need different behaviors based on how close
the decisions are to the end of horizon. We denote the policy by time t as
Xπ
t (St), but let πt refer to the choices (type of function, parameters) we

need to make for each time period. These problems would be formulated

max
π0,...,πT−1

E
T−1∑
t=0

F (Xπ
t (St),Wt+1). (4.38)

Although the policies are time dependent, they are in the class of static
policies because they are designed before we start the process of making
observations.

Adaptive policy - Now we allow our policies to learn over time, as would often
happen in an online setting. Modeling this is a bit subtle, and it helps to use an
example. Imagine that our policy is of the form

Xπ(St|θ) = θ0 + θ1St + θ2S
2
t .

This would be an example of a stationary policy parameterized by θ =
(θ0, θ1, θ2). Now imagine that θ is a function of time, so we would write
our policy as

Xπ(St|θt) = θt0 + θt1St + θt2S
2
t .

Finally, imagine that we have an adaptive policy that updates θt after computing
xt = Xπ(St|θt) and observing Wt+1. Just as we have to make a decision xt,
we have to “decide” on how to set θt+1 given St+1 (which depends on St, xt
and Wt+1). Imagine that we call the θ-updating policy Θπ , where we would
write

θt = Θπθ (St).

We refer to Θπθ (St) as the learning policy while Xπ(St|θt) as the implemen-
tation policy. This problem is formulated as

max
π

max
πθ

E
T−1∑
t=0

F (Xπ(St|θt),Wt+1).

where π refers to the design of the implementation policy Xπ(St|θt) while
θt = Θπθ (St) is the policy that updates any parameters in the implementation
policy (technically, this policy depends on the structure of the implementation
policy π). As always, St+1 = SM (St, xt = Xπ(St|θt),Wt+1). We leave to
later the description of how to model and search over learning policies.
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For learning problems (problems where the function F (x,W ) does not depend on the
state), we are going to use (4.33) (the terminal reward) or (4.34) (the cumulative reward for
stationary policies) as our default notation for the objective function.

It is common, especially in the machine learning community, to focus on regret rather
than the total reward, cost or contribution. Regret is simply a measure of how well you
do relative to how well you could have done (but recognize that there are different ways
of defining the best we could have done). For example, imagine that our learning policy
has produced the approximation F

π,N
(x) of the function EF (x,W ) by following policy

π after N samples, and let

xπ,N = arg max
x

F
π,N

(x)

be the best solution based on the approximation. The regretRπ,N would be given by

Rπ,N = max
x

EF (x,W )− EF (xπ,N ,W ). (4.39)

Of course, we cannot compute the regret in a practical application, but we can study the
performance of algorithms in a setting where we assume we know the true function (that is,
EF (x,W )), and then compare policies to try to discover this true value. Regret is popular
in theoretical research (for example, computing bounds on the performance of policies),
but it can also be used in computer simulations comparing the performance of different
policies.

4.4.4 Designing policies

Now that we have presented a framework for modeling our learning problems, we need to
address the problem of designing policies (we will sometimes refer to these as algorithms),
especially in chapter 5 when we deal with derivative-based optimization.

There are two fundamental strategies for designing policies, each of which break down
into two subclasses, creating four classes of policies:

Policy search - These are functions that are tuned to work well over time without directly
modeling the effect of a decision now on the future. Policies designed using policy
search fall into two styles:

Policy function approximations (PFAs) - PFAs are analytical functions that map
directly from state to action.

Cost function approximations (CFAs) - CFAs involve maximizing (or minimiz-
ing) a parametric function.

Lookahead policies - These are policies that are designed by estimating, directly or in-
directly, the impact of a decision now on the future. There are again two ways of
creating these policies:

Value function approximations (VFAs) - If we are in a state Sn, take an action
xn, that leads (with the introduction of new information) to a new state Sn+1,
assume we have a function V n+1(Sn+1) that estimates (exactly or, more of-
ten, approximately) the value of being in state Sn+1. The value function
V n+1(Sn+1) captures the impact of decision xn.
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Direct lookahead policies (DLAs) - These are policies where we model the down-
stream trajectory of each decision before deciding which decision to make
now.

The importance of each of these four classes depends on the characteristics of the problem.
We are going to see all four of these classes used in the setting of derivative-free opti-
mization in chapter 7. By contrast, derivative-based search strategies reviewed in chapter
5 have historically been more limited, although this perspective potentially introduces new
strategies that might be pursued. When we transition to problems with physical states
starting in chapter 8, we are going to see that we will need to draw on all four classes. For
this reason, we discuss these four classes in more depth in chapter 11.

4.5 CLOSING REMARKS

This chapter offers three fundamental perspectives of stochastic optimization problems.
Section 4.2 is basically a reminder that any stochastic optimization problem can be solved
as a deterministic optimization problem if we are able to compute the expectation exactly.
While this will not happen very often, we offer this section as a reminder to readers not to
overlook this path.

Section 4.3 then introduces the powerful approach of using sampled models, where
we overcome the complexity of computing an expectation by replacing the underlying
uncertainty model with a small sampled set, which is much easier to model. This strategy
should always be in your toolbox, even when it will not solve the entire problem.

When all else fails (which is most of the time), we are going to need to turn to adaptive
learning strategies, which we introduce in section 4.4. These approaches have evolved into
substantial areas of research, which we divide into derivative-based methods in chapter 5,
and derivative-free methods in chapter 7. In chapter 5, we are going to see that we need a
device called “stepsizes” (which we cover in chapter 6), which can be viewed as a type of
decision, where different stepsize rules are actually types of policies.

4.6 BIBLIOGRAPHIC NOTES

• Section xx - A good reference for contextual bandit problems is given in Bubeck &
Cesa-Bianchi (2012).

PROBLEMS

4.1 In a flexible spending account (FSA), a family is allowed to allocate x pretax dollars
to an escrow account maintained by the employer. These funds can be used for medical
expenses in the following year. Funds remaining in the account at the end of the following
year are given back to the employer. Assume that you are in a 35 percent tax bracket
(sounds nice, and the arithmetic is a bit easier).

LetW be the random variable representing total medical expenses in the upcoming year,
and let PW (S) = Prob[W ≤ w] be the cumulative distribution function of the random
variable W .

a) Write out the objective function F (x) that we would want to solve to find x to minimize
the total cost (in pretax dollars) of covering your medical expenses next year.
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b) If x∗ is the optimal solution and ∇xF (x) is the gradient of your objective function if
you allocate x to the FSA, use the property that ∇xF (x) = 0 to derive the critical
ratio that gives the relationship between x∗ and the cumulative distribution function
PW (w).

c) Given your 35 percent tax bracket, what percentage of the time should you have funds
left over at the end of the year?

4.2 Consider the problem faced by a mutual fund manager who has to decide how much
to keep in liquid assets versus investing to receive market returns. Assume he hasRt dollars
to invest at the end of day t, and needs to determine the quantity xt to put in cash at the
end of day t to meet the demand D̂t+1 for cash in day t + 1. The remainder, Rt − xt,
is to be invested and will receive a market return of ρ̂t+1 (for example, we might have
ρ̂t+1 = 1.0002, implying a dollar invested is worth 1.0002 tomorrow). Assume there is
nothing earned for the amount held in cash.

If D̂t > xt−1 , the fund manager has to redeem stocks. Not only is there a transaction
cost of 0.20 percent (redeeming $1000 costs $2.00), the manager also has to pay capital
gains. His fund pays taxes on the average gain of the total assets he is holding (rather than
the gain on the money that was just invested). At the moment, selling assets generates a
tax commitment of 10 percent which is deducted and held in escrow. Thus, selling $1000
produces net proceeds of 0.9(1000 { 2). As a result, if he needs to cover a cash request of
$10,000, he will need to sell enough assets to cover both the transaction costs (which are
tax deductible) and the taxes, leaving $10,000 net proceeds to cover the cash request.

a) Formulate the problem of determining the amount of money to hold in cash as a
stochastic optimization problem. Formulate the objective function F (x) giving the
expected return when holding x dollars in cash.

b) Give an expression for the stochastic gradient ∇xF (x).

c) Find the optimal fraction of the time that you have to liquidate assets to cover cash
redemption. For example, if you manage the fund for 100 days, how many days
would you expect to liquidate assets to cover cash redemptions?

4.3 Independent system operators (ISOs) are companies that manage our power grid by
matching generators (which create the energy) with customers. Electricity can be generated
via steam, which takes time, or gas turbines which are fast but expensive. Steam generation
has to be committed in the day-ahead market, while gas turbines can be brought on line
with very little advance notification.

Let xt be the amount of steam generation capacity (measured in megawatt-hours) that
is requested on day t to be available on day t + 1. Let psteamt,t+1 be the price of steam on
day t + 1 that is bid on day t (which is known on day t). Let Dt+1 be the demand for
electricity (also measured in megawatt-hours) on day t+ 1, which depends on temperature
and other factors that cannot be perfectly forecasted. However, we do know the cumulative
distribution function ofDt+1 , given byFD(d) = Prob[Dt+1 < d]. If the demand exceeds
the energy available from steam (planned on day t), then the balance has to be generated
from gas turbines. These are bid at the last minute, and therefore we have to pay a random
price pGTt+1. At the same time, we are not able to store energy; there is no inventory held
over if Dt+1 < xt. Assume that the demand Dt+1 and the price of electricity from gas
turbines pGTt+1 are independent.
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a) Formulate the objective function F (x) to determine xt as an optimization problem.

b) Compute the stochastic gradient of your objective function F (x) with respect to xt.
Identify which variables are known at time t, and which only become known at time
t+ 1.

c) Find an expression that characterizes the optimal value of xt in terms of the cumulative
probability distribution FD(d) of the demand DT .

4.4 We are going to illustrate the difference between

max
x

EF (x,W ) (4.40)

and

max
x

F (x,EW ) (4.41)

using a sampled belief model. Assume we are trying to price a product where the demand
function is given by

D(p|θ) = θ0 eU(p|θ)

1 + eU(p|θ) , (4.42)

where

U(p|θ) = θ1 + θ2p.

Our goal is to find the price that maximizes total revenue given by

R(p|θ) = pD(p|θ). (4.43)

Here, our random variable W is the vector of coefficients θ = (θ0, θ1, θ2) which can take
one of four possible values of θ given by the set Θ = {θ1, θ2, θ3, θ4}.

θ P (θ) θ0 θ1 θ2

θ1 0.20 50 4 -0.2
θ2 0.35 65 4 -0.3
θ3 0.30 75 4 -0.4
θ4 0.15 35 7 -0.25

Table 4.1 Data for exercise 4.4.

a) Find the price p(θ) that maximizes

max
p

R(p|θ), (4.44)

for each of the four values of θ. You may do this analytically, or to the nearest integer
(the relevant range of prices is between 0 and 40). Either way, it is a good idea to
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plot the curves (they are carefully chosen). Let p∗(θ) be the optimal price for each
value of θ and compute

R1 = Eθ max
p(θ)

R(p∗(θ)|θ). (4.45)

b) Find the price p that maximizes

R2 = max
p

EθR(p|θ), (4.46)

where R(p|θ) is given by equation (4.43).

c) Now find the price p that maximizes

R3 = max
p

R(p|Eθ).

d) Compare the optimal prices and the optimal objective functionsR1, R2 andR3 produced
by solving (4.44), (4.46) and (4.47). Use the relationships among the revenue
functions to explain as much as possible about the relevant revenues and prices.

4.5





CHAPTER 5

DERIVATIVE-BASED STOCHASTIC
SEARCH

We begin our discussion of adaptive learning methods in stochastic optimization by ad-
dressing problems where we have access to derivatives (or gradients, if x is a vector) of our
function F (x,W ). We are going to focus primarily on the asymptotic form of our basic
stochastic optimization problem

max
x∈X

E{F (x,W )|S0}, (5.1)

but later we are going to shift attention to finding the best algorithm (or policy) for finding
the best solution within a finite budget. We are going to show that with any adaptive
learning algorithm, we can define a state Sn that captures what we know after n iterations,
and we can represent any algorithm as a “policy” π, which produces a solution xπ,N after
we exhaust our budget of N iterations. When we focus on this finite-budget setting, the
problem in (5.1) becomes

max
π

E{F (Xπ,N ,W )|S0}. (5.2)

The transition from searching for a real-valued vector x to finding a function π is one of
the central differences between deterministic optimization and most stochastic optimiza-
tion problems, which is to say all stochastic optimization problems that involve adaptive
learning.

In this chapter, we assume that we can compute the gradient∇F (x,W ) once the random
information W becomes known. This is most easily illustrated using the newsvendor
problem. Let x be the number of newspapers placed in a bin, with unit cost c. Let W be

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
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the random demand for newspapers (which we learn after choosing x), which are sold at
price p. We wish to find x that solves

max
x

F (x) = EF (x,W ) = E
(
pmin{x,W} − cx

)
. (5.3)

We can use the fact that we can compute stochastic gradients, which are gradients that we
compute only after we observe the demand W , given by

∇xF (x,W ) =

{
p− c If x ≤W
−c If x > W .

(5.4)

We are going to show how to design simple algorithms that exploit our ability to compute
gradients after the random information becomes known. Even when we do not have direct
access to gradients, we may be able to estimate them using finite differences. We are also
going to see that the core ideas of stochastic gradient methods pervade a wide range of
adaptive learning algorithms.

We start by summarizing a variety of applications.

5.1 SOME SAMPLE APPLICATIONS

Derivative-based problems exploit our ability to use the derivative after the random infor-
mation has been observed (but remember that our decision x must be made before we have
observed this information). These derivatives, known as stochastic gradients, require that
we understand the underlying dynamics of the problem. When this is available, we have
access to some powerful algorithmic strategies that have been developed since these ideas
where first invented in 1951 by Robbins and Monro.

Some examples of problems where derivatives can be computed directly are:

• Cost minimizing newsvendor problem - A different way of expressing the newsvendor
problem is one of minimizing overage and underage costs. Using the same notation
as above, our objective function would be written

min
x

EF (x,W ) = E[co max{0, x−W}+ cu max{0,W − x}]. (5.5)

We can compute the derivative of F (x, D̂) with respect to x afterW becomes known
using

∇xF (x,W ) =

{
c0 If x > W
−cu If x ≤W .

The gradient ∇xF (x,W ) is known as a stochastic gradient because it depends on
the random demand W .

• Nested newsvendor - This hints at a multidimensional problem which would be hard
to solve even if we knew the demand distribution. Here there is a single random
demand D that we can satisfy with products 1, . . . ,K where we use the supply of
products 1, . . . , k − 1 before using product k. For example, imagine that k. The
profit maximizing version is given by

max
x1,...,xK

=

K∑
k=1

pkEmin

xk,
D − k−1∑

j=1

xj

+−
K∑
k=1

ckxk. (5.6)
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Although more complicated than the scalar newsvendor, it is still fairly straightfor-
ward to find the gradient with respect to the vector x once the demand becomes
known.

• Statistical learning - Let f(x|θ) be a statistical model which might be of the form

f(x|θ) = θ0 + θ1φ1(x) + θ2φ2(x) + . . .

Imagine we have a dataset of input variables x1, . . . , xN and corresponding response
variables y1, . . . , Y N . We would like to find θ to solve

min
θ

1

N

N∑
n=1

(yn − f(xn|θ))2.

• Finding the best inventory policy - Let Rt be the inventory at time t. Assume we
place an order xt according to the rule

Xπ(Rt|θ) =

{
θmax −Rt If Rt < θmin

0 Otherwise.

Our inventory evolves according to

Rt+1 = max{0, Rt + xt −Dt+1}.

Assume that we earn a contribution C(Rt, xt, Dt+1)

C(Rt, xt, Dt+1) = pmin{Rt + xt, Dt+1} − cxt.

We then want to choose θ to maximize

max
θ

E
T∑
t=0

C(Rt, X
π(Rt|θ), Dt+1).

If we let F (x,W ) =
∑T−1
t=0 C(Rt, X

π(Rt|θ), Dt+1) where x = (θmin, θmax) and
W = D1, D2, . . . , DT , then we have the same problem as our newsvendor problem
in equation (5.3). In this setting, we simulate our policy, and then look back and
determine how the results would have changed if θ is perturbed for the same sample
path. It is sometimes possible to compute the derivative analytically, but if not, we
can also do a numerical derivative (but using the same sequence of demands).

• Maximizing revenue on Amazon - Assume that demand for a product is given by

D(p|θ) = θ0 − θ1p+ θ2p
2.

Now, find the price p to maximize the revenueR(p) = pD(p|θ) where θ is unknown.

• Optimizing engineering design - An engineering team has to tune the timing of a
combustion engine to maximize fuel efficiency while minimizing emissions. Assume
the design parameters x include the pressure used to inject fuel, the timing of the
beginning of the injection, and the length of the injection. From this the engineers
observe the gas consumption G(x) for a particular engine speed, and the emissions
E(x), which are combined into a utility function U(x) = U(E(x), G(x)) which
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combines emissions and mileage into a single metric. U(x) is unknown, so the goal
is to find an estimate Ū(x) that approximates U(x), and then maximize it.

• Derivatives of simulations - In the previous section we illustrated a stochastic gradient
algorithm in the context of a fairly simple, stochastic function. But imagine that we
have a multiperiod simulation, such as we might encounter when simulating flows
of jobs around a manufacturing center. Perhaps we use a simple rule to govern how
jobs are assigned to machines once they have finished a particular step (such as being
drilled or painted). However, these rules have to reflect physical constraints such
as the size of buffers for holding jobs before a machine can start working on them.
If the buffer for a downstream machine is full, the rule might specify that a job be
routed to a different machine or to a special holding queue.

This is an example of a policy that is governed by static variables such as the size of
the buffer. We would let x be the vector of buffer sizes. It would be helpful, then,
if we could do more than simply run a simulation for a fixed vector x. What if we
could compute the derivative with respect to each element of x, so that after running
a simulation, we obtain all the derivatives?

Computing these derivatives from simulations is the focus of an entire branch of
the simulation community. A class of algorithms called infinitessimal perturbation
analysis was developed specifically for this purpose. It is beyond the scope of our
presentation to describe these methods in any detail, but it is important for readers to
be aware that the field exists.

5.2 MODELING UNCERTAINTY

Before we progress too far, we need to pause and say a few words about how we are
modeling uncertainty, and the meaning of what is perhaps the most dangerous piece of
notation in stochastic optimization, the expectation operator E.

We are going to talk about uncertainty from three perspectives. The first is the random
variable W that arises when we evaluate a solution, which we refer to as implementation
uncertainty. The second is the initial state S0, where we express model uncertainty,
typically in the form of uncertainty about parameters (but sometimes in the structure of the
model itself). Finally, we are going to discuss the uncertainty in implementing an algorithm
(or policy) to find a solution, which we refer to as algorithmic variability.

5.2.1 Implementation uncertaintyW

We illustrate implementation uncertainty using our newsvendor problem, where we make
a decision x, then observe a random demand W = D̂, after which we calculate our profit
using equation (5.3). Imagine that our demand follows a Poisson distribution given by

P[D̂ = d] =
µde−µ

d!
,

where d = 0, 1, 2, . . .. In this setting, our expectation would be over the possible outcomes
of D̂, so we could write (5.3) as

F (x|µ) =

∞∑
d=0

µde−µ

d!

(
pmin{x, d} − cx

)
.
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ω D̂1 D̂2 D̂3 D̂4 D̂5 D̂6 D̂7 D̂8 D̂9 D̂10

1 0 1 6 3 6 1 6 0 2 4

2 3 2 2 1 7 5 4 6 5 4

3 5 2 3 2 3 4 2 7 7 5

4 6 3 7 3 2 3 4 7 3 4

5 3 1 4 5 2 4 3 4 3 1

6 3 4 4 3 3 3 2 2 6 1

Table 5.1 Illustration of six sample paths for the random variable D̂.

It is actually quite rare that we not only have a probability distribution to describe our
uncertainty, but that we can even use it. There are so many problems where randomness is
multidimensional, which means that our expectation is a multidimensional sum or integral.
These expectations are computationally intractable if we have more than two or three
dimensions.

For these cases, we can typically assume that there is some way to generate random
realizations. In our example where W is the demand D̂, we assume that we can generate
a random sequence D̂1, D̂2, . . . , D̂N . We let the Greek letter ω represent an instance of a
set of N sample realizations of D̂. The set Ω is the set of every possible realization, or we
might generate a sample of, say,N sample realizations, and assume that this represents our
uncertainty. In this case, we would call our sampled set of outcomes Ω̂, where it should be
the case that Ω̂ is a subset of the original sample space Ω. Table 5.1 illustrates six sample
paths (each indexed by ω), each of length 10.

We may approximate our newsvendor problem by generating a sample of possible
demands D̂ and storing it in our set Ω̂. Thus, we might generate

Ω̂ = {1, 6, 5, 8, 2, 5, 4, 4, 3, 7}.

Thus, for ω = 3, D̂(ω) = 5.
Using this set, and assuming that each outcome is equally likely, we would write our

estimate of the expectation as

F (x) =
1

|Ω̂|

∑
ω∈Ω̂

pmin{x, D̂(ω)} − cx.

A good exercise when looking at an equation with an expectation is to ask the question:
how might you simulate an approximation of the expectation? This forces a valuable
exercise, which is to think about what variables are random. Keep in mind that these random
samples can come from a distribution, or an external source (the internet, a laboratory
experiment, a computer simulation).

5.2.2 Model uncertainty S0

The initial state S0 carries both the structure of our model, but also any parameters that
define how it works. It also carries probabilistic information about any uncertainties, which
may be in either the structure, or the parameters.
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We can illustrate uncertainty in a parameter by assuming that we do not know the mean
demand µ. However, we may feel that we can describe its likely values using an exponential
distribution given by

µ ∼ λe−λu,

where the parameter λ is known as a hyperparameter, which is to say it is a parameter
that determines a distribution that describes the uncertainty of a problem parameter. The
assumption is that even if we do not know λ precisely, it still does a good job of describing
the uncertainty in the mean demand µ.

Now we have two random variables: the random demand D̂, and the uncertain mean µ.
In this case, we could write W = (µ, D̂). A better way would be to put the uncertainty
around µ in the initial state S0 (here it would be called a prior). In this case, we would
write our problem as

F (x) = E{F (x,W )|S0},
= ES0{EW |S0

F (x,W )|S0}.

For our example, this would be translated as

F (x|λ) = Eµ{ED̂|µF (x, D̂)|µ}.

The notation EW |µ means the conditional expectation given µ. Using our distributions
where the random demand W follows a Poisson distribution with mean µ which is itself
random with an exponential distribution with mean λ, we would write the expectation as

F (x|λ) =

∫ ∞
u=0

λe−λu
∞∑
d=0

ude−u

d!

(
pmin(x, d)− cx

)
.

In practice, we are rarely using explicit probability distributions. One reason is that we may
not know the distribution, but we may have an exogenous source for generating random
outcomes. The other is that we may have a distribution, but it might be multidimensional
and impossible to compute.

5.2.3 Learning uncertainty

Finally, consider an adaptive algorithm (which we first introduced in chapter 4) that proceeds
by guessing xn and then observingWn+1 which leads to xn+1 and so on (we give examples
of these procedures in this chapter). If we limit the algorithm toN iterations, our sequence
will look like

(x0,W 1, x1,W 2, x2, . . . , xn,Wn+1, . . . , xN ).

Below, we are going to describe the rule that produces each xn as a policy π, so it can help
to write each decision as xπ,n, leading to the final solution xπ,N .

Clearly, the final solution xπ,N (as well as all the intermediate solutions) depends on
the sequence W 1, . . . ,WN . That means that xπ,N is a random variable that depends
on the sequence of observations we make while executing the algorithm. In fact, it may
easily be the case that an outcome Wn depends on the previous decision xn−1 (or even
the entire history). For this reason, we are going to designate an outcome of the sequence
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(W 1, . . . ,Wn, . . . ,WN ) by ωπ , which indicates that the sample path may depend on the
policy. We then assume ωπ ∈ Ωπ , where Ωπ is the set of all possible sample paths.

When we finally obtain our solution xπ,N , we then have to evaluate the quality of the
solution. For the moment, let’s fix xπ,N . Now the only uncertainty is the random variable
W when we go to implement xπ,N . However, now we are usingW to test the performance
of xπ,N . It is useful to distinguish the Ws that we use to find xπ,N , and the W we use to
test it. For this reason, we will sometimes use Ŵ as our “testing” W , while the sequence
W 1, . . . ,WN is our “training” Ws.

We typically evaluate a policy by simulating a sequence of W 1, . . . ,WN . Let Ω̂ be a
set of possible samples (perhaps 20 of them) and let ω be one of the elements of the sample
(we might think of ω as being a number from 1 to 20). Then Wn(ω) would be the actual
realization of Wn for the nth sample, as illustrated in table 5.1.

Assume that we have a set of outcomes of W that we call Ω̂, where ω ∈ Ω̂ is one
outcome of W which we represent using W (ω). Once again assume that we have taken a
random sample to create Ω̂ where every outcome is equally likely. Then we could evaluate
our solution xπ,N using

F (xπ,N ) =
1

|Ω̂|

∑
ω∈Ω̂

F (xπ,N ,W (ω)).

The estimate F (xπ,N ) evaluates a single decision xπ,N , but not the policy that produced
the decision. What we are really interested in is the performance of the policy, which we
designate Fπ . To do this, we might write

Fπ = E{F (xπ,N , Ŵ )|S0}. (5.7)

The challenge is now to parse this down to something we can compute. To do this, we have
to break down all the sources of uncertainty. It is instructional to unroll this in reverse as
follows:

Evaluating xπ,N - Given xπ,N , we have to simulate Ŵ to find F (xπ,N , Ŵ ).

Finding xπ,N - Here we have to simulate the sequence W 1, . . . ,WN while following
policy π. In some cases the policy itself is random (for example, the policy might be
to choose an action x with probability π(x|θ)).

Sampling each Wn - While following policy π, an outcome Wn depends on our model
specified in S0, which may include distributional information about a parameter (for
example).

The state S0 - If our initial state includes distributional information about a parameter, we
have to sample over this distribution so that we can simulate Wn.

Recognizing this sequence, we can now rewrite our expectation in (5.7) using

Fπ = ES0EW 1,...,WN |S0
Exπ,N |W 1,...,WNE

Ŵ |xπ,NF (xπ,N , Ŵ ).

In practice, we can replace each expectation by a sample over whatever is random. Fur-
thermore, these samples can be a) sampled from a probability distribution, b) represented
by a large, batch dataset, or c) observed from an exogenous process (which involves online
learning).
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5.2.4 Closing notes

This section is hardly a comprehensive treatment of modeling uncertainty. Given the rich-
ness of this topic, chapter 10 is dedicated to describing the process of modeling uncertainty.
This chapters addresses the types of uncertainty, identifying distributions, and the process
of sampling.

We mention only in passing the growing interest in replacing the expectation E with
some form of risk measure that recognizes that the possibility of extreme outcomes is more
important that is represented by their likelihood (which may be low). Expectations average
over all outcomes, so if extreme events occur with low probability, they do not have much
effect on the solution. Also, expectations may have the effect of letting high outcomes
cancel low outcomes, when in fact one tail is much more important than the other.

5.3 STOCHASTIC GRADIENT METHODS

One of the oldest and earliest methods for solving our basic stochastic optimization problem

max
x

EF (x,W ). (5.8)

uses the fact that we can often compute the gradient of F (x,W ) with respect to x after the
random variable W becomes known. For example, assume that we are trying to solve a
newsvendor problem, where we wish to allocate a quantity x of resources (“newspapers”)
before we know the demand W . The optimization problem is given by

max
x

F (x) = Epmin{x,W} − cx. (5.9)

If we could compute F (x) exactly (that is, analytically), and its derivative, then we could
find x∗ by taking its derivative and setting it equal to zero. If this is not possible, we could
still use a classical steepest ascent algorithm

xn = xn−1 + αn−1∇xF (xn−1), (5.10)

where αn−1 is a stepsize. For deterministic problems, we typically choose the best stepsize
by solving the one-dimensional optimization problem

α∗,n = arg max
α

F
(
xn−1 + α∇F (xn−1)

)
.

We would then update xn using αn−1 = α∗,n.
There are, of course, problems where x has to stay in a feasible region X , which might

be described by a system of linear equations such as

X = {x|Ax = b, x ≥ 0}.

When we have constraints, we can run our update in (5.10) through a projection step that
we write using

xn ← ΠX [xn−1 + αn−1∇xF (xn−1)].

The definition of the projection operator ΠX [·] is given by

ΠX [x] = arg min
x′∈X

‖x− x′‖2, (5.11)
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where ‖x− x′‖2 is the “L2 norm” defined by

‖x− x′‖2 =
∑
i

(xi − x′i)2.

The projection operator ΠX [·] can often be solved easily by taking advantage of the structure
of a problem. For example, we may have box constraints of the form 0 ≤ xi ≤ ui. In
this case, any element xi falling outside of this range is just mapped back to the nearest
boundary (0 or ui).

We assume in our work that we cannot compute the expectation exactly. Instead, we
resort to an algorithmic strategy known as stochastic gradients, but also known as stochastic
approximation procedures. We first present this idea in the classical asymptotic setting,
and then revisit it for the more practical finite budget setting.

5.3.1 A stochastic gradient algorithm - asymptotic analysis

For our stochastic problem, we assume that we either cannot compute F (x), or we cannot
compute the gradient exactly. However, there are many problems where, if we fix W =
W (ω), we can find the derivative of F (x,W (ω)) with respect to x. Then, instead of using
the deterministic updating formula in (5.10), we would instead use

xn = xn−1 + αn−1∇xF (xn−1,Wn). (5.12)

Here, ∇xF (xn−1,Wn) is called a stochastic gradient because it depends on a sample
realization of Wn. It is important to note our indexing. A variable such as xn−1 or αn−1

that is indexed byn−1 is assumed to be a function of the observationsW 1,W 2, . . . ,Wn−1,
but not Wn. Thus, our stochastic gradient ∇xF (xn−1,Wn) depends on our previous
solution xn−1 and our most recent observation Wn. To illustrate, consider the simple
newsvendor problem which objective

F (x,W ) = pmin{x,W} − cx.

In this problem, we order a quantity x = xn−1 (determined at the end of day n − 1, and
then observe a random demand Wn that was observed on day n. We earn a revenue given
by pmin{xn−1,Wn} (we cannot sell more than we bought, or more than the demand),
but we had to pay for our order, producing a negative cost cx. Let ∇F (xn−1,Wn) be the
sample gradient, taken when W = Wn. In our example, this is given by

∂F (xn−1,Wn)

∂x
=

{
p− c If xn−1 < Wn,
−c If xn−1 > Wn.

(5.13)

The quantity xn−1 is the estimate of x computed from the previous iteration (using the
sample realization ωn−1, while Wn is the sample realization in iteration n (the indexing
tells us that xn−1 was computed without knowingWn). When the function is deterministic,
we would choose the stepsize by solving the one-dimensional optimization problem

max
α

F
(
xn−1 + αn−1∇F (xn−1,Wn)

)
.

Now we face the problem of finding the stepsize αn−1. Unlike our deterministic
algorithm, we cannot solving a one-dimensional search to find the best stepsize. Part of the
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problem is that a stochastic gradient can even point away from the optimal solution such
that any positive stepsize actually makes the solution worse. For example, the right order
quantity might be 15. However, even if we order x = 20, it is possible that the demand
is greater 20 on a particular day. Although our optimal solution is less than our current
estimate, the algorithm tells us to increase x.

Remark: Many authors will write equation (5.10) in the form

xn+1 = xn + αn∇F (xn,Wn). (5.14)

With this style, we would say that xn+1 is the estimate of x to be used in iteration n + 1 (although
it was computed with the information from iteration n). We use the form in (5.10) because we will
later allow the stepsizes to depend on the data, and the indexing tells us the information content of
the stepsize. For theoretical reasons, it is important that the stepsize be computed using information
up through n − 1, hence our use of αn−1. We index xn on the left-hand side of (5.10) using n
because the right-hand side has information from iteration n. It is often the case that time t is also
our iteration counter, and so it helps to be consistent with our time indexing notation.

There are many applications where the units of the gradient, and the units of the decision
variable, are different. This happens with our newsvendor example, where the gradient
is in units of dollars, while the decision variable x is in units of newspapers. This is a
significant problem that causes headaches in practice.

A problem where we avoid this issue arises if we are trying to learn the mean of a
random variableW . We can formulate this task as a stochastic optimization problem using

min
x

E
1

2
(x−W )2. (5.15)

Here, our function F (x,W ) = 1
2 (x −W )2, and it is not hard to see that the value of x

that minimizes this function is x = EW . Now assume that we want to produce a sequence
of estimates of EW by solving this problem using a sequential (online) stochastic gradient
algorithm, which looks like

xn+1 = xn − αn∇Fx(xn,Wn+1), (5.16)
= xn − αn(xn −Wn+1),

= (1− αn)xn + αnW
n+1. (5.17)

Equation 5.16 illustratesαn as the stepsize in a stochastic gradient algorithm, while equation
(5.17) illustrates αn as what is widely known as a “learning rate.”

There are problems where we may start with a prior estimate of EW which we can
express as x0. In this case, we would want to use an initial stepsize α0 < 1. However, we
often start with no information, in which case an initial stepsize α0 = 1 gives us

x1 = (1− α0)x0 + α0W
1

= W 1,

which means we do not need the initial estimate for x0. Smaller initial stepsizes would only
make sense if we had access to a reliable initial guess, and in this case, the stepsize should
reflect the confidence in our original estimate (for example, we might be warm starting an
algorithm from a previous iteration).
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We can evaluate our performance using a mean squared statistical measure. If we have
an initial estimate x0, we would use

MSE =
1

n

n∑
m=1

(xm−1 −Wm)2. (5.18)

However, it is often the case that the sequence of random variables Wn is nonstationary,
which means they are coming from a distribution that is changing over time. In this case,
estimating the mean squared error is similar to our problem of estimating the mean of the
random variableW , in which case we should use a standard stochastic gradient (smoothing)
expression of the form

MSEn = (1− βn−1)MSEn−1 + βn−1(xn−1 −Wn)2,

where βn−1 is another stepsize sequence (which could be the same as αn−1).

5.3.2 A note on notation

Throughout this volume, we index variables (whether we are indexing by iterations or time)
to clearly identify the information content of each variable. Thus, xn is the decision made
after Wn becomes known. When we compute our stochastic gradient ∇xF (xn−1,Wn),
we use xn−1 which was determined after observingWn−1. If the iteration counter refers to
an experiment, then it means that xn−1 is determined after we finish the n−1st experiment.
If we are solving a newsvendor problem where n indexes days, then it is like determining
the amount of newspapers to order for day n after observing the sales for day n − 1. If
we are performing a laboratory experiment, we use the information up through the first
n− 1 experiments to choose xn−1, which specifies the choice of the nth experiment. This
indexing makes sense when you realize that the index n−1 reflects the information content,
not when it is being implemented.

In chapter 6, we are going to present a number of formulas to determine stepsizes.
Some of these are deterministic, such as αn = 1/n, and some are stochastic, adapting to
information as it arrives. Our stochastic gradient formula in equation (5.12) communicates
the property that the stepsize αn−1 that is multiplied times the gradient ∇xF (xn−1,Wn)
is allowed to see Wn−1 and xn−1, but not Wn.

We return to this issue in chapter 9, but we urge readers to adopt this notational system.

5.3.3 A finite horizon formulation

The formulation in (5.8) assumes that we can test different values of x, after which we can
observe F (x,W ), where the only goal is to find a single, deterministic x that solves (5.8).
We only care about the final solution, not the quality of different values of x that we test
while finding the optimal solution.

We have seen that an asymptotic analysis of (5.8) using a stochastic gradient algorithm
such as (5.12) approaches the problem just as we would any deterministic optimization
problem. In practice, of course, we have to limit our evaluation of different algorithms
based on how well they do within some specified budget. In this section, we are going to
see what happens when we formally approach the problem within a fixed budget, known
in some communities as finite time analysis.
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We begin by assuming that F (x,W ) is a reward that we incur each time we test x. For
example, we might have a newsvendor problem of the form

F (x,W ) = pmin{x,W} − cx.

Here,W would be interpreted as a demand and x is the supply, where p is the price at which
newspapers are sold, and c is the purchase cost. We can use our newsvendor problem for
computing the stochastic gradients we need in our stochastic gradient algorithm (5.12).

In practice we have to tune the stepsize formula. While there are many rules we could
use, we will illustrate the key idea using a simple stepsize rule known as Kesten’s rule given
by

αn(θ) =
θ

θ +Nn
,

where θ is a tunable parameter and Nn counts the number of times that the objective
function F (xn,Wn+1) has declined. If we are steadily improving, we do not want to
reduce the stepsize. If the objective function gets worse, then it is an indication that we are
in the vicinity of the optimum, and we want to start using smaller stepsizes.

Now, our stochastic gradient algorithm (5.12) becomes a policy Xπ(Sn) with state
Sn = (xn, Nn), and where π captures the structure of the rule (e.g. the stepsize rule in
(5.12)) and any tunable parameters (that is, θ). Let xπ,N be the solution xn for n = N ,
where we include π to indicate that our solution xπ,N afterN function evaluations depends
on the policy π that we followed to get there. The problem of finding the best stepsize rule
can be stated as

max
π

EF (xπ,N ,W ), (5.19)

which states that we are looking for the best terminal value within a budget of N function
evaluations. Of course, we do not have to limit our search over policies to comparing
stepsize rules. There are different ways of computing the gradient which we review below.

There is a substantial literature on stochastic optimization algorithms which prove
asymptotic convergence, and then examine the rate of convergence empirically. Exper-
imental testing of different algorithms is forced to work with fixed budgets, which means
that researchers are looking for the best solution within some budget. We would argue
that (5.19) is stating the aspirational goal of finding the optimal algorithm for maximizing
EF (x,W ) in N iterations.

5.3.4 Stepsizes

We have rather casually introduced the idea of the stepsize αn which pervades all gradient-
based algorithms. In the previous section, we have presented the idea that the stepsize is
actually a decision we have to make, and we need a rule that we might call a stepsize policy
to make this decision.

Stepsizes are the price we pay for the simplicity of gradient-based methods. The issues
are so rich we have dedicated an entire chapter to the topic (chapter 6). At this time we
only offer the following word of caution: stepsizes all require tuning, which we present as
a form of policy search. In practice, searching for the best stepsize policy is an annoying
but unavoidable part of the algorithmic design process. For this reason, chapter 6 presents
some formulas that require little or no tuning (depending on the setting).
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5.4 STYLES OF GRADIENTS

There are a few variants of the basic stochastic gradient method. Below we introduce
the idea of gradient smoothing and describe a method for approximating a second-order
algorithm.

5.4.1 Gradient smoothing

In practice, stochastic gradients can be highly stochastic, which is the reason why we have
to use stepsizes. However, it is possible to mitigate some of the variability by smoothing
the gradient itself. If∇F (xn,Wn+1) is our stochastic gradient, computed after the n+1st
experiment, we could then smooth this using

gn+1 = (1− η)gn + η∇F (xn,Wn+1),

where η is a smoothing factor where 0 < η ≤ 1. We could replace this with a declining
sequence ηn, although common practice is to keep this process as simple as possible.
Regardless of the strategy, gradient smoothing has the effect of introducing at least one
more tunable parameter. The open empirical question is whether gradient smoothing adds
anything beyond the smoothing produced by the stepsize policy used for updating xn.

5.4.2 Second-order methods

Second order methods for deterministic optimization have proven to be particularly attrac-
tive. For smooth, differentiable functions, the basic update step looks like

xn+1 = xn + (Hn)−1∇xf(xn), (5.20)

where Hn is the Hessian, which is the matrix of second derivatives. That is,

Hn
xx′ =

∂2f(x)

∂x∂x′

∣∣∣∣
x=xn

.

The attraction of the update in equation (5.20) is that there is no stepsize. The reason
(and this requires that f(x) be smooth with continuous first derivatives) is that the inverse
Hessian solves the problem of scaling. In fact, if f(x) is quadratic, then equation (5.20)
takes us to the optimal solution in one step!

Since functions are not always as nice as we would like, it is sometimes useful to
introduce a constant “stepsize” α, giving us

xn+1 = xn + α(Hn)−1∇xf(xn),

where 0 < α ≤ 1. Note that this smoothing factor does not have to solve any scaling
problems (again, this is solved by the Hessian).

If we have access to second derivatives (which is not always the case), then our only
challenge is inverting the Hessian. This is not a problem with a few dozen or even a few
hundred variables, but there are problems with thousands to tens of thousands of variables.
For large problems, we can strike a compromise and just use the diagonal of the Hessian.
This is both much easier to compute, as well as being easy to invert. Of course, we lose
some of the fast convergence (and scaling).
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There are many problems (including all stochastic optimization problems) where we do
not have access to Hessians. One strategy to overcome this is to construct an approximation
of the Hessian using what are known as rank-one updates. Let H̄n be our approximate
Hessian which is computed using

H̄n+1 = H̄n +∇f(xn)(∇f(xn))T . (5.21)

Recall that∇f(xn) is a column vector, so∇f(xn)(∇f(xn))T is a matrix with the dimen-
sionality of x. Since it is made up of an outer product of two vectors, this matrix has rank
1.

This methodology could be applied to a stochastic problem. As of this writing, we are
not aware of any empirical study showing that these methods work, although there has been
recent interest in second-order methods for online machine learning.

5.4.3 Finite differences

There are instances where we do not have direct access to a derivative, but where it
makes sense to estimate the derivative using finite differences. In this setting, we can
approximate gradients using finite differences. Assume that x is a K-dimensional vector,
and let ek be a K-dimensional column vector of zeroes with a 1 in the kth position. Now
assume that we can run two simulations for each dimension, F (xn + δxnek,W

n+1,+
k ) and

F (xn− δxnek,Wn+1,−
k ) where δxnek is the change in xn, multiplied by ek so that we are

only changing the kth dimension. We use Wn+1,+
k and Wn+1,

k to represent the sequences
of random variables that are generated when we run each simulation, which would be run in
the n+ 1st iteration. Think of F (xn + δxnek,W

n+1,+
k ) and F (xn − δxnek,Wn+1,−

k ) as
calls to a black-box simulator where we start with a set of parameters xn, and then perturb
it to xn + δxnek and xn − δxnek and run two separate, independent simulations. We then
have to do this for each dimension k, allowing us to compute

gnk (xn,Wn+1,+,Wn+1,−) =
F (xn + δxnek,W

n+1,+
k )− F (xn − δxnek,Wn+1,−

k )

2δxn
,

(5.22)

where we divide the difference by the width of the change which is 2δxn to get the slope.
The calculation of the derivative (for one dimension) is illustrated in figure 5.1. We see

from figure 5.1 that shrinking δx can introduce a lot of noise in the estimate of the gradient.
At the same time, as we increase δx, we introduce bias, which we see in the difference
between the dashed line showing Egn(xn,Wn+1,+,Wn+1,−), and the dotted line that
depicts ∂EF (xn,Wn+1)/∂xn. If we want an algorithm that converges asymptotically in
the limit, we need δxn decreasing, but in practice it is often set to a constant δx, which is
then handled as a tunable parameter.

Finite differences can be expensive. Running a function evaluation can require seconds to
minutes, but there are computer models that can take hours (or more) to run. Equation (5.22)
requires 2K function evaluations, which can be especially problematic when F (x,W ) is
an expensive simulation, as well as when the number of dimensions K is large. In the next
section we introduce a strategy for handling multidimensional parameter vectors.

5.4.4 SPSA

A powerful method for handling higher-dimensional parameter vectors is simultaneous
perturbation stochastic approximation (or SPSA). SPSA computes gradients in the follow-
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Figure 5.1 Different estimates of the gradient of F (x,W ) with a) the stochastic gradient
gn(xn,Wn+1,+,Wn+1,−) (solid line), the expected finite difference Egn(xn,Wn+1,+,Wn+1,−)
(dashed line), and the exact slope at xn, ∂EF (xn,Wn+1)/∂xn.

ing way. Let Zk, k = 1, . . . ,K be a vector of zero-mean random variables, and let Zn be
a sample of this vector at iteration n. We approximate the gradient by perturbing xn by the
vectorZ using xn+Zn and xn−Zn. Now letWn+1,+ andWn+1,− represent two different
samples of the random variables driving the simulation (these can be generated in advance
or on the fly). We then run our simulation twice: once to find F (xn + Zn,Wn+1,+), and
once to find F (xn − Zn,Wn+1,−).

gn(xn,Wn+1,+,Wn+1,−) =
F (xn + Zn,Wn+1,+)− F (xn − Zn,Wn−1,−)

2cn


Zn1
Zn2

...
ZnK

 .(5.23)

SPSA is a powerful strategy for performing finite-different estimates for high-dimensional
parameter vectors θ. SPSA has been found to provide the same level of statistical accuracy
as traditional finite difference methods, but requiring only 2 function evaluations instead
of 2K evaluations. This can be a dramatic savings for settings where the simulations are
expensive.

5.5 TRANSIENT PROBLEMS

There are many applications where we are trying to solve our basic stochastic optimization
problem in an online setting, where the random variable W comes from field observations.
In these settings, it is not unusual to find that the underlying distribution describing W
is changing over time. For example, the demands in our newsvendor application may be
changing as the purchasing patterns of the market change.
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We tend to design algorithms so they exhibit asymptotic convergence. For example,
we would insist that the stepsize αn decline to zero as the algorithm progresses. In a
transient setting, this is problematic because it means we are putting decreasing emphasis
on the latest information, which is more important than older information. Over time, as
αn approaches zero, the algorithm will stop responding to new information. If we use a
stepsize such as αn = 1/n, it is possibly to show that the algorithm will eventually adapt
to new information, but the rate of adaptation is so slow that the results are not useful.

Practitioners avoid this problem by either choosing a constant stepsize, or one that starts
large but converges to a constant greater than zero. If we do this, the algorithm will start
bouncing around the optimum. While this behavior may seem undesirable, in practice this
is preferable, partly because the optimum of stochastic optimization problems tend to be
smooth, but mostly because it means the algorithm is still adapting to new information,
which makes it responsive to a changing signal.

5.6 RECURSIVE BENDERS DECOMPOSITION FOR CONVEX PROBLEMS

We first saw Benders decomposition for a two-stage stochastic optimization model for a
sampled problem in section 4.3.2. Here, we present an asymptotic version of Benders that
is in the theme of the other iterative algorithms presented in this chapter. This version was
first introduced as stochastic decomposition. We begin by introducing the basic algorithm,
followed by a variant known as regularization that has been found to stabilize performance.

5.6.1 The basic algorithm

We begin by presenting the two-stage stochastic programming model we first presented in
section 4.3.2:

max
x0

(
c0x0 + EQ1(x0,W )

)
, (5.24)

subject to

A0x0 = b, (5.25)
x0 ≥ 0. (5.26)

We are going to again solve the original problem (5.24) using a series of Benders cuts, but
this time we are going to construct them somewhat different. The approximated problem
still looks like

xn = arg max
x0,z

(c0x0 + z), (5.27)

subject to (5.25)-(5.26) and

z ≤ αnm + βnmx0, m = 1, . . . , n− 1. (5.28)

Of course, for iteration n = 1 we do not have any cuts.
The second stage problem which is solved for a given value W (ω) which specifies the

costs and the demand D1. In our iterative algorithm, we solve the problem for ωn, using
the solution xn0 from the first stage:

Q1(xn0 , ω
n) = max

x1(ωn)
c1(ωn)x1(ωn), (5.29)
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subject to:

A1x1(ωn) ≤ B1x
n
0 , (5.30)

B1x1(ωn) ≤ D1(ωn), (5.31)
x1(ωn) ≥ 0.. (5.32)

As before, we let β̂n be the dual variable for the resource constraint (5.30) when we solve
the problem using sample ωn. Then let

αnn =
1

n

n∑
m=1

Q1(xm0 , ω
m),

βnn =
1

n

n∑
m=1

β̂m.

Thus, we compute αnn by averaging all the prior objective functions for the second stage,
and then we compute βnn by averaging all the prior dual variables. We finally update all
prior αnm and βnm for m < n using

αnm =
n− 1

n
αn−1
m , m = 1, . . . , n− 1,

βnm =
n− 1

n
βn−1
m , m = 1, . . . , n− 1.

Aside from the differences in how the Benders cuts are computed, the major difference
between this implementation and our earlier sampled solution given in section 4.3.2 is
that in this recursive formulation, the samples ω are drawn from the full sample space Ω
rather than a sampled one. When we solve the sampled version of the problem, we solve it
exactly in a finite number of iterations, but we only obtain an optimal solution to a sampled
problem. Here, we have an algorithm that will asymptotically converge to the optimal
solution of the original problem.

Figure 5.2 illustrates the cuts generated using stochastic decomposition. It is useful to
compare the cuts generated using stochastic decomposition to those generated when we
used a sampled version of the problem in section 4.3.2 as depicted in figure 4.1. When
we were solving our sampled version, we could compute the expectation exactly, which is
why the cuts were tight. Here, we are sampling from the full probability space, and as a
result we get cuts that approximate the function, but nothing more. However, in the limit
as n→∞, the cuts will converge to the true function in the vicinity of the optimum.

Which is better? Hard to say. While it is nice to have an algorithm that is asymptotically
optimal, we can only run a finite number of iterations. The sampled problem will be more
stable due to the averaging that takes place in every iteration, but we then have to solve
a linear program for every ω in the sampled problem, a step that involves much more
computational overhead than the recursive version.

5.6.2 Benders with regularization

Regularization is a tool that will come up repeatedly when estimating functions from data.
The same is true with Benders decomposition. Regularization is handled through a minor
modification of the approximate optimization problem (5.27) which becomes

xn = arg max
x

(
c0x0 + z + ρn(x− x̄n−1)2

)
, (5.33)
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Figure 5.2 Illustration of cuts generated using stochastic decomposition (a) in the early iterations
and (b) in the limit.

which is solved subject to (5.25)-(5.26) and the Benders cut constraints (5.28). The
parameter ρn is a decreasing sequence that needs to be scaled to handle the difference in
the units between the costs and the term (x − x̄n−1)2). x̄n−1 is the regularization term
which is updated each iteration; the idea with regularization is to keep xn from straying
too far from a previous solution, especially in the early iterations.

The use of the squared deviation (x − x̄n−1)2 is known as L2 regularization, which
might be written as ‖x− x̄n−1‖22. An alternative is L1 regularization which minimizes the
absolute value of the deviation, which would be written as |x− x̄n−1|.

There are different ways of setting the regularization term, but the simplest one just
uses x̄n−1 = xn−1. Other ideas involve smoothing several previous iterations. The
regularization coefficient is any declining sequence such as

ρk = rρk−1
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for some factor r < 1, starting with an initial ρ0 that has to be chosen to handle the scaling.
Properly implemented, regularization offers not only theoretical guarantees, but has also

been found to accelerate convergence and stabilize the performance of the algorithm.

5.7 EMPIRICAL ISSUES

Invariably, the process of actually implementing these algorithms raises issues that are often
ignored when describing the algorithms. To help mitigate this transition, below are some
of the challenges an experimentalist is likely to encounter.

Tunable parameters - Arguably one of the most frustrating aspects of any algorithms is
the need to tune parameters. For gradient-based algorithms, this typically refers to
the tunable parameters in the stepsize policy. These tunable parameters are a direct
result of the use of first-order algorithms, which are easy to compute but which
exploit very little information about the underlying function. Particularly frustrating
is that this tuning really matters. A poorly tuned stepsize algorithm may decrease too
quickly, creating apparent convergence. It is completely possible that a poorly tuned
stepsize policy can result in a conclusion that an algorithm is not working. Stepsizes
that are too large can introduce too much noise.

Scaling - In most (but not all) applications, the units of the gradient∇F (x,W ) are different
than the units of x. A rough rule is that the initial stepsize should be chosen so that
the initial change in x is on the order of 30 to 50 percent of the starting value.

Benchmarking - Whenever possible, it helps to run an algorithm on a simpler problem
where the optimal solution can be found using other means, either analytically or
numerically. For example, it might be possible to apply the stochastic gradient algo-
rithm on a deterministic sequence that can be solved using deterministic algorithms.

Robustness - A desirable property of any algorithm is that it work reliably, on any problem
instance (that is, within a problem class). For example, tuning parameters in the
stepsize policy is annoying, but bearable if it only has to be done once.

5.8 WHY DOES IT WORK?**

Stochastic approximation methods have a rich history starting with the seminal paper
Robbins & Monro (1951) and followed by Blum (1954b) and Dvoretzky (1956). The
serious reader should see Kushner & Yin (1997) for a modern treatment of the subject.
Wasan (1969) is also a useful reference for fundamental results on stochastic convergence
theory. A separate line of investigation was undertaken by researchers in eastern European
community focusing on constrained stochastic optimization problems (Gaivoronski (1988),
Ermoliev (1988), Ruszczyński (1980), Ruszczyński (1987)). This work is critical to our
fundamental understanding of Monte Carlo-based stochastic learning methods.

The theory behind these proofs is fairly deep and requires some mathematical maturity.
For pedagogical reasons, we start in section 5.8.1 with some probabilistic preliminaries,
after which section 5.8.2 presents one of the original proofs, which is relatively more
accessible and which provides the basis for the universal requirements that stepsizes must
satisfy for theoretical proofs. Section 5.8.3 provides a more modern proof based on the
theory of martingales.



176 DERIVATIVE-BASED STOCHASTIC SEARCH

5.8.1 Some probabilistic preliminaries

The goal in this section is to prove that these algorithms work. But what does this mean? The
solution x̄n at iteration n is a random variable. Its value depends on the sequence of sample
realizations of the random variables over iterations 1 to n. If ω = (W 1,W 2, . . . ,Wn, . . .)
represents the sample path that we are following, we can ask what is happening to the limit
limn→∞ x̄n(ω). If the limit is x∗, does x∗ depend on the sample path ω?

In the proofs below, we show that the algorithms converge almost surely. What this
means is that

lim
n→∞

x̄n(ω) = x∗

for all ω ∈ Ω that can occur with positive measure. This is the same as saying that we
reach x∗ with probability 1. Here, x∗ is a deterministic quantity that does not depend on
the sample path. Because of the restriction p(ω) > 0, we accept that in theory, there could
exist a sample outcome that can never occur that would produce a path that converges
to some other point. As a result, we say that the convergence is “almost sure,” which is
universally abbreviated as “a.s.” Almost sure convergence establishes the core theoretical
property that the algorithm will eventually settle in on a single point. This is an important
property for an algorithm, but it says nothing about the rate of convergence (an important
issue in approximate dynamic programming).

Let x ∈ <n. At each iteration n, we sample some random variables to compute
the function (and its gradient). The sample realizations are denoted by Wn. We let
ω = (W 1,W 2, . . . , ) be a realization of all the random variables over all iterations. Let
Ω be the set of all possible realizations of ω, and let F be the σ-algebra on Ω (that is to
say, the set of all possible events that can be defined using Ω). We need the concept of the
history up through iteration n. Let

Hn = A random variable giving the history of all random variables up
through iteration n.

A sample realization of Hn would be

hn = Hn(ω)

= (W 1,W 2, . . . ,Wn).

We could then let Wn be the set of all outcomes of the history (that is, hn ∈ Hn) and let
Hn be the σ-algebra on Wn (which is the set of all events, including their complements
and unions, defined using the outcomes in Wn). Although we could do this, this is not
the convention followed in the probability community. Instead, we define a sequence of
σ-algebras F1,F2, . . . ,Fn as the sequence of σ-algebras on Ω that can be generated as we
have access to the information through the first 1, 2, . . . , n iterations, respectively. What
does this mean? Consider two outcomes ω 6= ω′ for which Hn(ω) = Hn(ω′). If this
is the case, then any event in Fn that includes ω must also include ω′. If we say that a
function is Fn-measurable, then this means that it must be defined in terms of the events
in Fn, which is in turn equivalent to saying that we cannot be using any information from
iterations n+ 1, n+ 2, . . ..

We would say, then, that we have a standard probability space (Ω,F,P) where ω ∈ Ω
represents an elementary outcome, F is the σ-algebra on F and P is a probability measure
on Ω. Since our information is revealed iteration by iteration, we would also then say that
we have an increasing set of σ-algebras F1 ⊆ F2 ⊆ . . . ⊆ Fn (which is the same as saying
that Fn is a filtration).
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5.8.2 An older proof

Enough with probabilistic preliminaries. We wish to solve the unconstrained problem

max
x

EF (x, ω) (5.34)

with x∗ being the optimal solution. Let g(x, ω) be a stochastic ascent vector that satisfies

g(x, ω)T∇F (x, ω) ≥ 0. (5.35)

For many problems, the most natural ascent vector is the gradient itself

g(x, ω) = ∇F (x, ω) (5.36)

which clearly satisfies (5.35).
We assume that F (x) = EF (x, ω) is continuously differentiable and concave, with

bounded first and second derivatives so that for finite M

−M ≤ g(x, ω)T∇2F (x)g(x, ω) ≤M. (5.37)

A stochastic gradient algorithm (sometimes called a stochastic approximation method) is
given by

x̄n = x̄n−1 + αn−1g(x̄n−1, ω). (5.38)

We first prove our result using the proof technique of Blum (1954b) that generalized
the original stochastic approximation procedure proposed by Robbins & Monro (1951) to
multidimensional problems. This approach does not depend on more advanced concepts
such as martingales and, as a result, is accessible to a broader audience. This proof helps
the reader understand the basis for the conditions

∑∞
n=0 αn = ∞ and

∑∞
n=0(αn)2 < ∞

that are required of all stochastic approximation algorithms.
We make the following (standard) assumptions on stepsizes

αn > 0 for all n ≥ 0, (5.39)
∞∑
n=0

αn = ∞, (5.40)

∞∑
n=0

(αn)2 < ∞. (5.41)

We want to show that under suitable assumptions, the sequence generated by (5.38) con-
verges to an optimal solution. That is, we want to show that

lim
n→∞

xn = x∗ a.s. (5.42)

We now use Taylor’s theorem (remember Taylor’s theorem from freshman calculus?),
which says that for any continuously differentiable convex function F (x), there exists a
parameter 0 ≤ η ≤ 1 that satisfies for a given x and x0

F (x) = F (x0) +∇F (x0 + η(x− x0))(x− x0). (5.43)
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This is the first-order version of Taylor’s theorem. The second-order version takes the form

F (x) = F (x0) +∇F (x0)(x− x0) +
1

2
(x− x0)T∇2F (x0 + η(x− x0))(x− x0)

(5.44)

for some 0 ≤ η ≤ 1. We use the second-order version. In addition, since our problem is
stochastic, we will replace F (x) with F (x, ω) where ω tells us what sample path we are
on, which in turn tells us the value of W .

To simplify our notation, we are going to replace x0 with xn−1, x with xn, and finally
we will use

gn = g(xn−1, ω). (5.45)

This means that, by definition of our algorithm,

x− x0 = xn − xn−1

= (xn−1 + αn−1g
n)− xn−1

= αn−1g
n.

From our stochastic gradient algorithm (5.38), we may write

F (xn, ω) = F (xn−1 + αn−1g
n, ω)

= F (xn−1, ω) +∇F (xn−1, ω)(αn−1g
n)

+
1

2
(αn−1g

n)T∇2F (xn−1 + ηαn−1g
n, ω)(αn−1g

n). (5.46)

It is now time to use a standard mathematician’s trick. We sum both sides of (5.46) to get

N∑
n=1

F (xn, ω) =

N∑
n=1

F (xn−1, ω) +

N∑
n=1

∇F (xn−1, ω)(αn−1g
n) +

1

2

N∑
n=1

(αn−1g
n)T∇2F

(
xn−1 + ηαn−1g

n, ω
)

(αn−1g
n). (5.47)

Note that the terms F (xn), n = 2, 3, . . . , N appear on both sides of (5.47). We can cancel
these. We then use our lower bound on the quadratic term (5.37) to write

F (xN , ω) ≥ F (x0, ω) +

N∑
n=1

∇F (xn−1, ω)(αn−1g
n) +

1

2

N∑
n=1

(αn−1)2(−M). (5.48)

We now want to take the limit of both sides of (5.48) as N →∞. In doing so, we want to
show that everything must be bounded. We know that F (xN ) is bounded (almost surely)
because we assumed that the original function was bounded. We next use the assumption
(5.41) that the infinite sum of the squares of the stepsizes is also bounded to conclude that
the rightmost term in (5.48) is bounded. Finally, we use (5.35) to claim that all the terms in
the remaining summation (

∑N
n=1∇F (xn−1)(αn−1g

n)) are positive. That means that this
term is also bounded (from both above and below).

What do we get with all this boundedness? Well, if
∞∑
n=1

αn−1∇F (xn, ω)gn <∞ for all ω (5.49)
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and (from (5.40))

∞∑
n=1

αn−1 =∞. (5.50)

We can conclude that

∞∑
n=1

∇F (xn−1, ω)gn <∞. (5.51)

Since all the terms in (5.51) are positive, they must go to zero. (Remember, everything here
is true almost surely; after a while, it gets a little boring to keep saying almost surely every
time. It is a little like reading Chinese fortune cookies and adding the automatic phrase
“under the sheets” at the end of every fortune.)

We are basically done except for some relatively difficult (albeit important if you are
ever going to do your own proofs) technical points to really prove convergence. At this
point, we would use technical conditions on the properties of our ascent vector gn to argue
that if∇F (xn, ω)gn → 0 then∇F (xn, ω)→ 0, (it is okay if gn goes to zero as F (xn, ω)
goes to zero, but it cannot go to zero too quickly).

This proof was first proposed in the early 1950’s by Robbins and Monro and became the
basis of a large area of investigation under the heading of stochastic approximation methods.
A separate community, growing out of the Soviet literature in the 1960’s, addressed these
problems under the name of stochastic gradient (or stochastic quasi-gradient) methods.
More modern proofs are based on the use of martingale processes, which do not start with
Taylor’s formula and do not (always) need the continuity conditions that this approach
needs.

Our presentation does, however, help to present several key ideas that are present in
most proofs of this type. First, concepts of almost sure convergence are virtually standard.
Second, it is common to set up equations such as (5.46) and then take a finite sum as in
(5.47) using the alternating terms in the sum to cancel all but the first and last elements of the
sequence of some function (in our case, F (xn−1, ω)). We then establish the boundedness of
this expression as N → ∞, which will require the assumption that

∑∞
n=1(αn−1)2 < ∞.

Then, the assumption
∑∞
n=1 αn−1 = ∞ is used to show that if the remaining sum is

bounded, then its terms must go to zero.
More modern proofs will use functions other than F (x). Popular is the introduction

of so-called Lyapunov functions, which are artificial functions that provide a measure of
optimality. These functions are constructed for the purpose of the proof and play no role in
the algorithm itself. For example, we might let Tn = ||xn − x∗|| be the distance between
our current solution xn and the optimal solution. We will then try to show that Tn is
suitably reduced to prove convergence. Since we do not know x∗, this is not a function we
can actually measure, but it can be a useful device for proving that the algorithm actually
converges.

It is important to realize that stochastic gradient algorithms of all forms do not guarantee
an improvement in the objective function from one iteration to the next. First, a sample
gradient gn may represent an appropriate ascent vector for a sample of the functionF (xn, ω)
but not for its expectation. In other words, randomness means that we may go in the wrong
direction at any point in time. Second, our use of a nonoptimizing stepsize, such as
αn−1 = 1/n, means that even with a good ascent vector, we may step too far and actually
end up with a lower value.
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5.8.3 A more modern proof

Since the original work by Robbins and Monro, more powerful proof techniques have
evolved. Below we illustrate a basic martingale proof of convergence. The concepts are
somewhat more advanced, but the proof is more elegant and requires milder conditions.
A significant generalization is that we no longer require that our function be differentiable
(which our first proof required). For large classes of resource allocation problems, this is a
significant improvement.

First, just what is a martingale? Let ω1, ω2, . . . , ωt be a set of exogenous random
outcomes, and let ht = Ht(ω) = (ω1, ω2, . . . , ωt) represent the history of the process
up to time t. We also let Ft be the σ-algebra on Ω generated by Ht. Further, let Ut
be a function that depends on ht (we would say that Ut is a Ft-measurable function),
and bounded (E|Ut| < ∞, ∀t ≥ 0). This means that if we know ht, then we know Ut
deterministically (needless to say, if we only know ht, then Ut+1 is still a random variable).
We further assume that our function satisfies

E[Ut+1|Ft] = Ut.

If this is the case, then we say that Ut is a martingale. Alternatively, if

E[Ut+1|Ft] ≤ Ut (5.52)

then we say thatUt is a supermartingale. IfUt is a supermartingale, then it has the property
that it drifts downward, usually to some limit point U∗. What is important is that it only
drifts downward in expectation. That is, it could easily be the case that Ut+1 > Ut for
specific outcomes. This captures the behavior of stochastic approximation algorithms.
Properly designed, they provide solutions that improve on average, but where from one
iteration to another the results can actually get worse.

Finally, assume that Ut ≥ 0. If this is the case, we have a sequence Ut that drifts
downward but which cannot go below zero. Not surprisingly, we obtain the following key
result:

Theorem 5.8.1. Let Ut be a positive supermartingale. Then, Ut converges to a finite
random variable U∗ almost surely.

Note that “almost surely” (which is typically abbreviated “a.s.”) means “for all (or every)
ω.” Mathematicians like to recognize every possibility, so they will add “every ω that might
happen with some probability,” which means that we are allowing for the possibility thatUt
might not converge for some sample realization ω that would never actually happen (that
is, where p(ω) > 0). This also means that it converges with probability one.

So what does this mean for us? We assume that we are still solving a problem of the
form

max
x

EF (x, ω), (5.53)

where we assume thatF (x, ω) is continuous and concave (but we do not require differentia-
bility). Let x̄n be our estimate of x at iteration n (remember that x̄n is a random variable).
Instead of watching the evolution of a process of time, we are studying the behavior of an
algorithm over iterations. Let Fn = EF (x̄n) be our objective function at iteration n and
let F ∗ be the optimal value of the objective function. If we are maximizing, we know that
Fn ≤ F ∗. If we let Un = F ∗ − Fn, then we know that Un ≥ 0 (this assumes that we can
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find the true expectation, rather than some approximation of it). A stochastic algorithm will
not guarantee that Fn ≥ Fn−1, but if we have a good algorithm, then we may be able to
show that Un is a supermartingale, which at least tells us that in the limit, Un will approach
some limit Ū . With additional work, we might be able to show that Ū = 0, which means
that we have found the optimal solution.

A common strategy is to define Un as the distance between x̄n and the optimal solution,
which is to say

Un = (x̄n − x∗)2. (5.54)

Of course, we do not know x∗, so we cannot actually compute Un, but that is not really
a problem for us (we are just trying to prove convergence). Note that we immediately
get Un ≥ 0 (without an expectation). If we can show that Un is a supermartingale, then
we get the result that Un converges to a random variable U∗ (which means the algorithm
converges). Showing that U∗ = 0 means that our algorithm will (eventually) produce the
optimal solution. We are going to study the convergence of our algorithm for maximizing
EF (x,W ) by studying the behavior of Un.

We are solving this problem using a stochastic gradient algorithm

x̄n = x̄n−1 + αn−1g
n, (5.55)

where gn is our stochastic gradient. If F is differentiable, we would write

gn = ∇xF (x̄n−1,Wn).

But in general, F may be nondifferentiable, in which case we may have multiple gradients
at a point x̄n−1 (for a single sample realization). In this case, we write

gn ∈ ∂xF (x̄n−1,Wn),

where ∂xF (x̄n−1,Wn) refers to the set of subgradients at x̄n−1. We assume our problem
is unconstrained, so∇xF (x̄∗,Wn) = 0 if F is differentiable. If it is nondifferentiable, we
would assume that 0 ∈ ∂xF (x̄∗,Wn).

Throughout our presentation, we assume that x (and hence gn) is a scalar (exercise 6.12
provides an opportunity to redo this section using vector notation). In contrast with the
previous section, we are now going to allow our stepsizes to be stochastic. For this reason,
we need to slightly revise our original assumptions about stepsizes (equations (5.39) to
(5.41)) by assuming

αn > 0 a.s., (5.56)
∞∑
n=0

αn = ∞ a.s., (5.57)

E

[ ∞∑
n=0

(αn)2

]
< ∞. (5.58)

The requirement that αn be nonnegative “almost surely” (a.s.) recognizes that αn is a
random variable. We can write αn(ω) as a sample realization of the stepsize (that is, this
is the stepsize at iteration n if we are following sample path ω). When we require that
αn ≥ 0 “almost surely” we mean that αn(ω) ≥ 0 for all ω where the probability (more
precisely, probability measure) of ω, p(ω), is greater than zero (said differently, this means
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that the probability that P[αn ≥ 0] = 1). The same reasoning applies to the sum of the
stepsizes given in equation (5.57). As the proof unfolds, we will see the reason for needing
the conditions (and why they are stated as they are).

We next need to assume some properties of the stochastic gradient gn. Specifically, we
need to assume the following:

Assumption 1 - E[gn+1(x̄n − x∗)|Fn] ≥ 0,

Assumption 2 - |gn| ≤ Bg ,

Assumption 3 - For any x where |x − x∗| > δ, δ > 0, there exists ε > 0 such that
E[gn+1|Fn] > ε.

Assumption 1 assumes that on average, the gradient gn points toward the optimal solution
x∗. This is easy to prove for deterministic, differentiable functions. While this may be
harder to establish for stochastic problems or problems where F (x) is nondifferentiable,
we do not have to assume that F (x) is differentiable. Nor do we assume that a particular
gradient gn+1 moves toward the optimal solution (for a particular sample realization, it is
entirely possible that we are going to move away from the optimal solution). Assumption
2 assumes that the gradient is bounded. Assumption 3 requires that the expected gradient
cannot vanish at a nonoptimal value of x. This assumption will be satisfied for any concave
function.

To show that Un is a supermartingale, we start with

Un+1 − Un = (x̄n+1 − x∗)2 − (x̄n − x∗)2

=
(
(x̄n − αngn+1)− x∗

)2 − (x̄n − x∗)2

=
(
(x̄n − x∗)2 − 2αng

n+1(x̄n − x∗) + (αng
n+1)2

)
− (x̄n − x∗)2

= (αng
n+1)2 − 2αng

n+1(x̄n − x∗). (5.59)

Taking conditional expectations on both sides gives

E[Un+1|Fn]− E[Un|Fn] = E[(αng
n+1)2|Fn]− 2E[αng

n+1(x̄n − x∗)|Fn]. (5.60)

We note that

E[αng
n+1(x̄n − x∗)|Fn] = αnE[gn+1(x̄n − x∗)|Fn] (5.61)

≥ 0. (5.62)

Equation (5.61) is subtle but important, as it explains a critical piece of notation in this
book. Keep in mind that we may be using a stochastic stepsize formula, which means that
αn is a random variable. We assume that αn is Fn-measurable, which means that we are
not allowed to use information from iteration n+1 to compute it. This is why we use αn−1

in updating equations such as equation (5.10) instead of αn. When we condition on Fn in
equation (5.61), αn is deterministic, allowing us to take it outside the expectation. This
allows us to write the conditional expectation of the product of αn and gn+1 as the product
of the expectations. Equation (5.62) comes from Assumption 1 and the nonnegativity of
the stepsizes.

Recognizing that E[Un|Fn] = Un (given Fn), we may rewrite (5.60) as

E[Un+1|Fn] = Un + E[(αng
n+1)2|Fn]− 2E[αng

n+1(x̄n − x∗)|Fn]

≤ Un + E[(αng
n+1)2|Fn]. (5.63)
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Because of the positive term on the right-hand side of (5.63), we cannot directly get the
result that Un is a supermartingale. But hope is not lost. We appeal to a neat little trick
that works as follows. Let

Wn = E[Un +

∞∑
m=n

(αmg
m+1)2|Fn]. (5.64)

We are going to show that Wn is a supermartingale. From its definition, we obtain

Wn = E[Wn+1 + Un − Un+1 + (αng
n+1)2|Fn],

= E
[
Wn+1|Fn

]
+ Un − E

[
Un+1|Fn

]
+ E

[
(αng

n+1)2|Fn
]

which is the same as

E[Wn+1|Fn] = Wn −
(
Un + E

[
(αng

n+1)2|Fn
]
− E[Un+1|Fn]

)︸ ︷︷ ︸
I

.

We see from equation (5.63) that I ≥ 0. Removing this term gives us the inequality

E[Wn+1|Fn] ≤ Wn. (5.65)

This means thatWn is a supermartingale. It turns out that this is all we really need because
limn→∞Wn = limn→∞ Un. This means that

lim
n→∞

Un → U∗ a.s. (5.66)

Now that we have the basic convergence of our algorithm, we have to ask: but what is
it converging to? For this result, we return to equation (5.59) and sum it over the values
n = 0 up to some number N , giving us

N∑
n=0

(Un+1 − Un) =

N∑
n=0

(αng
n+1)2 − 2

N∑
n=0

αng
n+1(x̄n − x∗). (5.67)

The left-hand side of (5.67) is an alternating sum (sometimes referred to as a telescoping
sum), which means that every element cancels out except the first and the last, giving us

UN+1 − U0 =

N∑
n=0

(αng
n+1)2 − 2

N∑
n=0

αng
n+1(x̄n − x∗).

Taking expectations of both sides gives

E[UN+1 − U0] = E

[
N∑
n=0

(αng
n+1)2

]
− 2E

[
N∑
n=0

αng
n+1(x̄n − x∗)

]
. (5.68)

We want to take the limit of both sides as N goes to infinity. To do this, we have to appeal
to the Dominated Convergence Theorem (DCT), which tells us that

lim
N→∞

∫
x

fn(x)dx =

∫
x

(
lim
N→∞

fn(x)
)
dx
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if |fn(x)| ≤ g(x) for some function g(x) where∫
x

g(x)dx <∞.

For our application, the integral represents the expectation (we would use a summation
instead of the integral if xwere discrete), which means that the DCT gives us the conditions
needed to exchange the limit and the expectation. Above, we showed that E[Un+1|Fn] is
bounded (from (5.63) and the boundedness of U0 and the gradient). This means that the
right-hand side of (5.68) is also bounded for all n. The DCT then allows us to take the
limit as N goes to infinity inside the expectations, giving us

U∗ − U0 = E

[ ∞∑
n=0

(αng
n+1)2

]
− 2E

[ ∞∑
n=0

αng
n+1(x̄n − x∗)

]
.

We can rewrite the first term on the right-hand side as

E

[ ∞∑
n=0

(αng
n+1)2

]
≤ E

[ ∞∑
n=0

(αn)2(B)2

]
(5.69)

= B2 E

[ ∞∑
n=0

(αn)2

]
(5.70)

< ∞. (5.71)

Equation (5.69) comes from Assumption 2 which requires that |gn| be bounded by B,
which immediately gives us Equation (5.70). The requirement that E

∑∞
n=0(αn)2 < ∞

(equation (5.41)) gives us (5.71), which means that the first summation on the right-hand
side of (5.68) is bounded. Since the left-hand side of (5.68) is bounded, we can conclude
that the second term on the right-hand side of (5.68) is also bounded.

Now let

βn = E
[
gn+1(x̄n − x∗)

]
= E

[
E
[
gn+1(x̄n − x∗)|Fn

]]
≥ 0,

since E[gn+1(x̄n − x∗)|Fn] ≥ 0 from Assumption 1. This means that

∞∑
n=0

αnβ
n < ∞ a.s. (5.72)

But, we have required that
∑∞
n=0 αn = ∞ a.s. (equation (5.57)). Since αn ≥ 0 and

βn ≥ 0 (a.s.), we conclude that

lim
n→∞

βn → 0 a.s. (5.73)

If βn → 0, then E[gn+1(x̄n − x∗)] → 0, which allows us to conclude that
E[gn+1(x̄n − x∗)|Fn] → 0 (the expectation of a nonnegative random variable cannot
be zero unless the random variable is always zero). But what does this tell us about the
behavior of x̄n? Knowing that βn → 0 does not necessarily imply that gn+1 → 0 or
x̄n → x∗. There are three scenarios:
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1) x̄n → x∗ for all n, and of course all sample paths ω. If this were the case, we are
done.

2) x̄nk → x∗ for a subsequence n1, n2, . . . , nk, . . .. For example, it might be that
the sequence x̄1, x̄3, x̄5, . . . → x∗, while E[g2|F1],E[g4|F3], . . . ,→ 0. This would
mean that for the subsequence nk, Unk → 0. But we already know that Un → U∗

where U∗ is the unique limit point, which means that U∗ = 0. But if this is the case,
then this is the limit point for every sequence of x̄n.

3) There is no subsequence x̄nk which has x̄∗ as its limit point. This means that
E[gn+1|Fn]→ 0. However, assumption 3 tells us that the expected gradient cannot
vanish at a nonoptimal value of x. This means that this case cannot happen.

This completes the proof. �

5.9 BIBLIOGRAPHIC NOTES

• Section 5.3.3 - See Auer et al. (2002) and Munos & Szepesvari (2008) for examples
of finite-time analysis.

PROBLEMS

5.1 In a flexible spending account (FSA), a family is allowed to allocate x pretax dollars
to an escrow account maintained by the employer. These funds can be used for medical
expenses in the following year. Funds remaining in the account at the end of the following
year revert back to the employer. Assume that you are in a 40 percent tax bracket (sounds
nice, and the arithmetic is a bit easier). Let M be the random variable representing total
medical expenses in the upcoming year, and let F (x) = Prob[M ≤ x] be the cumulative
distribution function of the random variable M .

a) Write out the objective function that we would want to solve to find x to minimize
the total cost (in pretax dollars) of covering your medical expenses next year.

b) If x∗ is the optimal solution and g(x) is the gradient of your objective function if you
allocate x to the FSA, use the property that g(x∗) = 0 to derive (you must show the
derivation) the critical ratio that gives the relationship between x∗ and the cumulative
distribution function F (x).

c) If you are in a 35 percent tax bracket, what percentage of the time should you have
funds left over at the end of the year?

5.2 Consider a function F (x,W ) that depends on a decision x = xn after which we ob-
serve a random outcomeWn+1. Assume that we can compute the gradient∇xF (xn,Wn+1).
We would like to optimize this problem using a standard stochastic gradient algorithm:

xn+1 = xn + αn∇xF (xn,Wn+1).

Our goal is to find the best answer we can after N iterations.

a) Assume that we are using a stepsize policy of

αn =
θ

θ + n− 1
.



186 DERIVATIVE-BASED STOCHASTIC SEARCH

Model the problem of finding the best stepsize policy as a stochastic optimization
problem. Give the state variable(s), the decision variable, the exogenous information,
the transition function, and the objective function. Please use precise notation.

b) How does your model change if you switch to the BAKF stepsize rule as implemented
in figure 6.8 of the text (page 201 of the latest edition)?

5.3 We are going to solve a classic stochastic optimization problem known as the
newsvendor problem. Assume we have to order x assets after which we try to satisfy
a random demand D for these assets, where D is randomly distributed between 100 and
200. If x > D, we have ordered too much and we pay 5(x −D). If x < D, we have an
underage, and we have to pay 20(D − x).

(a) Write down the objective function in the form minx Ef(x,D).

(b) Derive the stochastic gradient for this function.

(c) Find the optimal solution analytically [Hint: take the expectation of the stochastic
gradient, set it equal to zero and solve for the quantity P(D ≤ x∗). From this, find
x∗.]

(d) Since the gradient is in units of dollars while x is in units of the quantity of the asset
being ordered, we encounter a scaling problem. Choose as a stepsize αn−1 = α0/n
where α0 is a parameter that has to be chosen. Use x0 = 100 as an initial solution.
Plot xn for 1000 iterations forα0 = 1, 5, 10, 20. Which value ofα0 seems to produce
the best behavior?

(e) Repeat the algorithm (1000 iterations) 10 times. Let ω = (1, . . . , 10) represent the
10 sample paths for the algorithm, and let xn(ω) be the solution at iteration n for
sample path ω. Let Var(xn) be the variance of the random variable xn where

V (xn) =
1

10

10∑
ω=1

(xn(ω)− x∗)2

Plot the standard deviation as a function of n for 1 ≤ n ≤ 1000.

5.4 A customer is required by her phone company to pay for a minimum number of
minutes per month for her cell phone. She pays 12 cents per minute of guaranteed minutes,
and 30 cents per minute that she goes over her minimum. Let x be the number of minutes
she commits to each month, and let M be the random variable representing the number of
minutes she uses each month, whereM is normally distributed with mean 300 minutes and
a standard deviation of 60 minutes.

(a) Write down the objective function in the form minx Ef(x,M).

(b) Derive the stochastic gradient for this function.

(c) Let x0 = 0 and choose as a stepsize αn−1 = 10/n. Use 100 iterations to determine
the optimum number of minutes the customer should commit to each month.

5.5 Show that E
[(
θ̄n−1 − θn

)2]
= λn−1σ2 + (βn)2. [Hint: Add and subtract Eθ̄n−1

inside the expectation and expand.]
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5.6 Show that E
[(
θ̄n−1 − θ̂n

)2
]

= (1 + λn−1)σ2 + (βn)2 (which proves equation

3.39). [Hint: See previous exercise.]

5.7 Derive the small sample form of the recursive equation for the variance given in
(3.40). Recall that if

θ̄n =
1

n

n∑
m=1

θ̂m

then an estimate of the variance of θ̂ is

Var[θ̂] =
1

n− 1

n∑
m=1

(θ̂m − θ̄n)2.

5.8 Consider a random variable given byR = 10U (which would be uniformly distributed
between 0 and 10). We wish to use a stochastic gradient algorithm to estimate the mean
of R using the iteration θ̄n = θ̄n−1 − αn−1(Rn − θ̄n−1), where Rn is a Monte Carlo
sample ofR in the nth iteration. For each of the stepsize rules below, use equation (5.18) to
measure the performance of the stepsize rule to determine which works best, and compute
an estimate of the bias and variance at each iteration. If the stepsize rule requires choosing
a parameter, justify the choice you make (you may have to perform some test runs).

(a) αn−1 = 1/n.

(b) Fixed stepsizes of αn = .05, .10 and .20.

(c) The stochastic gradient adaptive stepsize rule (equations 6.22)-(6.23)).

(d) The Kalman filter (equations (6.37)-(6.41)).

(e) The optimal stepsize rule (algorithm 6.8).

5.9 Repeat exercise 6.7 using

Rn = 10(1− e−0.1n) + 6(U − 0.5).

5.10 Repeat exercise 6.7 using

Rn =
(

10/(1 + e−0.1(50−n))
)

+ 6(U − 0.5).

5.11 Let U be a uniform [0, 1] random variable, and let

µn = 1− exp (−θ1n).

Now let R̂n = µn + θ2(Un − .5). We wish to try to estimate µn using

R̄n = (1− αn−1)R̄n−1 + αn−1R̂
n.

In the exercises below, estimate the mean (using R̄n) and compute the standard deviation
of R̄n for n = 1, 2, . . . , 100, for each of the following stepsize rules:
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• αn−1 = 0.10.

• αn−1 = a/(a+ n− 1) for a = 1, 10.

• Kesten’s rule.

• Godfrey’s rule.

• The bias-adjusted Kalman filter stepsize rule.

For each of the parameter settings below, compare the rules based on the average error (1)
over all 100 iterations and (2) in terms of the standard deviation of R̄100.

(a) θ1 = 0, θ2 = 10.

(b) θ1 = 0.05, θ2 = 0.

(c) θ1 = 0.05, θ2 = 0.2.

(d) θ1 = 0.05, θ2 = 0.5.

(e) Now pick the single stepsize that works the best on all four of the above exercises.

5.12 An oil company covers the annual demand for oil using a combination of futures
and oil purchased on the spot market. Orders are placed at the end of year t− 1 for futures
that can be exercised to cover demands in year t. If too little oil is purchased this way,
the company can cover the remaining demand using the spot market. If too much oil is
purchased with futures, then the excess is sold at 70 percent of the spot market price (it is
not held to the following year – oil is too valuable and too expensive to store).

To write down the problem, model the exogenous information using

D̂t = Demand for oil during year t,
p̂st = Spot price paid for oil purchased in year t,

p̂ft,t+1 = Futures price paid in year t for oil to be used in year t+ 1.

The demand (in millions of barrels) is normally distributed with mean 600 and standard
deviation of 50. The decision variables are given by

θ̄ft,t+1 = Number of futures to be purchased at the end of year t to be used in
year t+ 1.

θ̄st = Spot purchases made in year t.

(a) Set up the objective function to minimize the expected total amount paid for oil to
cover demand in a year t+1 as a function of θ̄ft . List the variables in your expression
that are not known when you have to make a decision at time t.

(b) Give an expression for the stochastic gradient of your objective function. That is,
what is the derivative of your function for a particular sample realization of demands
and prices (in year t+ 1)?

(c) Generate 100 years of random spot and futures prices as follows:

p̂ft = 0.80 + 0.10Uft ,

p̂st,t+1 = p̂ft + 0.20 + 0.10Ust ,
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where Uft and Ust are random variables uniformly distributed between 0 and 1. Run
100 iterations of a stochastic gradient algorithm to determine the number of futures
to be purchased at the end of each year. Use θ̄f0 = 30 as your initial order quantity,
and use as your stepsize αt = 20/t . Compare your solution after 100 years to your
solution after 10 years. Do you think you have a good solution after 10 years of
iterating?

5.13 The proof in section 5.8.3 was performed assuming that θ is a scalar. Repeat the
proof assuming that θ is a vector. You will need to make adjustments such as replacing
Assumption 2 with ‖gn‖ < B. You will also need to use the triangle inequality which
states that ‖a+ b‖ ≤ ‖a‖+ ‖b‖.

5.14 Prove corollary 6.7.3.





CHAPTER 6

ADAPTIVE ESTIMATION AND STEPSIZE
POLICIES

There is a wide range of adaptive learning problems that depend on an iteration of the form
we first saw in chapter 5 that looks like

xn+1 = xn + αn∇xF (xn,Wn+1). (6.1)

The stochastic gradient ∇xF (xn,Wn+1) tells us what direction to go in, but we need the
stepsize αn to tell us how far we should move.

There are two important settings where this formula is used. The first is where we are
maximizing some metric such as contributions, utility or performance. In these settings,
the units of ∇xF (xn−1,Wn) and the decision variable x are different, so the stepsize has
to perform the scaling so that the size of αn∇xF (xn,Wn+1) is not too large or too small
relative to xn.

A second and very important setting arises in what are known as supervised learning
settings. In this context, we are trying to estimate some function f(x|θ) using observations
y = f(x|θ) + ε. In this context, f(x|θ) and y have the same scale. We encounter these
problems in three settings:

• Approximating the function EF (x,W ) to create an estimate F (x) that can be opti-
mized.

• Approximating the value Vt(St) of being in a state St and then following some
policy (we encounter this problem starting in chapters 17 and 18 when we introduce
approximate dynamic programming).

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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• Creating a parameterized policy Xπ(S|θ) (we might call this Aπ(S) if we are using
action a, or Uπ(S) if we are using control u). Here, we assume we have access to
some method of creating a decision x and then we use this to create a parameterized
policy Xπ(S|θ).

In chapter 3, we saw a range of methods for approximating functions. Imagine that we face
the simplest problem of estimating the mean of a random variable W , which we can show
(see exercise 6.5) solves the following stochastic optimization problem

min
x

E
1

2
(x−W )2. (6.2)

Let F (x,W ) = 1
2 (x−W )2. The stochastic gradient of F (µ,W ) with respect to µ is

∇µF (x,W ) = (x−W ).

We can optimize (6.2) using a stochastic gradient algorithm which we would write (re-
member that we are minimizing):

xn+1 = xn − αn∇F (xn,Wn+1) (6.3)
= xn − αn(xn −Wn+1) (6.4)
= (1− αn)xn + αnW

n+1. (6.5)

Equation (6.5) will be familiar to many readers as a smoothing algorithm (also known as
a linear filter in signal processing). The important observation is that in this setting, the
stepsize αn needs to be between 0 and 1 since µ and W are the same scale.

We made the argument in section 5.3.3 that the iterate in equation (6.1) can be viewed as
a dynamical system which is controlled by the stepsize rule, which means it is effectively
a form of policy. If we want the best answer within a budget of N iterations, we want to
find the best rule (or policy) to achieve this.

We divide our presentation of stepsize rules into three classes:

Deterministic policies - These are stepsize policies that are deterministic functions of the
iteration counter n.

Stochastic policies - These are policies where the stepsize at iteration n depends on the
statistics computed from the trajectory of the algorithm.

Optimal policies - Our deterministic and stochastic stepsize policies are heuristic, and as
a result require tuning one or more parameters. Optimal policies are derived from
a formal model which is typically a simplified problem. These policies tend to be
more complex, but eliminate or at least minimize the need for parameter tuning.

As we first pointed out in section 3.1.1, the policies we present in this chapter are usually
implemented in the computer drawing on the tools of Monte Carlo simulation, which we
introduce in more depth in chapter 10. For now, each time we use a sample of a random
variable, it is easiest to assume that this is coming from a computer-generated sample,
although there are settings where it can come from a field observations.

6.1 DETERMINISTIC STEPSIZE POLICIES

One of the challenges in Monte Carlo methods is finding the stepsize αn. We refer to a
method for choosing a stepsize as a stepsize policy, although popular terms include stepsize
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rule or learning rate schedules. A standard technique in deterministic problems (of the
continuously differentiable variety) is to find the value of αn so that θ̄n gives the smallest
possible objective function value (among all possible values of α). For a deterministic
problem, this is generally not too hard. For a stochastic problem, it means calculating
the objective function, which involves computing an expectation. For most applications,
expectations are computationally intractable, which makes it impossible to find an optimal
stepsize.

Throughout our presentation, we assume that we are using stepsizes to estimate a
parameter µ which might be the value F̂ = F (x,W ) corresponding to a decision x or the
value of being in a state s. In chapter 3, we use these techniques to estimate more general
parameter vectors when we introduce the idea of using regression models to approximate
a value function. We let θ̄n−1 be the estimate of µ after n− 1 iterations, and we let θ̂n be
a random observation in iteration n of the value of being in state s (θ̂n might be a biased
observation of the true value θn).

Our updating equation looks like

θ̄n = (1− αn−1)θ̄n−1 + αn−1θ̂
n. (6.6)

Our iteration counter always starts at n = 1 (just as our first time interval starts with t = 1).
The use of αn−1 in equation (6.6) means that we are computing αn−1 using information
available at iteration n − 1 and before. Thus, we have an explicit assumption that we
are not using θ̂n to compute the stepsize in iteration n. This is irrelevant when we use a
deterministic stepsize sequence, but is critical in convergence proofs for stochastic stepsize
formulas (introduced below). In most formulas, α0 is a parameter that has to be specified,
although we will generally assume that α0 = 1, which means that we do not have to specify
θ̄0. The only reason to use α0 < 1 is when we have some a priori estimate of θ̄0 which is
better than θ̂1.

There are two issues when designing a good stepsize rule. The first is the question of
whether the stepsize produces some theoretical guarantee, such as asymptotic convergence
or a finite time bound. While this is primarily of theoretical interest, these conditions do
provide important guidelines to follow to produce good behavior. The second issue is
whether the rule produces good empirical performance.

Below, we start with a general discussion of stepsize rules. Following this, we provide a
number of examples of deterministic stepsize rules. These are formulas that depend only on
the iteration counter n (or more precisely, the number of times that we update a particular
parameter). Section 6.2 then describes stochastic stepsize rules that adapt to the data.

The deterministic and stochastic rules presented in this section and section 6.2 are,
for the most part, heuristically designed to achieve good rates of convergence, but are
not supported by any theory that they will produce the best rate of convergence. Later
(section 6.3) we provide a theory for choosing stepsizes that produce the fastest possible
rate of convergence when estimating value functions based on policy evaluation. Finally,
section 6.4 presents a new optimal stepsize rule designed specifically for approximate value
iteration.

6.1.1 Properties for convergence

The theory for proving convergence of stochastic gradient algorithms was first developed
in the early 1950’s and has matured considerably since then (see section 5.8). However, all
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the proofs require three basic conditions

αn−1 > 0, n = 1, 2, . . . , (6.7)
∞∑
n=1

αn−1 = ∞, (6.8)

∞∑
n=1

(αn−1)2 < ∞. (6.9)

Equation (6.7) obviously requires that the stepsizes be strictly positive (we cannot allow
stepsizes equal to zero). The most important requirement is (6.8), which states that the
infinite sum of stepsizes must be infinite. If this condition did not hold, the algorithm might
stall prematurely. Finally, condition 6.9 requires that the infinite sum of the squares of the
stepsizes be finite. This condition, in effect, requires that the stepsize sequence converge
“reasonably quickly.” A good intuitive justification for this condition is that it guarantees
that the variance of our estimate of the optimal solution goes to zero in the limit. Sections
5.8.2 and 5.8.3 illustrate two proof techniques that both lead to these requirements on the
stepsize. However, it is possible under certain conditions to replace equation (6.9) with the
weaker requirement that limn→∞ αn = 0.

Conditions (6.8) and (6.9) effectively require that the stepsizes decline according to an
arithmetic sequence such as

αn−1 =
1

n
. (6.10)

This rule has an interesting property. Exercise 6.5 asks you to show that a stepsize of 1/n
produces an estimate θ̄n that is simply an average of all previous observations, which is to
say

θ̄n =
1

n

n∑
m=1

θ̂m. (6.11)

Of course, we have a nice name for equation (6.11): it is called a sample average. And we
are all aware that in general (some modest technical conditions are required) as n → ∞,
θ̄n will converge (in some sense) to the mean of our random variable R.

The issue of the rate at which the stepsizes decrease is of considerable practical impor-
tance. Consider, for example, the stepsize sequence

αn = .5αn−1,

which is a geometrically decreasing progression. This stepsize formula violates (6.8).
More intuitively, the problem is that the stepsizes would decrease so quickly that it is likely
that we would never reach the final solution.

There are settings where the “1/n” stepsize formula is the best that we can do (as in
finding the mean of a random variable), while in other situations it can perform extremely
poorly because it can decline to zero too quickly. The situations where it works poorly arise
when we are estimating a function that is changing over time (or iterations). For example,
there is an algorithmic strategy called Q-learning which involves two steps:

q̂n(sn, an) = r(sn, an) + γmax
a′

Q̄n−1(s′, a′),

Q̄n(sn, an) = (1− αn−1)Q̄n−1(sn, an) + αn−1q̂
n(sn, an).
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Figure 6.1 Illustration of poor convergence of the 1/n stepsize rule in the presence of transient
data.

Here, we create a sampled observation q̂n(sn, an) of being in a state sn and taking an
action an, which we compute using the one period reward r(sn, an) plus an estimate of
the downstream value, computed by sampling a downstream state s′ given the current state
sn and action an, and then choosing the best action a′ based on our current estimate of the
value of different state-action pairs Q̄n−1(s′, a′). We then smooth q̂n(sn, an) using our
stepsize αn−1 to obtain updated estimates Q̄n(sn, an) of the value of the state-action pair
sn and an.

Figure 6.1 illustrates the behavior of using 1/n in this setting, which shows that we are
significantly underestimating the values. Below, we fix this by generalizing 1/n using a
tunable parameter. Later, we are going to present stepsize formulas that help to mitigate
this behavior.

6.1.2 Deterministic stepsize policies

The remainder of this section presents a series of deterministic stepsize formulas designed
to overcome this problem. These rules are the simplest to implement and are typically a
good starting point when implementing adaptive learning algorithms.

Constant stepsizes

A constant stepsize rule is simply

αn−1 =

{
1 if n = 1,
ᾱ otherwise,

where ᾱ is a stepsize that we have chosen. It is common to start with a stepsize of 1 so that
we do not need an initial value θ̄0 for our statistic.
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Constant stepsizes are popular when we are estimating not one but many parameters (for
large scale applications, these can easily number in the thousands or millions). In these
cases, no single rule is going to be right for all of the parameters and there is enough noise
that any reasonable stepsize rule will work well. Constant stepsizes are easy to code (no
memory requirements) and, in particular, easy to tune (there is only one parameter). Perhaps
the biggest point in their favor is that we simply may not know the rate of convergence,
which means that we run the risk with a declining stepsize rule of allowing the stepsize to
decline too quickly, producing a behavior we refer to as “apparent convergence.”

In dynamic programming, we are typically trying to estimate the value of being in a state
using observations that are not only random, but which are also changing systematically as
we try to find the best policy. As a general rule, as the noise in the observations of the values
increases, the best stepsize decreases. But if the values are increasing rapidly, we want a
larger stepsize. Choosing the best stepsize requires striking a balance between stabilizing
the noise and responding to the changing mean. Figure 6.2 illustrates observations that are
coming from a process with relatively low noise but where the mean is changing quickly
(6.2a), and observations that are very noisy but where the mean is not changing at all (6.2b).
For the first, the ideal stepsize is relatively large, while for the second, the best stepsize is
quite small.

Generalized harmonic stepsizes

A generalization of the 1/n rule is the generalized harmonic sequence given by

αn−1 =
θ

θ + n− 1
. (6.12)

This rule satisfies the conditions for convergence, but produces larger stepsizes for θ > 1
than the 1/n rule. Increasing a slows the rate at which the stepsize drops to zero, as
illustrated in figure 6.3. In practice, it seems that despite theoretical convergence proofs to
the contrary, the stepsize 1/n can decrease to zero far too quickly, resulting in “apparent
convergence” when in fact the solution is far from the best that can be obtained.

Polynomial learning rates

An extension of the basic harmonic sequence is the stepsize

αn−1 =
1

(n)β
, (6.13)

where β ∈ ( 1
2 , 1]. Smaller values of β slow the rate at which the stepsizes decline, which

improves the responsiveness in the presence of initial transient conditions. The best value
of β depends on the degree to which the initial data is transient, and as such is a parameter
that needs to be tuned.

McClain’s formula

McClain’s formula is an elegant way of obtaining 1/n behavior initially but approaching a
specified constant in the limit. The formula is given by

αn =
αn−1

1 + αn−1 − ᾱ
. (6.14)
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6.2a: Low-noise
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Figure 6.2 Illustration of the effects of smoothing using constant stepsizes. Case (a) represents a
low-noise dataset, with an underlying nonstationary structure; case (b) is a high-noise dataset from a
stationary process.

where ᾱ is a specified parameter. Note that steps generated by this model satisfy the
following properties

αn > αn+1 > ᾱ if α > ᾱ,

αn < αn+1 < ᾱ if α < ᾱ.

McClain’s rule, illustrated in figure 6.4, combines the features of the “1/n” rule which
is ideal for stationary data, and constant stepsizes for nonstationary data. If we set ᾱ = 0,
then it is easy to verify that McClain’s rule produces αn−1 = 1/n. In the limit, αn → ᾱ.
The value of the rule is that the 1/n averaging generally works quite well in the very first
iterations (this is a major weakness of constant stepsize rules), but avoids going to zero.
The rule can be effective when you are not sure how many iterations are required to start
converging, and it can also work well in nonstationary environments.
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Figure 6.3 Stepsizes for a/(a+ n) while varying a.
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Figure 6.4 The McClain stepsize rule with varying targets.

Search-then-converge learning rule

The search-then-converge (STC) stepsize rule is a variation on the harmonic stepsize rule
that produces delayed learning. The rule can be written as

αn−1 = α0

(
b
n + a

)(
b
n + a+ nβ

) . (6.15)

If β = 1, then this formula is similar to the STC rule. In addition, if b = 0, then it is
the same as the a/(a + n) rule. The addition of the term b/n to the numerator and the
denominator can be viewed as a kind of a/(a+ n) rule where a is very large but declines
with n. The effect of the b/n term, then, is to keep the stepsize larger for a longer period
of time, as illustrated in figure 6.5. This can help algorithms that have to go through
an extended learning phase when the values being estimated are relatively unstable. The
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Figure 6.5 Stepsizes for (b/n+ a)/(b/n+ a+ n) while varying b.

relative magnitude of b depends on the number of iterations which are expected to be run,
which can range from several dozen to several million.

This class of stepsize rules is termed “search-then-converge” because they provide for a
period of high stepsizes (while searching is taking place) after which the stepsize declines
(to achieve convergence). The degree of delayed learning is controlled by the parameter
b, which can be viewed as playing the same role as the parameter a but which declines
as the algorithm progresses. The rule is designed for approximate dynamic programming
methods applied to the setting of playing games with a delayed reward (there is no reward
until you win or lose the game).

The exponent β in the denominator has the effect of increasing the stepsize in later
iterations (see figure 6.6). With this parameter, it is possible to accelerate the reduction of
the stepsize in the early iterations (by using a smaller a) but then slow the descent in later
iterations (to sustain the learning process). This may be useful for problems where there is
an extended transient phase requiring a larger stepsize for a larger number of iterations.

6.2 STOCHASTIC STEPSIZE POLICIES

There is considerable appeal to the idea that the stepsize should depend on the actual
trajectory of the algorithm. For example, if we are consistently observing that our estimate
θ̄n−1 is smaller (or larger) than the observations θ̂n, then it suggests that we are trending
upward (or downward). When this happens, we typically would like to use a larger stepsize
to increase the speed at which we reach a good estimate. When the stepsizes depend on the
observations θ̂n, then we say that we are using a stochastic stepsize.

In this section, we first review the case for stochastic stepsizes, then present the revised
theoretical conditions for convergence, and finally outline a series of heuristic recipes that
have been suggested in the literature. After this, we present some stepsize rules that are
optimal until special conditions.
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Figure 6.6 Stepsizes for (b/n+ a)/(b/n+ a+ nβ) while varying β.

6.2.1 The case for stochastic stepsizes

Assume that our estimates are consistently under or consistently over the actual observa-
tions. This can easily happen during early iterations due to either a poor initial starting
point or the use of biased estimates (which is common in dynamic programming) during
the early iterations. For large problems, it is possible that we have to estimate thousands of
parameters. It seems unlikely that all the parameters will approach their true value at the
same rate. Figure 6.7 shows the change in estimates of the value of being in different states,
illustrating the wide variation in learning rates that can occur within the same dynamic
program.

Stochastic stepsizes try to adjust to the data in a way that keeps the stepsize larger
while the parameter being estimated is still changing quickly. Balancing noise against the
change in the underlying signal, particularly when both of these are unknown, is a difficult
challenge.

6.2.2 Convergence conditions

When the stepsize depends on the history of the process, the stepsize itself becomes a
random variable. This change requires some subtle modifications to our requirements for
convergence (equations (6.8) and (6.9)). For technical reasons, our convergence criteria
change to

αn > 0, almost surely, (6.16)
∞∑
n=0

αn = ∞ almost surely, (6.17)

E

{ ∞∑
n=0

(αn)2

}
< ∞. (6.18)
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The condition “almost surely” (universally abbreviated “a.s.”) means that equation (6.17)
holds for every sample path ω, and not just on average. More precisely, we mean every
sample path ω that might actually happen (we exclude sample paths where the probability
that the sample path would happen is zero).

For the reasons behind these conditions, go to our “Why does it work” section (5.8). It
is important to emphasize, however, that these conditions are completely unverifiable and
are purely for theoretical reasons. The real issue with stochastic stepsizes is whether they
contribute to the rate of convergence.

6.2.3 A selection of policies

The desire to find stepsize policies that adapt to the data has become a small cottage
industry which has produced a variety of formulas with varying degrees of sophistication
and convergence guarantees. This section provides a brief sample of some popular policies,
some (such as AdaGrad) with strong performance guarantees. Later, we present some
optimal policies for specialized problems.

To present our stochastic stepsize formulas, we need to define a few quantities. Recall
that our basic updating expression is given by

θ̄n = (1− αn−1)θ̄n−1 + αn−1θ̂
n.

θ̄n−1 is our estimate of the next observation, given by θ̂n. The difference between the
estimate and the actual can be treated as the error, given by

εn = θ̄n−1 − θ̂n.

We may wish to smooth the error in the estimate, which we designate by the function

S(εn) = (1− β)S(εn−1) + βεn.
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Some formulas depend on tracking changes in the sign of the error. This can be done using
the indicator function

1{X} =

{
1 if the logical condition X is true,
0 otherwise.

Thus, 1εnεn−1<0 indicates if the sign of the error has changed in the last iteration.
Below, we summarize three classic rules. Kesten’s rule is the oldest and is perhaps the

simplest illustration of a stochastic stepsize rule. Trigg’s formula is a simple rule widely
used in the demand forecasting community. Finally, the stochastic gradient adaptive
stepsize rule enjoys a theoretical convergence proof, but is controlled by several tunable
parameters that complicate its use in practice.

Kesten’s rule
Kesten’s rule was one of the earliest stepsize rules which took advantage of a simple
principle. If we are far from the optimal, the errors tend to all have the same sign. As we
get close, the errors tend to alternate. Exploiting this simple observation, Kesten proposed
the following simple rule:

αn−1 =
a

a+Kn − 1
, (6.19)

where a is a parameter to be calibrated. Kn counts the number of times that the sign of the
error has changed, where we use

Kn =

{
n if n = 1, 2,
Kn−1 + 1{εnεn−1<0} if n > 2.

(6.20)

Kesten’s rule is particularly well suited to initialization problems. It slows the reduction in
the stepsize as long as the error exhibits the same sign (and indication that the algorithm is
still climbing into the correct region). However, the stepsize declines monotonically. This
is typically fine for most dynamic programming applications, but can encounter problems
in situations with delayed learning.

Trigg’s formula
Trigg’s formula is given by

αn =
|S(εn)|
S(|εn|)

. (6.21)

The formula takes advantage of the simple property that smoothing on the absolute value
of the errors is greater than or equal to the absolute value of the smoothed errors. If there
is a series of errors with the same sign, that can be taken as an indication that there is a
significant difference between the true mean and our estimate of the mean, which means
we would like larger stepsizes.

Stochastic gradient adaptive stepsize rule
This class of rules uses stochastic gradient logic to update the stepsize. We first compute

ψn = (1− αn−1)ψn−1 + εn. (6.22)
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The stepsize is then given by

αn =
[
αn−1 + νψn−1εn

]α+

α−
, (6.23)

where α+ and α− are, respectively, upper and lower limits on the stepsize. [·]α+
α− represents

a projection back into the interval [α−, α+], and ν is a scaling factor. ψn−1εn is a stochastic
gradient that indicates how we should change the stepsize to improve the error. Since the
stochastic gradient has units that are the square of the units of the error, while the stepsize
is unitless, ν has to perform an important scaling function. The equation αn−1 + νψn−1εn

can easily produce stepsizes that are larger than 1 or smaller than 0, so it is customary to
specify an allowable interval (which is generally smaller than (0,1)). This rule has provable
convergence, but in practice, ν, α+ and α− all have to be tuned.

ADAM ADAM (Adaptive Moment Estimation) is another stepsize policy that has at-
tracted attention in recent years. As above, let gn = ∇xF (xn−1,Wn) be our gradient, and
let gni be the ith element. ADAM proceeds by adaptively computing means and variances
according to

mn
i = β1m

n−1
i + (1− β1)gni , (6.24)

vni = β2v
n−1
i + (1− β2)(gni )2. (6.25)

These updating equations introduce biases when the data is nonstationary, which is typically
the case in stochastic optimization. ADAM compensates for these biases using

m̄n
i =

mn
i

1− β1
,

v̄ni =
vni

1− β2
.

The stochastic gradient equation for ADAM is then given by

xn+1
i = xni +

η√
v̄ni + ε

m̄n
i . (6.26)

AdaGrad AdaGrad (“adaptive gradient”) is a relatively recent stepsize policy that has
attracted considerable attention in the machine learning literature which not only enjoys
nice theoretical performance guarantees, but has also become quite popular because it
seems to work quite well in practice.

Assume that we are trying to solve our standard problem

max
x

EWF (x,W ),

where we make the assumption that not only is x a vector, but also that the scaling for each
dimension might be different (an issue we have ignored so far). To simplify the notation a
bit, let the stochastic gradient with respect to xi, i = 1, . . . , I be given by

gni = ∇xiF (xn−1,Wn).

Now create a I × I diagonal matrix Gn where the (i, i)th element Gnii is given by

Gnii =

n∑
m=1

(gni )2.
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We then set a stepsize for the ith dimension using

αni =
η

(Gnii)
2 + ε

, (6.27)

where ε is a small number (e.g. 10−8 to avoid the possibility of dividing by zero). This
can be written in matrix form using

αn =
η√

Gn + ε
� gt, (6.28)

where αn is an I-dimensional matrix. The right way to understand equation (6.28) is
equation (6.27).

AdaGrad does an unusually good job of adapting to the behavior of a function. It
also adapts to potentially different behaviors of each dimension. For example, we might
be solving a machine learning problem to learn a parameter vector θ (this would be the
decision variable instead of x) for a linear model of the form

y = θ0 + θ1X1 + θ2X2 + . . . .

The explanatory variablesX1, X2, . . . can take on values in completely different ranges. In
a medical setting,X1 might be blood sugar with values between 5 and 8, whileX2 might be
the weight of a patient that could range between 100 and 300 pounds. The coefficients θ1

and θ2 would be scaled according to the inverse of the scales of the explanatory variables.

6.2.4 Experimental notes

Throughout our presentation, we represent the stepsize at iteration n using αn−1. For
discrete, lookup-table representations of value functions (as we are doing here), the stepsize
should reflect how many times we have visited a specific state. If n(S) is the number of
times we have visited state S, then the stepsize for updating V (S) should be αn(S). For
notational simplicity, we suppress this capability, but it can have a significant impact on the
empirical rate of convergence.

A word of caution is offered when testing out stepsize rules. It is quite easy to test out
these ideas in a controlled way in a simple spreadsheet on randomly generated data, but
there is a big gap between showing a stepsize that works well in a spreadsheet and one
that works well in specific applications. Stochastic stepsize rules work best in the presence
of transient data where the degree of noise is not too large compared to the change in the
signal (the mean). As the variance of the data increases, stochastic stepsize rules begin to
suffer and simpler (deterministic) rules tend to work better.

6.3 OPTIMAL STEPSIZE POLICIES

Given the variety of stepsize formulas we can choose from, it seems natural to ask whether
there is an optimal stepsize rule. Before we can answer such a question, we have to define
exactly what we mean by it. Assume that we are trying to estimate a parameter (such as
a value of being in a state or the slope of a value function) that we denote by θn that may
be changing over time. At iteration n, our estimate of θn, θ̄n, is a random variable that
depends on our stepsize rule. To express this dependence, let α represent a stepsize rule,
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and let θ̄n(α) be the estimate of the parameter µ after iteration n using stepsize rule α. We
would like to choose a stepsize rule to minimize

min
α

E(θ̄n(α)− θn)2. (6.29)

Here, the expectation is over the entire history of the algorithm and requires (in principle)
knowing the true value of the parameter being estimated. If we could solve this problem
(which requires knowing certain parameters about the underlying distributions), we would
obtain a deterministic stepsize rule. In practice, we do not generally know these parameters
which need to be estimated from data, producing a stochastic stepsize rule.

There are other objective functions we could use. For example, instead of minimizing the
distance to an unknown parameter sequence θn, we could solve the minimization problem

min
α

E
{

(θ̄n(α)− θ̂n+1)2
}
, (6.30)

where we are trying to minimize the deviation between our prediction, obtained at iteration
n, and the actual observation atn+1. Here, we are again proposing an unconditional expec-
tation, which means that θ̄n(α) is a random variable within the expectation. Alternatively,
we could condition on our history up to iteration n

min
α

En
{

(θ̄n(α)− θ̂n+1)2
}

(6.31)

whereEn means that we are taking the expectation given what we know at iterationn (which
means that θ̄n(α) is a constant). For readers familiar with the language of filtrations, we
would write the expectation as E

{
(θ̄n(α)− θ̂n+1)2|Hn

}
, where Hn is the history of

the process up through iteration n (that is, the entire sequence W 1, . . . ,Wn). In this
formulation θ̄n(α) is now deterministic at iteration n (because we are conditioning on
the history up through iteration n), whereas in (6.30), θ̄n(α) is random (since we are not
conditioning on the history). The difference between these two objective functions is subtle
but significant.

We begin our discussion of optimal stepsizes in section 6.3.1 by addressing the case of
estimating a constant parameter which we observe with noise. Section 6.3.2 considers the
case where we are estimating a parameter that is changing over time, but where the changes
have mean zero. Finally, section 6.3.3 addresses the case where the mean may be drifting
up or down with nonzero mean, a situation that we typically face when approximating a
value function.

6.3.1 Optimal stepsizes for stationary data

Assume that we observe θ̂n at iteration n and that the observations θ̂n can be described by

θ̂n = θ + εn

where µ is an unknown constant and εn is a stationary sequence of independent and
identically distributed random deviations with mean 0 and variance σ2. We can approach
the problem of estimating µ from two perspectives: choosing the best stepsize and choosing
the best linear combination of the estimates. That is, we may choose to write our estimate
θ̄n after n observations in the form

θ̄n =

n∑
m=1

anmθ̂m.
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For our discussion, we will fix n and work to determine the coefficients am (recognizing
that they can depend on the iteration). We would like our statistic to have two properties: It
should be unbiased, and it should have minimum variance (that is, it should solve (6.29)).
To be unbiased, it should satisfy

E

[
n∑

m=1

amθ̂m

]
=

n∑
m=1

amEθ̂m

=

n∑
m=1

amθ

= θ,

which implies that we must satisfy

n∑
m=1

am = 1.

The variance of our estimator is given by:

Var(θ̄n) = Var

[
n∑

m=1

amθ̂m

]
.

We use our assumption that the random deviations are independent, which allows us to
write

Var(θ̄n) =

n∑
m=1

Var[amθ̂m]

=

n∑
m=1

a2
mVar[θ̂m]

= σ2
n∑

m=1

a2
m. (6.32)

Now we face the problem of findinga1, . . . , an to minimize (6.32) subject to the requirement
that

∑
m am = 1. This problem is easily solved using the Lagrange multiplier method.

We start with the nonlinear programming problem

min
{am}

n∑
m=1

a2
m

subject to

n∑
m=1

am = 1, (6.33)

am ≥ 0. (6.34)

We relax constraint (6.33) and add it to the objective function

min
{am}

L(a, λ) =

n∑
m=1

a2
m − λ

(
n∑

m=1

am − 1

)
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subject to (6.34). We are now going to try to solve L(a, λ) (known as the “Lagrangian”)
and hope that the coefficients a are all nonnegative. If this is true, we can take derivatives
and set them equal to zero

∂L(a, λ)

∂am
= 2am − λ. (6.35)

The optimal solution (a∗, λ∗) would then satisfy

∂L(a, λ)

∂am
= 0.

This means that at optimality

am = λ/2,

which tells us that the coefficients am are all equal. Combining this result with the
requirement that they sum to one gives the expected result:

am =
1

n
.

In other words, our best estimate is a sample average. From this (somewhat obvious) result,
we can obtain the optimal stepsize, since we already know that αn−1 = 1/n is the same as
using a sample average.

This result tells us that if the underlying data is stationary, and we have no prior
information about the sample mean, then the best stepsize rule is the basic 1/n rule. Using
any other rule requires that there be some violation in our basic assumptions. In practice,
the most common violation is that the observations are not stationary because they are
derived from a process where we are searching for the best solution.

6.3.2 Optimal stepsizes for nonstationary data - I

Assume now that our parameter evolves over time (iterations) according to the process

θn = θn−1 + ξn, (6.36)

where Eξn = 0 is a zero mean drift term with variance (σξ)2. As before, we measure θn

with an error according to

θ̂n = θn + εn.

We want to choose a stepsize so that we minimize the mean squared error. This problem
can be solved using the Kalman filter. The Kalman filter is a powerful recursive regression
technique, but we adapt it here for the problem of estimating a single parameter. Typical
applications of the Kalman filter assume that the variance of ξn, given by (σξ)2, and the
variance of the measurement error, εn, given by σ2, are known. In this case, the Kalman
filter would compute a stepsize (generally referred to as the gain) using

αn =
(σξ)2

νn + σ2
, (6.37)

where νn is computed recursively using

νn = (1− αn−1)νn−1 + (σξ)2. (6.38)
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Remember that α0 = 1, so we do not need a value of ν0. For our application, we do not
know the variances so these have to be estimated from data. We first estimate the bias using

β̄n = (1− ηn−1) β̄n−1 + ηn−1

(
θ̄n−1 − θ̂n

)
, (6.39)

where ηn−1 is a simple stepsize rule such as the harmonic stepsize rule or McClain’s
formula. We then estimate the total error sum of squares using

ν̄n = (1− ηn−1) ν̄n−1 + ηn−1

(
θ̄n−1 − θ̂n

)2

. (6.40)

Finally, we estimate the variance of the error using

(σ̄n)2 =
ν̄n − (β̄n)2

1 + λ̄n−1
, (6.41)

where λ̄n−1 is computed using

λn =

{
(αn−1)2, n = 1,
(1− αn−1)2λn−1 + (αn−1)2, n > 1.

We use (σ̄n)2 as our estimate of σ2. We then propose to use
(
β̄n
)2

as our estimate of
(σξ)2. This is purely an approximation, but experimental work suggests that it performs
quite well, and it is relatively easy to implement.

6.3.3 Optimal stepsizes for nonstationary data - II

In dynamic programming, we are trying to estimate the value of being in a state (call
it v) by v̄ which is estimated from a sequence of random observations v̂. The problem
we encounter is that v̂ might depend on a value function approximation which is steadily
increasing, which means that the observations v̂ are nonstationary. Furthermore, unlike the
assumption made by the Kalman filter that the mean of v̂ is varying in a zero-mean way,
our observations of v̂ might be steadily increasing. This would be the same as assuming
that Eξ = µ > 0 in the section above. In this section, we derive the Kalman filter learning
rate for biased estimates.

Our challenge is to devise a stepsize that strikes a balance between minimizing error
(which prefers a smaller stepsize) and responding to the nonstationary data (which works
better with a large stepsize). We return to our basic model

θ̂n = θn + εn,

where θn varies over time, but it might be steadily increasing or decreasing. This would be
similar to the model in the previous section (equation (6.36)) but where ξn has a nonzero
mean. As before we assume that {εn}n=1,2,... are independent and identically distributed
with mean value of zero and variance, σ2. We perform the usual stochastic gradient update
to obtain our estimates of the mean

θ̄n(αn−1) = (1− αn−1) θ̄n−1 + αn−1θ̂
n. (6.42)

We wish to find αn−1 that solves,

min
αn−1

F (αn−1) = E
[(
θ̄n(αn−1)− θn

)2]
. (6.43)
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It is important to realize that we are trying to choose αn−1 to minimize the unconditional
expectation of the error between θ̄n and the true value θn. For this reason, our stepsize rule
will be deterministic, since we are not allowing it to depend on the information obtained
up through iteration n.

We assume that the observation at iteration n is unbiased, which is to say

E
[
θ̂n
]

= θn. (6.44)

But the smoothed estimate is biased because we are using simple smoothing on nonstation-
ary data. We denote this bias as

βn−1 = E
[
θ̄n−1 − θn

]
= E

[
θ̄n−1

]
− θn. (6.45)

We note that βn−1 is the bias computed after iteration n−1 (that is, after we have computed
θ̄n−1). βn−1 is the bias when we use θ̄n−1 as an estimate of θn.

The variance of the observation θ̂n is computed as follows:

Var
[
θ̂n
]

= E
[(
θ̂n − θn

)2
]

= E
[
(εn)2

]
= σ2. (6.46)

It can be shown (see section 6.7.1) that the optimal stepsize is given by

αn−1 = 1− σ2

(1 + λn−1)σ2 + (βn−1)2
, (6.47)

where λ is computed recursively using

λn =

{
(αn−1)2, n = 1

(1− αn−1)2λn−1 + (αn−1)2, n > 1.
(6.48)

The BAKF stepsize formula enjoys several nice properties:

Stationary data For a sequence with a static mean, the optimal stepsizes are given by

αn−1 =
1

n
∀ n = 1, 2, . . . . (6.49)

This is the optimal stepsize for stationary data.

No noise For the case where there is no noise (σ2 = 0), we have the following:

αn−1 = 1 ∀ n = 1, 2, . . . . (6.50)

This is ideal for nonstationary data with no noise.

Bounded by 1/n At all times, the stepsize obeys

αn−1 ≥
1

n
∀ n = 1, 2, . . . .
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This is important since it guarantees asymptotic convergence.

These are particularly nice properties since we typically have to do parameter tuning to
get this behavior. The properties are particularly when estimating value functions, since
sampled estimates of the value of being in a state tends to be transient.

The problem with using the stepsize formula in equation (6.47) is that it assumes that
the variance σ2 and the bias (βn)2 are known. This can be problematic in real instances,
especially the assumption of knowing the bias, since computing this basically requires
knowing the real function. If we have this information, we do not need this algorithm.

As an alternative, we can try to estimate these quantities from data. Let

(σ̄2)n = Estimate of the variance of the error after iteration n,
β̄n = Estimate of the bias after iteration n,
ν̄n = Estimate of the variance of the bias after iteration n.

To make these estimates, we need to smooth new observations with our current best estimate,
something that requires the use of a stepsize formula. We could attempt to find an optimal
stepsize for this purpose, but it is likely that a reasonably chosen deterministic formula will
work fine. One possibility is McClain’s formula (equation (6.14)):

ηn =
ηn−1

1 + ηn−1 − η̄
.

A limit point such as η̄ ∈ (0.05, 0.10) appears to work well across a broad range of
functional behaviors. The property of this stepsize that ηn → η̄ can be a strength, but it
does mean that the algorithm will not tend to converge in the limit, which requires a stepsize
that goes to zero. If this is needed, we suggest a harmonic stepsize rule:

ηn−1 =
a

a+ n− 1
,

where a in the range between 5 and 10 seems to work quite well for many dynamic
programming applications.

Care needs to be used in the early iterations. For example, if we let α0 = 1, then we
do not need an initial estimate for θ̄0 (a trick we have used throughout). However, since
the formulas depend on an estimate of the variance, we still have problems in the second
iteration. For this reason, we recommend forcing η1 to equal 1 (in addition to using η0 = 1).
We also recommend using αn = 1/(n+ 1) for the first few iterations, since the estimates
of (σ̄2)n, β̄n and ν̄n are likely to be very unreliable in the very beginning.

Figure 6.8 summarizes the entire algorithm. Note that the estimates have been con-
structed so that αn is a function of information available up through iteration n.

Figure 6.9 illustrates the behavior of the bias-adjusted Kalman filter stepsize rule for two
signals: very low noise (figure 6.9a) and with higher noise (figure 6.9b). For both cases,
the signal starts small and rises toward an upper limit of 1.0 (on average). In both figures,
we also show the stepsize 1/n. For the low-noise case, the stepsize stays quite large. For
the high noise case, the stepsize roughly tracks 1/n (note that it never goes below 1/n).

6.4 OPTIMAL STEPSIZES FOR APPROXIMATE VALUE ITERATION

All the stepsize rules that we have presented so far are designed to estimate the mean of a
nonstationary series. In this section, we develop a stepsize rule that is specifically designed
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Step 0. Initialization:

Step 0a. Set the baseline to its initial value, θ̄0.

Step 0b. Initialize the parameters - β̄0, ν̄0 and λ̄0.

Step 0c. Set initial stepsizes α0 = η0 = 1, and specify the stepsize rule for η.

Step 0d. Set the iteration counter, n = 1.

Step 1. Obtain the new observation, θ̂n.

Step 2. Smooth the baseline estimate.

θ̄n = (1− αn−1)θ̄n−1 + αn−1θ̂
n

Step 3. Update the following parameters:

εn = θ̄n−1 − θ̂n,
β̄n = (1− ηn−1) β̄n−1 + ηn−1ε

n,

ν̄n = (1− ηn−1)ν̄n−1 + ηn−1(εn)2,

(σ̄2)n =
ν̄n − (β̄n)2

1 + λn−1
.

Step 4. Evaluate the stepsizes for the next iteration.

αn =

{
1/(n+ 1) n = 1, 2,

1− (σ̄2)n

ν̄n
, n > 2,

ηn =
a

a+ n− 1
. Note that this gives us η1 = 1.

Step 5. Compute the coefficient for the variance of the smoothed estimate of the baseline.

λ̄n = (1− αn−1)2λ̄n−1 + (αn−1)2.

Step 6. If n < N , then n = n+ 1 and go to Step 1, else stop.

Figure 6.8 The bias-adjusted Kalman filter stepsize rule.

for approximate value iteration, which is an algorithm we are going to see in chapters 17
and 18. We use as our foundation a dynamic program with a single state and single action.
We use the same theoretical foundation that we used in section 6.3. However, given the
complexity of the derivation, we simply provide the expression.

We start with the basic relationship for our single state problem

vn(αn−1) = (1− (1− γ)αn−1)vn−1 + αn−1Ĉ
n. (6.51)

Let c = Ĉ be the expected one-period contribution for our problem, and let Var(Ĉ) = σ2.
For the moment, we assume c and σ2 are known. We next define the iterative formulas for
two series, λn and δn, as follows:

λn =

{
α2

0 n = 1

α2
n−1 + (1− (1− γ)αn−1)2λn−1 n > 1.

δn =

{
α0 n = 1

αn−1 + (1− (1− γ)αn−1)δn−1 n > 1.
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6.9a Bias-adjusted Kalman filter for a signal with low noise.
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6.9b Bias-adjusted Kalman filter for a signal with higher noise.

Figure 6.9 The BAKF stepsize rule for low-noise (a) and high-noise (b). Each figure shows the
signal, the BAKF stepsizes and the stepsizes produced by the 1/n stepsize rule.

It is possible to then show that

E(vn) = δnc,

Var(vn) = λnσ2.

Let vn(αn−1) be defined as in equation (6.51). Our goal is to solve the optimization
problem

min
αn−1

E
[(
vn(αn−1)− Ev̂n

)2]
(6.52)
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The optimal solution can be shown to be given by

αn−1 =
(1− γ)λn−1σ2 + (1− (1− γ)δn−1)2c2

(1− γ)2λn−1σ2 + (1− (1− γ)δn−1)2c2 + σ2
. (6.53)

We refer to equation (6.53) as the optimal stepsize for approximate value iteration (OSAVI).
Of course, it is only optimal for our single state problem, and it assumes that we know the
expected contribution per time period c, and the variance in the contribution Ĉ, σ2.

OSAVI has some desirable properties. If σ2 = 0, then αn−1 = 1. Also, if γ = 0, then
αn−1 = 1/n. It is also possible to show that αn−1 ≥ (1− γ)/n for any sample path.

All that remains is adapting the formula to more general dynamic programs with multiple
states and where we are searching for optimal policies. We suggest the following adaptation.
We propose to estimate a single constant c̄ representing the average contribution per period,
averaged over all states. If Ĉn is the contribution earned in period n, let

c̄n = (1− νn−1)c̄n−1 + νn−1Ĉ
n,

(σ̄n)2 = (1− νn−1)(σ̄n−1)2 + νn−1(c̄n − Ĉn)2.

Here, νn−1 is a separate stepsize rule. Our experimental work suggests that a constant
stepsize works well, and that the results are quite robust with respect to the value of νn−1.
We suggest a value of νn−1 = 0.2. Now let c̄n be our estimate of c, and let (σ̄n)2 be our
estimate of σ2.

We could also consider estimating c̄n(s) and (σ̄n)2(s) for each state, so that we can
estimate a state-dependent stepsize αn−1(s). There is not enough experimental work to
support the value of this strategy, and lacking this we favor simplicity over complexity.

6.5 CONVERGENCE

A practical issue that arises with all stochastic approximation algorithms is that we simply
do not have reliable, implementable stopping rules. Proofs of convergence in the limit are
an important theoretical property, but they provide no guidelines or guarantees in practice.
A good illustration of the issue is given in figure 6.10. Figure 6.10a shows the objective
function for a dynamic program over 100 iterations (in this application, a single iteration
required approximately 20 minutes of CPU time). The figure shows the objective function
for an ADP algorithm which was run 100 iterations, at which point it appeared to be
flattening out (evidence of convergence). Figure 6.10b is the objective function for the
same algorithm run for 400 iterations. A solid line that shows the best objective function
after 100 iterations is shown at the same level on the graph where the algorithm was run for
400 iterations. As we see, the algorithm was nowhere near convergence after 100 iterations.

We refer to this behavior as “apparent convergence,” and it is particularly problematic on
large-scale problems where run times are long. Typically, the number of iterations needed
before the algorithm “converges” requires a level of subjective judgment. When the run
times are long, wishful thinking can interfere with this process.

Complicating the analysis of convergence in approximate dynamic programming is the
behavior in some problems to go through periods of stability which are simply a precursor
to breaking through to new plateaus. During periods of exploration, an ADP algorithm
might discover a strategy that opens up new opportunities, moving the performance of the
algorithm to an entirely new level.

Special care has to be made in the choice of stepsize rule. In any algorithm using a
declining stepsize, it is possible to show a stabilizing objective function simply because the
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6.10a: Objective function over 100 iterations. 6.10b: Objective function over 400 iterations.

Figure 6.10 The objective function, plotted over 100 iterations (a), displays “apparent
convergence.” The same algorithm, continued over 400 iterations (b), shows significant improvement.

stepsize is decreasing. This problem is exacerbated when using algorithms based on value
iteration, where updates to the value of being in a state depend on estimates of the values of
future states, which can be biased. We recommend that initial testing of an ADP algorithm
start with inflated stepsizes. After getting a sense for the number of iterations needed for the
algorithm to stabilize, decrease the stepsize (keeping in mind that the number of iterations
required to convergence may increase) to find the right tradeoff between noise and rate of
convergence.

6.6 GUIDELINES FOR CHOOSING STEPSIZE FORMULAS

Given the plethora of strategies for computing stepsizes, it is perhaps not surprising that
there is a need for general guidance when choosing a stepsize formula. Strategies for
stepsizes are problem-dependent, and as a result any advice reflects the experience of the
individual giving the advice.

We first suggest that the reader review the material in section 17.8. Are you using
some variation of approximate value iteration or Q-learning, or are you using a variation
of approximate policy iteration for a finite or infinite horizon problem? The implications
on stepsizes are significant, and appear to have been largely overlooked in the research
community. Stepsizes for variations of policy iteration tend to be closer to 1/n, while
stepsizes for value iteration and Q-learning need to be larger, especially for discount
factors closer to 1.

With this in mind, we offer the following general strategies for choosing stepsizes:

Step 1 Start with a constant stepsize α and test out different values. Problems with a
relatively high amount of noise will require smaller stepsizes. Periodically stop
updating the value function approximation and test your policy. Plot the results to
see roughly how many iterations are needed before your results stop improving.

Step 2 Now try the harmonic stepsize a/(a + n − 1). a = 1 produces the 1/n stepsize
rule that is provably convergent, but is likely to decline too quickly. 1/n absolutely
should not be used for approximate value iteration or Q-learning. To choose a, look
at how many iterations seemed to be needed when using a constant stepsize. If 100
iterations appears to be enough for a stepsize of 0.1, then try a ≈ 10, as it produces
a stepsize of roughly .1 after 100 iterations. If you need 10,000 iterations, choose
a ≈ 1000. But you will need to tune a. An alternative rule is the polynomial stepsize
rule α = 1/nβ with β ∈ (0.5, 1] (we suggest 0.7 as a good starting point).
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Step 3 Now try either the BAKF stepsize rule (section 6.3.3) for policy iteration, LSPE and
LSTD, or the OSAVI rule (section 6.4) for approximate value iteration, TD learning
and Q-learning. These are both fairly robust, stochastic stepsize rules that adapt to
the data. Both have a single tunable parameter (a stepsize), but we have found that
the stepsize smoothing for OSAVI is more robust.

There is always the temptation to do something simple. A constant stepsize, or a
harmonic rule, are both extremely simple to implement. Keep in mind that both have
a tunable parameter, and that the constant stepsize rule will not converge to anything
(although the final solution may be quite acceptable). A major issue is that the best tuning
of a stepsize not only depends on a problem, but also on the parameters of a problem such
as the discount factor. BAKF and OSAVI are more difficult to implement, but are more
robust to the setting of the single, tunable parameter. Tunable parameters can be a major
headache in the design of algorithms, and it is good strategy to absolutely minimize the
number of tunable parameters your algorithm needs. Stepsize rules should be something
you code once and forget about.

6.7 WHY DOES IT WORK*

6.7.1 Proof of BAKF stepsize

We now have what we need to derive an optimal stepsize for nonstationary data with a mean
that is steadily increasing (or decreasing). We refer to this as the bias-adjusted Kalman
filter stepsize rule (or BAKF), in recognition of its close relationship to the Kalman filter
learning rate. We state the formula in the following theorem:

Theorem 6.7.1. The optimal stepsizes (αm)nm=0 that minimize the objective function in
equation (6.43) can be computed using the expression

αn−1 = 1− σ2

(1 + λn−1)σ2 + (βn−1)2
, (6.54)

where λ is computed recursively using

λn =

{
(αn−1)2, n = 1

(1− αn−1)2λn−1 + (αn−1)2, n > 1.
(6.55)

Proof: We present the proof of this result because it brings out some properties of the
solution that we exploit later when we handle the case where the variance and bias are
unknown. Let F (αn−1) denote the objective function from the problem stated in (6.43).

F (αn−1) = E
[(
θ̄n(αn−1)− θn

)2]
(6.56)

= E
[(

(1− αn−1) θ̄n−1 + αn−1θ̂
n − θn

)2
]

(6.57)

= E
[(

(1− αn−1)
(
θ̄n−1 − θn

)
+ αn−1

(
θ̂n − θn

))2
]

(6.58)

= (1− αn−1)
2 E
[(
θ̄n−1 − θn

)2]
+ (αn−1)

2 E
[(
θ̂n − θn

)2
]

+2αn−1 (1− αn−1)E
[(
θ̄n−1 − θn

) (
θ̂n − θn

)]
︸ ︷︷ ︸

I

. (6.59)
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Equation (6.56) is true by definition, while (6.57) is true by definition of the updating
equation for θ̄n. We obtain (6.58) by adding and subtracting αn−1θ

n. To obtain (6.59), we
expand the quadratic term and then use the fact that the stepsize rule, αn−1, is deterministic,
which allows us to pull it outside the expectations. Then, the expected value of the cross-
product term, I, vanishes under the assumption of independence of the observations and
the objective function reduces to the following form

F (αn−1) = (1− αn−1)
2 E
[(
θ̄n−1 − θn

)2]
+ (αn−1)

2 E
[(
θ̂n − θn

)2
]
. (6.60)

In order to find the optimal stepsize, α∗n−1, that minimizes this function, we obtain the
first-order optimality condition by setting ∂F (αn−1)

∂αn−1
= 0, which gives us

−2
(
1− α∗n−1

)
E
[(
θ̄n−1 − θn

)2]
+ 2α∗n−1E

[(
θ̂n − θn

)2
]

= 0. (6.61)

Solving this for α∗n−1 gives us the following result

α∗n−1 =
E
[(
θ̄n−1 − θn

)2]
E
[(
θ̄n−1 − θn

)2]
+ E

[(
θ̂n − θn

)2
] . (6.62)

Recall that we can write (θ̄n−1 − θn)2 as the sum of the variance plus the bias squared
using

E
[(
θ̄n−1 − θn

)2]
= λn−1σ2 +

(
βn−1

)2
. (6.63)

Using (6.63) and E
[(
θ̂n − θn

)2
]

= σ2 in (6.62) gives us

αn−1 =
λn−1σ2 + (βn−1)2

λn−1σ2 + (βn−1)2 + σ2

= 1− σ2

(1 + λn−1)σ2 + (βn−1)2
,

which is our desired result (equation (6.54)). �
From this result, we can next establish several properties through the following corol-

laries.

Corollary 6.7.1. For a sequence with a static mean, the optimal stepsizes are given by

αn−1 =
1

n
∀ n = 1, 2, . . . . (6.64)

Proof: In this case, the mean θn = µ is a constant. Therefore, the estimates of the mean
are unbiased, which means βn = 0 ∀t = 2, . . . ,. This allows us to write the optimal
stepsize as

αn−1 =
λn−1

1 + λn−1
. (6.65)
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Substituting (6.65) into (6.48) gives us

αn =
αn−1

1 + αn−1
. (6.66)

If α0 = 1, it is easy to verify (6.64). �
For the case where there is no noise (σ2 = 0), we have the following:

Corollary 6.7.2. For a sequence with zero noise, the optimal stepsizes are given by

αn−1 = 1 ∀ n = 1, 2, . . . . (6.67)

The corollary is proved by simply setting σ2 = 0 in equation (6.47).
As a final result, we obtain

Corollary 6.7.3. In general,

αn−1 ≥
1

n
∀ n = 1, 2, . . . .

Proof: We leave this more interesting proof as an exercise to the reader (see exercise 6.13).
Corollary 6.7.3 is significant since it establishes one of the conditions needed for con-

vergence of a stochastic approximation method, namely that
∑∞
n=1 αn = ∞. An open

theoretical question, as of this writing, is whether the BAKF stepsize rule also satisfies the
requirement that

∑∞
n=1(αn)2 <∞.

6.8 BIBLIOGRAPHIC NOTES

Sections 17.8 - 6.2 A number of different communities have studied the problem of
“stepsizes,” including the business forecasting community (Brown (1959), Holt et
al. (1960), Brown (1963), Giffin (1971), Trigg (1964), Gardner (1983)), artificial
intelligence (Jaakkola et al. (1994a), Darken & Moody (1991), Darken et al. (1992),
Sutton & Singh (1994)), stochastic programming (Kesten (1958) , Mirozahmedov &
Uryasev (1983) , Pflug (1988), Ruszczyński & Syski (1986)) and signal processing
(Goodwin & Sin (1984), Douglas & Mathews (1995)). The neural network commu-
nity refers to “learning rate schedules”; see Haykin (1999). Even-dar & Mansour
(2003) provides a thorough analysis of convergence rates for certain types of step-
size formulas, including 1/n and the polynomial learning rate 1/nβ , for Q-learning
problems. These sections are based on the presentation in Powell & George (2006).

Section 6.3 - This section is based on the review in Powell & George (2006), along with
the development of the optimal stepsize rule. Our proof that the optimal stepsize is
1/n for stationary data is based on Kmenta (1997).

Section 6.4 - The optimal stepsize for approximate value iteration was derived in Ryzhov
et al. (2009).

PROBLEMS

6.1 Use a stochastic gradient algorithm to solve the problem

min
x

1

2
(X − x)2,
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where X is a random variable. Use a harmonic stepsize rule (equation (6.12)) with
parameter θ = 5. Perform 1000 iterations assuming that you observe X1 = 6, X2 =
2, X3 = 5 (this can be done in a spreadsheet). Use a starting initial value of x0 = 10.
What is the best possible formula for θ for this problem?

6.2 Assume we have to order x assets after which we try to satisfy a random demand D
for these assets, whereD is randomly distributed between 100 and 200. If x > D, we have
ordered too much and we pay 5(x−D). If x < D, we have an underage, and we have to
pay 20(D − x).

(a) Write down the objective function in the form minx Ef(x,D).

(b) Derive the stochastic gradient for this function.

(c) Find the optimal solution analytically [Hint: take the expectation of the stochastic
gradient, set it equal to zero and solve for the quantity P(D ≤ x∗). From this, find
x∗.]

(d) Since the gradient is in units of dollars while x is in units of the quantity of the asset
being ordered, we encounter a scaling problem. Choose as a stepsize αn−1 = α0/n
where α0 is a parameter that has to be chosen. Use x0 = 100 as an initial solution.
Plot xn for 1000 iterations forα0 = 1, 5, 10, 20. Which value ofα0 seems to produce
the best behavior?

(e) Repeat the algorithm (1000 iterations) 10 times. Let ω = (1, . . . , 10) represent the
10 sample paths for the algorithm, and let xn(ω) be the solution at iteration n for
sample path ω. Let Var(xn) be the variance of the random variable xn where

V (xn) =
1

10

10∑
ω=1

(xn(ω)− x∗)2

Plot the standard deviation as a function of n for 1 ≤ n ≤ 1000.

6.3 Show that if we use a stepsize rule αn−1 = 1/n, then θ̄n is a simple average of
θ̂1, θ̂2, . . . , θ̂n (thus proving equation 6.11).

6.4 A customer is required by her phone company to pay for a minimum number of
minutes per month for her cell phone. She pays 12 cents per minute of guaranteed minutes,
and 30 cents per minute that she goes over her minimum. Let x be the number of minutes
she commits to each month, and let M be the random variable representing the number of
minutes she uses each month, whereM is normally distributed with mean 300 minutes and
a standard deviation of 60 minutes.

(a) Write down the objective function in the form minx Ef(x,M).

(b) Derive the stochastic gradient for this function.

(c) Let x0 = 0 and choose as a stepsize αn−1 = 10/n. Use 100 iterations to determine
the optimum number of minutes the customer should commit to each month.

6.5 Show that if we use a stepsize rule αn−1 = 1/n, then θ̄n is a simple average of
θ̂1, θ̂2, . . . , θ̂n (thus proving equation 6.11). Use this result to argue that any solution of
equation (6.2) produces the mean of W .
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6.6 We are going to again try to use approximate dynamic programming to estimate a
discounted sum of random variables:

FT = E
T∑
t=0

γtRt,

where Rt is a random variable that is uniformly distributed between 0 and 100 (you can
use this information to randomly generate outcomes, but otherwise you cannot use this
information). This time we are going to use a discount factor of γ = .95. We assume that
Rt is independent of prior history. We can think of this as a single state Markov decision
process with no decisions.

(a) Using the fact that ERt = 50, give the exact value for F 100.

(b) Propose an approximate dynamic programming algorithm to estimate FT . Give the
value function updating equation, using a stepsize αt = 1/t.

(c) Perform 100 iterations of the approximate dynamic programming algorithm to pro-
duce an estimate of F 100. How does this compare to the true value?

(d) Compare the performance of the following stepsize rules: Kesten’s rule, the stochastic
gradient adaptive stepsize rule (use ν = .001), 1/nβ with β = .85, the Kalman filter
rule, and the optimal stepsize rule. For each one, find both the estimate of the sum
and the variance of the estimate.

6.7 Consider a random variable given byR = 10U (which would be uniformly distributed
between 0 and 10). We wish to use a stochastic gradient algorithm to estimate the mean
of R using the iteration θ̄n = θ̄n−1 − αn−1(Rn − θ̄n−1), where Rn is a Monte Carlo
sample ofR in the nth iteration. For each of the stepsize rules below, use equation (5.18) to
measure the performance of the stepsize rule to determine which works best, and compute
an estimate of the bias and variance at each iteration. If the stepsize rule requires choosing
a parameter, justify the choice you make (you may have to perform some test runs).

(a) αn−1 = 1/n.

(b) Fixed stepsizes of αn = .05, .10 and .20.

(c) The stochastic gradient adaptive stepsize rule (equations (6.22)-(6.23)).

(d) The Kalman filter (equations (6.37)-(6.41)).

(e) The optimal stepsize rule (algorithm 6.8).

6.8 Repeat exercise 6.7 using

Rn = 10(1− e−0.1n) + 6(U − 0.5).

6.9 Repeat exercise 6.7 using

Rn =
(

10/(1 + e−0.1(50−n))
)

+ 6(U − 0.5).
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6.10 Let U be a uniform [0, 1] random variable, and let

µn = 1− exp (−θ1n).

Now let R̂n = µn + θ2(Un − .5). We wish to try to estimate µn using

R̄n = (1− αn−1)R̄n−1 + αn−1R̂
n.

In the exercises below, estimate the mean (using R̄n) and compute the standard deviation
of R̄n for n = 1, 2, . . . , 100, for each of the following stepsize rules:

• αn−1 = 0.10.

• αn−1 = θ/(θ + n− 1) for a = 1, 10.

• Kesten’s rule.

• The bias-adjusted Kalman filter stepsize rule.

For each of the parameter settings below, compare the rules based on the average error (1)
over all 100 iterations and (2) in terms of the standard deviation of R̄100.

(a) θ1 = 0, θ2 = 10.

(b) θ1 = 0.05, θ2 = 0.

(c) θ1 = 0.05, θ2 = 0.2.

(d) θ1 = 0.05, θ2 = 0.5.

(e) Now pick the single stepsize that works the best on all four of the above exercises.

6.11 An oil company covers the annual demand for oil using a combination of futures
and oil purchased on the spot market. Orders are placed at the end of year t− 1 for futures
that can be exercised to cover demands in year t. If too little oil is purchased this way,
the company can cover the remaining demand using the spot market. If too much oil is
purchased with futures, then the excess is sold at 70 percent of the spot market price (it is
not held to the following year – oil is too valuable and too expensive to store).

To write down the problem, model the exogenous information using

D̂t = Demand for oil during year t,
p̂st = Spot price paid for oil purchased in year t,

p̂ft,t+1 = Futures price paid in year t for oil to be used in year t+ 1.

The demand (in millions of barrels) is normally distributed with mean 600 and standard
deviation of 50. The decision variables are given by

θ̄ft,t+1 = Number of futures to be purchased at the end of year t to be used in
year t+ 1.

θ̄st = Spot purchases made in year t.

(a) Set up the objective function to minimize the expected total amount paid for oil to
cover demand in a year t+1 as a function of θ̄ft . List the variables in your expression
that are not known when you have to make a decision at time t.
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(b) Give an expression for the stochastic gradient of your objective function. That is,
what is the derivative of your function for a particular sample realization of demands
and prices (in year t+ 1)?

(c) Generate 100 years of random spot and futures prices as follows:

p̂ft = 0.80 + 0.10Uft ,

p̂st,t+1 = p̂ft + 0.20 + 0.10Ust ,

where Uft and Ust are random variables uniformly distributed between 0 and 1. Run
100 iterations of a stochastic gradient algorithm to determine the number of futures
to be purchased at the end of each year. Use θ̄f0 = 30 as your initial order quantity,
and use as your stepsize αt = 20/t . Compare your solution after 100 years to your
solution after 10 years. Do you think you have a good solution after 10 years of
iterating?

6.12 The proof in section 5.8.3 was performed assuming that µ is a scalar. Repeat the
proof assuming that µ is a vector. You will need to make adjustments such as replacing
Assumption 2 with ‖gn‖ < B. You will also need to use the triangle inequality which
states that ‖a+ b‖ ≤ ‖a‖+ ‖b‖.

6.13 Prove corollary 6.7.3.





CHAPTER 7

DERIVATIVE-FREE STOCHASTIC SEARCH

There are many settings where we have to make a choice x to maximize (or minimize) some
function that we can represent as F (x) = EF (x,W ) where x is limited to a set of discrete
choices such as materials, colors, designs, configurations, and medical treatments. We
either do not know (or cannot compute) EF (x,W ), so we depend on sequentially testing
the function at discrete points (x1, x2, . . . , xM ). Examples of applications include

• Choosing the best path over a network - After taking a new position and renting a
new apartment, you use the internet to identify a set of K paths - many overlapping,
but covering modes such as walking, transit, cycling, Uber, and mixtures of these.
Each day you get to try a different path x to try to learn the time required µx to
traverse path x.

• Identifying the best team of basketball players - A coach has 15 players on a basketball
team, and has to choose a subset of five for his starting lineup. The players vary in
terms of shooting, rebounding and defensive skills.

• Maximizing ad-clicks - A web service has to choose ads to maximize the number
of ad-clicks, which reflect the type of ad (automotive? health? travel? food?). The
popularity of the ad may reflect the type of product, the way the ad is presented
(graphics?), and other information such as time of day.

• Tuning a business simulator - We may have a computer simulation of an Amazon
fulfillment center, Uber’s dispatch process, or the movement of pilots and aircraft for
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a charter jet service. All of these applications involve tunable parameters to get the
simulator to behave in a way that matches historical performance.

• Repairing/replacing power transformers - Utilities have to manage transformers that
range from the small 4-14 kilo-volt transformers you may see on utility poles, to the
larger 69kv, and as large as 500 kv, transformers used for transmission networks.
Failures can result in catastrophic explosions. The status of a transformer is hard
to assess because it is related to both age and the stresses of voltage surges and
lightning strikes. An indicator of age is the concentration of gases in the oil that
fills transformers. A policy is to repair or replace when the gas level Gt exceeds a
threshold θ. The utility can divide θ into ranges, and uses trial and error to find the
best threshold.

• Materials science - There are a number of learning problems that are encountered
by materials scientists, who have to do considerable trial and error in the laboratory.
Some examples are:

– Find the best catalyst (out of dozens) to maximize the length of a carbon
nanotube.

– Find the best shape and density of nanoparticles to maximize the photocon-
ductivity when the particles are spread across a surface subjected to reflected
light.

– It is possible to store particles in an oil-emulsion bubble that then releases its
contents when subjected to X-rays. The problem is to find the best bubble
diameter, the best density of nanoparticles on the surface of the bubble, and the
X-ray density to optimize the timing of the release of the particles.

• Medical decision making I: choosing drugs - Imagine that we have to find the best
diabetes drug for a patient who is not responding well to metformin, the most popular
diabetes medication. A diabetes doctor has to choose from among four classes of
drug, and then subclasses within each class.

• Medical decision making II: knee replacement options - Knee replacement has be-
come a common surgery, but there are different choices: delay, diet and exercise,
rehabilitation without surgery, surgery (and there are different options here), followed
by different rehabilitation pathways. Doctors have to find the best treatment options
given the characteristics of the patient which may include age, gender, weight, and
whether or not the patient smokes.

• Tuning the parameters of an energy storage policy - We have to decide when to store
energy from a solar array, when to buy or sell to or from the grid, and how to manage
storage to meet the time varying loads of a building. The rules may depend on the
price of energy from the grid, the availability of energy from the solar array, and the
demand for energy in the building. We may tune these rules in a simulator, but we
may be interested in tuning them in the field on an ongoing basis.

Perhaps it is the historical roots of the problems that motivate derivative-based and
derivative-free algorithms, but the culture of the derivative-free problem class tends to arise
in problems where a function evaluation is relatively expensive. Examples of different
costs of function evaluations are:
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• An analytical function, such as
∑
i cixi, which may take fractions of a second.

• Complex analytical functions, which require large sums or numerical integration,
which may take seconds to minutes.

• Computer simulations (of physical or business processes) which take minutes to
hours to days (these may take a week or two).

• Laboratory experiments - Testing a new chemical compound or material can take
hours to days to a month or more.

• Field experiments - Evaluating the price of a product, testing a new drug or business
process, can take days to months, and possibly a year (think of testing a product for
the Christmas season, or admissions policies for a university).

In addition, there are settings (especially with field experiments) where it makes sense to
evaluate performance based on the cumulative rewards (equation (7.3)) as opposed to just
considering the final design (equation (7.2)).

In all of these settings, we have to evaluate the performance of a set of controllable
parameters x, which can arise in a number of flavors, including

• Binary - X = {0, 1}. Binary choices arise frequently in finance (hold or sell an
asset), and internet applications where x = 0 means “run the current website” while
x = 1 means “run the redesigned website” (this is known as A/B testing).

• Discrete - X = {x1, x2, . . . , xM}. This may represent a set of discrete choices
(types of materials, sets of features for a product)

• Subset - xmay be a vector (0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1) indicating, for example, the
starting lineup of a basketball team.

• Discrete vector - x can be a vector of binary elements, or a vector of integers (0, 1,
2, ...).

• Categorical - x may be a category described by a vector of discrete (or possibly
discretized) values, which might describe the characteristics of an employee (experi-
ence, home location, areas of expertise), the features of a movie, or the attributes of a
(potentially threatening) website. If we let a1, a2, . . . , aK be the different attributes
of a choice, we see that the number of possible categories can be extremely large.

At the same time, there are other settings where x is continuous, but where we do not have
access to derivatives of either F (x) or even F (x,W ) for a sampled value of W (as we
used in chapter 5). If x is low-dimensional (generally three or fewer), we might be able to
discretize x. If x is higher dimensional, we might simply generate a sample x1, . . . , xK
from the (possibly) large set of feasible values of x.

However it is constructed, let X = {x1, . . . , xM} be the set of discrete values of x we
can choose from. We can start by formulating the optimization problem using the same
asymptotic form we used in chapter 4 which we write

max
x∈X

E{F (x,W )|S0}. (7.1)

While this is the standard formulation for gradient-based algorithms, this is not the case
for derivative-free settings. Here, the most common formulation is to specify a policy
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Xπ(Sn) that specifies the design xn = Xπ(Sn) when our knowledge of the function
E{F (x,W )|S0} is captured by Sn that allows us to create an approximation F

n
(x). For

example, Sn might be a set of estimates µ̄nx for x ∈ X , along with a measure of the
uncertainty in how well µ̄nx approximates E{F (x,W )|S0}.

When our policy specifies xn = Xπ(Sn), we then observe F (xn,Wn+1), after which
we are going to update our belief state to Sn+1. The goal now is to find the best policy to
solve

max
π

E{F (xπ,N ,W )|S0}. (7.2)

This, of course, is the final-reward formulation that we discussed in chapter 4. We did
not consider a cumulative reward formulation for derivative-based settings, but this is quite
common for our derivative-free applications, which we formulate as

max
π

E

{
N−1∑
n=0

F (xπ,n,Wn+1)|S0

}
. (7.3)

For example, we might use (7.2) when we are searching for the best solar panel, or a
manufacturing process that produces the strongest material. By contrast, we would use
(7.3) if we want to find the price that maximizes the revenue from selling a product on the
internet, since we have to maximize revenues over time while we are experimenting.

There are some essential differences between the asymptotic formulation in (7.1), the
terminal reward formulation in (7.2), and the cumulative reward formulation in (7.3). The
asymptotic formulation is searching for a real-valued scalar or vector x which is our final
design, or what we might call the implementation decision. In our final-reward formulation
(7.2), we are trying to find the best learning policy Xπ(S) to find the best implementation
decision xπ,N after N iterations or experiments. The cumulative-reward formulation is
naturally online, and as a result we are looking for an implementation policy which has to
learn while it is implementing.

Regardless of the objective function, we are going to make decisions xn = Xπ(Sn)
using some policy Xπ(Sn) that depends on our belief about our function (either (7.2) or
(7.3)) that is captured by our state Sn. The belief models, which we introduced in chapter
3, might be lookup tables (with independent or correlated beliefs), parametric (linear or
nonlinear), or nonparametric. When our belief state is captured by Sn (e.g. our estimates
of parameters), we make a decision to run an experiment with xn = Xπ(Sn), and then
observe an experimental outcome Wn+1, we use the recursive updating formulas from
chapter 3 which we represent using

Sn+1 = SM (Sn, xn,Wn+1).

This process produces a sequence of states, actions and information that we will typically
write using

(S0, x0 = Xπ(S0),W 1, S1, x1 = Xπ(S1),W 2, . . . , Sn, xn = Xπ(Sn),Wn+1, . . .).

We saw this same sequence for derivative-based stochastic search in chapter 5, but in
that setting, Sn was the state of the algorithm, while for the derivative-free problems we
consider in this chapter, we depend on creating a belief model about the function, and this
is captured in the state Sn.
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7.1 OBJECTIVE FUNCTIONS FOR LEARNING POLICIES

We evaluate the performance of our implementation decision x by approximating
E{F (x,W )|S0} in some way. In this section, we address the problem of evaluating
the performance of our learning policy Xπ(S), which depends on the setting in which we
are doing our testing. The different objectives for evaluating learning policies include:

Terminal reward - This evaluates the expected value of our function after exhausting our
budget ofN experiments. As we described in section 5.2, if we capture the modeling
uncertainty in S0, observational uncertainty from the sequenceW 1, . . . ,WN (which
is what creates uncertainty in xπ,N ), and then finally implementation uncertainty
(which we are going to call Ŵ ), we get the expected value of a policy Xπ(S) as

Fπ = ES0EW 1,...,WN |S0
E
Ŵ |W 1,...,WNF (xπ,N , Ŵ ).

Our objective function, then, is to solve

max
π

Fπ. (7.4)

Cumulative reward - Here we add up the performance over each experiment. We identify
three versions based on our assumptions about the nature of the policy:

Stationary policy - We assume that we have to pick the best single policy to apply
over the entire horizon:

max
π

E
N−1∑
n=0

F (Xπ(Sn),Wn+1). (7.5)

where Sn+1 = SM (Sn, xn = Xπ(Sn),Wn+1). Remember that Sn is the
belief state after the nth experiment, which means that the transition func-
tion SM (Sn, xn,Wn+1) refers to either our frequentist or Bayesian updating
equations.

Nonstationary policy - In this setting, the policy depends on time (the iteration
counter), but still has to be chosen before we start any of the experiments:

max
π0,...,πN−1

E
N−1∑
n=0

F (Xπn(Sn),Wn+1). (7.6)

Below we illustrate a nonstationary policy that depends on N − n, which puts
more emphasis on exploring different options when N − n is large, while
focusing more on choices that appear to be best as we get close to the end of
the horizon.

Adaptive policy - Assume we have some form of parametric policy Xπ(Sn|θn)
parameterized by θn. Further assume that we update θn as new information
comes in using the policy Θπ where θn+1 = Θπ(Sn, θn) (technically θn would
be part of the state variable, but we write it explicitly for clarity).

max
πθ

max
π

E
N−1∑
n=0

F (Xπ(Sn|θn),Wn+1).
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where θn = Θπθ (Sn) and Sn+1 = SM (Sn, xn = Xπ(Sn|θn),Wn+1). Now
we have to find the best policy Θπθ (Sn, θn) for updating θ, as well as the best
policyXπ(Sn|θn) for making a decision (we assume both of these policies are
stationary and are chosen in advance).

If we are using the terminal reward form of the objective function, our problem becomes
a classical problem known as ranking and selection, where the goal is to find the best
choice or design, xπ,N , within the budget of N iterations. The ranking and selection is
generally encountered in what are known as offline learning settings, which typically refers
to problems where we do not have to experience our decisions while we are searching.

The cumulative reward formulation in equation (7.5) arises in what are generally known
as online learning settings, because we have to experience the results of our decisions as
they happen. This objective is the classic setting of what is known as the multiarmed bandit
problem.

7.2 LOOKUP TABLE BELIEF MODELS

We assume throughout that x ∈ X = {x1, . . . , xM} is one of a set of discrete choices,
although it can be a very large set. As before, we let

µx = E{F (x,W )|S0}

be the true value of our function given an implementation decision x. Our goal is to find x
that solves one of the objective functions presented in section 7.1. Policies depend on our
belief about µx for x ∈ X , which we represent as µ̄nx after running n observations of the
function F (x,W ).

We begin our presentation of derivative-free learning using a lookup table belief model,
which offers the simplest setting for illustrating different types of updating strategies. We
can use either frequentist or Bayesian belief models, summarized below. For readers with a
reasonable understanding of the approximation methods presented in chapter 3, this section
can be skipped.

7.2.1 Frequentist belief model

If we use a frequentist belief model, then we do not know anything about µx until we
perform an initial set of experiments. Assume that out of a total budget of n experiments,
that we sample alternative x Nn

x times, observing F̂nx = F (x,Wn) each time. We would
obtain our initial estimates from

µ̄nx =
1

Nn
x

Nnx∑
m=1

F̂mx (7.7)

σ̂2,n
x =

1

Nn
x − 1

Nnx∑
m=1

(F̂mx − µ̄nx)2. (7.8)

As n grows, σ̂2,n
x converges to the true variance of F̂x. Sometimes we need the variance of

the estimate µ̄nx which would be given by

σ̄2,n
x =

1

Nn
x

σ̂2,n
x .
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Note that σ̄2,n
x → 0 as Nn

x →∞.
These estimates can be updated recursively. To simplify notation, fix x (so all estimates

are a function of x) and let n be the number of times we have observed x (which we called
Nn
x above). If we have µ̄n−1 and σ̂2,n−1, and then observe F̂n, we would obtain

µ̄n =

(
1− 1

n

)
µ̄n−1 +

1

n
F̂n, (7.9)

σ̂2,n =

{
1
n (Wn − µ̄n−1)2 n = 2,
n−2
n−1 σ̂

2,n−1 + 1
n (Wn − µ̄n−1)2 n > 2.

(7.10)

These statistics can be used to build confidence intervals around µx.

7.2.2 Bayesian belief model

If we use a Bayesian belief model, then we assume that we are given a prior, which we
might assume is normally distributed, where

µx ∼ N(µ̄0
x, β

0
x),

where β0
x is the initial precision, given by β0

x = 1/σ2,0
x . For example, µ̄0

x might be an initial
best guess at the sales volume for selling a product at price x, based on our experience
selling similar products. The standard deviation σ0

x captures the spread in what we think
the true sales might be, again based on our experience with selling comparable products.

Next assume we run an experiment x and observe

F̂nx = f(x) + εnx ,

where f(x) = E{F (x,W )|S0}, and where εx ∼ N(0, (σWx )2). We are going to find it
convenient to use the precision of the noise

βWx =
1

(σWx )2
.

Our notation allows the variance to depend on x. When this is the case, we say that the
model is heteroscedastic, because the variability depends on x. Sometimes we can assume
that the variance of noise in an observation of f(x) is independent of x, in which case
we would write the variance as (σW )2. When this is the case, we say that the model is
homoscedastic.

Assume for the moment that our estimates of µx and µx′ are independent. If we choose
x = xn, where we observe F̂n+1

x , we can update our estimates using

µ̄n+1
x =

βnx µ̄
n
x + βWx F̂n+1

x

βnx + βWx
, (7.11)

βn+1
x = βnx + βWx . (7.12)

There are many applications (including virtually all of the examples described in the
introduction to this chapter) where the beliefs about two alternatives are not independent.
Following our earlier presentation in section 7.8.1, let Σ0 be our prior covariance, with
element

Σnxy = Covn(µx, µy).
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We then define the precision matrix

B0 = (Σ0)−1.

which plays the same role as the precision β0
x.

Let ex be a column vector of zeroes with a 1 for element x, and as before we let F̂n+1
x

be the observation when we decide to evaluate alternative x. Our updating equation for the
vector µ̄n is

µ̄n+1
x = (Bn+1)−1

(
Bnµ̄nx + βW F̂n+1

x exn
)
,

where Bn+1 is given by

Bn+1 = (Bn + βWx exn(exn)T ).

Note that ex(ex)T is a matrix of zeroes with a one in row x, column x, whereas βW is a
scalar giving the precision of our measurement W .

Learning with correlated beliefs is a particularly powerful strategy in practical appli-
cations, largely because most real applications (especially those with many alternatives)
are going to exhibit correlations. Of course, a separate issue is how the correlations are
handled when we design a learning policy.

7.2.3 Frequentist or Bayesian?

Statisticians have a long history of being divided into two camps known as “frequentists”
and “Bayesians.” While it is true that these represent two very different perspectives of
uncertainty, in practice the best view reflects the nature of the problem you are working on.
In a nutshell, frequentist statistics is most useful when observations are relatively easy to
collect and there is not a source of information for creating a prior. Bayesian statistics, on
the other hand, is most natural when observations are difficult, and where there is a natural
source of information about the parameters before any data has been collected.

Examples where frequentist statistics is probably the best choice are:

EXAMPLE 7.1

An internet company needs to design a policy for guiding the choice of which ads to
display to maximize ad-clicks. There are many ads, without any source of information
for deciding which ads are best (in advance). At the same time, it is relatively easy
to test a new ad to get an estimate of its popularity.

EXAMPLE 7.2

A large retail chain needs to identify the dress styles that are selling the best. With
hundreds of stores, it is relatively easy for the chain to test market different styles and
colors in selected stores.

Examples where Bayesian statistics is more natural include:
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EXAMPLE 7.1

A laboratory scientist needs to find the best combination of temperatures, concen-
trations and catalysts to maximize the production of a type of nanotube. It takes a
day to run a single experiment. The scientist is guided by an understanding of the
chemistry of the problem, which she draws on to guide early experiments.

EXAMPLE 7.2

An internet retailer wants to determine the best price for a new (and expensive)
technical textbook. It is necessary to observe sales of the book for several weeks to
obtain a sense of how the market is responding to price. Fortunately, the retailer is
guided by past experience with the sales of other textbooks.

There are, of course, instances where information is expensive, but where there is no
natural source of information to form a prior. In such cases, there is no alternative to
running a handful of random experiments. At this point, it is possible to progress using a
purely frequentist belief model. However, some will simply prefer the characteristics of a
Bayesian belief model, and use these initial experiments to form a prior. This strategy is
known as empirical Bayes.

7.3 DESIGNING POLICIES

There are two fundamental strategies for finding policies (which may even be optimal, or
enjoy strong theoretical guarantees):

Policy search - Here we search over a parameterized class of policies to find the policy
(within a class) that optimizes some objective (and here we can use any of the
objective functions discussed above). We divide these into two broad classes:

Policy function approximations (PFAs) - These are analytical functions that map
states to actions.

Cost function approximations (CFAs) - Here we optimize some parametrically
modified cost function to find the best decision.

Policies based on lookahead approximations - These are policies that are based on ap-
proximating the impact of a decision now on the future. Lookahead policies can be
divided into two broad classes:

Policies based on value function approximations (VFAs) - A value function ap-
proximation is a statistically estimated function that captures the value of mov-
ing to a downstream state. The value function estimates the contribution of
decisions made after landing in a state.

Direct lookahead policies (DLAs) - Here we optimize over an entire trajectory in
the future before making a decision now.

Policies based on policy search tend to be simpler in structure and therefore easier to
compute, but require tuning. Policies based on lookahead approximations tend to be harder
to compute, but in their most basic form do not have any tunable parameters. Of course, it
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is often possible to introduce a tunable parameter in a lookahead policy to overcome some
limitation of the lookahead policy, but at a price of now having to tune the policy.

These four classes of policies cover every policy that has been proposed in the literature
for stochastic optimization problems. For example, when we make the transition to dynamic
programs for state-dependent functions (starting in chapter 8), we organize all the methods
for solving this rich problem class along the lines of these four classes. The presentation
here, on a much simpler problem class, provides a nice introduction to this organization.

We now undertake a summary of some of the most popular policies using for derivative-
free stochastic optimization, organized along these four classes.

7.3.1 Policy function approximations

A PFA is any function that maps directly from a state to an action. PFAs are popular
as belief models for approximating functions we are optimizing, but are less common as
policies for solving a derivative-free stochastic search problem. These are more likely to
be used in the early stages learning about a function. PFAs, which may be lookup tables or
parametric functions, are fixed mappings that determine the decision (or design) to choose
next, without resorting to any sort of search (which would be classified as a CFA).

Examples of PFAs are:

Lookup tables Assume that the system can be described by a set of discrete states S =
{s1, s2, . . . , sI}, where a state si could be:

- The state si describes the gender, age and diagnosis of a patient. The policy
Xπ(St) might specify the dosage for a medical condition.

- If si describes a chess board, an expert chess player knows what to play next.

Parametric functions There are many applications in engineering where a policy (such
as the force applied to a robot arm) can be written as a linear function of the state
(which captures location and velocity), which we might write as

Uπ(St|θ) = θ0 + θ1φ1(St) + θ2φ2(St). (7.13)

This is known as an “affine policy” or more descriptively, a “linear decision rule” (or
LDR). We might also use a policy with this structure to control the release of water
from a reservoir. An example of a nonlinear model is a popular policy for ordering
inventory, where we trigger an order if the inventory St falls below a minimum θL,
at which point we order an amount to bring the inventory up to θU :

Xπ(St|θ) =

{
θU − St If St < θL,

0 Otherwise.

Other examples including selling a stock when its price falls below its 30-day moving
average by θsell, deciding to wear a jacket when the temperature falls below some
level θtemp, or to add θslack to the estimated travel time to ensure that you arrive
on time. Finally, a popular approach to solve engineering control problems is to
use a neural network to map a multidimensional state variable to a multidimensional
control.

Locally parametric functions Computer scientists have designed effective robotic con-
trollers by defining linear policies such as that given in equation (7.13) over local
regions which are often designed by hand.
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7.3.2 Cost function approximations

Cost function approximations describe policies where we have to minimize something to
find the alternative to try next, and where we do not make any effort at approximating the
impact of a decision now on the future. Not surprisingly, CFAs cover a wide range of
practical, and surprisingly powerful, policies.

Simple greedy policies - We use the term “simple greedy policy” to refer to a policy which
chooses an action which maximizes the expected reward given current beliefs, which
would be given by

XSG(Sn) = arg max
x

µ̄nx .

Now imagine that we have a nonlinear function F (x, θ) where θ is an unknown
parameter where, aftern experiments, might be normally distributed with distribution
N(θn, σ2,n). Our simple greedy policy would solve

XSG(Sn) = arg max
x

F (x, θn),

= arg max
x

F (x,E(θ|Sn)).

This describes a classical approach known under the umbrella as response surface
methods where we pick the best action based on our latest statistical approximation
of a function.

Bayes greedy - Bayes greedy is just a greedy policy where the expectation is kept on the
outside of the function (where it belongs), which would be written

XBG(Sn) = arg max
x

E{F (x, θ)|Sn}.

When the functionF (x, θ) is nonlinear in θ, this expectation can be tricky to compute.

Upper confidence bounding - UCB policies, which are very popular in computer science,
come in many flavors, but they all share a form that follows one of the earliest UCB
policies given by

νUCB,nx = µ̄nx + 4σW

√
log n

Nn
x

, (7.14)

where µ̄nx is our estimate of the value of alternative x, andNn
x is the number of times

we evaluate alternative x within the first n iterations. The coefficient 4σW has a
theoretical basis, but is typically replaced with a tunable parameter θUCB which we
might write as

νUCB,nx (θUCB) = µ̄nx + θUCB

√
log n

Nn
x

. (7.15)

The UCB policy, then, would be

XUCB(Sn|θUCB) = arg max
x

νUCB,nx (θUCB). (7.16)
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UCB policies all use an index comprised of a current estimate of the value of
alternative (“arm” in the language of the bandit-oriented UCB community), given by
µ̄nx , plus a term that encourages exploration. As the number of observations grows,
log n also grows (but logarithmically), while Nn

x counts how many times we have
sampled alternative x.

Interval estimation Interval estimation sets the value of a decision to the 90th or 95th

percentile of the estimate of the value of a decision. The interval estimation policy
is then given by

XIE(Sn|θIE) = arg max
x

(
µ̄nx + θIE σ̄nx

)
. (7.17)

Here, σ̄nx is our estimate of the standard deviation of µ̄nx . As the number of times we
observe action a goes to infinity, σ̄nx goes to zero. The parameter θIE is a tunable
parameter, although it is common to choose values around 2 or 3. This has the effect
of valuing each action at its 90th or 95th percentile.

Boltzman exploration A different form of maximizing over actions involves computing
a probability that we pick an action x, given an estimate µ̄nx of the reward from this
action. This is typically computed using

pn(x|θ) =
eθµ̄

n
x∑

x′ e
θµ̄n
x′
. (7.18)

Now pick xn at random according to the distribution pn(x|θ). Boltzmann exploration
is sometimes referred to as “soft max” since it is performing a maximization in a
probabilistic sense.

Both PFAs and CFAs require tuning of a parameter vector θ, where we have to use one of
our objective functions (7.4), (7.5), (7.6) or (7.7). We remind the reader that these policies
are being used to find the best x to optimize EF (x,W ) in either the terminal reward or
cumulative reward forms. However, finding the best policy to maximize this function is
itself an optimization problem. So we need a policy to find the best learning policy to find
the best implementation decision.

7.3.3 Policies based on value function approximations

We first saw value functions in the setting of discrete Markov decision problems (see
equation (2.14) in chapter 2). Value functions capture the value of being in a state, which
creates a compact way of looking into the future. Value functions can be very powerful
for problems where there is a physical state, as might happen when we are optimizing a
path over a graph or allocating resources. In the setting of pure learning problems, value
functions have not proven to be as useful, but this does not mean that they cannot be used.

Although we are not going to deal with Bellman’s equation in depth until chapter 14, the
basic idea (as we saw in equation (2.14)), is quite simple. If V n+1(Sn+1) is the value of
being in state Sn+1 after n+ 1 observations of our function, then we can compute V n(Sn)
using

V n(Sn) = max
x∈X

(
C(Sn, x) + E{V n+1(Sn+1)|Sn, x}

)
. (7.19)
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This equation is easy to visualize (and compute) if the state Sn is a node in a graph, or the
number of discrete items we are holding in inventory. For learning problems, however, Sn

is our belief state, which means the set of probability distributions about all the alternatives.
Assume for the moment that our beliefs about each µx is normally distributed with mean
µ̄nx and variance s2,n

x . Our belief state then, would be

Sn = (µ̄nx , σ
2,n
x )x∈X .

Keeping in mind that we have to implicitly assume a distribution (such as normal), our
belief state is exactly what is illustrated in figure 7.3.

As a rule, µ̄nx and σ2,n
x are continuous, and Sn is multidimensional, since there are

estimates for each x ∈ X = {1, . . . ,M}. Not surprisingly, computing Bellman’s equation
from (7.19) is completely intractable for learning problems.

Below (section 7.6) we are going to introduce an approach known as Gittins indices
which was an early breakthrough in learning that is based on the use of value functions.
Gittins indices can, for certain problems, produce optimal policies (a rarity in this field),
but they are difficult to compute and simpler policies have been found to be more useful
for problems that arise in practice. There are, however, special problems where value
functions, which guide decisions by capturing the downstream value of a learning decision
now, do add value.

Lookahead policies in general, however, have proven to be useful. We next discuss the
important class of single-period lookahead policies, which have been found to work quite
well for some problems, followed by a brief discussion of multi-period lookahead policies.

7.3.4 Single period lookahead policies

A single period lookahead would never work well if we had to deal with a physical state
(imagine solving a shortest path problem over a graph with a single period lookahead).
However, they often work exceptionally well in the setting of learning problems.

Knowledge gradient The most common form of single-period lookahead policy are value
of information policies, which maximize the value of information from a single
experiment. Let Sn be our belief state now, and let Sn+1(x) be the random belief
state if we run an experiment with designx, but before we have observed the outcome.
If we are trying to maximize a nonlinear function F (x, θ), after n experiments we
would write

E{F (x, θ)|Sn} = F (x, θn),

where θn is our current estimate of θ (this is captured by our state Sn). If we were
to stop now, we would solve

max
x′

F (x′, θn).

Now imagine running experiment x, where we will make a noisy observation of
F (x, θ) (note that θ is our uncertain, unknown true parameter). This will produce
an updated estimate θn+1(x) which is random and depends on the experiment x that
we are thinking of running. The quality of our solution after this experiment (given
what we know at time n) is given by

E{max
x′

F (x′, θn+1(x))|Sn}.
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We can expect that our experiment using setting x would improve our solution, so
we can evaluate this improvement using

νKG(x) = E{max
x′

F (x′, θn+1(x))|Sn} −max
x′

F (x′, θn).

The quantity νKG(x) is sometimes referred to as the knowledge gradient, and it gives
the expected value of the information from experiment x. This calculation is made
by looking one experiment into the future. We cover knowledge gradient policies in
considerably greater depth below.

Expected improvement - Known as EI in the literature, expected improvement is a close
relative of the knowledge gradient, given by the formula

νEI,nx = E
[

max
{

0, µx −max
x′

µ̄nx′
}∣∣∣Sn, x = xn

]
. (7.20)

Unlike the knowledge gradient, EI does not explicitly capture the value of an ex-
periment, which requires evaluating the ability of an experiment to change the final
design decision. Rather, it measures the degree to which an alternative x might be
better. It does this by capturing the degree to which the random truth µx might be
greater than the current best estimate maxx′ µ̄

n
x′ .

Sequential kriging - This is a methodology developed in the geosciences to guide the
investigation of geological conditions, which are inherently continuous and two-
dimensional. Kriging evolved in the setting of geo-spatial problems where x is
continuous (representing a spatial location, or even a location underground in three
dimensions). For this reason, we let the truth be the function µ(x), rather than µx
(the notation we used when x was discrete).

Kriging uses a form of meta-modeling where the surface is assumed to be represented
by a linear model, a bias model and a noise term which can be written as

µ(x) =
∑
f∈F

θfφf (x) + Z(x) + ε,

where Z(x) is the bias function and (φf (x))f∈F are a set of features extracted from
data associated with x. Given the (assumed) continuity of the surface, it is natural to
assume that Z(x) and Z(x′) are correlated with covariance

Cov(Z(x), Z(x′)) = β exp

[
−

d∑
i=1

αi(xi − x′i)2

]
,

where β is the variance of Z(x) while the parameters αi perform scaling for each
dimension.

The best linear model, which we denote Ȳ n(x), of our surface µ(x), is given by

Ȳ n(x) =
∑
f∈F

θnf φf (x) +

n∑
i=1

Cov(Z(xi), Z(x))

n∑
j=1

Cov(Z(xj), Z(x))(ŷi −
∑
f∈F

θnf φf (x)),



DESIGNING POLICIES 237

where θn is the least squares estimator of the regression parameters, given the n
observations ŷ1, . . . , ŷn.

Kriging starts with the expected improvement in equation (7.20), with a heuristic
modification to handle the uncertainty in an experiment (ignored in (7.20)). This
gives an adjusted EI of

EnI(x) = En
[
max(Ȳ n(x∗∗)− µ(x), 0)

](
1− σε√

σ2,n(x) + σ2
ε

)
, (7.21)

where x∗∗ is a point chosen to maximize a utility that might be given by

un(x) = −(Ȳ n(x) + σn(x)).

Since x is continuous, maximizing un(x) over x can be hard, so we typically limit
our search to previously observed points

x∗∗ = arg max
x∈{x1,...,xn}

un(x).

The expectation in (7.21) can be calculated analytically using

En
[
max(Ȳ n(x∗∗)− µ(x), 0)

]
= (Ȳ n(x∗∗)− Ȳ n(x))Φ

(
Ȳ n(x∗∗)− Ȳ n(x)

σn(x)

)
+σn(x)φ

(
Ȳ n(x∗∗)− Ȳ n(x)

σn(x)

)
,

whereφ(z) is the standard normal density, and Φ(z) is the cumulative density function
for the normal distribution.

Thompson sampling - Thompson sampling works by sampling from the current belief
about µx ∼ N(µ̄nx , σ̄

n,2
x ), which can be viewed as the prior distribution for experi-

ment n + 1 (some refer to this as the posterior distribution, given the observations
W 1, . . . ,Wn). Now choose a sample µ̂nx from the distribution N(µ̄nx , σ̄

n,2
x ). We

view µ̂nx as a simulation of what might happen in the next sample, hence its classi-
fication as a one-period lookahead policy. The Thompson sampling policy is then
given by

XTS(Sn) = arg max
x

µ̂nx .

Thompson sampling is more likely to choose the alternative x with the largest µ̄nx ,
but because we sample from the distribution, we may also choose other alternatives,
but are unlikely to choose alternatives where the estimate µ̄nx is low relative to the
others.

Value of information policies are well-suited to problems where information is expensive,
since they focus on running the experiments with the highest value of information. These
policies are particularly effective when the value of information is concave, which means
that the marginal value of each additional experiment is lower than the previous one. This
property is not always true, especially when experiments are noisy. We revisit this issue
below in section 7.7.3.
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Player No. hits No. at-bats Average

A 36 100 0.360
B 1 3 0.333
C 7 22 0.318

Table 7.1 History of hitting performance for three candidates.

7.3.5 Multiperiod lookahead policies

While there are problems where a one-period lookahead works quite well, this is not always
the case. One problem class where one-period lookaheads perform poorly is when the value
of information of a single experiment is low. This happens when the noise from a single
experiment is high enough that a single experiment does not help improve decisions. A
second problem class is when you are learning, but also have to deal with a physical state.

We illustrate a multiperiod lookahead policy for learning using the setting of trying to
identify the best hitter on a baseball team. The only way to collect information is to put the
hitter into the lineup and observe what happens. We have an estimate of the probability that
the player will get a hit, but we are going to update this estimate as we make observations
(this is the essence of learning).

Assume that we have three candidates for the position. The information we have on
each hitter from previous games is given in Table 7.1. If we choose player A, we have to
balance the likelihood of getting a hit, and the value of the information we gain about his
true hitting ability, since we will use the event of whether or not he gets a hit to update our
assessment of his probability of getting a hit. We are going to again use Bayes’ theorem
to update our belief about the probability of getting a hit. Fortunately, this model produces
some very intuitive updating equations. Let Hn be the number of hits a player has made in
n at-bats. Let Ĥn+1 = 1 if a hitter gets a hit in his (n+ 1)st at-bat. Our prior probability
of getting a hit after n at-bats is

P[Ĥn+1 = 1|Hn, n] =
Hn

n
.

Once we observe Ĥn+1, it is possible to show that the posterior probability is

P[Ĥn+2 = 1|Hn, n, Ĥn+1] =
Hn + Ĥn+1

n+ 1
.

In other words, all we are doing is computing the batting average (hits over at-bats).
Our challenge is to determine whether we should try player A, B or C right now. At

the moment, A has the best batting average of 0.360, based on a history of 36 hits out of
100 at-bats. Why would we try player B, whose average is only 0.333? We easily see
that this statistic is based on only three at-bats, which would suggest that we have a lot of
uncertainty in this average.

We can study this formally by setting up the decision tree shown in Figure 7.1. For
practical reasons, we can only study a problem that spans two at-bats. We show the current
prior probability of a hit, or no hit, in the first at-bat. For the second at-bat, we show only
the probability of getting a hit, to keep the figure from becoming too cluttered.

Figure 7.2 shows the calculations as we roll back the tree. Figure 7.2(c) shows the
expected value of playing each hitter for exactly one more at-bat using the information
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Figure 7.1 The decision tree for finding the best hitter.

obtained from our first decision. It is important to emphasize that after the first decision,
only one hitter has had an at-bat, so the batting averages only change for that hitter. Figure
7.2(b) reflects our ability to choose what we think is the best hitter, and Figure 7.2(a) shows
the expected value of each hitter before any at-bats have occurred. We use as our reward
function the expected number of total hits over the two at-bats. Let Rx be our reward if
batter x is allowed to hit, and let H1x and H2x be the number of hits that batter x gets over
his two at-bats. Then

Rx = H1x +H2x.

Taking expectations gives us

ERx = EH1x + EH2x

So, if we choose batter A, the expected number of hits is

ERA = .360(1 + .366) + .640(0 + .356)

= .720

where 0.360 is our prior belief about his probability of getting a hit; .366 is the expected
number of hits in his second at-bat (the same as the probability of getting a hit) given that
he got a hit in his first at-bat. If player A did not get a hit in his first at-bat, his updated
probability of getting a hit, 0.356, is still higher than any other player. This means that if
we have only one more at-bat, we would still pick player A even if he did not get a hit in
his first at-bat.
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7.2(a) 7.2(b) 7.2(c)

Figure 7.2 (a) Expected value of a hit in the second at-bat; (b) Value of best hitter after one at-bat;
(c) Expected value of each hitter before first at-bat.

Although player A initially has the highest batting average, our analysis says that we
should try player B for the first at-bat. Why is this? On further examination, we realize
that it has a lot to do with the fact that player B has had only three at-bats. If this player
gets a hit, our estimate of his probability of getting a hit jumps to 0.500, although it drops
to 0.250 if he does not get a hit. If player A gets a hit, his batting average moves from
0.360 to 0.366, reflecting the weight of his much longer record. This is our first hint that it
can be useful to collect information about choices where there is the greatest uncertainty.

This example illustrates a setting where observations change our beliefs, which we build
into the tree. We could have built our tree where all probabilities remain static, which
is typical in decision trees. Imbedding the process of updating probabilities within the
decision tree is what distinguishes classical decision trees from the use of decision trees in
a learning setting.

Decision trees are actually a powerful strategy for learning, although they have not
attracted much attention in the learning literature. One reason is simply that they are
computationally more difficult, and for most applications, they do not actually work better.
Another is that they are harder to analyze, which makes them less interesting in the research
communities that analyze algorithms.

7.3.6 Hybrid policies

It is possible, of course, to use mixed strategies. One of the most popular is known as
epsilon-greedy exploration. We might specify an exploration rate ε where ε is the fraction
of iterations where decisions should be chosen at random (exploration). The intuitive
appeal of this approach is that we maintain a certain degree of forced exploration, while
the exploitation steps focus attention on the states that appear to be the most valuable.

In practice, using a mix of exploration steps only adds value for problems with relatively
small state or action spaces. The only exception arises when the problem lends itself
to an approximation which is characterized by a relatively small number of parameters.
Otherwise, performing, say, 1000 exploration steps for a problem with 10100 states may
provide little or no practical value.
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11
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Figure 7.3 A lookup table belief model for five alternatives.

A useful variation is to let ε decrease with the number of iterations. For example, let

εn(s) = c/Nn(s)

where 0 < c < 1 and where Nn(s) is the number of times we have visited state s by
iteration n. When we explore, we will choose an action a with probability 1/|A|. We
choose to explore with probability εn(s). This means that the probability we choose
decision a when we are in state s, given by Pn(s, a), is at least εn(s)/|A|. This guarantees
that we will visit every state infinitely often since

∞∑
n=1

Pn(s, a) =

∞∑
n=1

εn(s)/|A| =∞.

7.3.7 Discussion

Figure 7.3 illustrates a lookup table belief model for five alternatives, where the distribution
of belief about each alternative can be computed using frequentist or Bayesian methods.
The figure illustrates the type of challenge we face when designing a learning policy.
Alternative 4 looks like it is the best, but we have a high level of uncertainty about the
second alternative, to the point that it might even be the best. By contrast, we have more
confidence in our estimate of alternative 5 than we are for alternative 2, but because the
estimate is better, we have to recognize that any of alternatives 2, 4 and 5 might be best.

This figure helps to highlight the challenge of designing a good learning policy. We have
to strike a balance between exploring our function to better learn the function, and exploiting
the information we have to make good choices. This “exploration vs. exploitation” tradeoff
is most apparent when we are maximizing cumulative reward because trying an alternative
that does not look as good (but might be the best) may mean that we receive a lower
reward, which reduces our performance. This tradeoff, however, is present regardless of
whether we are maximizing the cumulative reward or the final reward, although if we are
maximizing the final reward the issue only arises when we have a finite budget.
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7.4 EVALUATING THE PERFORMANCE OF A POLICY

There are two different ways to evaluate a policy. The first is to look at how well we do
in terms of our objective function. The second focuses purely on whether we are choosing
the best alternative.

7.4.1 Objective function performance

Below is a list of metrics that have been drawn from different communities.

Empirical performance

We might simulate a policyK times, where each repetition involves makingN observations
of W . We let ωk represent a full sample realization of these N observations, which we
would denote by W 1(ωk), . . . ,WN (ωk). Each sequence ωk creates a design decision
xπ,N (ωk).

It is useful to separate the random variable W that we observe while learning from the
random variable we use to evaluate a design, so we are going to let W be the random
variable we observe while learning, and we are going to let Ŵ be the random variable we
use for evaluating a design. Most of the time these are the same random variable with the
same distribution, but it opens the door to allowing them to be different.

Once we obtain a design xπ,N (ωk), we then have to evaluate it by taking, say, L
observations of Ŵ , which we designate by Ŵ 1, . . . , Ŵ `, . . . , ŴL. Using this notation, we
would approximate the performance of a design xπ,N (ωk) using

F
π
(ωk) =

1

L

L∑
`=1

F (xπ,N (ωk), Ŵ `)

We then average over all ωk using

F
π

=
1

K

K−1∑
n=0

F
π
(ωk)

Quantiles

Instead of evaluating the average performance, we may wish to evaluate a policy based on
some quantile. For example, if we are maximizing performance, we might be interested in
the 10th percentile, since a policy that produces good average performance may work very
poorly some of the time.

Let Qα(R) be the α quantile of a random variable R. Let Fπ = F (xπ,N ,W ) be the
random variable describing the performance of policy π, recognizing that we may have
uncertainty about the model (captured by S0), uncertainty in the experimentsW 1, . . . ,WN

that go into the final design xπ,N , and then uncertainty in how well we do when we
implement xπ,N due to Ŵ . Now, instead of taking an expectation of Fπ as we did before,
we let

V πα = QαF (xπ,N , Ŵ ).

We anticipate that there are many settings where the α quantile is more interesting than an
expectation. However, we have to caution that optimizing the α quantile is much harder
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than optimizing an expectation. This is an important issue when dealing with risk measures,
a topic we return to in chapter 21.

Static regret - Deterministic setting

We illustrate static regret for deterministic problems using the context of machine learning
where our decision is to choose a parameter θ that fits a model f(x|θ) to observations y.
Here, “x” plays the role of data rather than a decision, although later we will get to “decide”
what data to collect (confused yet?).

The machine learning community likes to evaluate the performance of a machine learning
algorithm (known as a “learner”) which is searching for the best parameters θ to fit some
model f(x|θ) to predict a response y. Imagine a dataset x1, . . . , xn, . . . , xN and let Ln(θ)
be the loss function that captures how well our function f(xn|θn) predicts the response
yn+1, where θn is our estimate of θ based on the first n observations. Our loss function
might be

Ln+1(xn, yn+1|θn) = (yn+1 − f(xn|θn))2.

Assume now that we have an algorithm (or policy) for updating our estimate of θ that we
designate Θπ(Sn), where Sn captures whatever the algorithm (or policy) needs to update
θn−1 to θn. One example of a policy is to optimize over the first n data points, so we would
write

Θπ(Sn) = arg min
θ

n−1∑
m=0

Lm+1(xm, ym+1|θ)

Alternatively, we could use one of the gradient-based algorithms presented in chapter 5. If
we fix this policy, our total loss would be

Lπ =

N−1∑
n=0

Ln+1(xn, yn+1|Θπ(Sn)).

Now imagine that we pick the best value of θ, which we call θ∗, based on all the data. This
requires solving

Lstatic,∗ = min
θ

N−1∑
n=0

Ln+1(xn, yn+1|θ).

We now compare the performance of our policy, Lπ , to our static bound, Lstatic,∗. The dif-
ference is known as the static regret in the machine learning community, or the opportunity
cost in other fields. The regret (or opportunity cost) is given by

Rstatic,π = Lπ − Lstatic,∗. (7.22)

Static regret - Stochastic setting

Returning to the setting where we have to decide which alternative x to try, we now illustrate
static regret in a stochastic setting, where we seek to maximize rewards (“winnings”)Wn

x by
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trying alternative x in the nth trial. Let Xπ(Sn) be a policy that determines the alternative
xn to evaluate given what we know after n experiments (captured by our state variable Sn).
Imagine that we can generate the entire sequence of winnings Wn

x for all alternatives x,
and all iterations n. If we evaluate our policy on a single dataset (as we did in the machine
learning setting), we would evaluate our regret (also known as static regret) as

Rπ,n = max
x

n∑
m=1

Wm
x −

n∑
m=1

Wm
Xπ(Sm). (7.23)

Alternatively, we could write our optimal solution at time n as

xn = arg max
x

n∑
m=1

Wm
x ,

and then write the regret as

Rπ,n =

n∑
m=1

Wm
xn −

n∑
m=1

Wm
Xπ(Sm).

The regret (for a deterministic problems) Rπ,n is comparing the best decision at time
n assuming we know all the values Wm

x , x ∈ X for m = 1, . . . , n, against what our
policyXπ(Sm) would have chosen given just what we know at timem (please pay special
attention to the indexing). This is an instance of static regret for a deterministic problem.

In practice, Wm
x is a random variable. Let Wm

x (ω) be one sample realization for a
sample path ω ∈ Ω (we can think of regret for a deterministic problem as the regret for
a single sample path). Here, ω represents a set of all possible realizations of W over
all alternatives x, and all iterations n. Think of specifying ω as pre-generating all the
observations of W that we might experience over all experiments. However, when we
make a decision Xπ(Sm) at time m, we are not allowed to see any of the information that
might arrive at times after m.

When we introduce uncertainty, there are now two ways of evaluating regret. The first
is to assume that we are going to first observe the outcomes Wm

x (ω) for all the alternatives
and the entire history m = 1, . . . , n, and compare this to what our policy Xπ(Sm) would
have done at each time m knowing only what has happened up to time m. The result is the
regret for a single sample path ω

Rπ,n(ω) = max
x(ω)

n∑
m=1

Wm
x(ω)(ω)−

n∑
m=1

Wm
Xπ(Sm)(ω). (7.24)

As we did above, we can also write our optimal decision for the stochastic case as

xn(ω) = arg max
x∈X

n∑
m=1

Wm
x (ω).

We would then write our regret for sample path ω as

Rπ,n(ω) =

n∑
m=1

Wm
xn(ω)(ω)−

n∑
m=1

Wm
Xπ(Sm)(ω).

Think of xn(ω) as the best answer if we actually did know Wm
x (ω) for m = 1, . . . , n,

which in practice would never be true.
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If we use our machine learning setting, the sample ω would be a single dataset used to fit
our model. In machine learning, we typically have a single dataset, which is like working
with a single ω. This is typically what is meant by a deterministic problem (think about it).
Here, we are trying to design policies that will work well across many datasets.

In the language of probability, we would say that Rπ,n is a random variable (since we
would get a different answer each time we run the simulation), while Rπ,n(ω) is a sample
realization. It helps when we write the argument (ω) because it tells us what is random,
butRπ,n(ω) and xn(ω) are sample realizations, whileRπ,n and xn are considered random
variables (the notation does not tell you that they are random - you just have to know it).
We can “average” over all the outcomes by taking an expectation, which would be written

ERπ,n = E

{
Wn
xn −

n∑
m=1

Wm
Xπ(Sm)

}
.

Expectations are mathematically pretty, but we can rarely actually compute them, so
we run simulations and take an average. Assume we have a set of sample realizations
ω ∈ Ω̂ = {ω1, . . . , ω`, . . . , ωL}. We can compute an average regret (approximating
expected regret) using

ERπ,n ≈ 1

L

L∑
`=1

Rπ,n(ω`).

Classical static regret assumes that we are allowed to find a solution xn(ω) for each
sample path. There are many settings where we have to find solutions before we see any
data, that works well, on average, over all sample paths. This produces a different form
of regret known in the computer science community as pseudo-regret which compares a
policyXπ(Sn) to the solution x∗ that works best on average over all possible sample paths.
This is written

R̄π,n = max
x

E

{
n∑

m=1

Wn
x

}
− E

{
n∑

m=1

Wn
Xπ(Sn)(ω)

}
. (7.25)

Again, we will typically need to approximate the expectation using a set of sample paths
Ω̂.

Dynamic regret

A criticism of static regret is that we are comparing our policy to the best decision x∗ (or
best parameter θ∗ in a learning problem) for an entire dataset, but made after the fact with
perfect information. In online settings, it is necessary to make decisions xn (or update our
parameter θn) using only the information available up through iteration n.

Dynamic regret raises the bar by choosing the best value θn that minimizesLn(xn−1, yn|θ),
which is to say

θ∗,n = arg min
θ

Ln(xn−1, yn|θ), (7.26)

= arg min
θ

(yn − f(xn−1|θ))2. (7.27)

The dynamic loss function is then

Ldynamic,∗ =

N−1∑
n=0

Ln+1(xn, yn+1|θ∗,n).
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More generally, we could create a policy Θπ for adaptively evolving θ (equation (7.27) is
an example of one such policy). In this case we would compute θ using θn = Θπ(Sn),
where Sn is our belief state at time n (this could be current estimates, or the entire history
of data). We might then write our dynamic loss problem in terms of finding the best policy
Θπ for adaptively searching for θ as

Ldynamic,∗ = min
Θπ

N−1∑
n=0

Ln+1(xn, yn+1|Θπ(Sn)).

We then define dynamic regret using

Rdynamic,π = Lπ − Ldynamic,∗.

Dynamic regret is simply a performance metric using a more aggressive benchmark. It
has attracted recent attention in the machine learning community as a way of developing
theoretical benchmarks for evaluating learning policies.

Opportunity cost (stochastic)

Opportunity cost is a term used in the learning community that is the same as regret, but
often used to evaluate policies in a stochastic setting. Let µx = EF (x, θ) be the true value
of design x, let

x∗ = arg max
x

µx,

xπ = arg max
x

µxπ,N .

So, x∗ is the best design if we knew the truth, while xπ,N is the design we obtained using
learning policy π after exhausting our budget of N experiments. In this setting, µx is
treated deterministically (think of this as a known truth), but xπN is random because it
depends on a noisy experimentation process. The expected regret, or opportunity cost, of
policy π is given by

Rπ = µx∗ − Eµxπ,N . (7.28)

Competitive analysis

A strategy that is popular in the field known as online computation likes to compare the
performance of a policy to the best that could have been achieved. There are two ways
to measure “best.” The most common is to assume we know the future. Assume we are
making decisions x0, x1, . . . , xT over our horizon 0, . . . , T . Let ω represent a sample
path W1(ω), . . . ,WT (ω), and let x∗t (ω) be the best decision given that we know that all
random outcomes (over the entire horizon) are known (and specified by ω). Finally, let
F (xt,Wt+1(ω)) be the performance that we observe at time t + 1. We can then create a
perfect foresight (PF) policy using

XPF
t (ω) = arg max

xt(ω)

(
ctxt(ω) + max

xt+1(ω),...,xT (ω)

T∑
t′=t+1

ct′xt′(ω)

)
.

Unlike every other policy that we consider in this volume, this policy is allowed to see into
the future, producing decisions that are better than anything we could achieve without this
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ability. Now consider some Xπ(St) policy that is only allowed to see the state at time St.
We can compare policy Xπ(S) to our perfect foresight using the competitive ratio given
by

ρπ = E
∑T−1
t=0 F (Xπ

t (ω),Wt+1(ω))∑T−1
t=0 F (XPF

t (ω),Wt+1(ω))

where the expectation is over all sample paths ω (competitive analysis is often performed
for a single sample path). Researchers like to prove bounds on the competitive ratio,
although these bounds are never tight.

Indifference zone selection

A variant of the goal of choosing the best alternative x∗ = arg maxx µx is to maximize
the likelihood that we make a choice xπ,N that is almost as good as x∗. Assume we are
equally happy with any outcome within δ of the best, by which we mean

µx∗ − µxπ,N ≤ δ.

The region (µx∗ − δ, µx∗) is referred to as the indifference zone. Let V n,π be the value of
our solution after n experiments. We require Pπ{µd∗ = µ̄∗|µ} > 1 − α for all µ where
µ[1] − µ[2] > δ, and where µ[1] and µ[2] represent, respectively, the best and second best
choices.

We might like to maximize the likelihood that we fall within the indifference zone,
which we can express using

P IZ,π = Pπ(V π,n > µ∗ − δ).

As before, the probability has to be computed with the appropriate Bayesian or frequentist
distribution.

7.4.2 Finding the best alternative

A second set of performance metrics is based on our ability to choose the best alternative
in the set X = {x1, . . . , xM}:

Asymptotic convergence for terminal reward

While in practice we need to evaluate how an algorithm does in a finite budget, there
is a long tradition in the analysis of algorithms to study the asymptotic performance of
algorithms when using a final-reward criterion. In particular, if x∗ is the solution to our
asymptotic formulation in equation (7.1), we would like to know if our policy that produces
a solution xπ,N after N evaluations would eventually converge to x∗. That is, we would
like to know if

lim
N→∞

xπ,N → x∗.

Researchers will often begin by proving that an algorithm is asymptotically convergent (as
we did in chapter 5, and then evaluate the performance in a finite budget N empirically.
Asymptotic analysis generally only makes sense when using a final-reward objective.
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Finite time bounds on choosing the wrong alternative

There is a body of research that seeks to bound the number of times a policy chooses a
suboptimal alternative (where alternatives are often referred to as “arms” for a multiarmed
bandit problem). Let µx be the (unknown) expected reward for alternative x, and let
Wn
x = µx + εnx be the observed random reward from trying x. Let x∗ be the optimal

alternative, where

x∗ = arg max
x

µx.

For these problems, we would define our loss function as

Ln(xn) =

{
1 If xn 6= x∗,
0 Otherwise.

Imagine that we are trying to minimize the cumulative reward, which means the total
number of times that we do not choose the best alternative. We can compare a policy that
chooses xn = Xπ(Sn) against a perfect policy that chooses x∗ each time. The regret for
this setting is then simply

Rπ,n =

n∑
m=1

Ln(Xπ(Sn)).

Not surprisingly, Rπ grows monotonically in n, since good policies have to be constantly
experimenting with different alternatives. An important research goal is to design bounds
on Rπ,n, which is called a finite-time bound, since it applies to Rπ,n for finite n.

Probability of correct selection

A different perspective is to focus on the probability that we have selected the best out of a
set X alternatives. In this setting, it is typically the case that the number of alternatives is
not too large, say 10 or 20, and certainly not 100,000. Assume that

x∗ = arg max
x∈X

µx

is the best decision (for simplicity, we are going to ignore the presence of ties). After n
samples, we would make the choice

xn = arg max
x∈X

µ̄nx .

This is true regardless of whether we are using a frequentist or Bayesian estimate.
We have made the correct selection if xn = x∗, but even the best policy cannot guarantee

that we will make the best selection every time. Let 1{E} = 1 if the event E is true, 0
otherwise. We write the probability of correct selection as

PCS,π = probability we choose the best alternative
= Eπ1{xn=x∗},

where the underlying probability distribution depends on our experimental policy π. The
probability is computed using the appropriate distribution, depending on whether we are
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using Bayesian or frequentist perspectives. This may be written in the language of loss
functions. We would define the loss function as

LCS,π = 1{xn 6=x∗}.

Although we use LCS,π to be consistent with our other notation, this is more commonly
represented as L0−1 for “0-1 loss.”

Note that we write this in terms of the negative outcome so that we wish to minimize
the loss, which means that we have not found the best selection. In this case, we would
write the probability of correct selection as

PCS,π = 1− EπLCS,π.

Subset selection

Ultimately our goal is to pick the best design. Imagine that we are willing to choose
a subset of designs S, and we would like to ensure that P (x∗ ∈ S) ≥ 1 − α, where
1/|X | < 1 − α < 1. Of course, it would be idea if |S| = 1 or, failing this, as small as
possible. Let µ̄nx be our estimate of the value of x after n experiments, and assume that all
experiments have a constant and known variance σ. We include x in the subset if

µ̄nx ≥ max
x′ 6=x

µ̄nx′ − hσ
√

2

n
.

The parameter h is the 1− α quantile of the random variable maxi Z
n
i where Zni is given

by

Zni =
(µ̄ni − µ̄nx)− (µi − µx)

σ
√

2/n
.

7.5 LEARNING AND THE MULTIARMED BANDIT PROBLEM

We would not be doing justice to the learning literature if we did not acknowledge the con-
tribution of a substantial body of literature that addresses what is known as the multiarmed
bandit problem. The term comes from the common description (in the United States) that
a slot machine (in American English), which is sometimes known as a “fruit machine”
(in British English), is a “one armed bandit” since each time you pull the arm on the slot
machine you are likely to lose money.

Now imagine that you have to choose which out of a group of slot machines to play
(a surprising fiction since winning probabilities on slot machines are carefully calibrated).
Imagine (and this is a stretch) that each slot machine has a different winning probability,
and that the only way to learn about the winning probability is to play the machine and
observe the winnings. This may mean playing a machine where your estimate of winnings
is low, but you acknowledge that your estimate may be wrong, and that you have to try
playing the machine to improve your knowledge.

This classic problem has several notable characteristics. The first and most important
is the tradeoff between exploration (trying an arm that does not seem to be the best in
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order to learn more about it) and exploitation (trying arms with higher estimated winnings
in order to maximize winnings over time), where winnings are accumulated over time.
Other distinguishing characteristics: discrete choices (that is, slot machines), beliefs about
each individual machine, and an underlying process that is stationary (the distribution of
winnings does not change over time).

Before proceeding, we need to first pause and emphasize that the “multiarmed bandit
problem” is simply derivative-free stochastic optimization where we are trying to maximize
cumulative reward (although there are “bandit” papers that focus on terminal reward, but
these are rare in this community). While it is important to recognize the relationship of
bandit problems to the broader stochastic optimization literature, it is also important to
recognize the unique contributions of what is known as the “bandit community.”

Multiarmed bandit problems first attracted the attention of the applied probability com-
munity in the 1950’s, initially in the context of the simpler two-armed problem. The
multiarmed problem resisted computational solution until the development in 1974 by J.C.
Gittins who identified a novel decomposition that led to what are known as index policies
which involves computing a value (“index”) for each arm, and then choosing the arm with
the greatest index. While “Gittins indices” (as they came to be known) remain compu-
tationally difficult to compute which has limited their widespread adoption, the elegant
simplicity of index policies has guided research into an array of policies that are quite
practical.

In 1985, a second breakthrough came from the computer science community, when it
was found that a very simple class of policies known as upper confidence bound policies
(also described below) enjoyed nice theoretical properties in the form of bounds on the
number of times that the wrong arm would be visited. The ease with which these policies
can be computed (they are a form of index policy) has made them particularly popular
in high speed settings such as the internet where there are many situations where it is
necessary to make good choices, such as which ad to post to maximize the value of an array
of services.

Today, the literature on “bandit problems” has expanded far from its original roots
to include any sequential learning problem (which means the state Sn includes a belief
state about the function EF (x,W )) where we control the decisions of where to evaluate
F (x,W ). However, bandit problems now include many problem variations, such as

• Maximizing the terminal reward rather than just cumulative rewards.

• “Arms” no longer have to be discrete; x may be continuous and vector-valued.

• Instead of one belief about each arm, a belief might be in the form of a linear model
that depends on features drawn from x.

The bandit community fostered a culture of creating problem variations, and then de-
riving index policies or proving bounds on UCB policies. While the actual performance
of the UCB policies requires careful experimentation and tuning, the culture of creating
problem variations is unparalleled in the stochastic optimization literature. Table 7.2 lists a
sampling of these bandit problems, with the original multiarmed bandit problem at the top.

7.6 GITTINS INDICES FOR LEARNING WITH CUMULATIVE REWARDS

We address the problem of learning the value of µx = EF (x,W ) for discrete x by trying
different alternatives and observing Wn

x = µx + εnx . The challenge is to find a policy
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Bandit problem Description

Multiarmed bandits Basic problem with discrete alternatives, online (cumulative
regret) learning, lookup table belief model with independent
beliefs

Restless bandits Truth evolves exogenously over time

Adversarial bandits Distributions from which rewards are being sampled can be
set arbitrarily by an adversary

Continuum-armed bandits Arms are continuous

X-armed bandits Arms are a general topological space

Contextual bandits Exogenous state is revealed which affects the distribution of
rewards

Dueling bandits The agent gets a relative feedback of the arms as opposed to
absolute feedback

Arm-acquiring bandits New machines arrive over time

Intermittent bandits Arms are not always available

Response surface bandits Belief model is a response surface (typically a linear model)

Linear bandits Belief is a linear model

Dependent bandits A form of correlated beliefs

Finite horizon bandits Finite-horizon form of the classical infinite horizon multi-
armed bandit problem

Parametric bandits Beliefs about arms are described by a parametric belief model

Nonparametric bandits Bandits with nonparametric belief models

Graph-structured bandits Feedback from neighbors on graph instead of single arm

Extreme bandits Optimize the maximum of recieved rewards

Quantile-based bandits The arms are evaluated in terms of a specified quantile

Preference-based bandits Find the correct ordering of arms

Best-arm bandits Identify the optimal arm with the largest confidence given a
fixed budget

Table 7.2 A sample of the growing population of “bandit” problems.

Xπ(Sn) that solves

max
π

E
∞∑
n=0

γnWn+1
Xπ(Sn),

where xn = Xπ(Sn) and where γ is a discount factor that satisfies 0 ≤ γ < 1.
The first implementable and provably optimal policy for this problem class was de-

veloped by John Gittins in 1974, with a strategy that became known as Gittins indices.
The idea is to compute a single value (called an index) for each alternative x, and then
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evaluate the alternative with the highest index. The approach is based on solving Bellman’s
equation, which puts Gittins indices in the class of policies based on value functions (we
referred to these as VFA policies above).

7.6.1 Foundations

Let X be the set of alternatives (“arms” in the language of the bandit community), and
let Wx be the random variable that gives the amount that we win if we play arm x. We
can think of Wx as a sampled realization of EF (x,W ), where we assume we know the
function F (x,W ) but need to observe W . However, we will often use the convention that
we just observe W and treat this as our observation of the performance.

The theory surrounding bandit problems, and much of the literature on information
collection, has evolved in a Bayesian framework where we view µx, the true value of
alternative x, to be a random variable. We assume we begin with a prior distribution of
belief where µx is normally distributed with mean µ̄0

x and precision β0
x (recall that this is

the inverse of the variance).
We next need to model how an observation changes our distribution of belief.
After n experiments, assume that our belief has evolved to where our belief about µx

is normally distributed with mean µ̄nx and precision βnx . We write our belief state as
Sn = (µ̄nx , β

n
x )x∈X , with the assumption of normality implicit (this is actually captured in

the initial state S0). Assume that we choose to evaluate xn = Xπ(Sn), after which we
observe Wn+1 = Wn+1, where we assume that the precision of our observation Wn+1 of
the function is known and given by βW , if it does not depend on x, or βWx if it does depend
on x. We would then use this information to update our belief using our Bayesian updating
formulas (first presented in section 3.4), given by

µ̄n+1
x =

{
βnx µ̄

n
x+βWx Wn+1

x

βnx+βWx
if x = xn

µ̄nx otherwise,
(7.29)

βn+1
x =

{
βnx + βWx if x = xn

βnx otherwise.
(7.30)

Our goal is to find a policy that determines which action to take to collect information.
Let xn = Xπ(Sn) be the action we take after making n observations using policy π. We
can state the problem of finding the best policy in terms of solving

max
π

E
∞∑
n=0

γnµxn ,

wherexn = Xπ(Sn), and where γ is a discount factor with 0 ≤ γ < 1. We can equivalently
write this as

max
π

E
∞∑
n=0

γnµ̄nxn ,

keeping in mind that xn must depend on the information in Sn.
One way to solve the problem is to use Bellman’s equation

V n(Sn) = max
x∈X

(
C(Sn, x) + γE{V n+1(Sn+1)|Sn, x}

)
, (7.31)
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It is important to keep in mind that Sn is our belief state, and that V n(Sn) is the expected
value of our earnings given our current state of belief. The problem is that if we have |X |
actions, then our state variable has 2|X | continuous dimensions (the mean and variance for
each alternative).

The recognition that learning problems could be formulated as dynamic programs around
the belief state represented an important development in the learning community. Even
Bellman (the father of dynamic programming whose work is reviewed in greater depth
in chapter 14) would refer to belief states as “hyperstates” without realizing that there is
no difference between information about inventories, information about the weather, and
information about probability distributions. The real breakthrough with recognizing that
Bellman’s equation (7.31) was that it was the first characterization of an optimal policy for
this problem class. The challenge was that (7.31) is computationally intractable, since, for
the case of normally distributed rewards, the belief state Sn has two continuous dimensions
(the mean and variance) for each arm.

In a landmark paper (Gittins & Jones (1974)), it was shown that equation (7.31) could be
reduced to a single dynamic program for each individual arm. This means that we now only
need to solve (7.31) for a two-dimensional problem, which can be done using numerical
integration (this does not mean it is easy - it just means it can be done). Each of these
single-armed dynamic programs produces an index νnx , where the optimal policy involves
finding the largest νnx for all x ∈ X . While the resulting policy is still much more difficult
to solve than other policies we will introduce, it is a rare instance of a truly optimal policy,
and provides insights that guide the design of effective, but simpler, learning policies.

7.6.2 Basic theory of Gittins indices

Assume we face the choice of playing a single slot machine, or stopping and converting to
a process that pays a fixed reward ρ in each time period until infinity. If we choose to stop
sampling and accept the fixed reward, the total future reward is ρ/(1− γ). Alternatively, if
we play the slot machine, we not only win a random amount W , we also learn something
about the parameter µ that characterizes the distribution of W , where µ = EW . After
n observations of W , we let Sn capture the parameters of the probability distribution of
µ given what we have learned. This distribution depends on the nature of the underlying
uncertainty, such as:

Normally distributed If we have a normally distributed prior on µ, and W is normally
distributed, then our belief about µ after n observations is also normally distributed
with distributionN(µ̄n, σ̄2,n), which meansSn = (µ̄n, σ̄2,n) which is updated using
equations (7.11) - (7.12).

Binomial distribution Imagine that µ is 0 or 1, and let p be the probability that µ = 1, and
that W ∈ {0.1}. Let p̄n be our best estimate of p, which represents our distribution
of belief about µ. Our state is given by Sn = p̄n which is updated using

p̄n+1 =

(
1− 1

n+ 1

)
p̄n +

1

n+ 1
Wn+1.

(We could also model the problem where the state is Nn =
∑n
i=1W

i.)

Bernoulli distribution Finally assume that we may win a game with some probability p,
where now we are interested in finding the true probability. We can represent our
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distribution of belief about the random variable p using the beta distribution given
by

f (p|α, β) =

{
Γ(α+β)

Γ(α)Γ(β)p
α−1 (1− p)β−1 if 0 < p < 1

0 otherwise.

which is characterized by the parameters α and β, so we would write Sn = (αn, βn)
which are updated using

αn+1 = αn +Wn+1,
βn+1 = βn +

(
1−Wn+1

)
.

The estimate Sn represents our state variable, which is to say our distribution of belief
about µ. Let µ̄n be our current estimate of the reward we would receive from playing the
machine given what we know after n plays. The optimality equations can now be written

V (Sn, ρ) = max
[
ρ+ γV (Sn, ρ), µ̄n + γE

{
V (Sn+1, ρ)

∣∣Sn}] , (7.32)

whereSn+1 is computed fromSn andWn+1 using one of the updating equations illustrated
in the examples above. We use the notation V (Sn, ρ) to express the dependence on ρ.

Since we have an infinite horizon problem, the value function must satisfy the optimality
equations

V (S, ρ) = max [ρ+ γV (S, ρ), µ+ γE {V (S′, ρ)|S}] ,

where S′ is the updated state, and µ is the mean that is captured in the state S.
It can be shown that if we choose to stop sampling in iteration n and accept the fixed

payment ρ, then that is the optimal strategy for all future rounds. This means that starting
at iteration n, our optimal future payoff (once we have decided to accept the fixed payment)
is

V (S, ρ) = ρ+ γρ+ γ2ρ+ · · ·

=
ρ

1− γ
,

which means that we can write our optimality recursion in the form

V (Sn, ρ) = max

[
ρ

1− γ
, µ̄n + γE

{
V (Sn+1, ρ)

∣∣Sn}] . (7.33)

Now for the magic of Gittins indices. Let ν be the value of ρ which makes the two terms
in the brackets in (7.33) equal. That is,

ν

1− γ
= µ+ γE {V (S, ν)|S} . (7.34)

We are going to proceed for the case of normally distributed beliefs and observations.
We assume that W is random with a known variance σ2

W . Let νGitt(µ, σ, σW , γ) be the
solution of (7.34). The optimal solution depends on the current estimate of the mean, µ,
its variance σ2, the variance of our measurements σ2

W , and the discount factor γ. (For
notational simplicity, we are assuming that the experimental noise σ2

W is independent of
the action x, but this assumption is easily relaxed.)
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Next assume that we have a family of slot machinesX , and let νGitt,nx (µ̄nx , σ̄
n
x , σW , γ) be

the value of ν that we compute for each slot machine x ∈ X given state Sn = (µ̄nx , σ̄
n
x )x∈X .

An optimal policy for selecting slot machines is to choose the slot machine with the highest
value for νGitt,nx (µ̄nx , σ̄

n
x , σW , γ). Such policies are known as index policies, which refers

to the property that the parameter νGitt,nx (µ̄nx , σ̄
n
x , σW , γ) for alternative x depends only on

the characteristics of alternative x. For this problem, the parameters νGitt,nx (µ̄nx , σ̄
n
x , σW , γ)

are called Gittins indices.
When we ignore the value of acquiring information, we would make a decision by

solving

max
x

µ̄nx .

This is known as a pure exploitation policy, and might easily lead us to avoid a decision
that might be quite good, but which we currently think is poor (and we are unwilling to
learn anything more about the decision). Gittins theory tells us to solve

max
x

νGitt,nx (µ̄nx , σ̄
n
x , σW , γ).

The beauty of Gittins indices (or any index policy) is that it reduces N -dimensional
problems into a series of one-dimensional problems. The problem is that solving equation
(7.33) (or equivalently, (7.34)) offers its own challenges. Finding νGitt,nx (µ, σ, σW , γ)
requires solving the optimality equation in (7.33) for different values of ρ until (7.34) is
satisfied. Although algorithmic procedures have been designed for this, they are not simple.

7.6.3 Gittins indices for normally distributed rewards

Students learn in their first statistics course that normally distributed random variables
satisfy a nice property. If Z is normally distributed with mean 0 and variance 1 and if

X = µ+ σZ

thenX is normally distributed with mean µ and variance σ2. This property simplifies what
are otherwise difficult calculations about probabilities of events.

The same property applies to Gittins indices. Although the proof requires some devel-
opment, it is possible to show that

νGitt,n(µ̄n, σ̄n, σW , γ) = µ+ Γ(
σ̄n

σW
, γ)σW ,

where

Γ(
σ̄n

σW
, γ) = νGitt,n(0, σ, 1, γ)

is a “standard normal Gittins index” for problems with mean 0 and variance 1. Note that
σ̄n/σW decreases with n, and that Γ( σ̄

n

σW
, γ) decreases toward zero as σ̄n/σW decreases.

As n→∞, νGitt,n(µ̄n, σ̄n, σW , γ)→ µ̄n.
Unfortunately, as of this writing, there do not exist easy-to-use software utilities for

computing standard Gittins indices. Table 7.3 is exactly such a table for Gittins indices.
The table gives indices for both the variance-known and variance-unknown cases, but only
for the case where σn

σW
= 1

n . In the variance-known case, we assume that σ2 is given,
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Discount factor
Known variance Unknown variance

Observations 0.95 0.99 0.95 0.99

1 0.9956 1.5758 - -

2 0.6343 1.0415 10.1410 39.3343

3 0.4781 0.8061 1.1656 3.1020

4 0.3878 0.6677 0.6193 1.3428

5 0.3281 0.5747 0.4478 0.9052

6 0.2853 0.5072 0.3590 0.7054

7 0.2528 0.4554 0.3035 0.5901

8 0.2274 0.4144 0.2645 0.5123

9 0.2069 0.3808 0.2353 0.4556

10 0.1899 0.3528 0.2123 0.4119

20 0.1058 0.2094 0.1109 0.2230

30 0.0739 0.1520 0.0761 0.1579

40 0.0570 0.1202 0.0582 0.1235

50 0.0464 0.0998 0.0472 0.1019

60 0.0392 0.0855 0.0397 0.0870

70 0.0339 0.0749 0.0343 0.0760

80 0.0299 0.0667 0.0302 0.0675

90 0.0267 0.0602 0.0269 0.0608

100 0.0242 0.0549 0.0244 0.0554

Table 7.3 Gittins indices Γ( σ
n

σW
, γ) for the case of observations that are normally distributed

with mean 0, variance 1, and where σn

σW
= 1

n
(from Gittins (1989)).

which allows us to calculate the variance of the estimate for a particular slot machine just
by dividing by the number of observations.

Lacking standard software libraries for computing Gittins indices, researchers have
developed simple approximations. As of this writing, the most recent of these works as
follows. First, it is possible to show that

Γ (s, γ) =
√
− log γ · b

(
− s2

log γ

)
. (7.35)
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A good approximation of b(s), which we denote by b̃(s), is given by

b̃(s) =


s√
2

s ≤ 1
7 ,

e−0.02645(log s)2+0.89106 log s−0.4873 1
7 < s ≤ 100,

√
s (2 log s− log log s− log 16π)

1
2 s > 100.

Thus, the approximate version of (7.35) is

νGitt,n(µ, σ, σW , γ) ≈ µ̄n + σW
√
− log γ · b̃

(
− σ̄2,n

σ2
W log γ

)
. (7.36)

7.6.4 Comments

While Gittins indices was considered a major breakthrough, it has largely remained an area
of theoretical interest in the applied probability community. Some issues that need to be
kept in mind when using Gittins indices are:

• While Gittins indices were viewed as a computational breakthrough, they are not,
themselves, easy to compute.

• Gittins index theory only works for infinite horizon, discounted, cumulative reward
problems. Gittins indices are not optimal for finite horizon problems which is what we
always encounter in practice, but Gittins indices may still be a useful approximation.

• Gittins theory is limited primarily to lookup table belief models with independent
beliefs.

We note that while Gittins indices are not optimal in practical settings, we are not going to
introduce any other policy that is optimal; this is a field where computational restrictions
limit our attention to suboptimal policies, where we try to prove, either theoretically or
experimentally, that particular policies exhibit specific advantages over others.

7.7 THE KNOWLEDGE GRADIENT FOR INDEPENDENT BELIEFS

The knowledge gradient belongs to the value of value-of-information policies which choose
alternatives based on the improvement in the quality of the objective from better decisions
that arise from a better understanding of the problem. The knowledge gradient works from
a Bayesian belief model where our belief about the truth is represented by a probability
distribution of possible truths. The basic knowledge gradient calculates the value of a
single experiment, but this can be used as a foundation for variations that allow for repeated
experiments.

The knowledge gradient was originally developed for offline (terminal reward) settings,
so we begin with this problem class. Our experience is that the knowledge gradient is
particularly well suited for settings where experiments (or observations) are expensive. For
example:

• An airline wants to know the effect of allowing additional schedule slack, which can
only be evaluated by running dozens of simulations to capture the variability due to
weather. Each simulation may take several hours to run.
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• A scientist needs to evaluate the effect of increasing the temperature of a chemical
reaction or the strength of a material. A single experiment may take several hours,
and needs to be repeated to reduce the effect of the noise in each experiment.

• A drug company is running clinical trials on a new drug, where it is necessary to test
the drug at different dosages for toxicity. It takes several days to assess the effect of
the drug at a particular dosage.

After developing the knowledge gradient for offline (terminal reward) settings, we show
how to compute the knowledge gradient for online (cumulative reward) problems. We
begin by discussing belief models, but devote the rest of this section to handling the special
case of independent beliefs. Section 7.8 extends the knowledge gradient to several more
general belief models.

7.7.1 The belief model

The knowledge gradient uses a Bayesian belief model where we begin with a prior on
µx = EF (x,W ) for x ∈ {x1, . . . , xM}. We are going to illustrate the key ideas using a
lookup table belief model (which is to say, we have an estimate for each value of x), where
we initially assume the beliefs are independent. This means that anything we learn about
some alternative x does not teach us anything about an alternative x′.

We assume that we believe that the true value of µx is described by a normal distribution
N(µ̄0

x, σ
2,0
x ), known as the prior. This may be based on prior experience (such as past

experience with the revenue from charging a price x for a new book), some initial data, or
from an understanding of the physics of a problem (such as the effect of temperature on the
conductivity of a metal).

It is possible to extend the knowledge gradient to a variety of belief models. A brief
overview of these is:

Correlated beliefs Alternatives xmay be related, perhaps because they are discretizations
of a continuous parameter (such as temperature or price), so thatµx andµx+1 are close
to each other. Trying x then teaches us something aboutµx+1. Alternatively, x and x′

may be two drugs in the same class, or a product with slightly different features. We
capture these relationships with a covariance matrix Σ0 where Σ0

xx′ = Cov(µx, µx′).
We show how to handle correlated beliefs below.

Parametric linear models We may derive a series of features φf (x), for f ∈ F . Assume
that we represent our belief using

f(x|θ) =
∑
f∈F

θfφf (x),

where f(x|θ) ≈ EF (x,W ) is our estimate of EF (x,W ). We now treat θ as the
unknown parameter, where we might assume that the vector θ is described by a
multivariate normal distribution N(θ0,Σθ,0), although coming up with these priors
(in the parameter space) can be tricky.

Parametric nonlinear models Our belief model might be nonlinear in θ. For example,
we might use a logistic regression

f(x|θ) =
eU(x|θ)

1 + eU(x|θ) , (7.37)
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where U(x|θ) is a linear model given by

U(x|θ) = θ0 + θ1x1 + θ2x2 + . . .+ θM .

As we show below, belief models that are nonlinear in the parameters can cause some
difficulty, but we can circumvent this by using a sampled belief model, where we
assume the uncertain θ is one of the set {θ1, . . . , θK}. Let pnk be the probability that
θ = θk, which means that pn = (pnk ), k = 1, . . . ,K is our belief at time n.

Nonparametric models Simpler nonparametric models are primarily local approxima-
tions, so we could use constant, linear or nonlinear models defined over local regions.
More advanced models include neural networks (the kind known as “deep learners”)
or support vector machines, both of which were introduced in chapter 3.

Below we show how to calculate the knowledge gradient for each of these belief models,
with the exception of the nonparametric models (listed for completeness).

7.7.2 The knowledge gradient for offline (terminal reward) learning

The knowledge gradient seeks to learn about the value of different actions by maximizing
the value of information from a single observation. Let Sn be our belief state about the
value of each action a. The knowledge gradient uses a Bayesian model, so

Sn = (µ̄nx , σ
2,n
x )x∈X ,

captures the mean and variance of our belief about the true value µx = EF (x,W ), where
we also assume that µx ∼ N(µ̄nx , σ

2,n
x ).

The value of being in belief state Sn is given by

V n(Sn) = µxn ,

where xn is the choice that appears to be best given what we know after n experiments,
calculated using

xn = arg max
x′∈X

µ̄nx′ .

If we choose action xn, we then observe Wn+1
xn which we then use to update our estimate

of our belief about µx using our Bayesian updating equations that we gave in section 7.2.
The value of state Sn+1(x) when we try action x is given by

V n+1(Sn+1(x)) = max
x′∈X

µ̄n+1
x′ (x).

where µ̄n+1
x′ (x) is the updated estimate of Eµ given Sn (that is, our estimate of the

distribution of µ after n experiments), and the result of implementing x and observing
Wn+1
x . We have to decide which experiment to run after the nth observation, so we have

to work with the expected value of running experiment x, given by

E{V n+1(Sn+1(x))|Sn} = E{max
x′∈X

µ̄n+1
x′ (x)|Sn}.

The knowledge gradient is then given by

νKG,nx = E{V n+1(SM (Sn, x,Wn+1))|Sn, x} − V n(Sn),
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which is equivalent to

νKG(x) = E{max
x′

µ̄n+1
x′ (x)|Sn} −max

x′
µ̄nx′ . (7.38)

Here, µ̄n+1(x) is the updated value of µ̄n after running an experiment with setting x = xn,
after which we observe Wn+1

x . Since we have not yet run the experiment, Wn+1
x is a

random variable, which means that µ̄n+1(x) is random. In fact, µ̄n+1(x) is random for
two reasons. To see this, we note that when we run experiment x, we observe an updated
value from

Wn+1
x = µx + εn+1

x ,

where µx = EF (x,W ) is the true value, while εn+1
x is the noise in the observation. This

introduces two forms of uncertainty: the unknown truth µx, and the noise εn+1
x . Thus, it

would be more accurate to write equation (7.38) as

νKG(x) = Eµ{EW |µ max
x′

µ̄n+1
x′ (x)|Sn} −max

x′
µ̄nx′ . (7.39)

where the first expectation Eµ is conditioned on our belief state Sn, while the second
expectation EW |µ is over the experimental noise W given our distribution of belief about
the truth µ.

To illustrate how equation (7.39) is calculated, imagine that µ takes on values
{µ1, . . . , µK}, and that pµk is the probability that µ = µk. Assume that µ is the mean
of a Poisson distribution describing the number of customersW that click on a website and
assume that

PW [W = `|µ = µk] =
µ`ke
−µk

`!
.

We would then compute the expectation in equation (7.39) using

νKG(x) =

K∑
k=1

( ∞∑
`=0

(
max
x′

µ̄n+1
x′ (x|W = `)

)
PW [W = `|µ = µk]

)
pµk −max

x′
µ̄nx′ .

where µ̄n+1
x′ (x|W = `) is the updated estimate of µ̄nx′ if we run experiment x (which might

be a price or design of a website) and we then observe W = `. The updating would be
done using any of the recursive updating equations described in chapter 3.

We now want to capture how well we can solve our optimization problem, which means
solving maxx′ µ̄

n+1
x′ (x). Since µ̄n+1

x′ (x) is random (since we have to pick x before we
knowWn+1), then maxx′ µ̄

n+1
x′ (x) is random. This is why we have to take the expectation,

which is conditioned on Sn which captures what we know now.
Computing a knowledge gradient policy for independent beliefs is extremely easy. We

assume that all rewards are normally distributed, and that we start with an initial estimate
of the mean and variance of the value of decision x, given by

µ̄0
x = The initial estimate of the expected reward from making decision x,
σ̄0
x = The initial estimate of the standard deviation of our belief about µ.

Each time we make a decision we receive a reward given by

Wn+1
x = µx + εn+1,
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where µx is the true expected reward from action x (which is unknown) and ε is the
experimental error with standard deviation σW (which we assume is known).

The estimates (µ̄nx , σ̄
2,n
x ) are the mean and variance of our belief about µx after n

observations. We are going to find that it is more convenient to use the idea of precision
(as we did in chapter 3) which is the inverse of the variance. So, we define the precision of
our belief and the precision of the experimental noise as

βnx = 1/σ̄2,n
x ,

βW = 1/σ2
W .

If we take action x and observe a rewardWn+1
x , we can use Bayesian updating to obtain

new estimates of the mean and variance for action x, following the steps we first introduced
in section 3.4. To illustrate, imagine that we try an action xwhere βnx = 1/(202) = 0.0025,
and βW = 1/(402) = .000625. Assume µ̄nx = 200 and that we observe Wn+1

x = 250.
The updated mean and precision are given by

µ̄n+1
x =

βnx µ̄
n
x + βWWn+1

x

βnx + βW

=
(.0025)(200) + (.000625)(250)

.0025 + .000625
= 210.

βn+1
x = βnx + βW

= .0025 + .000625

= .003125.

We next find the variance of the change in our estimate of µx assuming we choose to
sample action x in iteration n. For this we define

σ̃2,n
x = Var[µ̄n+1

x − µ̄nx |Sn] (7.40)
= Var[µ̄n+1

x |Sn]. (7.41)

We use the form of equation (7.40) to highlight the definition of σ̃2,n
x as the change in the

variance given what we know at time n, but when we condition on what we know (captured
by Sn) it means that Var[µ̄nx |Sn] = 0 since µ̄nx is just a number at time n.

With a little work, we can write σ̃2,n
x in different ways, including

σ̃2,n
x = σ̄2,n

x − σ̄2,n+1
x , (7.42)

=
(σ̄2,n
x )

1 + σ2
W /σ̄

2,n
x

. (7.43)

Equation (7.42) expresses the (perhaps unexpected) result that σ̃2,n
x measures the change

in the estimate of the standard deviation of the reward from decision x from iteration n− 1
to n. Using our numerical example, equations (7.42) and (7.43) both produce the result

σ̃2,n
x = 400− 320 = 80

=
402

1 + 102

402

= 80.

Finally, we compute

ζnx = −
∣∣∣∣ µ̄nx −maxx′ 6=x µ̄

n
x′

σ̃nx

∣∣∣∣ .
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ζnx is called the normalized influence of decision x. It gives the number of standard
deviations from the current estimate of the value of decision x, given by µ̄nx , and the best
alternative other than decision x. We then find

f(ζ) = ζΦ(ζ) + φ(ζ),

where Φ(ζ) and φ(ζ) are, respectively, the cumulative standard normal distribution and
the standard normal density. Thus, if Z is normally distributed with mean 0, variance 1,
Φ(ζ) = P[Z ≤ ζ] while

φ(ζ) =
1√
2π

exp

(
−ζ

2

2

)
.

The knowledge gradient algorithm chooses the decision x with the largest value of νKG,nx

given by

νKG,nx = σ̃nxf(ζnx ).

The knowledge gradient algorithm is quite simple to implement. Table 7.4 illustrates
a set of calculations for a problem with five options. µ̄ represents the current estimate of
the value of each action, while σ̄ is the current standard deviation of µ. Options 1, 2 and 3
have the same value for σ̄, but with increasing values of µ̄. The table illustrates that when
the variance is the same, the knowledge gradient prefers the decisions that appear to be the
best. Decisions 3 and 4 have the same value of µ̄, but decreasing values of σ̄, illustrating
that the knowledge gradient prefers decisions with the highest variance. Finally, decision
5 appears to be the best of all the decisions, but has the lowest variance (meaning that we
have the highest confidence in this decision). The knowledge gradient is the smallest for
this decision out of all of them.

Decision µ̄ σ̄ σ̃ ζ f(z) KG index

1 1.0 2.5 1.569 -1.275 0.048 0.075
2 1.5 2.5 1.569 -0.956 0.090 0.142
3 2.0 2.5 1.569 -0.637 0.159 0.249
4 2.0 2.0 1.400 -0.714 0.139 0.195
5 3.0 1.0 0.981 -1.020 0.080 0.079

Table 7.4 The calculations behind the knowledge gradient algorithm

The knowledge gradient trades off between how well an alternative is expected to
perform, and how uncertain we are about this estimate. Figure 7.4 illustrates this tradeoff.
Figure 7.4(a) shows five alternatives, where the estimates are the same across all three
alternatives, but with increasing standard deviations. Holding the mean constant, the
knowledge gradient increases with standard deviation of the estimate of the mean. Figure
7.4(b) repeats this exercise, but now holding the standard deviation the same, with increasing
means, showing that the knowledge gradient increases with the estimate of the mean.
Finally, figure 7.4(c) varies the estimates of the mean and standard deviation so that the
knowledge gradient stays constant, illustrating the tradeoff between the estimated mean
and its uncertainty.
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Mean

Std. deviation

Knowledge gradient

(a) (b)

(c)

Figure 7.4 The knowledge gradient for lookup table with independent beliefs with equal means
(a), equal variances (b), and adjusting means and variances so that the KG is equal (c).

This tradeoff between the expected performance of a design, and the uncertainty about
its performance, is a feature that runs through well designed policies. However, all the
other policies with this property (interval estimation, upper confidence bounding, Gittins
indices), achieve this with indices that consist of the sum of the expected performance and
a term that reflects the uncertainty of an alternative. The knowledge gradient, however,
achieves this behavior without constructing the policy in this way. In fact, it is only when
we extend the knowledge gradient to online settings where we learn in the field (in section
7.7.4) do we obtain an index that features the sum of the expected value of an alternative
and a term that captures the value of information (from the offline knowledge gradient).

7.7.3 Concavity of information

We pause before showing how to compute the knowledge gradient for online (cumulative
reward) problems by addressing an important issue that arises when dealing with the
marginal value of information.

Imagine that instead of doing a single experiment, that we can repeat our evaluation of
alternative x nx times. If we are using a lookup table belief model, this means the updated
precision is

βn+1
x (nx) = βnx + nxβ

W ,

where as before, βW is the precision of a single experiment. If we repeat this experiment
nx times, this is the same as doing one experiment with precision nxβW .

Now consider the value of information from doing this repeated experiment. The value
of the nx experiments is the same as the knowledge gradient for a single experiment with



264 DERIVATIVE-FREE STOCHASTIC SEARCH

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1.60E-04

1.80E-04

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Number of measurements

V
al

ue
 o

f i
nf

or
m

at
io

n

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Number of measurements

V
al

ue
 o

f i
nf

or
m

at
io

n
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Figure 7.5 Value of making n observations. In (a), the value of information is concave, while in
(b) the value of information follows an S-curve.

precision nxβW , which we write νKG,nx (nx). This raises the question: what does the
function νKG,nx (nx) look like?

It is tempting to claim that νKG,nx (nx) is concave in nx, since each experiment might be
reasonably expected to contribute less, on the margin. You might be right, as show in figure
7.5(a). However, it is also possible that the value of information looks like an S-curve, as
shown in 7.5(b). What explains the difference?

The S-curve behavior in figure 7.5(b) arises when experiments are noisy, which means
that a single experiment contributes little information. This behavior is actually quite
common, especially when the outcome of an experiment is a success or failure (perhaps
indicated by 1 or 0). It is very easy to check for this behavior. All that is required is to
compute νKG,nx (nx) for nx = 1 and nx = 2. If νKG,nx (2)−νKG,nx (1) > νKG,nx (1), which
means the marginal value of information is initially increasing, then the value of information
is non-concave. When this is the case, νKG,nx (1), which is the standard knowledge gradient,
may provide very little information (in fact, it may be virtually zero).

There are several ways to handle the situation. One is to use the KG(*) algorithm, where
we find the value of nx that produces the highest average value of information. We first
compute n∗x from

n∗x = arg max
nx>0

vx(nx)

nx
. (7.44)

This is illustrated in figure 7.6. We do this for each x, and then run the experiment with the
highest value of vx(nx)

nx
. Note that we are not requiring that each experiment be repeated n∗x

times; we only use this to produce a new index (the maximum average value of information),
which we use to identify the next single experiment.

A more general policy uses the concept of posterior reshaping. The idea is quite simple.
Introduce a repetition parameter η where we let the precision of an experiment be given by

βn+1
x (η) = βnx + ηβW .

Now let νKG,nx (η) be the knowledge gradient when we use repetition factor η. Our
knowledge gradient policy would be still given by

XKG(Sn|η) = arg max
x

νKG,nx (η).
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Figure 7.6 The KG(*) policy, which maximizes the average value of a series of experiments testing
a single alternative.

We now have a tunable parameter, but this is the price of managing this complexity. The
value of using a tunable parameter is that the tuning process implicitly captures the effect
of the experimental budget N .

7.7.4 The knowledge gradient for online (cumulative reward) learning

We have derived the knowledge gradient for offline (finel reward) learning problems. Our
choice of action does not depend directly on how good the action is; we only care about
how much information we gain from trying an action to improve the quality of the final
decision.

There are many online applications of dynamic programming where there is an oper-
ational system which we would like to optimize in the field. In these settings, we have
to live with the rewards from each experiment. As a result, we have to strike a balance
between the value of an action and the information we gain that may improve our choice
of actions in the future. This is precisely the tradeoff that is made by Gittins indices for the
multiarmed bandit problem.

It turns out that the knowledge gradient is easily adapted for online problems. As
before, let νKG,nx be the offline knowledge gradient, giving the value of observing action
x, measured in terms of the improvement in a single decision. Now imagine that we have
a budget of N decisions. After having made n decisions (which means, n observations of
the value of different actions), if we observe x = xn which allows us to observeWn+1

x , we
received an expected reward of EnWn+1

x = µ̄nx , and obtain information that improves the
contribution from a single decision by νKG,nx . However, we have N − n more decisions
to make. Assume that we learn from the observation of Wn+1

x by choosing xn = x, but
we do not allow ourselves to learn anything from future decisions. This means that the
remaining N − n decisions have access to the same information.

From this analysis, the knowledge gradient for online applications consists of the ex-
pected value of the single-period contribution of the experiment, plus the improvement in
all the remaining decisions in our horizon. This implies

νOLKG,nx = µ̄nx + (N − n)νKG,nx . (7.45)
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If we have an infinite horizon problem with discount factor γ,

νOLKG,nx = µ̄nx +
γ

1− γ
νKG,nx . (7.46)

We note that the logic for incorporating correlated beliefs for the offline knowledge gradient
can now be directly applied to online problems.

7.7.5 Characteristics and properties of the knowledge gradient

Some characteristics of the knowledge gradient are

1) The knowledge gradient is Bayesian, which means it can work with prior knowledge
from a domain expert.

2) It can handle a variety of belief models (lookup table with independent or correlated
beliefs, linear or nonlinear parametric models, nonparametric models).

3) The knowledge gradient is typically harder to compute, and sometimes much harder
(depending on the belief model) than policies such as UCB, IE or Thompson sam-
pling, although it is much easier than the Gittins index policy which is limited to
lookup table belief models. Its relative computational complexity, combined with
its ability to incorporate prior knowledge, means that it is best suited to problems
where function evaluations are expensive (for example, they may require complex
simulations or field experiments).

The knowledge gradient for offline (terminal reward) problems enjoys several mathe-
matical properties, including

• Property 1: The knowledge gradient is always positive, νKG,nx ≥ 0 for all x. Thus, if
the knowledge gradient of an alternative is zero, that means we will not run another
experiment with those settings.

• Property 2: The knowledge gradient policy is optimal (by construction) if we are
going to make exactly one experiment.

• Property 3: If there are only two choices, the knowledge gradient policy is optimal
for any experimental budget N .

• Property 4: If N is our experimental budget, the knowledge gradient policy is
guaranteed to find the best alternative as N is allowed to be big enough. That is, if
xN is the solution we obtain after N experiments, and

x∗ = arg maxµx

is the true best alternative, then xN → x∗ as N → ∞. This property is known as
asymptotic optimality.

• Property 5: There are many heuristic policies that are asymptotically optimal (for ex-
ample, pure exploration, mixed exploration-exploitation, epsilon-greedy exploration
and Boltzmann exploration). But none of these heuristic policies is myopically opti-
mal. The knowledge gradient policy is the only pure policy (an alternative term would
be to say it is the only stationary policy) that is both myopically and asymptotically
optimal.
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• Property 6: The knowledge gradient has no tunable algorithmic parameters. Heuris-
tics such as the Boltzmann policy (θBoltz in equation (7.18)) and interval estimation
(θIE in equation (7.17)) have tunable algorithmic parameters. The knowledge gra-
dient has no such parameters (although these can be introduced, as we do below),
but as with all Bayesian methods, it does require a prior which allows us to take
advantage of domain knowledge (but then it requires that we have access to domain
knowledge).

There is one more very nice property enjoyed by the knowledge gradient, which is

• Property 7: The knowledge gradient can be adapted for either final-reward or
cumulative-reward settings.

This deserves some discussion. Other policies in the class of cost function approximations
such as interval estimation and upper confidence bounding that exhibit tunable parameters
can be tuned for either final-reward or cumulative-reward settings. The knowledge gradient
does not, in principle, have to be tuned, although this is primarily for problems where the
value of information is concave. If the value of information is non-concave, then we
recommend tuning.

The knowledge gradient is not an optimal policy for collecting information, but it has
been found to work quite well in numerous experimental research (as long as care is used
when the value of information is nonconcave). We repeat that the knowledge gradient is
much more difficult to compute than other policies such as UCB policies, interval estimation
and Thompson sampling, which makes it well suited to problems where experiments are
expensive (and take time).

7.8 THE KNOWLEDGE GRADIENT FOR MORE GENERAL BELIEF MODELS

The feature that most distinguishes the knowledge gradient from tunable policies such as
interval estimation, upper confidence bounding and Boltzmann exploration is that the belief
model is built into the policy. This is because the knowledge gradient is in the class of
direct lookahead policies which require that we solve a model in the future, which requires
that we capture the updating of the belief model in the policy. This leads to high quality
solutions, but the complexity and computational cost goes up accordingly.

7.8.1 Knowledge gradient for correlated beliefs

A particularly important feature of the knowledge gradient is that it can be adapted to handle
the important problem of correlated beliefs. In fact, the vast majority of real applications
exhibit some form of correlated beliefs. Some examples are given below.

EXAMPLE 7.1

Correlated beliefs can arise when we are maximizing a continuous surface (nearby
points will be correlated) or choosing subsets (such as the location of a set of facilities)
which produce correlations when subsets share common elements. If we are trying to
estimate a continuous function, we might assume that the covariance matrix satisfies

Cov(x, x′) ∝ e−ρ‖x−x
′‖,
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where ρ captures the relationship between neighboring points. If x is a vector of 0′s
and 1′s indicating elements in a subset, the covariance might be proportional to the
number of 1’s that are in common between two choices.

EXAMPLE 7.2

Netflix needs to test different movies to see which are most popular for a particular
account. Each movie can be described by a set of attributes (such as genre, actors,
setting). By selecting one movie, we can learn about movies with similar attributes.

EXAMPLE 7.3

There are about two dozen drugs for reducing blood sugar, divided among four major
classes. Trying a drug in one class can provide an indication of how a patient will
respond to other drugs in that class.

EXAMPLE 7.4

A materials scientist is testing different catalysts in a process to design a material
with maximum conductivity. Prior to running any experiment, the scientist is able
to estimate the likely relationship in the performance of different catalysts, shown in
table 7.5. The catalysts that share an Fe (iron) or Ni (nickel) molecule show higher
correlations.

1.4nmFe 1nmFe 2nmFe 10nm-Fe 2nmNi Ni0.6nm 10nm-Ni

1.4nmFe 1.0 0.7 0.7 0.6 0.4 0.4 0.2
1nmFe 0.7 1.0 0.7 0.6 0.4 0.4 0.2
2nmFe 0.7 0.7 1.0 0.6 0.4 0.4 0.2
10nmFe 0.6 0.6 0.6 1.0 0.4 0.3 0.0

2nmNi 0.4 0.4 0.4 0.4 1.0 0.7 0.6
Ni0.6nm 0.4 0.4 0.4 0.3 0.7 1.0 0.6
10nmNi 0.2 0.2 0.2 0.0 0.6 0.6 1.0

Table 7.5 Correlation matrix describing the relationship between estimated performance of
different catalysts, as estimated by an expert.

Constructing the covariance matrix involves incorporating the structure of the problem.
This may be relatively easy, as with the covariance between discretized choices of a
continuous surface.

There is a more compact way of updating our estimate of µ̄n in the presence of correlated
beliefs. Let λW = σ2

W = 1/βW (this is basically a trick to get rid of that nasty square). Let
Σn+1(x) be the updated covariance matrix given that we have chosen to evaluate alternative
x, and let Σ̃n(x) be the change in the covariance matrix due to evaluating x, which is given
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by

Σ̃n(x) = Σn − Σn+1,

=
Σnex(ex)TΣn

Σnxx + λW
.

Now define the vector σ̃n(x), which gives the square root of the change in the variance due
to measuring x, which is given by

σ̃n(x) =
Σnex√

Σnxx + λW
. (7.47)

Let σ̃i(Σ, x) be the component (ei)
T σ̃(x) of the vector σ̃(x), and let Varn(·) be the variance

given what we know after n experiments. We note that if we evaluate alternative xn, then

Varn
[
Wn+1 − µ̄nxn

]
= Varn

[
µxn + εn+1

]
= Σnxnxn + λW . (7.48)

Next define the random variable

Zn+1 = (Wn+1 − µ̄nxn)/
√

Varn [Wn+1 − µ̄nxn ].

We can now rewrite (7.29) for updating our beliefs about the mean as

µ̄n+1 = µ̄n + σ̃(xn)Zn+1. (7.49)

Note that µ̄n+1 and µ̄n are vectors giving beliefs for all alternatives, not just the alternative
xn that we tested. The knowledge gradient policy for correlated beliefs is computed using

XKG(s) = arg max
x

E
[
max
i
µn+1
i | Sn = s

]
(7.50)

= arg max
x

E
[
max
i

(
µ̄ni + σ̃i(x

n)Zn+1
)
| Sn, x

]
.

where Z is a scalar, standard normal random variable. The problem with this expression is
that the expectation is harder to compute, but a simple algorithm can be used to compute
the expectation exactly. We start by defining

h(µ̄n, σ̃(x)) = E
[
max
i

(
µ̄ni + σ̃i(x

n)Zn+1
)
| Sn, x = xn

]
. (7.51)

Substituting (7.51) into (7.50) gives us

XKG(s) = arg max
x

h(µ̄n, σ̃(x)). (7.52)

Let ai = µ̄ni , bi = σ̃i(Σ
n, xn), and let Z be our standard normal deviate. Now define

the function h(a, b) as

h(a, b) = Emax
i

(
ai + biZ

)
. (7.53)

Both a and b are M -dimensional vectors. Sort the elements bi so that b1 ≤ b2 ≤ . . . so
that we get a sequence of lines with increasing slopes, as depicted in figure 7.7. There are
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Figure 7.7 Regions of z over which different choices dominate. Choice 3 is always dominated.

ranges for z over a particular line may dominate the other lines, and some lines may be
dominated all the time (such as alternative 3).

We need to identify and eliminate the dominated alternatives. To do this we start by
finding the points where the lines intersect. The lines ai + biz and ai+1 + bi+1z intersect
at

z = ci =
ai − ai+1

bi+1 − bi
.

For the moment, we are going to assume that bi+1 > bi. If ci−1 < ci < ci+1, then we can
find a range for z over which a particular choice dominates, as depicted in figure 7.7. A
line is dominated when ci+1 < ci, at which point they are dropped from the set. Once the
sequence ci has been found, we can compute (7.50) using

h(a, b) =

M∑
i=1

(bi+1 − bi)f(−|ci|),

where as before, f(z) = zΦ(z) + φ(z). Of course, the summation has to be adjusted to
skip any choices i that were found to be dominated.

It is important to recognize that there is more to incorporating correlated beliefs than
simply using the covariances when we update our beliefs after an experiment. With this
procedure, we anticipate the updating before we even perform an experiment.

The ability to handle correlated beliefs in the choice of what experiment to perform is
an important feature that has been overlooked in other procedures. It makes it possible to
make sensible choices when our experimental budget is much smaller than the number of
potential choices we have to evaluate. There are, of course, computational implications. It
is relatively easy to handle dozens or hundreds of alternatives, but as a result of the matrix
calculations, it becomes expensive to handle problems where the number of potential
choices is in the thousands. If this is the case, it is likely the problem has special structure.
For example, we might be discretizing a p-dimensional parameter surface. If this is the
case, it may make sense to consider the adaptation of the knowledge gradient for problems
where the belief structure can be represented using a parametric model.

A reasonable question to ask is: given that the correlated KG is considerably more
complex than the knowledge gradient policy with independent beliefs, what is the value of
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Figure 7.8 (a) Sampling pattern from knowledge gradient using independent beliefs; (b) sampling
pattern from knowledge gradient using correlated beliefs.
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Figure 7.9 Comparison of correlated KG policy against a KG policy with independent beliefs, but
using correlated updates, showing the improvement when using the correlated KG policy.

using correlated KG? Figure 7.8(a) shows the sampling pattern when learning a quadratic
function, starting with a uniform prior, when using the knowledge gradient with indepen-
dent beliefs for the learning policy, but using correlated beliefs to update beliefs after an
experiment has been run. This policy tends to produce sampling that is more clustered in
the region near the optimum. Figure 7.8(b) shows the sampling pattern for the knowledge
gradient policy with correlated beliefs, showing a more uniform pattern that shows a better
spread of experiments.

So, the correlated KG logic seems to do a better job of exploring, but how well does it
work? Figure 7.9 shows the opportunity cost for each policy, where smaller is better. For
this example, the correlated KG works quite a bit better, probably due to the tendency of
the correlated KG policy to do explore more efficiently.
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While these experiments suggest strong support for the correlated KG policy when
we have correlated beliefs, we need to also note that tunable CFA-based policies such as
interval estimation or the UCB policies can also be tuned in the context of problems with
correlated beliefs. The tradeoff is that the correlated KG policy does not require tuning,
but is much more difficult to implement. A tuned CFA policy requires tuning (which can
be a challenge) but is otherwise trivial to implement.

7.8.2 Linear belief models

While lookup table belief models will always find applications, they quickly become
cumbersome when there are many alternatives x, as will almost always happen when x is
a vector. For this reason, the field of statistics has often turned to linear models of the form

EF (x,W ) ≈ f(x|θ) =
∑
f∈F

θfφf (x).

With a lookup table, each estimate µ̄nx was a different parameter (one for each value of x).
With a linear model, we have only to estimate the vector θ, which is dimensioned by the
number of features F . It turns out that rather than working with a covariance matrix Σ that
is dimensioned by the number of possible decisions x (which easily stretches to millions
when x is a vector), we can work with a matrix Σθ that is dimensioned by the number of
features in F with an element Σff ′ = Cov(θf , θf ′).

When we use a linear belief model (but still have discrete alternatives x), we are basically
creating a problem with correlated beliefs, where the correlation between µx = EF (x,W )
and µx′ = EF (x′,W ) arises because of the structure of the linear belief model. For this
reason, we are going to build on the tools we developed in section 7.8.1 for correlated
beliefs. There, we introduced the function

h(a, b) = Emax
i

(
ai + biZ

)
,

where ai = µ̄ni , bi(j) = σ̃i(j), and Z is a standard normal deviate. Here, the index
j corresponds to the experiment x = xj we are thinking of performing, and the index
i corresponds to the design parameters x′ = xi that we might choose given our current
belief. For the remainder of this section, we continue to use (i, j) to be consistent with the
presentation of correlated beliefs using lookup tables.

Using our linear belief model f(i|θ), after n experiments, we would have an estimate
of our parameter θ = θn which means that we would compute ai = f(x′ = xi|θn).
Deferring for a moment the calculation of bi(j) = σ̃i(j) (this is the hard part), we still
calculate h(a, b) using

h(a, b(j)) =

M−1∑
i=1

(bi+1(j)− bi(j))f(−|ci(j)|) (7.54)

where

ci(j) =
ai − ai+1

bi+1(j)− bi(j)

is the point where the lines ai + biz and aj + bjz intersect.
The major computational challenge arises when computing σ̃n(j), which is a vector

giving the change in the variance of each alternative i if we choose to evaluate alternative
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j. Keep in mind that unlike the lookup table representation in section 7.8.1 where the
number of alternatives might be in the hundreds (up to a thousand), we are now considering
problems where the number of alternatives might be in the thousands or tens of thousands,
which prevents us from creating a matrix Σ dimensioned by the number of alternatives. We
are going to show that we can compute σ̃n(j) using the matrix Σθ, which is much smaller
than Σ.

From our presentation of the knowledge gradient for correlated beliefs, we found that

Σ̃n(j) =
Σnej(ej)

TΣn

Σnjj + σ2
W

,

which gives us the change in the covariance matrix from measuring an alternative j. The
matrix Σ̃n(j) is M ×M , which is quite large, but we only need the jth row, which we
compute using

σ̃n(j) =
Σnej√

Σnjj + σ2
W

. (7.55)

Now is where we use the structure of our linear model. If there are a large number of
choices, the matrix Σ̃n will be too expensive to compute. However, it is possible to work
with the covariance matrix Σθ of the regression vector θ, which is dimensioned by the
number of parameters in our regression function. To compute Σθ, we need to set up some
variables. First let

xn =


xn1
xn2
...
xnF


be a vector of F = |F| independent variables corresponding to the nth observation. Next
create the matrix Xn which consists of all of our experiments

Xn =


x1

1

x2
1
...
xn1

x1
2

x2
2
...
xnF

. . .

x1
K

x2
F
...
xnF

 .

We can use Xn to compute our regression vector by computing

θn = [(Xn)TXn]−1(Xn)TY n.

We can use Xn to compute a compact form for the covariance matrix Σθ,n of θ. With a bit
of algebra, it is possible to show that, after n observations, then

Σθ,n = [(Xn)TXn]−1(Xn)TXn[(Xn)TXn]−1σ2
W

= [(Xn)TXn]−1σ2
W .

where σ2
W is the variance of our observations. Of course, this seems to imply that we still

have to invert (Xn)TXn. We can again use the tricks in section 3.8.1 to compute this
inverse recursively.
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Knowing that we can compute Σθ,n in an efficient way, we can quickly compute σ̃n.
Note that we do not need the entire matrix. We can show that

Σn = XΣθ,n(X)T .

Let Xj be the jth row of X . Then

σ̃n(j) = XjΣ
θ,nXT .

We still have to multiply theK×K-dimensional matrix Σθ,n times theK×M -dimensional
matrixXT , after which we have to compute equation (7.54) to find the knowledge gradient
for each alternative. Even for problems with tens of thousands of alternatives, this can be
executed in a few seconds. Now that we have an efficient way of computing σ̃n(j), we can
apply the knowledge gradient for correlated beliefs described in section 7.8.1.

Thus, the knowledge gradient using a linear belief model is basically the same as the
knowledge gradient for correlated beliefs using a lookup table model. The difference is
that we use the linear model to create a short-cut that allows us to avoid enumerating the
entire matrix Σ. Instead, the only matrix we need to explicitly manipulate is Σθ. We have
used this to handle problems with up to 100,000 alternatives.

7.8.3 Nonlinear belief models

We have shown that we can calculate the knowledge gradient for linear models (lookup
tables, or linear parametric models), but nonlinear models are another matter. Consider,
for example, a problem with a binomial (success/failure) outcomeW where the probability
W = 1 is given by a logistic regression

fW (W = 1|x, θ) =
e
∑
f∈F θfφf (x)

1 + e
∑
f∈F θfφf (x)

. (7.56)

Now define the function

F (x,W ) = W

where we would like to solve the maximization problem

max
x

EF (x,W ).

This problem arises in many settings. Some examples are:

EXAMPLE 7.1

The decision x might be the choice of movies to display on a website, where W = 1
means that the customer chose a movie. This is one example of a recommender
system where we want to make suggestions of products and services with the goal of
maximizing the number of customers who accept the offer.

EXAMPLE 7.2
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A physician might make a medical choicexwith the goal of maximizing the likelihood
of solving the patient’s problem. In this setting, the vector x might be a mixture of
patient attributes (which cannot be controlled) and medical decisions which can.

Given the probability model in equation (7.56), finding the optimal solution would be
quite easy if we just knew θ since EF (x,W ) = fW (W = 1|x, θ). Rather, we have to
learn θ through a sequence of decisions followed by observations of F (x,W ).

Now consider the knowledge gradient formula

νKG(x) = EθEW |θ{max
x′

F (x′, θn+1(x))|Sn, x = xn} − Eθ{max
x′

F (x′, θ)|Sn}. (7.57)

We note that the first expectation is over two sources of uncertainty, The first and most
difficult is the uncertainty in θ, since θ is typically a vector, and potentially a high-
dimensional one. The second is in the noisy outcome, which in this case requires sampling
a binomial outcome from our logistic regression. The expectation in the second term is over
the distribution of θ captured by our current belief in Sn. The problem is the expectation
over the vector θ, which is imbedded inside a max operator.

Equation (7.57) could be computed when the function F (x, θ) was linear in θ, which
provided simple closed-form formulas for θn+1(x), such as the Bayesian updating formulas
(3.19)-(3.20) for the mean and precision when using a lookup table representation, or the
recursive formulas for linear models given in section 3.8. However, when F (x, θ) is
nonlinear in θ, as in equation (7.56), we lose these analytical updating formulas, which
makes the calculation of the knowledge gradient in (7.57) intractable, primarily because of
the expectation.

There is a way to overcome this problem. We are going to represent our uncertain true
value of θ as taking on one of a finite (and not too large) set of discrete values θ1, . . . , θK .
Let pnk = P[θ = θk], which is to say, the probability that θ = θk after n experiments. The
function F (x, θ) is approximated by

F
n
(x′) =

K∑
k=1

pnkF (x′, θk).

Assume we run an experiment xn = x, observe a random outcome Wn+1 and use this to
update our probabilities which we write as pn+1

k (x), which is a random variable before we
have actually run the experiment. When we run an experiment xn = x, we observe Wn+1

with distribution

fW (w|x, θ) = P[Wn+1 = w|x, θ],

which we will use shortly to compute the posterior distribution pn+1
k (x) of the probability

that θ = θk after observingWn+1. We use the posterior probability to compute an updated
estimate

F
n+1

(x′|xn = x) =

K∑
k=1

pn+1
k (x)F (x′, θk).

Using our assumption that θ takes on one of the outcomes in (θ1, . . . , θK), we can write
the knowledge gradient as

νKG(x) = E

{
max
x′

K∑
k=1

pn+1
k (x)F (x′, θk)|Sn, x = xn

}
−

K∑
k=1

pnkF (x, θk). (7.58)
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We have to resolve how to compute the posterior probability pn+1
k (x) and the expectation

E. Assume that our random outcome W from an experiment takes on one of the outcomes
w1, . . . , wL with probability P[W = w`] = pW (w`|x, θ). If we observe W = w`, then
this enters the calculation of the posterior probability pn+1

k (x), which is calculated using
Bayes theorem. Let Hn be the history

Hn = (S0, x0,W 1, x1, . . . ,Wn).

The probability pnk can be stated as P[θ = θk|Hn]. The posterior probability pn+1
k (x) is

then calculated using

pn+1
k (x = xn|Hn+1) = P[θ = θk|Hn+1] (7.59)

= P[θ = θk|x0,W 1, x1, . . . , xn,Wn+1] (7.60)
∝ P[Wn+1|xn, θk]P[θ = θk|x0,W 1, x1, . . . , xn] (7.61)
= fW (Wn+1|xn, θk)P[θ = θk|Hn, xn] (7.62)
= fW (Wn+1|xn, θk)P[θ = θk|Hn] (7.63)
= fW (Wn+1|xn, θk)pnk . (7.64)

Equation (7.59) is the definition of the posterior probability pn+1
k (x = xn), which we write

with the full history in (7.60). Equation (7.61) is from Bayes theorem, where we dropped
the denominator (hence the use of ∝). Equation (7.62) rewrites the first probability using
Hn, and then we drop xn in (7.63) since the probability that θ = θk depends only on Hn,
not the final decision. We finish by simply substituting in pnk .

Using Bayes theorem we write

pn+1
k (x = xn|Wn+1, Hn) ∝ fW (Wn+1|xn, θk)pnk ,

since we dropped the normalizing denominator when we made the transition to equation
(7.61) (note that the history Hn is captured in the prior probability pnk on the right hand
side). For this reason, we need to find the normalizing constant which we call Cw for a
given observation Wn+1 = w, which would be given by

Cw =

K∑
k=1

fW (Wn+1 = w|xn, θk)pnk .

Below we treat CW as a random variable conditioned on the event that Wn+1 = w. We
can then write

pn+1
k (x|Wn+1 = w,Hn) =

1

Cw
fW (Wn+1 = w|xn, θk)pnk .

We note that just as θn+1(x) was a random variable when we originally stated the
knowledge gradient in (7.57), the probabilities pn+1

k (x) are also random variables, which
we see in equation (7.64) since it depends on the random outcome Wn+1 (which depends
implicitly on the experiment xn = x).

This result allows us to write (7.58) as

νKG(x) = EθEW |θ

{
max
x′

1

CW

K∑
k=1

(
fW (W |xn, θk)pnk

)
F (x′, θk)|Sn, x = xn

}

−
K∑
k=1

pnkF (x, θk). (7.65)
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We next have to deal with the outer expectation. Hidden in this expectation are two
expectations: the expectation over the true parameter vector θ, and the random variable
Wn+1, which depends on θ. Above, we illustrated a nonlinear model using the logistic
regression equation given in (7.56), which applies to a random variable W that can take on
one of two outcomes (0/1, or success/failure). For the moment, we are going to assume that
W can take on one of a finite set of outcomes w1, . . . , wL with probability fW (w`|x, θ),
where x represents our vector of inputs (that is, the decision).

The expectation can be written (keeping in mind that the entire expression is a function
of x)

EθEW |θ

{
max
x′

1

CW

K∑
k=1

pnkf
W (W |xn, θk)F (x′, θk)|Sn, x = xn

}

= EθEW |θ
1

CW

{
max
x′

K∑
k=1

pnkf
W (W |xn, θk)F (x′, θk)|Sn, x = xn

}

=
K∑
j=1

(
L∑
`=1

1

Cw`

{
max
x′

K∑
k=1

pnkf
W (W = w`|xn, θk)F (x′, θk)|Sn, x = xn

}
fW (W = w`|x, θj)

)
pnj .

(7.66)

Equation (7.66) is computationally a little scary, especially as the number K of values
of θ grows. Remember that since θ is typically a vector (and possibly a high dimensional
vector), we are potentially interested in representing the set of different values of θ with a
fairly large set. However, equation (7.66) has an outer sum over K, then a sum over the
outcomes of W which is typically scalar (so typically not too large), then a maximization
over x (which can be a relatively large set), followed by another sum over K, divided by
the normalizing constant Cw` which also has a sum over K. If K is large (and by this we
mean larger than, say, 20), then equation (7.66) starts to become expensive to compute.

The good news is that we can simplify it quite a bit.
We start by noticing that the terms fW (W = w`|x, θj) and pnj are not a function of x′

or k, which means we can take them outside of the max operator. We can also reverse the
order of the other sums over k and w`, giving us

EθEW |θ

{
max
x′

1

CW

K∑
k=1

pnkf
W (W |xn, θk)F (x′, θk)|Sn, x = xn

}

=
L∑
`=1

K∑
j=1

(
fW (W = w`|x, θj)pnj

Cw`

){
max
x′

K∑
k=1

pnkf
W (W = w`|xn, θk)F (x′, θk)|Sn, x = xn

}
.

(7.67)

Using the definition of the normalizing constant Cw we can write

K∑
j=1

(
fW (W = w`|x, θj)pnj

Cw`

)
=

(∑K
j=1 f

W (W = w`|x, θj)pnj
Cw`

)

=

(∑K
j=1 f

W (W = w`|x, θj)pnj∑K
k=1 f

W (W = w`|x, θk)pnk

)
= 1.

We just cancelled two sums over the K values of θ! This is a pretty big deal, since we will
typically want K to be as large as possible (the more samples of θ we can represent, the
better we can approximate the expectation over θ.



278 DERIVATIVE-FREE STOCHASTIC SEARCH

This result allows us to write (7.67) as

EθEW |θ

{
max
x′

1

CW

K∑
k=1

pnkf
W (W |xn, θk)F (x′, θk)|Sn, x = xn

}

=

L∑
`=1

{
max
x′

K∑
k=1

pnkf
W (W = w`|xn, θk)F (x′, θk)|Sn, x = xn

}
.(7.68)

Equation (7.68) is a very nice result, because it allows us to compute the knowledge
gradient for nonlinear models using a sampled belief model in a surprisingly compact way.
In practice, the sum over outcomes w` tends to be relatively compact since this is just
an approximation of a scalar random variable. For example, if our random variable W
is normally distributed, we would probably discretize the normal distribution into 5 or 7
ranges.

The search over x depends on how many experiments we are thinking of running, which
can be large if x is a vector. However, we can again replace a search over the entire set of
possible experiments x′ ∈ X with a sample which just has to be large enough to help us
identify which experiment x to run next.

There may be times when it is be preferable to use the sampled belief model, even when
our belief model is linear. The problem with the calculations in section 7.8.2 for the linear
belief model is that it depends on assuming that the distribution of belief about the parameter
vector θ is multivariate normal. While this may seem elegant, in real applications this may
not be very realistic. For example, we may know that a parameter θi only makes sense
if it is positive. However, a multivariate normal distribution implies that every parameter
might be negative. With a sampled belief model, we can generate samples (perhaps from a
multiviate normal distribution), but reject outcomes that are felt to be inappropriate.

7.8.4 The knowledge gradient for hierarchical belief models

There are many problems where the choice ”x” is multidimensional. We might be choosing
a person who is described by several attributes (education, experience), the features of a
product such as a laptop, or the choices made in the design of an experiment to create a
new material (temperature, pressure, concentrations). In these settings, listing all possible
values of x would produce an unmanageably large set of choices.

We build on the idea of using a hierarchical belief model that was originally introduced
in section 3.6.1. We now want to compute the knowledge gradient to capture the expected
value of information from a single experiment. Recall that the knowledge gradient is given
by

νKGx (Sn) = E
[

max
x′∈X

µ̄n+1
x′ (x)|Sn

]
− max
x′∈X

µ̄nx′ . (7.69)

Our presentation assumes a comfort with the notation for the hierarchical belief model, so
we recommend returning to take a quick look at section 3.6.1.

The knowledge gradient exploits the structure of the hierarchical belief model. We first
write the updating equations for the belief (mean and precision) for aggregation level g,
which is given by

µ̄(g,n+1)
x =

β
(g,n)
x µ̄

(g,n)
x + βWx µ̂n+1

x

β
(g,n)
x + βWx

, (7.70)

β(g,n+1)
x = β(g,n)

x + βWx , (7.71)
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Equation (7.70) can be rewritten as

µ̄(g,n+1)
x = µ̄(g,n)

x +
βWx

β
(g,n)
x + βWx

(
µ̂n+1
x − µ̄(g,n)

x

)
.

We rewrite the equation one more time as

µ̄(g,n+1)
x = µ̄(g,n)

x +
βWx

β
(g,n)
x + βWx

(
µ̂n+1
x − µ̄nx

)
+

βWx

β
(g,n)
x + βWx

(
µ̄nx − µ̄(g,n)

x

)
.

We use a trick we have employed before by writing the updating equations in terms of
the standard normal random variable Z,

µ̄(g,n+1)
x = µ̄(g,n)

x +
βWx

β
(g,n)
x + βWx

(
µ̄nx − µ̄(g,n)

x

)
+ σ̃(g,n)

x Z. (7.72)

After some algebra, it is possible to show that the predictive variance (that is, the change
in the variance of the estimate µ̄(g,n+1)

x given what we know after n observations) is given
by

σ̃(g,n)
x =

βWx
√

1

β
(g,n)
x

+ 1
βWx

β
(g,n)
x + βWx

. (7.73)

g = 2 13
g = 1 10 11 12
g = 0 1 2 3 4 5 6 7 8 9

Figure 7.10 Example with nine alternatives and three aggregation levels

We next define the sets

G (x, x′) Set of all aggregation levels that the alternatives x and x′ have in common, with
G (x, x′) ⊆ G. In the example in figure 7.10 we have G (2, 3) = {1, 2}, since x = 2
and x′ = 3 have common points at aggregation levels 1 and 2.

X (g)(x) Set of all alternatives that share the same aggregated alternative G(g)(x) at the
gth aggregation level, with X (g)(x) ⊆ X . In the example in figure 7.10 we have
X 1 (4) = {4, 5, 6}.

With the hierarchical belief model, running an experiment x can result in updated beliefs
of our function at other values x′ ∈ X (in fact, we might update our belief at every value,
if the most aggregate level averages across the entire set). To do this, we write our original
weighted estimate

µ̄nx =
∑
g∈G

w(g)
x µ̄(g,n)

x ,

as

µ̄n+1
x′ =

∑
g/∈G(x′,x)

w
(g,n+1)
x′ µ̄

(g,n+1)
x′ +

∑
g∈G(x′,x)

w
(g,n+1)
x′ µ̄(g,n+1)

x .
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Using (7.72) and rearranging gives us

µ̄n+1
x′ =

∑
g∈G

w
(g,n+1)
x′ µ̄

(g,n)
x′ +

∑
g∈G(x′,x)

w
(g,n+1)
x′

βWx

β
(g,n)
x + βWx

(
µ̄nx − µ̄(g,n)

x

)
+Z

∑
g∈G(x′,x)

w
(g,n+1)
x′ σ̃(g,n)

x . (7.74)

When we run an experiment, we have to capture the fact that not only are we changing the
estimates µ̄(g,n) for all aggregation levels g, we are also going to change the weights, which
is more complicated (since these are nonlinear functions of the data). We approximate the
weights using

w̄
(g,n)
x′ (x) =

((
β

(g,n)
x′ + I

(g)
x′,xβ

W
x′

)−1

+
(
β

(g,n)
x′

)2
)−1

∑
g′∈G

((
βg
′,n
x′ + Ig

′

x′,xβ
W
x′

)−1

+
(
βg
′,n
x′

)2
)−1 , (7.75)

where

I
(g)
x′,x =

{
1 if g ∈ G (x′, x)
0 otherwise

.

Combining (7.69) with (7.74) and (7.75), gives us the following formula for the knowledge
gradient

νKGx (Sn) = E
[

max
x′∈X

anx′(x) + bnx′(x)Z|Sn
]
− max
x′∈X

µ̄nx′ , (7.76)

where

anx′(x) =
∑
g∈G

w̄
(g,n)

x′ (x)µ̄
(g,n)

x′ +
∑

g∈G(x′,x)

w̄
(g,n)

x′ (x)
βWx

β
(g,n)
x + βWx

(
µ̄nx − µ̄(g,n)

x

)
, (7.77)

bnx′(x) =
∑

g∈G(x′,x)

w̄
(g,n)

x′ (x)σ̃(g,n)
x . (7.78)

We now build on the work in section 7.8.1 for the knowledge gradient with correlated
beliefs where we represent the knowledge gradient as the maximum of a series of lines
anx′ + bnx′z, where anx′ is the mean and bnx′ is the predictive variance σ̃(g,n)

x . We first have to
identify and remove the lines that are dominated by all the rest. We refer to non-dominated
lines by ãnx′+ b̃nx′z over a reduced set of alternatives that are now numbered from 1, . . . , M̃ ,
giving us

νKG,nx =
∑

i=1,...,M̃−1

(
b̃ni+1(x)− b̃ni (x)

)
f

(
−

∣∣∣∣∣ ãni (x)− ãni+1(x)

b̃ni+1(x)− b̃ni (x)

∣∣∣∣∣
)
. (7.79)

Recall (from our original derivation of the knowledge gradient) that

f(ζ) = ζΦ(ζ) + φ(ζ),
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Figure 7.11 Sequence of estimates of a function using the hierarchical knowledge gradient policy,
showing initial exploration to a more focused search as it identifies the optimum.

where Φ(ζ) is the cumulative normal distribution and φ(ζ) is the standard normal density,
given respectively by

Φ(ζ) =

∫ ζ

−∞
φ(z)dz,

and

φ(ζ) =
1√
2π
e−

ζ2

2 .

The hierarchical knowledge gradient is an unusually powerful method for guiding ex-
periments when the belief model is represented hierarchically. This is useful whenever an
experiment x is multidimensional, which typically lends itself to this type of representation
if for no other reason that we can produce aggregations by simply ignoring one dimension at
a time. Figure 7.11 illustrates the behavior, progressing from initial exploration (upper left
corner) to increasing focus on where it believes the optimum may be located (exploitation).

7.9 SIMULATION OPTIMIZATION

A subcommunity within the larger stochastic search community goes by the name simu-
lation optimization. This community also works on problems that can be described in the
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form of maxx EF (x,W ), but the context typically arises when x represents the design of
a physical system, which is then evaluated (noisily) using discrete-event simulation. The
number of potential designs X is typically in the range of 5 to perhaps 100. The standard
approach in simulation optimization is to use a frequentist belief model, where it is gener-
ally assumed that our experimental budget is large enough for us to run some initial testing
of each of the alternatives to build an initial belief.

The field of simulation-optimization has its roots in the analysis of designs, such as
the layout of a manufacturing system, where we can get better results if we run a discrete
event simulation model for a longer time. We can evaluate a design x more accurately
by increasing the run length nx of the simulation, where nx might be the number of time
periods, the CPU time, or the number of discrete events (e.g. customer arrivals). We
assume that we have a global budget N , and we need to find nx for each x so that∑

x∈X
nx = N.

For our purposes, there is no difference between a potential design of a physical system and
a policy. Searching for the best design and searching for the best policy is, algorithmically
speaking, identical as long as the set of policies is not too large.

We can tackle this problem using the strategies described above (such as the knowledge
gradient) if we break up the problem into a series of short simulations (say, 1 time step or
1 unit of CPU time). Then, at each iteration we have to decide which design x to evaluate,
contributing to our estimate θnx for design x. The problem with this strategy is that it ignores
the startup time for a simulation. It is much easier to set a run length nx for each design x,
and then run the entire simulation to obtain an estimate of θx.

The simulation-optimization problem is traditionally formulated in a frequentist frame-
work, reflecting the lack of prior information about the alternatives. A standard strategy is
to run the experiments in two stages. In the first stage, a sample n0 is collected for each
design. The information from this first stage is used to develop an estimate of the value of
each design. We might learn, for example, that certain designs seem to lack any promise
at all, while other designs may seem more interesting. Rather than spreading our budget
across all the designs, we can use this information to focus our computing budget across
the designs that offer the greatest potential.

7.9.1 An indifference zone algorithm

There are a number of algorithms that have been suggested to search for the best design
using the indifference zone criterion, which is one of the most popular in the simulation-
optimization community. The algorithm in figure 7.12 summarizes a method which suc-
cessively reduces a set of candidates at each iteration, focusing the evaluation effort on
a smaller and smaller set of alternatives. The method (under some assumptions) using
a user-specified indifference zone of δ. Of course, as δ is decreased, the computational
requirements increase.

7.9.2 Optimal computing budget allocation

The value of the indifference zone strategy is that it focuses on achieving a specific level of
solution quality, being constrained by a specific budget. However, it is often the case that
we are trying to do the best we can within a specific computing budget. For this purpose,
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Step 0. Initialization:

Step 0a. Select the probability of correct selection 1−α, indifference zone parameter δ and initial sample
size n0 ≥ 2.

Step 0b. Compute

η =
1

2

[(
2α

k − 1

)−2/(n0−1)

− 1

]
.

Step 0c. Set h2 = 2η(n0 − 1).

Step 0d. Set X 0 = X as the set of systems in contention.

Step 0e. Obtain samples Wm
x , m = 1, . . . , n0 of each x ∈ X 0 and let θ0

x be the resulting sample
means for each alternative computing using

θ0
x =

1

n0

n0∑
m=1

Wm
x .

Compute the sample variances for each pair using

σ̂2
xx′ =

1

n0 − 1

n0∑
m=1

[
Wm
x −Wm

x′ −
(
θ0
x − θ0

x′
)]2

.

Set r = n0.

Step 0f. Set n = 1.

Step 1. Compute

Wxx′ (r) = max

{
0,

δ

2r

(
h2σ̂2

xx′

δ2
− r
)}

.

Step 2. Refine the eligible set using

Xn =
{
x : x ∈ Xn−1 and θnx ≥ θnx′ −Wxx′ (r), x

′ 6= x
}
.

Step 3. If |Xn| = 1, stop and select the element in Xn. Otherwise, perform an additional sample Wn+1
x of

each x ∈ Xn, set r = r + 1 and return to step 1.

Figure 7.12 Policy search algorithm using the indifference zone criterion, due to Nelson & Kim
(2001).

a line of research has evolved under the name optimal computing budget allocation, or
OCBA.

Figure 7.13 illustrates a typical version of an OCBA algorithm. The algorithm proceeds
by taking an initial sampleN0

x = n0 of each alternative x ∈ X , which means we useB0 =
Mn0 experiments from our budget B. Letting M = |X |, we divide the remaining budget
of experiments B−B0 into equal increments of size ∆, so that we do N = (B−Mn0)∆
iterations.

After n iterations, assume that we have tested alternative x Nn
x times, and let Wm

x be
the mth observation of x, for m = 1, . . . , Nn

x . The updated estimate of the value of each
alternative x is given by

θnx =
1

Nn
x

Nnx∑
m=1

Wm
x .

Let xn = arg max θnx be the current best option.
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After usingMn0 observations from our budget, at each iteration we increase our allowed
budget by Bn = Bn−1 + ∆ until we reach BN = B. After each increment, the allocation
Nn
x , x ∈ X is recomputed using

Nn+1
x

Nn+1
x′

=
σ̂2,n
x /(θnxn − θnx′)2

σ̂2,n
x′ /(θ

n
xn − θnx′)2

x 6= x′ 6= xn, (7.80)

Nn+1
xn = σ̂nxn

√√√√ M∑
i=1,i6=xn

(
Nn+1
x

σ̂ni

)2

. (7.81)

We use equations (7.80)-(7.81) to produce an allocationNn
x such that

∑
xN

n
x = Bn. Note

that after increasing the budget, it is not guaranteed that Nn
x ≥ Nn−1

x for some x. If this
is the case, we would not evaluate these alternatives at all in the next iteration. We can
solve these equations by writing each Nn

x in terms of some fixed alternative (other than
xn), such as Nn

1 (assuming xn 6= 1). After writing Nn
x as a function of Nn

1 for all x, we
then determine Nn

1 so that
∑
Nn
x ≈ Bn (within rounding).

The complete algorithm is summarized in figure 7.13.

7.10 LEARNING WITH LARGE OR CONTINUOUS CHOICE SETS

There are many problems where our choice set X is either extremely large, or continuous
(which means the number of possible values is infinite). For example:

EXAMPLE 7.1

A website advertising movies has the space to show 10 suggestions out of hundreds
of movies within a particular genre. The website has to choose from all possible
combinations of 10 movies out of the population.

EXAMPLE 7.2

A scientist is trying to choose the best from a set of over 1000 different materials, but
has a budget to only test 20.

EXAMPLE 7.3

A bakery chef for a food producer has to find the best proportions of flour, milk,
yeast, and salt.

EXAMPLE 7.4

A basketball coach ha to choose the best five starting players from a team of 12. It
takes approximately half a game to draw conclusions about the performance of how
well five players work together.
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Step 0. Initialization:

Step 0a. Given a computing budget B, let n0 be the initial sample size for each of the M = |X |
alternatives. Divide the remaining budget T −Mn0 into increments so that N = (T −Mn0)/δ
is an integer.

Step 0b. Obtain samples Wm
x , m = 1, . . . , n0 samples of each x ∈ X .

Step 0c. Initialize N1
x = n0 for all x ∈ X .

Step 0d. Initialize n = 1.

Step 1. Compute

θnx =
1

Nn
x

Nnx∑
m=1

Wm
x .

Compute the sample variances for each pair using

σ̂2,n
x =

1

Nn
x − 1

Nnx∑
m=1

(Wm
x − θnx )2 .

Step 2. Let xn = arg maxx∈X θ
n
x .

Step 3. Increase the computing budget by ∆ and calculate the new allocation Nn+1
1 , . . . , Nn+1

M so that

Nn+1
x

Nn+1
x′

=
σ̂2,n
x /(θnxn − θnx′ )

2

σ̂2,n
x′ /(θ

n
xn − θnx′ )2

x 6= x′ 6= xn,

Nn+1
xn = σ̂nxn

√√√√√ M∑
i=1,i 6=xn

(
Nn+1
x

σ̂ni

)2

.

Step 4. Perform max
(
Nn+1
x −Nn

x , 0
)

additional simulations for each alternative x.

Step 5. Set n = n+ 1. If
∑
x∈X N

n
x < B, go to step 1.

Step 6. Return xn arg maxx∈X θ
n
x .

Figure 7.13 Optimal computing budget allocation procedure.

Each of these examples exhibit large choice sets, particularly when evaluated relative
to the budget for running experiments. Such situations are surprisingly common. We can
handle these situations using a combination of strategies:

Generalized learning The first step in handling large choice sets is using a belief model
that provides for a high level of generalization. This can be done using correlated
beliefs for lookup table models, and parametric models, where we only have to learn
a relatively small number of parameters (which we hope is smaller than our learning
budget).

Sampled actions Whether we have continuous actions or large (often multidimensional)
actions, we can create smaller problems by just using a sampled set of actions, just
as we earlier used sampled beliefs about a parameter vector θ.

Action sampling is simply another use of Monte Carlo simulation to reduce a large set
to a small one, just as we have been doing when we use Monte Carlo sampling to reduce
large (often infinite) sets of outcomes of random variables to smaller, discrete sets. Thus,
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we might start with the optimization problem

F ∗ = max
x∈X

EWF (x,W ).

Often the expectation cannot be computed, so we replace the typically large set of
outcomes of W , represented by some set Ω, with a sampled set of outcomes Ω̂ =
{W 1,W 2, . . . ,WK}, giving us

F
K

= max
x∈X

1

K

K∑
k=1

F (x,W k).

When X is too large, we can play the same game and replace it with a random sample
X̂ = {x1, x2, . . . , xL}, giving us the problem

WK,L = max
x∈X̂

1

L

L∑
`=1

F (x,W `). (7.82)

Section 4.3.3 provides results that demonstrate that the approximation F
K

converges quite
quickly to F ∗ asK increases. We might expect a similar result fromWK,L as L increases,
although there are problems where it is not possible to grow L past a certain amount (one
example is given in section 7.8.3).

A strategy for overcoming this limitation is to periodically drop, say, the L/2 elements
of X (based on current estimates), and then go through a process of randomly generating
new values and adding them to the set until we again have L elements. We may even be
able to obtain an estimate of the value of each of the new alternatives before running any
new experiments. This can be done using the following:

• If we have a parametric belief model, we can estimate a value of x using our current
estimate of θ. This could be a point estimate, or distribution (pnk )Kk=1 over a set of
possible values θ1, . . . , θK .

• If we are using lookup tables with correlated beliefs, and assuming we have access to
a correlation function that gives us Cov(F (x), F (x′)) for any pair x and x′, we can
construct a belief from experiments we have run up to now. We just have to rerun
the correlated belief model from chapter 3 including the new alternative, but without
running any new experiments.

• We can always use nonparametric methods (such as kernel regression) to estimate
the value of any x from the observations we have made so far, simply by smoothing
over the new point. Nonparametric methods can be quite powerful (hierarchical
aggregation is an example, even though we present it alongside lookup table models
in chapter 3), but they assume no structure and as a result need more observations.

Using these estimates, we might require that any newly generated alternative x be at least
as good as any of the estimates of values in the current set. This process might stop if we
cannot add any new alternatives after testing some number M .

7.11 RESTLESS BANDITS AND NONSTATIONARY LEARNING

Our basic model assumes that we are sequentially observing different alternatives x where
we get to make noisy observations of an unknown truth µx, which we write as

Wt = µx + εt.
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When we use a lookup table belief model, we can use Wt+1 to update our belief µ̄tx to
obtain µ̄t+1,x. Observing x changes our belief about µ̄x, and possibly about µ̄x′ if we have
correlated beliefs. However, the truth is unchanging.

There are many problems where the truth is, in fact, changing. This problem is known
in the learning literature as “restless bandits” since each “bandit” (more precisely, each
arm) returns a reward from a distribution that is evolving over time. This problem has
attracted considerable interest from the research community looking to establish theoretical
properties of different policies. Our presentation focuses on creating the model, which we
can then solve using any of our four classes of policies.

Below, we first present a model of a learning problem with transient truths. We then
describe how to compute the knowledge gradient, and close with a discussion of how to
use other policies for this setting.

7.11.1 A transient learning model

We first introduced this model in section 3.11 where the true mean varies over time according
to the model

µt+1 = Mtµt + δt+1,

where δt+1 is a random variable with distributionN(0, σ2
δ ), which means thatE{µt+1|µt} =

µt. Recall that Mt is a diagonal matrix that captures predictable changes (e.g. where the
means are increasing or decreasing predictably). If we let Mt be the identity matrix, then
we have the simpler problem where the changes in the means have mean 0 which means
that we expect µt+1 = µt. However, there are problems where there can be a predictable
drift, such as estimating the level of a reservoir changing due to stochastic rainfall and
predictable evaporation. We then make noisy observations of µt using

Wt = Mtµt + εt.

In our optimization setting, we get to choose the element x we want to observe. It used
to be that if we did not observe an alternative x′ that our belief µ̄tx′ did not change (and
of course, nor did the truth). Now, the truth may be changing, and to the extent that there
is predictable variation (that is, Mt is not the identity matrix), then even our beliefs may
change.

The updating equation for the mean vector is given by

µ̄t+1,x =

{
Mtxµ̄tx +

Wt+1−Mtxµ̄tx
σ2
ε+Σt,xx

Σt,xx If xt = x,
Mtxµ̄tx Otherwise.

(7.83)

To describe the updating of Σt, let Σtx be the column associated with alternative x, and let
ex be a vector of 0’s with a 1 in the position corresponding to alternative x. The updating
equation for Σt can then be written

Σt+1,x =

{
Σtx − ΣTtxΣtx

σ2
ε+Σt,xx

ex If xt = x,
Σtx Otherwise.

(7.84)

These updating equations can play two roles in the design of learning policies. First,
they can be used in a lookahead policy, as we illustrate next with the knowledge gradient (a
one-step lookahead policy). Alternatively, they can be used in a simulator for the purpose
of doing policy search for the best PFA or CFA.
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7.11.2 The knowledge gradient for transient problems

To compute the knowledge gradient, we first compute

σ̃2
tx = The conditional change in the variance of µ̄t+1,x given what we

know now,
= Var(µ̄t+1,x|µ̄t)− Var(µ̄t),

= Σ̃t,xx.

We can use σ̃tx to write the updating equation for µ̄t using

µ̄t+1 = Mtµ̄t + σ̃txZt+1ep,

where Zt+1 ∼ N(0, 1) is a scalar, standard normal random variable.
We now present some calculations that parallel the original knowledge gradient calcu-

lations. First, we define ζtx as we did before

ζtx = −
∣∣∣∣ µ̄tx −maxx′ 6=x µ̄tx′

σ̃tx

∣∣∣∣ .
This is defined for our stationary problem. We now define a modified version that we call
ζMtx that is given by

ζMtx = Mtζtx.

We now compute the knowledge gradient for nonstationary truths using a form that closely
parallels the original knowledge gradient,

νKG−NStx = σ̃tx
(
ζMtx Φ(ζMtx ) + φ(ζMtx )

)
(7.85)

= σ̃tx (MtζtxΦ(Mtζtx) + φ(Mtζtx)) . (7.86)

It is useful to compare this version of the knowledge gradient to the knowledge gradient
for our original problem with static truths. If Mt is the identity matrix, then this means
that the truths µt are not changing in a predictable way; they might increase or decrease,
but on average µt+1 is the same as µt. When this happens, the knowledge gradient for the
transient problem is the same as the knowledge gradient when the truths are not changing
at all.

So, does this mean that the problem where the truths are changing is the same as the one
where they remain constant? Not at all. The difference arises in the updating equations,
where the precision of alternatives x′ that are not tested decrease, which will make them
more attractive from the perspective of information collection.

7.11.3 Policy search for transient problems

In section 7.3 we introduced the idea of searching within a class of policies we call
policy function approximations (PFAs) or cost function approximations (CFAs), which are
parameterized policies that can be optimized to optimize either the final reward (equation
(7.2)) or cumulative reward (equation (7.3)).

Policy search requires only that we be able to simulate a policy (we describe the process
of tuning policies below). The process of tuning policies requires only that we be able to
simulate the underlying dynamics, regardless of whether the truth is stationary or transient.
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Problem IE UCBE

Goldstein 0.0099 2571
AUF HNoise 0.0150 0.319
AUF MNoise 0.0187 1.591
AUF LNoise 0.01095 6.835

Branin 0.2694 .000366
Ackley 1.1970 1.329

HyperEllipsoid 0.8991 21.21
Pinter 0.9989 0.000164

Rastrigin 0.2086 0.001476

Table 7.6 Optimal tuned parameters for interval estimation IE, and UCB-E (from Wang &
Powell (2016)).

The basic structure of policies does not change just because we are working in a transient
environment, but a transient truth will affect the tuning of policies, and may even affect the
decision of which class of policy works best. In particular, we would expect a transient
environment to encourage greater exploration.

7.12 TUNING POLICIES

An important issue when designing policies is the process of tuning. Upper confidence
bounding policies, for example, enjoy elegant finite-time bounds, but in practice, these
policies only work well when they are tuned.

7.12.1 The effect of scaling

Consider the case of two policies. The first is interval estimation, given by

XIE(Sn|θIE) = arg max
x

(
µ̄nx + θIEσnx

)
,

which exhibits a unitless tunable parameter θIE . The second policy is a type of upper
confidence bounding policy known in the literature as UCB-E, given by

XUCB−E,n(Sn|θUCB−E) = arg max
x

(
µ̄nx +

√
θUCB−E

Nn
x

)
,

where Nn
x is the number of times that we have evaluated alternative x. We note that unlike

the interval estimation policy, the tunable parameter θUCB−E has units, which means that
we have to search over a much wider range than we would when optimizing θIE .

Each of these parameters were tuned on a series of benchmark learning problems using
the testing system MOLTE (described below). We see that the optimal value of θIE ranges
from around 0.01 to 1.2. By contrast, θUCB−E ranges from 0.0001 to 2500.

These results illustrate the effect of units on tunable parameters. The UCB-E policy
enjoys finite time bounds on its regret, but would never produce reasonable results without
tuning. By contrast, the optimal values of θIE for interval estimation vary over a narrower
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range, although conventional wisdom for this parameter is that it should range between
around 1 and 3. If θIE is small, then the IE policy is basically a pure exploitation policy.

Parameter tuning can be difficult in practice. Imagine, for example, an actual setting
where an experiment is expensive. How would tuning be done? This issue is typically
ignored in the research literature where standard practice is to focus on provable qualities.
We argue that despite the presence of provable properties, the need for parameter tuning is
the hallmark of a heuristic. If tuning cannot be done, the actual empirical performance of
a policy may be quite poor.

Bayesian policies such as the knowledge gradient do not have tunable parameters, but
do require the use of priors. Just as we do not have any real theory to characterize the
behavior of algorithms that have (or have not) been tuned, we do not have any theory to
describe the effect of incorrect priors.

7.12.2 MOLTE - Optimal learning testing system

MOLTE (Modular, Optimal Learning Testing Environment) is a Matlab-based system that
is designed to help researchers evaluate learning policies on a wide range of problems.
Each policy is encoded in its own .m file. Each test problem is also encoded in its own
.m file. The user can specify which policies to test on which problems through a simple
spreadsheet. It is quite easy to add new test problems, and new policies.

MOLTE then provides a wide range of reports to allow people to understand how the
different policies behave. This software is available on the internet at http://castlelab.
princeton.edu/software.htm#molte.

MOLTE has been used to compare a variety of learning policies on a series of benchmark
problems which are characterized by low-dimensional, discretized decision vectors x. A
series of policies were compared to the knowledge gradient policy for online learning, using
a correlated belief model (reflecting the property that we are learning continuous surfaces).
Online KG was compared to interval estimation (IE), upper confidence bounding using the
UCB-E policy, the UCB-V policy, Kriging, Thompson sampling (TS), and pure exploration.

The results are shown in table 7.7, which reports the opportunity cost (OC) relative to
online KG (negative means the policy outperformed online KG), and the probability that the
policy outperforms online KG over 1000 simulations. Any policy with a tunable parameter
is optimized by MOLTE.

The results suggest that online KG generally works quite well, but it is important to
recognize that it is also computationally much more expensive than the other policies,
which limits its usefulness in high-speed applications such as the internet (e.g. finding
the next product to display in an electronic marketplace), where computational budgets are
quite limited. We would also note that while policies such as UCB-E and UCB-V enjoy
nice regret bounds, they do not perform as well. By contrast, interval estimation actually
works the best, and yet IE is a policy that does not seem to enjoy any theoretical properties.

7.13 LEARNING PROBLEMS WITH ADDITIONAL STATE VARIABLES

This chapter has focused on stochastic optimization problems where the state Sn consists
purely of belief state variables, which means they capture our belief about a function such
as EF (x,W ). This is the class we refer to as “state independent problems” which means
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Problem Class
IE UCBE UCBV Kriging TS EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Goldstein -0.061 0.81 -0.097 0.92 -0.003 0.45 -0.031 0.73 0.100 0.09 0.041 0.16
AUF HNoise 0.058 0.40 0.022 0.43 0.037 0.54 0.031 0.39 0.073 0.22 0.047 0.48
AUF MNoise 0.043 0.29 0.027 0.42 0.343 0.21 0.023 0.28 0.173 0.21 -0.057 0.52
AUF LNoise -0.043 0.73 -0.013 0.64 0.053 0.51 0.005 0.53 0.038 0.20 0.003 0.62

Branin -0.027 0.76 0.025 0.24 0.026 0.26 0.004 0.54 0.041 0.07 0.123 0.00
Ackley 0.007 0.42 0.04 0.41 0.106 0.20 0.037 0.42 0.100 0.23 0.344 0.00

HyperEllipsoid -0.059 0.73 0.064 0.12 0.08 0.07 0.146 0.22 0.011 0.38 0.243 0.03
Pinter -0.028 0.56 -0.003 0.51 0.029 0.42 -0.055 0.65 0.122 0.19 0.177 0.04

Rastrigin -0.082 0.70 -0.03 0.56 0.162 0.04 -0.026 0.57 0.136 0.08 0.203 0.01

Table 7.7 Comparisons with the online knowledge gradient for correlated beliefs. Negative
OC means that the policy outperformed online KG (from Wang & Powell (2016)).

that the function EF (x,W ) does not depend on the state Sn. Rather, Sn only contains
information about EF (x,W ).

Starting in chapter 8, we are going to make the transition to a much richer array of
problems, but we are going to give a hint of this broader class by discussing additional state
information in the context of the derivative-free stochastic optimization problems that are
the focus of this chapter. We are going to begin with a discussion of an important problem
class in the learning literature where information about the function we are optimizing
is revealed before we make our decision. This problem class has received considerable
attention in the multiarmed bandit literature under the name of contextual bandits. We then
build

7.13.1 Stochastic optimization with exogenous state information

The original statement of our basic stochastic optimization problem (in its asymptotic
form),

max
x

EF (x,W ).

is looking for a solution in the form of a deterministic decision x∗. We then proposed that
a better form was

max
x

E{F (x,W )|S0}. (7.87)

Again, we assume that we are looking for a single decision x∗, although now we have to
recognize that technically, this decision is a function of the initial state S0.

Now consider an adaptive learning process where a new initial state S0 is revealed each
time we try to evaluate F (x,W ). This changes the learning process, since each time we
observe F (x,W ) for some x and a sampled W , what we learn has to reflect that it is in the
context of the initial state S0. Some illustrations of this setting are:

EXAMPLE 7.1

Consider a newsvendor problem where S0 is the weather forecast for tomorrow. We
know that if it is raining or very cold, that sales will be lower. We need to find an
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optimal order decision that reflects the weather forecast. Given the forecast, we make
a decision of how many newspapers to stock, and then observe the sales.

EXAMPLE 7.2

A patient arrives to a hospital with a complaint, and a doctor has to make treatment
decisions. The attributes of the patient represent initial information that the patient
provides in the form of a medical history, then a decision is made, followed by a
random outcome (the success of the treatment).

In both of these examples, we have to make our decision given advance information (the
weather, or the attributes of the patient). Instead of finding a single optimal solution x∗,
we need to find a function x∗(S0). This function is a form of policy (since it is a mapping
of state to action).

This problem was first studied as a type of multiarmed bandit problems, which we first
introduced in chapter 2. In this community, these are known as contextual bandit problems,
but as we show here, when properly modeled this problem is simply an instance of a
sequential decision problem.

We propose the following model of contextual problems. First, we let Bt be our belief
state at time t that captures our belief about the function F (x) = EF (x,W ) (keep in
mind that this is distributional information). We then model two types of exogenous
information. The first we call W e

t which is exogenous information that arrives before we
make a decision (this would be the weather in our newsvendor problem, or the attributes
of the patient before making the medical decision). Then, we let W o

t+1 be the exogenous
information that captures the outcome of the decision after the decision xt. The exogenous
outcome W o

t , along with the decision xt and the information (Bt and W e
t ), is used to

produce an updated belief state Bt+1.
Using this notation, the sequencing of information, belief states and decisions is

(B0,W
e
0 , x0,W

o
1 , B1,W

e
1 , x1,W

o
2 , B2, . . .).

We have written the sequence (W o
t , Bt,W

e
t ) to reflect the logical progression where we

first learn the outcome of a decision W o
t , then update our belief state producing Bt, and

then observe the new exogenous information W e
t before making decision xt. However,

we can write Wt = (W o
t ,W

e
t ) as the exogenous information, which leads to a new

state St = (Bt,W
e
t ). Our policy Xπ

t (St) will depend on both our belief state Bt about
EF (x,W ), as well as the new exogenous information. This change of variables, along with
definingS0 = (B0,W

e
0 ), gives us our usual sequence of states, actions and new information.

We then have to search over policies (as in (4.4)) for problems with cumulative rewards.
There is an important difference between this problem and the original terminal reward

problem. In that problem, we had to find the best policy to collect information to help us
find a deterministic implementation decision after our budget ofN experiments is depleted,
given by xπ,N . When we introduce the exogenous state information, it means we have to
find a policy to collect information, but now we are using this information to learn a function
xπ,N (W e) which we recognize is a form of policy. If we are addressing the problem of
maximizing cumulative rewards over time, we need to find a policyXπ(St) = Xπ(Bt,W

e
t )

that balances exploration and exploitation as we encountered with all other cumulative
reward problems.
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Thus, we see again that a seemingly new problem class is simply another instance of a
sequential learning problem.

7.13.2 State-dependent vs. state-independent problems

Imagine that we are running experiments on a set of discrete alternatives x ∈ X . We
have previously introduced the idea of a belief state Bn which captures what we know (or
believe) about the performance of each choice x. If we are using a frequentist perspective,
our belief state can be represented using

Bn =
(
µ̄nx , σ

2,n
x , Nn

x

)
x∈X .

If we are using a Bayesian belief model, then we would represent our belief state using

Bn =
(
µ̄nx , σ

2,n
x

)
x∈X .

If we are using a parametric model with a linear architecture (with a frequentist perspective),
our belief state would be given by

Bn = (µ̄n, Bn).

If we are using a nonparametric model, the belief state is literally the entire history of
observations,

Bn = (W i, xi)ni=1.

We have seen an array of problems in this chapter where the belief state Bn is the same
as “the state” Sn. In all of these problems, the state is the belief state that is only used in
the policy and does not affect the problem we are trying to solve.

Now consider our problem which we write as

max
x∈Xt

EStEW |St{C(St, x,W )|St}

where St might contain information describing a probability distribution about an uncertain
parameter, such as the response of demand to price, or the relationship between the dosage
of a diabetes medication and its ability to lower blood sugar. The constraintsXt might reflect
the inventory (of blood, energy or money) on hand at time t, and the contribution function
C(St, x,W ) may depend on dynamic prices, temperatures, or unemployment rates. None
of these characteristics applied to the problems we considered in this chapter, but clearly
instances of these “state-dependent problems” arises in a wide range of applications.

One of the most common classes of “state-dependent problems” involves the manage-
ment of physical resources. This arises in the management of inventories, scheduling
people and equipment, managing robots and drones, and the physical collection of infor-
mation using sensors or technical experts (e.g. doctors examining patients for the spread
of disease). It also applies to the management of financial resources, as might arise in the
management of financial portfolios, or simply whether to hold or sell an asset. Physical
states are typically reflected in the constraints, since there are many applications where
decisions only impact physical resources (although this is not uniformly the case).

Interestingly, the presence of dynamic data of any type, regardless of whether it impacts
the expectation, the constraints or the objective function itself, moves us into an entirely
new problem class that we refer to as state-dependent problems which we address starting
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in chapter 8, and which is the focus of the entire rest of the book. In fact, it is these problem
classes that are typically envisioned when someone refers to a “dynamic program,” although
as we now see, even the state-independent problems we addressed in this chapter (or chapter
5) are also “dynamic programs.” However, when we design algorithms (or policies) for
these problems, state-dependent problems introduce fresh computational challenges.

7.14 BIBLIOGRAPHIC NOTES

Section 7.3 - A nice introduction to various learning strategies is contained in Kaelbling
(1993) and Sutton & Barto (1998). Thrun (1992) contains a good discussion of
exploration in the learning process. The discussion of Boltzmann exploration and
epsilon-greedy exploration is based on Singh et al. (2000). Interval estimation is due
to Kaelbling (1993). The upper confidence bound is due to Lai & Robbins (1985).
We use the version of the UCB rule given in Lai (1987). The UCB1 policy is given
in ?. Analysis of UCB policies are given in Lai & Robbins (1985) and ?, as well as
?.

Section 7.6 - What came to be known as “Gittins indices” was first introduced in Gittins &
Jones (1974) to solve bandit problems (see DeGroot (1970) for a discussion of bandit
problems before the development of Gittins indices). This was more thoroughly
developed in Gittins (1979), Gittins (1981), and Gittins (1989). Whittle (1982) and
Ross (1983) provide very clear tutorials on Gittins indices, helping to launch an
extensive literature on the topic (see, for example, Lai & Robbins (1985), Berry &
Fristedt (1985), and ?). The work on approximating Gittins indices is due to ?, Yao
(2006) and Chick & Gans (2009).

Section 7.7.2 - The knowledge gradient policy for normally distributed rewards and
independent beliefs was introduced by Gupta & Miescke (1996), and subsequently
analyzed in greater depth by Powell et al. (2008). The knowledge gradient for
correlated beliefs was introduced by Frazier et al. (2009). The adaptation of the
knowledge gradient for online problems is due to Ryzhov & Powell (2009).

PROBLEMS

7.1 Consider the problem of finding the best in a set of discrete choicesX = {x1, . . . , xM}.
Assume that for each alternative you maintain a lookup table belief model, where µ̄nx is
your estimate of the true mean µx, with precision βnx . Assume that your belief about µx
is Gaussian, and let Xπ(Sn) be a policy that specifies the experiment xn = Xπ(Sn) that
you will run next, where you will learn Wn+1

xn which you will use to update your beliefs.

a) (10 points) Formulate this learning problem as a stochastic optimization problem. Define
your state variable, decision variable, exogenous information, transition function and
objective function.

b) (5 points) Specify three possible policies, with no two from the same policy class (PFA,
CFA, VFA and DLA).

7.2 Assume that we have a standard normal prior about a true parameter µ which we
assume is normally distributed with mean µ̄0 and variance (σ0)2.
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a) Given the observations W 1, . . . ,Wn, is µ̄n deterministic or random?

b) Given the observations W 1, . . . ,Wn, what is E(µ|W 1, . . . ,Wn) (where µ is our
truth)? Why is µ random given the first n experiments?

c) Given the observations W 1, . . . ,Wn, what is the mean and variance of µ̄n+1? Why
is µ̄n+1 random?

7.3 Table 7.9 shows the priors µ̄n and the standard deviations σn for five alternatives.

a) Three of the alternatives have the same standard deviation, but with increasing priors.
Three have the same prior, but with increasing standard deviations. Using only this
information, state any relationships that you can between the knowledge gradients for
each alternative. Note that you will not be able to completely rank all the alternatives.

b) Compute the knowledge gradient for each alternative assuming that σW = 4.

Choice µ̄n σn

1 3.0 8.0
2 4.0 8.0
3 5.0 8.0
4 5.0 9.0
5 5.0 10.0

Table 7.8 Priors for exercise 9.0

7.4 There are seven alternatives with normally distributed priors onµx forx ∈ {1, 2, 3, 4, 5, 6, 7}
given in the table below:

Choice µ̄n σn

1 5.0 9.0
2 3.0 8.0
3 5.0 10.0
4 4.5 12.0
5 5.0 8.0
6 5.5 6.0
7 4.0 8.0

Table 7.9 Priors

Without doing any calculations, state any relationships between the alternatives based
on the knowledge gradient. For example, 1 < 2 < 3 means 3 has a higher knowledge
gradient than 2 which is better than 1 (if this was the case, you do not have to separately
say that 1 < 3).

7.5 You have to find the best of five alternatives. After n experiments, you have the data
given in the table below. Assume that the precision of the experiment is βW = 0.6.



296 DERIVATIVE-FREE STOCHASTIC SEARCH

Choice θn βn βn+1 σ̃ maxx′ 6=x θ
n
x′ ζ f(ζ) νKGx

1 3.0 0.444 1.044 1.248 6 -2.404 0.003 0.003
2 5.0 0.160 0.760 2.321 6 -0.431 0.220 0.511
3 6.0 0.207 0.807 2.003 5 -0.499 0.198 0.397
4 4.0 0.077 ? ? ? ? ? ?
5 2.0 0.052 0.652 4.291 6 -0.932 0.095 0.406

a) Give the definition of the knowledge gradient, first in plain English and second using
mathematics.

b) Fill in the missing entries for alternative 4 in table 7.5. Be sure to clearly write out
each expression and then perform the calculation. For the knowledge gradient νKGx ,
you will need to use a spreadsheet (or Matlab) to compute the normal distribution.

c) Now assume that we have an online learning problem. We have a budget of 20
experiments, and the data in the table above shows what we have learned after three
experiments. Assuming no discounting, what is the online knowledge gradient for
alternative 2? Give both the formula and the number.

7.6 You have to find the best of five alternatives. After n experiments, you have the data
given in the table 7.6 below. Assume that the precision of the experiment is βW = 0.6.

Alternative µ̄n σ̄n σ̃ ζ f(ζ) KG index
1 4.0 2.5 2.321 -0.215 0.300 0.696
2 4.5 3.0 ? ? ? ?
3 4.0 3.5 3.365 -0.149 0.329 1.107
4 4.2 4.0 3.881 -0.077 0.361 1.401
5 3.7 3.0 2.846 -0.281 0.274 0.780

a) Give the definition of the knowledge gradient, first in plain English and second using
mathematics.

b) Fill in the missing entries for alternative 2 in table 7.6. Be sure to clearly write out
each expression and then perform the calculation. For the knowledge gradient νKGx ,
you will need to use a spreadsheet (or Matlab) to compute the normal distribution.

c) Now assume that we have an online learning problem. We have a budget of 20
experiments, and the data in the table above shows what we have learned after three
experiments. Assuming no discounting, what is the online knowledge gradient for
alternative 2? Give both the formula and the number.

7.7 You have three alternatives, with priors (mean and precision) as given in the first
line of the table below. You then observe each of the alternatives in three successive
experiments, with outcomes shown in the table. All observations are made with precision
βW = 0.2. Assume that beliefs are independent.
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Iteration A B C

Prior (µ0
x, β

0
x) (32,0.2) (24,0.2) (27,0.2)

1 36 - -
2 - - 23
3 - 22 -

Table 7.10 Three observations, for three alternatives, given a normally distributed belief, and
assuming normally distributed observations.

a) (5 points) Give the objective function (algebraically) for offline learning (maximizing
terminal reward) if you have a budget of three experiments, and where you evaluate
the policy using the truth (as you would do in a simulator).

b) (5 points) Give the numerical value of the policy that was used to generate the choices
that created table 7.10, using our ability to use the simulated truth (as you have done
in your homeworks). This requires minimal calculations (which can be done without
a calculator).

c) (10 points) Now assume that you need to run experiments in an online (cumulative
reward) setting. Give the objective function (algebraically) to find the optimal policy
for online learning (maximizing cumulative reward) if you have three experiments.
Using the numbers in the table, give the performance of the policy that generated the
choices that were made. (This again requires minimal calculations.)

7.8 Section 7.3 introduces four classes of policies for derivative-free stochastic search, a
concept that was not discussed when we introduced derivative-based stochastic search in
chapter 5. In which of the four classes of policies would you classify a stochastic gradient
algorithm? Explain, and describe a key step in the design of stochastic gradient algorithms
that is explained by your choice of policy class.

7.9 What is the relationship between the deterministic regret Rstatic,π (recall that this
was done for a machine learning problem where the “decision” is to choose a parameter θ)
in equation (7.22) and the regret Rπ,n(ω) for a single sample path ω in equation (7.24)?
Write the regretRπ,n(ω) in equation (7.24) in the context of a learning problem and explain
what is meant by a sample ω.

7.10 What is the relationship between the expected regret ERπ,n in equation (7.25) and
the pseudo-regret R̄π,n in equation (7.25)? Is one always at least as large as the other?
Describe a setting under which each would be appropriate.

7.11 Figure 7.14 shows the belief about an unknown function as three possible curves,
where one of the three curves is the true function. Our goal is to find the point x∗ that
maximizes the function. Without doing any computation (or math), create a graph and draw
the general shape of the knowledge gradient for each possible experiment x. [Hint: the
knowledge gradient captures your ability to make a better decision using more information.]
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Figure 7.14 Use to plot the shape of the knowledge gradient for all x.

7.12 Assume you are trying to find the best of five alternatives. The actual value µx, the
initial estimate µ̄0

x and the initial standard deviation σ̄0
x of each µ̄0

d are given in table 7.11.
[This exercise does not require any numerical work.]

a) Consider the following learning policies:

(1) Pure exploitation.

(2) Interval exploration.

(3) The upper confidence bounding (pick any variant).

(4) Thompson sampling.

(5) The knowledge gradient.

Write out each policy and identify any tunable parameters. How would you go about
tuning the parameters?

b) Classify each of the policies above as a i) Policy function approximation (PFA), ii) Cost
function approximation (CFA), iii) Policy based on a value function approximation
(VFA), or iv) Direct lookahead approximation (DLA).

c) Set up the optimization formulation that can serve as a basis for evaluating these policies
in an online (cumulative reward) setting (just one general formulation is needed - not
one for each policy).

Alternative µ µ̄0 σ̄0

1 1.4 1.0 2.5
2 1.2 1.2 2.5
3 1.0 1.4 2.5
4 1.5 1.0 1.5
5 1.5 1.0 1.0

Table 7.11 Prior beliefs for learning exercise
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7.13 Joe Torre, former manager of the great Yankees, had to struggle with the constant
game of guessing who his best hitters are. The problem is that he can only observe a hitter
if he puts him in the order. He has four batters that he is looking at. The table below shows
their actual batting averages (that is to say, batter 1 will produce hits 30 percent of the time,
batter 2 will get hits 32 percent of the time, and so on). Unfortunately, Joe does not know
these numbers. As far as he is concerned, these are all .300 hitters.

For each at-bat, Joe has to pick one of these hitters to hit. Table 7.12 below shows what
would have happened if each batter were given a chance to hit (1 = hit, 0 = out). Again,
Joe does not get to see all these numbers. He only gets to observe the outcome of the hitter
who gets to hit.

Assume that Joe always lets the batter hit with the best batting average. Assume that he
uses an initial batting average of .300 for each hitter (in case of a tie, use batter 1 over batter
2 over batter 3 over batter 4). Whenever a batter gets to hit, calculate a new batting average
by putting an 80 percent weight on your previous estimate of his average plus a 20 percent
weight on how he did for his at-bat. So, according to this logic, you would choose batter 1
first. Since he does not get a hit, his updated average would be 0.80(.200)+ .20(0) = .240.
For the next at-bat, you would choose batter 2 because your estimate of his average is still
.300, while your estimate for batter 1 is now .240.

After 10 at-bats, who would you conclude is your best batter? Comment on the limita-
tions of this way of choosing the best batter. Do you have a better idea? (It would be nice
if it were practical.)

Actual batting average

0.300 0.320 0.280 0.260

Day Batter

A B C D

1 0 1 1 1

2 1 0 0 0

3 0 0 0 0

4 1 1 1 1

5 1 1 0 0

6 0 0 0 0

7 0 0 1 0

8 1 0 0 0

9 0 1 0 0

10 0 1 0 1

Table 7.12 Data for problem 7.13

7.14 There are four paths you can take to get to your new job. On the map, they all seem
reasonable, and as far as you can tell, they all take 20 minutes, but the actual times vary
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quite a bit. The value of taking a path is your current estimate of the travel time on that path.
In the table below, we show the travel time on each path if you had travelled that path. Start
with an initial estimate of each value function of 20 minutes with your tie-breaking rule
to use the lowest numbered path. At each iteration, take the path with the best estimated
value, and update your estimate of the value of the path based on your experience. After
10 iterations, compare your estimates of each path to the estimate you obtain by averaging
the “observations” for each path over all 10 days. Use a constant stepsize of 0.20. How
well did you do?

Paths

Day 1 2 3 4

1 37 29 17 23

2 32 32 23 17

3 35 26 28 17

4 30 35 19 32

5 28 25 21 26

6 24 19 25 31

7 26 37 33 30

8 28 22 28 27

9 24 28 31 30

10 33 29 17 29

7.15 Assume you are considering five options. The actual value µd, the initial estimate
µ̄0
d and the initial standard deviation σ̄0

d of each µ̄0
d are given in table 7.13. Perform 20

iterations of each of the following algorithms:

(a) Gittins exploration using Γ(n) = 2.

(b) Interval estimation using θIE = 2.

(c) The upper confidence bound algorithm using θUCB = 6.

(d) The knowledge gradient algorithm.

(e) Pure exploitation.

(f) Pure exploration.

Each time you sample a decision, randomly generate an observation Wd = µd + σεZ
where σε = 1 and Z is normally distributed with mean 0 and variance 1. [Hint: You can
generate random observations of Z in Excel by using =NORMSINV(RAND()).]

7.16 Repeat exercise 7.15 using the data in table 7.14, with σε = 10.

7.17 Repeat exercise 7.15 using the data in table 7.15, with σε = 20.
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Decision µ θ̄0 σ̄0

1 1.4 1.0 2.5
2 1.2 1.2 2.5
3 1.0 1.4 2.5
4 1.5 1.0 1.5
5 1.5 1.0 1.0

Table 7.13 Data for exercise 7.15

Decision µ θ̄0 σ̄0

1 100 100 20
2 80 100 20
3 120 100 20
4 110 100 10
5 60 100 30

Table 7.14 Data for exercise 7.16

Decision µ θ̄0 σ̄0

1 120 100 30
2 110 105 30
3 100 110 30
4 90 115 30
5 80 120 30

Table 7.15 Data for exercise 7.17

7.18 In section 7.3, we showed for the transient learning problem that ifMt is the identity
matrix, that the knowledge gradient for a transient truth was the same as the knowledge
gradient for a stationary environment. Does this mean that the knowledge gradient produces
the same behavior in both environments?



PART III - STATE-DEPENDENT PROBLEMS

We now transition to a much richer class of dynamic problems where some aspect of the
problem depends on dynamic information. This might arise in three ways:

• The function depends on dynamic information, such as a cost or price.

• The constraints may depend on the availability of resources (that are being controlled
dynamically), or other information in constraints such as the travel time in a graph
or the rate at which water is evaporating.

• The distribution of a random variable such as weather, or the distribution of demand.

When we worked on state-independent problems, we often wrote the function being
maximized as F (x,W ) to express the dependence on the decision x or random information
W , but not on any information in our state St (or Sn). As we move to our state-dependent
world, we are going to write our cost or contribution function asC(St, x,W ) to capture the
possible dependence of the objective function on dynamic information in St. In addition,
our decision xt might be constrained by xt ∈ Xt, where the constraints Xt may depend on
dynamic data such as inventories, travel times or conversion rates.

Finally, our random information W may itself depend on uncertain parameters. For
example,W might be the number of clicks on an ad which is described by some probability
distribution whose parameters (e.g. the mean) is also uncertain. Thus, at time t (or time
n), we may find ourselves solving a problem that looks like

max
xt∈Xt

EStEW |St{C(St, xt,Wt+1)|St}

302



PROBLEMS 303

If the cost/contribution function C(St, xt,Wt+1), and/or the constraints Xt, and/or the
expectation depends on time-dependent data, then we have an instance of a state-dependent
problem.

We are not trying to say that all state-dependent problems are the same, but we do claim
that state-dependent problems represent an important transition from state-independent
problems, where the only state is the belief Bt about our function. This is why we also
refer to this class as learning problems.

We lay the foundation for state-dependent problems with the following chapters:

• State-dependent applications (chapter 8) - We begin our presentation with a series of
applications of problems where the function is state dependent. State variables can
arise in the objective function (e.g. prices), but in most of the applications the state
arises in the constraints, which is typical of problems that involve the management
of physical resources.

• Modeling general dynamic programs (chapter 9) - This chapter provides a com-
prehensive summary of how to model general (state-dependent) sequential decision
problems in all of their glory.

• Modeling uncertainty (chapter 10) - To find good policies (to make good decisions),
you need a good model, and this means an accurate model of uncertainty. In this
chapter we identify different sources of uncertainty and discuss how to model them.

• Policies (chapter 11) - Here we provide a more comprehensive overview of the
different strategies for creating policies, leading to the four classes of policies that
we first introduce in part I for learning problems.

After these chapters, the remainder of the book is a tour through the four classes of policies
which we first introduced in chapter 7. However, in chapter 7, we found that most of the
interest was on two classes: parametric cost function approximations (PFAs), and direct
lookaheads (DLAs). By contrast, in the richer family of state-dependent problems, we are
going to need to draw on all four classes.





CHAPTER 8

STATE-DEPENDENT PROBLEMS

In chapters 5 and 7, we introduced sequential decision problems in which the state variable
consisted only of the belief state about an unknown function which we represented as
E{F (x,W )|S0} where x must fall in a feasible region X . These problems cover a
very important class of applications that involve maximizing or minimizing functions that
can represent anything from complex analytical functions and black-box simulators to
laboratory and field experiments.

The distinguishing feature of these problems is that the problem being optimized does
not depend on our state variable, where the “problem” might be the function F (x,W ),
the expectation (e.g. the distribution of W or distributional information in S0), or the
feasible region X . Rather, the state captures only our belief about EF (x,W ) which affects
the decision being made. For these “state-independent” problems, the (belief) state only
impacts the decision through the policy.

There is a genuinely vast range of problems where the performance metric (costs or
contributions), the distributions of random variables (W or distributional information in
S0) and/or the constraints, depends on the state. Examples of state variables that affect the
problem itself might include:

• Physical state variables, which might include inventories, the location of a vehicle
on a graph, the medical condition of a patient, the speed and location of a robot, and
the condition of an aircraft engine. Physical state variables are typically expressed
through the constraints.

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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• Informational state variables, such as prices, information about weather, or the
humidity in a lab. These variables might affect the objective function (costs and
contributions), or the constraints. This information may evolve exogenously, or
might be directly controlled (e.g. setting the price of a product), or influenced by
decisions (sell energy into the grid may lower electricity prices).

• Distributional information, which means information about the distribution of W or
distributions about uncertain parameters imbedded in S0 (such as the belief about a
demand, price elasticity, or a physical property of a material).

While physical resource management problems are perhaps the easiest to envision, state
dependent problems can include any problem where the function being minimized depends
on dynamic information, either in the objective function itself, or the constraints. These
problems typically come in one of three styles:

History independent states - Here, the state St reflects new information that just arrived
that is not a function of either St−1 or the previous decision xt−1. For example, the
number of customers clicking on an ad or purchasing a product may depend on the
price now, but otherwise does not depend on any prior states or decisions.

Uncontrolled first-order Markov - In this case, St depends on St−1, but not on xt−1.
For example, imagine that we have a newsvendor problem where the price at which
we can sell the newspapers evolves according to

pt = pt−1 + εpt ,

where εpt represents random, exogenous changes to the price. In this problem, the
state St = pt, and the decision xt made at time t has no impact on the state St+1.

Controlled problems - Finally, we have problems where the decision xt does impact the
state St+1. For example, in a reservoir problem whereRt is the water in the reservoir,
xt is the release, and R̂t+1 is the random inflow (e.g. rainfall) between t and t+ 1,
we might use the transition equation

Rt+1 = Rt − xt + R̂t+1.

In this case, we have to obey the constraint xt ≤ Rt, so the constraint depends on
our state St = Rt.

In addition, we may encounter all of the above. The energy in a storage device represents
a controlled resource, which we have to optimize in the presence of dynamically changing
wind and loads (which depend on the previous time period), along with prices and variability
due to sunlight (which may not depend on history).

In all of these cases, we would write our one-period cost or contribution function as
C(St, xt) (or C(St, xt,Wt+1) or C(St, xt, St+1)), rather than F (x,W ) as we did with
our learning problems. Although we will eventually be able to exploit the simplicity of
the first class of problems, for now we are going to group them together in a broad class
of “state-dependent” stochastic optimization problems. While we use notation such as
C(St, xt,Wt+1), the state variable St may contain information that affects expectations,
which we communicate through conditional expectations such as E{F (x,W )|St}. Finally,
we indicate the dependence on constraints using notation x ∈ Xt. We could write X (St),
but Xt is more compact and indicates that the constraints are computed at time t, and



GRAPH PROBLEMS 307

therefore may depend on St. We note that we cannot similarly write Ct(xt), since the
t index on C(·) would indicate that the cost function depends on time, as opposed to a
function that depends on data in St.

At this point, it is useful to highlight what is probably the biggest class of problems,
which is those that involve the management of physical resources. These problems are the
basis of the largest and most difficult problems that we will encounter. These problems are
often high-dimensional, often with complex dynamics and types of uncertainty. Decisions
generally focus on managing these physical resources, often directly (assigning a driver to
a rider) or indirectly (influencing their behavior through prices).

We present three classes of examples. 1) Deterministic problems, where everything
is known; 2) stochastic problems, where some information is unknown but which are
described by a known probability distribution; and 3) information acquisition problems,
where we have uncertainty described by an unknown distribution. In the last problem class,
the focus is on collecting information so that we can better estimate the distribution.

These illustrations are designed to teach by example. The careful reader will pick up
subtle modeling choices, in particular the indexing with respect to time. We suggest that
readers skim these problems, selecting examples that are of interest. In chapter 9, we are
going to present a very general modeling framework, and it helps to have a sense of the
complexity of applications that may arise.

8.1 GRAPH PROBLEMS

A popular class of stochastic optimization problems involve managing a single physical
asset moving over a graph, where the nodes of the graph capture the physical state.

8.1.1 A stochastic shortest path problem

We are often interested in shortest path problems where there is uncertainty in the cost of
traversing a link. For our transportation example, it is natural to view the travel time on a
link as random, reflecting the variability in traffic conditions on each link. There are two
ways we can handle this uncertainty. The simplest is to assume that our driver has to make
a decision before seeing the travel time over the link. In this case, our updating equation
would look like

vni = min
j∈I+

i

E{cij(W ) + vn−1
j }

where W is some random variable that contains information about the network (such as
travel times). This problem is identical to our original problem; all we have to do is to let
cij = E{cij(W )} be the expected cost on an arc.

An alternative model is to assume that we know the travel time on a link from i to j as
soon as we arrive at node i. In this case, we would have to solve

vni = E

{
min
j∈I+

i

(
cij(W ) + vn−1

j

)}
.

Here, the expectation is outside of the min operator that chooses the best decision, capturing
the fact that now the decision itself is random.

Note that our notation is ambiguous, in that with the same notation, we have two
very different models. In chapter 9, we are going to refine our notation so that it will
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be immediately apparent when a decision “sees” the random information and when the
decision has to be made before the information becomes available.

8.1.2 The nomadic trucker

A nice illustration of sequential decisions is a problem we are going to call the nomadic
trucker. In this problem, our trucker has to move loads of freight (which fill his truck) from
one city to the next. When he arrives in a city i, he is offered a set of loads to different
destinations j, and has to choose one. Once he makes his choice, he moves the load to
its destination, delivers the freight and then the problem repeats itself. The other loads are
offered to other drivers, so if he returns to node i at a later time, he is offered an entirely
new set of loads (that are entirely random).

We model the state of our nomadic trucker by letting Rt be his location. From a
location, our trucker is able to choose from a set of demands D̂t. Thus, our state variable
is S = (Rt, D̂t), where Rt is a scalar (the location) while D̂t is a vector giving the number
of loads from Rt to each possible destination. An action at ∈ At represents the action to
accept a load in D̂t and go to the destination of that load. Let C(St, at) be the contribution
earned from being in location Rt and taking action at. Any demands not covered in D̂t

at time t are lost. After implementing action at, the driver will either stay in his current
location (if he does nothing), or moves to a location that corresponds to the destination
of the load the driver selected in the set D̂t. Let Rat be this downstream location (which
corresponds to the post-decision state variable for Rt). The post-decision state variable
Sat = (Rat ). We assume that the action a deterministically determines the downstream
destination, so Rt+1 = Rat .

The driver makes his decision by solving

v̂t = max
a∈D̂t

(
C(St, a) + γV t+1(Rat )

)
,

where Rat = SM,a(St, a) is the downstream location (in chapter 8, we will see that this is
the post-decision state), and V t(Rat ) is our current estimate (as of time t) of the value of
the truck being in the destination Rat . Let at be the optimal action. Noting that Rt is the
current location of the truck, we update the value of our previous, post-decision state using

V t+1(Rt)← (1− αn−1)V t(Rt) + αn−1v̂t.

We start by initializing the value of being in each location to zero, and use a pure
exploitation strategy. If we simulate 500 iterations of this process, we produce the pattern
shown in figure 8.1a. Here, the circles at each location are proportional to the value
V

500
(R) of being in that location. The small circles indicate places where the trucker

never visited. Out of 30 cities, our trucker has ended up visiting seven.
This problem is an illustration of the exploration-exploitation problem, which we first

saw in chapter 7. However, now we have to deal with a physical state, where what we learn
depends on the physical state (the location of our trucker). In our derivative-free problems
in chapter 7, we always faced the same set of possible choices at each step. Our nomadic
trucker, on the other hand, faces different choices each time he moves from one city to the
next. This changes the value of what he learns, since the decisions are different in each
state.
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8.1a: Low initial estimate of the value function.

8.1b: High initial estimate of the value function.

Figure 8.1 The effect of value function initialization on search process. Case (a) uses a low
initial estimate and produces limited exploration; case (b) uses a high initial estimate, which forces
exploration of the entire state space.

8.1.3 The transformer replacement problem

The electric power industry uses equipment known as transformers to convert the high-
voltage electricity that comes out of power generating plants into currents with successively
lower voltage, finally delivering the current we can use in our homes and businesses. The
largest of these transformers can weigh 200 tons, might cost millions of dollars to replace
and may require a year or more to build and deliver. Failure rates are difficult to estimate



310 STATE-DEPENDENT PROBLEMS

(the most powerful transformers were first installed in the 1960’s and have yet to reach the
end of their natural lifetime). Actual failures can be very difficult to predict, as they often
depend on heat, power surges, and the level of use.

We are going to build an aggregate replacement model where we only capture the age
of the transformers. Let

r = The age of a transformer (in units of time periods) at time t,
Rtr = The number of active transformers of age r at time t.

Here and elsewhere, we need to model the attributes of a resource (in this case, the age).
While “a” might be the obvious notation, this conflicts with our notation for actions.
Instead, we use “r” for the attributes of a resource, which can be a scalar or, in other
applications, a vector.

For our model, we assume that age is the best predictor of the probability that a trans-
former will fail. Let

R̂tr = The number of transformers of age r that fail between t− 1 and t,
pr = The probability a transformer of age r will fail between t− 1 and t.

Of course, R̂tr depends on Rtr since transformers can only fail if we own them.
It can take a year or two to acquire a new transformer. Assume that we are measuring

time, and therefore age, in fractions of a year (say, three months). Normally it can take
about six time periods from the time of purchase before a transformer is installed in the
network. However, we may pay extra and get a new transformer in as little as three quarters.
If we purchase a transformer that arrives in six time periods, then we might say that we have
acquired a transformer that is r = −6 time periods old. Paying extra gets us a transformer
that is r = −3 time periods old. Of course, the transformer is not productive until it is at
least r = 0 time periods old. Let

xtr = Number of transformers of age r that we purchase at time t,
cr = The cost of purchasing a transformer of age r.

If we have too few transformers, then we incur what are known as “congestion costs,”
which represent the cost of purchasing power from more expensive utilities because of
bottlenecks in the network. To capture this, let

R̄ = Target number of transformers that we should have available,
RAt = Actual number of transformers that are available at time t,

=
∑
r≥0

Rtr,

Ct(R
A
t , R̄) = Expected congestion costs if RAt transformers are available,

= c0

(
R̄

RAt

)β
.

The function Ct(RAt , R̄) captures the behavior that as RAt falls below R̄, the congestion
costs rise quickly.

Assume that xtr is determined immediately after Rtr is measured. The transition
function is given by

Rt+1,r = Rt,r−1 + xt,r−1 − R̂t+1,r.
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Let Rt, R̂t, and xt be vectors with components Rtr, R̂tr, and xtr, respectively. We can
write our system dynamics more generally as

Rt+1 = RM (Rt, xt, R̂t+1).

If we let Vt(Rt) be the value of having a set of transformers with an age distribution
described by Rt, then, as previously, we can write this value using Bellman’s equation

Vt(Rt) = min
xt

(
cxt + EVt+1(RM (Rt, xt, R̂t+1))

)
.

For this application, our state variable Rt might have as many as 100 dimensions. If
we have, say, 200 transformers, each of which might be as many as 100 years old, then the
number of possible values of Rt could be 100200. Fortunately, we can develop continuous
approximations that allow us to approximate problems such as this relatively easily.

8.1.4 Asset valuation

Imagine you are holding an asset that you can sell at a price that fluctuates randomly. In
this problem we want to determine the best time to sell the asset, and from this, infer the
value of the asset. For this reason, this type of problem arises frequently in the context of
asset valuation and pricing.

Let p̂t be the price that is revealed in period t, at which point you have to make a decision

xt =

{
1 Sell.
0 Hold.

For our simple model, we assume that p̂t is independent of prior prices (a more typical
model would assume that the change in price is independent of prior history). With this
assumption, our system has two states:

St =

{
1 We are holding the asset,
0 We have sold the asset.

Assume that we measure the state immediately after the price p̂t has been revealed but
before we have made a decision. If we have sold the asset, then there is nothing we can do.
We want to maximize the price we receive when we sell our asset. Let the scalar Vt be the
value of holding the asset at time t. This can be written

Vt = max
xt∈{0,1}

(
xtp̂t + (1− xt)γEVt+1

)
.

So, we either get the price p̂t if we sell, or we get the discounted future value of the asset.
Assuming the discount factor γ < 1, we do not want to hold too long simply because the
value in the future is worth less than the value now. In practice, we eventually will see a
price p̂t that is greater than the future expected value, at which point we would stop the
process and sell our asset.

The time at which we sell our asset is known as a stopping time. By definition, aτ = 1.
It is common to think of τ as the decision variable, where we wish to solve

max
τ

Ep̂τ . (8.1)
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Equation (8.1) is a little tricky to interpret. Clearly, the choice of when to stop is a random
variable since it depends on the price p̂t. We cannot optimally choose a random variable,
so what is meant by (8.1) is that we wish to choose a function (or policy) that determines
when we are going to sell. For example, we would expect that we might use a rule that says

Xπ
t (St|p̄) =

{
1 if p̂t ≥ p̄ and St = 1,
0 otherwise.

(8.2)

In this case, we have a function parameterized by p̄ which allows us to write our problem
in the form

max
p̄

E
∞∑
t=1

γtXπ
t (St|p̄).

This formulation raises two questions. First, while it seems very intuitive that our policy
would take the form given in equation (8.2), there is the theoretical question of whether
this in fact is the structure of an optimal policy. The second question is how to find the best
policy within this class. For this problem, that means finding the parameter p̄. For problems
where the probability distribution of the random process driving prices is (assumed) known,
this is a rich and deep theoretical challenge. Alternatively, there is a class of algorithms
from stochastic optimization that allows us to find “good” values of the parameter in a
fairly simple way.

8.2 INVENTORY PROBLEMS

Another popular class of problems involving managing a quantity of resources that are held
in some sort of inventory. The inventory can be money, products, blood, people, water in a
reservoir or energy in a battery. The decisions govern the quantity of resource moving into
and out of the inventory.

8.2.1 The gambling problem

A gambler has to determine how much of his capital he should bet on each round of a
game, where he will play a total of N rounds. He will win a bet with probability p and
lose with probability q = 1 − p (assume q < p). Let sn be his total capital after n plays,
n = 1, 2, . . . , N , with s0 being his initial capital. For this problem, we refer to sn as the
state of the system. Let xn be the (discrete) amount he bets in round n, where we require
that xn ≤ sn−1. He wants to maximize ln sN (this provides a strong penalty for ending
up with a small amount of money at the end and a declining marginal value for higher
amounts).

Let

Wn =

{
1 if the gambler wins the nth game,
0 otherwise.

The system evolves according to

Sn = Sn−1 + xnWn − xn(1−Wn).
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Let V n(Sn) be the value of having Sn dollars at the end of the nth game. The value of
being in state Sn at the end of the nth round can be written as

V n(Sn) = max
0≤xn+1≤Sn

E{V n+1(Sn+1)|Sn}

= max
0≤xn+1≤Sn

E{V n+1(Sn + xn+1Wn+1 − xn+1(1−Wn+1))|Sn}.

Here, we claim that the value of being in state Sn is found by choosing the decision that
maximizes the expected value of being in state Sn+1 given what we know at the end of the
nth round.

We solve this by starting at the end of the N th trial, and assuming that we have finished
with SN dollars. The value of this is

V N (SN ) = lnSN .

Now step back to n = N − 1, where we may write

V N−1(SN−1) = max
0≤xN≤SN−1

E{V N (SN−1 + xNWN − xN (1−WN ))|SN−1}

= max
0≤xN≤SN−1

[
p ln(SN−1 + xN ) + (1− p) ln(SN−1 − xN )

]
. (8.3)

Let V N−1(SN−1, xN ) be the value within the max operator. We can find xN by differen-
tiating V N−1(SN−1, xN ) with respect to xN , giving

∂V N−1(SN−1, xN )

∂xN
=

p

SN−1 + xN
− 1− p
SN−1 − xN

=
2SN−1p− SN−1 − xN

(SN−1)2 − (xN )2
.

Setting this equal to zero and solving for xN gives

xN = (2p− 1)SN−1.

The next step is to plug this back into (8.3) to find V N−1(sN−1) using

V N−1(SN−1) = p ln(SN−1 + SN−1(2p− 1)) + (1− p) ln(SN−1 − SN−1(2p− 1))

= p ln(SN−12p) + (1− p) ln(SN−12(1− p))
= p lnSN−1 + (1− p) lnSN−1 + p ln(2p) + (1− p) ln(2(1− p))︸ ︷︷ ︸

K

= lnSN−1 +K,

where K is a constant with respect to SN−1. Since the additive constant does not change
our decision, we may ignore it and use V N−1(SN−1) = lnSN−1 as our value function
for N − 1, which is the same as our value function for N . Not surprisingly, we can keep
applying this same logic backward in time and obtain

V n(Sn) = lnSn ( +KN )

for all n, where again, Kn is some constant that can be ignored. This means that for all n,
our optimal solution is

xn = (2p− 1)Sn−1.

The optimal strategy at each iteration is to bet a fraction β = (2p−1) of our current money
on hand. Of course, this requires that p > .5.
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8.2.2 The asset acquisition problem - I

A basic asset acquisition problem arises in applications where we purchase product at time
t to be used during time interval t + 1. We are going to encounter this problem again,
sometimes as discrete problems (where we would use action a), but often as continuous
problems, and sometimes as vector valued problems (when we have to acquire different
types of assets). For this reason, we use x as our decision variable.

We can model the problem using

Rt = The assets on hand at time t before we make a new ordering decision, and
before we have satisfied any demands arising in time interval t,

xt = The amount of product purchased at time t to be used during time interval
t+ 1,

D̂t = The random demands that arise between t− 1 and t.

We have chosen to model Rt as the resources on hand in period t before demands have
been satisfied. Our definition here makes it easier to introduce (in the next section) the
decision of how much demand we should satisfy.

We assume we purchase new assets at a fixed price pp and sell them at a fixed price ps.
The amount we earn between t−1 and t, including the decision we make at time t, is given
by

Ct(xt) = ps min{Rt, D̂t} − ppxt.

Our inventory Rt is described using the equation

Rt+1 = Rt −min{Rt, D̂t}+ xt.

We assume that any unsatisfied demands are lost to the system.
This problem can be solved using Bellman’s equation. For this problem, Rt is our state

variable. Let Vt(Rt) be the value of being in state Rt. Then Bellman’s equation tells us
that

Vt(Rt) = max
xt

(
Ct(xt) + γEVt+1(Rt+1)

)
.

where the expectation is over all the possible realizations of the demands D̂t+1.

8.2.3 The asset acquisition problem - II

Many asset acquisition problems introduce additional sources of uncertainty. The assets we
are acquiring could be stocks, planes, energy commodities such as oil, consumer goods, and
blood. In addition to the need to satisfy random demands (the only source of uncertainty
we considered in our basic asset acquisition problem), we may also have randomness in
the prices at which we buy and sell assets. We may also include exogenous changes to the
assets on hand due to additions (cash deposits, blood donations, energy discoveries) and
subtractions (cash withdrawals, equipment failures, theft of product).
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We can model the problem using

xpt = Assets purchased (acquired) at time t to be used during time interval t+ 1,
xst = Amount of assets sold to satisfy demands during time interval t,
xt = (xpt , x

s
t ),

Rt = Resource level at time t before any decisions are made,
Dt = Demands waiting to be served at time t.

Of course, we are going to require that xst ≤ min{Rt, Dt} (we cannot sell what we do not
have, and we cannot sell more than the market demand). We are also going to assume that
we buy and sell our assets at market prices that fluctuate over time. These are described
using

ppt = Market price for purchasing assets at time t,
pst = Market price for selling assets at time t,
pt = (pst , p

p
t ).

Our system evolves according to several types of exogenous information processes that
include random changes to the supplies (assets on hand), demands and prices. We model
these using

R̂t = Exogenous changes to the assets on hand that occur during time interval t,
D̂t = Demand for the resources during time interval t,
p̂pt = Change in the purchase price that occurs between t− 1 and t,
p̂st = Change in the selling price that occurs between t− 1 and t,
p̂t = (p̂pt , p̂

s
t ).

We assume that the exogenous changes to assets, R̂t, occurs before we satisfy demands.
For more complex problems such as this, it is convenient to have a generic variable for

exogenous information. We use the notation Wt to represent all the information that first
arrives between t− 1 and t, where for this problem, we would have

Wt = (R̂t, D̂t, p̂t).

The state of our system is described by

St = (Rt, Dt, pt).

We represent the evolution of our state variable generically using

St+1 = SM (St, xt,Wt+1).

Some communities refer to this as the “system model,” hence our notation. We refer to
this as the transition function. More specifically, the equations that make up our transition
function would be

Rt+1 = Rt − xst + xpt + R̂t+1,

Dt+1 = Dt − xst + D̂t+1,

ppt+1 = ppt + p̂pt+1,

pst+1 = pst + p̂st+1.
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The one-period contribution function is

Ct(St, xt) = pstx
s
t − p

p
txt.

We can find optimal decisions by solving Bellman’s equation

Vt(St) = max
(
Ct(St, xt) + γEVt+1(SMt+1(St, xt,Wt+1))|St

)
. (8.4)

This problem allows us to capture a number of dimensions of the modeling of stochastic
problems. This is a fairly classical problem, but we have stated it in a more general way
by allowing for unsatisfied demands to be held for the future, and by allowing for random
purchasing and selling prices.

8.2.4 The lagged asset acquisition problem

A variation of the basic asset acquisition problem we introduced in section 8.2.2 arises
when we can purchase assets now to be used in the future. For example, a hotel might book
rooms at time t for a date t′ in the future. A travel agent might purchase space on a flight
or a cruise line at various points in time before the trip actually happens. An airline might
purchase contracts to buy fuel in the future. In all of these cases, it will generally be the
case that assets purchased farther in advance are cheaper, although prices may fluctuate.
For this problem, we are going to assume that selling prices are

xtt′ = Assets purchased at time t to be used to satisfy demands that become known
during time interval between t′ − 1 and t′,

xt = (xt,t+1, xt,t+2, . . . , ),

= (xtt′)t′>t,

D̂t = Demand for the resources that become known during time interval t,
Rtt′ = Total assets acquired on or before time t that may be used to satisfy demands

that become known between t′ − 1 and t′,
Rt = (Rtt′)t′≥t.

Now, Rtt is the resources on hand in period t that can be used to satisfy demands D̂t that
become known during time interval t. In this formulation, we do not allow xtt, which
would represent purchases on the spot market. If this were allowed, purchases at time t
could be used to satisfy unsatisfied demands arising during time interval between t− 1 and
t.

The transition function is given by

Rt+1,t′ =

{(
Rt,t −min(Rt,t, D̂t)

)
+ xt,t+1 +Rt,t+1, t′ = t+ 1,

Rtt′ + xtt′ , t′ > t+ 1.

The one-period contribution function (measuring forward in time) is

Ct(Rt, D̂t) = ps min(Rt,t, D̂t)−
∑
t′>t

ppxtt′ .

We can again formulate Bellman’s equation as in (8.4) to determine an optimal set of de-
cisions. From a computational perspective, however, there is a critical difference. Now, xt
andRt are vectors with elements xtt′ andRtt′ , which makes it computationally impossible
to enumerate all possible states (or actions).
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8.2.5 The batch replenishment problem

One of the classical problems in operations research is one that we refer to here as the
batch replenishment problem. To illustrate the basic problem, assume that we have a single
type of resource that is consumed over time. As the reserves of the resource run low, it is
necessary to replenish the resources. In many problems, there are economies of scale in
this process. It is cheaper (on an average cost basis) to increase the level of resources in
one jump (see examples).

EXAMPLE 8.1

A startup company has to maintain adequate reserves of operating capital to fund
product development and marketing. As the cash is depleted, the finance officer has
to go to the markets to raise additional capital. There are fixed costs of raising capital,
so this tends to be done in batches.

EXAMPLE 8.2

An oil company maintains an aggregate level of oil reserves. As these are depleted, it
will undertake exploration expeditions to identify new oil fields, which will produce
jumps in the total reserves under the company’s control.

To introduce the core elements, let

D̂t = Demand for the resources during time interval t,
Rt = Resource level at time t,
xt = Additional resources acquired at time t to be used during time interval t+ 1.

The transition function is given by

RMt+1(Rt, xt, D̂t+1) = max{0, (Rt + xt − D̂t+1)}.

Our one period cost function (which we wish to minimize) is given by

Ĉt+1(Rt, xt, D̂t+1) = Total cost of acquiring xt units of the resource
= cfI{xt>0} + cpxt + chRMt+1(Rt, xt, D̂t+1),

where

cf = The fixed cost of placing an order,
cp = The unit purchase cost,
ch = The unit holding cost.

For our purposes, Ĉt+1(Rt, xt, D̂t+1) could be any nonconvex function; this is a simple
example of one. Since the cost function is nonconvex, it helps to order larger quantities at
the same time.

Assume that we have a family of decision functions Xπ(Rt), π ∈ Π, for determining
xt. For example, we might use a decision rule such as

Xπ(Rt) =

{
0 if Rt ≥ s,
Q−Rt if Rt < q.
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where Q and q are specified parameters. In the language of dynamic programming, a
decision rule such as Xπ(Rt) is known as a policy (literally, a rule for making decisions).
We index policies by π, and denote the set of policies by Π. In this example, a combination
(Q, q) represents a policy, and Π would represent all the possible values of Q and q.

Our goal is to solve

min
π∈Π

E

{
T∑
t=0

γtĈt+1(Rt, X
π(Rt), D̂t+1)

}
.

This means that we want to search over all possible values of Q and q to find the best
performance (on average).

The basic batch replenishment problem, where Rt and xt are scalars, is quite easy (if
we know things like the distribution of demand). But there are many real problems where
these are vectors because there are different types of resources. The vectors may be small
(different types of fuel, raising different types of funds) or extremely large (hiring different
types of people for a consulting firm or the military; maintaining spare parts inventories).
Even a small number of dimensions would produce a very large problem using a discrete
representation.

8.3 INFORMATION ACQUISITION PROBLEMS

Information acquisition is an important problem in many applications where we face
uncertainty about the value of an action, but the only way to obtain better estimates of the
value is to take the action. For example, a baseball manager may not know how well a
particular player will perform at the plate. The only way to find out is to put him in the
lineup and let him hit. The only way a mutual fund can learn how well a manager will
perform may be to let her manage a portion of the portfolio. A pharmaceutical company
does not know how the market will respond to a particular pricing strategy. The only way
to learn is to offer the drug at different prices in test markets.

Information acquisition plays a particularly important role in approximate dynamic
programming. Assume that a system is in state i and that a particular action might bring
the system to state j. We may know the contribution of this decision, but we do not know
the value of being in state j (although we may have an estimate). The only way to learn is
to try making the decision and then obtain a better estimate of being in state j by actually
visiting the state. This process of approximating a function, first introduced in chapter
3, is fundamental to stochastic optimization. For this reason, the information acquisition
problem is of special importance.

Information acquisition problems are examples of dynamic optimization problems with
belief states, along with other information that affects the function itself.

8.3.1 An information-collecting shortest path problem

Now assume that we have to choose a path through a network, but this time we face the
problem that not only do we not know the actual travel time on any of the links of the
network, we do not even know the mean or variance (we might be willing to assume
that the probability distribution is normal). As with the two previous examples, we solve
the problem repeatedly, and sometimes we want to try new paths just to collect more
information.
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There are two significant differences between this simple problem and the two previous
problems. First, imagine that you are at a node i and you are trying to decide whether to
follow the link from i to j1 or from i to j2. We have an estimate of the time to get from
j1 and j2 to the final destination. These estimates may be correlated because they may
share common links to the destination. Following the path from j1 to the destination may
teach us something about the time to get from j2 to the destination (if the two paths share
common links). The second difference is that making the decision to go from node i to
node j changes the set of options that we face. In the bandit problem, we always faced the
same set of slot machines.

Information-collecting shortest path problems arise in any information collection prob-
lem where the decision now affects not only the information you collect, but also the
decisions you can make in the future. While we can solve basic bandit problems optimally,
this broader problem class remains unsolved.

8.3.2 Medical decision making

Patients arrive at a doctor’s office for treatment. They begin by providing a medical history,
which we capture as a set of attributes a1, a2, . . . which includes patient characteristics
(gender, age, weight), habits (smoking, diet, exercise patterns), results from a blood test,
and medical history (e.g. prior diseases). Finally, the patient may have some health issue
(fever, knee pain, elevated blood sugar, ...) that is the reason for the visit. This attribute
vector can have hundreds of elements.

Assume that our patient is dealing with elevated blood sugar. The doctor might prescribe
lifestyle changes (diet and exercise), or a form of medication (along with the dosage), where
we can represent the choice as d ∈ D. Let t index visits to the doctor, and let

xtd =
1 If the physicial chooses d ∈ D,
0 Otherwise.

After the physical makes a decision xt, we observe the change in blood sugar levels by
ŷt+1 which we assume is learned at the next visit.

Let U(a, x|θ) be a linear model of patient attributes and medical decisions which we
write using

U(a, x|θ) =
∑
f∈F

θfφf (a, x),

where φf (a, x) for f ∈ F represents features that we design from a combination of the
patient attributes a (which are given) and the medical decision x. We believe that we can
predict the patient response ŷ using the logistic function

ŷ|θ ∼ eU(a,x|θ)

1 + eU(a,x|θ) . (8.5)

Of course, we do not know what θ. We can use data across a wide range of patients to get
a population estimate θ̄popt that is updated every time we treat a patient and then observe
an outcome. A challenge with medical decision-making is that every patient responds to
treatments differently. Ideally, we would like to estimate θ̄ta that depends on the attribute
a of the patient.

This is a classical learning problem similar to the derivative-free problems we saw in
chapter 7, with one difference: we are given the attribute a of a patient, after which we
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Dynamic assignment

t t+1 t+2

Figure 8.2 Illustration of the dynamic assignment of drivers (circles) to riders (squares).

make a decision. Our state, then, consists of our estimate of θ̄popt (or θ̄ta), which goes
into our belief state, along with the patient attribute at, which affects the response function
itself.

8.4 COMPLEX RESOURCE ALLOCATION PROBLEMS

Problems involving the management of physical resources can become quite complex.
Below we illustrate a dynamic assignment problem that arises in the context of assigning
fleets of drivers (and cars) to riders requesting trips over time, and a problem involving the
modeling inventories of different types of blood.

8.4.1 The dynamic assignment problem

Consider the challenge of matching drivers (or perhaps driverless electric vehicles) to
customers calling in dynamically over time, illustrated in figure 8.2. We have to think
about which driver to assign to which rider based on the characteristics of the driver (or
car), such as where the driver lives (or how much energy is in the car’s battery), along with
the characteristics of the trip (origin, destination, length).

We describe drivers (and cars) using

at =

 a1

a2

a3

 =

 The location of the car
The type of car

How many hours the driver has been on duty

 .

We can model our fleet of drivers and cars using

Rta = The number of cars with attribute a at time t,
R = Set of all possible values of the attribute vector a,
Rt = (Rta)a∈A.



COMPLEX RESOURCE ALLOCATION PROBLEMS 321

We note that Rt can be very high dimensional, since the attribute a is a vector. In practice,
we never generate the vector Rt, since it is more practical to just create a list of drivers and
cars. The notation Rt is used just for modeling purposes.

Demands for trips arise over time, which we can model using

b = The characteristics of a trip (origin, destination, length, car type
requested),

B = The set of all possible values of the vector b,
D̂tb = The number of new customer requests with attribute b that were first

learned at time t,
D̂t = (D̂tb)b∈B,

Dtb = The total number of unserved trips with attribute b waiting at time t,
Dt = (Dtb)b∈B.

We next have to model the decisions that we have to make. Assume that at any point in
time, we can either assign a technician to handle a new installation, or we can send the
technician home. Let

DH = The set of decisions representing sending a driver to his/her home
location,

DD = The set of decisions to assign a driver to a rider, where d ∈ DD
represents a decision to serve a demand of type bd,

dφ = The decision to “do nothing,”
D = DH ∪ DD ∪ dφ.

A decision has the effect of changing the attributes of a driver, as well as possibly satisfying
a demand. The impact on the resource attribute vector of a driver is captured using the
attribute transition function, represented using

at+1 = aM (at, d).

For algebraic purposes, it is useful to define the indicator function

δa′(at, d) =

{
1 for aM (at, d) = a′,
0 otherwise.

A decision d ∈ DD means that we are serving a customer described by an attribute vector
bd. This is only possible, of course, if Dtb > 0. Typically, Dtb will be 0 or 1, although our
model allows for multiple trips with the same attributes. We indicate which decisions we
have made using

xtad = The number of times we apply a decision of type d to trip with
attribute a,

xt = (xtad)a∈A,d∈D.

Similarly, we define the cost of a decision to be

ctad = The cost of applying a decision of type d to driver with attribute a,
ct = (ctad)a∈A,d∈D.
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We could solve this problem myopically by making what appears to be the best decisions
now, ignoring their impact on the future. We would do this by solving

min
xt

∑
a∈A

∑
d∈D

ctadxtad (8.6)

subject to ∑
d∈D

xtad = Rta (8.7)∑
a∈A

xtad ≤ Dtbd d ∈ DD (8.8)

xtad ≥ 0. (8.9)

Equation (8.7) says that we either have to send a technician home, or assign him to a job.
Equation (8.8) says that we can only assign a technician to a job of type bd if there is in fact
a job of type bd. Said differently, we cannot assign more than one technician per job. But
we do not have to assign a technician to every job (we may not have enough technicians).

The problem posed by equations (8.6)-(8.9) is a linear program. Real problems may
involve managing hundreds or even thousands of individual entities. The decision vector
xt = (xtad)a∈A,d∈D may have over ten thousand dimensions. But commercial linear
programming packages handle problems of this size quite easily.

If we make decisions by solving (8.6)-(8.9), we say that we are using a myopic policy
since we are using only what we know now, and we are ignoring the impact of decisions
now on the future. For example, we may decide to send a technician home rather than have
him sit in a hotel room waiting for a job. But this ignores the likelihood that another job
may suddenly arise close to the technician’s current location. Alternatively, we may have
two different technicians with two different skill sets. If we only have one job, we might
assign what appears to be the closest technician, ignoring the fact that this technician has
specialized skills that are best reserved for difficult jobs.

Given a decision vector, the dynamics of our system can be described using

Rt+1,a =
∑
a′∈A

∑
d∈D

xta′dδa(a′, d), (8.10)

Dt+1,bd = Dt,bd −
∑
a∈A

xtad + D̂t+1,bd , d ∈ DD. (8.11)

Equation (8.10) captures the effect of all decisions (including serving demands) on the
attributes of the drivers. This is easiest to visualize if we assume that all tasks are completed
within one time period. If this is not the case, then we simply have to augment the state
vector to capture the attribute that we have partially completed a task. Equation (8.11)
subtracts from the list of available demands any of type bd that are served by a decision
d ∈ DD (recall that each element of DD corresponds to a type of trip, which we denote
bd).

The state of our system is given by

St = (Rt, Dt).

The evolution of our state variable over time is determined by equations (8.10) and (8.10).
We can now set up an optimality recursion to determine the decisions that minimize costs
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Recipient
Donor AB+ AB− A+ A− B+ B− O+ O−

AB+ X
AB− X X
A+ X X
A− X X X X
B+ X X
B− X X X X
O+ X X X X
O− X X X X X X X X

Table 8.1 Allowable blood substitutions for most operations, ‘X’ means a substitution is
allowed (from Cant (2006)).

over time using

Vt = min
xt∈Xt

(Ct(St, xt) + γEVt+1(St+1)) ,

where St+1 is the state at time t + 1 given that we are in state St and action xt. St+1 is
random because at time t, we do not know D̂t+1. The feasible region Xt is defined by
equations (8.7)-(8.9).

Needless to say, the state variable for this problem is quite large. The dimensionality of
Rt is determined by the number of attributes of our technician, while the dimensionality
of Dt is determined by the relevant attributes of a demand. In real applications, these
attributes can become fairly detailed. Fortunately, the methods of approximate dynamic
programming can handle these complex problems.

8.4.2 The blood management problem

The problem of managing blood inventories serves as a particularly elegant illustration of
a resource allocation problem. We are going to start by assuming that we are managing
inventories at a single hospital, where each week we have to decide which of our blood
inventories should be used for the demands that need to be served in the upcoming week.

We have to start with a bit of background about blood. For the purposes of managing
blood inventories, we care primarily about blood type and age. Although there is a vast
range of differences in the blood of two individuals, for most purposes doctors focus on the
eight major blood types: A+ (“ A positive”), A− (“A negative”), B+, B−, AB+, AB−,
O+, andO−. While the ability to substitute different blood types can depend on the nature
of the operation, for most purposes blood can be substituted according to table 8.1.

A second important characteristic of blood is its age. The storage of blood is limited
to six weeks, after which it has to be discarded. Hospitals need to anticipate if they think
they can use blood before it hits this limit, as it can be transferred to blood centers which
monitor inventories at different hospitals within a region. It helps if a hospital can identify
blood it will not need as soon as possible so that the blood can be transferred to locations
that are running short.

One mechanism for extending the shelf-life of blood is to freeze it. Frozen blood can
be stored up to 10 years, but it takes at least an hour to thaw, limiting its use in emergency
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situations or operations where the amount of blood needed is highly uncertain. In addition,
once frozen blood is thawed it must be used within 24 hours.

We can model the blood problem as a heterogeneous resource allocation problem. We
are going to start with a fairly basic model which can be easily extended with almost no
notational changes. We begin by describing the attributes of a unit of stored blood using

a =
(
a1
a2

)
=

(
Blood type (A+, A−, . . . )
Age (in weeks)

)
,

B = Set of all attribute types.

We will limit the age to the range 0 ≤ a2 ≤ 6. Blood with a2 = 6 (which means blood that
is already six weeks old) is no longer usable. We assume that decision epochs are made in
one-week increments.

Blood inventories, and blood donations, are represented using

Rta = Units of blood of type a available to be assigned or held at time t,
Rt = (Rta)a∈A,

R̂ta = Number of new units of blood of type a donated between t− 1 and
t,

R̂t = (R̂ta)a∈A.

The attributes of demand for blood are given by

d =

 d1

d2

d3

 =

 Blood type of patient
Surgery type: urgent or elective
Is substitution allowed?

 ,

dφ = Decision to hold blood in inventory (“do nothing”),
D = Set of all demand types d plus dφ.

The attribute d3 captures the fact that there are some operations where a doctor will not
allow any substitution. One example is childbirth, since infants may not be able to handle
a different blood type, even if it is an allowable substitute. For our basic model, we do not
allow unserved demand in one week to be held to a later week. As a result, we need only
model new demands, which we accomplish with

D̂td = Units of demand with attribute d that arose between t− 1 and t,
D̂t = (D̂td)d∈D.

We act on blood resources with decisions given by:

xtad = Number of units of blood with attribute a that we assign to a demand
of type d,

xt = (xtad)a∈A,d∈D.

The feasible region Xt is defined by the following constraints:∑
d∈D

xtad = Rta, (8.12)∑
a∈A

xtad ≤ D̂td, d ∈ D, (8.13)

xtad ≥ 0. (8.14)
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Blood that is held simply ages one week, but we limit the age to six weeks. Blood
that is assigned to satisfy a demand can be modeled as being moved to a blood-type sink,
denoted, perhaps, using at,1 = φ (the null blood type). The blood attribute transition
function aM (at, dt) is given by

at+1 =

(
at+1,1

at+1,2

)
=


(

at,1
min{6, at,2 + 1}

)
, dt = dφ,(

φ

-

)
, dt ∈ D.

To represent the transition function, it is useful to define

δa′(a, d) =

{
1 axt = a′ = aM (at, dt),

0 otherwise,

∆ = Matrix with δa′(a, d) in row a′ and column (a, d).

We note that the attribute transition function is deterministic. A random element would
arise, for example, if inspections of the blood resulted in blood that was less than six weeks
old being judged to have expired. The resource transition function can now be written

Rxta′ =
∑
a∈A

∑
d∈D

δa′(a, d)xtad,

Rt+1,a′ = Rxta′ + R̂t+1,a′ .

In matrix form, these would be written

Rxt = ∆xt, (8.15)
Rt+1 = Rxt + R̂t+1. (8.16)

Figure 8.3 illustrates the transitions that are occurring in week t. We either have to
decide which type of blood to use to satisfy a demand (figure 8.3a), or to hold the blood
until the following week. If we use blood to satisfy a demand, it is assumed lost from the
system. If we hold the blood until the following week, it is transformed into blood that is
one week older. Blood that is six weeks old may not be used to satisfy any demands, so we
can view the bucket of blood that is six weeks old as a sink for unusable blood (the value
of this blood would be zero). Note that blood donations are assumed to arrive with an age
of 0. The pre- and post-decision state variables are given by

St = (Rt, D̂t),

Sxt = (Rxt ).

There is no real “cost” to assigning blood of one type to demand of another type (we
are not considering steps such as spending money to encourage additional donations, or
transporting inventories from one hospital to another). Instead, we use the contribution
function to capture the preferences of the doctor. We would like to capture the natural
preference that it is generally better not to substitute, and that satisfying an urgent demand
is more important than an elective demand. For example, we might use the contributions
described in table 8.2. Thus, if we useO− blood to satisfy the needs for an elective patient
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8.3a - Assigning blood supplies to demands in week t. Solid lines represent
assigning blood to a demand, dotted lines represent holding blood.
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8.3b - Holding blood supplies until week t+ 1.

Figure 8.3 The assignment of different blood types (and ages) to known demands in week t (8.3a),
and holding blood until the following week (8.3b).

with A+ blood, we would pick up a -$10 contribution (penalty since it is negative) for
substituting blood, a +$5 for using O− blood (something the hospitals like to encourage),
and a +$20 contribution for serving an elective demand, for a total contribution of +$15.

The total contribution (at time t) is finally given by

Ct(St, xt) =
∑
a∈A

∑
d∈D

ctadxtad.
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Condition Description Value

if d = dφ Holding 0
if a1 = a1 when d ∈ D No substitution 0
if a1 6= a1 when d ∈ D Substitution -10
if a1 = O- when d ∈ D O- substitution 5
if d2 = Urgent Filling urgent demand 40
if d2 = Elective Filling elective demand 20

Table 8.2 Contributions for different types of blood and decisions

As before, let Xπ
t (St) be a policy (some sort of decision rule) that determines xt ∈ Xt

given St. We wish to find the best policy by solving

max
π∈Π

E
T∑
t=0

C(St, X
π(St)). (8.17)

The most obvious way to solve this problem is with a simple myopic policy, where we
maximize the contribution at each point in time without regard to the effect of our decisions
on the future. We can obtain a family of myopic policies by adjusting the one-period
contributions. For example, our bonus of $5 for usingO− blood (in table 8.2), is actually a
type of myopic policy. We encourage using O− blood since it is generally more available
than other blood types. By changing this bonus, we obtain different types of myopic
policies that we can represent by the set ΠM , where for π ∈ ΠM our decision function
would be given by

Xπ
t (St) = arg max

xt∈Xt

∑
a∈A

∑
d∈D

ctadxtad. (8.18)

The optimization problem in (8.18) is a simple linear program (known as a “transportation
problem”). Solving the optimization problem given by equation (8.17) for the set π ∈ ΠM

means searching over different values of the bonus for using O− blood.

8.5 BIBLIOGRAPHIC NOTES

Most of the problems in this chapter are fairly classic, in particular the deterministic and
stochastic shortest path problems (see Bertsekas et al. (1991)), asset acquisition problem
(see Porteus (1990), for example) and the batch replenishment problem (see ?, among
others).

Section ?? - The shortest path problem is one of the most widely studied problems in
optimization. One of the early treatments of shortest paths is given in the seminal
book on network flows by ?. It has long been recognized that shortest paths could
be solved directly (if inefficiently) using Bellman’s equation.

Section 8.1.1 - Many problems in discrete stochastic dynamic programming can at least
conceptually be formulated as some form of stochastic shortest path problem. There
is an extensive literature on stochastic shortest paths (see, for example, Frank (1969),
?, Frieze & Grimmet (1985), Andreatta & Romeo (1988), Psaraftis & Tsitsiklis
(1993), Bertsekas et al. (1991)).
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Section 8.4.1 - The dynamic assignment problem is based on Powell et al. (2003).

Section 2.1.3 - Bandit problems have long been studied as classic exercises in information
collection. For good introductions to this material, see Ross (1983) and Whittle
(1982). A more detailed discussion of bandit problems is given in chapter 7.

PROBLEMS

8.1 What is the distinguishing characteristic of a state-dependent problem, as opposed to
the state-independent problems we considered in chapters 5 and 7? Contrast what we mean
by a solution to a stochastic optimization problem with a state-independent function, versus
what we mean by a solution to a stochastic optimization problem with a state-dependent
function?

8.2 Give an example of a sequential decision process from your own experience. Describe
the elements of your problem following the framework provided in section 2.2. Then
describe the types of rules you might use to make a decision.

8.3 Describe the gambling problem in section 8.2.1 as a decision tree, assuming that we
can gamble only 0, 1 or 2 dollars in each round (this is just to keep the decision tree from
growing too large).

8.4 Repeat the gambling problem assuming that the value of ending up with SN dollars
is
√
SN .

8.5 Consider three variations of a shortest path problem:

Case I - All costs are known in advance. Here, we assume that we have a real-time
network tracking system that allows us to see the cost on each link of the network
before we start our trip. We also assume that the costs do not change during the time
from which we start the trip to when we arrive at the link.

Case II - Costs are learned as the trip progresses. In this case, we assume that we see the
actual link costs for links out of node i when we arrive at node i.

Case III - Costs are learned after the fact. In this setting, we only learn the cost on each
link after the trip is finished.

Let vIi be the expected cost to get from node i to the destination for Case I. Similarly, let
vIIi and vIIIi be the expected costs for cases II and III. Show that vIi ≤ vIIi ≤ vIIIi .

8.6 We are now going to do a budgeting problem where the reward function does not
have any particular properties. It may have jumps, as well as being a mixture of convex
and concave functions. But this time we will assume that R = $30 dollars and that the
allocations xt must be in integers between 0 and 30. Assume that we have T = 5 products,
with a contribution function Ct(xt) = cf(xt) where c = (c1, . . . , c5) = (3, 1, 4, 2, 5) and
where f(x) is given by

f(x) =



0, x ≤ 5,
5, x = 6,
7, x = 7,
10, x = 8,
12, x ≥ 9.
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Find the optimal allocation of resources over the five products.

8.7 You suddenly realize towards the end of the semester that you have three courses that
have assigned a term project instead of a final exam. You quickly estimate how much each
one will take to get 100 points (equivalent to an A+) on the project. You then guess that if
you invest t hours in a project, which you estimated would need T hours to get 100 points,
then for t < T your score will be

R = 100
√
t/T .

That is, there are declining marginal returns to putting more work into a project. So, if a
project is projected to take 40 hours and you only invest 10, you estimate that your score
will be 50 points (100 times the square root of 10 over 40). You decide that you cannot
spend more than a total of 30 hours on the projects, and you want to choose a value of t
for each project that is a multiple of 5 hours. You also feel that you need to spend at least
5 hours on each project (that is, you cannot completely ignore a project). The time you
estimate to get full score on each of the three projects is given by

Project Completion time T
1 20
2 15
3 10

You decide to solve the problem as a dynamic program.

(a) What is the state variable and decision epoch for this problem?

(b) What is your reward function?

(c) Write out the problem as an optimization problem.

(d) Set up the optimality equations.

(e) Solve the optimality equations to find the right time investment strategy.

8.8 Rewrite the transition function for the asset acquisition problem II (section 8.2.3)
assuming that Rt is the resources on hand after we satisfy the demands.

8.9 Write out the transition equations for the lagged asset acquisition problem in section
8.2.4 when we allow spot purchases, which means that we may have xtt > 0. xtt refers to
purchases that are made at time t which can be used to serve unsatisfied demands Dt that
occur during time interval t.

8.10 Identify three examples of problems where you have to try an action to learn about
the reward for an action.





CHAPTER 9

MODELING DYNAMIC PROGRAMS

Perhaps one of the most important skills to develop in stochastic optimization is the ability
to write down a model of the problem. Everyone who wants to solve a linear program
learns to write out

min
x
cTx

subject to

Ax = b,

x ≥ 0.

This standard modeling framework allows people around the world to express their problem
in a standard format.

Just as popular is the format used for deterministic optimal control, where a problem
might be written

min
u0,...,uT

T∑
t=0

L(xt, ut), (9.1)

where L(xt, ut) is a (typically nonlinear) loss function and where the state xt evolves
according to

xt+1 = f(xt, ut). (9.2)

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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The controls may be subject to constraints.
Sequential decision problems in the presence of uncertainty is a much richer class

of problems than deterministic optimization problems. For example, we have to model
the sequencing of decisions, the flow of information, and potentially complex dynamics
governing how the system evolves over time. These problems arise in a wide range of
settings, and as a result different communities have evolved modeling styles that reflect
both the nature of the problem class as well as the mathematics familiar to the host
community.

The canonical models in chapter 2 illustrate these modeling styles. Our issue, and the
reason for this chapter, is that none of these styles, by themselves, capture the full richness
of this problem class. Yet, as you address the challenge of modeling real problems with
software that is going to be used for real planning, the range of modeling issues can be
astonishing.

Up to now, we have avoided discussing some important subtleties that arise in the
modeling of stochastic, dynamic systems. We intentionally overlooked trying to define
a state variable, which we have viewed as simply St, where the set of states might be
given by the indexed set S = {1, 2, . . . , |S|}. We have avoided discussions of how to
properly model time or more complex information processes. We have also ignored the
richness of modeling all the different sources of uncertainty for which we have a dedicated
chapter (chapter 10). This style has facilitated introducing some basic ideas in dynamic
programming, but would severely limit our ability to apply these methods to real problems.

The goal of this chapter is to describe a standard modeling framework for dynamic
programs, providing a vocabulary that will allow us to take on a much wider set of
applications (including all of the canonical models in chapter 2). Notation is not as critical
for simple problems, as long as it is precise and consistent. But what seems like benign
notational decisions for a simple problem can cause unnecessary difficulties, possibly
making the model completely intractable as problems become more complex.

Complex problems require considerable discipline in notation because they combine
the details of the original physical problem with the challenge of modeling sequential
information and decision processes. The modeling of time can be particularly subtle. In
addition to a desire to model problems accurately, we also need to be able to understand and
exploit the structure of the problem, which can become lost in a sea of complex notation.

Section 9.1 begins by describing some basic guidelines for notational style, while section
9.2 addresses the critical question of modeling time. These two sections lay the critical
foundation for notation that is used throughout the book.

The general framework for modeling a dynamic program is covered in sections 9.3 to
9.7. There are five elements to any sequential decision problem, consisting of the following:

State variables (section 9.3) - The state variables describes what we need to know (from
history) to model the system forward in time. The initial state S0 is also where we
specify both known and unknown parameters.

Decision/action/control variables (section 9.4) - These are the variables we control.
Choosing these variables (“making decisions”) represents the central challenge in
stochastic optimization. This is where we describe constraints that limit what deci-
sions we can make. Here is where we introduce the concept of a policy, but do not
describe how to design the policy.
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Exogenous information processes (section 9.5) - These variables describe information
that arrives to us exogenously, representing what we learn after we make each
decision.

Transition function (section 9.6) - This is the function that describes how each state
variable evolves from one point in time to another.

Objective function (section 9.7) - We are either trying to maximize a contribution func-
tion (profits, rewards, gains, utility) or minimize costs (or losses). This function
describes how well we are doing at a point in time, and describes the problem of
finding optimal policies.

We next illustrate our modeling framework with an illustration using an energy storage
example, given in section 9.8.

Section 9.9 then introduces the concept of base models (which is what we describe in this
chapter) and lookahead models, which represent one of our classes of policies (described
in much greater detail in chapter 20). Most readers can stop reading after section 9.9 since
the remainder of the chapter deals with more advanced modeling concepts.

Having laid this foundation, we transition to a series of topics that can be skipped on
a first pass, but which help to expand the readers appreciation of modeling of dynamic
systems. These include

Problem classification - Section 9.10 describes four fundamental problem classes differ-
entiated based on whether we have state-independent or state-dependent problems,
and whether we are working in an offline setting (maximizing the terminal reward)
or an online setting (maximizing terminal reward).

Policy evaluation - Section 9.11 describes how to evaluate a policy using Monte Carlo
simulation.

Advanced probabilistic modeling concepts - For readers who enjoy bridging to more
advanced concepts in probability theory, section 9.12 provides an introduction to
measure-theoretic concepts and probability modeling. This discussion is designed
for readers who do not have any formal training in this area.

This chapter describes modeling in considerable depth, and as a result it is quite long.
Sections marked with a ‘*’ can be skipped on a first read. The section on more advanced
probabilistic modeling is marked with a ‘**’ to indicate that this is advanced material.

9.1 NOTATIONAL STYLE

Good modeling begins with good notation. The choice of notation has to balance traditional
style with the needs of a particular problem class. Notation is easier to learn if it is
mnemonic (the letters look like what they mean) and compact (avoiding a profusion of
symbols). Notation also helps to bridge communities. Notation is a language: the simpler
the language, the easier it is to understand the problem.

As a start, it is useful to adopt notational conventions to simplify the style of our
presentation. For this reason, we adopt the following notational conventions:

Variables - Variables are always a single letter. We would never use, for example, CH for
“holding cost.”
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Modeling time - We always use t to represent a point in time, while we use τ to represent
an interval over time. When we need to represent different points in time, we might
use t, t′, t̄, tmax, and so on.

Indexing vectors - Vectors are almost always indexed in the subscript, as in xij . Since
we use discrete time models throughout, an activity at time t can be viewed as an
element of a vector. When there are multiple indices, they should be ordered from
outside in the general order over which they might be summed (think of the outermost
index as the most detailed information). So, if xtij is the flow from i to j at time t
with cost ctij , we might sum up the total cost using

∑
t

∑
i

∑
j ctijxtij . Dropping

one or more indices creates a vector over the elements of the missing indices to the
right. So, xt = (xtij)∀i,∀j is the vector of all flows occurring at time t. Time, when
present, is always the innermost index.

Indexing time - If we are modeling activities in discrete time, then t is an index and
should be put in the subscript. So xt would be an activity at time t, with the vector
x = (x1, x2, . . . , xt, . . . , xT ) giving us all the activities over time. When modeling
problems in continuous time, it is more common to write t as an argument, as in x(t).
xt is notationally more compact (try writing a complex equation full of variables
written as x(t) instead of xt).

Temporal indexing of functions - A common notational error is to index a function by time
t when in fact the function itself does not depend on time, but depends on inputs that
do depend on time. For example, imagine that we have a stochastic price process
where the state St = pt which is the price of the asset, and xt is how much we sell
xt > 0 or buy xt < 0. We might want to write our contribution as

Ct(St, x)t = ptxt.

However, in this case the function does not depend on time t; it only depends on data
St = pt that depends on time. So the proper way to write this would be

C(St, x) = ptxt.

Now imagine that our contribution function is given by

Ct(St, xt) =

t+H∑
t′=t

ptt′xtt′ .

Here, the function depends on time because the summation runs from t to t+H .

Flavors of variables - It is often the case that we need to indicate different flavors of
variables, such as holding costs and order costs. These are always indicated as
superscripts, where we might write ch or chold as the holding cost. Note that while
variables must be a single letter, superscripts may be words (although this should be
used sparingly). We think of a variable like “ch” as a single piece of notation. It is
better to write ch as the holding cost and cp as the purchasing cost than to use h as
the holding cost and p as the purchasing cost (the first approach uses a single letter
c for cost, while the second approach uses up two letters - the roman alphabet is a
scarce resource). Other ways of indicating flavors is hats (x̂), bars (x̄), tildes (x̃) and
primes (x′).
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Iteration counters - We place iteration counters in the superscript, and we primarily use
n as our iteration counter. So, xn is our activity at iteration n. If we are using a
descriptive superscript, we might write xh,n to represent xh at iterationn. Sometimes
algorithms require inner and outer iterations. In this case, we use n to index the outer
iteration and m for the inner iteration.

While this will prove to be the most natural way to index iterations, there is potential
for confusion where it may not be clear if the superscript n is an index (as we view
it) or raising a variable to the nth power. One notable exception to this convention is
indexing stepsizes which we first saw in chapter 5. If we write αn, it looks like we
are raising α to the nth power, so we use αn.

Sets are represented using capital letters in a calligraphic font, such as X ,F or I. We
generally use the lowercase roman letter as an element of a set, as in x ∈ X or i ∈ I.

Exogenous information - Information that first becomes available (from outside the sys-
tem) at time t is denoted using hats, for example, D̂t or p̂t. Our only exception to
this rule is Wt which is our generic notation for exogenous information (since Wt

always refers to exogenous information, we do not use a hat).

Statistics - Statistics computed using exogenous information are generally indicated using
bars, for example x̄t or V t. Since these are functions of random variables, they
are also random. We do not use hats, because they do not represent exogenous
information; rather, they are statistics that are directly or indirectly functions of
exogenous information.

Index variables - Throughout, i, j, k, l,m and n are always scalar indices.

Superscripts/subscripts on superscripts/subscripts - As a general rule, avoid superscripts
on superscripts (and so forth). For example, it is tempting to think of xbt as saying
that x is a function of time t, when in fact this means it is a function of b which itself
depends on time.

For example, x might be the number of clicks when the bid at time t is bt, but what
this notation is saying is that the number of clicks just depends on the bid, and not on
time. If we want to capture the effect of both the bid and time, we have to write xb,t.

Similarly, the notation FTD cannot be used as the forecast of the demand D at time
T . To do this, you should write FDT . The notation FTD is just a forecast at a time
t = TD that might correspond to the time, say, at which a demand occurs. But if
you also write FTp where it just happens that TD = T p, you cannot refer to these as
different forecasts because one is indexed by TD while the other is indexed by T p.

Of course, there are exceptions to every rule. It is extremely common in the transportation
literature to model the flow of a type of resource (called a commodity and indexed by k)
from i to j using xkij . Following our convention, this should be written xkij . It is necessary
to strike a balance between a standard notational style and existing conventions.

9.2 MODELING TIME

There are two strategies for modeling “time” in a sequential decision problem:
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• Counters - There are many settings where we make decisions corresponding to
discrete events, such as running an experiment, the arrival of a customer, or iterations
of an algorithm. We generally let n the variable we use for counting, and we place
it in the superscript, as in Xn or f̄n(x). n = 1 corresponds to the first event, while
n = 0 means no events have happened.

• Time - We may wish to directly model time. If time is continuous, we would write
a function as f(t), but all of the problems in this book are modeled in discrete time
t = 0, 1, 2, . . .. If we wish to model the time of the arrival of the nth customer, we
would write tn. However, we would writeXn for a variable that depends on the nth
arrival rather than Xtn .

Our style of indexing counters in the superscripts and time in subscripts helps when we are
modeling simulations where we have to run a simulation multiple times. Thus, we might
write Xn

t as information at time t in the nth iteration of our simulation.
The remainder of this section focuses on issues that arise with the modeling of time.
A survey of the literature reveals different styles toward modeling time. When using

discrete time, some authors start at 1 while others start at zero. When solving finite horizon
problems, it is popular to index time by the number of time periods remaining, rather than
elapsed time. Some authors index a variable, say St, as being a function of information up
through t− 1, while others assume it includes information up through time t. The variable
t may be used to represent when a physical event actually happens, or when we first know
about a physical event.

The confusion over modeling time arises in part because there are two processes that we
have to capture: the flow of information, and the flow of physical and financial resources.
For example, a buyer may purchase an option now (an information event) to buy a com-
modity in the future (the physical event). Customers may call an airline (the information
event) to fly on a future flight (the physical event). An electric power company has to
purchase equipment now to be used one or two years in the future. All of these problems
represent examples of lagged information processes and force us to explicitly model the
informational and physical events (see section 8.2.4 for an illustration).

Notation can easily become confused when an author starts by writing down a determin-
istic model of a physical process, and then adds uncertainty. The problem arises because
the proper convention for modeling time for information processes is different than what
should be used for physical processes.

We begin by establishing the relationship between discrete and continuous time. All
of the models in this book assume that decisions are made in discrete time (sometimes
referred to as decision epochs). However, the flow of information, and many of the
physical processes being modeled, are best viewed in continuous time.

The relationship of our discrete time approximation to the real flow of information and
physical resources is depicted in figure 9.1. Above the line, “t” refers to a time interval
while below the line, “t” refers to a point in time. When we are modeling information,
time t = 0 is special; it represents “here and now” with the information that is available at
the moment. The discrete time t refers to the time interval from t − 1 to t (illustrated in
figure 9.1a). This means that the first new information arrives during time interval 1.

This notational style means that any variable indexed by t, say St or xt, is assumed
to have access to the information that arrived up to time t, which means up through time
interval t. This property will dramatically simplify our notation in the future. For example,
assume that ft is our forecast of the demand for electricity. If D̂t is the observed demand
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1t = 2t = 3t = 4t =

0t = 1t = 2t = 3t = 4t =

9.1a: Information processes

1t = 2t = 3t =0t =

1t = 2t = 3t =0t =

9.1b: Physical processes

Figure 9.1 Relationship between discrete and continuous time for information processes (9.1a)
and physical processes (9.1b).

during time interval t, we would write our updating equation for the forecast using

ft+1 = (1− α)ft + αD̂t+1. (9.3)

We refer to this form as the informational representation. Note that the forecast ft+1 is
written as a function of the information that became available during time interval (t, t+1),
given by the demand D̂t+1.

When we are modeling a physical process, it is more natural to adopt a different
convention (illustrated in figure 9.1b): discrete time t refers to the time interval between
t and t + 1. This convention arises because it is most natural in deterministic models to
use time to represent when something is happening or when a resource can be used. For
example, let Rt be our cash on hand that we can use during day t (implicitly, this means
that we are measuring it at the beginning of the day). Let D̂t be the demand for cash during
the day, and let xt represent additional cash that we have decided to add to our balance (to
be used during day t). We can model our cash on hand using

Rt+1 = Rt + xt − D̂t. (9.4)

We refer to this form as the physical representation. Note that the left-hand side is indexed
by t+ 1, while all the quantities on the right-hand side are indexed by t.

Throughout this book, we are going to use the informational representation as indicated
in equation (9.3). We first saw this in our presentation of stochastic gradients in chapter 5,
when we wrote the updates from a stochastic gradient using

xn+1 = xn + αn∇xF (xn,Wn+1),

where here we are using iteration n instead of time t.
One of the more difficult modeling challenges arises when we have to represent lagged

information processes. For example, a customer might make an airline reservation at time
t to depart at a later time t′. Alternatively, we might forecast orders at time t′ using
information we have at time t < t′. These lagged problems require that we model the
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information variable (at time t), as well as a physical process (what is happening at time t′).
We handle these problems using two time indices, a form that we refer to as the “(t, t′)”
notation. For example,

D̂tt′ = The demands that first become known during time interval t to be served
during time interval t′.

ftt′ = The forecast for activities during time interval t′ made using the information
available up through time t.

Rtt′ = The resources on hand at time t that cannot be used until time t′.
xtt′ = The decision to purchase futures at time t to be exercised during time interval

t′.

For each variable, t indexes the information content (literally, when the variable is measured
or computed), while t′ represents the time at which the activity takes place. Each of these
variables can be written as vectors, such as

D̂t = (D̂tt′)t′≥t,

ft = (ftt′)t′≥t,

xt = (xtt′)t′≥t,

Rt = (Rtt′)t′≥t.

Note that these vectors are now written in terms of the information content. For stochastic
problems, this style is the easiest and most natural. If we were modeling a deterministic
problem, we would drop the first index “t” and model the entire problem in terms of the
second index “t′.”

Using this convention it is instructive to interpret the special case where t = t′. D̂tt is
simply demands that arrive during time interval t, where we first learn of them when they
arrive. The forecast fDtt is the same as the actual demand D̂tt. Rtt represents resources
that we know about during time interval t and which can be used during time interval t.
Finally, xtt is a decision to purchase resources to be used during time interval t given the
information that arrived during time interval t. In financial circles, this is referred to as
purchasing on the spot market.

9.3 THE STATES OF OUR SYSTEM

The most important quantity in any sequential decision process is the state variable. This
is the set of variables that captures everything that we know, and need to know, to model
our system. Without question this is the most subtle, and poorly understood, dimension of
modeling sequential decision problems.

9.3.1 Defining the state variable

Surprisingly, other presentations of dynamic programming spend little time defining a state
variable. Bellman’s seminal text [Bellman (1957), p. 81] says “... we have a physical system
characterized at any stage by a small set of parameters, the state variables.” In a much more
modern treatment, Puterman first introduces a state variable by saying [Puterman (2005),
p. 18] “At each decision epoch, the system occupies a state.” In both cases, the italics are
in the original manuscript, indicating that the term “state” is being introduced. In effect,
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both authors are saying that given a system, the state variable will be apparent from the
context.

Interestingly, different communities appear to interpret state variables in slightly different
ways. We adopt an interpretation that is fairly common in the control theory community,
which effectively models the state variable St as all the information needed to model the
system from time t onward. We agree with this definition, but it does not provide much
guidance in terms of actually translating real applications into a formal model. We suggest
the following definitions:

Definition 9.3.1. A state variable is:

a) Policy-dependent version A function of history that, combined with the exogenous in-
formation (and a policy), is necessary and sufficient to compute the cost/contribution
function, the decision function (the policy), and any information required to model
the evolution of information needed in the cost/contribution and decision functions.

b) Optimization version A function of history that is necessary and sufficient to com-
pute the cost/contribution function, the constraints, and any information required to
model the evolution of information needed in the cost/contribution function and the
constraints.

Some remarks are in order:

i) The policy-dependent definition defines the state variable in terms of the information
needed to compute the core model information (cost/contribution function, and the
policy (or decision function)), and any other information needed to model the evolu-
tion of the core information over time (that is, their transition functions). Note that
constraints (at a point in time t) are assumed to be captured by the policy. Since the
policy can be any function, it could potentially be a function that includes information
that does not seem relevant to the problem, and which would never be used in an
optimal policy.

ii) The optimization version defines a state variable in terms of the information needed
to compute the core model information (costs/contributions and constraints), and
any other information needed to model the evolution of the core information over
time (their transition function). This definition limits the state variable to information
needed by the optimization problem, and cannot include information that is irrelevant
to the core model.

iii) Both definitions include any information that might be needed to compute the evolution
of core model information, as well as information needed to model the evolution
of this information over time. This includes information needed to represent the
stochastic behavior, which includes distributional information needed to compute or
approximate expectations.

iv) Both definitions imply that the state variable includes the information needed to compute
the transition function for core model information. For example, if we model a price
process using

pt+1 = θ0pt + θ1pt−1 + θ2pt−2 + εpt+1, (9.5)

then the state variable for this price process would be St = (pt, pt−1, pt−2). At time
t, the prices pt−1 and pt−2 are not needed to compute the cost/contribution function
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or constraints, but they are needed to model the evolution of pt, which is part of the
cost/contribution function.

v) The qualifier “necessary and sufficient” is intended to eliminate irrelevant information.
For example, with our lagged price model above, we need pt, pt−1 and pt−2 but not
pt−3 and earlier. A similar term used in the statistics literature is “sufficient statistic,”
which means it contains all the information needed for any future calculations.

vi) If we are given a forecast fDtt′ , t
′ = t + 1, . . . , T of demand, Dt, we assume that

fDtt′ = EtDt′ , where Et refers to the expectation made at time t. This means that the
demand Dt+1 would be given by

Dt+1 = fDt,t+1 + εt+1,

where εt+1 is a mean 0 error term. Similarly, forecasts evolve over time according
to

fDt+1,t′ = fDtt′ + εt+1,t′ , t
′ = t+ 1, . . . , T,

where εtt′ for t′ = t, . . . , T would generally be a correlated vector of random
variables. This means that if we are given fDtt′ , t

′ = t, . . . , T , then this vector of
forecasts is a part of the state variable, since all of this information is needed to model
the evolution of Dt. For many problems, however, forecasts are not modeled as a
dynamically evolving stochastic process; instead, they are viewed as static, which
means that they are not part of the state variable (more typically, they would be latent
variables, which means variables that we are not explicitly modeling).

vii) A byproduct of our definitions is the observation that all properly modeled dynamic
systems are Markovian, by construction. It is surprisingly common for people to
make a distinction between “Markovian” and “history-dependent” processes. For
example, if our price process evolves according to equation (9.5), many would call
this a history-dependent process, but consider what happens when we define

p̄t =

 pt
pt−1

pt−2


and let

θ̄t =

 θ0

θ1

θ2


which means we can write

pt+1 = θ̄T p̄t + εt+1. (9.6)

Here we see that p̄t is a vector known at time t (who cares when the information first
became known?). We would stay that equation (9.6) describes a Markov process
with state St = (pt, pt−1, pt−2).

This definition provides a very quick test of the validity of a state variable. If there is
a piece of data in either the decision function, the transition function, or the contribution
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function which is not in the state variable, then we do not have a complete state variable.
Similarly, if there is information in the state variable that is never needed in any of these
three functions, then we can drop it and still have a valid state variable.

We use the term “necessary and sufficient” so that our state variable is as compact as
possible. For example, we could argue that we need the entire history of events up to
time t to model future dynamics, but in practice, this is rarely the case. As we start doing
computational work, we are going to want St to be as compact as possible. Furthermore,
there are many problems where we simply do not need to know the entire history. It might
be enough to know the status of all our resources at time t (the resource variable Rt). But
there are examples where this is not enough.

Assume, for example, that we need to use our history to forecast the price of a stock.
Our history of prices is given by (p̂1, p̂2, . . . , p̂t). If we use a simple exponential smoothing
model, our estimate of the mean price p̄t can be computed using

p̄t = (1− α)p̄t−1 + αp̂t,

where α is a stepsize satisfying 0 ≤ α ≤ 1. With this forecasting mechanism, we do not
need to retain the history of prices, but rather only the latest estimate p̄t. As a result, p̄t is
called a sufficient statistic, which is a statistic that captures all relevant information needed
to compute any additional statistics from new information. A state variable, according to
our definition, is always a sufficient statistic.

Consider what happens when we switch from exponential smoothing to an N -period
moving average. Our forecast of future prices is now given by

p̄t =
1

N

N−1∑
τ=0

p̂t−τ .

Now, we have to retain the N -period rolling set of prices (p̂t, p̂t−1, . . . , p̂t−N+1) in order
to compute the price estimate in the next time period. With exponential smoothing, we
could write

St = p̄t.

If we use the moving average, our state variable would be

St = (p̂t, p̂t−1, . . . , p̂t−N+1). (9.7)

We make a distinction between how we model S0 and St for t > 0:

Initial state variables S0 The initial state is where we specify initial information, which
includes deterministic parameters, initial values of any dynamically varying param-
eters, and probability distributions about any unknown parameters (these would be
our Bayesian priors).

Dynamic state variables St, t > 0 We use the convention that variables in St for t > 0
are variables that are changing over time. Thus, we make a point of excluding
information about deterministic parameters (for example, the acceleration of gravity
or the maximum speed of an aircraft). Our model may depend on these parameters
(or probability distributions), but we communicate this static information through
the initial state S0, not through the dynamic state variables St for t > 0.

Below we discuss latent variables (state variables that we choose to approximate as
deterministic, but which really are changing stochastically over time), and unobservable
state variables (which are also changing stochastically, but which we cannot observe).
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9.3.2 The three states of our system

To set up our discussion, assume that we are interested in solving a relatively complex
resource management problem, one that involves multiple (possibly many) different types
of resources which can be modified in various ways (changing their attributes). For such a
problem, it is necessary to work with three types of state variables:

The physical state Rt - This is a snapshot of the status of the physical resources we are
managing and their attributes. This might include the amount of water in a reservoir,
the price of a stock or the location of a sensor on a network. It could also refer to the
location and speed of a robot.

The information state It - This encompasses any other information we need to make a
decision, compute the transition or compute the objective function.

The belief (or knowledge) state Bt - The belief state is information specifying a proba-
bility distribution describing an unknown parameter. The type of distribution (e.g.
binomial, Normal or exponential) is typically specified in the initial stateS0, although
there are exceptions to this. The belief state Bt is information just like Rt and It,
except that it is information specifying a probability distribution (such as the mean
and variance of a normal distribution).

We then pull these together to create our state variable

St = (Rt, It, Bt).

Mathematically, the information state It should include information about resources Rt,
sinceRt is, after all, a form of information. The distinction between It (such as wind speed,
temperature or the stock market), and Rt (how much energy is in the battery, water in a
reservoir or money invested in the stock market) is not critical. We separate the variables
simply because there are so many problems that involve managing physical or financial
resources, and it is often the case that decisions impact only the physical resources. At the
same time, Bt includes probabilistic information about parameters that we do not know
perfectly. Knowing a parameter perfectly, as is the case with Rt and It, is just a special
case of a probability distribution.

A proper representation of the relationship between Bt, It and Rt is illustrated in figure
9.2. However, we find it more useful to make a distinction (even if it is subjective) of
what constitutes a variable that describes part of the physical state Rt, and then let It be
all remaining variables that describe quantities that are known perfectly. Then, we let Bt
consist entirely of probability distributions that describe parameters that we do not know
perfectly.

State variables take on different flavors depending on the mixture of physical, informa-
tional and knowledge states, as well as the relationship between the state of the system
now, and the states in the past.

• Physical state - There are three important variations that involve a physical state:

– Pure physical state - There are many problems which involve only a physical
state which is typically some sort of resource being managed. There are
problems where Rt is a vector, a low-dimensional vector (as in Rt = (Rti)i∈I
where i might be a blood type, or a type of piece of equipment), or a high-
dimensional vector (as in Rt = (Rta)a∈A where a is a multidimenisonal
attribute vector).
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Figure 9.2 Illustration of the growing sets of state variables, where information state includes
physical state variables, while the belief state includes everything.

– Physical state with information - We may be managing the water in a reservoir
(captured byRt) given temperature and wind speed (which affects evaporation)
captured by It.

– Physical state, information state, and belief state - We need the cash on hand in
a mutual fund, Rt, information It about interest rates, and a probability model
Bt describing, say, our belief about whether the stock market is going up or
down.

• Information state - In most applications information evolves exogenously, although
there are exceptions. The evolution of information comes in several flavors:

– Memoryless - The information It+1 does not depend on It. For example, we
may feel that the characteristics of a patient arriving at time t+ 1 to a doctor’s
office is independent of the patient arriving at time t. We may also believe that
rainfall in month t+ 1 is independent of the rainfall in month t.

– First-order Markov - Here we assume that It+1 depends on It. For example,
we may feel that the spot market price of oil, the wind speed, or temperature
and humidity at t + 1 depend on the value at time t. We might also insist that
a decision xt+1 not deviate more than a certain amount from the decision xt at
time t.

– Higher-order Markov - We may feel that the price of a stock pt+1 depends on
pt, pt−1, and pt−2. However, we can create a variable p̄t = (pt, pt−1, pt−2)
and convert such a system to a first-order Markov system, so we really only
have to deal with memoryless and first-order Markov systems.

– Full history dependent - This arises when the evolution of the information It+1

depends on the full history, as might happen when modeling the progress of
currency prices or the progression of a disease. This type of model is typically
used when we are not comfortable with a compact state variable.

• Belief state - We remember what we learned after making a decision. There are
many settings where the belief state is updated recursively, which means that Bt+1

depends on Bt (this might be the mean and variance of a distribution, or a set of
probabilities). Uncertainty in the belief state can arise in three ways:
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– Uncertainty about a static parameter - For example, we may not know the
impact of price on demand, or the sales of a laptop with specific features. The
nature of the unknown parameter depends on the type of belief model: the
features of the laptop correspond to a lookup table, while the demand-price
tradeoff represents the parameter of a parametric model. These problems are
broadly known under the umbrella of optimal learning, but are often associated
with the literature on multiarmed bandit problems.

– Uncertainty about a dynamic (uncontrollable) parameter - The sales of a laptop
with a specific set of features may change over time. This may occur because of
unobservable variables. For example, the demand elasticity of a product (such
as housing) may depend on other market characteristics (such as the growth of
industry in the area).

– Uncertainty about a dynamic, controllable parameter - Imagine that we control
the inventory of a product that we cannot observe perfectly. We may control
purchases that replenish inventory which is then used to complete sales, but
our ability to track sales is imperfect, giving us an imprecise estimate of the
inventory. These problems are typically referred to as partially observable
Markov decision processes (POMDPs).

xxx

There has been a tendency in the literature to treat the belief state as if it were
somehow different than “the” state variable. It is not. The state variable is all
the information that describes the system at time t, whether that information is the
amount of inventory, the location of a vehicle, the current weather or interest rates,
or the parameters of a distribution describing some unknown quantity.

We can use St to be the state of a single resource (if this is all we are managing), or let
St = Rt be the state of all the resources we are managing. There are many problems where
the state of the system consists only of Rt. We suggest using St as a generic state variable
when it is not important to be specific, but it must be used when we may wish to include
other forms of information. For example, we might be managing resources (consumer
products, equipment, people) to serve customer demands D̂t that become known at time
t. If Rt describes the state of the resources we are managing, our state variable would
consist of St = (Rt, D̂t), where D̂t represents additional information we need to solve the
problem.

9.3.3 The initial state S0

The initial state plays a special role in the modeling of a stochastic optimization problem.
By convention, St only contains the information that changes over time. Thus, if we
were solving a shortest path problem over a deterministic graph, St would tell us the node
which we currently occupy, but would not include, for example, the deterministic data
describing the graph. Similarly, it would not include any deterministic parameters such as
the maximum speed of our vehicle.

By contrast, we can use S0 to store any data that is an input to our system. This can
include

• Any deterministic parameters - This might include the deterministic data describing
a graph (for example), or any problem parameters that never change.
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• Initial values of parameters that evolve over time - For example, this could be the
initial inventory, the starting location of a robot, or the initial speed of wind at a wind
farm.

• The distribution of belief about uncertain parameters - This is known as the prior
distribution of belief about

As our system evolves, we drop any deterministic parameters that do not change. These
become latent (or hidden) variables, since our problem depends on them, but we drop them
from St for t > 0. However, it is important to recognize that these values may change
each time we solve an instance of the problem. Examples of these random starting states
include:

EXAMPLE 9.1

We wish to optimize the management of a fleet of trucks. We fix the number of trucks
in our fleet, but this is a parameter that we specify, and we may change the fleet size
from one instance of the problem to another.

EXAMPLE 9.2

We wish to optimize the amount of energy to store in a battery given a forecast of
clouds over a 24-hour planning horizon. Let f0t′ is the forecast of energy at time t′

which is given to us at time 0, the vector of forecasts f0 = (f0t′)
24
t′=0 (which does

not evolve over time) is part of the initial state. However, each time we optimize our
problem, we are given a new forecast.

EXAMPLE 9.3

We are designing an optimal policy for finding the best medication for type II diabetes,
but the policy depends on the attributes of the patient (age, weight, gendor, ethnicity,
and medical history), which do not change over the course of the treatment.

9.3.4 The post-decision state variable

We can view our system as evolving through sequences of new information followed
by a decision followed by new information (and so on). Although we have not yet
discussed decisions, for the moment let the decisions (which may be a vector) be represented
generically using xt (we discuss our choice of notation for a decision in the next section).
In this case, a history of the process might be represented using

ht = (S0, x0,W1, x1,W2, x2, . . . , xt−1,Wt).

Here, ht contains all the information we need to make a decision xt at time t. As we
discussed before, ht is sufficient but not necessary. We expect our state variable to capture
what is needed to make a decision, allowing us to represent the history as

ht = (S0, x0,W1, S1, x1,W2, S2, x2, . . . , xt−1,Wt, St). (9.8)
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The sequence in equation (9.8) defines our state variable as occurring after new information
arrives and before a decision is made. For this reason, we call St the pre-decision state
variable. This is the most natural place to write a state variable because the point of
capturing information from the past is to make a decision.

For most problem classes, we can design more effective computational strategies using
the post-decision state variable. This is the state of the system after a decision xt, which
means we can drop any information needed only to make the decision. For this reason, we
denote this state variable Sxt , which produces the history

ht = (S0, x0, S
x
0 ,W1, S1, x1, S

x
1 ,W2, S2, x2, S

x
2 , . . . , xt−1, S

x
t−1,Wt, St). (9.9)

We again emphasize that our notation Sxt means that this function has access to all the
exogenous information up through time t, along with the decision xt (which also has
access to the information up through time t).

The examples below provide some illustrations of pre- and post-decision states.

EXAMPLE 9.1

A traveler is driving through a network, where the travel time on each link of the
network is random. As she arrives at node i, she is allowed to see the travel times on
each of the links out of node i, which we represent by τ̂i = (τ̂ij)j . As she arrives at
node i, her pre-decision state is St = (i, τ̂i). Assume she decides to move from i to k.
Her post-decision state is Sxt = (k) (note that she is still at node i; the post-decision
state captures the fact that she will next be at node k, and we no longer have to include
the travel times on the links out of node i).

EXAMPLE 9.2

The nomadic trucker revisited. Let Rta = 1 if the trucker has attribute vector a at
time t and 0 otherwise. Now let Dtb be the number of customer demands (loads of
freight) of type b available to be moved at time t. The pre-decision state variable
for the trucker is St = (Rt, Dt), which tells us the state of the trucker and the
demands available to be moved. Assume that once the trucker makes a decision, all
the unserved demands in Dt are lost, and new demands become available at time
t + 1. The post-decision state variable is given by Sxt = Rxt where Rxta = 1 if the
trucker has attribute vector r after a decision has been made.

EXAMPLE 9.3

Imagine playing backgammon where Rti is the number of your pieces on the ith

“point” on the backgammon board (there are 24 points on a board). The transition
from St to St+1 depends on the player’s decision xt, the play of the opposing player,
and the next roll of the dice. The post-decision state variable is simply the state of
the board after a player moves but before his opponent has moved.

The post-decision state can be particularly valuable in the context of dynamic program-
ming, which we are going to address in depth in chapters 17 and 18. We can see this
when we set up Bellman’s equation, which we first saw in chapter 2, section 2.1.9, which
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is written

Vt(St) = max
x

(
C(St, x) + E{Vt+1(St+1)|St}

)
,

= max
x

(
C(St, x) +

∑
s′

p(s′|St, x)Vt+1(s′)
)
.

Computing the expectation, which typically means finding the one-step transition matrix
p(s′|St, x), can be computationally expensive (or completely intractable). If we use the
post-decision state Sxt , we break Bellman’s equation into two steps: the deterministic
transition from the pre-decision stateSt to the post-decision stateSxt , and then the stochastic
transition from the post-decision state Sxt to the next pre-decision state St+1. These can be
written

Vt(St) = max
x

(
C(St, x) + V xt (Sxt )

)
, (9.10)

V xt (Sxt ) = E{Vt+1(St+1)|Sxt }. (9.11)

Equation (9.10) is attractive because we can now compute the maximum without having
to then compute the imbedded expectation. In chapter 19, we are going to exploit this
structure to solve problems where the action a is actually a very high-dimensional vector
x. Then, equation (9.11) might be approximated using simulation-based methods.

There are three ways of finding a post-decision state variable:

Decomposing decisions and information There are many problems where we can
create functions SM,x(·) and SM,W (·) from which we can compute

Sxt = SM,x(St, xt), (9.12)
St+1 = SM,W (Sxt ,Wt+1). (9.13)

The structure of these functions is highly problem-dependent. However, there are some-
times significant computational benefits, primarily when we face the problem of approx-
imating the value function. Recall that the state variable captures all the information we
need to make a decision, compute the transition function, and compute the contribution
function. Sxt only has to carry the information needed to compute the transition function.
For some applications, Sxt has the same dimensionality as St, but in many settings, Sxt is
dramatically simpler than St, simplifying the problem of approximating the value function.

State-action pairs A very generic way of representing a post-decision state is to simply
write

Sxt = (St, xt).

Figure 9.3 provides a nice illustration using our tic-tac-toe example. Figure 9.3a shows a
tic-tac-toe board just before player O makes his move. Figure 9.3b shows the augmented
state-action pair, where the decision (O decides to place his move in the upper right hand
corner) is distinct from the state. Finally, figure 9.3c shows the post-decision state. For
this example, the pre- and post-decision state spaces are the same, while the augmented
state-action pair is nine times larger.

The augmented state (St, xt) is closely related to the post-decision state Sxt (not surpris-
ing, since we can compute Sxt deterministically from St and xt). But computationally, the
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Pre-decision State-action Post-decision
St (St, xt) (Sxt )

⎛
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎠

9.3a 9.3b 9.3c

Figure 9.3 Pre-decision state, augmented state-action, and post-decision state for tic-tac-toe.

difference is significant. If S is the set of possible values of St, and X is the set of possible
values of xt, then our augmented state space has size |S| × |X |, which is obviously much
larger.

The augmented state variable is used in a popular class of algorithms known as Q-
learning (which we first introduced in chapter 2), where the challenge is to statistically
estimate Q-factors which give the value of being in state St and taking action xt. The
Q-factors are written Q(St, xt), in contrast with value functions Vt(St) which provide
the value of being in a state. This allows us to directly find the best action by solving
minxQ(St, xt). This is the essence of Q-learning, but the price of this algorithmic step is
that we have to estimate Q(St, xt) for each St and xt. It is not possible to determine xt by
optimizing a function of Sxt alone, since we generally cannot determine which action xt
brought us to Sxt .

The post-decision as a point estimate Assume that we have a problem where
we can compute a point estimate of future information. Let W t,t+1 be a point estimate,
computed at time t, of the outcome of Wt+1. If Wt+1 is a numerical quantity, we might
use W t,t+1 = E(Wt+1|St) or W t,t+1 = 0.

If we can create a reasonable estimate W t,t+1, we can compute post- and pre-decision
state variables using

Sxt = SM (St, xt,W t,t+1),

St+1 = SM (St, xt,Wt+1).

Measured this way, we can think of Sxt as a point estimate of St+1, but this does not mean
that Sxt is necessarily an approximation of the expected value of St+1.

9.3.5 Partially observable states*

There are many applications where we are not able to observe (or measure) the state of the
system precisely. Some examples include:

EXAMPLE 9.1

A retailer may have to order inventory without being able to measure the precise
current inventory. It is possible to measure sales, but theft and breakage introduce
errors, which means we do not know the inventory exactly.
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EXAMPLE 9.2

A patient may have cancer in the colon which might be indicated by the presence of
polyps (small growths in the colon). The number of polyps is not directly observable.
There are different methods for testing for the presence of polyps that allow us to
infer how many there may be, but these are imperfect.

EXAMPLE 9.3

The military has to make decisions about sending out aircraft to remove important
military targets that may have been damaged in previous raids. These decisions
typically have to be made without knowing the precise state of the targets.

EXAMPLE 9.4

Policy makers have to decide how much to reduce CO2 emissions, and would like
to plan a policy over 200 years that strikes a balance between costs and the rise in
global temperatures. Scientists cannot measure temperatures perfectly (in large part
because of natural variations), and the impact of CO2 on temperature is unknown
and not directly observable.

For each of these examples, we have a system with variables (parameters) that cannot
be observed, along with variables that can be observed. There are two ways to handle the
unobservable varaibles:

1) We focus on modeling the variables that describe the system (both observable and
unobservable), and then work to estimate the probability that the unobservable vari-
ables take on a particular value. From this perspective, the problem is referred to as
a partially observable Markov decision process or POMDP.

2) We model the observable system, which means the observable state variables, and
the beliefs about the unobservable variables. This perspective is sometimes referred
to as the belief MDP.

9.3.5.1 Partially observable MDP Let

SUt = The state of the unobservable system at time t,
B(s) = The probability that SUt = s.

We now proceed by building our model around the unobservable state, and then develop
algorithms for finding the belief distribution B(s). Assume that states are discrete, where
s ∈ SU = {s1, . . . , sN}. Then our belief distribution has to satisfy∑

s∈SU
B(s) = 1.

9.3.5.2 Belief MDP Now imagine that we are trying to treat diabetes with a drug
x ∈ X = {x1, . . . , XM}. Assume that µx is the expected reduction in blood sugar. We
do not know µx, so we treat it as a random variable, and further assume that it is normally
distributed where

µx ∼ N(µ̄0
x, (σ

0
x)2).
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We would say that our initial belief about µx is normally distributed with initial mean µ̄0
x

and variable (σ0
x)2. We can then write our belief state B0 = (µ̄0

x, (σ
0
x)2). If we have any

variables that can be observed perfectly, we would use our variables R0 for information
that seems like a physical (or resource) state (such as the location of a vehicle), or I0 for
other information. In this case, our initial state would be

S0 = (R0, I0, B0).

If we do not have any parameters that are perfectly observable, then we would just write

S0 = (B0).

Either way, we are modeling the unobservable part of the system through the state vari-
able B0. In contrast to the POMDP perspective where we model the dynamics of the
unobservable variables, now we model the dynamics of the belief state.

This perspective is the one we used in chapter 7 for derivative-free stochastic optimiza-
tion, where these are often referred to as multi-armed bandit problems (we prefer “active
learning problems”).

9.3.5.3 POMDP vs. Belief MDP? There is a long history of handling unobservable
systems through the framework of POMDPs, where we first model the basic system that can
be controlled but not observed, and then work to find the probability that the unobservable
system is in a particular state. This is typically modeled using discrete (or discretized)
states, building on tools that we present later (in chapter 14). The problem is that these
tools are limited to problems where the number of discrete states is not too large, which
tends to limit us to very small problems.

Our approach will be to model what we can observe, even if it includes the belief
distribution around unobservable elements of the system. We will not require that our state
variable be continuous, or even low-dimensional.

9.3.6 Latent variables*

One of the more subtle dimensions of any dynamic model is the presence of information
that is not explicitly captured in the state variable St. Remember that we do not model in
the dynamic state St any information in S0 that does not change over time. We may have
many static parameters in S0. While these are used in the model, they are not in St, which
means that we will not explicitly capture the dependence of the model on these parameters.

For example, imagine that we are moving energy into and out of the battery, where we
buy and sell a quantity xt at a price pt. Let Rt be the amount of energy in the battery, and
let η be a parameter that governs the maximum rate at which we can move energy. Our state
variable would be St = (Rt, pt), but would not include η, because it is a static parameter.

We are going to need to compute different functions that depend on the state, such as
the value of being in a state or the policy which is the decision given the state. If we write
these functions as F (St), we have to recognize that these functions are estimated given η.
Although we could write our function F (St|η), we are not actually estimating a function
that depends on η. This means that if we change η, we are not going to know how F (St)
changes. This means that η is being treated as a latent (that is hidden) variable.

There are many problems where there is data that changes over time, but where we
ignore this change within our model. For example, forecasts of energy from a wind farm
might be updated every hour, but we may want to model energy storage over a 24 hour
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period using a fixed set of forecasts. This means that the forecasts are being treated as
latent variables.

• Travel times on a transportation network - Planning a path from an origin to a
destination over a transportation network, we might assume that we know all the
times on each link in the network. This is a form of deterministic dynamic program,
but as we progress, the travel times will be updated. When we solve the deterministic
version of the network, we are treating travel times as latent variables.

• Demand elasticity with respect to price for airline service - Imagine that we are
trying to optimize revenue by optimizing the price of an airline set as a function of
the number of days until the flight departs. We can solve the optimization problem
assuming the elasticities are known, although we still have to deal with the uncertainty
in the actual number of bookings. But as we observe the actual demand response,
we may update our estimate of the elasticities. Elasticities would be viewed as latent
variables in the original optimization problem.

• Battery storage capacity - We may need to solve a stochastic optimization problem
governing when to charge or discharge a battery, given its power and capacity.
However, the power and capacity degrade over time, requiring that we update our
solution. When we optimize the policy given assumption about power and capacity,
we are treating these parameters as latent variables.

In a nutshell, a latent variable is a variable that we are treating as a static parameter, but
which is actually changing over time.

When deciding whether to model a variable (such as a forecast) explicitly (which means
modeling how it evolves over time) or as a latent variable (which means holding it constant)
introduces an important tradeoff: including a dynamically varying parameter in the state
variable produces a more complex, higher dimensional state variable, but one which does
not have to be reoptimized when the parameter changes. By contrast, treating a parameter
as a latent variable simplifies the model, but requires that the model be reoptimized when
the parameter changes.

9.3.7 Forecasts and the transition kernel*

An important dimension of any dynamic model is the probability distribution of random
activities that will happen in the future. For example, imagine that we are planning the
commitment of energy resources given a forecast of the energy Wt′ that will be generated
from wind at some time t′ in the future. Imagine that at time t, we are provided with a set
of forecasts fWtt′ of the wind Wt′ at time t′. We might now assume that the wind in the
future is given by

Wt′ = fWtt′ + εtt′ ,

where εtt′ ≈ N(0, (t′ − t)σW ).
For this simple model, where the variance of the error depends only on how far into the

future we are projecting, the forecast determines the probability distribution of the energy
from wind. In the vast majority of models, we treat the forecast as a latent variable, which
means that if we are solving a problem over some interval (t, t+H), we treat the forecast
(fWtt′ )

t+H
t′=t as fixed. In practice, the forecast evolves over time as new information arrives.
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We might model this evolution using

fWt+1,t′ = fWtt′ + f̂Wt+1,t′ ,

where f̂Wt+1,t′ represents the exogenous change in the forecast for time t′.
We can introduce the dimension that the forecast itself evolves over time. This means

that the vector of forecasts (fWtt′ )
t+H
t′=t become part of the state variable. However, the

forecast is simply a parameter characterizing the probability distribution governing the
dynamics of our system, so this means that the probability distribution that guides the
transition function (known as the transition kernel) has to be included in the state variable
if it evolves (stochastically) over time.

Classical dynamic programming models seem to almost universally ignore the role of
forecasts in the modeling of a dynamic optimization problem. When the forecast (or the
transition probability distribution) is treated as a latent variable, then it means that the
problem has to be re-optimized from scratch when the forecasts are updated. By contrast,
forecasts are easily handled in lookahead policies, as we see later.

9.3.8 Flat vs. factored state representations*

It is very common in the dynamic programming literature to define a discrete set of states
S = (1, 2, . . . , |S|), where s ∈ S indexes a particular state. For example, consider an
inventory problem where St is the number of items we have in inventory (where St is a
scalar). Here, our state space S is the set of integers, and s ∈ S tells us how many products
are in inventory.

Now assume that we are managing a set of K product types. The state of our system
might be given by St = (St1, St2, . . . , Stk, . . .) where Stk is the number of items of type
k in inventory at time t. Assume that Stk ≤ M . Our state space S would consist of all
possible values of St, which could be as large as KM . A state s ∈ S corresponds to a
particular vector of quantities (Stk)Kk=1.

Modeling each state with a single scalar index is known as a flat or unstructured repre-
sentation. Such a representation is simple and elegant, and produces very compact models
that have been popular in the operations research community. We first saw this used in
section 2.1.9, and we will return to this in chapter 14 in much more depth. However, the
use of a single index completely disguises the structure of the state variable, and often
produces intractably large state spaces.

In the design of algorithms, it is often essential that we exploit the structure of a state
variable. For this reason, we generally find it necessary to use what is known as a factored
representation, where each factor represents a feature of the state variable. For example, in
our inventory example we haveK factors (or features). It is possible to build approximations
that exploit the structure that each dimension of the state variable is a particular quantity.

Our attribute vector notation, which we use to describe a single entity, is an example of a
factored representation. Each element ai of an attribute vector represents a particular feature
of the entity. The resource state variable Rt = (Rta)a∈A is also a factored representation,
since we explicitly capture the number of resources with a particular attribute. This is useful
when we begin developing approximations for problems such as the dynamic assignment
problem that we introduced in section 8.4.1.
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Figure 9.4 (a) Deterministic network for a traveler moving from node 1 to node 11 with known
arc costs. (b) Stochastic network, where arc costs are revealed as the traveler arrives to a node.

9.3.9 A shortest path illustration

We are going to use a simple shortest path problem to illustrate the process of defining a
state variable. We start with a deterministic graph shown in figure 9.4(a), where we are
interested in finding the best path from node 1 to node 11. Let t be the number of links we
have traversed, and let Nt be the node number were we are located after t = 2 transitions.
What state are we in?

Most people answer this with

St = Nt = 6.

This answer hints at two conventions that we use when defining a state variable. First, we
exclude any information that is not changing, which in this case is any information about
our deterministic graph. It also excludes the prior nodes in our path (1 and 3) since these
are not needed for any future decisions.

Now assume that the travel times are random, but where we know the probability
distribution of travel times over each link (and these distributions are not changing over
time). This graph is depicted in Figure 9.4(b). We are going to assume, however, that when
a traveler arrives at node i, she is able to see the actual cost ĉij for the link (i, j) out of
node i (if this is the link that is chosen now). Now, what is our state variable?

Obviously, we still need to know our current node Nt = 6. However, the revealed link
costs also matter. If the cost of 9.6 is actually 2.3, or 18.4, our decision may change. Thus,
these costs are very much a part of our state of information. Thus, we would write our state
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as

St = (Nt, (ĉNt,·)) = (6, (10.2, 9.7, 11.8)),

where (ĉNt,·) represents the costs on all the links out of nodeNt. Thus, we see an illustration
of both a physical state Rt = Nt, and information It = (10.2, 9.7, 11.8).

For our last example, we introduce the problem of left-hand turn penalties. If our turn
from node 6 to node 5 is a left hand turn, we are going to add a penalty of .7 minutes. Now
what is our state variable?

The left-hand turn penalty requires that we know if the move from 6 to 5 is a left hand
turn. This calculation requires knowing where we are coming from. Thus, we now need to
include our previous node, Nt−1 in our state variable, giving us

St = (Nt, (ĉNt,·), Nt−1) = (6, (10.2, 9.7, 11.8), 3).

Now, Nt is our physical state, but Nt−1 is a piece of information required to compute the
cost function.

9.4 MODELING DECISIONS

Fundamental to dynamic programs is the characteristic that we are making decisions over
time, In the setting of stochastic optimization, we can think of decisions as a form of
information that we control, in contrast with the forms of uncertainty that we do not
control. Here we discuss types of decisions, and introduce the concept of a policy which is
our function for making decisions.

9.4.1 Decisions, actions, and controls

A survey of the literature reveals a distressing variety of words used to mean “decisions.”
The classical literature on Markov decision process talks about choosing an action a ∈ A
(or a ∈ As, where As is the set of actions available when we are in state s) or a policy
(a rule for choosing an action). The optimal control community chooses a control u ∈ Ux
when the system is in state x. The math programming community wants to choose a
decision represented by the vector x, and the simulation community wants to apply a rule.
We have also noticed that the bandit community in computer science has also adopted “x”
as its notation for a decision which is typically discrete.

In our presentation, we use “x” as our default notation.
Decisions come in many forms. We illustrate this using our notation x which tends

to be the notation of choice for more complex problems. Examples of different types of
decisions are

• Binary, where x can be 0 or 1.

• Discrete set, where x ∈ {x1, . . . , xM}.

• Continuous scalar, where x ∈ [a, b].

• Continuous vector, where x ∈ <n.

• Vector integer, where x ∈ Z.
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• Subset selection, where x is a vector of 0’s and 1’s, indicating which members are in
the set.

• Multidimensional categorical, where xa = 1 if we make a choice described by an
attribute a = (a1, . . . , aK). For example, a could be the attributes of a drug or
patient, or the features of a movie.

There are many applications where a decision is either continuous or vector-valued. For
example, in chapter 8 we describe applications where a decision at time t involves the
assignment of resources to tasks. Let x = (xd)d∈D be the vector of decisions, where
d ∈ D is a type of decision, such as assigning resource i to task j, or purchasing a particular
type of equipment. It is not hard to create problems with hundreds, thousands and even
tens of thousands of dimensions. These high-dimensional decision vectors arise frequently
in the types of resource allocation problems addressed in operations research.

This discussion makes it clear that the complexity of the space of decisions (or actions or
controls) can vary considerably across applications. There are entire communities dedicated
to problems with a specific class of decisions. For example, optimal stopping problems
feature binary actions (hold or sell). The entire field of Markov decision processes, as
well as all the problems described in chapter 7 for derivative-free stochastic optimization,
assume discrete sets. Derivative-based stochastic optimization, as well as the field of
stochastic programming, assumes that x is a vector, possibly with some (or all) variables
being integer.

9.4.2 Using policies to make decisions

The challenge of any optimization problem (including stochastic optimization) is making
decisions. In a deterministic setting, we can pose the problem as one of making a decision
x, or a sequence of decisions x0, x1, . . . , xT , to minimize or maximize some objective.
In a sequential (stochastic) decision problem, the decision xt depends on the information
available at time t, which is captured by St. This means we need a decision xt for each
St. This relationship is known as a policy, often designated by π. While many authors use
π(St) to represent the policy, we use π to carry the information that describes the function,
and designate the function as Xπ(St). If we are using action at, we would designate our
policy as Aπ(St), or Uπ(St) if we are finding control ut. Policies may be stationary (as
we have written them), or time-dependent, in which case we would write Xπ

t (St).
The heart of the field of stochastic optimization is finding effective policies. In chapter

5, we saw that we could present our gradient-based algorithm as a form of policy. In
chapter 7, we introduced a number of policies for guiding our decision of what decision to
test next. We also hinted at different ways of creating policies.

Starting in chapter 11, we are going to spend the rest of the book identifying different
classes of policies that are suited to problems with different characteristics. This chapter
can be viewed as describing how to model these systems so that we can assess how well a
policy performs.

9.5 THE EXOGENOUS INFORMATION PROCESS

An important dimension of many of the problems that we address is the arrival of exogenous
information, which changes the state of our system. Modeling the flow of exogenous in-
formation represents, along with states, the most subtle dimension of modeling a stochastic
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Sample path t = 0 t = 1 t = 2 t = 3

ω p0 p̂1 p1 p̂2 p2 p̂3 p3

1 29.80 2.44 32.24 1.71 33.95 -1.65 32.30
2 29.80 -1.96 27.84 0.47 28.30 1.88 30.18
3 29.80 -1.05 28.75 -0.77 27.98 1.64 29.61
4 29.80 2.35 32.15 1.43 33.58 -0.71 32.87
5 29.80 0.50 30.30 -0.56 29.74 -0.73 29.01
6 29.80 -1.82 27.98 -0.78 27.20 0.29 27.48
7 29.80 -1.63 28.17 0.00 28.17 -1.99 26.18
8 29.80 -0.47 29.33 -1.02 28.31 -1.44 26.87
9 29.80 -0.24 29.56 2.25 31.81 1.48 33.29

10 29.80 -2.45 27.35 2.06 29.41 -0.62 28.80

Table 9.1 A set of sample realizations of prices (pt) and the changes in prices (p̂t)

optimization problem. We sketch the basic notation for modeling exogenous information
here, and defer to chapter 10 a more complete discussion of uncertainty.

We begin by noting that this section only addresses the exogenous information that
arrives at times t > 0. This ignores the initial state S0 which is an entirely different source
of information (which technically is exogenous).

9.5.1 Basic notation for information processes

Consider a problem of tracking the value of an asset. Assume the price evolves according
to

pt+1 = pt + p̂t+1.

Here, p̂t+1 is an exogenous random variable representing the change in the price during
time interval t+ 1. At time t, pt is a number, while (at time t) pt+1 is random.

We might assume that p̂t+1 comes from some probability distribution such as a normal
distribution with mean 0 and variance σ2. However, rather than work with a random
variable described by some probability distribution, we are going to primarily work with
sample realizations. Table 9.1 shows 10 sample realizations of a price process that starts
with p0 = 29.80 but then evolves according to the sample realization.

Following standard convention, we index each path by the Greek letter ω (in the example
below, ω runs from 1 to 10). At time t = 0, pt and p̂t is a random variable (for t ≥ 1),
while pt(ω) and p̂t(ω) are sample realizations. We refer to the sequence

p1(ω), p2(ω), p3(ω), . . . , pT (ω)

as a sample path for the prices pt.
We are going to use “ω” notation throughout this volume, so it is important to understand

what it means. As a rule, we will primarily index exogenous random variables such as p̂t
using ω, as in p̂t(ω). p̂t′ is a random variable if we are sitting at a point in time t < t′.
p̂t(ω) is not a random variable; it is a sample realization. For example, if ω = 5 and t = 2,
then p̂t(ω) = −0.73. We are going to create randomness by choosing ω at random. To
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make this more specific, we need to define

Ω = the set of all possible sample realizations (with ω ∈ Ω),
p(ω) = the probability that outcome ω will occur.

A word of caution is needed here. We will often work with continuous random variables, in
which case we have to think of ω as being continuous. In this case, we cannot say p(ω) is
the “probability of outcome ω.” However, in all of our work, we will use discrete samples.
For this purpose, we can define

Ω̂ = A set of discrete sample observations of ω ∈ Ω.

In this case, we can talk about p(ω) being the probability that we sample ω from within the
set Ω̂.

For more complex problems, we may have an entire family of random variables. In such
cases, it is useful to have a generic “information variable” that represents all the information
that arrives during time interval t. For this purpose, we define

Wt = The exogenous information becoming available during interval t.

We might also say that Wt is the information that first becomes known by time t.
Wt may be a single variable, or a collection of variables (travel times, equipment failures,

customer demands). We note that while we use the convention of putting hats on variables
representing exogenous information (D̂t, p̂t), we do not use a hat for Wt since this is our
only use for this variable, whereas Dt and pt have other meanings. We always think of
information as arriving in continuous time, hence Wt is the information arriving during
time interval t, rather than at time t. This eliminates the ambiguity over the information
available when we make a decision at time t.

The choice of notation Wt as a generic “information function” is not standard, but it is
mnemonic (it looks like ωt). We would then write ωt = Wt(ω) as a sample realization of
the information arriving during time interval t. This notation adds a certain elegance when
we need to write decision functions and information in the same equation.

Some authors use ω to index a particular sample path, where Wt(ω) is the information
that arrives during time interval t. Other authors view ω as the information itself, as in

ω = (−0.24, 2.25, 1.48).

Obviously, both are equivalent. Sometimes it is convenient to define

ωt = The information that arrives during time period t
= Wt(ω),

ω = (ω1, ω2, . . .).
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We sometimes need to refer to the history of our process, for which we define

Ht = The history of the process, consisting of all the information known
through time t,

= (W1,W2, . . . ,Wt),

Ht = The set of all possible histories through time t,
= {Ht(ω)|ω ∈ Ω},

ht = A sample realization of a history,
= Ht(ω),

Ω(ht) = {ω ∈ Ω|Ht(ω) = ht},
= The set of all sample paths that correspond to history ht.

In some applications, we might refer to ht as the state of our system, but this is usually a
very clumsy representation. However, we will use the history of the process for a specific
modeling and algorithmic strategy.

9.5.2 Outcomes and scenarios

Some communities prefer to use the term scenario to refer to a sample realization of random
information. For most purposes, “outcome,” “sample path,” and “scenario” can be used
interchangeably (although sample path refers to a sequence of outcomes over time). The
term scenario causes problems of both notation and interpretation. First, “scenario” and
“state” create an immediate competition for the interpretation of the letter “s.” Second,
“scenario” is often used in the context of major events. For example, we can talk about the
scenario that the Chinese might revalue their currency. We could talk about two scenarios:
(1) the Chinese hold the current relationship between the yuan and the dollar, and (2) they
allow their currency to float. For each scenario, we could talk about the fluctuations in the
exchange rates between all currencies.

Recognizing that different communities use “outcome” and “scenario” to mean the same
thing, we suggest that we may want to reserve the ability to use both terms simultaneously.
For example, we might have a set of scenarios that determine if and when the Chinese
revalue their currency (but this would be a small set). We recommend denoting the set of
scenarios by Ψ, with ψ ∈ Ψ representing an individual scenario. Then, for a particular
scenario ψ, we might have a set of outcomes ω ∈ Ω (or Ω(ψ)) representing various minor
events (currency exchange rates, for example).

EXAMPLE 9.1

Planning spare transformers - In the electric power sector, a certain type of transformer
was invented in the 1960’s. As of this writing, the industry does not really know the
failure rate curve for these units (is their lifetime roughly 50 years? 60 years?). Let
ψ be the scenario that the failure curve has a particular shape (for example, where
failures begin happening at a higher rate around 50 years). For a given scenario
(failure rate curve), ω represents a sample realization of failures (transformers can
fail at any time, although the likelihood they will fail depends on ψ).
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EXAMPLE 9.2

Energy resource planning - The federal government has to determine energy sources
that will replace fossil fuels. As research takes place, there are random improvements
in various technologies. However, the planning of future energy technologies depends
on the success of specific options, notably whether we will be able to sequester carbon
underground. If this succeeds, we will be able to take advantage of vast stores of coal
in the United States. Otherwise, we have to focus on options such as hydrogen and
nuclear.

In chapter 20, describe a class of policies based on approximating the future using a
sample, where each outcome in the sample is typically referred to as a “scenario.”

9.5.3 Lagged information processes*

There are many settings where the information about a new arrival comes before the new
arrival itself as illustrated in the examples.

EXAMPLE 9.1

A customer may make a reservation at time t to be served at time t′.

EXAMPLE 9.2

An orange juice products company may purchase futures for frozen concentrated
orange juice at time t that can be exercised at time t′.

EXAMPLE 9.3

A programmer may start working on a piece of coding at time t with the expectation
that it will be finished at time t′.

We first saw lagged problems in section 9.2 when we introduced the (t, t′) notation. Let
Dtt′ be the number of customers calling in at time t to book a hotel room at time t′, and let
fptt′ be the forecast of the price of frozen orange juice concentrate in year t′ based on what
we know at time t. Finally, we might make a decision xtt′ at time t to reserve a car at time
t′. In all these instances, t is the time at which the variable is being determined, and t′ is
simply an attribute. We can write our set of orders arriving on day t as

Dt = (Dtt′)t′≥t.

Then, D1, D2, . . . , Dt, . . . is the sequence of orders, where each Dt can be orders being
called in for different times into the future.
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9.5.4 Models of information processes

Information processes come in varying degrees of complexity. Needless to say, the structure
of the information process plays a major role in the models and algorithms used to solve
the problem. Below, we describe information processes in increasing levels of complexity.

State-independent processes
A large number of problems involve processes that evolve independently of the state of
the system, such as wind (in an energy application), stock prices (in the context of small
trading decisions) and demand for a product (assuming inventories are small relative to the
market).

EXAMPLE 9.1

A publicly traded index fund has a price process that can be described (in discrete
time) as pt+1 = pt + σδ, where δ is normally distributed with mean µ, variance 1,
and σ is the standard deviation of the change over the length of the time interval.

EXAMPLE 9.2

Requests for credit card confirmations arrive according to a Poisson process with
rate λ. This means that the number of arrivals during a period of length ∆t is given
by a Poisson distribution with mean λ∆t, which is independent of the history of the
system.

The practical challenge we typically face in these applications is that we do not know
the parameters of the system. In our price process, the price may be trending upward or
downward, as determined by the parameter µ. In our customer arrival process, we need to
know the rate λ (which can also be a function of time).

State-independent information processes are attractive because they can be generated
and stored in advance, simplifying the process of testing policies. In chapter 20, we will
describe an algorithmic strategy based on the use of scenario trees which have to be created
in advance.

State/action-dependent information processes
There are many problems where the exogenous information Wt+1 depends on the state St
and/or the decision xt. Some illustrations include:

EXAMPLE 9.1

Customers arrive at an automated teller machine according to a Poisson process, but
as the line grows longer, an increasing proportion decline to join the queue (a property
known as balking in the queueing literature). The apparent arrival rate at the queue
is a process that depends on the length of the queue.

EXAMPLE 9.2
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A market with limited information may respond to price changes. If the price
drops over the course of a day, the market may interpret the change as a downward
movement, increasing sales and putting further downward pressure on the price.
Conversely, upward movement may be interpreted as a signal that people are buying
the stock, encouraging more buying behavior.

EXAMPLE 9.3

The change in the speed of wind at a wind farm depends on the current speed. If the
current speed is low, the change is likely to be an increase. If it is high, the change is
likely to be a decrease.

Exogenous information can also depend on the action. Imagine that a mutual fund is
trying to optimize the process of selling a large position in a company. If the mutual fund
makes the decision to sell a large number of shares, the effect may be to depress the stock
price because the act of selling sends a negative signal to the market. Thus, the action may
influence what would normally be an exogenous stochastic process.

State/action-dependent information processes make it impossible to pre-generate sample
outcomes when testing policies. While not a major issue, it complicates comparing policies
since we cannot fix the sample outcomes.

State-dependent information processes introduce a subtle notational complication. Fol-
lowing standard convention, the notation ω almost universally refers to a sample path.
Thus, Wt(ω) represents the exogenous information arriving between t− 1 and t when we
are following sample path ω. If we write St(ω), we mean the state we are in at time t
when we are following sample path ω, but now we have to make it clear what policy we are
following to get there. For example, we might write Sπt+1 = SM (Sπt , X

π
t (St),W

π
t+1(ω)),

where it is clear that we are using policy π to get from Sπt to Sπt+1.

Adversarial behavior*
We typically model sequential stochastic decision processes as if the exogenous information
process, which may be state (and action) dependent, is being drawn from an otherwise
unintelligent distribution with no malicious intent. However, there are many applications
where the exogenous information may come from an adversary such as a game opponent
or an attacker, who is making decisions (the exogenous information) to make our system
work as poorly as possible.

The behavior of an adversarial exogenous source requires its own model to reflect
the objective of the adversary, but the most common approach is to replace the standard
statement of Bellman’s equation,

Vt(St) = max
xt

E{Ct(St, xt) + γVt+1(St+1)|St}.

We can formulate this problem using a “min-max” formulation

Vt(St) = max
xt

min
w

(
Ct(St, xt) + γVt+1(St+1)

)
where St+1 = SM (St, xt, w). Instead of taking an expectation over all possible outcomes,
we seek the outcome w that produces the worst performance (in this case, the one that
minimizes the contribution which we are trying to maximize).
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More complex information processes*
Now consider the problem of modeling currency exchange rates. The change in the
exchange rate between one pair of currencies is usually followed quickly by changes in
others. If the Japanese yen rises relative to the U.S. dollar, it is likely that the Euro will also
rise relative to it, although not necessarily proportionally. As a result, we have a vector of
information processes that are correlated.

In addition to correlations between information processes, we can also have correlations
over time. An upward push in the exchange rate between two currencies in one day is
likely to be followed by similar changes for several days while the market responds to
new information. Sometimes the changes reflect long term problems in the economy of a
country. Such processes may be modeled using advanced statistical models which capture
correlations between processes as well as over time.

An information model can be thought of as a probability density function φt(ωt) that
gives the density (we would say the probability of ω if it were discrete) of an outcome ωt
in time t. If the problem has independent increments, we would write the density simply
as φt(ωt). If the information process is Markovian (dependent on a state variable), then we
would write it as φt(ωt|St−1).

In some cases with complex information models, it is possible to proceed without any
model at all. Instead, we can use realizations drawn from history. For example, we may
take samples of changes in exchange rates from different periods in history and assume
that these are representative of changes that may happen in the future. The value of using
samples from history is that they capture all of the properties of the real system. This is an
example of planning a system without a model of an information process.

9.5.5 Supervisory processes*

We are sometimes trying to control systems where we have access to a set of decisions
from an exogenous source. These may be decisions from history, or they may come from a
knowledgeable expert. Either way, this produces a dataset of states (Sm)nm=1 and decisions
(xm)nm=1. In some cases, we can use this information to fit a statistical model which we
use to try to predict the decision that would have been made given a state.

The nature of such a statistical model depends very much on the context, as illustrated
in the examples.

EXAMPLE 9.1

Consider our nomadic trucker where we measure his state sn (his state) and his
decision an which we represent in terms of the destination of his next move. We
could use a historical file (sm, am)nm=1 to build a probability distribution ρ(s, a)
which gives the probability that we make decision a given his state s. We can use
ρ(s, a) to predict decisions in the future.

EXAMPLE 9.2

A mutual fund manager adds xt dollars in cash at the end of day t (to be used to cover
withdrawals on day t + 1) when there are Rt dollars in cash left over at the end of
the day. We can use a series of observations of xtm and Rtm on days t1, t2, . . . , tm
to fit a model of the form X(R) = θ0 + θ1R+ θ2R

2 + θ3R
3.
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We can use supervisory processes to statistically estimate a decision function that forms
an initial policy. We can then use this policy in the context of an approximate dynamic
programming algorithm to help fit value functions that can be used to improve the decision
function. The supervisory process helps provide an initial policy that may not be perfect,
but at least is reasonable.

9.5.6 Policies in the information process*

The sequence of information (ω1, ω2, . . . , ωt) is assumed to be driven by some sort of
exogenous process. However, we are generally interested in quantities that are functions
of both exogenous information as well as the decisions. It is useful to think of decisions
as endogenous information. But where do the decisions come from? We now see that
decisions come from policies. In fact, it is useful to represent our sequence of information
and decisions as

Hπ
t = (S0, X

π
0 ,W1, S1, X

π
1 ,W2, S2, X

π
2 , . . . , X

π
t−1,Wt, St). (9.14)

Now our history is characterized by a family of functions: the information variables Wt,
the decision functions (policies)Xπ

t , and the state variables St. We see that to characterize
a particular history ht, we have to specify both the sample outcome ω as well as the policy
π. Thus, we might write a sample realization as

hπt = Hπ
t (ω).

We can think of a complete historyHπ
∞(ω) as an outcome in an expanded probability space

(if we have a finite horizon, we would denote this by Hπ
T (ω)). Let

ωπ = Hπ
∞(ω)

be an outcome in our expanded space, where ωπ is determined by ω and the policy π.
Let Ωπ be the set of all outcomes of this expanded space. The probability of an outcome
in Ωπ obviously depends on the policy we are following. Thus, computing expectations
(for example, expected costs or rewards) requires knowing the policy as well as the set
of exogenous outcomes. For this reason, if we are interested, say, in the expected costs
during time period t, some authors will write Eπt {Ct(St, xt)} to express the dependence
of the expectation on the policy. However, even if we do not explicitly index the policy, it
is important to understand that we need to know how we are making decisions if we are
going to compute expectations or other quantities.

9.6 THE TRANSITION FUNCTION

The next step in modeling a dynamic system is the specification of the transition function.
This function describes how the system evolves from one state to another as a result of
decisions and information. We begin our discussion of system dynamics by introducing
some general mathematical notation. While useful, this generic notation does not provide
much guidance into how specific problems should be modeled. We then describe how
to model the dynamics of some simple problems, followed by a more general model for
complex resources.
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9.6.1 A general model

The dynamics of our system are represented by a function that describes how the state
evolves as new information arrives and decisions are made. The dynamics of a system can
be represented in different ways. The easiest is through a simple function that works as
follows

St+1 = SM (St, X
π
t (St),Wt+1). (9.15)

The function SM (·) goes by different names such as “plant model” (literally, the model of a
physical production plant), “plant equation,” “law of motion,” “transfer function,” “system
dynamics,” “system model,” “state equations,” “transition law,” and “transition function.”
We prefer “transition function” because it is the most descriptive. We use the notation
SM (·) to reflect that this is the state transition function, which represents a model of the
dynamics of the system. Below, we reinforce the “M” superscript with other modeling
devices.

The arguments of the function follow standard notational conventions in the control
literature (state, action, information), but different authors will follow one of two conven-
tions for modeling time. While equation (9.15) is fairly common, the stochastic controls
community will write

St+1 = SM (St, xt, wt), (9.16)

where wt is random at time t.
This is a very general way of representing the dynamics of a system. In many problems,

the information Wt+1 arriving during time interval t + 1 depends on the state St at the
end of time interval t, but is conditionally independent of all prior history given St. For
example, a driver moving over a road network may only learn about the travel times on
a link from i to j when he arrives at node i. When this is the case, we say that we have
a Markov information process. When the decisions depend only on the state St, then we
have a Markov decision process. In this case, we can store the system dynamics in the form
of a one-step transition matrix using

P (s′|s, x) = The probability that St+1 = s′ given St = s and Xπ
t = x,

Pπ = Matrix of elements where P (s′|s, x) is the element in row s and
column s′ and where the decision x to be made in each state is
determined by a policy π.

There is a simple relationship between the transition function and the one-step transition
matrix. Let

1X =

{
1 X is true
0 Otherwise.

Assuming that the set of outcomes Ω is discrete, the one-step transition matrix can be
computed using

P (s′|s, x) = E{1{s′=SM (St,x,Wt+1)}|St = s}

=
∑

ωt+1∈Ωt+1

P (Wt+1 = ωt+1)1{s′=SM (St,x,ωt+1)}. (9.17)
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It is common in the field of Markov decision processes to assume that the one-step
transition is given as data. Often, it can be quickly derived (for simple problems) using
assumptions about the underlying process. For example, consider a financial asset selling
problem with state variable St = (Rt, pt) where

Rt =

{
1 we are still holding the asset,
0 the asset has been sold.

and where pt is the price at time t. We assume the price process is described by

pt = pt−1 + εt,

where εt is a random variable with distribution

εt =


+1 with probability 0.3,
0 with probability 0.6,
−1 with probability 0.1.

Assume the prices are integer and range from 1 to 100. We can number our states from 0
to 100 using

S = {(0,−), (1, 1), (1, 2), . . . , (1, 100)}.

We propose that our rule for determining when to sell the asset is of the form

Xπ(Rt, pt) =

{
sell asset if pt < p̄,
hold asset if pt ≥ p̄.

Assume that p̄ = 60. A portion of the one-step transition matrix for the rows and columns
corresponding to the state (0,−) and (1, 58), (1, 59), (1, 60), (1, 61), (1, 62) looks like

P 60 =

(0,-)
(1,58)
(1,59)
(1,60)
(1,61)
(1,62)


1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 .1 .6 .3 0
0 0 0 .1 .6 .3
0 0 0 0 .1 .9

 .
As we saw in chapter 14, this matrix plays a major role in the theory of Markov decision

processes, although its value is more limited in practical applications. By representing the
system dynamics as a one-step transition matrix, it is possible to exploit the rich theory
surrounding matrices in general and Markov chains in particular.

In engineering problems, it is far more natural to develop the transition function first.
Given this, it may be possible to compute the one-step transition matrix exactly or estimate it
using simulation. The techniques in this book do not, in general, use the one-step transition
matrix, but instead use the transition function directly. However, formulations based on the
transition matrix provide a powerful foundation for proving convergence of both exact and
approximate algorithms.

9.6.2 Model-free dynamic programming

There are many complex operational problems where we simply do not have a transition
function. Some examples include



366 MODELING DYNAMIC PROGRAMS

EXAMPLE 9.1

We are trying to find an effective policy to tax carbon to reduce CO2 emissions. We
may try increasing the carbon tax, but the dynamics of climate change are so complex
that the best we can do is wait a year and then repeat our measurements.

EXAMPLE 9.2

Uber encourages drivers to go on duty by raising prices (surge pricing). Since it is
impossible to predict how drivers will behave, it is necessary to simply raise the price
and observe how many drivers come on duty (or go off duty).

EXAMPLE 9.3

A utility managing a water reservoir can observe the level of the reservoir and control
the release of water, but the level is also affected by rainfall, river inflows, and
exchanges with ground water, which are unobservable.

These examples illustrate a problem where we do not know the dynamics, where the
system reflects the unknown utility function of Uber drivers, and unobservable exogenous
information. As a result, we either do not know the transition function itself, or there are
decisions that we cannot model, or exogenous information we cannot simulation. In all
three cases, we cannot compute the transition St+1 = SM (St, xt,Wt+1).

In such settings (which are surprisingly common), we assume that given the state St,
we make an action xt and then simply observe the next state St+1. We can put this in the
format of our original model by letting Wt+1 be the new state, and writing our transition
function as

St+1 = Wt+1.

However, it is more natural (and compact) to simply assume that our system evolves
according to

S0 → x0 → S1 → x1 → S2 → . . . .

9.6.3 The resource transition function

There are many stochastic optimization problems that can be modeled in terms of managing
“resources” where the state vector is denoted Rt. We use this notation when we want to
specifically exclude other dimensions that might be in a state variable (for example, the
challenge of making decisions to better estimate a quantity, which was first introduced in
section 8.3). If we are using Rt as the state variable, the general representation of the
transition function would be written

Rt+1 = RM (Rt, xt,Wt+1).

Our notation is exactly analogous to the notation for a general state variable St, but it is
sometimes useful to separate the modeling of resources (which are almost always controlled
by our system) from other state variables that may evolve completely exogenously.
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A simple example of a resource transition function arises in inventory planning, where
Rt is the amount of resource at time t (water in a reservoir, product on a store shelf, blood in
inventory), xt is a decision to add to (xt > 0) or subtract from (xt < 0) the inventory, and
R̂t+1 is exogenous changes (rainfall into the reservoir, theft from our product in inventory).
The resource transition function would then be written

Rt+1 = Rt + xt + R̂t+1.

9.6.4 Exogenous transitions

There are many problems where some of the state variables evolve exogenously over
time: rainfall, a stock price (assuming we cannot influence the price), the travel time on a
congested road network, and equipment failures. There are two ways of modeling these
processes.

The first models the change in the variable. If our state variable is a price pt, we might
let p̂t+1 be the change in the price between t and t+ 1, giving us the transition function

pt+1 = pt + p̂t+1.

This has the advantage of giving us a clean transition function that describes how the
price evolves over time. With this notation, we would write Wt+1 = (p̂t+1), so that the
exogenous information is distinct from the state variable.

Alternatively, we could simply assume that the new state pt+1 is the exogenous infor-
mation. This means that we would write Wt+1 = pt+1 which means that we do not have a
proper transition function to model the evolution of this particular state variable.

9.7 THE OBJECTIVE FUNCTION

The final dimension of our model is the objective function. We divide our discussion
between creating performance metrics for evaluating a decision xt, and evaluating the
policy Xπ(St).

9.7.1 The performance metric

Performance metrics are described using a variety of terms such as

• Rewards, profits, revenues, costs (business)

• Gains, losses (engineering)

• Strength, conductivity, diffusivity (materials science)

• Tolerance, toxicity, effectiveness (health)

• Stability, reliability (engineering)

• Risk, volatility (finance)

• Utility (economics)

• Errors (machine learning)
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• Time (to complete a task)

These differ primarily in terms of units and whether we are minimizing or maximizing.
These are modeled using a variety of notation systems such as c for cost, r for revenue or
reward, g for gain, L or ` for loss, U for utility, and ρ(X) as a risk measure for a random
variable X . We use two notations: F (·) as perhaps the most widely used notation for a
function to be minimized or maximized, and C(·) for cost or contribution.

More interesting is what these functions depend on. Depending on the setting, we might
use the following metrics:

F (x,W ) = A general performance metric (to be minimized or maximized) that
depends only on the decision x and information W that is revealed
after we choose x.

C(St, xt) = A cost/contribution function that depends on the stateSt and decision
xt.

C(St, xt,Wt+1) = A cost/contribution function that depends on the state St and the
decision xt, and the information Wt+1 that is revealed after xt is
determined.

C(St, xt, St+1) = A cost/contribution function that depends on the state St and the
decision xt, after which we observe the subsequent state St+1.

We have used the notation F (x,W ) (as we did in chapters 5 and 7) when our problem does
not depend on the state. However, as we transition to state-dependent problems, we will
use C(St, xt) (or C(St, xt,Wt+1) or C(St, xt, St+1)) to communicate that the objective
function (or constraints or expectation) depend on the state. Readers may choose to use
any notation such as r(·) for reward, g(·) for gain, L(·) for loss, or U(·) for utility.

The state-dependent representations all depend on the state St (or Sn if we wish), but it
is useful to say what this means. When we make a decision, we need to work with a cost
function and possibly constraints where we express the dependence on St by writing Xt.
For example, we might move money in a mutual fund to or from cash, buying or selling an
index that is at price pt. Let Rt be the amount of available cash, which evolves as people
make deposits or withdrawals. The amount of cash could be defined by

Rcasht+1 = Rcasht + xt + R̂t+1, (9.18)

Rindext+1 = Rindext − xt. (9.19)

where xt > 0 is the amount of money moved into cash by selling the index fund, while
xt < 0 represents money from from cash into the index fund. We have to observe the
constraints

xt ≤ Rindext ,

−xt ≤ Rcasht .

The money we make is based on what we receive from buying or selling the index fund,
which we would write as

C(St, xt) = ptxt,

where the price evolves according to the model

pt+1 = θ0pt + θ1pt−1 + εt+1.
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For this problem, our state variable would be St = (Rt, pt, pt−1). In this problem, the
contribution function itself depends on the state through the prices, while the constraints
(Rindext and Rcasht ) also vary dynamically and are part of the state.

Now imagine that we have to make the decision to buy or sell shares of our index fund,
but the price we get is based on the closing price, which is not known when we make our
decision. In this case, we would write our contribution function as

C(St, xt,Wt+1) = pt+1xt,

whereWt+1 = p̂t+1 = pt+1−pt. We note that our policyXπ(St) for making the decision
xt is not allowed to use Wt+1; rather, we have to wait until time t + 1 before evaluating
the quality of the decision.

Finally, consider a model of a hydroelectric reservoir where we have to manage the
inventory in the reservoir, but where the dynamics describing its evolution is much more
complicated than equations such as (9.18) and (9.19). In this setting, we can observe the
reservoir level Rt, then make a decision of how much water to release out of the reservoir
xt, after which we observe the updated reservoir level Rt+1. This is similar to observing
an updated price pt+1. For these problems, we might let Wt+1 be the new state, in which
case our “transition equations” are just

St+1 = Wt+1.

Alternatively, we may find it more natural to write the contribution functionC(St, xt, St+1),
which is fairly common.

It should be apparent by now that we can model all the problems using the notation
C(St, xt,Wt+1), since this covers functions such as F (x,W ) that are not a function of the
state, or C(St, xt) which are not a function of Wt+1. Finally, if we let Wt+1 = St+1, then
we also include C(St, xt, St+1).

9.7.2 Finding the best policy

We close our first pass through modeling by giving the objective function for finding the
best policy. In chapter 7, we made the distinction between terminal reward and cumulative
reward formulations. For example, we might be interested in the value of an implementation
decision xπ,N , which we can write

Fπ(S0) = ES0
EW1,...,WT |S0

E
Ŵ |S0

{F (xπ,T , Ŵ )|S0},

where W 1, . . . ,WN represent the observations we make while learning our decision (or
design) xπ,T , while Ŵ is the random variable we use for testing purposes.

If we wish to maximize cumulative rewards (where we have to learn by doing), we
would write

Fπ(S0) = ES0EW1,...,WT |S0

{
T∑
t=0

F (Xπ(St),Wt+1)|S0

}
.

For state-dependent problems, we can write the cumulative reward formulation by
replacing F (Xπ(St),Wt+1) with C(St, X

π(St),Wt+1).
We can write our terminal reward formulation if we use a time-dependent contribution

function Ct(St, Xπ(St),Wt+1) defined by

Ct(St, X
π(St),Wt+1) =

{
0 t < T ,

F (xπ,T , Ŵ ) t = T .
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where Ŵ is the random variable we use for testing a design for offline (terminal reward)
settings. This allows us to write

Fπ(S0) = ES0EW1,...,WT ,WT+1|S0

{
T∑
t=0

Ct(St, X
π(St),Wt+1)|S0

}
= ES0

EW1,...,WT ,WT+1|S0
CT (ST , X

π(ST ),WT+1)

where we assume thatWT+1 = Ŵ . If we are using the cumulative reward objective,WT+1

is just ignored since CT (ST , X
π(ST ),WT+1) = CT (ST , X

π(ST )) in this setting.
Thus, we see that if we write our contribution function as Ct(St, xt,Wt+1)

(or Cn(Sn, xn,Wn+1) if we are indexing by iteration n), then we can model any of
the situations listed above. For this reason, we propose as our universal objective function
the following:

max
π∈Π

ES0
EW1,...,WT+1|S0

{
T∑
t=0

Ct(St, X
π
t (St),Wt+1)|S0

}
. (9.20)

We refer to equation (9.20) as our universal objective function since we can model
state-dependent and state-independent problems, covering both final reward and cumulative
reward. We revisit these different problem classes in section 9.10 below. Next, we illustrate
our modeling framework using an energy storage problem.

9.8 ILLUSTRATION: AN ENERGY STORAGE MODEL

We are going to use a simple energy storage application to illustrate the process of modeling
a dynamic program, following the canonical framework described in this chapter, consisting
of states, actions, exogenous information, transition function and objective function. While
we list the five elements in this order, we are going to describe the state variable last, since
it consists of all the information needed to compute the cost function, decision function,
and transition function. For this purpose, it is more natural to describe these functions first,
and then pull the necessary information together into the state variable.

Decision/control variable:
In our storage system, letG refer to grid,E refer to our renewable energy,B is the “battery”
(storage), andL be the load (the demand for power). We would then designate, for example,
the flow of energy from the grid to the load as xGLt . Our control is the vector

xt = (xGLt , xGBt , xELt , xEBt , xBLt ).

The decisions are subject to several constraints:

xELt + xEBt ≤ Et, (9.21)
xGLt + xELt + ηtx

BL
t = Lt, (9.22)
xBLt ≤ Rt, (9.23)

xEB , xGB , xBL ≤ ρchrg, (9.24)
xGLt , xELt , xEBt , xBLt ≥ 0. (9.25)

Equation (9.21) limits the energy from renewables to what is being generated, while (9.22)
limits the amount that we can send to the customer by the load at that point in time.
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Equation (9.23) limits what we can draw from the battery to what is in the battery at time
t. Equation (9.24) limits the charge/discharge rate for the battery (we assume that ρchrg is
a fixed parameter). Note that we apply nonnegativity to every flow variable except xGBt ,
since we can sell to the grid. We refer to the feasible region defined by (9.21)-(9.25) as Xt,
where this is implicitly a function of St.

If we use a lookahead policy, we will need any available forecasts. We represent our
forecast of loads using

fLtt′ = Forecast of the load Lt′ at time t′ > t given what we know at time t,
= EtLt′ ,

fLt = (fLtt′)t′>t.

Similarly, we might have forecasts of energy from renewables fEt , forecasts of exogenous
inputs fRt (represented as R̂t below), and forecasts of losses fηt . We can represent our set
of forecasts using

ft = (fLt , f
E
t , f

R
t , f

η
t ).

Exogenous information:
Our problem evolves in the presence of the following exogenous information processes:

R̂t = Exogenous change to the energy stored between t − 1 and t (e.g.,
rainfall, chemical leakage),

εpt = A noise term in the transition equation for prices (see below) that is
revealed at time t,

Êt = The change in energy produced from renewable sources between
t− 1 and t,

L̂t = Deviation from the forecasted load between t− 1 and t,
η̂t = Change in the rate of energy conversion loss (e.g., due to temperature)

between t− 1 and t.

We assume that our vector of forecasts ft is provided by an exogenous (commercial)
forecasting service, so we are given the forecast directly (rather than the change in the
forecast). Our exogenous information Wt is then

Wt = (R̂t, ε
p
t , Êt, L̂t, η̂t, ft).

To complete the model, we would have to either provide the probability distribution for the
exogenous variables, or to specify the source for actual observations.

Transition function:
The equations describing the evolution of the state variables are given by

Rt+1 = Rt + ηt+1(xGBt + xEBt )− xBLt + R̂t+1, (9.26)
pt+1 = θ0pt + θ1pt−1 + θ2pt−2 + εpt+1, (9.27)

Et+1 = Et + Êt+1, (9.28)
Lt+1 = Lt + L̂t+1, (9.29)
ηt+1 = ηt + η̂t+1. (9.30)

In equation (9.27), εpt+1 is a random variable independent of any history. These equations
represent the transition function SM (St, xt,Wt+1). Note that our resource transition
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function depends on stochastic losses ηt+1 (such as evaporation) and exogenous input
R̂t+1 (such as rainfall) that only become known at time t+ 1.

Objective function:
Our cost function captures what we pay (or receive) when we buy from or discharge to the
grid at the current price pt

C(St, xt) = ptx
GB
t ,

where we pay money if we are charging our device (xt > 0) and we receive money if we
are selling back to the grid (xt < 0).

The objective function is the canonical objective originally given in equation (14.1):

min
π∈Π

Eπ
T∑
t=0

C(St, X
π
t (St)), (9.31)

where St+1 = SM (St, X
π
t (St),Wt+1), which is given by equations (9.26)-(9.30).

We are now ready to define our state variable.
State variable: We are now ready to pull all the information we need, which defines the
state variable. The decision function needs the following information in the constraints:

Rt = The amount of energy in storage at time t,
Et = The level of energy from renewables at time t,
Lt = The load at time t,
ηt = The rate of energy loss (e.g., due to evaporation or temperature)

between t− 1 and t.

The transition function depends on the current price pt, as well as the two recent prices
pt−1 and pt−2.

We would also point out that the transition function generally needs access to forecasts.
For example, we might sample the load Lt+1 using

Lt+1 = fLt,t+1 + εLt+1.

In addition, we have to update the entire set of foreward forecasts using

ft+1,t′ = ftt′ + εt′ .

Thus, forecasts are needed for the transition function, in addition to possibly being needed
in a lookahead policy.

The cost function needs only pt:

pt = The price of electricity from the grid at time t.

We can now pull all of the necessary information together to form our state variable

St =
(
Rt, (pt, pt−1, pt−2), Et, Lt, ηt, ft

)
.
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9.9 BASE MODELS AND LOOKAHEAD MODELS

There is a subtle but critical distinction between a “model” of a real problem, and what we
will come to know as a “lookahead model,” which is an approximation which is used to
peek into the future (typically with various convenient approximations) for the purpose of
making a decision now. We are going to describe lookahead models in far greater depth in
chapter 20, but we feel that it is useful to make the distinction now.

Using the framework presented in this chapter, we can write almost any sequential
decision process in the compact form

maxπ∈ΠEπ
{

T∑
t=0

Ct(St, X
π
t (St),Wt+1)|S0

}

where St+1 = SM (St, X
π
t (St),Wt+1). Of course, we have to specify our model for

(Wt)
T+1
t=0 in addition to defining the state variable (later we will address the issue of

identify our class of policies).
For the moment, we view (9.32) (along with the transition function) as “the problem”

that we are trying to solve. If we find an effective policy, we assume we have solved “the
problem.” However, we are going to learn that in dynamic systems, we are often solving
a problem at some time t over a horizon (t, . . . , t + H), where we simply set t = 0 and
number time periods accordingly. The question is: are we interested in the solution over
the entire planning horizon, or just the decision in the first time period?

Given the widespread use of lookahead models, we need a term to identify when we are
presenting a model of a problem we wish to solve. We might use the term “real model”
to communicate that this is our model of the real world. Statisticians use the term “true
model,” but this seems to assume that we have somehow perfectly modeled a real problem,
which is never the case. Some authors use the term “nominal model,” but we feel that this
is not sufficiently descriptive.

In this book, we use the term base model since we feel that this communicates the idea
that this is the model we wish to solve. We take the position that regardless of any modeling
approximations that have been introduced (either for reasons of tractability or availability
of data), this is “the” model we are trying to solve.

Later, we are going to introduce approximations of our base model, which may still be
quite difficult to solve. Most important will be the use of lookahead models, which we
discuss in depth in chapter 20.

9.10 A CLASSIFICATION OF PROBLEMS*

It is useful to contrast problems based on two key dimensions: First, whether the objective
function is offline (terminal reward) or online (cumulative reward), and second, whether the
objective function is state-independent (learning problems, which we covered in chapters
5 and 7) or state-dependent (traditional dynamic programs), which we began treating in
chapter 8, and which will be the focus of the remaining chapters.

This produces four problem classes which are depicted in table 9.2. Moving clockwise
around the table, starting from the upper left-hand corner:

Class 1) State-independent, terminal reward - This describes classical search problems
where we are trying to find the best algorithm (which we call a policy π) for finding
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Offline
Terminal reward

Online
Cumulative reward

State
independent

problems

maxπ E{F (xπ,N ,W )|S0}
Stochastic search

(1)

maxπ E{
∑N−1
n=0 F (Xπ(Sn),Wn+1)|S0}

Multiarmed bandit problem
(2)

State
dependent
problems

maxπlrn E{C(S,Xπimp (S|θimp),W )|S0}
Offline dynamic programming

(4)

maxπ E{
∑T
t=0 C(St, Xπ(St),Wt+1)|S0}

Online dynamic programming
(3)

Table 9.2 Comparison of formulations for state-independent (learning) vs. state-dependent
problems, and offline (terminal reward) and online (cumulative reward).

the best solution xπ,N within our budget N . After n experiments the state Sn

captures only our belief state about the function EF (x,W ), and our decisions are
made with a policy (or algorithm) xn = Xπ(Sn). We can write this problem as

max
π

E{F (xπ,N , Ŵ )|S0} = ES0EW 1,...,WN |S0E
Ŵ |S0F (xπ,N , Ŵ ), (9.32)

whereW 1, . . . ,WN are the observations ofW while learning the functionEF (x,W ),
and Ŵ is the random variable used for testing the final design xπ,N . The distin-
guishing characteristics of this problem are a) that the function F (x,W ) depends
only on x and W , and not on the state Sn, and b) that we evaluate our policy
Xπ(S) only after we have exhausted our budget of N experiments. We do allow
the function F (x,W ), the observationsW 1, . . . ,WN and the random variable Ŵ to
depend on the initial state S0, which includes any deterministic parameters, as well
as probabilistic information (such as a Bayesian prior) that describes any unknown
parameters (such as how the market responds to price).

Class 2) State-independent, cumulative reward - Here we are looking for the best policy
that learns while it optimizes. This means that we are trying to maximize the sum
of the rewards received within our budget. This is the classic multiarmed bandit
problem that we first saw in chapter 7 if the decisions x were discrete and we did
not have access to derivatives (but we are not insisting on these limitations). We can
write the problem as

max
π

E

{
N−1∑
n=0

F (Xπ(Sn),Wn+1)|S0

}
= ES0EW1,...,WN |S0

N−1∑
n=0

F (Xπ(Sn),Wn+1).

(9.33)

Class 3) State-dependent, cumulative reward - We now transition to problems where we
are maximizing contributions that depend on the state variable, the decision, and
possibly (but not always) random information that arrives after we make a decision
(if it arrived before, it would be included in the state variable). For this reason,
we are going to switch from our notation F (x,W ) to our notation C(S, x,W ) (or,
in a time-indexed environment, C(St, xt,Wt+1)). As with the multiarmed bandit
problem (or more generally, Class (2) problems), we want to find a policy that learns
while implementing. These problems can be written
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max
π

E

{
T∑
t=0

C(St, X
π(St),Wt+1)|S0

}
= ES0

EW1,...,WT |S0

{
T∑
t=0

C(St, X
π(St),Wt+1)|S0

}
.

(9.34)

State variables in this problem class may include any of the following:

• Variables that are controlled (or influenced) by decisions (such as inventory
or the location of a sensor on a graph). These variables directly affect the
contribution function (such as price) or the constraints (such as the inventory).

• Variables that evolve exogenously (such as the wind speed or price of an asset).

• Variables that capture our belief about a parameter that are only used by the
policy.

When we consider that our state St may include a controllable physical state Rt,
exogenous information It and/or a belief state Bt, we see that this covers a very
broad range of problems. The key feature here is that our policy has to maximize
cumulative contributions as we progress, which may include learning (if there is a
belief state).

Class 4) State-dependent, terminal reward - For our state-independent function F (x,W )
we were looking for the best policy to learn the decision xπ,N to be implemented.
In this setting, we can think of the policy as a learning policy, while xπ,N is the
implementation decision. In the state-dependent case, the implementation decision
becomes one that depends on the state (at least, part of the state), which is a function
we call the implementation policy. We designate the implementation policy by
Xπimp(S|θimp), which we write as depending on a set of parameters θimp which have
to be learned. We designate the learning policy for learning θimp by Θπlrn(S|θlrn)

which proceeds by giving us parameters θimp,n = Θπlrn(Sn|θlrn). The problem
can be written

max
πlrn

E{C(S,Xπimpl(S|θimp), Ŵ )|S0} =

ES0Eπ
lrn

W1,...,WN |S0Eπ
imp

S|S0 EŴ |S0C(S,Xπimpl(S|θimp), Ŵ ). (9.35)

where W 1, . . . ,WN represents the observations made while using our budget of N
experiments to learn a policy, and Ŵ is the random variable observed when evaluating
the policy at the end. We use the expectation operator Eπlrn indexed by the learning
policy when the expectation is over a random variable whose distribution is affected
by the learning policy.

The learning policy could be a stochastic gradient algorithm to learn the parameters
θimp, or it could be one of our derivative-free methods such as interval estimation
or upper confidence bounding. The learning policy could be algorithms for learning
value functions such as Q-learning (see equations (2.16)-(2.17) in chapter 2), or the
parameters of any of the derivative-free search algorithms in chapter 7.

We typically cannot compute the expectation EπimpS since it depends on the imple-
mentation policy which in turn depends on the learning policy. As an alternative,
we can run a simulation over a horizon t = 0, . . . , T and then divide by T to get an
average contribution per unit time. Let Wn = (Wn

1 , . . . ,W
n
T ) be a simulation over
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our horizon. This allows us to write our learning problem as

max
πlrn

ES0Eπ
imp

((Wn
t )Tt=0)N

n=0
|S0

(
Eπ

imp

(Ŵt)
T
t=0|S0

1

T

T−1∑
t=0

C(St, X
πimp(St|θimp), Ŵt+1)

)
.

(9.36)

This parallels class (1) problems. We are searching over learning policies which
determines the implementation policy through θimp = Θπlrn(S|θlrn), where the
simulation over time replaces F (x,W ) in the state-independent formulation. The
sequence (Wn

t )Tt=0, n = 1, . . . , N replaces the sequenceW 1, . . . ,WN for the state-
independent case, where we start at stateS0 = S0. We then do our final evaluation by
taking an expectation over (Ŵt)

T
t=0, where we again assume we start our simulations

at S0 = S0.

9.11 POLICY EVALUATION*

While it is certainly useful to characterize these four problem classes, it is an entirely
different matter to compute the expectations in equations (9.32)-(9.36). The best way
to approach this task (in fact, the best way to actually understand the expectations) is to
simulate them. In this section we describe how to approximate each expectation using
simulation.

We begin by fixing a policy Xπ(St|θ) parameterized by some vector θ, which can be
anything including a learning policy such as Thompson sampling, a stochastic gradient
algorithm with a particular stepsize policy, or a direct lookahead policy. In problem class
(1), Xπ(St|θ) is a pure learning policy which learns an implementation decision xπ,N (θ).
In classes (2) and (3), it is a policy where we learn as we implement. In class (4), we use
a learning policy Θπlrn(St|θlrn) to learn the parameter θimp of an implementation policy
Xπimp(St|θimp) where θimp = Θπlrn(θlrn) depends on the learning policy.

Throughout, we are going to use θ (or θlrn) as a (possibly vector-valued) parameter that
controls our learning policy (for classes (1) and (4)) or the implementation policy (possibly
with learning) for classes (2) and (3). The vector θ (or θlrn) might be the parameters
governing the behavior of any adaptive learning algorithm.

We now need to evaluate how well this policy works. We start with state S0 if we are
in problem classes (1) or (4), or S0 if we are in problem class (3), and S0 or S0 if we
are in problem class (2). From the initial state, we pick initial values of any parameters,
either because they are fixed, or by drawing them from an assumed distribution (that is, a
Bayesian prior).

We next address the process of simulating a policy for each of the four problem class.

Class 1) State-independent, final reward - From an initial state S0, we use our (learning)
policy to make decision x0 = Xπ(S0|θ), and then observe outcome W 1, producing
an updated state S1 (in this problem, Sn is a pure knowledge state). The parameter
θ controls the behavior of our learning policy. We repeat this until our budget is
depleted, during which we observe the sequence W 1(ω), . . . ,WN (ω), where we let
ω represent a particular sample path. At the end we learn state SN , from which
we find our best solution (the final design) xπ,N , which we write as xπ,N (θ|ω) to
express its dependence on the learning policy π (parameterized by θ) and the sample
path ω.
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We then evaluate xπ,N (θ|ω) by simulating E
Ŵ
F (xπ,N (θ|ω), Ŵ ) by repeatedly

sampling from Ŵ to get sampled estimates of E
Ŵ
F (xπ,N (θ|ω), Ŵ ). Let Ŵ (ψ) be

a particular realization of Ŵ . A sampled estimate of the policy π (which we assume
is parameterized by θ) is given by

Fπ(θ|ω, ψ) = F (xπ,N (θ|ω), Ŵ (ψ)). (9.37)

We now average over a set of K samples of ω, and L samples of ψ, giving us

F
π
(θ) =

1

K

1

L

K∑
k=1

L∑
`=1

Fπ(θ|ωk, ψ`). (9.38)

Class 2) State-independent, cumulative reward - This problem can be interpreted in two
ways. As the cumulative reward version of problem class (1), we simulate our policy
for N iterations, giving us the sequence (S0, x0,W 1, . . . , xN−1,WN , SN ). Here,
we accumulate our rewards, producing a sampled estimate

Fπ(θ|ω) =

N−1∑
n=0

F (Xπ(Sn|θ),Wn+1(ω)). (9.39)

Unlike class (1), we evaluate our policy as we go, avoiding the need for the final step
at the end. We would then compute an average using

F
π
(θ) =

1

K

K∑
k=1

Fπ(θ|ωk), (9.40)

over a sample of K observations.

We can also recast this problem as simulating over time, where we just replace Wn

with Wt and Sn with St.

Class 3) State-dependent, cumulative reward - This is the state-dependent version of prob-
lem class (2), which we model as evolving over time. Starting in stateS0, we simulate
the policy much as we did in equation (9.39) which is given by

Fπ(θ|ω) =

T−1∑
t=0

C(St(ω), Xπ(St(ω)|θ),Wt+1(ω)). (9.41)

We then average over sample paths to obtain

F
π
(θ) =

1

K

K∑
k=1

Fπ(θ|ωk). (9.42)

Class 4) State-dependent, final reward - We now have a hybrid of problem classes (1) and
(3), where we use a learning policy Θπlrn(S|θlrn) to learn the parameters of an im-
plementation policyXπimp(St|θimp), where the parameter θimp = Θπlrn(θlrn) that
determines the behavior of the implementation policy depends on the learning policy
πlrn and its tunable parameters θlrn. We then have to evaluate the implementation
policy, just as we evaluated the final design xπ,N (θ) in class (1), where xπ,N (θ) is
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the implementation decision that depends on the learning policy π and its parameters
θ.

In class (1), we evaluated the implementation decision xπ,N (θ) by simulating Ŵ to
obtain estimates of F (xπ,N , Ŵ ). Now we have to take an expectation over the state
S which we do by simulating our implementation policyXπimp(St|θimp) starting in
state S0 until the end of our horizon ST . One simulation from 0 to T is comparable
to an evaluation of F (x,W ). This means that a sample path ω, which in (1) was one
observation ofW1, . . . ,WT , is an observation of (Wn

t , t = 1, . . . , T ), n = 0, . . . , N .
This observation then produces the implementation policyXπimp(St|θimp) (whereas
in class (1) problems it produced the implementation decision xπ,N (θ|ω)).

To simulate the value of the policy, we simulate one last set of observations
Ŵ1(ψ), . . . , ŴT (ψ) which, combined with our implementation policy which we
write as Xπimp,N (St|θimp, ω) produces a sequence of states St(ψ), giving us the
estimate

Fπ(θlrn|ω, ψ) =
1

T

T∑
t=0

C(St(ψ), Xπimp(St(ψ)|θimp, ω), Ŵt(ψ)), (9.43)

where we need to remember that θimp = Θπlrn(θlrn). We finally average over a set
of K samples of ω, and L samples of ψ, giving us

F
π
(θlrn) =

1

K

1

L

K∑
k=1

L∑
`=1

Fπ(θlrn|ωk, ψ`), (9.44)

We now have a way of computing the performance of a policy F
π
(θ), which may be

a learning policy for classes (1) and (4), or an implementation (and learning) policy for
classes (2) and (3).

9.12 ADVANCED PROBABILISTIC MODELING CONCEPTS**

Dynamic programs introduce some very subtle issues when bridging with classical proba-
bility theory. This material is not important for readers who just want to focus on models
and algorithms. However, understanding how the probability community thinks of stochas-
tic dynamic programs provides a fresh perspective that brings a deep pool of theory from
the probability community.

9.12.1 A measure-theoretic view of information

For researchers interested in proving theorems or reading theoretical research articles, it is
useful to have a more fundamental understanding of information.

When we work with random information processes and uncertainty, it is standard in the
probability community to define a probability space, which consists of three elements. The
first is the set of outcomes Ω, which is generally assumed to represent all possible outcomes
of the information process (actually, Ω can include outcomes that can never happen). If
these outcomes are discrete, then all we would need is the probability of each outcome
p(ω).
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It is nice to have a terminology that allows for continuous quantities. We want to define
the probabilities of our events, but if ω is continuous, we cannot talk about the probability of
an outcome ω. However we can talk about a set of outcomes E that represent some specific
event (if our information is a price, the event E could be all the prices that constitute the
event that the price is greater than some number). In this case, we can define the probability
of an outcome E by integrating the density function p(ω) over all ω in the event E .

Probabilists handle continuous outcomes by defining a set of events F, which is literally
a “set of sets” because each element in F is itself a set of outcomes in Ω. This is the reason
we resort to the script font F as opposed to our calligraphic font for sets; it is easy to read
E as “calligraphic E” and F as “script F.” The set F has the property that if an event E is
in F, then its complement Ω \ E is in F, and the union of any two events EX ∪ EY in F
is also in F. F is called a “sigma-algebra” (which may be written “σ-algebra”), and is a
countable union of events in Ω. An understanding of sigma-algebras is not important for
computational work, but can be useful in certain types of proofs, as we see in the “why does
it work” sections at the end of several chapters. Sigma-algebras are without question one
of the more arcane devices used by the probability community, but once they are mastered,
they are a powerful theoretical tool (but useless computationally).

Finally, it is required that we specify a probability measure denoted P , which gives the
probability (or density) of an outcome ω which can then be used to compute the probability
of an event in F.

We can now define a formal probability space for our exogenous information process
as (Ω,F,P), sometimes known as the “holy trinity” in probability. If we wish to take an
expectation of some quantity that depends on the information, say Ef(W ), then we would
sum (or integrate) over the set ω multiplied by the probability (or density) P .

This notation is especially powerful for “static” problems where there are two points in
time: before we see the random variable W , and after. This creates a challenge when we
have sequential problems where information evolves over time. Probabilists have adapted
the original concept of probability spaces (Ω,F,P) by manipulating the set of events F.

It is important to emphasize that ω represents all the information that will become
available, over all time periods. As a rule, we are solving a problem at time t, which
means we do not have the information that will become available after time t. To handle
this, we let Ft be the sigma-algebra representing events that can be created using only the
information up to time t. To illustrate, consider an information process Wt consisting of a
single 0 or 1 in each time period. Wt may be the information that a customer purchases a
jet aircraft, or the event that an expensive component in an electrical network fails. If we
look over three time periods, there are eight possible outcomes, as shown in table 9.3.

Let E{W1} be the set of outcomes ω that satisfy some logical condition onW1. If we are
at time t = 1, we only see W1. The event W1 = 0 would be written

E{W1=0} = {ω|W1 = 0} = {1, 2, 3, 4}.

The sigma-algebra F1 would consist of the events

{E{W1=0}, E{W1=1}, E{W1∈{0,1}}, E{W1 /∈{0,1}}}.

Now assume that we are at time t = 2 and have access toW1 andW2. With this information,
we are able to divide our outcomes Ω into finer subsets. Our history H2 consists of the
elementary events H2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Let h2 = (0, 1) be an element of
H2. The event E{h2=(0,1)} = {3, 4}. At time t = 1, we could not tell the difference
between outcomes 1, 2, 3, and 4; now that we are at time 2, we can differentiate between
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Outcome Time period

ω 1 2 3

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

Table 9.3 Set of demand outcomes

ω ∈ {1, 2} and ω ∈ {3, 4}. The sigma-algebra F2 consists of all the events Eh2 , h2 ∈ H2,
along with all possible unions and complements.

Another event in F2 is {ω|(W1,W2) = (0, 0)} = {1, 2}. A third event in F2 is the
union of these two events, which consists of ω = {1, 2, 3, 4}which, of course, is one of the
events in F1. In fact, every event in F1 is an event in F2, but not the other way around. The
reason is that the additional information from the second time period allows us to divide Ω
into finer set of subsets. Since F2 consists of all unions (and complements), we can always
take the union of events, which is the same as ignoring a piece of information. By contrast,
we cannot divide F1 into a finer subsets. The extra information in F2 allows us to filter
Ω into a finer set of subsets than was possible when we only had the information through
the first time period. If we are in time period 3, F will consist of each of the individual
elements in Ω as well as all the unions needed to create the same events in F2 and F1.

From this example, we see that more information (that is, the ability to see more elements
of W1,W2, . . .) allows us to divide Ω into finer-grained subsets. For this reason, we can
always write Ft−1 ⊆ Ft. Ft always consists of every event in Ft−1 in addition to other
finer events. As a result of this property, Ft is termed a filtration. It is because of this
interpretation that the sigma-algebras are typically represented using the script letter F
(which literally stands for filtration) rather the more natural letter H (which stands for
history). The fancy font used to denote a sigma-algebra is used to designate that it is a set
of sets (rather than just a set).

It is always assumed that information processes satisfy Ft−1 ⊆ Ft. Interestingly, this is
not always the case in practice. The property that information forms a filtration requires
that we never “forget” anything. In real applications, this is not always true. Assume,
for example, that we are doing forecasting using a moving average. This means that our
forecast ft might be written as ft = (1/T )

∑T
t′=1 D̂t−t′ . Such a forecasting process

“forgets” information that is older than T time periods.
By far the most widespread use of the notation Ft is to represent the information we

know at time t. For example, let Wt+1 be the information that we will learn at time t+ 1.
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If we are sitting at time t, we might use a forecast fWt,t+1 which would be written

fWt,t+1 = E{Wt+1|Ft}. (9.45)

Conditioning on Ft means conditioning on what we know at time t which some authors
will write

fWt,t+1 = EtWt+1. (9.46)

Equations (9.45) and (9.46) are equivalent, and both would be read “the conditional expec-
tation of Wt+1 given what we know at time t.”

If we do not include this conditioning, then this is the same as an expectation we would
make at time 0, which we could write

fW0,t+1 = EWt+1

= E{Wt+1|F0}.

There are numerous textbooks on measure theory. For a nice introduction to measure-
theoretic thinking (and in particular the value of measure-theoretic thinking), see Pollard
(2002) for an introduction to measure-theoretic probability, or the advanced text Cinlar
(2011). For an illustration of mathematics using this notation, see the “More modern
proof” of convergence for stochastic gradient algorithms in section 5.8.3.

9.12.2 Conditional expectations for sequential decision problems**

In this section, we are going to address a fundamental problem with the mathematics
of conditional expectation. If you do not have a problem with the expectation form of
Bellman’s equation (which we have replicated in equation (9.48) below), this section will
not add any value to your understanding of dynamic programming. But if you are bothered
by our habit of conditioning on the random variable St, read on. In particular, if you are
amused by some of the subtle arguments that arise among theoretical probabilists, you may
enjoy this section.

By now we have presented Bellman’s optimality equation in several forms. In chapter
2, we wrote the form that is most widely seen in the literature where it is written

Vt(St) = max
x∈Xs

(
r(St, x) +

∑
s′∈S

P (s′|St, x)Vt+1(s′)
)
. (9.47)

Here, we assume that the one-step transition matrix P (s′|St, x) is known (in practice this
is typically very hard to compute). In chapter 7, we write it in the equivalent expectation
form (equation (7.19)) using

Vt(St) = max
xt∈Xt

(
Ct(St, xt) + γE{Vt+1(St+1(St, xt,Wt+1))|St}

)
. (9.48)

Some students of probability object to this form because it involves writing an expectation
as conditional on a random variable instead of conditioning on a filtration as we did in
equation (9.45). The problem with conditioning on a filtration is that while it specifies that
we are conditioning on the events we can identify at time t, it does not specify precisely
what is known, which is what we need when writing Bellman’s equation in equation (9.48).

A well-trained probabilist knows that conditioning on the filtration Ft and conditioning
on the state St is the same, since in their view, both are random variables. The state St can
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only take on values in the set Ft. However, when we are solving problems computationally,
the state St in (9.48) is viewed as a number (possibly a vector of numbers) which is known
at time t.

This highlights a fundamental difference in perspectives between probabilists who think
about equations such as Bellman’s equation mathematically, and scientists and engineers
who are interested in computation. The probabilist can be viewed as someone who is sitting
at time 0 in which case St is a random variable. The engineer or scientist (or computer
program) is sitting at time t where St is a number (but it can be any number).

Since probabilists own the theoretical literature on this topic, it is useful to understand
how they view a problem. We then offer a bridge from this classical thinking, on which all
of probability is based, to the needs of modeling sequential decision problems.

Probabilists represent random phenomena by first defining an outcome ω that is a
member of a set Ω that captures every outcome that might happen. Above we said that
the probabilist interprets the state St as if they are sitting at time 0, which means St is a
random variable. Actually, the probabilist can be viewed as sitting at time T so she sees
the entire set of outcomes Ω (recall that indexing on ω means that you get to see an entire
sample path). However, when the probabilist conditions on Ft, that means she is wearing
glasses that allows her to only see the events that can be identified using what is known at
time t. So, when conditioning on Ft, the state St (which is really a function of ω) is only
allowed to take on outcomes based on events in Ft.

This notation (which is used universally in probability theory) causes two problems in
the context of dynamic programs. First, there are times when we would like to write a
decision xt at time t when following a sample path ω. If we write xt(ω), then it means that
our decision not only knows that we have been following the sample path ω up to time t,
but it also “reveals” the entire sample path, allowing xt(ω) to “see” into the future. This
causes problems with a popular formulation known as stochastic programming (see chapter
20 for a more thorough discussion).

The second problem, which is more important to us at the moment, is that it complicates
taking expectations at some time t, when we are in a state St. To a probabilist, the
expectation E(...) always represents a summation (or integral) over the event space (Ω,F).
If we are at time t, probabilists simply replace F, which captures every possible event that
can be defined using the outcomes in Ω, with Ft, which is the set of all events (that is, the
sigma-algebra) that can be defined using just the information available up to time t, given
by W1,W2, . . . ,Wt. This is sometimes written

Ft = σ(W1, . . . ,Wt),

where we would say that Ft is the sigma-algebra generated by W1, . . . ,Wt. We note that
Ft ⊆ Ft+1, since the additional information in Wt+1 allows us to further divide Ft into
a finer set of events (see section 9.12.1 for an illustration). For this reason, the sequence
F0,F1, . . . is referred to as a filtration.

Filtrations fixe the problem of allowing a decision xt (or xt(ω)) to “see” into the future.
We do this by imposing the condition that “the decision xt (or policy Xπ

t (St)) is Ft-
measurable” which means the decision xt (or policy Xπ

t (St)) uses only the information
available up to time t. In practical terms, if there are two outcomes, call them ω1 and ω2,
in the same event in Ft, then the decision xt(ω1) and xt(ω2) have to be the same. If they
were different, then this could only happen if xt was being allowed to see events that can
only be distinguished at a later point in time.

This language is universally used when writing optimal stopping problems. Imagine that
we are interested in selling a stock at the highest price, where prices pt follow a stochastic
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process. This problem is often written

max
τ

Epτxτ , (9.49)

where xt = 1 if t = τ , and where τ is an Ft-measurable random variable. Note that we
are writing τ in (9.49) as a decision variable (which it is) and a random variable (which it
is). Once the problem has been stated in this way, it is up to the person solving (9.49) to
guarantee that the optimal solution τ∗ is “Ft-measurable.”

We pause to note that there is a more practical way of obtaining an “Ft-measurable
function” which is to define a state St that is only allowed to depend on the information
W1, . . . ,Wt, and then create a function (a policy) Xπ(St) that only depends on the state
variable. Saying that a functionXπ(St) depends on the state St, and saying that a decision
xt is “Ft-measurable” is mathematically the same.

When we are solving sequential decision problems, we often have to write expectations
when we are at time t, but we have to capture the fact that we are in some state St. In
the mind of a probabilist, St is a random variable, because the probabilist is always sitting
at time 0, using concepts such as the filtration Ft to create a modified set of events given
the information available at time t. With sequential decision problems, it is more useful to
assume that we are sitting at time t, in a known state St.

9.13 LOOKING FORWARD: DESIGNING POLICIES

We are not quite done with modeling. Chapter 10 addresses the rich area of modeling
uncertainty which comes in a number of forms. Once this is done, the rest of the book
focuses on designing policies. This material is organized as follows.

Chapter 11 - This chapter describes four fundamental (meta) classes of policies, called
policy function approximations (PFAs), cost function approximations (CFAs), poli-
cies based on value function approximations (VFAs), and lookahead policies.

Chapter 12 - The simplest class of policies are policy function approximations, which
is where we describe a policy as some sort of analytical function (lookup tables,
parametric or nonparametric functions)

Chapter 13 - Here we find approximations of cost functions which we then minimize
(possibly subject to a set of constraints, which we might also modify).

Chapters 14 - 19 - These chapters develop policies based on value functions. Given the
richness of this general approach, we present this material in a series of chapters as
follows:

Chapter 14 This is the classical material on dynamic programs with discrete states,
discrete actions, and randomness that is simple enough that we can take expec-
tations.

Chapter 15 This chapter covers a series of specialized results that make it possible
to solve a dynamic program optimally.

Chapter 16 This is the first of a series of chapters that present iterative methods
for learning approximations of value functions. In this chapter, we introduce a
technique we call backward approximate dynamic programming since it builds
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on classical “backward” methods of Markov decision processes presented in
chapter 14. The rest of the material on approximate value functions focuses on
“forward” methods.

Chapter 17 We begin with a presentation of methods for approximating value func-
tions using forward methods. In this chapter, the policy is fixed.

Chapter 18 We build on the tools in chapter 17 but now we use our approximate
value functions to define our policy.

Chapter 19 This chapter focuses on the important special case where the value
function is convex in the state variable. This arises in a applications that
involve the allocation of resources.

Chapter 20 - The last class of policies optimizes an approximate lookahead model. We
deal with two important problem classes: where decisions are discrete (or dis-
cretized), and it is possible to enumerate all actions, and where the decision x is a
vector, making it impossible to enumerate all actions.

Chapter 21 - We close by addressing the very rich topic of replacing expectation with
risk measures. Risk is an important topic when we are dealing with uncertainty, but
we then lose the valuable property that the expectation of a sum is the sum of the
expectations. Also, we are no longer equally interested in all random outcomes, but
rather want to focus our attention on specific outcomes that might cause problems.

9.14 BIBLIOGRAPHIC NOTES

Section 9.2 - Figure 9.1 which describes the mapping from continuous to discrete time
was outlined for me by Erhan Cinlar.

Section 9.3 - The definition of states is amazingly confused in the stochastic control
literature. The first recognition of the difference between the physical state and
the belief state appears to be in Bellman & Kalaba (1959b) which used the term
“hyperstate” to refer to the belief state. The control literature has long used state
to represent a sufficient statistic (see for example Kirk (2004)), representing the
information needed to model the system forward in time. For an introduction to
partially observable Markov decision processes, see White (1991). An excellent
description of the modeling of Markov decision processes from an AI perspective
is given in Boutilier et al. (1999), including a very nice discussion of factored
representations. See also Guestrin et al. (2003) for an application of the concept of
factored state spaces to a Markov decision process.

Section 9.4 - Our notation for decisions represents an effort to bring together the fields
of dynamic programming and math programming. We believe this notation was
first used in Powell et al. (2001). For a classical treatment of decisions from the
perspective of Markov decision processes, see ?. For examples of decisions from the
perspective of the optimal control community, see Kirk (2004) and ?. For examples
of treatments of dynamic programming in economics, see Stokey & R. E. Lucas
(1989) and Chow (1997).

Section 9.5 - Our representation of information follows classical styles in the probability
literature (see, for example, Chung (1974)). Considerable attention has been given
to the topic of supervisory control. An example includes ?.
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Section 9.8 - The energy storage example is taken from ?.

PROBLEMS

9.1 A traveler needs to traverse the graph shown in figure 9.5 from node 1 to node 11
where the goal is to find the path that minimizes the sum of the costs over the path. To
solve this problem we are going to use the deterministic version of Bellman’s optimality
equation that states

V (s) = min
a∈As

(
c(s, a) + V (s′(s, a))

)
(9.50)

where s′(s, a) is the state we transition to when we are in state s and take action a ∈ As.
The set As is the set of actions (in this case, traversing over a link) available when we are
in state s.

To solve this problem, answer the following questions:
Deterministic shortest path problem
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Figure 9.5 Deterministic shortest path problem.

a) Describe an appropriate state variable for this problem (with notation).

b) If the traveler is at node 6 by following the path 1-2-6, what is her state?

c) Find the path that minimizes the sum of the costs on the links traversed by the traveler.
Using Bellman’s equation (14.2), work backwards from node 11 and find the best
path from each node to node 11, ultimately finding the best path from node 1 to node
11. Show your solution by drawing the graph with the links that fall on an optimal
path from some node to node 11 drawn in bold.

9.2 A traveler needs to traverse the graph shown in figure 9.6 from node 1 to node 11,
where the goal is to find the path that minimizes the product of the costs over the path. To
solve this problem, answer the following questions:

a) Describe an appropriate state variable for this problem (with notation).

b) If the traveler is at node 6 by following the path 1-2-6, what is her state?

c) Using Bellman’s equation (14.2), find the path (or paths) that minimizes the product
of the costs on the links traversed by the traveler. For each decision point (the nodes
in the graph), give the value of the state variable corresponding to the optimal path
to that decision point, and the value of being in that state (that is, the cost if we start
in that state and then follow the optimal solution).
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What is a state variable – minimize product of arc costs
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Figure 9.6 A path problem minimizing the product of the costs.

9.3 A traveler needs to traverse the graph shown in figure 9.7 from node 1 to node 11,
where the goal is to find the path that minimizes the largest cost of all the links on the path.
To solve this problem, answer the following questions:

What is a state variable – minimize maximum arc cost
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Figure 9.7 A path problem minimizing the product of the costs.

a) Describe an appropriate state variable for this problem (with notation).

b) If the traveler is at node 6 by following the path 1-2-6, what is her state?

c) Using Bellman’s equation (14.2), find the path (or paths) that minimizes the largest
costs on the links traversed by the traveler. For each decision point (the nodes in the
graph), give the value of the state variable corresponding to the optimal path to that
decision point, and the value of being in that state (that is, the cost if we start in that
state and then follow the optimal solution).

9.4 Repeat exercise 9.3, but this time minimize the second largest arc cost on a path.

9.5 Consider our basic newsvendor problem

max
x

EDF (x,D) = ED
(
pmin{x,D} − cx

)
. (9.51)

Show how the following variations of this problem can be modeled using the universal
modeling framework:

a) The terminal reward formulation of the basic newsvendor problem.

b) The cumulative reward formulation of the basic newsvendor problem.

c) The asymptotic formulation of the newsvendor problem. What are the differences
between the asymptotic formulation and the terminal reward formulation?
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9.6 Now consider a dynamic version of our newsvendor problem where a decision xt is
made at time t by solving

max
x

EDF (x,D) = ED
(
pt min{x,Dt+1} − cx

)
. (9.52)

Assume that the price pt is independent of prior history.

a) Model the cumulative reward version of the newsvendor problem in (9.52).

b) How does your model change if we are instead solving

max
x

EDF (x,D) = ED
(
pt+1 min{x,Dt+1} − cx

)
. (9.53)

where we continue to assume that the price, which is now pt+1, is independent of
prior history.

c) How does your model of (9.53) change if

pt+1 = θ0pt + θ1pt−1 + εt+1, (9.54)

where εt+1 is a zero-mean noise term, independent of the state of the system.

9.7 We continue the newsvendor problem in exercise 9.6, but now assume that (θ0, θ1)
in equation (9.54) are unknown. At time t, we have estimates θ̄t = (θ̄t0, θ̄t1. Assume the
true θ is now a random variable that follows a multivariate normal distribution with mean
Etθ = θ̄t which we initialize to

θ̄0 =

(
20
40

)
,

and covariance matrix Σθt which we initialize to

Σθ0 =

(
σ2

00 σ2
01

σ2
10 σ2

11

)
.

=

(
36 16
16 25

)
.

Drawing on the updating equations in section 3.4.2, give a full model of this problem using
a cumulative reward objective function (that is, give the state, decision and exogenous
information variables, transition function and objective unction).

9.8 Below is a series of variants of our familiar newsvendor (or inventory) problem. In
each, describe the pre- and post-decision states, decision and exogenous information in the
form:

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 ,W2, . . .)

Specify St, Sxt , xt and Wt in terms of the variables of the problem.

a) (5 points) The basic newsvendor problem where we wish to find x that solves

max
x

E{pmin(x, D̂)− cx} (9.55)
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where the distribution of D̂ is unknown.

b) (3 points) The same as (a), but now we are given a price pt at time t and asked to
solve (22.1) using this information. Note that pt is unrelated to any prior history or
decisions.

c) (3 points) Repeat (b), but now pt+1 = pt + p̂t+1.

d) (3 points) Repeat (c), but now leftover inventory is held to the next time period.

e) (3 points) Of the problems above, which (if any) are not dynamic programs? Explain.

f) (3 points) Of the problems above, which would be classified as solving state-dependent
vs. state-independent functions.

9.9 In this exercise you are going to model an energy storage problem, which is a problem
class that arises in many settings (how much cash to keep on hand, how much inventory on
a store shelf, how many units of blood to hold, how many milligrams of a drug to keep in
a pharmacy, ...). We will begin by describing the problem in English with a smattering of
notation. Your job will be to develop it into a formal dynamic model.

Our problem is to decide how much energy to purchase from the electric power grid at
a price pt. Let xgst be the amount of power we buy (if xgs > 0) or sell (if xgs < 0). We
then have to decide how much energy to move from storage to meet the demand Dt in a
commercial building, where xsbt ≥ 0 is the amount we move to the building to meet the
demand Dt. Unsatisfied demand is penalized at a price c per unit of energy.

Assume that prices evolve according to a time-series model given by

pt+1 = θ0pt + θ1pt−1 + θ2pt−2 + εt+1, (9.56)

where εt+1 is a random variable with mean 0 that is independent of the price process. We
do not know the coefficients θi for i = 0, 1, 2, so instead we use estimates θ̄ti. As we
observe pt+1, we can update the vector θ̄t using the recursive formulas for updating linear
models as described in chapter 3, section 3.8 (you will need to review this section to answer
parts of this question).

Every time period we are given a forecast fDtt′ of the demandDt′ at time t′ in the future,
where t′ = t, t+ 1, t+H . We can think of fDtt = Dt as the actual demand. We can also
think of the forecasts fDt+1,t′ as the “new information” or define a “change in the forecast”
f̂Dt+1,t′ in which case we would write

fDt+1,t′ = fDtt′ + f̂Dt+1,t′ .

a) What are the elements of the state variable St (we suggest filling in the other elements
of the model to help identify the information needed in St). Define both the pre- and
post-decision states.

b) What are the elements of the decision variable xt? What are the constraints (these are
the equations that describe the limits on the decisions). Finally introduce a function
Xπ(St) which will be our policy for making decisions to be designed later (but we
need it in the objective function below).

c) What are the elements of the exogenous information variable Wt+1 that become
known at time t+ 1 but which were not known at time t.
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d) Write out the transition function St+1 = SM (St, xt,Wt+1), which is the equations
that describe how each element of the state variable St evolves over time. There
needs to be one equation for each state variable.

e) Write out the objective function by writing:

The contribution function C(St, xt).

The objective function where you maximize expected profits over some general
set of policies (to be defined later - not in this exercise).

9.10 Patients arrive at a doctor’s office, each of whom are described by a vector of
attribute a = (a1, a2, . . . , aK) where amight describe age, gender, height, weight, whether
the patient smokes, and so on. Let an be the attribute vector describing the nth patient. For
each patient, the doctor makes a decision xn (surgery, drug regimens, rehabilitation), and
then observes an outcome yn for patient n. From yn, we obtain an updated estimate θn for
the parameters of a nonlinear model f(x|θ) that helps us to predict y for other patients.

a) Give the five elements of this decision problem. Be sure to model the state after a patient
arrives (this would be the pre-decision state), Sn, after a decision is made (this would
be the post-decision state), Sx,n and after the outcome of a decision becomes known,
Sy,n.

b) The value of being in a state Sn can be computed using Bellman’s equation

V n(Sn) = max
x∈X

(
(C(Sn, x) + EW {V n+1(Sn+1)|Sn, x}

)
. (9.57)

Define the value of being in the state i) after a patient arrives, ii) after a decision is
made, and iii) before a patient arrives. Call these V (S), V x(Sx), and V y(Sy). Write
V (Sn) as a function of V x(Sx,n) and write V x(Sx,n) as a function of V y(Sy,n).

9.11 Consider the problem of controlling the amount of cash a mutual fund keeps on
hand. Let Rt be the cash on hand at time t. Let R̂t+1 be the net deposits (if R̂t+1 > 0)
or withdrawals (if R̂t+1 < 0), where we assume that R̂t+1 is independent of R̂t. Let
Mt be the stock market index at time t, where the evolution of the stock market is given
by Mt+1 = Mt + M̂t+1 where M̂t+1 is independent of Mt. Let xt be the amount of
money moved from the stock market into cash (xt > 0) or from cash into the stock market
(xt < 0).

a) Give a complete model of the problem, including both pre-decision and post-decision
state variables.

b) Suggest a simple parametric policy function approximation, and give the objective
function as an online learning problem.

9.12 A college student must plan what courses she takes over each of eight semesters.
To graduate, she needs 34 total courses, while taking no more than five and no less than
three courses in any semester. She also needs two language courses, one science course,
eight departmental courses in her major and two math courses.

(a) Formulate the state variable for this problem in the most compact way possible.
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(b) Give the transition function for our college student assuming that she successfully
passes any course she takes. You will need to introduce variables representing her
decisions.

(c) Give the transition function for our college student, but now allow for the random
outcome that she may not pass every course.

9.13 Assume that we have N discrete resources to manage, where Ra is the number of
resources of type a ∈ A and N =

∑
a∈ARa. Let R be the set of possible values of the

vector R. Show that

|R| =
(

N + |A| − 1
|A| − 1

)
,

where (
X
Y

)
=

X!

Y !(X − Y )!

is the number of combinations of X items taken Y at a time.

9.14 A broker is working in thinly traded stocks. He must make sure that he does not
buy or sell in quantities that would move the price and he feels that if he works in quantities
that are no more than 10 percent of the average sales volume, he should be safe. He tracks
the average sales volume of a particular stock over time. Let v̂t be the sales volume on
day t, and assume that he estimates the average demand ft using ft = (1− α)ft−1 + αv̂t.
He then uses ft as his estimate of the sales volume for the next day. Assuming he started
tracking demands on day t = 1, what information would constitute his state variable?

9.15 How would your previous answer change if our broker used a 10-day moving
average to estimate his demand? That is, he would use ft = 0.10

∑10
i=1 v̂t−i+1 as his

estimate of the demand.

9.16 The pharmaceutical industry spends millions managing a sales force to push the
industry’s latest and greatest drugs. Assume one of these salesmen must move between a
set I of customers in his district. He decides which customer to visit next only after he
completes a visit. For this exercise, assume that his decision does not depend on his prior
history of visits (that is, he may return to a customer he has visited previously). Let Sn be
his state immediately after completing his nth visit that day.

(a) Assume that it takes exactly one time period to get from any customer to any other
customer. Write out the definition of a state variable, and argue that his state is only
his current location.

(b) Now assume that τij is the (deterministic and integer) time required to move from
location i to location j. What is the state of our salesman at any time t? Be sure
to consider both the possibility that he is at a location (having just finished with a
customer) or between locations.

(c) Finally assume that the travel time τij follows a discrete uniform distribution between
aij and bij (where aij and bij are integers)?

9.17 Consider a simple asset acquisition problem where xt is the quantity purchased at
the end of time period t to be used during time interval t + 1. Let Dt be the demand for
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the assets during time interval t. Let Rt be the pre-decision state variable (the amount on
hand before you have ordered xt) and Rxt be the post-decision state variable.

(a) Write the transition function so that Rt+1 is a function of Rt, xt, and Dt+1.

(b) Write the transition function so that Rxt is a function of Rxt−1, Dt, and xt.

(c) Write Rxt as a function of Rt, and write Rt+1 as a function of Rxt .

9.18 As a buyer for an orange juice products company, you are responsible for buying
futures for frozen concentrate. Let xtt′ be the number of futures you purchase in year t that
can be exercised during year t′.

(a) What is your state variable in year t?

(b) Write out the transition function.

9.19 A classical inventory problem works as follows. Assume that our state variable Rt
is the amount of product on hand at the end of time period t and thatDt is a random variable
giving the demand during time interval (t− 1, t) with distribution pd = P (Dt = d). The
demand in time interval tmust be satisfied with the product on hand at the beginning of the
period. We can then order a quantity xt at the end of period t that can be used to replenish
the inventory in period t+ 1. Give the transition function that relates Rt+1 to Rt.

9.20 Many problems involve the movement of resources over networks. The definition
of the state of a single resource, however, can be complicated by different assumptions for
the probability distribution for the time required to traverse a link. For each example below,
give the state of the resource:

(a) You have a deterministic, static network, and you want to find the shortest path from
an origin node q to a destination node r. There is a known cost cij for traversing
each link (i, j).

(b) Next assume that the cost cij is a random variable with an unknown distribution.
Each time you traverse a link (i, j), you observe the cost ĉij , which allows you to
update your estimate c̄ij of the mean of cij .

(c) Finally assume that when the traveler arrives at node i he sees ĉij for each link (i, j)
out of node i.

(d) A taxicab is moving people in a set of cities C. After dropping a passenger off at
city i, the dispatcher may have to decide to reposition the cab from i to j, (i, j) ∈ C.
The travel time from i to j is τij , which is a random variable with a discrete uniform
distribution (that is, the probability that τij = t is 1/T , for t = 1, 2, . . . , T ). Assume
that the travel time is known before the trip starts.

(e) Same as (d), but now the travel times are random with a geometric distribution (that
is, the probability that τij = t is (1− θ)θt−1, for t = 1, 2, 3, . . .).

9.21 In the figure below, a sailboat is making its way upwind from point A to point B.
To do this, the sailboat must tack, whereby it sails generally at a 45 degree angle to the
wind. The problem is that the angle of the wind tends to shift randomly over time. The
skipper decides to check the angle of the wind each minute and must decide whether the
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A

B

Path of 
boat:

Wind
:

Port 
tack:

Starboard 
tack:

boat should be on port or starboard tack. Note that the proper decision must consider the
current location of the boat, which we may indicate by an (x, y) coordinate.

(a) Formulate the problem as a dynamic program. Carefully define the state variable,
decision variable, exogenous information and the contribution function.

(b) Use δ to discretize any continuous variables (in practice, you might choose different
levels of discretization for each variable, but we are going to keep it simple). In
terms of δ, give the size of the state space, the number of exogenous outcomes (in a
single time period) and the action space. If you need an upper bound on a variable
(e.g. wind speed), simply define an appropriate variable and express your answer in
terms of this variable. All your answers should be expressed algebraically.

(c) Using a maximum wind speed of 30 miles per hour and δ = .1, compute the size of
your state, outcome and action spaces.

9.22 Implement your model from exercise 9.21 as a Markov decision process, and solve
it using the techniques of 14 (section 14.2). Choose a value of δ that makes your program
computationally reasonable (run times under 10 minutes). Let δ̄ be the smallest value of
δ that produces a run time (for your computer) of under 10 minutes, and compare your
solution (in terms of the total contribution) for δ = δ̄N for N = 2, 4, 8, 16. Evaluate the
quality of the solution by simulating 1000 iterations using the value functions obtained using
backward dynamic programming. Plot your average contribution function as a function of
δ.

9.23 What is the difference between the history of a process, and the state of a process?

9.24 As the purchasing manager for a major citrus juice company, you have the respon-
sibility of maintaining sufficient reserves of oranges for sale or conversion to orange juice
products. Let xti be the amount of oranges that you decide to purchase from supplier i in
week t to be used in week t + 1. Each week, you can purchase up to q̂ti oranges (that is,
xti ≤ q̂ti) at a price p̂ti from supplier i ∈ I, where the price/quantity pairs (p̂ti, q̂ti)i∈I
fluctuate from week to week. Let s0 be your total initial inventory of oranges, and let Dt

be the number of oranges that the company needs for production during week t (this is our
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demand). If we are unable to meet demand, the company must purchase additional oranges
on the spot market at a spot price p̂spotti .

(a) What is the exogenous stochastic process for this system?

(b) What are the decisions you can make to influence the system?

(c) What would be the state variable for your problem?

(d) Write out the transition equations.

(e) What is the one-period contribution function?

(f) Propose a reasonable structure for a decision rule for this problem, and call it Xπ .
Your decision rule should be in the form of a function that determines how much to
purchase in period t.

(g) Carefully and precisely, write out the objective function for this problem in terms of
the exogenous stochastic process. Clearly identify what you are optimizing over.

(h) For your decision rule, what do we mean by the space of policies?

9.25 Customers call in to a service center according to a (nonstationary) Poisson process.
Let E be the set of events representing phone calls, where te, e ∈ E is the time that the
call is made. Each customer makes a request that will require time τe to complete and will
pay a reward re to the service center. The calls are initially handled by a receptionist who
determines τe and re. The service center does not have to handle all calls and obviously
favors calls with a high ratio of reward per time unit required (re/τe). For this reason, the
company adopts a policy that the call will be refused if (re/τe) < γ. If the call is accepted,
it is placed in a queue to wait for one of the available service representatives. Assume that
the probability law driving the process is known, where we would like to find the right
value of γ.

(a) This process is driven by an underlying exogenous stochastic process with element
ω ∈ Ω. What is an instance of ω?

(b) What are the decision epochs?

(c) What is the state variable for this system? What is the transition function?

(d) What is the action space for this system?

(e) Give the one-period reward function.

(f) Give a full statement of the objective function that defines the Markov decision
process. Clearly define the probability space over which the expectation is defined,
and what you are optimizing over.

9.26 A major oil company is looking to build up its storage tank reserves, anticipating a
surge in prices. It can acquire 20 million barrels of oil, and it would like to purchase this
quantity over the next 10 weeks (starting in week 1). At the beginning of the week, the
company contacts its usual sources, and each source j ∈ J is willing to provide q̂tj million
barrels at a price p̂tj . The price/quantity pairs (p̂tj , q̂tj) fluctuate from week to week. The
company would like to purchase (in discrete units of millions of barrels) xtj million barrels
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(where xtj is discrete) from source j in week t ∈ {1, 2, . . . , 10}. Your goal is to acquire
20 million barrels while spending the least amount possible.

(a) What is the exogenous stochastic process for this system?

(b) What would be the state variable for your problem? Give an equation(s) for the
system dynamics.

(c) Propose a structure for a decision rule for this problem and call it Xπ .

(d) For your decision rule, what do we mean by the space of policies? Give examples of
two different decision rules.

(e) Write out the objective function for this problem using an expectation over the
exogenous stochastic process.

(f) You are given a budget of $300 million to purchase the oil, but you absolutely must
end up with 20 million barrels at the end of the 10 weeks. If you exceed the initial
budget of $300 million, you may get additional funds, but each additional $1 million
will cost you $1.5 million. How does this affect your formulation of the problem?

9.27 You own a mutual fund where at the end of each week t you must decide whether
to sell the asset or hold it for an additional week. Let r̂t be the one-week return (e.g.
r̂t = 1.05 means the asset gained five percent in the previous week), and let pt be the price
of the asset if you were to sell it in week t (so pt+1 = ptr̂t+1). We assume that the returns
r̂t are independent and identically distributed. You are investing this asset for eventual use
in your college education, which will occur in 100 periods. If you sell the asset at the end
of time period t, then it will earn a money market rate q for each time period until time
period 100, at which point you need the cash to pay for college.

(a) What is the state space for our problem?

(b) What is the action space?

(c) What is the exogenous stochastic process that drives this system? Give a five time
period example. What is the history of this process at time t?

(d) You adopt a policy that you will sell if the asset falls below a price p̄ (which we
are requiring to be independent of time). Given this policy, write out the objective
function for the problem. Clearly identify exactly what you are optimizing over.



CHAPTER 10

UNCERTAINTY MODELING

We cannot find an effective policy unless we are modeling the problem properly. In the realm
of stochastic optimization, this means accurately modeling uncertainty. The importance of
modeling uncertainty has been underrepresented in the stochastic optimization literature,
although practitioners working on real problems have long been aware of the challenges of
modeling uncertainty.

Fortunately, there is a substantial body of research focused on the modeling of uncertainty
and stochastic processes that has evolved in the communities working on Monte Carlo
simulation and uncertainty quantification. We use uncertainty modeling as the broader
term that describes the process of identifying and modeling uncertainty, while simulation
refers to the vast array of tools that break down complex stochastic processes using the
power of Monte Carlo simulation.

It helps to remind ourselves of the two information processes that drive any sequential
stochastic optimization problem: decisions, and exogenous information. Assume that we
can pick some policy Xπ

t (St). We need to be able to simulate a sample realization of the
policy, which will look like

S0 → x0 = Xπ
0 (S0)→W1 → S1 → x1 = Xπ

1 (S1)→W2 → S3 →

Given our policy, this simulation assumes that we have access to a transition function

St+1 = SM (St, X
π
t (St),Wt+1). (10.1)

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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We can execute equation (10.1) if we have access to the following:

S0 = The initial state - This is where we place information about initial
estimates (or priors) of parameters, as well as assumptions about
probability distributions and functions.

Wt = Exogenous information that enters our system for the first time be-
tween t− 1 and t.

In this chapter, we focus on the often challenging problem of simulating the exogenous
sequence (Wt)

T
t=0. We assume that the initial state S0 is given, but recognize that it may

include a probabilistic belief about unknown and unobservable parameters. The process of
converting the characteristics of a stochastic process into a mathematical model is broadly
known as uncertainty quantification. Since it is easy to overlook sources of uncertainty
when building a model, we place considerable attention on identifying the different sources
of uncertainty that we have encountered in our applied work, keeping in mind that S0 and
Wt are the only variables our modeling framework provides for representing uncertainty.

After reviewing different types of uncertainty, we then provide a basic introduction to a
powerful set of techniques known as Monte Carlo simulation, which allows us to replicate
stochastic processes on the computer. Given the rich array of different types of stochastic
processes, our discussion here provides little more than a taste of the tools that are available
to replicate stochastic processes.

10.1 TYPES OF UNCERTAINTY

Uncertainty arises in different forms. Some of the major forms that we have encountered
are

• Observational errors - This arises from uncertainty in observing or measuring the
state of the system. Observational errors arise when we have unknown state variables
that cannot be observed directly (and accurately).

• Exogenous uncertainty - This describes the exogenous arrival of information to
the system, which might be weather, demands, prices, the response of a patient to
medication or the reaction of the market to a product.

• Prognostic uncertainty - We often have access to a forecast fWtt′ of the information
Wt′ . Prognostic uncertainty captures the deviation of the actualWt′ from the forecast
fWtt′ . If we think of Wt = fWtt as the actual value of Wt, then we can think of the
realization of Wt (the exogenous information described above) as just an update to a
forecast.

• Inferential (or diagnostic) uncertainty - Inferential uncertainty arises when we use
observations (from field or physical measurements, or computer simulations) to draw
inferences about another set of parameters. It arises from our lack of understanding
of the precise properties or behavior of a system, which introduces errors in our
ability to estimate parameters, partly from noise in the observations, and partly from
errors in our modeling of the underlying system.

• Experimental variability - Sometimes equated with observational uncertainty, exper-
imental variability refers to differences between the results of experiments run under
similar conditions. An experiment might be a computer simulation, a laboratory
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experiment or a field implementation. Even if we can perfectly measure the results
of an experiment, there is variation from one experiment to the next.

• Model uncertainty - We may not know the structure of the transition function St+1 =
SM (St, xt,Wt+1), or the parameters that are imbedded in the function. Model
uncertainty is often attributed to the transition function, but it may also apply to the
model of the stochastic process Wt since we often do not know the precise structure.

• Transitional uncertainty - This arises when we have a perfect model of how a system
should evolve, but exogenous shocks (wind buffeting an aircraft, rainfall affecting
reservoir levels) can introduce uncertainty in how an otherwise deterministic system
will evolve.

• Control/implementation uncertainty - This is where we choose a control ut (such as
a temperature or speed), but what happens is ût = ut + δut where δut is a random
perturbation.

• Communication errors and biases - Communication from an agent q about his state
Sqt to an agent q′ where errors may introduced, either accidentally or purposely.

• Algorithmic instability - Very minor changes in the input data for a problem, or
small adjustments in parameters guiding an algorithm (which exist in virtually all
algorithms), can completely change the path of the algorithm, introducing variability
in the results.

• Goal uncertainty - Uncertainty in the desired goal of a solution, as might arise when
a single model has to produce results acceptable to different people or users.

• Political/regulatory uncertainty - Uncertainty about taxes, rules and requirements
that affect costs and constraints (for example, tax energy credits, automotive mileage
standards). These can be viewed as a form of systematic uncertainty, but this is a
particularly important source of uncertainty with its own behaviors.

Below we provide more detailed discussions of each type of uncertainty. One challenge
is modeling each source of uncertainty, since we have only two mechanisms for introducing
exogenous information into our model: the initial state S0, and the exogenous information
process W1,W2, . . .. Thus, the different types of uncertainty may look similar mathemat-
ically, but it is important to characterize the mechanisms by which uncertainty enters our
model.

10.1.1 Observational errors

Observational (or measurement) uncertainty reflects errors in our ability to observe (or
measure) the state of the system directly. Some examples include:

EXAMPLE 10.1

Different people may measure the gases in the oil of a high-voltage transformer,
producing different measurements (possibly due to variations in equipment, the tem-
perature at which the transformer was observed, or variations in the oil surrounding
the coils).
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EXAMPLE 10.2

The Center for Disease Control estimates the number of mosquitoes carrying a disease
by setting traps and counting how many mosquitoes are caught that are found with
the disease. From day to day the number of infected mosquitoes that are caught can
vary considerably.

EXAMPLE 10.3

A company may be selling a product at a price pt which is being varied to find the
best price. However, the sales (at a fixed price) will be random from one time period
to the next.

EXAMPLE 10.4

Different doctors, seeing the same patient for the first time, may elicit different
information about the characteristics of the patient.

Partially observable systems arise in any application where we cannot directly observe
parameters. A simple example arises in pricing, where we may feel that demand varies
linearly with price according to

D(p) = θ0 − θ1p.

At time t, our best estimate of the demand function is given by

D(p) = θ̄0 − θ̄1p.

We observe sales, which would be given by

D̂t+1 = θ0 − θ1pt + εt+1.

We do not know (θ0, θ1), but we can use observations to create updated estimates. If
(θ̄t0, θ̄t1) is our estimate as of time t, we can use our observation D̂t+1 of sales between
t and t + 1 to obtain updated estimates (θ̄t+1,0, θ̄t+1,1). In this model, we would view
θ̄t = (θ̄t0, θ̄t1) as our state variable, which is our estimate of the static parameter θ. Since
θ is a fixed parameter, we do not include it in the state variable, but rather treat it as a latent
variable.

The presence of states that cannot be perfectly observable gives rise to what are widely
known as partially observable Markov decision processes, or POMDP’s. To model this,
let Št be the true (but possibly unobservable) state of the system at time t, while St is the
observable state. One way of writing our dynamics might be

St+1 = ŠM (Št, at) + εt+1,

which captures our inability to directly observe Št. These systems are most often motivated
by problems such as those in engineering where we cannot directly observe the state of
charge of a battery, the location and velocity of an aircraft, or the number of truck trailers
sitting at a terminal (terminal managers tend to hide trailers to keep up their inventories).

We can represent our unobservable state as a probability distribution. This might be a
continuous distribution (perhaps the normal or multivariate normal distribution), or perhaps
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more simply as a discrete distribution where qkti is the probability that the state variable Sti
takes on outcome k (or perhaps a parameter θk) at time t. Then, the vector qti = (qkti)k is
the distribution capturing our belief about the unobservable state. We then include qt (for
each uncertain state dimension) as part of our state variable (this is where our belief state
comes in).

10.1.2 Exogenous uncertainty

Exogenous uncertainty represent the information that we typically model through the
process Wt represent new information about supplies and demands, costs and prices,
and physical parameters that can appear in either the objective function or constraints.
Exogenous uncertainty can arise in different styles, including:

• Fine time-scale uncertainty - Sometimes referred to as aleatoric uncertainty, fine
time-scale uncertainty refers to uncertainty that varies from time-step to time-step
which is assumed to reflect the dynamics of the problem. Whether a time step is
minutes, hours, days or weeks, fine time-scale uncertainty means that information
from one time-step to the next is either uncorrelated, or where correlations drop off
fairly quickly.

• Coarse time-scale uncertainty - Referred to in different settings as systematic uncer-
tainty or epistemic uncertainty (popular in the medical community), coarse time-scale
uncertainty reflects uncertainty in an environment which occurs over long time scales.
This might reflects new technology, changes in market patterns, the introduction of
a new disease, or an unobserved fault in machinery for a process.

• Distributional uncertainty - If we represent the exogenous information Wt, or the
initial state S0, as a probability distribution, there may be uncertainty in either the
type of distribution or the parameters of a distribution.

• Adversarial uncertainty - The exogenous information processW1, . . . ,WT may come
from an adversary who is choosing Wt in a way to make us perform poorly. We
cannot be sure how the adversary may behave.

10.1.3 Prognostic uncertainty

Prognostic uncertainty reflects errors in our ability to forecast activities in the future.
Typically these are written as ftt′ to represent the forecast of some quantity at time t′, given
what we know at time t (represented by our state variable St). Examples include:

EXAMPLE 10.1

A company may create a forecast of demand Dt for its product. If fDtt′ is the forecast
of the demand Dt′ given what we know at time t, then the difference between fDtt′
and Dt′ is the uncertainty in our forecast.

EXAMPLE 10.2

A utility is interested in forecasting the price of electricity 10 years from now.
Electricity prices are well approximated by the intersection of the load (the amount
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of electricity needed at a point in time) and the “supply stack” which is the cost
of energy as a function of the total supply (typically an increasing function). The
supply stack reflects the cost of different fuels (nuclear, coal, natural gas). We have
to forecast the prices of these different sources (one form of uncertainty) along with
the load (a different form of uncertainty).

EXAMPLE 10.3

We might be interested in forecasting energy from wind EWt′ at time t. This might
require that we first generate a meteorological forecast of weather systems (high and
low pressure systems), as well as capturing the movement of the atmosphere (wind
speed and direction).

If Wt′ is some form of random information in the future, we might be able to create
a forecast fWtt′ using what we know at time t. We typically assume that our forecasts are
unbiased, which means we can write

fWtt′ = E{Wt′ |St}.

Forecasts can come from two sources. An endogenous forecast is obtained from a model
that is created endogenously from data. For example, we might be forecasting demand
using the model

fDtt′ = θt0 + θt1(t′ − t).

Now assume we observe the demand Dt+1. We might use any of a range of algorithms to
update our parameter estimates to obtain

fDt+1,t′ = θt+1,0 + θt+1,1(t′ − (t+ 1)).

The parameter vector θt can be updated recursively from observations Wt+1. If θt is our
current estimate of (θt0, θt1), let Σt be our estimate of the covariance between the random
variables θ0 and θ1 (these are the true values of the parameters). Let βW = 1/(σ2

W ) be
the precision of an observation Wt+1 (the precision is the inverse of the variance), and
assume we can form the precision matrix given by Bt = [(Xt)

TXt]
−1, where Xt is a

matrix where each row consists of the vector of independent variables (in the case of our
demand example, the design variables for time t would be xt = (1 pt)). We can update θt
and Σt (or Bt) recursively using

θt+1 = θt −
1

γt+1
Btxt+1εt+1, (10.2)

where εt+1 is the error given by

εt+1 = Wt+1 − θtxt. (10.3)

The matrixBt+1 = [(Xt+1)TXt+1]−1. This can be updated recursively without computing
an explicit inverse using

Bt+1 = Bt −
1

γt+1
(Btxt+1(xt+1)TBt). (10.4)



TYPES OF UNCERTAINTY 401

The parameter γt+1 is a scalar computed using

γt+1 = 1 + (xt+1)TBtxt+1. (10.5)

Note that if we multiply (10.4) through by σ2
ε we obtain

Σθt+1 = Σθt −
1

γt+1
(Σθtxt+1(xt+1)TΣθt ), (10.6)

where we scale γt+1 by σ2
ε , giving us

γt+1 = σ2
ε + (xt+1)TΣθtxt+1. (10.7)

Equations (10.2)-(10.7) represent the transition function for updating θt.
The second source of a forecast is exogenous, where the forecast might be supplied by

a vendor. In this case, we might view the updated set of forecasts (ftt′)t′≥t as exogenous
information. Alternatively, we could think of the change in forecasts as the exogenous
information. If we let f̂t+1,t′ as the change between t and t+ 1 in the forecast for activities
at time t′, we would then write

ft+1,t′ = ftt′ + f̂t+1,t′ .

From a modeling perspective, these forecasts differ in terms of how they are represented
in the state variable. In the case of our endogenous forecast, the state variable would be
captured by (θt,Σt), with the corresponding transition equations given by (10.2)-(10.7).
With our exogenous forecast, the state variable would be simply (ftt′)

T
t′=t.

Regardless of whether the forecast is exogenous or endogenous, the new information
(the exogenous observation or the updated forecast) would be modeled as a part of the
exogenous information process Wt.

10.1.4 Inferential (or diagnostic) uncertainty

It is often the case that we cannot directly observe a parameter. Instead, we have to use
(possibly imperfect) observations of one or more parameters to infer variables or parameters
that we cannot directly observe. Some examples include:

EXAMPLE 10.1

We might not be able to directly observe the presence of heart disease, but we may use
blood pressure as an indicator. Measuring blood pressure introduces observational
error, but there is also error in making the inference that a patient suffers from heart
disease from blood pressure alone.

EXAMPLE 10.2

We observe (possibly imperfectly) the sales of a product. From these sales we wish
to estimate the elasticity of demand with respect to price.

EXAMPLE 10.3
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Power companies generally do not know the precise location of a tree falling that
creates a power outage. Rather, a falling tree can create a short that will trip a circuit
breaker higher in the circuit, producing many outages, including to customers who
may be far from the fallen tree. Diagnostic uncertainty refers to errors in our ability
to precisely describe where a tree might have fallen purely from phone calls.

EXAMPLE 10.4

Sensors may detect an increase in carbon monoxide in the exhaust of a car. This
information may indicate several possible causes, such as an aging catalytic converter,
the improper timing of the cylinders, or an incorrect air-fuel mixture (which might
hint at a problem in a different sensor).

Inferential uncertainty can be described as uncertainty in the parameters of a model. In
our example involving the detection of carbon monoxide, we might use this information to
update the probability that the real cause is due to each of three or four different mechanical
problems. This would represent an instance of using a (possibly noisy) observation to
update a lookup table model of where failures are located. By contrast, when we use sales
data to update our demand elasticity, that would be an example of using noisy observational
data to update a parametric model.

In some settings the term diagnostic uncertainty is used instead of inferential uncertainty.
We feel that this term reflects the context of identifying a problem (a failed component,
presence of a disease) that we are not able to observe directly. However, both inferential
uncertainty and diagnostic uncertainty reflect uncertainty in parameters that have been
estimated (inferred) from indirect observations.

Inferential uncertainty is a form of derived uncertainty that arises when we estimate a
parameter θ̄ from data (simulated or observed). The raw uncertainty is contained in the
sequence Wt (or Wn). We then have to derive the distribution of our estimate θ̄ resulting
from the exogenous noise, which we contain in our belief state Bt.

10.1.5 Experimental variability

Experimental variability reflects changes in the results of experiments run under the same
conditions. Experimental settings include

Laboratory experiments - We include here physical experiments run in a laboratory
setting, encompassing chemical, biological, mechanical and even human testing.

Numerical simulations - Large simulators describing complex physical systems, ranging
from models of businesses to models of physical processes, can exhibit variabil-
ity from one run to the next, often reflecting minor variations in input data and
parameters.

Field testing - This can range from observing sales of a product to testing of new drugs.

Experimental uncertainty arises from possibly minor variations in the dynamics of a system
(simulated or physical) which introduce variability when running experiments. Experimen-
tal uncertainty typically reflects our inability to perfectly estimate parameters that drive the
system, or errors in our ability to understand (or model) the system.
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Some sources equate observational and experimental uncertainty, and often they are
handled in the same way. However, we feel it is useful to distinguish between pure
measurement (observational) errors, which might be reduced with better technology, and
experimental errors, which have more to do with the process and which are not reduced
through better measurement technologies.

Experimental noise might be attributed as a byproduct of the exogenous information
process Wt. For example, for a given policy Xπ(St), an experiment might consist of
evaluating

F̂π = Fπ(ω) =

T∑
t=0

C(St(ω), Xπ(St(ω))).

Here, the noise is due to the variation inWt. However, imagine that we are running a series
of experiments. Let F̂n(θn) be the observation of the outcome of an experiment run with
parameters θ = θn. Let f(θ) = EF̂n(θn) be the exact (but unobservable) value of running
the experiment with parameter setting θ. We can write

F̂n(θn) = f(θn) + εn.

In this case, the sequence εn would be the exogenous information information Wn.

10.1.6 Model uncertainty

Model uncertainty comes in two forms. The first is errors in estimates of parameters of a
parametric model. If we are estimating these parameters over time from observations, we
would refer to this as inferential uncertainty. But now imagine that we characterize our
model using a set of fixed parameters that are not being updated. We are not estimating
these parameters over time, but rather we are just using assumed values which are uncertain.

The second is errors in the structure of the model itself (economists refer to this as
specification errors). Some examples include:

EXAMPLE 10.1

We may approximate demand as a function of price as a linear function, a logistics
curve, or a quadratic function. We will use observational data to estimate the pa-
rameters of each function, but we may not directly address the errors introduced by
assuming a particular type of function.

EXAMPLE 10.2

We may describe the diffusion of chemicals in a liquid using a first-order set of
differential equations, which we fit to observational data. But the real process may
be better described by a second (or higher) order set of differential equations. Our
first-order model may be at best a good local approximation.

EXAMPLE 10.3

Grid operators often model the supply curve of a generator using a convex function,
which is easier to solve. However, a more detailed model might capture complex
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relationships that reflect the fact that costs may rise in steps as different components
of the generator come on (e.g. heat recovery).

Model uncertainty for dynamic problems can be found in three different parts of the
model:

• Costs or rewards - Measuring the cost of a grid outage on the community may require
estimating the impact of a loss of power on homes and businesses.

• Constraints - Constraints can often be written in the form Atxt = Rt. There are
many applications where dynamic uncertainty enters through the right hand side Rt;
this is how we would model the supply or demand of blood which would be a more
typical form of dynamic uncertainty. Model uncertainty often arises in the matrixAt,
which is where we might capture the assumed speed of an aircraft, or the efficiency
of a manufacturing process.

• Dynamics - This is where we are uncertain about the function SM (St, at,Wt+1)
which describes how the system evolves over time.

The transition function SM (·) captures all the physics of a problem, and there are many
problems where we simply do not understand the physics. For example, we might be trying
to explain how a person or market might respond to a price, or how global warming might
respond to a change in CO2 concentrations. Some policies make decisions using nothing
more than the current state, allowing them to be used in settings where the underlying
dynamics have not been modeled. By contrast, an entire class of policies based on lookahead
models (which we cover in chapter 20) depend on at least an approximate model of the
problem. See 9.6.2 for a more thorough discussion of model-free dynamic programming.

Whether we are dealing with costs, constraints or the dynamics, our model can be
described in terms of the choice of the model structure, and any parameters that characterize
the model. Let m ∈ M represent the structure of the model, and let θ ∈ Θm be the
parameters that characterize a model with structure m. As a general rule, the model
structurem is fixed in advance (for example, we might assume that a particular relationship
is linear) but with uncertain parameters. However, this is not always the case, and we may
associate a prior qm0 that gives the probability that we believe that model m is correct.
Similarly, we might start with an initial estimate θm0 for the parameter vector θm. We
might even assume that we start by assuming that θm is described by a multivariate normal
distribution with mean θm0 and covariance matrix Σm0 .

As we might expect, prior information about the model (whether it is the probability q0

that a type of model is correct, or the prior distribution on θm) is communicated through
the initial state S0. If this belief is updated over time, then this would also be part of the
dynamic state St.

10.1.7 Transitional uncertainty

There are many problems where the dynamics of the system are modeled deterministically.
This is often the case in engineering applications where we apply a control ut (such as a
force) to a dynamic system. Simple physics might describe how the control affects our
system, which we would then write

St+1 = SM (St, ut).
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However, exogenous noise might interfere with these dynamics. For example, we might be
predicting the speed and location of an aircraft after applying forces ut. Variations in the
atmosphere might interfere with our equations, so we introduce a noise term εt+1, giving
us

St+1 = SM (St, ut) + εt+1.

We note that despite the noise, we assume that we can observe (measure) the state perfectly.

10.1.8 Control/implementation uncertainty

There are many problems where we cannot precisely control a process. Some examples
include:

EXAMPLE 10.1

An experimentalist has requested that a rate be fed a diet with xt grams of fat.
However, variability in the preparation of the meals, and the choice of the rat of what
to eat, introduces variability in the amount of fat that is consumed.

EXAMPLE 10.2

A publisher chooses to sell a book at a wholesale price pWt at time t and then
observes sales. However, the publisher has no control over the retail price offered to
the purchasing public.

EXAMPLE 10.3

The operator of a power grid may request that a generator come online and generate
xt megawatts of power. However, this may not happen either because of a technical
malfunction or human implementation errors.

Control uncertainty is widely overlooked in the dynamic programming literature, but is
well known in the econometrics community as the “errors in variable” model.

We might model errors in the implementation of a decision using a simple additive
model

x̂t = xt + εxt ,

where x̂t is the decision that is actually implemented, and εxt captures the difference
between what was requested, xt, versus what was implemented, x̂t. We note that εxt would
be modeled as an element of Wt, although in practice it is not always observable.

It is important to distinguish between uncertainty in how a decision (or control) is
implemented from other sources of uncertainty because of potential nonlinearities in how
the decision affects the results.

10.1.9 Communication errors and biases

In a multiagent system, one agent might communicate location or status to another agent,
but this information can contain errors (a drone might not know its exact location) or biases
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(a fleet driver might report being on the road for fewer hours in order to be allowed to
driver longer). In supply chain management, an engine manufacturer may send inflated
production targets to suppliers to encourage suppliers to have enough inventory to handle
problems, say, in the quality of parts that require more returns.

10.1.10 Algorithmic instability

A more subtle form of uncertainty is one that we refer to as algorithmic uncertainty. We
use this category to describe uncertainty that is introduced by the algorithm used to solve a
problem, which may also be partly attributable to the model itself. Three examples of how
algorithmic uncertainty arises are

• Algorithms that depend on Monte Carlo sampling.

• Algorithms that exhibit sensitivity to small changes in the input data.

• Algorithms that produce different results even when run on exactly the same data,
possibly due to variations in run times for a parallel implementation of an algorithm.

A more obvious source of variability that arises in the context of stochastic optimization
algorithms are those which depend on Monte Carlo sampling. For example, we are often
estimating a parameter, call it µ, which is the mean of a random variable R. We can write
this task as an optimization problem

An example of an algorithm that depends on Monte Carlo sampling is a stochastic
gradient algorithm. To illustrate, assume that we want to solve the following problem:

min
µ
F (µ) = EF (µ,R) = E

1

2
(µ−R)2.

What this problem is doing is finding the mean of a random variableR by finding the value
µ that minimizes the expected square of the deviation between µ and R. We could solve
this using a gradient procedure such as

µn+1 = µn − α∇µF (µn),

but imagine that we cannot compute the expectation. As an alternative, we can employ a
stochastic gradient where we take a Monte Carlo sample of R (which we describe below),
and find the gradient of F (µn, Rn+1), giving us the algorithm

µn+1 = µn + αn∇µF (µn, Rn+1)

= µn + αn(µn −Rn+1).

Under some simple conditions, this algorithm is guaranteed to converge to the optimal
solution, which happens to be the mean of the random variable R. However, the behavior
of the algorithm depends on the sequence of samples R1, R2, . . . , Rn, . . .. If we run this
algorithm repeatedly for N iterations, we will get a range of values for µN as our estimate
of the mean of R. The choice of this particular algorithmic strategy introduces uncertainty
in the estimate of the solution.

The second type of algorithmic uncertainty arises due to the sensitivity that many
deterministic optimization problems exhibit. Small changes in the input data can produce
wide swings in the solution, although often there is little or no change in the objective
function. Thus, we may solve an optimization problem (perhaps this might be a linear
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program) that depends on a parameter θ. Let F (θ) be the optimal objective function and
let x(θ) be the optimal solution. Small changes in θ can produce large (and unpredictable)
changes in x(θ), which introduces a very real form of uncertainty.

The third type of uncertainty arises primarily with complex problems such as large
integer programs that might take advantage of parallel processing. The behavior of these
algorithms depends on the performance of the parallel processors, which can be affected
by the presence of other jobs on the system. As a result, we can observe variability in the
results, even when applied to exactly the same problem with the same data.

Algorithmic uncertainty is in the same class as experimental uncertainty, thus we defer
to the discussion there for a description of how to model it.

10.1.11 Goal uncertainty

Many problems involve balancing multiple, competing objectives, such as putting different
priorities on cost versus service, profits versus risk. One way to model this is to assume a
linear utility function of the form

U(S, x) =
∑
`∈L

θ`phi`(S, x),

where S is our state variable, x is a decision, and (φ`(S, x))`∈L is a set of features that
capture the different metrics we use to evaluate a system. The vector (θ`)`∈L captures the
weight we put on each feature. One way to model goal uncertainty is to represent θ as
being uncertainty.

Another form of uncertainty might arise when we do not know all the features φ(S, x).
For example, we may not even be aware that a reason to assign a particular driver to move
a customer is that the customer is going to a location near the home of the driver. A human
dispatcher might know this through personal interactions with the driver, but a computer
might not. The result could then be a disagreement between a computer recommendation
and what a human wants to do.

10.1.12 Political/regulatory uncertainty

Uncertainty in political will (which might affect the likelihood that clean energy subsidies
will be maintained) and regulatory uncertainties (will there be a change in mileage standards
for cars) can have a major impact on long-term investment decisions.

10.1.13 Discussion

Careful readers will notice some overlap between these different types of uncertainty.
Observational uncertainty, which refers specifically to errors in the direct observation of
a parameter, and inferential uncertainty, which refers to errors in our ability to make
inferences about models and parameters indirectly from data, represents one example, but
we feel that it is useful to highlight the distinction. Prognostic uncertainty is also a form of
inferential uncertainty, but we think it helps to distinguish between uncertainty in the state
of the system now (e.g. how the market responds to prices now) and information that we
expect to arrive in the future.
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10.2 CREATING RANDOM PROCESSES

Somewhere in stochastic optimization we usually end up needing to compute an expectation,
as we found in chapter 9 when we formulated our objective function as

min
π

E
T∑
t=0

C(St, X
π
t (St)).

With rare exceptions, we will not be able to compute the expectation, and instead we have
to resort to sampling, which can be accomplished in one of rheww ways:

• Monte Carlo sampling - Here we use powerful algorithms that have been developed
for generating individual samples from a known distribution. This is the approach
used when we are optimizing a simulated problem in the computer.

• Numerical simulations - We may have a (typically large) computer model of a
complex process. The simulation may be of a physical system such as a supply
chain or an asset allocation model. Some simulation models can require extensive
calculations (a single sample realization could take hours or days on a computer).
We can use such simulations as a source of observations similar to observations from
real-world environments.

• Observational sampling - This is where we use observations from an exogenous pro-
cess, most commonly referred to as the “real world,” to generate sample realizations.

Often, we create simulated versions of the real world in order to test algorithms, with the
understanding that the simulated source of observations will be replaced with exogenous
observations. It is important to understand whether this is the eventual plan, since some
policies depend on having access to an underlying model.

10.2.1 Sample paths

In chapter 9, section 9.7.2, we showed that we could write the value of a policy as

Fπ = Eπ
T∑
t=0

C(St, X
π
t (St)). (10.8)

We then wrote this as a simulation using

Fπ(ω) =

T∑
t=0

C(St(ω), Xπ
t (St(ω))), (10.9)

where the states are generated according toSt+1(ω) = SM (St(ω), Xπ
t (St(ω)),Wt+1(ω)).

In this section, we illustrate our notation for representing sample paths more carefully.
We start by assuming that we have constructed 10 potential realizations of price paths

pt, t = 1, 2, . . . , 8, which we have shown in table 10.1. Each sample path is a particular
set of outcomes of the pt for all time periods. We index each potential set of outcomes by
ω, and let Ω be the set of all sample paths where, for our example, Ω = {1, 2, . . . , 10}.
Thus, pt(ωn) would be the price for sample path ωn at time t. For example, referring to
the table we see that p2(ω4) = 45.67.
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t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

ωn p1 p2 p3 p4 p5 p6 p7 p8

ω1 45.00 45.53 47.07 47.56 47.80 48.43 46.93 46.57
ω2 45.00 43.15 42.51 40.51 41.50 41.00 39.16 41.11
ω3 45.00 45.16 45.37 44.30 45.35 47.23 47.35 46.30
ω4 45.00 45.67 46.18 46.22 45.69 44.24 43.77 43.57
ω5 45.00 46.32 46.14 46.53 44.84 45.17 44.92 46.09
ω6 45.00 44.70 43.05 43.77 42.61 44.32 44.16 45.29
ω7 45.00 43.67 43.14 44.78 43.12 42.36 41.60 40.83
ω8 45.00 44.98 44.53 45.42 46.43 47.67 47.68 49.03
ω9 45.00 44.57 45.99 47.38 45.51 46.27 46.02 45.09
ω10 45.00 45.01 46.73 46.08 47.40 49.14 49.03 48.74

Table 10.1 Illustration of a set of sample paths for prices all starting at $45.00.

One reason that we may generate information on the fly is that it is easier to implement
in software. For example, it avoids generating and storing an entire sample path of
observations. However, another reason is that random information may depend on the
current state, a setting we address next.

10.2.2 State/action dependent processes

Imagine that we are looking to optimize an energy system in the presence of increasing
contributions from wind and solar energy. It is reasonable to assume that the available
energy from wind or solar, which we represent generically as Wt, is not affected by any
decision we make. We could create a series of sample paths of wind, which we could
denote by ω̂ ∈ Ω̂, where each sequence ω̂ is a set of outcomes of W1(ω̂), . . . ,WT (ω̂).
These sample paths could be stored in a dataset and used over and over.

There are a number of examples where exogenous information depends on the state of
the system. Some examples include:

EXAMPLE 10.1

Imagine the setting where a patient is being given a cholesterol lowering drug. We
have to decide the dosage (10mg, 20mg, . . . ), and then we observe blood pressure and
whether the patient experiences any heart irregularities. The observations represent
the random information, but these observations are influenced by the prior dosage
decisions.

EXAMPLE 10.2

A utility has to decide whether to replace a transformer or to continue monitoring
it. As the transformer ages, it is more likely to fail. The random failures depend on
the age of the transformer, along with observations of stress events such as voltage
surges.
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EXAMPLE 10.3

The price of oil reflects oil inventories. As inventories rise, the market recognizes the
present of surplus inventories which depresses prices. Decisions about how much oil
to store affects the exogenous changes in market prices.

In some cases, the random information depends on the decision being made at time t.
For example, imagine that we are a large investment bank buying and selling stock. Large
buy and sell orders will influence the price. Imagine that we place a (large) order to sell xt
shares of stock, which will clear the market at a random price

pt+1(xt) = pt − θxt + εt+1,

where θ captures the impact of the order on the market price. We are not able to directly
observe this effect, so we create a single random variable p̂t+1 that captures the entire
change in price, given by

p̂t+1 = −θxt + εt+1.

Thus, our random variable p̂t+1 depends on the decision xt.
We can model problems where the exogenous information Wt+1 depends on the action

xt as if it were depending on the post-decision state Sxt = (St, xt). However, since it is
the sales xt itself that influences the change in price, it is important that xt be captured
explicitly in the post-decision state.

Whether the exogenous information depends on the state or the action, it depends on the
policy, since the state at time t reflects prior decisions.

10.3 TYPES OF DISTRIBUTIONS

While it is easy to represent random information as a single variable such as Wt, it is
important to realize that random variables can exhibit very different behaviors. The major
classes of distributions that we have encountered in our work include:

• Exponential (or geometric) families of random variables, which are the most familiar
- These include the continuous distributions such as normal (or Gaussian) distribu-
tions, log normal, exponential and gamma distributions, and discrete distributions
such as the Poisson distribution, geometric distribution, and the negative binomial
distributions. We also include in this class the uniform distribution (continuous or
discrete).

• Heavy-tailed distributions - Price processes are a good example of variability that
tends to exhibit very high standard deviations. An extreme example is the Cauchy
distribution which has infinite variance.

• Spikes - These are infrequent but extreme observations. For example, electricity
prices periodically spike from typical prices in the range of 20 to 50 dollars per
megawatt, to prices of 300 to 1000 dollars per megawatt for very short intervals
(perhaps 5 to 10 minutes).

• Rare events - Rare events are similar to spikes, but are characterized not by extreme
values but rather by events that may happen, but happen rarely. For example, failures
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of jet engines are quite rare, but they happen, requiring that the manufacturer hold
spares.

• Bursts - Bursts describe processes such as snow or rain, power outages due to extreme
weather, or sales of a product where a new product, advertising or price reduction can
produce a rise in sales over a period of time. Bursts are characterized by a sequence
of observations over a short period of time.

• Regime shifting - A data series may move from one regime to another as the world
changes. Data does not always revert to a mean.

• Hybrid/compound distributions - There are problems where a random variable is
drawn from a distribution with a mean which is itself a random variable. The mean
of a Poisson distribution, perhaps representing people clicking on an ad, might have
a mean which itself is a random variable reflecting the behavior of competing ads.

Below we introduce methods for sampling from these distributions.

10.4 MONTE CARLO SIMULATION

We now address the problem of generating random variables from known probability
distributions using a process known as Monte Carlo sampling. Although most software
tools come with functions to generate observations from major distributions, it is often
necessary to customize tools to handle more general distributions.

There is an entire field that focuses on developing and using tools based on the idea of
Monte Carlo simulation, and our discussion should be viewed as little more than a brief
introduction.

10.4.1 Generating uniform [0, 1] random variables

Arguably the most powerful tool in the Monte Carlo toolbox is the ability to use the
computer to generate random numbers that are uniformly distributed between 0 and 1. This
is so important that most computer languages and computing environments have a built-in
tool for generating uniform [0, 1] random variables. While we strongly recommend using
these tools, it is useful to understand how they work. It starts with a simple recursion that
looks like

Rn+1 ← (a+ bRn) mod (m),

where a and b are very large numbers, while m might be a number such as 264 − 1 (for a
64 bit computer), or perhaps m = 999, 999, 999. For example, we might use

Rn+1 ← (593845395 + 2817593Rn) mod (999999999).

This process simulates randomness because the arithmetic operation (a + bR) creates a
number much larger than m, which means we are taking the low order digits, which move
in a very random way.

We have to initialize this with some starting variable R0 called the random number
seed. If we fix R0 to some number (say, 123456), then every sequence R1, R2, . . . will be
exactly the same (some computers use an internal clock to keep this from happening, but
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sometimes this is a desirable feature). If a and b are chosen carefully, Rn and Rn+1 will
appear (even under careful statistical testing) to be independent.

Due to the mod function, all the values ofRn will be between 0 and 999999999. This
is convenient because it means if we divide each of them by 999999999, we get a sequence
of numbers between 0 and 1. Thus, let

Un =
Rn

m
.

While this process looks easy, we caution readers to use built-in functions for generating
random variables, because they will have been carefully designed to produce the required
independence properties. Every programming language comes with this function built in.
For example, in Excel, the function Rand() will generate a random number between 0 and
1 which is both uniformly distributed over this interval, as well as being independent (a
critical feature).

Below, we are going to exploit our ability to generate a sequence of uniform [0, 1] random
variables to generate a variety of random variables which we denoteW 1, . . . ,Wn, . . .. We
refer to the sequence Wn as a Monte Carlo sample, while modeling using this sample is
referred to as Monte Carlo simulation.

There is a wide range of probability distributions that we may draw on to simulate
different types of random phenomena, so we are not even going to attempt to provide a
comprehensive list of probability distributions. However, we are going to give a summary
of some major classes of distributions, primarily as a way to illustrate different methods
for generating random observations.

10.4.2 Uniform and normal random variable

Now that we can generate random numbers between 0 and 1, we can quickly generate
random numbers that are uniform between a and b using

X = a+ (b− a)U.

Below we are going to show how we can use our ability to generate (0,1) random variables
to generate random variables from many other distributions. However, one important
exception is that we cannot easily use this capability to generate random variables that are
normally distributed.

For this reason, programming languages also come with the ability to generate random
variables Z that are normally distributed with mean 0 and variance 1. With this capability,
we can generate random variables that are normally distributed with mean µ and variance
σ2 using the sample transformation

X = µ+ σZ.

We can take one more step. While we will derive tremendous value from our ability
to generate a sequence of independent random variables that are uniformly distributed on
[0, 1], we often have a need to generate a sequence of correlated random variables that are
normally distributed. Imagine that we need a vector X

X =


X1

X2

...
XN

 .
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Now assume that we are given a covariance matrix Σ where Σij = Cov(Xi, Xj). Just
as we use σ above (the square root of the variance σ2), we are going to take the “square
root” of Σ by taking its Cholesky decomposition, which produces an upper right-triangular
matrix. In Matlab, this can be done using

C = chol(Σ).

The matrix C satisfies

Σ = CCT ,

which is why it is sometimes viewed as the square root of Σ.
Now assume that we generate a column vectorZ ofN independent, normally distributed

random variables with mean 0 and variance 1. Let µ be a column vector of µ1, . . . , µN
which are the means of our vector of random variables. We can now generate a vector of
N random variables X with mean µ and covariance matrix Σ using

X1

X2

...
XN

 =


µ1

µ2

...
µN

+ C


Z1

Z2

...
ZN

 .

To illustrate, assume our vector of means is given by

µ =

 10
3
7

 .
Assume our covariance matrix is given by

Σ =

 9 3.31 0.1648
3.31 9 3.3109

0.1648 3.3109 9

 .
The Cholesky decomposition computed by MATLAB using C = chol(Σ) is

C =

 3 1.1033 0.0549
0 3 1.1651
0 0 3

 .
Imagine that we generate a vector Z of independent standard normal deviates

Z =

 1.1
-0.57
0.98

 .
Using this set of sample realizations of Z, a sample realization u would be

u =

 10.7249
2.4318
9.9400

 .
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10.4.3 Generating random variables from inverse cumulative distributions

Assume we have a distribution with density fX(x) and cumulative distribution FX(x), and
let F−1

X (u) be the inverse, which means that x = F−1
X (u) is the value of x such that the

probability that X ≤ x is equal to u (it helps if 0 ≤ u ≤ 1). There are some distributions
where F−1

X (u) can be found analytically, but computing this numerically can also be quite
practical. We now use the following trick from probability. Let U be a random variable
that is uniform over the interval [0, 1]. Then X = F−1

X (U) is a random variable that has
the distribution X ∼ fX(x).

A simple example of this result is the case of an exponential density function λe−λx

with cumulative distribution function 1 − e−λx. Setting U = 1 − e−λx and solving for x
gives

X = − 1

λ
ln(1− U).

Since 1− U is also uniformly distributed between 0 and 1, we can use

X = − 1

λ
ln(U).

We can generate outputs from a gamma distribution given by

f(x|k, θ) =
xk−1e−

x
θ

θkΓ(k)
.

Γ(k) is the gamma function, with Γ(k) = (k − 1)! if k is integer. The gamma distribution
is created by summing k exponential distributions, each with mean (kλ)−1. This can be
simulated by simply generating k random variables with an exponential distribution and
adding them together.

A special case of this result allows us to generate binomial random variables. First
sample U which is uniform on [0,1], and compute

R =

{
1 if U < p
0 otherwise.

R will have a binomial distribution with probability p. The same idea can be used to
generate a geometric distribution, which is given by (for x = 0, 1, . . .)

P(X ≤ x) = 1− (1− p)k+1.

Now generate U and find the largest k such that 1− (1− p)k+1 ≤ U .
Figure 10.1 illustrates using the inverse cumulative-distribution method to generate both

uniformly distributed and exponentially distributed random numbers. After generating a
uniformly distributed random number in the interval [0,1] (denoted U(0, 1) in the figure),
we then map this number from the vertical axis to the horizontal axis. If we want to find a
random number that is uniformly distributed between a and b, the cumulative distribution
simply stretches (or compresses) the uniform (0,1) distribution over the range (a, b).

10.4.4 Inverse cumulative from quantile distributions

This same idea can be used with a quantile distribution (which is a form of nonparametric
distribution). Imagine that we compile our cumulative distribution from data. For example,
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a b
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)

U(a,b)

10.1a: Generating uniform random variables.

1.0

x

U
(0

,1
)

( ) x
XF x e λλ −=

10.1a: Generating exponentially-distributed random variables.

Figure 10.1 Generating uniformly and exponentially distributed random variables using the inverse
cumulative distribution method.

we might be interested in a distribution of wind speeds. Imagine that we collect a large
sample of observations X1, . . . , Xn, . . . , XN , and further assume that they are sorted so
that Xn ≤ Xn+1. We would then let FX(x) be the percentage of observations that are less
than or equal to x. The inverse cumulative is computed by simply associating fn = FX(xn)
with each observation xn. Now, if we choose a uniform random number U , we simply find
the smallest value of n such that fn ≤ U , and then output Xn as our generated random
variable.

10.4.5 Distributions with uncertain parameters

Imagine that we have the problem of optimizing the price charged for an airline or hotel
given the random requests from the market. It is reasonable to assume that the arrival
process is described by a Poisson arrival process with rate λ customers per day. However,
in most settings we do not know λ.

One approach is to assume that λ is described by yet another probability distribution. For
example, we might assume that λ follows a gamma-distribution, which is parameterized
by (k, θ). Now, instead of having to know λ, we just need to choose (k, θ), which are
referred to as hyperparameters. Introducing a belief on unknown parameters introduces
more parameters for fitting a distribution. For example, if λ is the expected number of
arrivals per day, then the variance of the number of arrivals is also λ, but it is quite likely
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that the variance is much higher. We can tune the hyperparameters (k, θ) so that we still
match the mean but produce a variance closer to what we actually observe.

Consider, for example, the problem of sampling Poisson arrivals describing the process
of booking rooms for a hotel for a particular date. For simplicity, we are going to assume
that the booking rate is a constant λ over the interval [0, T ] where T is the date where
people would actually stay in the room (in reality, this rate would vary over time). If Nt is
the number of customers booking rooms on day t, the probability distribution of Nt would
be given by

P[Nt = i] =
λie−λ

i!
.

We can generate random samples from this distribution using the methods presented earlier.
Now assume that we are uncertain about λ. We might assume that it has a beta

distribution which is given by

f(x : α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1,

where Γ(k) = (k − 1)! (if k is integer). The beta distribution takes on a variety of shapes
over the domain 0 ≤ x ≤ 1 (check out the shapes on Wikipedia). Assume that when we
observe bookings, we find that Nt has a mean µ and variance σ2. If the arrival rate λ were
known, we would have µ = σ2 = λ. However, in practice we often find that σ2 > µ, in
which case we can view λ as a random variable.

To find the mean and variance of λ, we start by observing that

ENt = E{E{Nt|λ}} = Eλ = µ.

Finding the variance of λ is a bit harder. We start with the identity

VarNt = σ2

= EN2
t − (ENt)2. (10.10)

This allows us to write

EN2
t = VarNt + (ENt)2

= σ2 + µ2.

We then use

ENt = E{E{Nt|λ}}
= Eλ,
= µ.

EN2
t = E{E{N2

t |λ}}
= E{λ+ λ2}
= µ+ (Varλ+ µ2).

We can now write

σ2 + µ2 = µ+ (Varλ+ µ2),

Varλ = σ2 − µ.
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So, given the mean µ and variance σ2 of Nt, we can find the mean and variance of λ.
The next challenge is to find the parameters α and β of our beta distribution, which has

mean and variance

EX =
α

α+ β
,

VarX =
αβ

(α+ β)2(α+ β + 1)
.

We are going to leave as an exercise to the reader to decide how to pick α and β so that the
moments of our beta-distributed random variable X match the moments of λ.

The parametersα and β are called hyperparameters as they are distributional parameters
that describe the uncertainty in the arrival rate parameter λ. α and β should be chosen so
that the mean of the beta distribution closely matches the observed mean µ (which would
be the mean of λ). Less critical is matching the variance, but it is important to reasonably
replicate the variance σ2 of Nt.

Once we have fit the beta distribution, we can run simulations by first simulating a value
of λ from the beta distribution. Then, given our sampled value of λ (call it λ̂), we would
sample from our Poisson distribution using arrival rate λ̂.

10.5 SAMPLING VS. SAMPLED MODELS

Monte Carlo sampling is without question the most powerful tool in our toolbox for dealing
with uncertainty. In this section, we illustrate three ways of performing Monte Carlo
sampling: 1) iterative sampling, 2) solving a static, sampled model, and 3) sequentially
solving a sampled model with adaptive learning.

10.5.1 Iterative sampling: A stochastic gradient algorithm

Imagine that we are interested in solving the problem

F (x) = EF (x,W ) (10.11)
= E{pmin{x, D̂} − cx}, (10.12)

where W = D̂(ω) is a sample realization of the demand D̂, drawn from a full set of
outcomes Ω. We could search for the best x using a classical stochastic gradient algorithm
such as

xn+1 = xn − αn∇xF (xn, D̂(ωn+1)), (10.13)

where

∇xF (x, D̂) =

{
p− c x > D̂,
−c x ≤ D̂.

(10.14)

∇xF (x, D̂) is called a stochastic gradient because it depends on the random variable D̂.
Under some conditions (for example, the stepsize αn needs to go to zero, but not too
quickly), we can prove that this algorithm will asymptotically converge to the optimal
solution.



418 UNCERTAINTY MODELING

10.5.2 Static sampling: Solving a sampled model

A sampled version of this problem, on the other hand, involves picking a sample Ω̂ =
{ω1, . . . , ωN}. We then solve

min
θ

1

N

N∑
n=1

F (θ|ωn). (10.15)

This is actually a deterministic problem, although one that is much larger than the original
stochastic problem. For many applications, equation (10.15) can be solved using a deter-
ministic solver. The quality of the solution to (10.15) compared to the optimal solution of
the original problem (10.11) depends on the application. The stochastic gradient update
(10.13) can be much easier to compute than solving the sampled problem (10.15).

In practice, stochastic gradient algorithms require tuning the stepsize sequence αn
which can be quite frustrating. On the other hand, stochastic gradient algorithms can be
implemented in an online fashion (e.g. through field observations) while the objective
(10.15) is a strictly offline approach. There is a rich theory showing that the optimal
solution of (10.15), xN , asymptotically approaches the true optimal (that is, the solution of
the original problem (10.11)) as N goes to infinity, but the algorithm is always applied to
a static sample Ω̂. Unlike our stochastic gradient algorithm in the previous section, there
is no notion of asymptotic convergence (although in practice we will typically stop our
stochastic gradient algorithm after a fixed number of iterations).

10.5.3 Sampled representation with Bayesian updating

We close our discussion with an illustration of using a sampled model where we are uncertain
about the parameters of the model. We then run experiments sequentially and update our
belief about the probability that each sampled parameter value is correct. Imagine, for
example, that we we are solving a stochastic revenue management problem for airlines
where we assume that the customers arrive according to a Poisson process with rate λ. The
problem is that we are not sure of the arrival rate λ. We assume that the true arrival rate
is one of a set of values λ1

t , . . . , λ
K
t , where each is true with probability qkt . The vector qt

captures our belief about the true parameters, and can be updated using a simple application
of Bayes theorem. Let N(λ) be a Poisson random variable with mean λ, and let Nt+1 be
the observed number of arrivals between t and t+ 1. We can update qt using

qkt+1 =
P(N(λ) = Nt+1|λ = λk)qkt∑K
`=1 q

`
tP(N(λ) = Nt+1|λ = λ`)

,

where

P(N(λ) = Nt+1|λ = λ`) =
(λ`)Nt+1eλ

`

Nt+1!
.

The idea of using a sampled set of parameters is quite powerful, and extends to higher
dimensional distributions. However, identifying an appropriate sample of parameters
becomes harder as the number of parameters increases.

10.6 CLOSING NOTES

We could have dedicated this entire book to methods for modeling stochastic systems
without any reference to decisions or optimization. The study of stochastic systems can be
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found under names including Monte Carlo simulation and uncertainty quantification, with
significant contributions from communities that include statistics, along with the contri-
butions from communities in stochastic optimization that involve the use of Monte Carlo
methods, including stochastic search, simulation optimization and stochastic programming.

10.7 BIBLIOGRAPHIC NOTES

Section 10.1 - Some portions of this discussion are based on the Wikipedia entry on
uncertainty quantification.

PROBLEMS

10.1 Pick a sequential decision problem of your choosing. Provide a brief explanation,
and then list all the types of uncertainty that might arise in this setting (0-5 points will
be awarded for each type of uncertainty). It helps if you have some familiarity with the
problem class; richer problem settings offer more opportunities for identifying different
forms of uncertainty.





CHAPTER 11

POLICIES

Now that we have learned how to simulate an exogenous process W1, . . . ,Wt, . . ., we
return to the challenge of finding a policy that solves our universal objective function from
chapter 9

max
π∈Π

Eπ
{

T∑
t=0

Ct(St, X
π
t (St),Wt+1)|S0

}
. (11.1)

This very elegant formulation begs the obvious question: How in the world do we search
over some arbitrary class of policies? This is precisely the reason that this form of the
objective function is popular with mathematicians who do not care about computation, or
in subcommunities where it is already clear what type of policy is being used. However,
equation (11.1) is not widely used, and we believe the reason is that there has not been a
natural path to computation. In fact, entire fields have emerged which focus on particular
classes of policies.

In this chapter, we address the problem of searching over policies in a general way. Our
approach is quite practical in that we organize our search using classes of policies that are
widely used either in practice or in the research literature. We start by clarifying one area
of confusion, which is the precise meaning of the term “policy” which is popular only in
certain subcommunities. A simple definition of a policy is:

Definition 11.0.1. A policy is a rule (or function) that determines a decision given the
available information in state St.

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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The problem with the concept of a policy is that it refers to any method for determining
an action given a state, and as a result it covers a wide range of algorithmic strategies, each
suited to different problems with different computational requirements. While we avoided
the use of policies in chapter 4 for problems where we could compute the expectation
exactly (or a sampled approximation of the expectation), the concept of designing policies
pervades any adaptive learning algorithm (whether it is derivative-based of derivative-free),
as well as the entire family of problems with state dependent costs and constraints.

For this reason, we return again to the fundamental classes of policies that we have
touched on earlier.

11.1 CLASSES OF POLICIES

There are two fundamental strategies for creating policies. These are given by

Policy search - Here we are using equation (11.1) directly to search over a) classes of
policies and b) parameters that characterize a particular class.

Policies based on lookahead approximations - These are policies that approximate (some-
times exactly) the value of being in a state in the future, to allow us to understand the
impact of a decision made now.

Both of these can lead to optimal policies under certain circumstances, but only in spe-
cial cases where we can exploit structure. Since these are relatively rare, a variety of
approximation strategies have evolved.

Each of these two strategies serve as a foundation for two (meta)classes of policies. The
two classes of policies identified using policy search are:

Policy function approximations (PFAs) - These are analytical functions that map a state
to a feasible action. PFAs are typically limited to discrete actions, or low-dimensional
(and typically continuous) vectors.

Cost function approximations (CFAs) - Here we maximize a parameterized approxima-
tion of a cost function, subject to a (possibly parameterized) approximation of the
constraints. CFAs might involve solving large linear or integer programs such as
scheduling an airline or planning a supply chain. CFAs have the general form

XCFA(St|θ) = arg max
x∈Xt(θ)

C̄t(St, x|θ),

where C̄t(St, x|θ) is a parametrically modified cost function, subject to a parametri-
cally modified set of constraints.

The two classes that are based on lookahead approximations are given by:

Value function approximations (VFAs) - These are policies based on an approximation
of the value of being in a state. These have the general form

XV FA(St|θ) = arg max
x∈Xt

(
C(St, x) + V

x

t (St, x|θ)
)
.

Direct lookahead policies (DLAs) - This last class of policies maximizes over an approx-
imate model of current and future costs.
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Combined, these create four basic classes of policies that encompass every algorithmic
strategy that has been proposed for any sequential stochastic optimization problem.

Some observations:

• The first three classes of policies (PFAs, CFAs and VFAs) introduce four different
types of functions we might approximate (we first saw these in chapter 3). These
include 1) approximating the function we are maximizing EF (x,W ), 2) the policy
Xπ(S), 3) the objective function or constraints, or 4) the downstream value of being
in a state Vt(St). Function approximation plays an important role in stochastic
optimization, and this brings in the disciplines of statistics and machine learning.

As we saw in chapter 3, there are three broad strategies used for approximating
functions:

Lookup tables - Also referred to as tabular functions, lookup tables mean that we
have a discrete value V (S) (or action Xπ(S)) for each discrete state S.

Parametric representations - These are explicit, analytic functions for V (S) or
Xπ(S) which generally involve a vector of parameters that we typically repre-
sent by θ. Thus, we might write our value function approximation as

V (S|θv) =
∑
f∈F

θvfφ
v
f (S)

or our policy as

X(S|θx) =
∑
f∈F

θxfφ
x
f (S)

where φf (S), f ∈ F is a set of features tuned for approximating the value
function or the policy. Neural networks are a class of parametric functions (see
section 3.9.3) that are popular in the engineering controls community, where
they may be used to approximate either the policy or the value function.

Nonparametric representations - Nonparametric representations offer a more gen-
eral way of representing functions, but at a price of greater complexity.

• The last three classes of policies (CFAs, VFAs and DLAs) all use an imbedded
arg max (or arg min) which means we have to solve a maximization problem as a
step in computing the policy. This maximization (or minimization) problem may
be fairly trivial (for example, sorting the value of a small set of actions), or quite
complex (some applications require solving large integer programs).

• It is possible to get very high quality results from relatively simple policies if we are
allowed to tune them (these would fall under policy search). However, this opens the
door to using relatively simple lookahead policies (for example, using a deterministic
lookahead) which has been modified by tunable parameters for helping to manage
uncertainty.

These four classes of policies encompass all the disciplines that we first introduced in
chapter 1. We started to hint at the full range of policies in chapter 7 when we addressed
derivative-free stochastic optimization. We are going to revisit this set of policies in the
context of the much richer classes of problems that we first illustrated in chapter 8. Our goal
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is to provide a foundation for designing effective policies for the full modeling framework
we introduced in chapter 9.

In the remainder of this chapter, we describe these policies in somewhat more depth, but
defer to later chapters for complete descriptions. Skimming this chapter is the best way to
get a sense of all four classes of policies. We use a simple application to illustrate that each
of these four classes may work best on the same problem class, depending on the specific
characteristics of the data.

11.2 POLICY FUNCTION APPROXIMATIONS

It is often the case that we have a very good idea of how to make a decision, and we
can design a function (which is to say a policy) that returns a decision which captures the
structure of the problem. For example:

EXAMPLE 11.1

A policeman would like to give tickets to maximize the revenue from the citations he
writes. Stopping a car requires about 15 minutes to write up the citation, and the fines
on violations within 10 miles per hour of the speed limit are fairly small. Violations
of 20 miles per hour over the speed limit are significant, but relatively few drivers fall
in this range. The policeman can formulate the problem as a dynamic program, but
it is clear that the best policy will be to choose a speed, say s̄, above which he writes
out a citation. The problem is choosing s̄.

EXAMPLE 11.2

A utility wants to maximize the profits earned by storing energy in a battery when
prices are lowest during the day, and releasing the energy when prices are highest.
There is a fairly regular daily pattern to prices. The optimal policy can be found
by solving a dynamic program, but it is fairly apparent that the policy is to charge
the battery at one time during the day, and discharge it at another. The problem is
identifying these times.

EXAMPLE 11.3

A trader likes to invest in IPOs, wait a few days and then sell, hoping for a quick
bump. She wants to use a rule of waiting d days at which point she sells.

EXAMPLE 11.4

A drone can be controlled using a series of actuators that govern the force applied
in each of three directions to control acceleration, speed and location (in that order).
The logic for specifying the force in each direction can be controlled by a neural
network.

EXAMPLE 11.5
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We are holding a stock, and would like to sell it when it goes over a price θ.

EXAMPLE 11.6

In an inventory policy, we will order new product when the inventory St falls below
θ1. When this happens, we place an order at = θ2 − St, which means we “order up
to” θ2.

EXAMPLE 11.7

We might choose to set the output xt from a water reservoir, as a function of the
state (the level of the water) St of the reservoir, using a linear function of the form
xt = θ0 + θ1St. Or we might desire a nonlinear relationship with the water level,
and use a basis function φ(St) to produce a policy xt = θ0 + θ1φ(St).

The most common type of policy function approximation is some sort of parametric
model. Imagine a policy that is linear in a set of basis functions φf (St), f ∈ F . For
example, if St is a scalar, we might use φ1(St) = St and φ2(St) = S2

t . We might also
create a constant basis function φ0(St) = 1. Let F = {0, 1, 2} be the set of three basis
functions. Assume that we feel that we can write our policy in the form

Xπ(St|θ) = θ0φ0(St) + θ1φ1(St) + θ2φ2(St). (11.2)

Here, the index “π” carries the information that the function is linear in a set of basis
functions, the set of basis functions, and the parameter vector θ. Policies with this structure
are known as affine policies because they are linear in the parameter vector.

The art is coming up with the structure of the policy. The science is in choosing θ, which
we do by solving the stochastic optimization problem

max
θ
Fπ(θ) = Eπ

T∑
t=0

γtC(St, X
π(St|θ)). (11.3)

Here, we write maxθ because we have fixed the class of policies, and we are now searching
within a well-defined space. If we were to write maxπ . . ., a proper interpretation would be
that we would be searching over different functions (e.g. different sets of basis functions),
or perhaps even different classes. Note that we will let π be both the class of policy as well
as its parameter vector θ, but we still write Fπ(θ) explicitly as a function of θ.

The major challenge we face is that we cannot compute Fπ(θ) in any compact form,
primarily because we cannot compute the expectation. Instead, we have to depend on
Monte Carlo samples. Fortunately, there is a field known as stochastic search to help us
with this process. We describe these algorithms in more detail in chapter 12.

Parametric policies are popular because of their compact form, but are largely restricted
to stationary problems where the policy is not a function of time. Imagine, for example,
a situation where the parameter vector in our policy (11.2) is time dependent, giving us a
policy of the form

Xπ
t (St|θ) =

∑
f∈F

θtfφf (St). (11.4)
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Now, our parameter vector is θ = (θt)
T
t=0, which is generally dramatically larger than

the stationary problem. Solving equation (11.3) for such a large parameter vector (which
would easily have hundreds or thousands of dimensions) becomes intractable unless we
can compute derivatives of Fπ(θ) with respect to θ.

We cover policy function approximations, and how to optimize them, in much greater
depth in chapter 12.

11.3 COST FUNCTION APPROXIMATIONS

Cost function approximations represent a class of policy that has been largely overlooked
in the academic literature, yet it is widely used in industry. In a nutshell, CFAs involve
solving a deterministic optimization problem that has been modified so that it works well
over time, under uncertainty.

To illustrate, we might start with a myopic policy of the form

XMyopic
t (St) = arg max

x∈Xt
C(St, x), (11.5)

where Xt captures the set of constraints. We emphasize that x may be high-dimensional,
with a linear cost function such as C(St, x) = ctx, subject to a set of linear constraints:

Atxt = bt,

xt ≤ ut,

xt ≥ 0.

This hints at the difference in the type of problems we can consider with CFAs. A sample
application might involve assigning resources (people, machines) to jobs (tasks, orders)
over time. Let ctrj be the cost (or contribution) of assigning resource r to job j at time
t, where ct is the vector of all assignment costs. Also let xtrj = 1 if we assign resource
r to job j at time t, 0 otherwise. Our myopic policy, which assigns resources to jobs to
minimize costs now, may perform reasonably well. Now assume that we would like to see
if we could make it work a little better.

We can sometimes improve on a myopic policy by solving a problem with a modified
objective function.

XCFA
t (St|θ) = arg max

x∈Xt

(
C(St, x) +

∑
f∈F

θfφf (St, x)︸ ︷︷ ︸
Cost function correction term

)
. (11.6)

The new term in the objective is called a “cost function correction term.”
In chapter 13, we discuss a wider range of approximation strategies, including modified

constraints and hybrid lookahead policies.

11.4 VALUE FUNCTION APPROXIMATIONS

The next class of policy is based on approximating the value of being in a state resulting
from an action we take now. The core idea starts with Bellman’s optimality equation (that
we first saw in chapter 2 but study in much greater depth in chapter 14), which is written

Vt(St) = max
x∈Xt

(
C(St, x) + γE{Vt+1(St+1)|St}

)
. (11.7)
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where St+1 = SM (St, x,Wt+1). If we use the post-decision state variable Sxt ,

Vt(St) = max
x∈Xt

(
C(St, x) + V xt (Sxt )

)
, (11.8)

where V xt (Sxt ) is the (optimal) value of being in post-decision stateSxt at time t. Chapter 14
deals with problems where Bellman’s equation (11.7) (or the post-decision form in (11.8))
can be computed exactly. For the vast range of problems where this is not possible, we can
try to replace the value function with some sort of statistical approximation we call V t(St).

In later chapters (17 - 19), we are going to address the difficult challenge of estimating
value function approximations. Given a VFA, we can quickly create a VFA-based policy.
If we use the pre-decision value function, we obtain

XV FA−pre
t (St) = arg max

x

(
C(St, x) + γE

{
V t+1(St+1)|St

})
, (11.9)

where St+1 = SM (St, x,Wt+1). Often the expectation is problematic since in many
settingsWt+1 is multidimensional. We could overcome this using a sampled model, where
we would compute

XV FA−pre
t (St) = arg max

x

C(St, x) + γ
1

|Ω̂t+1|

∑
ω∈Ω̂t

V t+1(St+1(ω)))

 , (11.10)

where St+1(ω) = SM (St, x,Wt+1(ω)). If there is a natural (and ideally more compact)
post-decision state, then

XV FA−post
t (St) = arg max

x

(
C(St, x) + γV t(S

x
t )
)
, (11.11)

where the post-decision state Sxt = SM,x(St, x) is a deterministic function of the pre-
decision state St and decision xt. Clearly, if we can take advantage of a post-decision state,
then the post-decision version of a VFA policy in (11.11) is the easiest to use.

Dynamic programming is most frequently illustrated for discrete actions, where we
might use action a ∈ A instead of x. Discrete actions simplify the process of searching
for the best decision and allow us to use lookup table representations of the value function.
However, we illustrated a number of applications in chapter 8 involving the management
of resources where x might be a high-dimensional vector, as might arise when assigning
resources to tasks. In this case, we need to be able to represent the value function in a way
that allows the optimization problem to be solved using powerful algorithms from math
programming. These typically require that our contribution and value functions be concave
(convex if minimizing). We revisit this important problem class in chapter 19. It is in this
setting where the post-decision value function is particularly useful since it eliminates the
imbedded expectation.

A closely related policy, developed under the umbrella of reinforcement learning within
computer science, is to use Q-factors which approximate the value of being in a state St
and taking discrete action at (the strategy only works for discrete actions). Let Q̄n(s, a) be
our approximate value of being in state s and taking action a after n iterations. Q-learning
uses some rule to choose a state sn and action an, and then uses some process to simulate
a subsequent downstream state s′ (which might be observed from a physical system). It
then proceeds by computing

q̂n(sn, an) = C(sn, an) + max
a′

Q̄n−1(s′, a′), (11.12)

Q̄n(sn, an) = (1− α)Q̄n−1(sn, an) + αq̂n(sn, an). (11.13)
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Given a set of Q-factors Q̄n(s, a), the policy is given by

AQ(St) = arg max
a

Q̄n(St, a). (11.14)

The appeal of Q-learning based policies is that they do not require knowledge of the
transition function (known as the “model” in this community) when finding the best action
(as in equation (11.14)). Thus, Q-learning is known as a “model-free” policy (the same is
true of our PFA and CFA policies). Q-learning is typically used on problems with relatively
small sets of states and actions. If we had access to the one-step transition matrix p(s′|s, a)
(which the reinforcement learning community refers to as “the model”), then we would be
able to solve these problems exactly using the tools of discrete Markov decision processes,
which we introduce in depth in chapter 14.

11.5 DIRECT LOOKAHEAD POLICIES

We save direct lookahead policies for last because this is the most brute-force approach
among the four classes of policies. This is the only policy that does not use machine
learning to approximate some function. Instead, we resort to model approximation.

11.5.1 The basic idea

Imagine that we are in a state St. We would like to choose an action xt that maximizes the
contribution C(St, xt) now, plus the value of the state that our action takes us to. Given
St and xt, we will generally experience some randomness Wt+1 that then takes us to state
St+1. The value of being in state St+1 is given by

Vt+1(St+1) = max
π

E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))|St, xt

}
.

= E

{
T∑

t′=t+1

C(St′ , X
∗
t′(St′))|St, xt

}
. (11.15)

We could write our optimal policy just as we did above in equation (11.7)

X∗(St) = arg max
xt

(
C(St, xt) + E{Vt+1(St+1)|St, xt}

)
,

but now we are going to recognize that we generally cannot compute the value function
Vt+1(St+1). Rather than try to approximate this function, we are going to substitute in the
definition of Vt+1(St+1) from (11.15), which gives us

X∗t (St) = arg max
xt

C(St, xt) + E

E


T∑

t′=t+1

C(St′ , X
∗
t′ (St′ ))

∣∣∣∣∣∣St+1

 |St, xt

 . (11.16)

Another way of writing (11.16) is to explicitly imbed the search for the optimal policy in
the lookahead portion, giving us

X∗t (St) = arg max
xt

C(St, xt) + E

max
π

E


T∑

t′=t+1

C(St′ , X
π
t′ (St′ ))

∣∣∣∣∣∣St+1

 |St, xt

 . (11.17)

Equation (11.17) can look particularly daunting, until we realize that this is exactly what
we are doing when we solve a decision tree (exercise 11.5 provides a numerical example).
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Figure 11.1 Decision tree showing decision nodes and outcome nodes.

We return to our decision tree that we first saw in figure 20.2, which we repeat here for
convenience in figure 11.1. Remember that a “decision node” in a decision tree (the
squares) corresponds to the state St (if we are referring to the first node), or the states St′
for the later nodes. We could use some generic rule Xπ

t′(St′) for making a decision, or
we can solve the decision tree by stepping backward through the tree to find the optimal
action x∗t′ for each discrete state St′ , which is a lookup table representation for the optimal
policy X∗t′(St′). We just have to recognize that Xπ

t′(St′) refers to some rule for choosing
an action out of node St′ , while X∗t′(St′) is the best action out of node St′ .

To parse equation (11.17), the first expectation, which is conditioned on state St and
action xt, is over the first set of random outcomes out of the circle nodes. The inner
maxπ refers generally to the process of finding the best action out of each of the remaining
decision nodes, before knowing the downstream random outcomes. We then evaluate this
policy by taking the expectation over all outcomes.

Another way to help understand equation (11.16) (or (11.17)) is to think about a deter-
ministic shortest path problem. Consider the networks shown in figure 11.2. If we know
that we would use the path 2-5-7-9 to get from 2 to 9, we would choose to go from 1 to 2 to
take advantage of this path. But if we elect to use a different path out of node 2 (a costlier
path), then our decision from node 1 might be to go to node 3.
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Figure 11.2 (a) Decision to go (1,2) given the path 2-5-7-9. (b) Decision to go (1,3) when path out
of node 2 changes.

11.5.2 Modeling the lookahead problem

This hints at one of the most popular ways of approximating the future for a stochastic
problem, which is simply to use a deterministic approximation of the future. We can
create what we are going call a deterministic lookahead model, where we act as if we are
optimizing in the future, but only for an approximate model. So we do not confuse the
lookahead model with the model we are trying to solve, we are going to introduce two
notational devices. First, we are going to use tilde’s for state and decision variables, and
we are going to index them by t and t′, where t refers to the time at which we are making a
decision, and t′ indexes time within our lookahead model. Thus, a deterministic lookahead
model over a horizon t, . . . , t+H , would be formulated as

XLA−Det
t (St|θ) = arg max

xt,(x̃t,t+1,...,x̃t,t+H)

(
C(St, xt) +

t+H∑
t′=t+1

C(S̃tt′ , x̃tt′)

)
. (11.18)

Here, we have replaced the model of the problem from time t+ 1 to the end of horizon T
with a deterministic approximation that goes out to some truncated horizon t+H .

There are special cases where we can solve a stochastic lookahead model. One is
problems with small numbers of discrete actions, and relatively simple forms of uncertainty.
In this case, we can represent our problem using a decision tree such as the one we illustrated
in figure 11.1. A decision tree allows us to find the best decision for each node (that is, each
state), which is a form of lookup table policy. The problem is that decision trees explode
in size for most problems, limiting their usefulness. In chapter 20, we describe methods
for formulating and solving stochastic lookahead models using Monte Carlo methods.
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While this is the simplest type of lookahead policy, it illustrates the basic idea. We
cannot solve the true problem in (11.17), so we introduced a variety of approximations.
Deterministic lookahead models tend to be relatively easy to solve (but not always). How-
ever, using a deterministic approximation of the future means that we may make decisions
now that do not properly prepare us for random events that may happen in the future. Thus,
there is considerable interest in solving a lookahead model that recognizes that the future
is uncertain.

When dealing with uncertainty, we have to deal with policies we use in the future, rather
than decisions. Equation (11.17) says that to find the optimal policy now, we have to know
the optimal policies X∗t′(St′) for future time periods. Optimal policies are rarely available
in practice, so we are limited to working within a class of suboptimal policies (which could
be any of our four classes of policies). For example, imagine that we want to write a direct
lookahead policy that we are going to call XDLA

t (St) where we use the structure of the
policy in (11.17), but where we replace the optimal policy with some simple parametric
policy in the future, such as

X̃Lin
t (S̃tt′ |θt) = θt0 + θt1φ1(S̃tt′) + θt2φ2(S̃tt′),

where S̃tt′ refers to the projected state at time t′ when we are making a decision at time
t. We are not adopting this as our policy; we are only using this policy to approximate
decisions in the future to help us make a good decision now. Of course, we still want the
best possible policy as we peek into the future, so this means optimizing the parameter
vector θt.

Now imagine that we use X̃t(S̃tt′ |θt) for the policy we use for peeking into the future.
We would, of course, need to search for the best value of θ in the future to help us make
the best decision now (at time t), so we index it by time, giving us θt, but we assume we
are using one θ over the whole horizon t′ = t+ 1, . . . , T as we peek into the future. Using
this type of policy means that our original (and uncomputable) optimal policy in equation
(11.16) now becomes

XLA−Stoch
t (St) = arg max

xt

C(St, xt) +

Ẽ

max
θ̃t

Ẽ


T∑

t′=t+1

C(S̃tt′ , X̃
Lin
t (S̃tt′ |θ̃t))|S̃t,t+1

 |St, xt

 . (11.19)

We have written the policyXLA−Stoch
t (St) assuming that we actually are going to explicitly

optimize the policy in the lookahead model as we step forward in time. This optimization,
over the lookahead parameter θ̃t, would produce an optimal parameter θ̃∗t (St) that depends
on both time t and on the state St we are in when we need to find the best policy.

In practice, of course, no-one would do this. Instead, we would fix θ̃t(St) = θ which
then becomes part of the policy XLA−Stoch

t (St|θ), which we would write as

XLA−Stoch
t (St|θ) = arg max

xt

C(St, xt) +

Ẽ

Ẽ


T∑
t′=t+1

C(S̃tt′ , X̃
Lin
t (S̃tt′ |θ))|S̃t,t+1

 |St, xt

 . (11.20)
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Now we face the problem of tuning θ in XLA−Stoch
t (St|θ) just as we would any

parameterized policy.

11.6 HYBRID STRATEGIES

Now that we have identified the four major (meta)classes of policies, we need to recognize
that we can also create hybrids by mixing the different classes.

The set of (possibly tunable) myopic policies, lookahead policies, policies based on
value function approximations, and policy function approximations represents the core
tools in the arsenal for finding effective policies for sequential decision problems. Given
the richness of applications, it perhaps should not be surprising that we often turn to
mixtures of these strategies.

Cost function approximation with policy function approximations

A major strength of a deterministic lookahead policy is that we can use powerful math
programming solvers to solve high-dimensional deterministic models. A challenge is
handling uncertainty in this framework. Policy function approximations, on the other
hand, are best suited for relatively simple decisions, and are able to handle uncertainty
by capturing structural properties (when they can be clearly identified). PFAs can be
integrated into high-dimensional models as nonlinear penalty terms acting on individual
(scalar) variables.

As an example, consider the problem of assigning resources (imagine we are managing
blood supplies) to tasks, where each resource is described by an attribute vector a (the
blood type and age) while each task is described by an attribute vector b (the blood type of
a patient, along with other attributes such as whether the patient is an infant or has immune
disorders). Let cab be the contribution we assign if we assign a resource of type a to a
patient with blood type b. Let Rta be the number of units of blood type a available at time
t, and letDtb be the demand for blood b. Finally let xtab be the number of resources of type
a assigned to a task of type b. A myopic policy (a form of cost function approximation)
would be to solve

XCFA(St) = arg max
xt

∑
a∈A

∑
b∈B

cabxtab.

subject to ∑
b∈B

xtab ≤ Rta, (11.21)∑
a∈A

xtab ≤ Dtb, (11.22)

xtab ≥ 0. (11.23)

This policy would maximize the total contribution for all blood assignments, but might
ignore issues such as a doctor’s preference to avoid using blood that is not a perfect match
for infants or patients with certain immune disorders. A doctor’s preferences might be
expressed through a set of patterns ρab which gives the fraction of demand of type b to
be satisfied with blood of type a, where

∑
a ρab = 1. The vector ρ·b = (ρab)a∈A can be
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viewed as a probabilistic policy describing how to satisfy a demand for a unit of blood of
type b (it is a form of PFA). In fact, we could replace our CFA policy above and just use
this probabilistic policy, which might be based on historical patterns of how patients were
served. A strength of our statistically-based PFA is that we could consider a number of
patient and blood attributes, and look for patterns that capture the insights of doctors.

This PFA is a low-dimensional rule that expresses a preference for serving a patient of
type b with blood type a. Each element ρab can be viewed as a low-dimensional function
that expresses a preference about a single (a, b) combination, which would not be able to
perform tradeoffs between patients. We can combine our myopic cost model (a form of
CFA) with our pattern ρ (a PFA) to create a hybrid that would be written

XCFA−PFA(St|θ) = arg max
xt

∑
a∈A

∑
b∈B

(
cabxtab + θ(xtab −Dtbρab)

2
)
,

where θ is a tunable parameter that controls the weight placed on the PFA. This can now
be optimized using policy search methods.

Lookahead policies with value function approximations

Deterministic rolling horizon procedures offer the advantage that we can solve them opti-
mally, and if we have vector-valued decisions, we can use commercial solvers. Limitations
of this approach are a) they require that we use a deterministic view of the future and b)
they can be computationally expensive to solve (pushing us to use shorter horizons). By
contrast, a major limitation of value function approximations is that we may not be able to
capture the complex interactions that are taking place within our optimization of the future.

An obvious strategy is to combine the two approaches. For low-dimensional action
spaces, we can use tree search or a roll-out heuristics for H periods, and then use a value
function approximation. If we are using a rolling horizon procedure for vector-valued
decisions, we might solve

Xπ(St) = arg max
xt,...,xt+H

t+H−1∑
t′=t

C(St′ , xt′) + γHV t+H(St+H),

where St+H is determined by Xt+H . In this setting, V t+H(St+H) would have to be some
convenient analytical form (linear, piecewise linear, nonlinear) in order to be used in an
appropriate solver.

The hybrid strategy makes it possible to capture the future in a very precise way for
a few time periods, while minimizing truncation errors by terminating the tree with an
approximate value function. This is a popular strategy in computerized chess games,
where a decision tree captures all the complex interactions for a few moves into the future.
Then, a simple point system capturing the pieces lost is used to reduce the effect of a finite
horizon.

We note that recent breakthroughs in the use of computers to solve chess or the Chinese
game of Go used a hybrid strategy that mixes lookahead policies (using tree search methods
we describe in chapter 20), PFAs (basically rules of how to behave based on patterns derived
from looking at past games), and VFAs.

Lookahead policies with cost function approximations

A rolling horizon procedure using a deterministic forecast is, of course, vulnerable to the
use of a point forecast of the future. For example, we might be planning inventories for
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our supply chain for iPhones, but a point forecast might allow inventories to drop to zero if
this still allows us to satisfy our forecasts of demand. This strategy would leave the supply
chain vulnerable if demands are higher than expected, or if there are delivery delays.

This limitation will not be solved by introducing value function approximations at the
end of the horizon. It is possible, however, to perturb the forecasts of demands to account
for uncertainty. For example, we could inflate the forecasts of demand to encourage holding
inventory. We could multiply the forecast of demand fDtt′ at time t′ made at time t by a
factor θDt′−t. This gives us a vector of tunable parameters θD1 , . . . , θ

D
H over a planning

horizon of length H . Now we just need to tune this parameter vector to achieve good
results over many sample paths.

Tree search with rollout heuristic and a lookup table policy

A surprisingly powerful heuristic algorithm that has received considerable success in the
context of designing computer algorithms to play games uses a limited tree search, which
is then augmented by a rollout heuristic assisted by a user-defined lookup table policy.
For example, a computer might evaluate all the options for a chess game for the next four
moves, at which point the tree grows explosively. After four moves, the algorithm might
resort to a rollout heuristic, assisted by rules derived from thousands of chess games. These
rules are encapsulated in an aggregated form of lookup table policy that guides the search
for a number of additional moves into the future.

Value function approximation with lookup table or policy function approxi-
mation

Assume we are given a policy X̄(St), which might be in the form of a lookup table or a
parameterized policy function approximation. This policy might reflect the experience of a
domain expert, or it might be derived from a large database of past decisions. For example,
we might have access to the decisions of people playing online poker, or it might be the
historical patterns of a company. We can think of X̄(St) as the decision of the domain
expert or the decision made in the field. If the action is continuous, we could incorporate
it into our decision function using

Xπ(St) = arg max
x

(
C(St, x) + V (SM,x(St, x))− β(X̄(St)− x)2

)
.

The term β(X̄(St)−x)2 can be viewed as a penalty for choosing actions that deviate from
the external domain expert. β controls how important this term is. We note that this penalty
term can be set up to handle decisions at some level of aggregation.

Fitting value functions based on lookahead and policy search

Assume we are using a value function approximation V t+1(St+1) around the pre-decision
state St+1 to create a VFA-based policy

XV FA−hybrid
t (St) = arg max

x

(
C(St, x) + γE

{
V t+1(St+1)|St

})
.

Now assume we are using a parameterized approximation for the value function approxi-
mation such as

V t(St|θ) =
∑
f∈F

θfφf (St), (11.24)
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where (φf (St))f∈F is a user-defined set of features and θ is a set of parameters. Chapters
16-18 cover strategies for approximating value functions in much greater depth under
the umbrella of approximate dynamic programming (ADP). These methods can produce
good solutions, but classical ADP techniques are hardly perfect, especially when using
parameterized approximations such as the linear model in equation (11.24).

An interesting option is to use ADP-based techniques to find an estimate of θ so that
V t(St|θ) reasonably approximates the value of being in state St. Let this best estimate
be designed θ0, which we are then going to use as the initial estimate in a policy search
algorithm that solves

max
θ
F (θ) = E

T∑
t=0

C(St, X
V FA−hybrid(St|θ)). (11.25)

This will typically require the use of one of our derivative-free algorithms that we introduced
in chapter 7. Each evaluation of F (θ) requires running a simulation to obtain a sampled
estimate of the objective function on the right hand side of equation (11.25).

We close by noting that when we use ADP algorithms, it is not too hard to compute
a time-dependent version of our parametric approximation of the value function, which
would be written

V t(St|θt) =
∑
f∈F

θtfφf (St).

If our linear model has 10 parameters and we are optimizing a problem over 50 time peri-
ods, this means we have to estimate 500 parameters. Using the techniques of approximate
dynamic programming (given in chapters 16-18) this is not a problem. However, perform-
ing policy search using the objective function in (11.25) using derivative-free stochastic
optimization would be a daunting task.

11.7 RANDOMIZED POLICIES

There are several situations where it is useful to randomize a policy.

Exploration-exploitation - This is easily the most common use of randomized policies.
Three popular examples of exploration-exploitation policies are:

Epsilon-greedy exploration This is a popular policy for balancing exploration and
exploitation, and can be used for any problem with discrete actions, where the
policy has an imbedded arg maxa to choose the best discrete action within a
set A (we use action a because this approach does not make sense if the action
is continuous or a vector). Let C(s, a) be the contribution from being in state s
and taking action a, which might include a value function or a lookahead model.
The epsilon-greedy policy chooses an action a ∈ A at random with probability
ε, and chooses the action arg maxa∈A C(s, a) with probability 1− ε.

Boltzmann exploration Let Q̄n(s, a) be the current estimate of the value of being
in state s and taking action a. Now compute the probability of choosing action
a according to the Boltzmann distribution

P (a|s, θ) =
eθQ̄

n(s,a)∑
a′∈A e

θQ̄n(s,a′)
.
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The parameter θ is a tunable parameter, where θ = 0 produces a pure explo-
ration policy, while as θ increases, the policy becomes greedy (choosing the
action that appears to be best), which is a pure exploitation policy. The Boltz-
mann chooses what appears to be the best action with the highest probability,
but any action may be chosen. This is the reason it is often called a soft max
operator.

Excitation Assume that the controlx is continuous (and possibly vector-valued). Let
Z be a similarly-dimensioned vector of normally distributed random variables
with mean 0 and variance 1. An excitation policy perturbs the policy Xπ(St)
by adding a noise term such as

xt = Xπ(St) + σZ,

where σ is an assumed level of noise.
Thompson sampling As we saw in chapter 7, Thompson sampling uses a prior on

the value of µx = EF (x,W ) is µx ∼ N(µ̄nx , σ
2,n
x ). Now draw µ̂nx from the

distribution N(µ̄nx , σ
2,n
x ) for each x, and then choose

XTS(Sn) = arg max
x

µ̂nx .

Modeling unpredictable behavior - We may be trying to model the behavior of a system
with human input. The policy Xπ(St) may reflect perfectly rational behavior, but a
human may behave erratically.

Disguising the state In a multiagent system, a decision can reveal private information.
Randomization can help to disguise private information.

It is possible to convert any randomized policy into a deterministic one by including a
uniformly-distributed random variable Ut−1 (or the normally-distributed variable Z) to the
exogenous information processWt−1 so that it becomes a part of the state variable St. This
random variable can then be used to provide the additional information to make Xπ(St) a
deterministic function of the (now expanded) state St. However, it is standard to refer to
the policies above as “random.”

11.8 ILLUSTRATION: AN ENERGY STORAGE MODEL REVISITED

In section 9.8, we presented a model of an energy storage problem. We are going to return
to this problem and demonstrate all four classes of policies, along with a hybrid. We are
going to further show that each of these policies may work best depending on the data. We
recommend reviewing the model since we are going to use the same notation.

11.8.1 Policy function approximation

Our policy function approximation is given by

XPFA
t (St|θ) =



xELt = min{Lt, Et},

xBLt =
{

ht If pt > θU

0 If pt < θU

xGLt = Lt − xELt − xBLt ,
xEBt = min{Et − xELt , ρchrg},

xGBt =
{

ρchrg − xEBt If pt < θL

0 If pt > θL
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where ht = min{Lt − xELt ,min{Rt, ρchrg}}. This policy is parameterized by (θL, θU )
which determine the price points at which we charge or discharge.

11.8.2 Cost function approximation

The cost function approximation minimizes a one-period cost plus a tunable error correction
term:

XCFA−EC(St|θ) = arg min
xt∈Xt

(
C(St, xt) + θ(xGBt + xEBt + xBLt )

)
, (11.26)

where Xt is defined by (9.21)-(9.25). We use a linear correction term for simplicity which
is parameterized by the scalar θ.

11.8.3 Value function approximation

Our VFA policy uses an approximate value function approximation, which we write as

XV FA(St) = arg min
xt∈Xt

(
C(St, xt) + V

x

t (Rxt )
)
, (11.27)

where V
x

t (Rxt ) is a piecewise linear function approximating the marginal value of the
post-decision resource state. We use methods described in chapter 19 to compute the value
function approximation which exploits the natural convexity of the problem. For now, we
simply note that the approximation is quite good.

11.8.4 Deterministic lookahead

The next policy is a deterministic lookahead over a horizonH which has access to a forecast
of wind energy.

XLA−DET
t (St|H) = arg min

(xt,x̃t+1,t,...,x̃t,t+H)

(
C(St, xt) +

t+H∑
t′=t+1

C(S̃tt′ , x̃tt′)

)
(11.28)

subject to, for t′ = t, . . . , T :

x̃ELtt′ + x̃EBtt′ ≤ fEtt′ , (11.29)
fηtt′(x̃

GL
tt′ + x̃ELtt′ + x̃BLtt′ ) = fLtt′ , (11.30)

x̃BLtt′ ≤ R̃tt′ , (11.31)
R̃t,t′+1 − (R̃tt′ + fηt,t′+1(x̃GBtt′ + x̃EBtt′ )− x̃BLtt′ ) = fRt,t′+1, (11.32)

x̃tt′ ≥ 0. (11.33)

We use tilde’s on variables in our lookahead model so they are not confused with the
same variable in the base model. The variables are also indexed by t, which is when the
lookahead model is formed, and t′, which is the time period within the lookahead horizon.

11.8.5 Hybrid lookahead-cost function approximation

Our last policy, XLA−CFA
t (St|θL, θU ), is a hybrid lookahead with a form of cost function

approximation in the form of two additional constraints for t′ = t+ 1, . . . , T :

R̃tt′ ≥ θL, (11.34)
R̃tt′ ≤ θU . (11.35)
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These constraints provide buffers to ensure that that we do not plan on the energy level
getting too close to the lower or upper limits, allowing us to anticipate that there will be times
when the energy from a renewable source is lower, or higher, than we planned. We note that
a CFA-lookahead policy is actually a hybrid policy, combining a deterministic lookahead
with a cost function approximation (where the approximation is in the modification of the
constraints).

11.8.6 Experimental testing

To test our policies, we created five problem variations:

A) A stationary problem with heavy-tailed prices, relatively low noise, moderately accurate
forecasts and a reasonably fast storage device.

B) A time-dependent problem with daily load patterns, no seasonalities in energy and
price, relatively low noise, less accurate forecasts and a very fast storage device.

C) A time-dependent problem with daily load, energy and price patterns, relatively high
noise, less accurate forecasts using time series (errors grow with the horizon) and a
reasonably fast storage device.

D) A time-dependent problem with daily load, energy and price patterns, relatively low
noise, very accurate forecasts and a reasonably fast storage device.

E) Same as (C), but the forecast errors are stationary over the planning horizon.

Each problem variation was designed specifically to take advantage of the characteristics
of each of our five policies. We tested all five policies on all five problems. In each case,
we evaluated the policy by solving the problem using perfect information (this is known
as a posterior bound), and then evaluating the policy as a fraction of this posterior bound.
The results are shown in table 11.1, where the bold entries (in the diagonal) indicates the
policy that worked best on that problem class.

Problem: PFA CFA-EC VFA LA-DET LA-CFA

A 0.959 0.839 0.936 0.887 0.887
B 0.714 0.752 0.712 0.746 0.746
C 0.865 0.590 0.914 0.886 0.886
D 0.962 0.749 0.971 0.997 0.997
E 0.865 0.590 0.914 0.922 0.934

Table 11.1 Performance of each class of policy on each problem, relative to the optimal
posterior solution (from Powell & Meisel (2016)). Bold indicates the best performer.

The table shows that each of the five policies works best on one of the five problems.
Of course, the problems were designed so that this was the case, but this illustrates that
any of the policies can be best, even on a single problem class, just by modifying the
data. For example, a deterministic lookahead works best when the forecast is quite good.
A VFA-based strategy works best on problems that are very time-dependent, with a high
degree of uncertainty (that is, the forecasts are poor). The hybrid CFA-based policy works
best when the forecast is uncertain, but adds value.
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11.9 DESIGNING A POLICY

Given the choice of policies, the question naturally arises, how do we design a policy that
is best for a particular problem? Not surprisingly, it depends on the characteristics of the
problem, constraints on computation time, and the complexity of the algorithm. Below we
summarize different types of problems, and provide a sample of a policy that appears to be
well suited to the application, largely based on our own experiences with real problems.

Policy function approximations

A utility would like to know the value of a battery that can store electricity when prices
are low and release them when prices are high. The price process is highly volatile, with a
modest daily cycle. The utility needs a simple policy that is easy to implement in software.
The utility chose a policy where we fix two prices, and store when prices are below the
lower level and release when prices are above the higher level. This requires optimizing
these two price points. A different policy might involve storing at a certain time of day,
and releasing at another time of day, to capture the daily cycle.

The PFA is a natural choice because we understand the structure of the policy. It seems
clear (and supporting research proves that this is the case) that a “buy low, sell high” policy
is optimal. In many cases, the structure of a PFA seems apparent, but lacks any proof of
optimality, and may not be optimal, but likely works quite well.

Even when a PFA seems apparent, two problem characteristics may limits its accuracy:

• Time dependency - It may easily be the case that the parameters of our PFA (e.g.
the points at which we buy and sell electricity) are time dependent. It is relatively
easy to optimize over two parameters. If there are 100 time periods, it is an entirely
different matter to optimize over 200 parameters.

• State dependency - Our policy may depend on other state variables such as weather
(in our energy storage attribute). In a health application, we may be able to design
a PFA to determine the dosage of a medication to lower blood sugar. For example,
we may be able to design a simple linear (or piecewise linear) function relating the
dosage to the level of blood sugar. But the choice of drug (there are dozens) may
depend on patient attributes, and we may need a different PFA for each drug (and
perhaps even reflecting different patient attributes). Now our PFA is much more
complex.

Cost function approximation

Cost function approximations may easily be the most widely used class of policy in real
applications, although as a class they have been largely ignored by the research literature.
Pure CFAs arise whenever we have a policy that involves finding the best within a set
(or a feasible region), where we are maximizing (or minimizing) some function that does
not explicitly capture the impact of decisions now on the future. Since decisions (almost
always) do have an impact on the future, CFAs have to be tuned to work well over time.

We first saw CFAs used very effectively in pure learning problems in chapter 7. For
example, the interval estimation policy

XIE(Sn|θIE) = arg max
x

(
µ̄nx + θIE σ̄nx

)
,
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which trades off exploitation (by maximizing over µ̄nx which is our estimate of how well
choice x might work) and exploration (by maximizing over σ̄nx which is the standard
deviation of our estimate µ̄nx). The weight that we put on σ̄nx relative to µ̄nx , given by θIE ,
has to be tuned.

CFAs are useful when we have an intuitive idea of how to handle uncertainty. Consider
the problem of deciding on a time to leave for work for your job in a dense city. Your
navigation system tells you that the trip will take 37 minutes, so you add 10 minutes to
be safe. After following this strategy for a week, you arrive late one day because of an
unexpected delay, so you increase your buffer to 15 minutes. This is a form of CFA which
is searching for the best path, and then adding a tunable buffer to account for uncertainty.

CFAs are also well-suited to complex, high dimensional problems such as scheduling an
airline. In this setting, we would solve a large, deterministic integer program to schedule
planes and crews, but we have to deal with the uncertainty of flight times due to congestion
and weather delays. The airline adds a buffer which may depend on both the origin and
destination, but also the time of day. This buffer might be based on a dataset where the
airline chooses a buffer so that the flight should be on-time θ percent of the time. The
airline will then monitor network-wide on-time performance and feedback from customers
to help it tune θ.

Value function approximations

As with PFAs and CFAs, value function approximations are best suited when approximating
the value of being in a state seems straightforward. As always, this is problem dependent.
Some examples where this seems relatively easy to do include:

A trucking problem A truckload carrier needs to figure out which driver to assign to a
load. Driver are characterized by their home, their current location, their equipment
type, and how long they have been away from home. Let Rta be the number of
drivers with attribute vector a capturing these attributes. This means we need to
estimate v̄ta which is the approximate value of a driver with attribute a. The value
of the resource vector Rt = (Rta)a∈A might be reasonable approximated by

Vt(Rt) ≈ V t(Rt) =
∑
a∈A

v̄taRta.

Inventory problems There are many problems where Rt is a scalar describing the in-
ventory of product for sale, blood supplies, energy in a battery, or cash in a mutual
fund.

Routing on a graph We are at a node i and need to determine which link (i, j) to go to,
where traversing a link incurs a random cost ĉij which is revealed after we move
from i to j. We need to learn the value v̄i of being at each node to make the best
decision.

These are all examples of problems where value function approximations tend to work
well. We now list some problems where they do not work well:

A trucking problem Consider the trucking problem above, but now we have to keep track
of both the number of driversRta of each type, but also loads, whereLtb is the number
of loads with attribute vector b (origin, destination, equipment requirements). Loads
that are not served at time t are held until time t+ 1. Now we need to approximate a
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value function Vt(Rt, Dt). The value of a driver in a region depends on the number
and types of loads in that region, so these are tightly coupled.

Inventory problems Imagine that while managing our inventory Rt we have to consider
other dynamic data. For example, ifRt is how much energy is in the battery, we might
also have to keep track of the current and previous prices of energy, the temperature,
and the demand for energy. Another complicate might be the availability of forecasts
(for demands or any of the exogenous data), where the forecast may be of high or
low quality.

Routing on a graph Assume that when we arrive at node i that we get to see the actual
cost ĉij before we traverse a link, so we can use this information when traversing the
link.

Direct lookahead policies

Direct lookahead policies are what we turn to when we are unable to identify suitable
approximations that are required when designing PFAs, CFAs and VFAs. This is a reason
why this strategy is popular in video games, chess and Go. These are problems with
relatively small action spaces, but very complex state spaces. For example, putting a
bishop at a particular place on a chess board depends on all the remaining pieces on the
board.

There are two important strate

Deterministic lookahead Sometimes known as model predictive control or a rolling/receding
horizon procedure, a deterministic lookahead is often the first policy that many will
try. A deterministic lookahead is typically used when the environment is nonstation-
ary (e.g. time of day or seasonal variations), or nonuniform. For example, when
you use a navigation system to find the shortest path to a destination, while using
point estimates for the time over each leg of the network, this is a deterministic
lookahead (a transportation network is highly nonuniform). This is the only option
in this setting because there is no natural PFA, CFA or VFA (other than our earlier
example of solving a shortest path problem and adding a buffer, which is a form of
lookahead-CFA hybrid).

Deterministic lookaheads can often be good approximations even in the presence of
uncertainty. For example, it works quite well in planning paths to a destination even
though travel times over each leg of the network are random. One major class where
a deterministic lookahead struggles is when buying and selling assets in the presence
of highly variable prices.

Sampled lookaheads If a deterministic lookahead (including a modified deterministic
lookahead) does not seem as if it will work, then a popular strategy is to represent the
future using a finite (and not very large) number of “scenarios” (as they are typically
referred to).

A popular application for sampled lookahead models is in regions where a significant
amount of electricity generation is coming from hydroelectric power, requiring a
utility to manage the flows of water into and out of the reservoirs. There can be
tremendous uncertainty about the rainfall over the course of a season, and as a
result the utility would like to make decisions now while accounting for the different
possible outcomes. Stochastic programming enumerates all the decisions over the
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entire year, for each possible scenario (while ensuring that only one decision is made
now). The stochastic program ensures that all constraints will be satisfied for each
scenario.

We return to this approach in greater detail in chapter 20.

Discussion

These examples raise a series of questions that should be asked when choosing the structure
of a policy:

• Will a myopic policy solve your problem? If not, is it at least a good starting point?

• Does the problem have structure that suggests a simple and natural decision rule?
If there is an “obvious” policy (e.g. replenish inventory when it gets too low), then
more sophisticated algorithms based on value function approximations are likely to
struggle. Exploiting structure always helps.

• Is the problem fairly stationary, or highly nonstationary? Nonstationary problems
(e.g. responding to hourly demand or daily water levels) mean that you need a
policy that depends on time. Rolling horizon problems can work well if the level of
uncertainty is low relative to the predictable variability. It is hard to produce policy
function approximations where the parameters vary by time period.

• If you think about approximating the value of being in a state, does this appear to be
a relatively simple problem? If the value function is going to be very complex, it will
be hard to approximate, making value function approximations hard to use. But if it
is not too complex, value function approximations may be a very effective strategy.

Unless you are pursuing an algorithm as an intellectual exercise, it is best to focus on your
problem and choose the method that is best suited to the application. For more complex
problems, be prepared to use a hybrid strategy. For example, rolling horizon procedures
may be combined with adjustments that depend on tunable parameters (a form of policy
function approximation). You might use a lookahead policy using a decision tree combined
with a simple value function approximation to help reduce the size of the tree.

11.10 POLICY EVALUATION, TUNING AND SEARCH

We are now going to walk through the process of how we would compute the value of
these policies which helps to make the expectations more transparent. It helps to have
a motivating application to illustrate the ideas. Imagine that we want to find a policy to
control the buying and selling of energy to/from the grid. Let x = (xbuy, xsell) be a choice
of when to buy and sell electricity, where X = {x1, . . . , xK} is a set of possible buy-sell
limits. With a little creativity we can make our problem state-independent (e.g. we do not
know the price when we make a buy-sell decision) or state-dependent (we do know the
price or we have to manage the charge level of the battery).

We need a policy for deciding which xt to test next (at time t), given our knowledge about
EFπ(θ). Our “policy” can be any adaptive learning procedure, which might be derivative-
based (stochastic gradient algorithm, SDDP) or derivative-free (upper confidence bounding,
Q-learning, approximate dynamic programming). To keep things simple, we are going to
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illustrate the concepts using an interval estimation policy given by

XIE(St|θIE) = arg max
x∈X

(
F t(x) + θIE σ̄t(x)

)
, (11.36)

where St = (F t(x), σ̄t(x))x∈X . We can evaluate our policy using either the cumulative
reward (equations (9.40) and (9.42)), or final reward (equations (9.38) or (9.44)).

We begin by reviewing how to approximate a policy using simulation. We then discuss
the challenge of tuning a policy within a particular class. We end by addressing the problem
of searching across classes.

11.10.1 Policy evaluation

In chapter 9, section 9.10, we described four problem classes based on whether we
were maximizing final reward or cumulative reward, and whether we were solving state-
independent functions (learning problems), or state-dependent problems. These problems
were given in section 9.10 with a summary of how to compute them in section 9.10. We re-
fer the reader back to these sections for more complete discussions but review the objectives
and how to simulate them below.

Throughout our presentation, we let ω represent a sample of W 1, . . . ,WN which we
sample while we are learning a decision xπ,N (or policy Ximp(St)) in an offline, final-
reward problem, or for the complete learning and testing in an online, cumulative-reward
problem. While following sample path ω, our states evolve according to

Sn+1(ω) = SM (Sn(ω), Xπ(Sn(ω)),Wn+1(ω))

if we are indexing by iterations, or

St+1(ω) = SM (St(ω), Xπ(St(ω)),Wt+1(ω))

if we are indexing by time.
When we are in an offline setting, after we have learned our solution or policy, we then

have to test it, which we do by sampling our testing random variable Ŵ . We let ψ represent
a sample realization of Ŵ .

Class 1) State-independent, final reward:

max
π

Fπ = E{F (xπ,N , Ŵ )|S0}

= ES0EW 1,...,WN |S0E
Ŵ |S0F (xπ,N , Ŵ ).

We then simulate Fπ using

Fπ(θ|ω, ψ) = F (xπ,N (θ|ω), Ŵ (ψ)).

Finally we approximate the expectation by averaging using

F
π
(θ) =

1

K

1

L

K∑
k=1

L∑
`=1

Fπ(θ|ωk, ψ`).
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Class 2) State-independent, cumulative reward reward:

max
π

Fπ = E

{
N−1∑
n=0

F (Xπ(Sn),Wn+1)|S0

}

= ES0EW 1,...,WN |S0

N−1∑
n=0

F (Xπ(Sn),Wn+1).

We then simulate Fπ using

Fπ(θ|ω) =

N−1∑
n=0

F (Xπ(Sn(ω)|θ),Wn+1(ω)).

Finally we approximate the expectation by averaging using

F
π
(θ) =

1

K

K∑
k=1

Fπ(θ|ωk).

Class 3) State-dependent, cumulative reward:

max
π

Fπ = E

{
T∑
t=0

C(St, X
π(St),Wt+1)|S0

}

= ES0
EW1,...,WT |S0

{
T∑
t=0

C(St, X
π(St),Wt+1)|S0

}
.

We then simulate Fπ using

Fπ(θ|ω) =

T−1∑
t=0

C(St(ω), Xπ(St(ω)|θ),Wt+1(ω)).

We then average over sample paths to obtain

F
π
(θ) =

1

K

K∑
k=1

Fπ(θ|ωk).

Class 4) State-dependent, final reward:

max
πlrn

Fπ
lrn

= E{C(S,Xπimpl(S|θimp), Ŵ )|S0}

= ES0Eπ
imp

((Wn
t )Tt=0)

N

n=0
|S0

(
Eπ

imp

(Ŵt)Tt=0|S0

1

T

T−1∑
t=0

C(St, X
πimpl(St|θimp), Ŵt+1)

)
.

We then simulate Fπ using

Fπ(θlrn|ω, ψ) =

T∑
t=0

C(St(ω), Xπimp(St(ω)|θimp), Ŵt+1(ψ)).
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We then average over sample paths to obtain

F
π
(θlrn) =

1

K

1

L

K∑
k=1

L∑
`=1

Fπ(θlrn|ωk, ψ`).

For each of these classes, we assume that π determines the structure of the policy (or
the learning policy πlrn), and that θ (or θlrn) represents any tunable parameters in a set of
parameters determined by π. We next address the problem of tuning θ, which is typically
one or more continuous parameters (these may be discrete but numerical values).

11.10.2 Parameter tuning

Parameter tuning in policy search is its own stochastic optimization problem to find a policy
(or algorithm) to solve a stochastic optimization problem which we can write as

max
θ
Fπ(θ). (11.37)

Since Fπ(θ) involves an expectation we cannot compute we typically are solving

max
θ
F
π
(θ). (11.38)

Independent of which class of problem produces our function Fπ(θ) (or F
π
(θ)), we need

to find a (possibly vector-valued) parameter θ that controls our implementation policy (or
how we find our implementation policy).

If we can take derivatives of Fπ(θ) (or our sampled approximation F
π
(θ)), we might

find θ using a stochastic gradient algorithm

θn+1 = θn + αn∇θF
π,n+1

(θn),

whereF
π,n+1

(θn) is the n+1st sampled estimate ofF
π
(θn). Assume thatAπ

step

(Sn|θα)
is our stepsize policy parameterized by θα. If we apply this stepsize policy, assume that
this then produces an estimate of the tunable parameter in Xπ(S|θ) after N iterations of
θ = θπ

step,N .
If we do not have access to derivatives, we might run a search among the set Θ =

{θ1, . . . , θK}. For example, we could use an interval estimation policy where we compute

ΘπIE (Sn|θIE) = arg max
θ∈Θ

(
F
π,n

(θ) + θIE σ̄nθ
)
,

where σ̄nθ is the standard deviation of our estimateF
π,n

(θ), where we draw on our statistical
modeling presented in chapter 3.

Now we have to choose the best search policy πsearch (parameterized by θsearch),
whether it is the stepsize policy (which means we have to choose the type of stepsize rule and
any tunable parameters) or a type of derivative-free learning rule (such as interval estima-
tion) along with its tunable parameters (such as θIE). We need search policies/algorithms
to learn implementation decisions xπ,N , implementation policies Xπimp(S), or online
learning policies Xπ(S) (for classes (2) and (3)).

In practice, finding and tuning search algorithms such as the stochastic gradient algorithm
or the interval estimation policy tends to be fairly ad hoc. Formal analysis of search
algorithms tends to fall in one of three categories:



446 POLICIES

Asymptotic convergence Probably the most standard result for an algorithm is a proof
that the solution will asymptotically approach the optimal solution (that is, as the
number of iterations N → ∞). The criticism of asymptotic convergence is that it
says nothing about rate of convergence, which means it is not telling us anything
about the quality of the solution after N iterations.

Finite-time bounds These are results that suggest that the quality of the solution after N
iterations is within some limit. These bounds tend to be quite weak, and often feature
unknown coefficients.

Asymptotic rate of convergence It is often possible to provide high quality estimates of
the rate of convergence, but only when the solution is in the vicinity of the optimal.

The holy grail of theoretical analysis of algorithms is tight bounds for the performance
after n iterations. These are rare, and are limited to very simple problems. For this reason,
empirical analysis of algorithms remains an important part of the design and analysis of
search algorithms. Frustratingly, the performance of a search algorithm on one dataset may
not guarantee good performance on a different dataset, even for the same problem class.

In practice, “optimizing” the search policy/algorithm is often limited to a small number
of experiments, possibly (but not always) testing different classes of search policies (such as
different classes of stepsize rules), and a small number of values for the search parameters
θstep or θIE . As of this writing, we are not aware of any work that formally addresses the
problem of finding optimal search procedures.

This raises the question: if we are looking for the best implementation decision/policy,
how good does the search policy/algorithm need to be to find an implementation deci-
sion/policy?

Just as a weak algorithm for a deterministic optimization problem can produce a poor
solution, a weak search policy/algorithm can produce a poor implementation decision (or
policy). In fact, the results can be quite poor. For example, in chapter 14 we are going to
describe a class of algorithms for discrete state, discrete action sequential decision problems
where we can find provably optimal policies (we cannot have too many states or actions).
We then describe adaptive learning algorithms for solving larger versions of these same
problems. If we apply these adaptive learning algorithms to problems that we can solve
optimally, we get a sense of how well our approximate policies perform against optimal
policies. It is not hard to find applications where the approximate policies are quite poor.

11.10.3 Searching across policy classes

The previous section focused on tuning the parameters of a particular policy class. What
about searching across policy classes? If the number of classes being tested is small, a
reasonable strategy is to analyze each of the policy classes and choose the best one. Of
course, we can do better, since this is basically a search over discrete choices.

Rather than evaluate each policy class in depth, we can do a partial evaluation, just as
we would examine an unknown function. This introduces the issue of having to optimize
over a set of parameters in order to evaluate a particular search policy/algorithm. If this
is easy, then finding the best search policy/algorithm may not be as critical. However,
imagine finding the best search policy for a problem where derivatives are not available,
and function evaluations take several hours (or a day).
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11.11 BIBLIOGRAPHIC NOTES

The goal of this chapter is to organize the diverse policies that have been suggested in
the ADP and RL communities into a more compact framework. In the process, we
are challenging commonly held assumptions, for example, that “approximate dynamic
programming” always means that we are approximating value functions, even if this is one
of the most popular strategies. Lookahead policies, and policy function approximations
are effective strategies for certain problem classes.

Section 11.5 - Lookahead policies have been widely used in engineering practice in opera-
tions research under the name of rolling horizon procedure, and in computer science
as a receding horizon procedure, and in engineering under the name model predictive
control (Camacho & Bordons (2003)). Decision-trees are similarly a widely used
strategy for which there are many references. Roll-out heuristics were introduced
by Wu (1997) and Bertsekas & Castanon (1999). Stochastic programming, which
combines uncertainty with multi-dimensional decision vectors, is reviewed in Birge
& Louveaux (1997) and Shapiro (2003), among others. Secomandi (2008) stud-
ies the effect of reoptimization on rolling horizon procedures as they adapt to new
information.

Section 11.2 - While there are over 1,000 papers which refer to “value function approx-
imation” in the literature (as of this writing), there were only a few dozen papers
using “policy function approximation.” However, this is a term that we feel deserves
more widespread use as it highlights the symmetry between the two strategies.

Section 11.4 - Making decisions which depend on an approximation of the value of being
in a state has defined approximation dynamic programming since Bellman & Kalaba
(1959a).

PROBLEMS

11.1 What is the difference between a stationary policy, a deterministic nonstationary
policy, and an adaptive policy?

11.2 Following is a list of how decisions are made in specific situations. For each,
classify the decision function in terms of which of the four fundamental classes of policies
are being used. If a policy function approximation or value function approximation is used,
identify which functional class is being used:

• If the temperature is below 40 degrees F when I wake up, I put on a winter coat. If it
is above 40 but less than 55, I will wear a light jacket. Above 55, I do not wear any
jacket.

• When I get in my car, I use the navigation system to compute the path I should use
to get to my destination.

• To determine which coal plants, natural gas plants and nuclear power plants to use
tomorrow, a grid operator solves an integer program that plans over the next 24 hours
which generators should be turned on or off, and when. This plan is then used to
notify the plants who will be in operation tomorrow.
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• A chess player makes a move based on her prior experience of the probability of
winning from a particular board position.

• A stock broker is watching a stock rise from $22 per share up to $36 per share. After
hitting $36, the broker decides to hold on to the stock for a few more days because
of the feeling that the stock might still go up.

• A utility has to plan water flows from one reservoir to the next, while ensuring that a
host of legal restrictions will be satisfied. The problem can be formulated as a linear
program which enforces these constraints. The utility uses a forecast of rainfalls over
the next 12 months to determine what it should do right now.

• The utility now decides to capture uncertainties in the rainfall by modeling 20
different scenarios of what the rainfall might be on a month-by-month basis over the
next year.

• A mutual fund has to decide how much cash to keep on hand. The mutual fund uses
the rule of keeping enough cash to cover total redemptions over the last 5 days.

• A company is planning sales of TVs over the Christmas season. It produces a
projection of the demand on a week by week basis, but does not want to end the
season with zero inventories, so the company adds a function that provides positive
value for up to 20 TVs.

• A wind farm has to make commitments of how much energy it can provide tomorrow.
The wind farm creates a forecast, including an estimate of the expected amount of
wind and the standard deviation of the error. The operator then makes an energy
commitment so that there is an 80 percent probability that he will be able to make
the commitment.

11.3 Consider two policies:

XπA(St|θ) = arg max
xt

C(St, xt) +
∑
f∈F

θfφf (St)

 , (11.39)

and

XπB (St|θ) = arg max
xt

C(St, xt) +
∑
f∈F

θfφf (St)

 . (11.40)

In the case of the policy πA in equation (22.3), we search for the parameter vector θ by
solving

max
θ

E
T∑
t=0

C(St, X
πA(St|θ)). (11.41)

In the case of policy πB , we wish to find θ so that

∑
f∈F

θfφf (St) ≈ E
T∑
t′=t

C(St, X
πB (St|θ)). (11.42)
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a) (5 points) Classify policies πA and πB among the four classes of policies.

b) (5 points) Can we expect that the value θA that optimizes (22.5) would be approximately
equal to the value θB that solves equation (22.6)?

11.4 Below is a list of problems with a proposed method for making decisions. Classify
each method based on the four classes of policies (you may decide that a method is a hybrid
of more than one class).

a) (3 points) You use Google maps to find the best path to your destination.

b) (3 points) You are managing a shuttle service between the mainland and a small resort
island. You decide to dispatch the shuttle as soon as you reach a minimum number
of people, or when the wait time of the first person to board exceeds a particular
amount.

c) (3 points) An airline optimizes its schedule over a month using schedule slack to protect
against potential delays.

d) (3 points) Upper confidence bounding policies for performing sequential learning (these
were introduced in chapter 7).

e) (3 points) A computer program for playing chess using a point system to evaluate the
value of each piece that has not yet been captured. Assume it chooses the move that
leaves it with the highest number of points after one move.

f) (3 points) Imagine an improved computer program that enumerates all possible chess
moves after three moves, and then applies its point system.

g) (3 points) Thompson sampling for sequential learning (also introduced in chapter 7).

11.5 You are the owner of a racing team, and you have to decide whether to keep going
with your current driver or to stop and consider a new driver. The decision after each race is
to stay with your driver or stop (and switch). The only outcome you care about is whether
your driver won or not.

a) Formulate the problem as a decision tree over three races (we index these races as 0, 1
and 2).

b) In equation (11.17), we write our optimal policy as

X∗t (St) = arg max
xt

C(St, xt) + E

max
π

E


T∑

t′=t+1

C(St′ , X
π
t′ (St′ ))

∣∣∣∣∣∣St+1

 |St, xt

 . (11.43)

Letting t = 0 where we face one of two actions (stay with current driver or replace),
fully enumerate all the policies we may consider for t = 1, 2.

c) The outer expectation E in (11.43) is over which random variable(s)?

d) The inner expectation E in (11.43) is over which random variable(s)?

11.6 Earlier we considered the problem of assigning a resource i to a task j. If the task
is not covered at time t, we hold it in the hopes that we can complete it in the future. We
would like to give tasks that have been delayed more higher priority, so instead of just just
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maximizing the contribution cij , we add in a bonus that increases with how long the task
has been delayed, giving us the modified contribution

cπtij(θ) = cij + θ0e
−θ1(τj−t).

Now imagine using this contribution function, but optimizing over a time horizon T using
forecasts of tasks that might arrive in the future. Would solving this problem, using cπtij(θ)
as the contribution for covering task j using resource i at time t, give you the behavior that
you want?

11.7 We wish to use Q-learning to solve the problem of deciding whether to continue
playing a game where you win $1 if you flip a coin and see heads, and lose $1 if you see
tails. Using a stepsize α = θ

θ+n , implement the Q-learning algorithm in equations (11.12)
and (11.13). Initialize your estimates Q̄(s, a) = 0, and run 1000 of the algorithm using
θ = 1, 10, 100 and 1000. Plot Qn for each of the three values of θ, and discuss the choice
you would make if your budget was N = 50, 100 or 1000.



PART IV - POLICY SEARCH

Policy search is a strategy where we define a class of functions that determine a decision,
and then search for the best function within that class. Policy search arises in two settings:

• Optimizing an analytical function - We refer to these as policy function approxima-
tions, where we search over a set of parameters to find the function that produces the
best results. PFAs are typically limited to scalar actions or low-dimensional controls.

• Parametric cost function approximations - This strategy is used for high-dimensional
constrained problems, such as might arise when planning energy generation over
a grid, scheduling an airline or managing a supply chain. This strategy typically
requires a parametric modification of the cost function or, more frequently, a modified
set of constraints.

Policy search applied to finding analytical policy function approximations has been
widely studied in the academic literature. There are close parallels between policy search
and classical machine learning; the difference is primarily in the metric being minimized.
Finding the best parametric cost function approximation has been ignored by the academic
research community, but is widely used in industry, where it is typically characterized as a
“deterministic model.”
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CHAPTER 12

POLICY FUNCTION APPROXIMATIONS
AND POLICY SEARCH

A policy function approximation is any analytical function mapping a state to an action.
We use the term “policy function approximation” to distinguish this class from a generic
“policy” which covers any mapping from state to action. These may come in any one of
three forms: lookup table (where we map a discrete state to a discrete action), parametric
functions, and nonparametric (or more likely, locally parametric) functions. What we
exclude are the other three classes of functions which all require solving an optimization
problem to determine an action.

Most of our attention will be devoted to parametric functions that are characterized by
a small set of parameters. Some examples are listed below.

EXAMPLE 12.1

A basic inventory policy is to order product when the inventory goes below some
value θL where we order up to some upper value θU . If St is the inventory level, this
policy might be written

Xπ(St|θ) =

{
θU − St If St < θL,

0 Otherwise.

EXAMPLE 12.2

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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If St is a scalar variable giving, for example, the rainfall over the last week, we might
set a policy for releasing water from a reservoir using

Xπ(St|θ) = θ0 + θ1St + θ2S
2
t .

EXAMPLE 12.3

The outflow ut of a water reservoir is given by a piecewise linear function of the
reservoir level Rt according to:

Uπ(St|θ) =



0 Rt < Rmin,
θ1 0× (Rmax −Rmin) ≤ Rt −Rmin ≤ .2(Rmax −Rmin),
θ2 .2× (Rmax −Rmin) ≤ Rt −Rmin ≤ .4(Rmax −Rmin),
θ3 .4× (Rmax −Rmin) ≤ Rt −Rmin ≤ .6(Rmax −Rmin),
θ4 .6× (Rmax −Rmin) ≤ Rt −Rmin ≤ .8(Rmax −Rmin),
θ5 .8× (Rmax −Rmin) ≤ Rt −Rmin ≤ 1.0(Rmax −Rmin),
θmax Rt > Rmax.

where we would expect θi+1 ≥ θi.

EXAMPLE 12.4

A popular strategy in the engineering community is to train a policy Uπ(St|θ) using
a neural network which is characterized by a set of layers and a set of weights that are
captured by θ (we provided a brief description of neural networks in section 3.9.3)
which takes as input a state variable St and outputs a control ut.

Each of these examples involves a policy parameterized by a parameter vector θ. In
principle, we can represent a lookup table using this notation where there is a parameter
θs for each discrete state s. However, most problems exhibit a large (potentially infinite)
number of states, which translates to an equally large (and potentially infinite) number of
parameters. As of this writing, we do not have practical algorithms for searching over
parameter spaces that are this large.

We begin by describing different classes of policies where we focus on policies that
have attracted some attention in the literature. Afterward, we turn our attention to the much
harder of optimizing these parameters. This is accomplished using the basic formulation

max
θ∈Θπ

E
T∑
t=0

C(St, X
π(St|θ)), (12.1)

where St+1 = SM (St, X
π(St|θ),Wt+1), and where the expectation is over the different

possible sequences W1, . . . ,WT . The search is over some space Θπ that corresponds to
the class of policy we have chosen. As we show, this disarmingly simple formulation can
be quite hard to solve.

12.1 CLASSES OF POLICY FUNCTION APPROXIMATIONS

Policy function approximations are almost exclusively some form of parametric or locally
parametric function. We are going to begin by illustrating a number of these. One attraction
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of parametric policies is that it is possible to take derivatives of them with respect to their
parameters. For this reason, we then transition to finding the gradient of our objective
function which is computed by simulating the policy.

12.1.1 Lookup table policies

A lookup table policy is a function where for a particular discrete state s we return a
discrete action x = Xπ(s). This means we have one parameter (an action) for each state.
We exclude from this class any policies that can be parameterized by a smaller number
of parameters. Lookup tables are relatively common in practice, since they are easy to
understand. For example, the Transportation Safety Administration (TSA) has specific
rules that determine when and how a passenger should be searched. Call-in centers use
specific rules to govern how a call should be routed. Expert chess players are able to look at
a board (in the initial stages of a game) and know exactly what move to make. A doctor will
often take a set of symptoms and patient characteristics to determine the right treatment.

Lookup tables are easy to understand, and easy to enforce. But in practice, they can
be very hard to optimize since there is a value (the action) for each state. So, if we have
|S| = 1000 states, searching directly for the best policy would mean searching over a
1000-dimensional parameter space (the action to be taken in each state).

One attraction of lookup table policies is that they are very easy to compute in production
(imagine a real-time setting where decisions have to be made with exceptional speed). In
business, lookup table policies are widely used where they are known as business rules
(although these rules may often be parameterized). In practice these rules are never
optimized; the rules are specified by human judgment and then left alone, but that does not
mean that we could not consider optimizing them.

12.1.2 Boltzmann policies for discrete actions

A Boltzmann policy chooses a discrete action x ∈ Xs according to the probability distri-
bution

f(x|s, θ) =
eθC̄(s,x)∑

x′∈X e
θC̄(s,x)

.

where C̄(s, x) is some sort of contribution to be maximized. This could be our estimate
of a function EF (x,W ) as we did in chapter 7, or an estimate of the one-step contribution
plus a downstream value, as in

C̄(Sn, x) = C(Sn, x) + E{V n(Sn+1)|Sn, x},

where V
n
(S) is our current estimate of the value of being in state S.

Let F (a|Sn, θ) be the cumulative distribution of our probabilities

F (x|s, θ) =
∑
x′≤x

f(x′|s, θ).

Let U ∈ [0, 1] be a uniformly distributed random number. Our policy Xπ(s|θ) could be
written

Xπ(s|θ) = arg max
x
{F (x|s, θ)|F (x|s, θ) ≤ U}.

This is an example of a so-called “stochastic policy,” but we handle it just as we would any
other policy.
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12.1.3 Affine policies

An “affine policy” is any policy that is linear in the unknown parameters. Thus, an affine
policy might be of the form

Uπ(St|θ) = θ0 + θ1φ1(St) + θ2φ2(St).

We first saw affine policies in chapter 4 when we presented the linear quadratic control
problem which, in our notation, is given by

min
π

E
T∑
t=0

(
(St)

TQtSt + (xt)
TRtxt

)
. (12.2)

After considerable algebra, it is possible to show that the optimal policy X∗t (St) is given
by

X∗t (St) = KtSt,

where Kt is a suitably dimensioned matrix that is a function of the matrices Qt and Rt. Of
course, we assume that St and xt are continuous vectors. Thus,X∗(St) is a linear function
of St with coefficients determined by the matrix Kt.

This result requires that the objective function be quadratic (or a mixture of quadratic
and linear) functions of the state St and control xt. It also requires that the problem
be unconstrained, which can be a reasonable starting point for many problems in robotic
controls where forces xt can be positive or negative, and where some constraints (such as
the maximum force) would simply not be binding.

We can often handle violations of the key assumptions by using the optimal policy for
a simplified or relaxed version of the problem as a starting point.

12.1.4 Locally linear policies

A surprisingly powerful strategy for many problems with continuous states and actions is
to assume locally linear responses. For example, St may capture the level of a reservoir,
or the current speed and altitude of a helicopter. The control xt could be the rate at which
water is released from the reservoir, or the forces applied to the helicopter. Assume that
we use our understanding of the problem to create a family of regions S1, . . . ,SI , which
are most likely going to be a set of rectangular regions (or intervals if there is only one
dimension). We might then create a family of linear (affine) policies of the form

Xπ
i (St|θ) = θi0 + θi1φ1(St) + θi2φ2(St),

for St ∈ Si.
This approach has been found to be very effective in some classes of control problems.

In practice, the regions Si are designed by someone with an understanding of the physics
of the problem. Further, instead of tuning one vector θ, we have to tune θ1, . . . , θI . While
this can represent a laboratory challenge, the approach can work quite well, and offers the
important feature that they can be computed extremely quickly.

12.1.5 Monotone policies

There are a number of problems where the decision increases, or decreases, with the state
variable. If the state variable is multidimensional, then the decision (which we assume is
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scalar) increases, or decreases, with each dimension of the state variable. Policies with this
structure are known as monotone policies. Some examples include:

• There are a number of problems with binary actions that can be modeled asx ∈ {0, 1}.
For example

– We may hold a stock (xt = 0) or sell (xt = 1) if the price pt falls below a
smoothed estimate p̄t which we compute using

p̄t = (1− α)p̄t−1 + αpt.

Our policy is then given by

Xπ(St|θ) =

{
1 If pt ≤ p̄t − θ
0 Otherwise.

The functionXπ(St|θ) decreases monotonically inpt (aspt increases,Xπ(St|θ)
goes from 1 to 0).

– A shuttle bus waits until there are at least Rt customers on the bus, or it has
waited τt. The decision to dispatch goes from xt = 0 (hold the bus) to xt = 1
(dispatch the bus) as Rt exceeds a threshold θR or as τt exceeds θτ , which
means the policy Xπ(St|θ) increases monotonically in both state variables
St = (Rt, τt).

• A battery is being used to buy power from the grid when electricity prices pt fall
below a lower limit θmin, or sell when the price goes above θmax. The battery does
nothing when θmin < pt < θmax. We write the policy as

Xπ(St|θ) =

 -1 If pt ≤ θmin
0 If θmin < pt < θmax

1 If pt ≥ θmax

We see that Xπ(St|θ) increases monotonically in the state St = pt.

• The rate at which water should be released from a reservoir will increase with the
reservoir level. The rate is specified as a parameterized lookup table, with a different
rate for each range of reservoir levels.

• Dosages for blood sugar control increase with both the weight of the patient, and
with the patient’s glycemic index. The policy is in the form of a lookup table, with
different dosages for each range of weight and glycemic index.

Each of these policies is controlled by a relatively small number of parameters, although
this is not always the case. For example, if we use a fine discretization of the patient’s
weight and glycemic index, we could find that we need to specify hundreds of dosages.
However, monotonicity can dramatically reduce the search region.

12.1.6 Nonparametric policies

The problem with parametric models is that sometimes functions are simply too complex
to fit with low-order parametric models. For example, imagine that our policy looks like
the function shown in figure 12.1. Simple quadratic fits will not work, and higher-order
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Figure 12.1 Illustration of a complex nonlinear function.

polynomials will struggle due to overfitting unless the number of observations is extremely
large.

We could handle very general functions if we could use lookup tables (which may
require that we discretize any continuous parameters). However, lookup tables can become
extremely large when we have three or more dimensions in our state variable. Even three
dimensional lookup tables quickly grow to thousands to millions of elements. The problem
is compounded when the search algorithm has to evaluate actions for each state many times
to handle noise.

Nonparametric models, simply stated, use local averaging to help smooth out a surface.
Imagine we have an unknown function f(s) (our policy) for each state s (assume that s has
between 1 and 3 dimensions). Now imagine that we can evaluate (with noise) the function
at a set of states s1, . . . sn (imagine, for example, that we are sampling 10 percent of the
states), and let

f̂k = f(sk) + εk

be our noisy observation of the function. We can construct an approximation f̄(s) of the
function for each state s (even if we never observe s) using

f̄n(s) =

n∑
m=1

k(sm, s)f̂n∑n
m′=1 k(sm′ , s)

. (12.3)

Here, the function k(sm, s) is a kernel function which is a measure of the distance between
sm and s. A popular kernel function is

k(sm, s) = exp−|s
m − s|
β

,

where β is a parameter known as the “bandwidth” which performs scaling of the state
variable.

There are a number of functional forms for the kernel. Another strategy is to simply
take a set of nearest neighbors and average them. Regardless of the weighting procedure,
the basic idea is to represent a function using a weighted average of nearby points. An
advantage of nonparametric models is that they make it possible to approximate functions
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with a relatively small number of observations, without imposing any structure on the
function. However, this is also a disadvantage, because it means you are not allowed to
impose any structure, and you may get odd behaviors due to noise.

It is hard to search over a space of nonparametric policies, since there is no real functional
form to search. Instead, an approach that has been used in robotics is local parametric
approximations, where the policy is represented by a parametric model defined over specific
regions. These regions are typically specified by a domain expert who understands the
different behaviors that might arise in different regions.

12.1.7 Neural network policies

Neural networks have emerged as a powerful approximation architecture in machine learn-
ing where they have received considerable attention for their use in pattern recognization
settings. Neural networks have actually been used for decades in primarily deterministic
engineering control problems. We first introduced readers to neural networks in section
3.9.3, laying the foundation for their use in the entire spectrum of approximation challenges
that arise in stochastic optimization.

1
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Figure 12.2 Illustration of a four-layer neural network.

Figure 12.2 illustrates a four layer neural network, mapping a d-dimensional state vector
Sn to an output xn = Xπ(Sn|θ) which represents an approximate policy mapping state
to a decision, where θ represents the weights connecting the nodes within the network
(typically θ has dozens to hundreds of dimensions in smaller networks, and thousands of
dimensions in deep networks. In most engineering applications, the decision x = Xπ(S)
is typically a low-dimensional vector of continuous controls, but neural networks have been
used for discrete classification problems.

12.1.8 Constraints

An issue that arises with policy function approximations is the handling of constraints,
since it can be difficult or impossible to design analytical functions that guarantee that a
decision satisfies a set of constraints. Constraints are typically handled using a simple
projection. This is represented mathematically by a projection operator ΠX (x) (nothing to
do with policies) that maps a point x onto a region X . So, we would write our policy using

xt = ΠXt [X
π
t (St)].
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Figure 12.3 Illustration of projection onto a linear feasible region.

The easiest constraints to handle are box constraints of the form 0 ≤ xt ≤ ut where ut
are upper bounds on each dimension of xt. In this case, if our function Xπ

t (St) returns
a (vector-valued) decision xt, we simply have to check each dimension of xt and impose
these constraints (elements less than 0 are set equal to 0, while elements greater than their
corresponding value in ut are set to the value in ut).

Slightly harder are constraints of the form Ax = bt or Ax ≤ bt. The project process is
illustrated in figure 12.3. Figure 12.3a demonstrates a basic projection of a point x̃n from
outside of the feasible region back onto the feasible region. This is done as an orthogonal
projection. Imagine that our plane is at a 45 degree angle (as would arise if our constraint
was of the form x1 +x2 ≤ 10). Then, we have to adjust x̃n by subtracting equal quantities
from each dimension until we are back on the plane. For example, if x̃1 = 6 and x̃2 = 8
so that x̃1 + x̃2 = 14, then we would take how far we are in violation (14-10 = 4), divide
by the two dimensions (getting 2) and then subtract 2 from each dimension.

It could easily be the case that this projection simply creates a new violation in the
form of one of the variables becoming negative, as illustrated in figure 12.3b. In this case,
we simply zero out the negative dimension, then eliminate this dimension from further
calculations (simply set it to zero) and repeat the process.

For more general problems, we have to fall back on the formal definition of the projection
operator, which involves minimizing the distance between the pointx and the feasible region
X . The most standard definition is

ΠX [x] = arg min
x′∈X

‖x− x′‖2, (12.4)

where ‖x− x′‖2 is the “L2 norm” defined by

‖x− x′‖2 =
∑
i

(xi − x′i)2.

The complexity of solving the nonlinear programming problem in (12.4) depends on the
nature of the feasible region X .
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12.2 POLICY SEARCH

Given a parametric (or locally parametric) function parameterized by θ (typically a vector,
but not always), we now face the challenge of finding the best value of θ. There are different
styles of policy search:

Derivative-based vs. derivative free In some cases we can approximate derivatives with
respect to θ, although these are typically quite approximate. Alternatively we can
use the derivative-free methods in chapter 7, although it is likely that this will be
limited to low-dimensional parameter vectors.

Online vs. offline learning In online learning, we are learning in an environment where
updates come to us. As a rule, we have to live with the performance of our policy,
which means we are maximizing the cumulative reward. Most policy search uses
some form of adaptive algorithm, although this can be done in a laboratory where
we use one policy, the learning policy to find the best policy to implement, called the
implementation policy.

Stationary vs. nonstationary environments Most of the analysis of algorithms is per-
formed in the context of stationary (possibly even static) environments, where ex-
ogenous information comes from a single distribution. When working in online
settings (in the field), it is more often the case that data is coming from a nonstation-
ary setting.

Performance-based vs. supervised learning Most policy search uses as a goal to max-
imize the total reward (either the terminal reward or cumulative reward), but there
are settings where we have an “expert” (the supervisor) who will specify what to do,
allowing us to fit our policies to the choices of the supervisor.

Policy search is part of a long history of optimizing simulations. The simplest approach
involved testing M different designs x1, . . . , xM and picking the one that was best. This
is the problem class we considered in chapter 7 for derivative-free optimization.

Now consider what happens when x is a continuous vector (or even a vector of integers).
A popular problem involved the design of queueing networks that might arise in a manu-
facturing setting. A job might move from machine i to machine j, where it might have to
sit in a buffer waiting to be worked on. If the buffer is full, the job has to go to a different
machine. The question is to determine how large the buffers should be. Let x1, . . . , xK be
the size of each of the buffers. We now have the problem of searching a K-dimensional
vector.

One approach for optimizing designs (which we return to) is to use finite-difference
methods that we introduced in section 5.4.3. This can get expensive when K is large (even
10 dimensions can be quite expensive), since we need at leastK+1 simulations to estimate
a gradient. In the 1980’s, researchers developed methods for estimating gradients from a
single run of a simulator using a technique called infinitesimal perturbation analysis, or
IPA. IPA techniques were specifically designed for queueing networks, but highlighted the
power of being able to estimate gradients from a single run of a simulator.

Policy search shares a common starting point with simulation optimization. Instead of
choosing a design x, we have to find the parameters θ that govern a policy. Both are design
parameters that have to be chosen before we run our simulator. However, the process of
finding derivatives with respect to the policy control parameters θ is quite different than
finding the derivatives with respect to the size of buffers in a queueing network.
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We divide our discussion primarily along the two fundamental search strategies:
derivative-based and derivative-free. Derivative-based methods are attractive because they
allow us to draw on the foundation we provided in chapter 5, which is the only practical
way (at this time) to handle high dimensional vectors of parameters, as might arise when
our policy is represented by a neural network. Derivative-based policy search starts from
writing the value of a policy as

Fπ(θ) = E

{
T∑
t=0

C(St, X
π(St|θ))|S0

}
, (12.5)

where St+1 = SM (St, X
π(St|θ),Wt+1). If we let W = (W1, . . . ,WT ), then this is

precisely

max
θ

EF (θ,W ), (12.6)

where we dropped the “π” superscript because in this setting, the structure of the policy
has been fixed and is otherwise determined by θ. This is now the same problem we faced
in chapter 5, where we can search for θ using a standard stochastic gradient algorithm

θn+1 = θn + αn∇θFπ(θn,Wn+1). (12.7)

The challenge, then, is finding the gradient ∇θF (θn,Wn+1), a problem we did not
address in chapter 5. To do this, it is useful to identify three classes of problems:

Discrete dynamic programs - These are problems where we are at a node (state) s,
choose a discrete action a and then transition to a node s′ with probability P (s′|s, a)
(which we represent but generally cannot compute). An important subclass of graph
problems are those where actions are chosen at random (known as a stochastic
policy), but transitions are made deterministically. Here, we wish to optimize a
parameterized policy Aπ(s|θ), where action at = Aπ(St|θ) is discrete.

Control problems - In this setting we choose a continuous control ut that impacts the state
St+1 in a continuous way through a known (and differentiable) transition function.

Resource allocation - Here, we have a vector of resources Rt which we move with a
vector xt to produce a new allocation Rt+1, possibly with random perturbations,
according to the equation

Rt+1 = Rt +Atxt + R̂t+1,

where Rt and xt are vectors, and At is a suitably defined matrix. This problem
class includes all of the physical resource allocation problems described in chapter 8.
For this problem class, we wish to optimize a parameterized policy Xπ(s|θ), where
xt = Xπ(St|θ) is typically a vector (possibly high dimensional).

All three problem classes have attracted considerable attention, and illustrate different
methods for computing gradients. We begin with section 12.3 which describes a powerful
result known as the policy gradient theorem for taking derivatives of policies for discrete
dynamic programs, where actions are discrete (in particular, they are categorical). We then
transition to control problems where we can exploit the derivative of a downstream state
with respect to a control.

We defer the discussion of resource allocation problems to chapter 13 where they are
presented in the context of parameterized cost function approximations, which represent a
popular way of handling this problem class. The complication here is that the policy has
an imbedded minimization problem.
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12.3 THE POLICY GRADIENT THEOREM FOR DISCRETE DYNAMIC
PROGRAMS

We assume that we are going to maximize the single-period expected reward in steady
state. We use the following notation

r(s, a) = Reward if we are in state s ∈ S and take action a ∈ As,
Aπ(s|θ) = Policy that determines the action a given that we are in state s, which

is parameterized by θ,
Pt(s

′|s, a) = Probability of transitioning to state s′ given that we are in state s and
take action a at time t (we use P (s′|s, a) if the underlying dynamics
are stationary),

dπt (s|θ) = Probability of being in state s at time t while following policy π,

We first introduce a parameterized stochastic policy which is typically required for problems
where decisions are discrete with no particular structure (e.g. red-green-blue). We note that
the parameters that we are optimizing are primarily controlling the balance of exploration
and exploitation. We then present the objective function (there is more than one way to
write this, as we show later). Finally, we describe a computable method for taking the
gradient of this objective function.

12.3.1 A stochastic policy

We follow the standard practice in the literature of using what is called a stochastic policy,
where an action a is chosen probabilistically. We represent our policy using

pπt (a|s, θ) = The probability of choosing action a at time t, given that we are in state s,
where θ is a tunable parameter (possibly a vector).

Most of the time we will use a stationary policy that we denote p̄π(a|s, θ) which can be
viewed as a time-averaged version of our policy pπt (a|s, θ) which we might compute using

p̄π(a|s, θ) = lim
T→∞

1

T

T∑
t=1

pπt (a|s, θ).

A particularly popular policy (especially in computer science) assumes that actions are
chosen at random according to a Boltzmann distribution (also known as Gibbs sampling).
Assume at time t that we have

Q̄t(s, a) = Estimated value at time t of being in state s and taking action aminus
the steady state .

Now define the probabilities (using our familiar Boltzmann distribution)

pπt (a|s, θ) =
eθQ̄t(s,a)∑

a′∈As e
θQ̄t(s,a′)

. (12.8)

We can compute the values Q̄t(s, a) using Q̄t(s, a) = r(s, a), although this means choosing
actions based on immediate rewards. Alternatively, we might use

Q̄t(s, a) = r(s, a) + max
a′

Q̄t+1(s′, a′),
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where s′ is chosen randomly from simulating the next step (or sampling from the transition
matrix Pt(s′|s, a) if this is available). We first saw methods for computing Q-values under
the umbrella of reinforcement learning in section 2.1.10.

If we are modeling a stationary problem, it is natural to transition to a stationary policy.
Let p̄π(a|s, θ) be our stationary action probabilities where we replace the time-dependent
values Q̄t(s, a) with stationary values Q̄(s, a) computed using

Q̄π(s, a|θ) = r(s, a) + E

{
T∑
t′=1

r(St′ , A
π(St′ |θ))|S0 = s, a0 = a

}
. (12.9)

This is the total reward over the horizon from starting in state s and taking action a (note
that we could use average or discounted rewards, over finite or infinite horizons). We
remind the reader we are never going to actually compute these expectations. Using these
values, we can create a stationary distribution for choosing actions using

p̄π(a|s, θ) =
eθQ̄

π(s,a|θ)∑
a′∈As e

θQ̄π(s,a′|θ) , (12.10)

Finally, our policy Aπ(s|θ) is to choose action a with probability given by pπt (a|s, θ).
The development below does not require that we use the Boltzmann policy, but it helps to
have an example in mind.

12.3.2 The objective function

To develop the gradient, we have to start by writing out our objective function which is to
maximize the average reward over time, given by

Fπ(θ) = lim
T→∞

1

T

{
T∑
t=0

∑
s∈S

(
dπt (s|θ)

∑
a∈As

r(s, a)pπt (a|s, θ)

)}
. (12.11)

A more compact form involves replacing the time-dependent state probabilities with their
time averages (since we are taking the limit). Let

d̄π(s|θ) = lim
T→∞

1

T

T∑
t=0

dπt (s|θ).

We can then write our average reward per time period as

Fπ(θ) =
∑
s∈S

d̄π(s|θ)
∑
a∈As

r(s, a)p̄π(a|s, θ). (12.12)

12.3.3 The policy gradient

We are now ready to take derivatives. Differentiating both sides of (12.12) gives us

∇θFπ(θ) =
∑
s∈S

(
∇θd̄π(s|θ)

∑
a∈As

r(s, a)p̄π(a|s, θ) + d̄π(s|θ)
∑
a∈As

r(s, a)∇θp̄π(a|s, θ)

)
.

(12.13)
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While we cannot compute probabilities such as dπ(s), we can simulate them (we show this
below). We also assume we can compute ∇θp̄π(a|s, θ) by differentiating our probability
distribution in (12.10). Derivatives of probabilities such as∇θd̄π(s|θ), however, are another
matter.

This is where the development known as the policy gradient theorem helps us. This
theorem tells us that we can calculate the gradient of Fπ(θ) with respect to θ using

∂Fπ(θ)

∂θ
=

∑
s

dπ(s|θ)
∑
a

∂p̄π(a|s, θ)
∂θ

Qπ(s, a). (12.14)

where Qπ(s, a) (defined below) is the expected difference between rewards earned each
time period from a starting state, and the expected reward (given by Fπ(θ)) earned each
period when we are in steady state. We will not be able to compute this derivative exactly,
but we show below that we can produce an unbiased estimate without too much difficulty.
What is most important is that, unlike equation (12.13), we do not have to compute (or
even approximate) ∇θd̄π(s|θ).

We are going to begin by defining two important quantities:

Qπ(s, a|θ) =

∞∑
t=1

E{r(st, at)− Fπ(θ)|s0 = s, a0 = a},

V π(s|θ) =

∞∑
t=1

E{r(st, at)− Fπ(θ)|s0 = s},

=
∑
a∈A

p̄π(a0 = a|s, θ)
∞∑
t=1

E{r(st, at)− Fπ(θ)|s0 = s, a0 = a},

=
∑
a

p̄π(a|s, θ)Qπ(s, a). (12.15)

Note that Qπ(s, a|θ) is quite different than the quantities Q̄π(s, a|θ) used above for the
Boltzmann policy (which is consistent with Q-learning, which we first saw in section
2.1.10). Qπ(s, a|θ) sums the difference between the reward each period and the steady
state reward per period (a difference that goes to zero on average), given that we start in
state s and initially take action a. V π(s|θ) is simply the expectation over all initial actions
actions a as specified by our probabilistic policy

We next rewrite Qπ(s, a) as the first term in the summation, plus the expected value of
the remainder of the infinite sum using

Qπ(s, a) =

∞∑
t=1

E{rt − Fπ(θ)|s0 = s, a0 = a},

= r(s, a)− Fπ(θ) +
∑
s′

P (s′|s, a)V π(s′), ∀s, a, (12.16)

where P (s′|s, a) is the one-step transition matrix (recall that this does not depend on θ).
Solving for Fπ(θ) gives

Fπ(θ) = r(s, a) +
∑
s′

P (s′|s, a)V π(s′)−Qπ(s, a). (12.17)

Now, note that Fπ(θ) is not a function of either s or a, even though they both appear
in the right hand side of (12.17). Noting that since our policy must pick some action,
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∑
a∈A p̄

π(a|s, θ) = 1, which means

∑
a∈A

p̄π(a|s, θ)Fπ(θ) = Fπ(θ), ∀a.

This means we can take the expectation of (12.17) over all actions, giving us

Fπ(θ) =
∑
a

p̄π(a|s, θ)

(
r(s, a) +

∑
s′

P (s′|s, a)V π(s′)−Qπ(s, a)

)
, (12.18)

for all states s. We can now take derivatives using the following steps (explanations follow
the equations):

∂Fπ(θ)

∂θ
=

∂

∂θ

(∑
a

p̄π(a|s, θ)
(
r(s, a) +

∑
s′

P (s′|s, a)V π(s′)−Qπ(s, a)

))
(12.19)

=
∑
a

∂p̄π(a|s, θ)
∂θ

r(s, a) +
∑
a

∂p̄π(a|s, θ)
∂θ

∑
s′

P (s′|s, a)V π(s′)

+
∑
a

p̄π(a|s, θ)
∑
s′

P (s′|s, a)
∂V π(s′)

∂θ
− ∂

∂θ

(∑
a

p̄π(a|s, θ)Qπ(s, a)

)
(12.20)

=
∑
a

∂p̄π(a|s, θ)
∂θ

(
r(s, a) +

∑
s′

P (s′|s, a)V π(s′)

)
+
∑
a

p̄π(a|s, θ)
∑
s′

P (s′|s, a)
∂V π(s′)

∂θ
− ∂V π(s)

∂θ
(12.21)

=
∑
a

∂p̄π(a|s, θ)
∂θ

(
Qπ(s, a) + Fπ(θ)

)
+
∑
a

p̄π(a|s, θ)
∑
s′

P (s′|s, a)
∂V π(s′)

∂θ
− ∂V π(s)

∂θ
(12.22)

=
∑
a

∂p̄π(a|s, θ)
∂θ

Qπ(s, a) +
∑
a

p̄π(a|s, θ)
∑
s′

P (s′|s, a)
∂V π(s′)

∂θ
− ∂V π(s)

∂θ
.

(12.23)

Equation (12.19) is from (12.18); (12.20) is the direct expansion of (12.19), where two
terms vanish because r(s, a) and P (s′|s, a) do not depend on the policy p̄π(a|s, θ); (12.19)
uses (12.15) for the last term; (12.22) uses (12.16); (12.15) uses the fact Fπ(θ) is constant
over states and actions, and

∑
a p̄

π(a|s, θ) = 1. Finally, note that equation (12.23) is true
for all states.

We proceed to write

∂Fπ(θ)

∂θ
=
∑
s

dπ(s|θ)∂F
π(θ)

∂θ
(12.24)

=
∑
s

dπ(s|θ)

(∑
a

∂p̄π(a|s, θ)
∂θ

Qπ(s, a)

+
∑
a

p̄π(a|s, θ)
∑
s′

P (s′|s, a)
∂V π(s′)

∂θ
− ∂V π(s)

∂θ

)
. (12.25)
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Expanding gives us

∂Fπ(θ)

∂θ
=
∑
s

dπ(s|θ)
∑
a

∂p̄π(a|s, θ)
∂θ

Qπ(s, a)

+
∑
s

dπ(s|θ)
∑
a

p̄π(a|s, θ)
∑
s′

P (s′|s, a)
∂V π(s′)

∂θ
−
∑
s

dπ(s|θ)∂V
π(s)

∂θ
(12.26)

=
∑
s

dπ(s|θ)
∑
a

∂p̄π(a|s, θ)
∂θ

Qπ(s, a)

+
∑
s

dπ(s|θ)∂V
π(s)

∂θ
−
∑
s

dπ(s|θ)∂V
π(s)

∂θ
(12.27)

=
∑
s

dπ(s|θ)
∑
a

∂p̄π(a|s, θ)
∂θ

Qπ(s, a). (12.28)

Equation (12.24) uses
∑
s d

π(s|θ) = 1; (12.25) uses the fact (12.23) holds for all s;
(12.26) simply expands (12.25); (12.27) uses the property that since dπ(s) is the stationary
distribution, then

∑
s d

π(s|θ)P (s′|s, a) = dπ(s′|θ) (after substituting this result, then just
change the index from s′ to s). Equation (12.28) is the policy gradient theorem we first
presented in equation (12.14).

12.3.4 Computing the policy gradient

As is always the case in stochastic optimization, the challenge boils down to computation.
To help the discussion, we repeat the policy gradient result:

∂Fπ(θ)

∂θ
=

∑
s

dπ(s|θ)
∑
a

∂p̄π(a|s, θ)
∂θ

Qπ(s, a). (12.29)

We start by assuming that we have some analytical form for the policy which allows us to
compute ∂p̄π(a|s, θ/∂θ (which is the case when we use our Boltzmann distribution). This
leaves the stationary probability distribution dπ(s|θ), and the marginal rewards Qπ(s, a).

Instead of computing dπ(s|θ) directly, we instead simply simulate the policy, depending
on the fact that over a long simulation, we will visit each state with probability dπ(s|θ).
Thus, for large enough T , we can compute

∇θFπ(θ) ≈ 1

T

T∑
t=1

∑
a

∂p̄π(a|st, θ)
∂θ

Qπ(st, a), (12.30)

where we simulate according to a known transition function st+1 = SM (st, a,Wt+1). We
may simulate the process from a known transition function and a model of the exogenous
information process Wt (if this is present), or we may simply observe the policy in action
over a period of time.

This then leaves us with Qπ(st, a). We are going to approximate this with estimates
that we call Q̄πt (St|θ), which we will compute by running a simulation starting at time t
until T (or some horizon t + H). This requires running a different simulation that can be
called a roll-out simulation, or a lookahead simulation. To avoid confusion, we are going
to let S̃tt′ be the state variable at time t′ in a roll-out simulation that is initiated at time t.
We let W̃ tt′ be the simulated random information between t′ − 1 and t′ for a simulation
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that is initiated at time t. Recognizing that S̃tt = St, we can write

Q̄πt (St|θ) = EW
1

T − t

T−1∑
t′=t

r(S̃tt′ , A
π(S̃tt′ |θ)),

where S̃t,t′+1 = SM (S̃tt′ , A
π(S̃tt′ |θ), W̃ t,t′+1) represents the transitions in our lookahead

simulation. Of course, we cannot compute the expectation, so instead we use the simulated
estimate

Q̄πt (St|θ) ≈
1

T − t

T−1∑
t′=t

r(S̃tt′ , A
π(S̃tt′ |θ)). (12.31)

We note that while we write this lookahead simulation as spanning the period from t to
T , this is not necessary. We might run these lookahead simulations over a fixed interval
(t, t+H), and adjust the averaging accordingly.

We now have a computable estimate ofFπ(θ) which we obtain from (12.31) by replacing
Qπt (St|θ) with Q̄πt (St|θ), giving us a sampled estimate of policy π using

Fπ(θ) ≈
T−1∑
t=0

Q̂πt (St|θ).

The final step is actually computing the derivative ∇θFπ(θ). For this, we are going to
turn to numerical derivatives. Assume the lookahead simulations are fairly easy to compute.
We can then obtain estimates of∇θQ̂πt (St|θ) using the finite difference. We can do this by
perturbing each element of θ. If θ is a scalar, we might use

∇θQ̂πt (St|θ) =
Q̂πt (St|θ + δ)− Q̂πt (St|θ − δ)

2δ
(12.32)

If θ is a vector, we might do finite differences for each dimension, or turn to simultaneous
perturbation stochastic approximation (SPSA) (see section 5.4.3 for more details).

This strategy was first introduced under the name of the REINFORCE algorithm. It has
the nice advantage of capturing the downstream impact of changing θ on later states, but in
a very brute force manner.

12.4 DERIVATIVE-BASED POLICY SEARCH: CONTROL PROBLEMS

In this section, we are going to assume that we are trying to find a control policy Uπ(St|θ)
(known as a control law in the engineering community) parameterized by θ that returns
a continuous, vector-valued control ut = Uπ(St|θ). Using our control notation, our
optimization problem would be written

Fπ(θ) = E

{
T∑
t=0

C(St, U
π
t (St|θ))|S0

}
, (12.33)

where our dynamics evolve (as before) according to

St+1 = SM (St, ut,Wt+1),
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where we are given an initial state S0 and access to observations of the sequence W =
(W1, . . . ,WT ). We have written our policyUπt (St) in a time-dependent form for generality,
but this means estimating time-dependent parameters θt that characterize the policy. In most
applications we would use the stationary version Uπ(St), with a single set of parameters θ.

Control problems are distinguished from discrete dynamic programs specifically because
we assume we can compute ∂St+1/∂ut. With discrete dynamic programs, we assumed
the actions a were categorical (e.g. left/right or red/green/blue). In that setting, we had
to consider the downstream impact of a decision made now by capturing the effect of
changing the policy parameter θ on the probability of which state we would visit. Now we
can capture this impact directly.

There are two approaches for minimizing Fπ(θ) over the parameter vector θ:

Batch learning Here we replace (12.33) with an average over N samples, giving us

F
π
(θ) =

1

N

N∑
n=1

T∑
t=0

C(St(ω
n), Uπt (St(ω

n)|θ)), (12.34)

where St+1(ωn) = SM (St(ω
n), Uπ(St(ω

n)),Wt+1(ωn)) is the sequence of states
generated following sample pathωn. This is a classical statistical estimation problem.

Adaptive learning Rather than solving a single (possibly very large) batch problem, we
can use our standard stochastic gradient updating logic (from chapter 7)

θn+1 = θn + αn∇θFπ(θn,Wn+1).

This update is executed following each forward pass through the simulation.

Both approaches depend on computing the gradient ∇θFπ(θ,W ) for a given simple path
ω from which we generate a sequence of state St+1 = SM (St, ut,Wt+1(ω)) where
ut = Uπ(St). Normally we would write St(ω) or ut(ω) to indicate the dependence on
sample path ω, but we suppress this here for notational compactness.

We find the gradient by differentiating (12.33) with respect to θ, which requires a
meticulous application of the chain rule, recognizing that the contribution C(St, ut) is a
function of both St and ut, the policy Uπ(St|θ) is a function of both the state St and the
parameter θ, and the state St is a function of the previous state St−1, the previous control
ut−1, and the most recent exogenous information Wt (which is assumed to be independent
of the control, although this could be handled). This gives us

∇θFπ(θ, ω) =

(
∂C0(S0, u0)

∂u0

)(
∂Uπ0 (S0|θ)

∂θ

)
+

T∑
t′=1

[(
∂Ct′(St′ , U

π
t′ (St′))

∂St′

∂St′

∂θ

)
+
∂Ct′(St′ , ut′)

∂ut′

(
∂Uπt′ (St′ |θ)

∂St′

∂St′

∂θ
+
∂Uπt′ (St′ |θ)

∂θ

)]
(12.35)

where

∂St′

∂θ
=

∂St′

∂St′−1

∂St′−1

∂θ
+

∂St′

∂ut′−1

[
∂Uπt′−1(St′−1|θ)

∂St′−1

∂St′−1

∂θ
+
∂Uπt′−1(St′−1)

∂θ

]
.(12.36)

The derivatives ∂St′/∂θ are computed using (12.36) by starting at t′ = 0 where

∂S0

∂θ
= 0,
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and stepping forward in time.
Equations (12.35) and (12.36) require that we be able to take derivatives of the cost

function, the policy, and the transition function. We assume this is possible, although the
complexity of these derivatives is highly problem dependent.

12.5 NEURAL NETWORK POLICIES

A popular strategy (especially in engineering) for representing policies is to use neural
networks, which are well suited for low-dimensional continuous control problems (which
are typically deterministic). We first introduced neural networks in chapter 3, both as a
form of parametric model (when there is a small number of layers), or as a nonparametric
model in the setting where we use a large (effectively infinite) number of layers (often
known as deep learning).

Neural networks are able to model very complex functions, although their richness
makes them vulnerable to overfitting which can only be overcome through considerable
training. They are well suited to handling high-dimensional state-spaces, although they
work better with lower-dimensional control spaces (most engineering applications involve
no more than 10 or 20 dimensions).

Our presentation of policy builds on the foundation provided in section 12.1.7. We
present our ideas using the setting of a three-layer architecture. The input layer captures
the d-dimensional state variable, St, the hidden layer aims at discovering nonlinear feature
transformations of the state, while the output represents the m-dimensional real-valued
control ut. The first layer activations are set to:

a(1) =


1

a
(1)
1
...

a
(1)
d

 =


1

S
(1)
t
...

S
(d)
t


Using the vectorized notation introduced in Section 3.9.3.2, we can compute the hidden
layer activations using:

a(2) =


a

(2)
1

a
(2)
2
...

a
(2)
s2

 = sigmoid
(
θ(1)a(1)

)
,

where s2 is the total number of hidden units, and θ(1) ∈ Rs2×d+1 representing the connect-
ing weights between the input and hidden layers (the d + 1st term is for bias correction).
To finalize forward propagation needed to determine a control ut given an input state St,
we append a2 by a(2)

0 = 1 and compute:

ut = a(3) =


a

(3)
1

a
(3)
2
...

a
(3)
m

 = sigmoid
(
θ(2)sigmoid

(
θ(1)a(1)

))
.
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At this stage, we are ready to plug-in the above policy representation in our optimization
problem. To write this in the notational style we have used elsewhere in the chapter, we
are going to let θ = θ(1),θ(2), allowing us to write our problem as

min
θ
Fπ(θ) = E

[
T∑
t=1

C(St, U
π(St|θ))

]
+
λ

2

2∑
l=1

 sl∑
i=1

sl+1∑
j=1

(
θ

(l)
ji

)2

 , (12.37)

where Uπ(St|θ) = sigmoid
(
θ(2)sigmoid

(
θ(1)a(1)

))
is the policy. The term∑2

l=1

[∑sl
i=1

[∑sl+1

j=1

(
θ

(l)
ji

)2
]]

is a regularizer used to avoid overfitting, where λ scales

the regularizer (we first saw this in section 3.7.2 when we introduced Lasso).
Equation (12.37) is not easy to solve because the objective is nonconvex. We can

overcome this in low dimensions by performing a series of random restarts, and then
performing gradient search steps (such as those presented in chapter 7). With neural
networks, however, the number of parameters can be quite large, leaving us with little more
than a hope that we have found a good solution. Solving these problems remains an active
area of research.

Learning model parameters corresponds to determining θ = θ(1) and θ(2) to minimize
the optimization problem above. The problem that arises when using neural networks is
that Fπ(θ) is nonconvex. The most widely used strategy is to start from a randomized
value of θk and then used gradient methods to find a local minimum. This is then repeated
K times, after which we keep the θk that performs the best. It is necessary to experiment
with different sample sizes K to find a value that strikes a good tradeoff between compute
time and solution quality.

Before being able to compute the gradients, however, we require a procedure allowing
us to estimate the objective function Fπ(θ) since we cannot compute the expectation. We
can use two approaches for optimizing the parameters. The first (and easiest) is to use
classical stochastic gradient search based on our (now familiar) updating equation (12.7),
which involves simulating the policy and computing gradients directly from the simulation
using equations (12.35) and (12.36).

The second approach is to use batch learning. We can approximate the expectation in
(12.37) by replacing it using a sample ω1, . . . , ωN where each ωn refers to a particular
sample realization of W1, . . . ,WT . This allows us to rewrite the optimization problem in
(12.37) as

min
θ=θ(1),θ(2)

1

N

N∑
n=1

[
T∑
t=1

C (St (ωn) , Uπt (St|θ))

]
︸ ︷︷ ︸

Fπ(θ)

(12.38)

+
λ

2

2∑
l=1

 sl∑
i=1

sl+1∑
j=1

(
θ

(l)
ji

)2


︸ ︷︷ ︸

Regularization term

. (12.39)

Readers should recognize this as nothing more than an example of a sampled approximation
of an expectation, as we discussed in section 4.3. This is a deterministic optimization
problem, but that does not mean it is easy. Designing a solution strategy depends on the
structure of the cost function C(St, ut), the policy Uπ(St|θ), and the transition function
St+1 = SM (St, ut,Wt+1).
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12.6 DERIVATIVE-FREE POLICY SEARCH

Derivative-free policy search involves generating a population of parameters θ1, . . . , θK
and then searching for the best one using the tools that we presented in chapter 7. Since
the vector θ is continuous, some methods are more appropriate than others.

Below, we highlight a tour through chapter 7 on derivative-free methods, with a brief
visit to chapter 5. We do this by first discussing the role of dimensionality of the control
vector θ, then list some of the more appropriate belief models, and close by touching on
the issue of optimizing final or cumulative rewards.

12.6.1 The role of dimensionality

It is important to understand the role of dimensionality in the vector θ. There are three
major classes:

• Scalar models - Boltzmann policies are characterized by a scalar parameter θ, which
makes it relatively easy to search, especially if we can run long (and relatively low
noise) simulations. We can typically discretize the range for θ and then use any of
the methods described in chapter 7 for discrete alternatives with lookup table belief
models. Since we are maximizing a continuous function, it makes sense to exploit
correlated beliefs, first introduced in section 3.4.2, and exploited in the knowledge
gradient for correlated beliefs in section 7.8.1.

• Low-dimensional continuous models - Imagine a problem with a relatively simple
state variable (the amount of water in a reservoir, or indices for the stock market
and interest rates). If there are only two or three dimensions, we may still be able
to enumerate a full grid and apply the techniques for lookup tables (presumably
exploiting correlated beliefs). If there are more than three dimensions, enumerating
a discretized grid tends to be impractical, but we can begin using classical parametric
models, as described in section 7.8.3 for linear belief models. Alternatively, if we
have a nonlinear model, we could use sampled belief models as described in section
7.8.3.

• High-dimensional continuous models - A good example of a high-dimensional policy
is a neural network, but it could also arise with a linear model with a high-dimensional
state variable (as might arise in the management of complex resources). These models
have typically been approached using gradient methods (described above), so there
is little research in the optimization of high-dimensional policies using derivative-
free methods. For example, we could use a sampled belief model as described in
section 7.8.3, which might involve creating a set θ1, . . . , θK for K = 20 or so, for a
parameter vector θ that may have hundreds of dimensions.

12.6.2 Belief models

We can draw on a number of the different belief structures presented in chapter 3. Some
that are likely to be useful in the representation of continuous vectors for the parameter
vector θ include:

• Lookup table with correlated beliefs - This could work well for vectors θ with one
to three dimensions.
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• Low-dimensional linear models (e.g. quadratic) - Low dimensional linear models
can be used in a number of settings, spanning anywhere from one to dozens of
variables.

• Sparse linear models - These models extend the linear models to the domain of
high-dimensional vectors, but where we think that many of the elements of θ may be
zero.

• Neural networks - We have described gradient-based search models using neural
network policies (which can be very high dimensional), but we may not be able
to use these methods if we cannot differentiate the cost function or the transition
function, possibly because one or both are not known (this is more likely to be the
case with the transition function).

• Sampled belief model - Here we generate a sample θ1, . . . , θK , and then work to
learn which one of these produces the best performance. Sampled belief models can
be used in principle for virtually any setting, although we have no experience using
this for high-dimensional problems.

Finally, we can always draw on the idea of using finite differences, which we introduced
in section 5.4.3 in our chapter for derivative-based stochastic search. Although finite
differences simply represent a method for approximating gradients, they are actually a
derivative-free method and can be used for problems where we cannot extract a gradient as
we outlined above.

12.6.3 Cumulative vs. terminal rewards

It is easy to envision settings where policies are optimized offline in a simulated environ-
ment, where we are willing to make mistakes to find the best policy, or online in a field
situation, where we need to pay attention to its performance as we proceed. We handled
these two settings under the names of terminal reward (for offline learning) and cumula-
tive reward (for online learning) in chapter 7 for derivative-free stochastic search, where
it is possible to search for policies using either objective function. However, as of this
writing, we are unaware of an adaptation of derivative-based stochastic search for online
(cumulative reward) settings.

12.7 SUPERVISED LEARNING

An entirely different approach to policy search is to take advantage of the presence (if
available) of an external source of decisions. This might be a domain expert (such as
a doctor making medical decisions, experienced air traffic control dispatchers, or drivers
operating a car), or perhaps simply a different optimization-based policy. For example, in
chapter 20, we are going to introduce lookahead policies that require forecasting into the
future and solving what can become a very large optimization problem, possibly one that
is too large to solve in practice.

Imagine that we have a set of decisions xn from an external source (human or computer).
Let Sn be our state variable, representing information available when the nth decision was
made. For the moment, assume that we have access to a dataset (Sn, xn)Nn=1 from past
history. Now we face a classical machine learning problem of fitting a function (policy) to
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this data. Start by assuming that we are going to use a simple linear model of the form

Xπ(S|θ) =
∑
f∈F

θfφf (S),

where (φf (S))f∈F is a set of features designed by a human (there is a vast machinery
of statistical learning tools we can bring to bear on this problem). We can use our batch
dataset to estimateXπ(S|θ), although more often we can use the tools in chapter 3 to adapt
to new data in an online fashion.

Several issues arise when pursuing this approach:

• Our policy is never better than our supervisor, although in many cases a policy that
is as good as an experienced supervisor might be quite good.

• In a recursive setting, we need to design algorithms that allow the policy to adapt
as more data becomes available. Using a neural network, for example, can result in
significant overfitting, producing unexpected results as the function adapts to noisy
data.

• If our supervisor is a human, we are going to be limited in the number of times we
can query our domain expert, raising the problem of efficiently designing questions.

Supervised learning can be a powerful strategy for finding an initial policy, and then using
policy search methods (derivative-based or derivative-free) to further improve the policy.
However, we face the issue of collecting data from our supervisor. If we have an extensive
database of decisions and the corresponding state variables that capture the information
we would use to make a decision, then we simply have a nice statistical challenge (albeit,
not necessarily an easy one). However, it is often the case that we have to work with data
arriving sequentially in an online manner. We can approach our policy estimation in two
ways:

Active policy search Here we are actively involved in the operation of the process to
design better policies. We can do this in two ways:

Active policy adjustment This involves adjusting the parameters controlling the
policy, as we described above with policy search.

Active state selection We may choose the state that then determines the decision.
This might be in the form of choosing hypothetical situations (e.g. patient
characteristics) and then asking the expert for his/her decision.

Passive policy search In this setting, we are following some policy, and then selectively
using the results to update our policy.

Active state selection is similar to derivative-free stochastic search (chapter 7). Instead of
choosing x to obtain a noisy observation of F (x) = EF (x,W ), we are choosing a state S
to get a (possibly noisy) observation of an action x from some source. Active state selection
can only be done in an offline setting (we cannot choose the characteristics of a patient
walking into the hospital, but we can pose the characteristics of a hypothetical patient), but
we are limited in terms of how many questions we can pose to our supervisor, especially if
it is human (but also if it is a time consuming optimization model).

Passive policy search is an approach where we use our policyXπ(St) to make decisions
xt that are then used to update the policy. Of course, if all we did was feed our own
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decisions back into the same function that produced the decisions, then we would not learn
anything. However, it is possible to perform a weighted statistical fit, where we put a higher
weight on decisions that perform better.

12.8 BIBLIOGRAPHIC NOTES

Section 5.3 - The theoretical foundation for estimating value functions from Monte Carlo
estimates has its roots in stochastic approximation theory, originated by Robbins
& Monro (1951), with important early contributions made by Kiefer & Wolfowitz
(1952), Blum (1954a) and Dvoretzky (1956). For thorough theoretical treatments
of stochastic approximation theory, see Wasan (1969), Kushner & Clark (1978) and
Kushner & Yin (1997). Very readable treatments of stochastic optimization can be
found in Pflug (1996) and ?.

Section ?? - A nice introduction to various learning strategies is contained in Kaelbling
(1993) and Sutton & Barto (1998). Thrun (1992) contains a good discussion of
exploration in the learning process. The discussion of Boltzmann exploration and
epsilon-greedy exploration is based on Singh et al. (2000).

Section ?? - The knowledge gradient policy for normally distributed rewards and indepen-
dent beliefs was introduced by Gupta & Miescke (1996), and subsequently analyzed
in greater depth by Frazier et al. (2008). The knowledge gradient for correlated
beliefs was introduced by Frazier et al. (2009). The adaptation of the knowledge
gradient for online problems is due to Ryzhov & Powell (2009). The knowledge
gradient for correlated beliefs is due to Negoescu et al. (2010).

Section 7.9 - There is an advanced field of research within the simulation community
that has addressed the problem of using simulation (in particular, discrete event
simulation) to find the best setting of a set of parameters that controls the behavior
of the simulation. An early survey is given by Bechhofer et al. (1995); a more recent
survey can be found in Fu et al. (2007). ? provides a nice tutorial overview of
methods based on ordinal optimization. Other important contributions in this line
include Hong & Nelson (2006) and Hong & Nelson (2007). Most of this literature
considers problems where the number of potential alternatives is not too large. Nelson
et al. (2001) considers the case when the number of designs is large. Ankenman et
al. (2009) discusses the use of a technique called kriging, which is useful when
the parameter vector x is continuous. The literature on optimal computing budget
allocation is based on a series of articles originating with Chen (1995), and including
Chen et al. (1997); ?); ?, and Chen et al. (2000). Chick et al. (2001) introduces the
LL(B) strategy which maximizes the linear loss with measurement budget B. He
et al. (2007) introduce an OCBA procedure for optimizing the expected value of a
chosen design, using the Bonferroni inequality to approximate the objective function
for a single stage. A common strategy in simulation is to test different parameters
using the same set of random numbers to reduce the variance of the comparisons.
Fu et al. (2007) apply the OCBA concept to measurements using common random
numbers.

Section 5.8.2 - This proof is based on Blum (1954b), which generalized the original paper
by Robbins & Monro (1951).
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Section 5.8.3 - The proof in section 5.8.3 uses standard techniques drawn from several
sources, notably Wasan (1969), Chong (1991), Kushner & Yin (1997) and, for this
author, Powell & Cheung (2000).

PROBLEMS

12.1



CHAPTER 13

COST FUNCTION APPROXIMATIONS

Parametric function approximations (chapter 12) can be a particularly powerful strategy
for problems where there is a clear structure to the policy. For example, buying when the
price is below θmin and selling when it is above θmax is an obvious structure for many
buy/sell problems. But PFAs do not scale to larger, more complex problems such as, say,
scheduling an airline or managing an international supply chain.

One way to envision CFAs is to start with a myopic (sometimes called greedy) policy
where we always do what is best. This was introduced in chapter 7 for derivative-free
stochastic optimization as a pure exploitation policy. Imagine that we have a discrete
set of choices X = {x1, . . . , xM} where µnx is our estimate of some unknown function
EF (x,W ) after n samples, the pure exploitation policy would be written

XExplt(Sn) = arg max
x

µnx .

Such a policy does what appears to be best, but ignores that after choosing xn and observing
F̂n+1 = F (xn,Wn+1) that we can use this information to update our belief state (captured
by Sn). The problem is that we may have an estimate µnx that is too low that would
discourage us from trying it again. One way to fix this (which we introduced in chapter 7
as interval estimation) using the modified policy

XIE(St|θIE) = arg max
x∈X

(
µtx + θIEσtx

)
, (13.1)

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
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where St = (µntx, σ
2
tx)X is our belief state at time t, and θ is a parameter that has to be

tuned through our usual objective function

max
θ
F (θ) = E

T∑
t=0

C(St, X
π(St|θ)). (13.2)

We have tweaked the pure exploitation policy by adding an uncertainty bonus in (13.1)
which encourages trying alternatives where µx might be lower, but where there is sufficient
uncertainty that it might actually be higher. This is a purely heuristic way of enforcing a
tradeoff between exploration and exploitation.

While our interval estimation policy is limited to discrete action spaces, parametric CFAs
can actually be extended to very large-scale problems. Unlike PFAs that are generally
limited to much simpler problems, a parametric CFA can be written in its most general
form as

XCFA(St|θ) = arg max
x∈Xπt (θ)

C̄π(St, xt|θ), (13.3)

where C̄π(St, xt|θ) is a parametrically modified cost function, subject to a (possibly)
modified set of constraints X π(θ), where θ is the vector of tunable parameters. Now
imagine that C̄π(St, xt|θ) is a concave (perhaps linear) function, where where Xt might be
a set of linear constraints such as

Xt = {x|Atxt = bt, 0 ≤ xt ≤ ut}.

Now we can solve problems where xt has many thousands (even hundreds of thousands)
of variables (dimensions). Below, we even show ways of creating parametrically modified
constraints to produce more robust solutions.

13.1 OPTIMAL MYOPIC POLICIES

A special case of a CFA is a myopic policy, given by

XMyopic(St) = arg max
xt∈Xt

C(St, xt). (13.4)

There are special cases where myopic policies are optimal. Consider, for example, a
problem where the state St is independent of history. For example, imagine a fishing boat
that returns with a catch of R̂t fish caught during time interval (t−1, t), which are then sold
at market prices p̂t = (p̂tm)Mm=1 wherem = (1, . . . ,M) is the set of markets, each offering
to purchase (D̂tm)Mm=1 pounds of fish. The exogenous information is Wt = (R̂t, D̂t, p̂t),
which then determines the state St = (Rt, Dt, pt) where Rt = R̂t, Dt = D̂t and pt = p̂t.
There is no learning.

A myopic policy would be to solve

XMyopic(St) = arg max
xt

M∑
m=1

p̂tmxtm, (13.5)

subject to, for m = 1, . . . ,M :

xtm ≤ D̂tm, (13.6)
xtm ≤ R̂tm, (13.7)
xtm ≥ 0. (13.8)
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The policy XMyopic(St) defined by (13.5) - (13.8) is optimal because the decision xt has
no impact on the future. The post-decision state Sxt is empty, since we assume that all fish
are sold (or discarded), and the prices pt+1 and demands D̂t+1 do not depend on xt, pt or
Dt.

Myopic policies are widely used. People purchase the cheapest product on the internet,
and sell their used car to the highest bidder. A popular problem involves allocating assets
in the stock market when we assume there are no transaction costs for moving money from
one stock to the next. This is the same as sweeping all funds into a money market account
at the end of the day and then starting over. While this problem has a physical state (the
amount of money that is swept into the money market account each night) that is affected
by the allocation decision made at the beginning of the day, we can still optimize our returns
over time by maximizing expected returns each day.

It is easy to introduce slight modifications to any of these problems to produce a problem
where the myopic policy is no longer optimal, but where it is still a good starting point.
Below we consider how to improve myopic policies using parametric modifications. We
then open up to a hybrid policy where we combine a deterministic lookahead with parametric
modifications to improve robustness.

13.2 COST-MODIFIED CFAS

We begin by considering problems where we modify the problem through the objective
function to achieve desired behaviors. Including bonuses and penalties is a widely used
heuristic approach to getting cost-based optimization models to produce desired behaviors,
such as balancing real costs against penalties for poor service. Not surprisingly, we can use
this approach to also produce robust behaviors in the presence of uncertainty.

We begin by presenting a general way of including linear cost correction models in the
objective function, and then provide an example of how this strategy can be used for a
dynamic assignment problem.

13.2.1 Linear cost function correction

A generic way of improving the performance of a myopic policy is to modify (13.4) with a
parametric cost function correction term consisting of a linear model, which we can write
as

XCFA−cost(St|θ) = arg max
xt∈Xt

C(St, xt) +
∑
f∈F

θfφf (St, xt)

 . (13.9)

where (φf )(S, x)f∈F is a set of features that depend first and foremost on x, and possibly
on the state S. If a feature does not depend on the decision, then it would not affect the
choice of optimal solution.

Designing the features for equation (13.9) is no different than designing the features
for a linear policy function approximation (or, for that matter, any linear statistical model
which we introduced in chapter 3). It is always possible to simply construct a polynomial
comprised of different combinations of elements of xt andSt with different transformations
(linear, square, ...), but many problems have very specific structure.
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13.2.2 CFAs for dynamic assignment problems

The truckload trucking industry requires matching drivers to loads, just as ride-sharing
companies match drivers to riders. The difference with truckload trucking is that the
customer is a load of freight, and sometimes the load has to wait a while (possibly several
hours) before being picked up.

A basic model of the dynamic assignment problem can be formulated using the following
notation:

Dt = The set of all drivers (with tractors) available at time t,
Lt = The set of all loads waiting to be moved at time t,
St = (Dt,Lt) = the state of our system at time t,
ctd` = The contribution of assigning driver d ∈ Dt to load ` ∈ Lt at time t, consid-

ering the cost of moving empty to the load, as well as penalties for late pickup
or delivery,

xtd` = 1 if we assign driver d to load ` at time t, 0 otherwise,
Lxt = Set of loads that were served at time t, which is to say all ` where∑

d∈Dt xtd` = 1,

Dxt = Set of drivers that were dispatched at time t, which is to say all d where∑
`∈Lt xtd` = 1.

A myopic policy for assigning drivers to loads would be formulated as

XAssign(St) = arg max
xt

∑
d∈Dt

∑
`∈Lt

ctd`xtd`. (13.10)

Once we dispatch a driver (that is, xtd` = 1 for some ` ∈ Lt), we assume the driver
vanishes (this is purely for modeling simplification). We then model drivers becoming
available as an exogenous stochastic process along with the loads. This is modeled using

L̂t = Exogenous process describing random loads (complete with origins and des-
tinations) that were called in between t− 1 and t,

Dt = Exogenous process describing drivers calling in to say they are available
(along with location).

In practice Dt will depend on prior decisions, but this simplified model will help us make
the point. The transition function would be given by

Lt+1 = Lt \ Lxt
⋃
L̂t+1, (13.11)

Dt+1 = Dt \ Dxt
⋃
D̂t+1. (13.12)

We can modify our updating logic to also drop loads that have been waiting too long.
The problem with our myopic policy in (13.10) is that a load may not be moved at time

t, which means it is still waiting to be moved at time t + 1. There are different ways of
handling this, but an obvious one is to put a positive bonus for moving loads that have been
delayed. Let

τt` = The time that load ` ∈ Lt has been delayed as of time t.
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Now consider the modified policy

XCFA−Assign(St|θ) = arg max
xt

∑
d∈Dt

∑
`∈Lt

(ctd` + θτt`)xtd`. (13.13)

Now we have a modified cost function (we use the term “cost function” even though we are
maximizing) that is parameterized by θ. The next challenge is to tune θ: too large, and we
move long distances to pull loads that have been waiting, too small, and we end up losing
loads that have to wait too long. Our optimization problem is given by

max
θ

E
T∑
t=0

C(St, X
CFA−Assign(St|θ)) (13.14)

where

C(St, xt) =
∑
d∈Dt

∑
`∈Lt

ctd`xtd`.

This is a classical use of a parametric cost function approximation for finding robust
policies for a very high-dimensional resource allocation problem. The delay penalty
parameter θ can be tuned in a simulator that represents the objective (13.14) along with the
dynamics (13.11) and (13.12). In real applications, this tuning is often done (albeit in an
ad hoc way) in an online setting based on real observations.

13.2.3 Policy search for cost-modified CFAs

Considerable caution has to be applied if you want to use a stochastic gradient method for
optimizing cost-modified CFAs since the objective function F (θ) (see equation 13.2) is
generally not going to be differentiable with respect to θ. Small changes in θ may produce
sudden jumps, with intervals where there is no change at all. A more promising approach is
probably to generate a sample θ1, . . . , θK of parameter values, and then to use the methods
of derivative-free stochastic optimization from chapter 7.

As of this writing we have limited experience with cost-modified CFAs, but the few
cases in which we have seen it used, it has worked quite well, especially when compared
to policies based on value function approximations with the exact same structure. We will
return to these results in chapter 18 on approximate dynamic programming.

13.3 CONSTRAINT-MODIFIED CFAS

A particularly powerful solution strategy, widely used in industry, is to modify the con-
straints of a problem to produce more robust solutions. Some examples where this approach
has been used are listed below.

EXAMPLE 13.1

Airlines routinely use deterministic scheduling models to plan the movements of
aircraft. Such models have to be designed to represent the travel times between
cities, which can be highly uncertain. To handle this, the model inserts schedule
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slack θij for city pair (i, j). These parameters can then be optimized in a simulator,
but in practice they are optimized in the field, striking a balance between equipment
productivity (which encourages smaller values of θ) and penalties for late arrivals
(which encourages larger values of θ).

EXAMPLE 13.2

A major retailer has to manage inventories for a long supply chain extending from
the far East to North America. Uncertainties in production and shipping require that
the retailer maintain buffer stocks. Let θ be the amount of buffer stock planned in
the future (inventory is allowed to go to zero at the last minute). The buffer stock θ
enters through the constraint, and has to be optimized in a simulator or online in the
field.

EXAMPLE 13.3

Independent system operators (ISOs) have to plan how much energy to generate
tomorrow based on a forecast of loads, as well as energy to be generated from wind
and solar. They used a forecast factored by a vector θ with elements for each type of
forecast.

Constraint-modified CFAs can be written in the form

XCon−CFA(St|θ) = arg max
xt

C(St, xt), (13.15)

subject to

Atx̃t = b(θ), (13.16)
x̃t ≥ 0. (13.17)

where

b(θ) = b⊗ θb +Dθc

is the element by element product of the vector b with the similarly dimensioned vector of
coefficients θb, while D is a suitably constructed matrix that translates θc (which may be
scalar or a vector). We then parameterize our policy by θ = (θc, θb).

To illustrate, consider a simplified version of a problem for planning energy systems.
In our streamlined version, an independent system operator (ISO) which manages energy
resources over the grid has to plan which generators to turn on 24 hours in advance based
on a forecast. Steam generators have to be planned at least 10 hours in advance because of
the amount of time it takes to boil large tanks of water; for this reason, these problems are
typically solved the day before, using forecasts for loads (which are affected by weather),
as well as energy from wind and solar.
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Dt = Demand (“load”) for power during hour t,
fDtt′ = Forecast of Dt′ made at time t,
Et = Energy generated from renewables (wind/solar) during hour t,
Rt = Amount of energy stored in the battery at time t,
fEtt′ = Forecast of Et′ made at time t,
utt′ = Limit on how much generation can be committed at time t for hour t′,
ctt′ = Price to be paid for energy generated during hour t′ when the commitment is

made at time t.

The decision variables are given by

x̃tt′ = Planned generation of energy during hour t′, where the plan is made at time
t, which is comprised of the following elements:

x̃EDtt′ = Flow of energy from renewables to demand,
x̃EBtt′ = Flow of energy from renewables to battery,
x̃GDtt′ = Flow of energy from grid to demand,
x̃GBtt′ = Flow of energy from grid to battery,
x̃BDtt′ = Flow of energy from battery to demand.

We have to create projections of the energy in the battery over the horizon t′ > t:

Rt+1,t′ = Rtt′ + x̃EBtt′ + x̃GBtt′ − x̃BDtt′ .

The estimate Rt+1,t+1 becomes the actual energy in the battery as of time t + 1, while
Rt+1,t′ for t′ ≥ t+ 2 are projections that may change.

The state variable is now given by

St = (Rt, (f
D
tt′)t′≥t, (f

E
tt′)t′≥t).

We are going to ignore any linking between hours (for example, if we are generating a small
quantity of energy during hour t, it is hard to suddenly ramp this up quickly and generate a
lot during hour t+ 1). Our constraint-CFA policy might look like

XCon−CFA
t (St|θ) = arg min

xt,x̃t,t+1,...,x̃t,t+H

t+H∑
t̄=t

c̃tt′ x̃tt′ , (13.18)

subject to (for all t′ > t):

t+H∑
t′=t

(
x̃EDtt′ + x̃GDtt′ + x̃BDtt′

)
= θDt′−tf

D
tt′ , (13.19)

t+H∑
t′=t

(
x̃EDtt′ + x̃EBtt′

)
≤ θEt′−tf

E
tt′ , (13.20)

x̃BDtt′ ≤ R̃tt′ , (13.21)
x̃EBtt′ + x̃GBtt′ + R̃tt′ ≤ Rmax, (13.22)

(13.23)
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We can evaluate the performance of the policy while following sample pathW1(ω), . . . ,Wt(ω), . . . , T )
using

F (θ, ω) =

T∑
t=0

ctX
Con−CFA
t (St|θ), (13.24)

where St+1(ω) = SM (St(ω), XCon−CFA
t (St(ω)|θ),Wt+1(ω)) is the sequence of states.

We can write the constraints in matrix-vector form using

Atx̃t ≤ bt(θ),

x̃t ≥ 0.

13.4 CFA FOR RESOURCE ALLOCATION PROBLEMS

In this section, we consider decisions xt which represent quantities, as in flows of water,
energy, money or drivers. This is going to change how we capture the impact of a decision
now on the future.

13.4.1 The model

Resource allocation problems feature a resource state vector Rt = (Rti)i∈I where Rti
might be the amount of water in reservoir i, the amount of blood of type i, or the number
of cars where i might capture both the model and the location of the inventory. We
act on these resources with a vector xt, which can capture decisions which increase or
decrease the inventory. Then, we may observe random perturbations R̂t+1,i which could
represent rainfall (for a reservoir), blood donations, or unexpected changes in inventory
(late deliveries, sales, theft). We assume that our resource vector Rt evolves according to

Rt+1 = Rt +Atxt + R̂t+1,

whereAt is a suitable dimensioned matrix. For example, the matrixAt might consist of 0’s,
1’s and -1’s to indicate whether an element of the vector xt affects (increases or decreases)
the inventory of a particular type. We can easily introduce logic to ensure that no element
of Rt+1 goes negative.

We are going to assume that our state variable St = Rt, although in practice the
state variable might include information other than Rt. As above, we assume we have a
parameterized policy Xπ

t (St|θ) that might involve solving a linear program parameterized
by θ. For example, imagine that we are managing blood where we have to satisfy the
demand Dti for blood type i ∈ I at time t. Let cij be the cost (this could be a bonus or a
penalty) of assigning blood type i to a patient whose blood type is j, and let cpen be the
penalty for each unit of blood requested for an operation that could not be satisfied.

A simple myopic policy would be

max
xtij , i,j∈I

∑
i∈I

∑
j∈I

cijxtij − cpensti

 , (13.25)



CFA FOR RESOURCE ALLOCATION PROBLEMS 485

subject to ∑
j∈I

xtij ≤ Rti, ∀i, (13.26)

∑
i∈I

xtij + sti = Dtj , ∀j, (13.27)

xtij , sti ≥ 0, ∀ i, j. (13.28)

We assume the costs capture our ability to substitute blood (using blood type i for a
demand Dtj), with high costs when this is not allowed. We also have a penalty for not
satisfying demand. We do not have to assign all of our blood in Rti; anything not assigned
will be held over.

This is a pretty basic model. We might want to assign blood to handle not just the current
demand Dtj , but also forecasted demands. Let fDtj be our forecast of the demand of blood
type j over the next four weeks. But, we might not trust our forecast, so we modify the
forecast to θfDtj . We would then replace (13.27) with∑

i∈I
xtij + sti = Dtj + θfDtj , ∀j, (13.29)

(13.30)

We can refer to the constraints (13.26), (13.28) and (13.29) as the set Xt(θ). We can then
write (13.25) in the form of a policy as

Xπ
t (St|θ) = arg max

xt∈Xt(θ)

∑
i∈I

∑
j∈I

cijxtij − cpensti

 , (13.31)

This is a sample of a parameterized cost function approximation, which we revisit in depth
in

13.4.2 Policy gradients

For most applications, if we wish to use a gradient-based search process, we are going
to have to resort to numerical gradients. If the parameter vector θ has more than a
few dimensions, this will also mean using SPSA (simultaneous perturbation stochastic
approximation), which was introduced in section

Adapting from (12.35) and (12.36), we can derive the gradient with respect to the CFA
policy to obtain

∇θFπ(θ, ω) =

(
∂C0(S0, x0)

∂x0

)
+

T∑
t′=1

[(
∂Ct′(St′ , X

π
t′(St′))

∂St′

∂St′

∂θ

)
+
∂Ct′(St′ , xt′)

∂xt′

(
∂Xπ

t′(St′ |θ)
∂St′

∂St′

∂θ
+
∂Xπ

t′(St′ |θ)
∂θ

)]
(13.32)

where

∂St′

∂θ
=

∂St′

∂St′−1

∂St′−1

∂θ
+

∂St′

∂xt′−1

[
∂Xπ

t′−1(St′−1|θ)
∂St′−1

∂St′−1

∂θ
+
∂Xπ

t′−1(St′−1)

∂θ

]
.(13.33)
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13.5 BIBLIOGRAPHIC NOTES

• Section xx -



PART V - LOOKAHEAD POLICIES

Lookahead policies are based on estimates of the impact of a decision on the future. One
way to do this is by creating a value function, which captures the value of being in a state.
This can be used to help us understand the downstream impact of a decision made now. If
we can find accurate estimates of these values (which can be a lot of work), the resulting
policies can be quite easy to use. But there are many situations where these functions
cannot be estimated accurately, in which case we have to resort to direct lookahead policies
(DLAs), which are the most brute force of all the policies.

Policies based on value functions have attracted considerable attention over the years. In
fact, terms like “dynamic programming” and “optimal control” are basically synonymous
with value functions (or cost-to-go functions, as they are known in control theory).

Value functions are part of the broader strategy of creating policies based on approx-
imating the downstream impact of decisions made now. This starts with the original
optimization problem, which we can write in terms of finding the value when we start with
initial state S0:

V0(S0) = max
π∈Π

Eπ
{

T∑
t′=0

C(St′ , X
π
t′(St′))|S0

}
. (13.34)

We can then rewrite the problem start at time t when we are in state St:

Vt(St) = max
π∈Π

Eπ
{

T∑
t′=t

C(St′ , X
π
t′(St′))|St

}
. (13.35)

If we could compute the value function, we would be able to form a policy using

Xπ ∗t (St) = arg max
xt∈Xt

(C(St, xt) + E {Vt+1(St+1)|St}) . (13.36)

487
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If the state variable St is discrete with not too many values, we can use the tools of discrete
Markov decision processes, which are introduced in chapter 14. These techniques suffer
from what is widely known as the “curse of dimensionality,” although in reality there are
three curses (states, actions and the exogenous information).

When problems become more difficult, we have to turn to approximation methods. We
begin in chapter 16 by introducing the idea of backward approximate dynamic program-
ming, which works the same way as the techniques we introduce in chapter 14, but they
scale to problems with somewhat larger state spaces (but still restricted to discrete action
spaces).

A different class of methods is known as forward approximate dynamic programming,
which can scale to truly large scale problems such as optimizing a fleet of thousands of
trucks or locomotives. These methods are developed for general problems over chapters
17, where we show how to estimate value functions for a fixed policy, and 18, where we
address the much harder problem of finding good (ideally near optimal) policies. Chapter
19 describes forward approximate dynamic programming for the important special case of
convex problems, which arise in a wide range of resource allocation problems.

Whether we use backward or forward approximate dynamic programming, we end up
with value function approximations that we call V t(St), from which we can derive a policy
that looks like

XV FA
t (St) = arg max

xt∈Xt

(
C(St, xt) + E

{
V t+1(St+1)|St

})
. (13.37)

One problem that often arises in using (13.37) is that we may not be able to compute the
expectation. There are many applications where we can avoid this by using the concept of
the post-decision state, which we described in some depth in section 9.3.4. This allows us
to write the policy in the form

XV FA
t (St) = arg max

xt∈Xt

(
C(St, xt) + V

x

t (Sxt )
)
. (13.38)

In fact, it is this problem structure that has allowed us to solve some ultra-large scale
problems, such as optimizing a fleet of 7,000 trucks or the entire fleet of locomotives for a
major railroad.

Value function approximations are a powerful algorithmic strategy, but as with every-
thing else, they are not a panacea. They work when a problem lends itself to approximating
the value in a state.

There are a number of settings where value function approximations do not work well,
but one important class of problems are those that involve planning now with a forecast of
the future. Forecasts are notoriously difficult to handle using value functions. These are
problems that are best suited to the most brute force of all policies, direct lookaheads, or
DLAs, which we discuss in depth in chapter 20.

A simple example of a direct lookahead policy is when your navigation system plans
your path based on estimates of travel times over a network. This would be a deterministic
lookahead, which is widely used in engineering practice. Or, we can turn to a full-blown
stochastic lookahead, which produces the frightening equation

Xπ∗
t (St) = arg min

xt∈Xt

C(St, xt) + E

min
π∈Π

Eπ


T∑
t′=t+1

C(St′ , X
π
t′(St′))St+1

 |St, xt

 .

(13.39)
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Just as exact value functions can be impossible to compute, equations such as (13.39) can
also be impossible to compute, but chapter 20 will describe several classes of approxima-
tions.





CHAPTER 14

DISCRETE MARKOV DECISION
PROCESSES

A particularly important class of problems that capture decisions under uncertainty are
known as discrete Markov decision processes, which are characterized by a (not too large)
set of discrete states, and a (not too large) set of discrete actions. While the “not too large”
requirement limits the range of applications, this still captures a rich set of applications.
Perhaps even more important is that the study of this problem class has helped to establish the
theory of sequential decision problems, and has laid the foundation for different algorithmic
strategies even when the assumption of small state and action spaces does not apply.

To understand the power of the Markov decision process framework, it is useful to return
to the idea of a decision tree, illustrated in figure 14.1. We enumerate the decisions out of
each decision node (squares), and the random outcomes out of each outcome node (circles).
If there are 10 possible decisions and 10 possible random outcomes, our tree is 100 times
bigger after one sequence of decisions and random information. If we step forward 10 steps
(10 decisions followed by random information), our tree would have 10010 ending nodes.
And this is not even a large problem (it is easy to find problems with far larger numbers of
actions and outcomes). The explosive growth in the size of the decision trees is illustrated
in figure 14.1, where the number of decisions and outcomes is quite small.

The breakthrough of Markov decision processes was the recognition that each decision
node corresponds to a state of a dynamic system. In the classical representation of a
decision tree, decision nodes correspond to the entire history of the process up to that
point in time. However, there are many settings where we may not need to know the
entire history. Assume instead that the relevant information we need to make a decision
can be represented by a state s that falls in a discrete set S = (1, 2, . . . , |S|), where S is

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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Decision         Outcome     Decision      Outcome      Decision

Figure 14.1 Decision tree illustrating the sequence of decisions and new information, illustrating
the explosive growth of decision trees.

small enough to enumerate. For example, St might be the number of units of blood in a
hospital inventory. In this case, the number of decision nodes does not grow exponentially.
Furthermore, we only need to know the inventory, and not the history of how we got there.

When we can exploit this more compact structure, our decision tree collapses into the
diagram shown in figure 14.2, where the number of states in each period is fixed. Note
that the number of outcome nodes is potentially quite large. In fact, there are problems
where the number of outcomes is itself quite large (for example, our random information
may be continuous or multidimensional (this would be the second of the three curses of
dimensionality we first introduced in section 2.1.9).

There are many problems where states are continuous, or the state variable is a vector
producing a state space that is far too large to enumerate. In addition, the one-step transition
matrix pt(St+1|St, at) can also be difficult or impossible to compute. So why cover material
that is widely acknowledged to work only on small or highly specialized problems? First,
some problems have small state and action spaces and can be solved with these techniques.
In fact, it is often the case that the tools of Markov decision processes offers the only path
to finding the optimal policy. Second, we can use optimal policies, which are limited to
fairly small problems, to evaluate approximation algorithms that can be scaled to larger
problems. Third, the theory of Markov decision processes can be used to identify structural
properties that can help us identify properties of optimal policies that we can exploit in
policy search algorithms. And fourth, this material provides the intellectual foundation
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Decision        Outcome     Decision      Outcome      Decision      Outcome

Figure 14.2 Collapsed version of the decision tree, when states do not capture entire history.

for approximation algorithms that can be scaled to far more complex problems, such as
optimizing the locomotives for a major railroad, or optimizing a network of hydroelectric
reservoirs.

As with most of the chapters in the book, the body of this chapter focuses on the
algorithms. Some of the elegant theory that has been developed for this field is presented in
the “Why does it work” section (section 14.10). The intent is to allow the presentation of
results to flow more naturally, but serious students of dynamic programming are encouraged
to delve into these proofs, which are quite elegant. This is partly to develop a deeper
appreciation of the properties of the problem as well as to develop an understanding of the
proof techniques that are used in this field.

14.1 THE OPTIMALITY EQUATIONS

In the last chapter, we illustrated a number of stochastic optimization models that involve
solving the following objective function

max
π

E

{
T∑
t=0

γtC(St, A
π
t (St))

}
. (14.1)

The most important contribution of the material in this chapter is that it provides a path
to optimal policies. In practice, optimal policies are rare, so even with the computational
limitations, having at least a framework for characterizing optimal policies is exceptionally
valuable.
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14.1.1 Bellman’s equations

With a little thought, we realize that we do not have to solve this entire problem at once.
Assume that we are solving a deterministic shortest path problem where St is the index of
the node in the network where we have to make a decision. If we are in state St = i (that
is, we are at node i in our network) and take action at = j (that is, we wish to traverse
the link from i to j), our transition function will tell us that we are going to land in some
state St+1 = SM (St, at) (in this case, node j). What if we had a function Vt+1(St+1) that
told us the value of being in state St+1 (giving us the value of the path from node j to the
destination)? We could evaluate each possible action at and simply choose the action at
that has the largest one-period contribution, Ct(St, at), plus the value of landing in state
St+1 = SM (St, at) which we represent using Vt+1(St+1). Since this value represents the
money we receive one time period in the future, we might discount this by a factor γ. In
other words, we have to solve

a∗t (St) = arg max
at∈At

(
Ct(St, at) + γVt+1(St+1)

)
,

where “arg max” means that we want to choose the action at that maximizes the expression
in parentheses. We also note that St+1 is a function of St and at, meaning that we could
write it as St+1(St, at). Both forms are fine. It is common to write St+1 by itself, but the
dependence on St and at needs to be understood.

The value of being in state St is the value of using the optimal decision a∗t (St). That is

Vt(St) = max
at∈At

(
Ct(St, at) + γVt+1(St+1(St, at))

)
= Ct(St, a

∗
t (St)) + γVt+1(St+1(St, a

∗
t (St))). (14.2)

Equation (14.2) is the optimality equation for deterministic problems.
When we are solving stochastic problems, we have to model the fact that new information

becomes available after we make the decision at. The result can be uncertainty in both the
contribution earned, and in the determination of the next state we visit, St+1. For example,
consider the problem of managing oil inventories for a refinery. Let the state St be the
inventory in thousands of barrels of oil at time t (we require St to be integer). Let at be
the amount of oil ordered at time t that will be available for use between t and t + 1, and
let D̂t+1 be the demand for oil between t and t+ 1. The state variable is governed by the
simple inventory equation

St+1(St, at, D̂t+1) = max{0, St + at − D̂t+1}.

We have written the state St+1 using St+1(St, at) to express the dependence on St and at,
but it is common to simply write St+1 and let the dependence on St and at be implicit.
Since D̂t+1 is random at time t when we have to choose at, we do not know St+1. But if
we know the probability distribution of the demand D̂, we can work out the probability that
St+1 will take on a particular value. If PD(d) = P[D̂ = d] is our probability distribution,
then we can find the probability distribution for St+1 using

Prob(St+1 = s′) =


0 if s′ > St + at,

PD(St + at − s′) if 0 < s′ ≤ St + at,∑∞
d=St+at

PD(d) if s′ = 0.

These probabilities depend on St and at, so we write the probability distribution as

P(St+1|St, at) = The probability of St+1 given St and at.
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We can then modify the deterministic optimality equation in (14.2) by simply adding an
expectation, giving us

Vt(St) = max
at∈At

(
Ct(St, at) + γ

∑
s′∈S

P(St+1 = s′|St, at)Vt+1(s′)
)
. (14.3)

We refer to this as the standard form of Bellman’s equations, since this is the version that
is used by virtually every textbook on stochastic, dynamic programming. An equivalent
form that is more natural for approximate dynamic programming is to write

Vt(St) = max
at∈At

(
Ct(St, at) + γE{Vt+1(St+1(St, at,Wt+1))|St}

)
, (14.4)

where we simply use an expectation instead of summing over probabilities. We refer to
this equation as the expectation form of Bellman’s equation. This version forms the basis
for our algorithmic work in later chapters.

Remark: Equation (14.4) is often written in the slightly more compact form

Vt(St) = max
at∈At

(
Ct(St, at) + γE{Vt+1(St+1)|St}

)
, (14.5)

where the functional relationship St+1 = SM (St, at,Wt+1) is implicit. At this point, however, we
have to deal with some subtleties of mathematical notation. In equation (14.4) we have captured the
functional dependence of St+1 on St and at, while capturing the conditional dependence of St+1

(more specifically Wt+1) on the state St.

Vt(St) = max
at∈At

(
Ct(St, at) + γE{Vt+1(St+1)|St, at}

)
(14.6)

to capture the fact that St+1 may depend on at. However, it is important to understand whether St+1

is functionally dependent on St and at, or if the distribution of St+1 is probabilistically dependent
on St and at. To see the difference, imagine that we have a problem whereWt+1 is the wind or some
exogenous process whose outcomes are independent of St or at. Then it is perfectly valid to write

Vt(St) = max
at∈At

(
Ct(St, at) + γEVt+1(St+1 = SM (St, at,Wt+1))

)
,

where we are explicitly capturing the functional dependence of St+1 on St and at, but where the
expectation is not conditioned on anything, because the distribution ofWt+1 does not depend onSt or
at. However, there are problems whereWt+1 depends on the state, such as the random perturbations
of a robot which depends on how close the robot is to a boundary. In this case, St+1 depends
functionally on St, at and Wt+1, but the distribution of Wt+1 also depends on St, in which case the
expectation needs to be a conditional expectation. Then, there are problems where the distribution of
Wt+1 depends on both St and at, such as the random changes in a stock which might be depressed
if a mutual fund is holding large quantities (St) and begins selling in large amounts (at). In this case,
the proper interpretation of equation (14.6) is that we are computing the conditional expectation over
Wt+1 which now depends on both the state and action.

The standard form of Bellman’s equation (14.3) has been popular in the research com-
munity since it lends itself to elegant algebraic manipulation when we assume we know
the transition matrix. It is common to write it in a more compact form. Recall that a policy
π is a rule that specifies the action at given the state St. In this chapter, it is easiest if
we always think of a policy in terms of a rule “when we are in state s we take action a.”
This is a form of “lookup-table” representation of a policy that is very clumsy for most real
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problems, but it will serve our purposes here. The probability that we transition from state
St = s to St+1 = s′ can be written as

pss′(a) = P(St+1 = s′|St = s, at = a).

We would say that “pss′(a) is the probability that we end up in state s′ if we start in state
s at time t when we are taking action a.” Now assume that we have a function Aπt (s) that
determines the action a we should take when in state s. It is common to write the transition
probability pss′(a) in the form

pπss′ = P(St+1 = s′|St = s,Aπt (s) = a).

We can now write this in matrix form

Pπt = The one-step transition matrix under policy π,

where pπss′ is the element in row s and column s′. There is a different matrix Pπ for each
policy (decision rule) π.

Now let cπt be a column vector with element cπt (s) = Ct(s,A
π
t (s)), and let vt+1 be a

column vector with element Vt+1(s). Then (14.3) is equivalent to
...

vt(s)
...

 = max
π




...
cπt (s)

...

+ γ


. . .

pπss′
. . .




...
vt+1(s′)

...


 . (14.7)

where the maximization is performed for each element (state) in the vector. In matrix/vector
form, equation (14.7) can be written

vt = max
π

(
cπt + γPπt vt+1

)
. (14.8)

Here, we maximize over policies because we want to find the best action for each state.
The vector vt is known widely as the value function (the value of being in each state). In
control theory, it is known as the cost-to-go function, where it is typically denoted as J .

Equation (14.8) can be solved by finding at for each state s. The result is a decision
vector a∗t = (a∗t (s))s∈S , which is equivalent to determining the best policy. This is
easiest to envision when at is a scalar (how much to buy, whether to sell), but in many
applications at(s) is itself a vector. For example, assume our problem is to assign individual
programmers to different programming tasks, where our state St captures the availability
of programmers and the different tasks that need to be completed. Of course, computing a
vector at for each state St which is itself a vector is much easier to write than to implement.

It is very easy to lose sight of the relationship between Bellman’s equation and the
original objective function that we stated in equation (14.1). To bring this out, we begin by
writing the expected profits using policy π from time t onward

Fπt (St) = E

{
T−1∑
t′=t

Ct′(St′ , A
π
t′(St′)) + CT (ST )|St

}
.

Fπt (St) is the expected total contribution if we are in state St in time t, and follow policy
π from time t onward. If Fπt (St) were easy to calculate, we would probably not need
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dynamic programming. Instead, it seems much more natural to calculate V πt recursively
using

V πt (St) = Ct(St, A
π
t (St)) + E

{
V πt+1(St+1)|St

}
.

It is not hard to show (by stepping backward in time) that

Fπt (St) = V πt (St).

The proof, given in section 14.10.1, uses a proof by induction: assume it is true for V πt+1,
and then show that it is true for V πt (not surprisingly, inductive proofs are very popular in
dynamic programming).

With this result in hand, we can then establish the following key result. Let Vt(St) be a
solution to equation (14.4) (or (14.3)). Then

F ∗t = max
π∈Π

Fπt (St)

= Vt(St). (14.9)

Equation (14.9) establishes the equivalence between (a) the value of being in state St and
following the optimal policy and (b) the optimal value function at state St. While these
are indeed equivalent, the equivalence is the result of a theorem (established in section
14.10.1). However, it is not unusual to find people who lose sight of the original objective
function. Later, we have to solve these equations approximately, and we will need to use
the original objective function to evaluate the quality of a solution.

14.1.2 Computing the transition matrix

It is very common in stochastic, dynamic programming (more precisely, Markov decision
processes) to assume that the one-step transition matrix Pπ is given as data (remember
that there is a different matrix for each policy π). In practice, we generally can assume we
know the transition function SM (St, at,Wt+1) from which we have to derive the one-step
transition matrix.

Assume that the random informationWt+1 that arrives between t and t+1 is independent
of all prior information. Let Ωt+1 be the set of possible outcomes of Wt+1 (for simplicity,
we assume that Ωt+1 is discrete), where P(Wt+1 = ωt+1) is the probability of outcome
ωt+1 ∈ Ωt+1. Also define the indicator function

1{X} =

{
1 if the statement “X” is true.
0 otherwise.

Here, “X” represents a logical condition (such as, “is St = 6?”). We now observe that the
one-step transition probability Pt(St+1|St, at) can be written

Pt(St+1|St, at) = E1{s′=SM (St,at,Wt+1)}

=
∑

ωt+1∈Ωt+1

P(ωt+1)1{s′=SM (St,at,ωt+1)}

So, finding the one-step transition matrix means that all we have to do is to sum over all
possible outcomes of the information Wt+1 and add up the probabilities that take us from
a particular state-action pair (St, at) to a particular state St+1 = s′. Sounds easy.
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In some cases, this calculation is straightforward (consider our oil inventory example
earlier in the section). But in other cases, this calculation is impossible. For example,
Wt+1 might be a vector of prices or demands. In this case, the set of outcomes Ωt+1

can be much too large to enumerate. We can estimate the transition matrix statistically,
but in later chapters (starting in chapter 16) we are going to avoid the need to compute
the one-step transition matrix entirely. For the remainder of this chapter, we assume the
one-step transition matrix is available.

14.1.3 Random contributions

In many applications, the one-period contribution function is a deterministic function of
St and at, and hence we routinely write the contribution as the deterministic function
Ct(St, at). However, this is not always the case. For example, a car traveling over a
stochastic network may choose to traverse the link from node i to node j, and only learn the
cost of the movement after making the decision. For such cases, the contribution function
is random, and we might write it as

Ĉt+1(St, at,Wt+1) = The contribution received in period t + 1 given the state St and
decision at, as well as the new information Wt+1 that arrives in
period t+ 1.

In this case, we simply bring the expectation in front, giving us

Vt(St) = max
at

E
{
Ĉt+1(St, at,Wt+1) + γVt+1(St+1)|St

}
. (14.10)

Now let

Ct(St, at) = E{Ĉt+1(St, at,Wt+1)|St}.

Thus, we may view Ct(St, at) as the expected contribution given that we are in state St
and take action at.

14.1.4 Bellman’s equation using operator notation*

The vector form of Bellman’s equation in (14.8) can be written even more compactly using
operator notation. LetM be the “max” (or “min”) operator in (14.8) that can be viewed
as acting on the vector vt+1 to produce the vector vt. If we have a given policy π, we can
write

Mπv(s) = Ct(s,A
π(s)) + γ

∑
s′∈S

Pt(s′|s,Aπ(s))vt+1(s′).

Alternatively, we can find the best action, which we represent using

Mv(s) = max
a

(
Ct(s, a) + γ

∑
s′∈S

Pt(s′|s, a)vt+1(s′)
)
.

Here,Mv produces a vector, andMv(s) refers to element s of this vector. In vector form,
we would write

Mv = max
π

(
cπt + γPπt vt+1

)
.



FINITE HORIZON PROBLEMS 499

Now let V be the space of value functions. Then,M is a mapping

M : V → V.

We may also define the operatorMπ for a particular policy π using

Mπ(v) = cπt + γPπv (14.11)

for some vector v ∈ V . Mπ is known as a linear operator since the operations that it
performs on v are additive and multiplicative. In mathematics, the function cπt + γPπv
is known as an affine function. This notation is particularly useful in mathematical proofs
(see in particular some of the proofs in section 14.10), but we will not use this notation
when we describe models and algorithms.

We see later in the chapter that we can exploit the properties of this operator to derive
some very elegant results for Markov decision processes. These proofs provide insights
into the behavior of these systems, which can guide the design of algorithms. For this
reason, it is relatively immaterial that the actual computation of these equations may be
intractable for many problems; the insights still apply.

14.2 FINITE HORIZON PROBLEMS

Finite horizon problems tend to arise in two settings. First, some problems have a very
specific horizon. For example, we might be interested in the value of an American option
where we are allowed to sell an asset at any time t ≤ T where T is the exercise date.
Another problem is to determine how many seats to sell at different prices for a particular
flight departing at some point in the future. In the same class are problems that require
reaching some goal (but not at a particular point in time). Examples include driving to a
destination, selling a house, or winning a game.

A second class of problems is actually infinite horizon, but where the goal is to determine
what to do right now given a particular state of the system. For example, a transportation
company might want to know what drivers should be assigned to a particular set of loads
right now. Of course, these decisions need to consider the downstream impact, so models
have to extend into the future. For this reason, we might model the problem over a horizon
T which, when solved, yields a decision of what to do right now.

When we encounter a finite horizon problem, we assume that we are given the function
VT (ST ) as data. Often, we simply use VT (ST ) = 0 because we are primarily interested in
what to do now, given by a0, or in projected activities over some horizon t = 0, 1, . . . , T ph,
where T ph is the length of a planning horizon. If we set T sufficiently larger than T ph,
then we may be able to assume that the decisions a0, a1, . . . , aTph are of sufficiently high
quality to be useful.

Solving a finite horizon problem, in principle, is straightforward. As outlined in figure
14.3, we simply have to start at the last time period, compute the value function for each
possible state s ∈ S, and then step back another time period. This way, at time period t
we have already computed Vt+1(S). Not surprisingly, this method is often referred to as
“backward dynamic programming.” The critical element that attracts so much attention is
the requirement that we compute the value function Vt(St) for all states St ∈ S.

We first saw backward dynamic programming in section 20.3.3 when we described
a simple decision tree problem. The only difference between the backward dynamic
programming algorithm in figure 14.3 and our solution of the decision tree problem is
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Step 0. Initialization:

Initialize the terminal contribution VT (ST ).

Set t = T − 1.

Step 1a. Step backward in time t = T, T − 1, . . . , 0:

Step 2a. Loop over states s ∈ S = {1, . . . , |S|}:
Step 2b. Initialize Vt(s) = −M (where M is very large).

Step 3a. Loop over each action a ∈ A(s):
Step 4a Initialize Q(s, a) = 0.
Step 4b. Find the expected value of being in state s and taking action a:
Step 4c. Compute Qt(s, a) =

∑
w∈W P(w|s, a)Vt+1(s′ = sM (s, a, w)).

Step 4c. If Qt(s, a) > Vt(s) then
Step 3b. Store the best value Vt(s) = Qt(s, a).
Step 3c. Store the best action At(s) = a.

Step 1b. Return the value Vt(s) and policy At(s) for all s ∈ S and t = 0, . . . , T .

Figure 14.3 A backward dynamic programming algorithm.

primarily notational. Decision trees are visual and tend to be easier to understand, whereas
in this section the methods are described using notation. However, decision tree problems
tend to be always presented in the context of problems with relatively small numbers of
states and actions (What job should I take? Should the United States put a blockade around
Cuba? Should the shuttle launch have been canceled due to cold weather?).

Another popular illustration of dynamic programming is the discrete asset acquisition
problem. Assume that you order a quantity at at each time period to be used in the
next time period to satisfy a demand D̂t+1. Any unused product is held over to the
following time period. For this, our state variable St is the quantity of inventory left over
at the end of the period after demands are satisfied. The transition equation is given by
St+1 = [St + at− D̂t+1]+ where [x]+ = max(x, 0). The cost function (which we seek to
minimize) is given by Ĉt+1(St, at) = chSt + coI{at>0}, where I{X} = 1 if X is true and
0 otherwise. Note that the cost function is nonconvex. This does not create problems if we
solve our minimization problem by searching over different (discrete) values of at. Since
all of our quantities are scalar, there is no difficulty finding Ct(St, at).

To compute the one-step transition matrix, let Ω be the set of possible outcomes of D̂t,
and let P(D̂t = ω) be the probability that D̂t = ω (if this use of ω seems weird, get used
to it - we are going to use it a lot).

The one-step transition matrix is computed using

P(s′|s, a) =
∑
ω∈Ω

P(D̂t+1 = ω)1{s′=[s+a−ω]+}

where Ω is the set of (discrete) outcomes of the demand D̂t+1.
Another example is the shortest path problem with random arc costs. Assume that you

are trying to get from origin node q to destination node r in the shortest time possible. As
you reach each intermediate node i, you are able to observe the time required to traverse
each arc out of node i. Let Vj be the expected shortest path time from j to the destination
node r. At node i, you see the link time τ̂ij which represents a random observation of
the travel time. Now we choose to traverse arc i, j∗ where j∗ solves minj(τ̂ij + Vj) (j∗
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is random since the travel time is random). We would then compute the value of being at
node i using Vi = E{minj(τ̂ij + Vj)}.

14.3 INFINITE HORIZON PROBLEMS

We typically use infinite horizon formulations whenever we wish to study a problem where
the parameters of the contribution function, transition function and the process governing
the exogenous information process do not vary over time, although they may vary in cycles
(for example, an infinite horizon model of energy storage from a solar panel may depend
on time of day). Often, we wish to study such problems in steady state. More importantly,
infinite horizon problems provide a number of insights into the properties of problems
and algorithms, drawing off an elegant theory that has evolved around this problem class.
Even students who wish to solve complex, nonstationary problems will benefit from an
understanding of this problem class.

We begin with the optimality equations

Vt(St) = max
at∈A

E {Ct(St, at) + γVt+1(St+1)|St} .

We can think of a steady-state problem as one without the time dimension. Letting
V (s) = limt→∞ Vt(St) (and assuming the limit exists), we obtain the steady-state opti-
mality equations

V (s) = max
a∈A

{
C(s, a) + γ

∑
s′∈S

P(s′|s, a)V (s′)

}
. (14.12)

The functions V (s) can be shown (as we do later) to be equivalent to solving the infinite
horizon problem

max
π∈Π

E

{ ∞∑
t=0

γtCt(St, A
π
t (St))

}
. (14.13)

Now define

Pπ,t = t-step transition matrix, over periods 0, 1, . . . , t− 1, given policy π
= Πt−1

t′=0P
π
t′ . (14.14)

We further define Pπ,0 to be the identity matrix. As before, let cπt be the column vector
of the expected cost of being in each state given that we choose the action at described
by policy π, where the element for state s is cπt (s) = Ct(s,A

π(s)). The infinite horizon,
discounted value of a policy π starting at time t is given by

vπt =

∞∑
t′=t

γt
′−tPπ,t

′−tcπt′ . (14.15)
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Assume that after following policy π0 we follow policy π1 = π2 = . . . = π. In this case,
equation (14.15) can now be written as (starting at t = 0)

vπ0 = cπ0 +

∞∑
t′=1

γt
′
Pπ,t

′
cπt′ (14.16)

= cπ0 +

∞∑
t′=1

γt
′
(

Πt′−1
t′′=0P

π
t′′

)
cπt′ (14.17)

= cπ0 + γPπ0

∞∑
t′=1

γt
′−1
(

Πt′−1
t′′=1P

π
t′′

)
cπt′ (14.18)

= cπ0 + γPπ0vπ. (14.19)

Equation (14.19) shows us that the value of a policy is the single period reward plus a
discounted terminal reward that is the same as the value of a policy starting at time 1. If
our decision rule is stationary, then π0 = π1 = . . . = πt = π, which allows us to rewrite
(14.19) as

vπ = cπ + γPπvπ. (14.20)

This allows us to solve for the stationary reward explicitly (as long as 0 ≤ γ < 1), giving
us

vπ = (I − γPπ)
−1
cπ.

We can also write an infinite horizon version of the optimality equations using our
operator notation. Letting M be the “max” (or “min”) operator (also known as the
Bellman operator), the infinite horizon version of equation (14.11) would be written

Mπ(v) = cπ + γPπv. (14.21)

There are several algorithmic strategies for solving infinite horizon problems. The first,
value iteration, is the most widely used method. It involves iteratively estimating the value
function. At each iteration, the estimate of the value function determines which decisions
we will make and as a result defines a policy. The second strategy is policy iteration.
At every iteration, we define a policy (literally, the rule for determining decisions) and
then determine the value function for that policy. Careful examination of value and policy
iteration reveals that these are closely related strategies that can be viewed as special cases
of a general strategy that uses value and policy iteration. Finally, the third major algorithmic
strategy exploits the observation that the value function can be viewed as the solution to a
specially structured linear programming problem.

14.4 VALUE ITERATION

Value iteration is perhaps the most widely used algorithm in dynamic programming because
it is the simplest to implement and, as a result, often tends to be the most natural way of
solving many problems. It is virtually identical to backward dynamic programming for finite
horizon problems. In addition, most of our work in approximate dynamic programming is
based on value iteration.
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Step 0. Initialization:

Set v0(s) = 0 ∀s ∈ S.

Fix a tolerance parameter ε > 0.

Set n = 1.

Step 1. For each s ∈ S compute:

vn(s) = max
a∈A

(
C(s, a) + γ

∑
s′∈S

P(s′|s, a)vn−1(s′)
)
. (14.22)

Step 2. If ‖vn− vn−1‖ < ε(1− γ)/2γ, let πε be the resulting policy that solves (14.22), and let vε = vn and
stop; else set n = n+ 1 and go to step 1.

Figure 14.4 The value iteration algorithm for infinite horizon optimization

Value iteration comes in several flavors. The basic version of the value iteration algorithm
is given in figure 14.4. The proof of convergence (see section 14.10.2) is quite elegant for
students who enjoy mathematics. The algorithm also has several nice properties that we
explore below.

It is easy to see that the value iteration algorithm is similar to the backward dynamic
programming algorithm. Rather than using a subscript t, which we decrement from T
back to 0, we use an iteration counter n that starts at 0 and increases until we satisfy a
convergence criterion. Here, we stop the algorithm when

‖vn − vn−1‖ < ε(1− γ)/2γ,

where ‖v‖ is the max-norm defined by

‖v‖ = max
s
|v(s)|.

Thus, ‖v‖ is the largest absolute value of a vector of elements. Thus, we stop if the largest
change in the value of being in any state is less than ε(1 − γ)/2γ where ε is a specified
error tolerance.

Below, we describe a Gauss-Seidel variant which is a useful method for accelerating
value iteration, and a version known as relative value iteration.

14.4.1 A Gauss-Seidel variation

A slight variant of the value iteration algorithm provides a faster rate of convergence. In this
version (typically called the Gauss-Seidel variant), we take advantage of the fact that when
we are computing the expectation of the value of the future, we have to loop over all the
states s′ to compute

∑
s′ P(s′|s, a)vn(s′). For a particular state s, we would have already

computed vn+1(ŝ) for ŝ = 1, 2, . . . , s−1. By simply replacing vn(ŝ) with vn+1(ŝ) for the
states we have already visited, we obtain an algorithm that typically exhibits a noticeably
faster rate of convergence. The algorithm requires a change to step 1 of the value iteration,
as shown in figure 14.5.

14.4.2 Relative value iteration

Another version of value iteration is called relative value iteration, which is useful in
problems that do not have a discount factor or where the optimal policy converges much
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Replace Step 1 with

Step 1’. For each s ∈ S compute

vn(s) = max
a∈A

C(s, a) + γ

∑
s′<s

P(s′|s, a)vn(s′) +
∑
s′≥s

P(s′|s, a)vn−1(s′)



Figure 14.5 The Gauss-Seidel variation of value iteration.

Step 0. Initialization:

• Choose some v0 ∈ V .

• Choose a base state s∗ and a tolerance ε.

• Let w0 = v0 − v0(s∗)e where e is a vector of ones.

• Set n = 1.

Step 1. Set

vn = Mwn−1,

wn = vn − vn(s∗)e.

Step 2. If sp(vn − vn−1) < (1− γ)ε/γ, go to step 3; otherwise, go to step 1.

Step 3. Set aε = arg maxa∈A
(
C(a) + γPπvn

)
.

Figure 14.6 Relative value iteration.

more quickly than the value function, which may grow steadily for many iterations. The
relative value iteration algorithm is shown in 14.6.

In relative value iteration, we focus on the fact that we may be more interested in the
convergence of the difference |v(s) − v(s′)| than we are in the values of v(s) and v(s′).
This would be the case if we are interested in the best policy rather than the value function
itself (this is not always the case). What often happens is that, especially toward the limit,
all the values v(s) start increasing by the same rate. For this reason, we can pick any state
(denoted s∗ in the algorithm) and subtract its value from all the other states.

To provide a bit of formalism for our algorithm, we define the span of a vector v as
follows:

sp(v) = max
s∈S

v(s)−min
s∈S

v(s).

Note that our use of “span” is different than the way it is normally used in linear algebra.
Here and throughout this section, we define the norm of a vector as

‖v‖ = max
s∈S

v(s).

Note that the span has the following six properties:
1) sp(v) ≥ 0.

2) sp(u+ v) ≤ sp(u) + sp(v).

3) sp(kv) = |k|sp(v).
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4) sp(v + ke) = sp(v).

5) sp(v) = sp(−v).

6) sp(v) ≤ 2‖v‖.
Property (4) implies that sp(v) = 0 does not mean that v = 0 and therefore it does not
satisfy the properties of a norm. For this reason, it is called a semi-norm.

The relative value iteration algorithm is simply subtracting a constant from the value
vector at each iteration. Obviously, this does not change the optimal decision, but it does
change the value itself. If we are only interested in the optimal policy, relative value
iteration often offers much faster convergence, but it may not yield accurate estimates of
the value of being in each state.

14.4.3 Bounds and rates of convergence

One important property of value iteration algorithms is that if our initial estimate is too low,
the algorithm will rise to the correct value from below. Similarly, if our initial estimate
is too high, the algorithm will approach the correct value from above. This property is
formalized in the following theorem:

Theorem 14.4.1. For a vector v ∈ V:

(a) If v satisfies v ≥Mv, then v ≥ v∗.

(b) If v satisfies v ≤Mv, then v ≤ v∗.

(c) If v satisfies v =Mv, then v is the unique solution to this system of equations and
v = v∗.

The proof is given in section 14.10.3. It is a nice property because it provides some
valuable information on the nature of the convergence path. In practice, we generally do
not know the true value function, which makes it hard to know if we are starting from above
or below (although some problems have natural bounds, such as nonnegativity).

The proof of the monotonicity property above also provides us with a nice corollary.
If V (s) =MV (s) for all s, then V (s) is the unique solution to this system of equations,
which must also be the optimal solution.

This result raises the question: What if some of our estimates of the value of being in
some states are too high, while others are too low? This means the values may cycle above
and below the optimal solution, although at some point we may find that all the values have
increased (decreased) from one iteration to the next. If this happens, then it means that the
values are all equal to or below (above) the limiting value.

Value iteration also provides a nice bound on the quality of the solution. Recall that
when we use the value iteration algorithm, we stop when

‖vn+1 − vn‖ < ε(1− γ)/2γ (14.23)

where γ is our discount factor and ε is a specified error tolerance. It is possible that we
have found the optimal policy when we stop, but it is very unlikely that we have found
the optimal value functions. We can, however, provide a bound on the gap between the
solution vn and the optimal values v∗ by using the following theorem:

Theorem 14.4.2. If we apply the value iteration algorithm with stopping parameter ε and
the algorithm terminates at iteration n with value function vn+1, then

‖vn+1 − v∗‖ ≤ ε/2. (14.24)
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Let πε be the policy that we terminate with, and let vπ
ε

be the value of this policy. Then

‖vπ
ε

− v∗‖ ≤ ε.

The proof is given in section 14.10.4. While it is nice that we can bound the error, the
bad news is that the bound can be quite poor. More important is what the bound teaches us
about the role of the discount factor.

We can provide some additional insights into the bound, as well as the rate of conver-
gence, by considering a trivial dynamic program. In this problem, we receive a constant
reward c at every iteration. There are no decisions, and there is no randomness. The value
of this “game” is quickly seen to be

v∗ =

∞∑
n=0

γnc

=
1

1− γ
c. (14.25)

Consider what happens when we solve this problem using value iteration. Starting with
v0 = 0, we would use the iteration

vn = c+ γvn−1.

After we have repeated this n times, we have

vn =

n−1∑
m=0

γnc

=
1− γn

1− γ
c. (14.26)

Comparing equations (14.25) and (14.26), we see that

vn − v∗ = − γn

1− γ
c. (14.27)

Similarly, the change in the value from one iteration to the next is given by

‖vn+1 − vn‖ =

∣∣∣∣ γn+1

1− γ
− γn

1− γ

∣∣∣∣ c
= γn

∣∣∣∣ γ

1− γ
− 1

1− γ

∣∣∣∣ c
= γn

∣∣∣∣γ − 1

1− γ

∣∣∣∣ c
= γnc.

If we stop at iteration n+ 1, then it means that

γnc ≤ ε/2
(

1− γ
γ

)
. (14.28)

If we choose ε so that (14.28) holds with equality, then our error bound (from 14.24) is

‖vn+1 − v∗‖ ≤ ε/2

=
γn+1

1− γ
c.
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From (14.27), we know that the distance to the optimal solution is

|vn+1 − v∗| = γn+1

1− γ
c,

which matches our bound.
This little exercise confirms that our bound on the error may be tight. It also shows

that the error decreases geometrically at a rate determined by the discount factor. For this
problem, the error arises because we are approximating an infinite sum with a finite one.
For more realistic dynamic programs, we also have the effect of trying to find the optimal
policy. When the values are close enough that we have, in fact, found the optimal policy,
then we have only a Markov reward process (a Markov chain where we earn rewards for
each transition). Once our Markov reward process has reached steady state, it will behave
just like the simple problem we have just solved, where c is the expected reward from each
transition.

14.5 POLICY ITERATION

In policy iteration, we choose a policy and then find the infinite horizon, discounted value
of the policy. This value is then used to choose a new policy. The general algorithm is
described in figure 14.7. Policy iteration is popular for infinite horizon problems because
of the ease with which we can find the value of a policy. As we showed in section 14.3, the
value of following policy π is given by

vπ = (I − γPπ)
−1
cπ. (14.29)

While computing the inverse can be problematic as the state space grows, it is, at a minimum,
a very convenient formula.

It is useful to illustrate the policy iteration algorithm in different settings. In the first,
consider a batch replenishment problem where we have to replenish resources (raising cap-
ital, exploring for oil to expand known reserves, hiring people) where there are economies
from ordering larger quantities. We might use a simple policy where if our level of re-
sources Rt < q for some lower limit q, we order a quantity at = Q − Rt. This policy is
parameterized by (q,Q) and is written

Aπ(Rt) =

{
0, Rt ≥ q,
Q−Rt, Rt < q.

(14.30)

For a given set of parameters π = (q,Q), we can compute a one-step transition matrix Pπ

and a contribution vector cπ .
Policies come in many forms. For the moment, we simply view a policy as a rule that

tells us what decision to make when we are in a particular state. In later chapters, we
introduce policies in different forms since they create different challenges for finding the
best policy.

Given a transition matrix Pπ and contribution vector cπ , we can use equation (14.29) to
find vπ , where vπ(s) is the discounted value of started in state s and following policy π.
From this vector, we can infer a new policy by solving

an(s) = arg max
a∈A

(
C(a) + γPπvn

)
(14.31)
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Step 0. Initialization:

Step 0a. Select a policy π0.

Step 0b. Set n = 1.

Step 1. Given a policy πn−1:

Step 1a. Compute the one-step transition matrix Pπ
n−1

.

Step 1b Compute the contribution vector cπ
n−1

where the element for state s is given by cπ
n−1

(s) =

C(s,Aπ
n−1

).

Step 2. Let vπ,n be the solution to

(I − γPπ
n−1

)v = cπ
n−1

.

Step 3. Find a policy πn defined by

an(s) = arg max
a∈A

(
C(a) + γPπvn

)
.

This requires that we compute an action for each state s.

Step 4. If an(s) = an−1(s) for all states s, then set a∗ = an; otherwise, set n = n+ 1 and go to step 1.

Figure 14.7 Policy iteration

for each state s. For our batch replenishment example, it turns out that we can show that
an(s) will have the same structure as that shown in (14.30). So, we can either store an(s)
for each s, or simply determine the parameters (q,Q) that correspond to the decisions
produced by (14.31). The complete policy iteration algorithm is described in figure 14.7.

The policy iteration algorithm is simple to implement and has fast convergence when
measured in terms of the number of iterations. However, solving equation (14.29) is
quite hard if the number of states is large. If the state space is small, we can use vπ =
(I−γPπ)−1cπ , but the matrix inversion can be computationally expensive. For this reason,
we may use a hybrid algorithm that combines the features of policy iteration and value
iteration.

14.6 HYBRID VALUE-POLICY ITERATION

Value iteration is basically an algorithm that updates the value at each iteration and then
determines a new policy given the new estimate of the value function. At any iteration, the
value function is not the true, steady-state value of the policy. By contrast, policy iteration
picks a policy and then determines the true, steady-state value of being in each state given
the policy. Given this value, a new policy is chosen.

It is perhaps not surprising that policy iteration converges faster in terms of the number
of iterations because it is doing a lot more work in each iteration (determining the true,
steady-state value of being in each state under a policy). Value iteration is much faster per
iteration, but it is determining a policy given an approximation of a value function and then
performing a very simple updating of the value function, which may be far from the true
value function.

A hybrid strategy that combines features of both methods is to perform a somewhat
more complete update of the value function before performing an update of the policy.
Figure 14.8 outlines the procedure where the steady-state evaluation of the value function
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Step 0. Initialization:

• Set n = 1.

• Select a tolerance parameter ε and inner iteration limit M .

• Select some v0 ∈ V .

Step 1. Find a decision an(s) for each s that satisfies

an(s) = arg max
a∈A

C(s, a) + γ
∑
s′∈S

P(s′|s, a)vn−1(s′)

 ,

which we represent as policy πn.

Step 2. Partial policy evaluation.

(a) Set m = 0 and let: un(0) = cπ + γPπ
n
vn−1.

(b) If ‖un(0)− vn−1‖ < ε(1− γ)/2γ, go to step 3. Else:

(c) While m < M do the following:

i) un(m+ 1) = cπ
n

+ γPπ
n
un(m) =Mπun(m).

ii) Set m = m+ 1 and repeat (i).

(d) Set vn = un(M), n = n+ 1 and return to step 1.

Step 3. Set aε = an+1 and stop.

Figure 14.8 Hybrid value/policy iteration

in equation (14.29) is replaced with a much easier iterative procedure (step 2 in figure 14.8).
This step is run for M iterations, where M is a user-controlled parameter that allows the
exploration of the value of a better estimate of the value function. Not surprisingly, it will
generally be the case that M should decline with the number of iterations as the overall
process converges.

14.7 AVERAGE REWARD DYNAMIC PROGRAMMING

There are settings where the natural objective function is to maximize the average contri-
bution per unit time. Assume we start in state s. Then, the average reward from starting in
state s and following policy π is given by

max
π

Fπ(s) = lim
T→∞

1

T
E

T∑
t=0

C(St, A
π(St)). (14.32)

Here, Fπ(s) is the expected reward per time period. In matrix form, the total value of
following a policy π over a horizon T can be written as

V πT =

T∑
t=0

(Pπ)tcπ,

where V πT is a column vector with element V πT (s) giving the expected contribution over
T time periods when starting in state s. We can get a sense of how V πT (s) behaves by
watching what happens as T becomes large. Assuming that our underlying Markov chain
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1( | )F s T

2( | )F s T

1( )h s Tg

2( )h s Tg

T

Figure 14.9 Cumulative contribution over a horizon T when starting in states s1 and s2, showing
growth approaching a rate that is independent of the starting state.

is ergodic (all the states communicate with each other with positive probability), we know
that (Pπ)T → P ∗ where the rows of P ∗ are all the same.

Now define a column vector g given by

gπ = P ∗cπ.

Since the rows of P ∗ are all the same, all the elements of gπ are the same, and each element
gives the average contribution per time period using the steady state probability of being in
each state. For finite T , each element of the column vector V πT is not the same, since the
contributions we earn in the first few time periods depends on our starting state. But it is
not hard to see that as T grows large, we can write

V πT → hπ + Tgπ,

where hπ captures the state-dependent differences in the total contribution, while gπ is the
state-independent average contribution in the limit. Figure 14.9 illustrates the growth in
V πT toward a linear function.

If we wish to find the policy that performs the best as T → ∞, then clearly the
contribution of hπ vanishes, and we want to focus on maximizing gπ , which we can now
treat as a scalar.

14.8 THE LINEAR PROGRAMMING METHOD FOR DYNAMIC PROGRAMS

Theorem 14.4.1 showed us that if

v ≥ max
a

(
C(s, a) + γ

∑
s′∈S

P(s′|s, a)v(s′)
)
,

then v is an upper bound (actually, a vector of upper bounds) on the value of being in
each state. This means that the optimal solution, which satisfies v∗ = c + γPv∗, is the
smallest value of v that satisfies this inequality. We can use this insight to formulate the
problem of finding the optimal values as a linear program. Let β be a vector with elements
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βs > 0, ∀s ∈ S. The optimal value function can be found by solving the following linear
program

min
v

∑
s∈S

βsv(s) (14.33)

subject to

v(s) ≥ C(s, a) + γ
∑
s′∈S

P(s′|s, a)v(s′) for all s and a, (14.34)

The linear program has a |S|-dimensional decision vector (the value of being in each state),
with |S| × |A| inequality constraints (equation (14.34)).

This formulation was viewed as primarily a theoretical result for many years, since
it requires formulating a linear program where the number of constraints is equal to the
number of states and actions. While even today this limits the size of problems it can
solve, modern linear programming solvers can handle problems with tens of thousands of
constraints without difficulty. This size is greatly expanded with the use of specialized
algorithmic strategies which are an active area of research as of this writing. The advantage
of the LP method over value iteration is that it avoids the need for iterative learning with
the geometric convergence exhibited by value iteration. Given the dramatic strides in the
speed of linear programming solvers over the last decade, the relative performance of value
iteration over the linear programming method is an unresolved question. However, this
question only arises for problems with relatively small state and action spaces. While a
linear program with 50,000 constraints is considered large, dynamic programs with 50,000
states and actions often arises with relatively small problems.

14.9 MONOTONE POLICIES*

One of the most dramatic success stories from the study of Markov decision processes
has been the identification of the structure of optimal policies. A common example of
structured policies is what are known as monotone policies. Simply stated, a monotone
policy is one where the decision gets bigger as the state gets bigger, or the decision gets
smaller as the state gets bigger (see examples).

EXAMPLE 14.1

A software company must decide when to ship the next release of its operating
system. Let St be the total investment in the current version of the software. Let
at = 1 denote the decision to ship the release in time period t while at = 0 means
to keep investing in the system. The company adopts the rule that at = 1 if St ≥ S̄.
Thus, as St gets bigger, at gets bigger (this is true even though at is equal to zero or
one).

EXAMPLE 14.2

An oil company maintains stocks of oil reserves to supply its refineries for making
gasoline. A supertanker comes from the Middle East each month, and the company
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can purchase different quantities from this shipment. LetRt be the current inventory.
The policy of the company is to order at = Q−St if St < R. R is the reorder point,
and Q is the “order up to” limit. The bigger St is, the less the company orders.

EXAMPLE 14.3

A mutual fund has to decide when to sell its holding in a company. Its policy is to
sell the stock when the price p̂t is greater than a particular limit p̄.

In each example, the decision of what to do in each state is replaced by a function that
determines the decision (otherwise known as a policy). The function typically depends on
the choice of a few parameters. So, instead of determining the right action for each possible
state, we only have to determine the parameters that characterize the function. Interestingly,
we do not need dynamic programming for this. Instead, we use dynamic programming to
determine the structure of the optimal policy. This is a purely theoretical question, so the
computational limitations of (discrete) dynamic programming are not relevant.

The study of monotone policies is included partly because it is an important part of
the field of dynamic programming. It is also useful in the study of approximate dynamic
programming because it yields properties of the value function. For example, in the process
of showing that a policy is monotone, we also need to show that the value function itself is
monotone (that is, it increases or decreases with the state variable). Such properties can be
exploited in the estimation of a value function approximation.

To demonstrate the analysis of a monotone policy, we consider a classic batch replen-
ishment policy that arises when there is a random accumulation that is then released in
batches. Examples include dispatching elevators or trucks, moving oil inventories away
from producing fields in tankers, and moving trainloads of grain from grain elevators.

14.9.1 The model

For our batch model, we assume resources accumulate and are then reduced using a batch
process. For example, oil might accumulate in tanks before a tanker removes it. Money
might accumulate in a cash account before it is swept into an investment.

Our model uses the following parameters:

cr = The fixed cost incurred each time we dispatch a new batch.
ch = Penalty per time period for holding a unit of the resource.
K = Maximum size of a batch.

Our exogenous information process consists of

Qt = Quantity of new arrivals during time interval t.
PQ(i) = Prob(Qt = i).

Our state variable is

Rt = Resources remaining at time t before we have made a decision to
send a batch.

There are two decisions we have to make. The first is whether to dispatch a batch, and
the second is how many resources to put in the batch. For this problem, once we make
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the decision to send a batch, we are going to make the batch as large as possible, so the
“decision” of how large the batch should be seems unnecessary. It becomes more important
when we later consider multiple resource types. For consistency with the more general
problem with multiple resource types, we define

at =

{
1 if a batch is sent at time t,
0 otherwise,

bt = The number of resources to put in the batch.

In theory, we might be able to put a large number of resources in the batch, but we may
face a nonlinear cost that makes this suboptimal. For the moment, we are going to assume
that we always want to put as many as we can, so we set

bt = at min{K,Rt},
Aπ(Rt) = The decision function that returns at and bt given Rt.

The transition function is described using

Rt+1 = Rt − bt +Qt+1. (14.35)

The objective function is modeled using

Ct(Rt, at, bt) = The cost incurred in period t, given state Rt and dispatch decision at
= crat + ch(Rt − bt). (14.36)

Our problem is to find the policy Aπt (Rt) that solves

min
π∈Π

E

{
T∑
t=0

Ct(Rt, A
π
t (Rt))

}
. (14.37)

where Π is the set of policies. If we are managing a single asset class, then Rt and bt
are scalars and the problem can be solved using standard backward dynamic programming
techniques of the sort that were presented in chapter 14 (assuming that we have a probability
model for the demand). In practice, many problems involve multiple asset classes, which
makes standard techniques impractical. But we can use this simple problem to study the
structure of the problem.

If Rt is a scalar, and if we know the probability distribution for Qt, then we can solve
this using backward dynamic programming. Indeed, this is one of the classic dynamic
programming problems in operations research. However, the solution to this problem
seems obvious. We should dispatch a batch whenever the level of resources Rt is greater
than some number r̄t, which means we only have to find r̄t (if we have a steady state,
infinite horizon problem, then we would have to find a single parameter r̄). The remainder
of this section helps establish the theoretical foundation for making this argument. While
not difficult, the mathematical level of this presentation is somewhat higher than our usual
presentation.

14.9.2 Submodularity and other stories

In the realm of optimization problems over a continuous set, it is important to know a
variety of properties about the objective function (such as convexity/concavity, continuity
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and boundedness). Similarly, discrete problems require an understanding of the nature of
the functions we are maximizing, but there is a different set of conditions that we need to
establish.

One of the most important properties that we will need is supermodularity (submodularity
if we are minimizing). We assume we are studying a function g(u), u ∈ U , where U ⊆ <n
is an n-dimensional space. Consider two vectors u1, u2 ∈ U where there is no particular
relationship between u1 and u2. Now define

u1 ∧ u2 = min{u1, u2},
u1 ∨ u2 = max{u1, u2},

where the min and max are defined elementwise. Let u+ = u1 ∧ u2 and u− = u1 ∨ u2.
We first have to ask the question of whether u+, u− ∈ U , since this is not guaranteed. For
this purpose, we define the following:

Definition 14.9.1. The space U is a lattice if for each u1, u2 ∈ U , then u+ = u1 ∧u2 ∈ U
and u− = u1 ∨ u2 ∈ U .

The term “lattice” for these sets arises if we think of u1 and u2 as the northwest and
southeast corners of a rectangle. In that case, these corners are u+ and u−. If all four
corners fall in the set (for any pair (u1, u2)), then the set can be viewed as containing many
“squares,” similar to a lattice.

For our purposes, we assume that U is a lattice (if it is not, then we have to use a more
general definition of the operators “∨” and “∧”). If U is a lattice, then a general definition
of supermodularity is given by the following:

Definition 14.9.2. A function g(u), u ∈ U is supermodular if it satisfies

g(u1 ∧ u2) + g(u1 ∨ u2) ≥ g(u1) + g(u2) (14.38)

Supermodularity is the discrete analog of a convex function. A function is submodular
if the inequality in equation (14.38) is reversed. There is an alternative definition of
supermodular when the function is defined on sets. Let U1 and U2 be two sets of elements,
and let g be a function defined on these sets. Then we have

Definition 14.9.3. A function g : U 7→ <1 is supermodular if it satisfies

g(U1 ∪ U2) + g(U1 ∩ U2) ≥ g(U1) + g(U2) (14.39)

We may refer to definition 14.9.2 as the vector definition of supermodularity, while
definition 14.9.3 as the set definition. We give both definitions for completeness, but our
work uses only the vector definition.

In dynamic programming, we are interested in functions of two variables, as in f(s, a)
where s is a state variable and a is a decision variable. We want to characterize the
behavior of f(s, a) as we change s and a. If we let u = (s, a), then we can put this
in the context of our definition above. Assume we have two states s+ ≥ s− (again, the
inequality is applied elementwise) and two decisions a+ ≥ a−. Now, form two vectors
u1 = (s+, a−) and u2 = (s−, a+). With this definition, we find that u1 ∨ u2 = (s+, a+)
and u1 ∧ u2 = (s−, a−). This gives us the following:
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Proposition 14.9.1. A function g(s, a) is supermodular if for s+ ≥ s− and a+ ≥ a−, then

g(s+, a+) + g(s−, a−) ≥ g(s+, a−) + g(s−, a+). (14.40)

For our purposes, equation (14.40) will be the version we will use.
A common variation on the statement of a supermodular function is the equivalent

condition

g(s+, a+)− g(s−, a+) ≥ g(s+, a−)− g(s−, a−) (14.41)

In this expression, we are saying that the incremental change in s for larger values of a is
greater than for smaller values of a. Similarly, we may write the condition as

g(s+, a+)− g(s+, a−) ≥ g(s−, a+)− g(s−, a−) (14.42)

which states that an incremental change in a increases with s.
Some examples of supermodular functions include

(a) If g(s, a) = g1(s) + g2(a), meaning that it is separable, then (14.40) holds with
equality.

(b) g(s, a) = h(s+ a) where h(·) is convex and increasing.

(c) g(s, a) = sa, s, a ∈ <1.

A concept that is related to supermodularity is superadditivity, defined by the following:

Definition 14.9.4. A superadditive function f : <n → <1 satisfies

f(x) + f(y) ≤ f(x+ y). (14.43)

Some authors use superadditivity and supermodularity interchangeably, but the concepts
are not really equivalent, and we need to use both of them.

14.9.3 From submodularity to monotonicity

It seems intuitively obvious that we should dispatch a batch if the state Rt (the resources
waiting to be served in a batch) is greater than some number (say, r̄t). The dispatch rule
that says we should dispatch if Rt ≥ r̄t is known as a control limit structure. Similarly,
we might be holding an asset and we feel that we should sell it if the price pt (which is the
state of our asset) is over (or perhaps under) some number p̄t. A question arises: when is
an optimal policy monotone? The following theorem establishes sufficient conditions for
an optimal policy to be monotone.

Theorem 14.9.1. Assume that we are maximizing total discounted contribution and that

(a) Ct(R, a) is supermodular onR×A.

(b)
∑
R′∈R P(R′|R, a)vt+1(R′) is supermodular onR×A.

Then there exists a decision rule Aπ(R) that is nondecreasing onR.

The proof of this theorem is provided in section 14.10.6.
In the presentation that follows, we need to show submodularity (instead of supermod-

ularity) because we are minimizing costs rather than maximizing rewards.
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It is obvious that Ct(R, a) is nondecreasing in R. So it remains to show that Ct(R, a)
satisfies

Ct(R
+, 1)− Ct(R−, 1) ≤ Ct(R+, 0)− Ct(R−, 0). (14.44)

Substituting equation (14.36) into (14.44), we must show that

cr + ch(R+ −K)+ − cr − ch(R− −K)+ ≤ chR+ − chR−.

This simplifies to

(R+ −K)+ − (R− −K)+ ≤ R+ −R−. (14.45)

Since R+ ≥ R−, (R+ − K)+ = 0 ⇒ (R− − K)+ = 0. This implies there are three
possible cases for equation (14.45):

Case 1: (R+−K)+ > 0 and (R−−K)+ > 0. In this case, (14.45) reduces toR+−R− =
R+ −R−.

Case 2: (R+−K)+ > 0 and (R−−K)+ = 0. Here, (14.45) reduces toR− ≤ K, which
follows since (R− −K)+ = 0 implies that R− ≤ K.

Case 3: (R+ − K)+ = 0 and (R− − K)+ = 0. Now, (14.45) reduces to R− ≤ R+,
which is true by construction.

Now we have to show submodularity of
∑∞
R′=0 P(R′|R, a)V (R′). We will do this for

the special case that the batch capacity is so large that we never exceed it. A proof is
available for the finite capacity case, but it is much more difficult.

Submodularity requires that for R− ≤ R+ we have

∞∑
R′=0

P(R′|R+, 1)V (R′)−
∞∑

R′=0

P(R′|R+, 0)V (R′) ≤
∞∑

R′=0

P(R′|R−, 1)V (R′)

−
∞∑

R′=0

P(R′|R−, 0)V (R′)

For the case that R−, R+ ≤ K we have

∞∑
R′=0

PA(R′)V (R′)−
∞∑

R′=R+

PA(R′ −R+)V (R′) ≤
∞∑

R′=0

PA(R′)V (R′)

−
∞∑

R′=R−

PA(R′ −R−)V (R′),

which simplifies to

∞∑
R′=0

PA(R′)V (R′)−
∞∑

R′=0

PA(R′)V (R′ +R+) ≤
∞∑

R′=0

PA(R′)V (R′)

−
∞∑

R′=0

PA(R′)V (R′ +R−).

Since V is nondecreasing we have V (R′ +R+) ≥ V (R′ +R−), proving the result.
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14.10 WHY DOES IT WORK?**

The theory of Markov decision processes is especially elegant. While not needed for
computational work, an understanding of why they work will provide a deeper appreciation
of the properties of these problems.

Section 14.10.1 provides a proof that the optimal value function satisfies the optimality
equations. Section 14.10.2 proves convergence of the value iteration algorithm. Section
14.10.3 then proves conditions under which value iteration increases or decreases mono-
tonically to the optimal solution. Then, section 14.10.4 proves the bound on the error when
value iteration satisfies the termination criterion given in section 14.4.3. Section 14.10.5
closes with a discussion of deterministic and randomized policies, along with a proof that
deterministic policies are always at least as good as a randomized policy.

14.10.1 The optimality equations

Until now, we have been presenting the optimality equations as though they were a funda-
mental law of some sort. To be sure, they can easily look as though they were intuitively
obvious, but it is still important to establish the relationship between the original optimiza-
tion problem and the optimality equations. Since these equations are the foundation of
dynamic programming, it seems beholden on us to work through the steps of proving that
they are actually true.

We start by remembering the original optimization problem:

Fπt (St) = E

{
T−1∑
t′=t

Ct′(St′ , A
π
t′(St′)) + CT (ST )|St

}
. (14.46)

Since (14.46) is, in general, exceptionally difficult to solve, we resort to the optimality
equations

V πt (St) = Ct(St, A
π
t (St)) + E

{
V πt+1(St+1)|St

}
. (14.47)

Our challenge is to show that these are the same. In order to establish this result, it is going
to help if we first prove the following:

Lemma 14.10.1. Let St be a state variable that captures the relevant history up to time t,
and let Ft′(St+1) be some function measured at time t′ ≥ t+ 1 conditioned on the random
variable St+1. Then

E [E{Ft′ |St+1}|St] = E [Ft′ |St] . (14.48)

Proof: This lemma is variously known as the law of iterated expectations or the tower
property. Assume, for simplicity, that Ft′ is a discrete, finite random variable that takes
outcomes in F . We start by writing

E{Ft′ |St+1} =
∑
f∈F

fP(Ft′ = f |St+1). (14.49)

Recognizing that St+1 is a random variable, we may take the expectation of both sides of
(14.49), conditioned on St as follows:

E [E{Ft′ |St+1}|St] =
∑

St+1∈S

∑
f∈F

fP(Ft′ = f |St+1, St)P(St+1 = St+1|St).(14.50)
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First, we observe that we may write P(Ft′ = f |St+1, St) = P(Ft′ = f |St+1), because
conditioning on St+1 makes all prior history irrelevant. Next, we can reverse the summa-
tions on the right-hand side of (14.50) (some technical conditions have to be satisfied to do
this, but these are satisfied if the random variables are discrete and finite). This means

E [E{Ft′ |St+1 = St+1}|St] =
∑
f∈F

∑
St+1∈S

fP(Ft′ = f |St+1, St)P(St+1 = St+1|St)

=
∑
f∈F

f
∑

St+1∈S
P(Ft′ = f, St+1|St)

=
∑
f∈F

fP(Ft′ = f |St)

= E [Ft′ |St] ,

which proves our result. Note that the essential step in the proof occurs in the first step
when we add St to the conditioning. �

We are now ready to show the following:

Proposition 14.10.1. Fπt (St) = V πt (St).

Proof: To prove that (14.46) and (14.47) are equal, we use a standard trick in dynamic
programming: proof by induction. Clearly, FπT (ST ) = V πT (ST ) = CT (ST ). Next, assume
that it holds for t+ 1, t+ 2, . . . , T . We want to show that it is true for t. This means that
we can write

V πt (St) = Ct(St, A
π
t (St)) + E

E


T−1∑
t′=t+1

Ct′(St′ , A
π
t′(St′)) + Ct(ST (ω))

∣∣∣∣∣∣St+1

︸ ︷︷ ︸
Fπt+1(St+1)

∣∣∣∣∣∣∣∣∣∣∣∣
St

 .

We then use lemma 14.10.1 to write E [E {. . . |St+1} |St] = E [. . . |St]. Hence,

V πt (St) = Ct(St, A
π
t (St)) + E

[
T−1∑
t′=t+1

Ct′(St′ , A
π
t′(St′)) + Ct(ST )|St

]
.

When we condition on St, Aπt (St) (and therefore Ct(St, Aπt (St))) is deterministic, so we
can pull the expectation out to the front giving

V πt (St) = E

[
T−1∑
t′=t

Ct′(St′ , yt′(St′)) + Ct(ST )|St

]
= Fπt (St),

which proves our result. �
Using equation (14.47), we have a backward recursion for calculating V πt (St) for a

given policy π. Now that we can find the expected reward for a given π, we would like to
find the best π. That is, we want to find

F ∗t (St) = max
π∈Π

Fπt (St).
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If the set Π is infinite, we replace the “max” with “sup”. We solve this problem by solving
the optimality equations. These are

Vt(St) = max
a∈A

(
Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)Vt+1(s′)

)
. (14.51)

We are claiming that if we find the set of V ′s that solves (14.51), then we have found the
policy that optimizes Fπt . We state this claim formally as:

Theorem 14.10.1. Let Vt(St) be a solution to equation (14.51). Then

F ∗t = Vt(St)

= max
π∈Π

Fπt (St).

Proof: The proof is in two parts. First, we show by induction that Vt(St) ≥ F ∗t (St)
for all St ∈ S and t = 0, 1, . . . , T − 1. Then, we show that the reverse inequality is true,
which gives us the result.
Part 1:

We resort again to our proof by induction. Since VT (ST ) = Ct(ST ) = FπT (ST ) for all
ST and all π ∈ Π, we get that VT (ST ) = F ∗T (ST ).

Assume that Vt′(St′) ≥ F ∗t′(St′) for t′ = t + 1, t + 2, . . . , T , and let π be an arbitrary
policy. For t′ = t, the optimality equation tells us

Vt(St) = max
a∈A

(
Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)Vt+1(s′)

)
.

By the induction hypothesis, F ∗t+1(s) ≤ Vt+1(s), so we get

Vt(St) ≥ max
a∈A

(
Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)F ∗t+1(s′)

)
.

Of course, we have that F ∗t+1(s) ≥ Fπt+1(s) for an arbitrary π. Also let Aπ(St) be the
decision that would be chosen by policy π when in state St. Then

Vt(St) ≥ max
a∈A

(
Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)Fπt+1(s′)

)
≥ Ct(St, A

π(St)) +
∑
s′∈S

pt(s
′|St, Aπ(St))F

π
t+1(s′)

= Fπt (St).

This means

Vt(St) ≥ Fπt (St) for all π ∈ Π,

which proves part 1.
Part 2:

Now we are going to prove the inequality from the other side. Specifically, we want to
show that for any ε > 0 there exists a policy π that satisfies

Fπt (St) + (T − t)ε ≥ Vt(St). (14.52)
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To do this, we start with the definition

Vt(St) = max
a∈A

(
Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)Vt+1(s′)

)
. (14.53)

We may let at(St) be the decision rule that solves (14.53). This rule corresponds to the
policy π. In general, the set A may be infinite, whereupon we have to replace the “max”
with a “sup” and handle the case where an optimal decision may not exist. For this case,
we know that we can design a decision rule at(St) that returns a decision a that satisfies

Vt(St) ≤ Ct(St, a) +
∑
s′∈S

pt(s
′|St, a)Vt+1(s′) + ε. (14.54)

We can prove (14.52) by induction. We first note that (14.52) is true for t = T since
FπT (St) = VT (ST ). Now assume that it is true for t′ = t + 1, t + 2, . . . , T . We already
know that

Fπt (St) = Ct(St, A
π(St)) +

∑
s′∈S

pt(s
′|St, Aπ(St))F

π
t+1(s′).

We can use our induction hypothesis which says Fπt+1(s′) ≥ Vt+1(s′)− (T − (t+ 1))ε to
get

Fπt (St) ≥ Ct(St, A
π(St)) +

∑
s′∈S

pt(s
′|St, Aπ(St))[Vt+1(s′)− (T − (t+ 1))ε]

= Ct(St, A
π(St)) +

∑
s′∈S

pt(s
′|St, Aπ(St))Vt+1(s′)

−
∑
s′∈S

pt(s
′|St, Aπ(St)) [(T − t− 1)ε]

=

{
Ct(St, A

π(St)) +
∑
s′∈S

pt(s
′|St, Aπ(St))Vt+1(s′) + ε

}
− (T − t)ε.

Now, using equation (14.54), we replace the term in brackets with the smaller Vt(St)
(equation (14.54)):

Fπt (St) ≥ Vt(St)− (T − t)ε,

which proves the induction hypothesis. We have shown that

F ∗t (St) + (T − t)ε ≥ Fπt (St) + (T − t)ε ≥ Vt(St) ≥ F ∗t (St).

This proves the result. �
Now we know that solving the optimality equations also gives us the optimal value

function. This is our most powerful result because we can solve the optimality equations
for many problems that cannot be solved any other way.

14.10.2 Convergence of value iteration

We now undertake the proof that the basic value function iteration converges to the optimal
solution. This is not only an important result, it is also an elegant one that brings some
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powerful theorems into play. The proof is also quite short. However, we will need some
mathematical preliminaries:

Definition 14.10.1. Let V be a set of (bounded, real-valued) functions and define the norm
of v by:

‖v‖ = sup
s∈S

v(s)

where we replace the “sup” with a “max” when the state space is finite. Since V is closed
under addition and scalar multiplication and has a norm, it is a normed linear space.

Definition 14.10.2. T : V → V is a contraction mapping if there exists a γ, 0 ≤ γ < 1
such that:

‖Tv − Tu‖ ≤ γ‖v − u‖.

Definition 14.10.3. A sequence vn ∈ V, n = 1, 2, . . . is said to be a Cauchy sequence if
for all ε > 0, there exists N such that for all n,m ≥ N :

‖vn − vm‖ < ε.

Definition 14.10.4. A normed linear space is complete if every Cauchy sequence contains
a limit point in that space.

Definition 14.10.5. A Banach space is a complete normed linear space.

Definition 14.10.6. We define the norm of a matrix Q as

‖Q‖ = max
s∈S

∑
j∈S
|q(j|s)|,

that is, the largest row sum of the matrix. IfQ is a one-step transition matrix, then ‖Q‖ = 1.

Definition 14.10.7. The triangle inequality means that given two vectors a, b ∈ <n:

‖a+ b‖ ≤ ‖a‖+ ‖b‖.

The triangle inequality is commonly used in proofs because it helps us establish bounds
between two solutions (and in particular, between a solution and the optimum).

We now state and prove one of the famous theorems in applied mathematics and then
use it immediately to prove convergence of the value iteration algorithm.

Theorem 14.10.2. (Banach Fixed-Point Theorem) Let V be a Banach space, and let
T : V → V be a contraction mapping. Then:

(a) There exists a unique v∗ ∈ V such that Tv∗ = v∗.

(b) For an arbitrary v0 ∈ V , the sequence vn defined by: vn+1 = Tvn = Tn+1v0

converges to v∗.

Proof: We start by showing that the distance between two vectors vn and vn+m goes to
zero for sufficiently large n and by writing the difference vn+m − vn using

vn+m − vn = vn+m − vn+m−1 + vn+m−1 − · · · − vn+1 + vn+1 − vn

=

m−1∑
k=0

(vn+k+1 − vn+k).
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Taking norms of both sides and invoking the triangle inequality gives

‖vn+m − vn‖ = ‖
m−1∑
k=0

(vn+k+1 − vn+k)‖

≤
m−1∑
k=0

‖(vn+k+1 − vn+k)‖

=

m−1∑
k=0

‖(Tn+kv1 − Tn+kv0)‖

≤
m−1∑
k=0

γn+k‖v1 − v0‖

=
γn(1− γm)

(1− γ)
‖v1 − v0‖. (14.55)

Since γ < 1, for sufficiently large n the right-hand side of (14.55) can be made arbitrarily
small, which means that vn is a Cauchy sequence. Since V is complete, it must be that vn

has a limit point v∗. From this we conclude

lim
n→∞

vn → v∗. (14.56)

We now want to show that v∗ is a fixed point of the mapping T . To show this, we observe

0 ≤ ‖Tv∗ − v∗‖ (14.57)
= ‖Tv∗ − vn + vn − v∗‖ (14.58)
≤ ‖Tv∗ − vn‖+ ‖vn − v∗‖ (14.59)
= ‖Tv∗ − Tvn−1‖+ ‖vn − v∗‖ (14.60)
≤ γ‖v∗ − vn−1‖+ ‖vn − v∗‖. (14.61)

Equation (14.57) comes from the properties of a norm. We play our standard trick in
(14.58) of adding and subtracting a quantity (in this case, vn), which sets up the triangle
inequality in (14.59). Using vn = Tvn−1 gives us (14.60). The inequality in (14.61) is
based on the assumption of the theorem that T is a contraction mapping. From (14.56), we
know that

lim
n→∞

‖v∗ − vn−1‖ = lim
n→∞

‖vn − v∗‖ = 0. (14.62)

Combining (14.57), (14.61), and (14.62) gives

0 ≤ ‖Tv∗ − v∗‖ ≤ 0

from which we conclude

‖Tv∗ − v∗‖ = 0,

which means that Tv∗ = v∗.
We can prove uniqueness by contradiction. Assume that there are two limit points that

we represent as v∗ and u∗. The assumption that T is a contraction mapping requires that

‖Tv∗ − Tu∗‖ ≤ γ‖v∗ − u∗‖.
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But, if v∗ and u∗ are limit points, then Tv∗ = v∗ and Tu∗ = u∗, which means

‖v∗ − u∗‖ ≤ γ‖v∗ − u∗‖.

Since γ < 1, this is a contradiction, which means that it must be true that v∗ = u∗. �
We can now show that the value iteration algorithm converges to the optimal solution if

we can establish thatM is a contraction mapping. So we need to show the following:

Proposition 14.10.2. If 0 ≤ γ < 1, thenM is a contraction mapping on V .

Proof: Let u, v ∈ V and assume that Mv ≥ Mu where the inequality is applied
elementwise. For a particular state s let

a∗s(v) ∈ arg max
a∈A

(
C(s, a) + γ

∑
s′∈S

P(s′|s, a)v(s′)

)

where we assume that a solution exists. Then

0 ≤ Mv(s)−Mu(s) (14.63)

= C(s, a∗s(v)) + γ
∑
s′∈S

P(s′|s, a∗s(v))v(s′)

−

(
C(s, a∗s(u)) + γ

∑
s′∈S

P(s′|s, a∗s(u))u(s′)

)
(14.64)

≤ C(s, a∗s(v)) + γ
∑
s′∈S

P(s′|s, a∗s(v))v(s′)

−

(
C(s, a∗s(v)) + γ

∑
s′∈S

P(s′|s, a∗s(v))u(s′)

)
(14.65)

= γ
∑
s′∈S

P(s′|s, a∗s(v))[v(s′)− u(s′)] (14.66)

≤ γ
∑
s′∈S

P(s′|s, a∗s(v))‖v − u‖ (14.67)

= γ‖v − u‖
∑
s′∈S

P(s′|s, a∗s(v)) (14.68)

= γ‖v − u‖. (14.69)

Equation (14.63) is true by assumption, while (14.64) holds by definition. The inequality
in (14.65) holds because a∗s(v) is not optimal when the value function is u, giving a reduced
value in the second set of parentheses. Equation (14.66) is a simple reduction of (14.65).
Equation (14.67) forms an upper bound because the definition of ‖v − u‖ is to replace all
the elements [v(s)−u(s)] with the largest element of this vector. Since this is now a vector
of constants, we can pull it outside of the summation, giving us (14.68), which then easily
reduces to (14.69) because the probabilities add up to one.

This result states that ifMv(s) ≥Mu(s), thenMv(s)−Mu(s) ≤ γ|v(s)− u(s)|. If
we start by assuming thatMv(s) ≤Mu(s), then the same reasoning producesMv(s)−
Mu(s) ≥ −γ|v(s)− u(s)|. This means that we have

|Mv(s)−Mu(s)| ≤ γ|v(s)− u(s)| (14.70)
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for all states s ∈ S. From the definition of our norm, we can write

sup
s∈S
|Mv(s)−Mu(s)| = ‖Mv −Mu‖

≤ γ‖v − u‖.

This means thatM is a contraction mapping, which means that the sequence vn generated
by vn+1 =Mvn converges to a unique limit point v∗ that satisfies the optimality equations.
�

14.10.3 Monotonicity of value iteration

Infinite horizon dynamic programming provides a compact way to study the theoretical
properties of these algorithms. The insights gained here are applicable to problems even
when we cannot apply this model, or these algorithms, directly.

We assume throughout our discussion of infinite horizon problems that the reward
function is bounded over the domain of the state space. This assumption is virtually always
satisfied in practice, but notable exceptions exist. For example, the assumption is violated
if we are maximizing a utility function that depends on the log of the resources we have
at hand (the resources may be bounded, but the function is unbounded if the resources are
allowed to hit zero).

Our first result establishes a monotonicity property that can be exploited in the design
of an algorithm.

Theorem 14.10.3. For a vector v ∈ V:

(a) If v satisfies v ≥Mv, then v ≥ v∗.

(b) If v satisfies v ≤Mv, then v ≤ v∗.

(c) If v satisfies v =Mv, then v is the unique solution to this system of equations and
v = v∗.

Proof: Part (a) requires that

v ≥ max
π∈Π
{cπ + γPπv} (14.71)

≥ cπ0 + γPπ0v (14.72)
≥ cπ0 + γPπ0 (cπ1 + γPπ1v) (14.73)
= cπ0 + γPπ0cπ1 + γ2Pπ0Pπ1v.

Equation (14.71) is true by assumption (part (a) of the theorem) and equation (14.72) is
true because π0 is some policy that is not necessarily optimal for the vector v. Using
similar reasoning, equation (14.73) is true because π1 is another policy which, again, is not
necessarily optimal. Using Pπ,(t) = Pπ0Pπ1 · · ·Pπt , we obtain by induction

v ≥ cπ0 + γPπ0cπ1 + · · ·+ γt−1Pπ0Pπ1 · · ·Pπt−1cπt + γtPπ,(t)v. (14.74)

Recall that

vπ =

∞∑
t=0

γtPπ,(t)cπt . (14.75)
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Breaking the sum in (14.75) into two parts allows us to rewrite the expansion in (14.74) as

v ≥ vπ −
∞∑

t′=t+1

γt
′
Pπ,(t

′)cπt′+1 + γtPπ,(t)v. (14.76)

Taking the limit of both sides of (14.76) as t→∞ gives us

v ≥ lim
t→∞

vπ −
∞∑

t′=t+1

γt
′
Pπ,(t

′)cπt′+1 + γtPπ,(t)v (14.77)

≥ vπ ∀π ∈ Π. (14.78)

The limit in (14.77) exists as long as the reward function cπ is bounded and γ < 1. Because
(14.78) is true for all π ∈ Π, it is also true for the optimal policy, which means that

v ≥ vπ∗

= v∗,

which proves part (a) of the theorem. Part (b) can be proved in an analogous way. Parts
(a) and (b) mean that v ≥ v∗ and v ≤ v∗. If v =Mv, then we satisfy the preconditions of
both parts (a) and (b), which means they are both true and therefore we must have v = v∗.
�

This result means that if we start with a vector that is higher than the optimal vector, then
we will decline monotonically to the optimal solution (almost – we have not quite proven
that we actually get to the optimal). Alternatively, if we start below the optimal vector, we
will rise to it. Note that it is not always easy to find a vector v that satisfies either condition
(a) or (b) of the theorem. In problems where the rewards can be positive and negative, this
can be tricky.

14.10.4 Bounding the error from value iteration

We now wish to establish a bound on our error from value iteration, which will establish
our stopping rule. We propose two bounds: one on the value function estimate that we
terminate with and one for the long-run value of the decision rule that we terminate with.
To define the latter, let πε be the policy that satisfies our stopping rule, and let vπ

ε

be the
infinite horizon value of following policy πε.

Theorem 14.10.4. If we apply the value iteration algorithm with stopping parameter ε and
the algorithm terminates at iteration n with value function vn+1, then

‖vn+1 − v∗‖ ≤ ε/2, (14.79)

and

‖vπ
ε

− v∗‖ ≤ ε. (14.80)

Proof: We start by writing

‖vπ
ε

− v∗‖ = ‖vπ
ε

− vn+1 + vn+1 − v∗‖
≤ ‖vπ

ε

− vn+1‖+ ‖vn+1 − v∗‖. (14.81)
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Recall that πε is the policy that solvesMvn+1, which means thatMπεvn+1 = Mvn+1.
This allows us to rewrite the first term on the right-hand side of (14.81) as

‖vπ
ε

− vn+1‖ = ‖Mπεvπ
ε

−Mvn+1 +Mvn+1 − vn+1‖
≤ ‖Mπεvπ

ε

−Mvn+1‖+ ‖Mvn+1 − vn+1‖
= ‖Mπεvπ

ε

−Mπεvn+1‖+ ‖Mvn+1 −Mvn‖
≤ γ‖vπ

ε

− vn+1‖+ γ‖vn+1 − vn‖.

Solving for ‖vπε − vn+1‖ gives

‖vπ
ε

− vn+1‖ ≤ γ

1− γ
‖vn+1 − vn‖.

We can use similar reasoning applied to the second term in equation (14.81) to show that

‖vn+1 − v∗‖ ≤ γ

1− γ
‖vn+1 − vn‖. (14.82)

The value iteration algorithm stops when ‖vn+1 − vn‖ ≤ ε(1 − γ)/2γ. Substituting this
in (14.82) gives

‖vn+1 − v∗‖ ≤ ε

2
. (14.83)

Recognizing that the same bound applies to ‖vπε−vn+1‖ and combining these with (14.81)
gives us

‖vπ
ε

− v∗‖ ≤ ε,

which completes our proof. �

14.10.5 Randomized policies

We have implicitly assumed that for each state, we want a single action. An alternative
would be to choose a policy probabilistically from a family of policies. If a state produces a
single action, we say that we are using a deterministic policy. If we are randomly choosing
an action from a set of actions probabilistically, we say we are using a randomized policy.

Randomized policies may arise because of the nature of the problem. For example,
you wish to purchase something at an auction, but you are unable to attend yourself. You
may have a simple rule (“purchase it as long as the price is under a specific amount”) but
you cannot assume that your representative will apply the same rule. You can choose a
representative, and in doing so you are effectively choosing the probability distribution
from which the action will be chosen.

Behaving randomly also plays a role in two-player games. If you make the same decision
each time in a particular state, your opponent may be able to predict your behavior and gain
an advantage. For example, as an institutional investor you may tell a bank that you not
willing to pay any more than $14 for a new offering of stock, while in fact you are willing
to pay up to $18. If you always bias your initial prices by $4, the bank will be able to guess
what you are willing to pay.

When we can only influence the likelihood of an action, then we have an instance of a
randomized MDP. Let



WHY DOES IT WORK?** 527

qπt (a|St) = The probability that decision a will be taken at time t given state St and policy
π (more precisely, decision rule Aπ).

In this case, our optimality equations look like

V ∗t (St) = max
π∈ΠMR

∑
a∈A

[
qπt (a|St)

(
Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)V ∗t+1(s′)

)]
.(14.84)

Now let us consider the single best action that we could take. Calling this a∗, we can find
it using

a∗ = arg max
a∈A

[
Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)V ∗t+1(s′)

]
.

This means that

Ct(St, a
∗) +

∑
s′∈S

pt(s
′|St, a∗)V ∗t+1(s′) ≥ Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)V ∗t+1(s′)

(14.85)

for all a ∈ A. Substituting (14.85) back into (14.84) gives us

V ∗t (St) = max
π∈ΠMR

∑
a∈A

{
qπt (a|St)

(
Ct(St, a) +

∑
s′∈S

pt(s
′|St, a)V ∗t+1(s′)

)}

≤ max
π∈ΠMR

∑
a∈A

{
qπt (a|St)

(
Ct(St, a

∗) +
∑
s′∈S

pt(s
′|St, a∗)V ∗t+1(s′)

)}
= Ct(St, a

∗) +
∑
s′∈S

pt(s
′|St, a∗)V ∗t+1(s′).

What this means is that if you have a choice between picking exactly the action you want
versus picking a probability distribution over potentially optimal and nonoptimal actions,
you would always prefer to pick exactly the best action. Clearly, this is not a surprising
result.

The value of randomized policies arise primarily in two-person games, where one player
tries to anticipate the actions of the other player. In such situations, part of the state variable
is the estimate of what the other play will do when the game is in a particular state. By
randomizing his behavior, a player reduces the ability of the other player to anticipate his
moves.

14.10.6 Optimality of monotone policies

The foundational result that we use is the following technical lemma:

Lemma 14.10.2. If a function g(s, a) is supermodular, then

a∗(s) = max

{
a′ ∈ arg max

a
g(s, a)

}
(14.86)

is monotone and nondecreasing in s.
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If the function g(s, a) has a unique, optimal a∗(s) for each value of s, then we can
replace (14.86) with

a∗(s) = max
a

g(s, a). (14.87)

Discussion: The lemma is saying that if g(s, a) is supermodular, then as s grows larger, the
optimal value of a given s will grow larger. When we use the version of supermodularity
given in equation (14.42), we see that the condition implies that as the state becomes larger,
the value of increasing the decision also grows. As a result, it is not surprising that the
condition produces a decision rule that is monotone in the state vector.

Proof of the lemma: Assume that s+ ≥ s−, and choose a ≤ a∗(s−). Since a∗(s) is,
by definition, the best value of a given s, we have

g(s−, a∗(s−))− g(s−, a) ≥ 0. (14.88)

The inequality arises because a∗(s−) is the best value of a given s−. Supermodularity
requires that

g(s−, a) + g(s+, a∗(s−)) ≥ g(s−, a∗(s−)) + g(s+, a) (14.89)

Rearranging (14.89) gives us

g(s+, a∗(s−)) ≥
{
g(s−, a∗(s−))− g(s−, a)

}︸ ︷︷ ︸
≥0

+g(s+, a) ∀a ≤ a∗(s−) (14.90)

≥ g(s+, a) ∀a ≤ a∗(s−) (14.91)

We obtain equation (14.91) because the term in brackets in (14.90) is nonnegative (from
(14.88)).

Clearly

g(s+, a∗(s+)) ≥ g(s+, a∗(s−))

because a∗(s+) optimizes g(s+, a). This means that a∗(s+) ≥ a∗(s−) since otherwise,
we would simply have chosen a = a∗(s−).

Just as the sum of concave functions is concave, we have the following:

Proposition 14.10.3. The sum of supermodular functions is supermodular.

The proof follows immediately from the definition of supermodularity, so we leave it as
one of those proverbial exercises for the reader.

The main theorem regarding monotonicity is relatively easy to state and prove, so we
will do it right away. The conditions required are what make it a little more difficult.

Theorem 14.10.5. Assume that:

(a) Ct(s, a) is supermodular on S ×A.

(b)
∑
s′∈S P(s′|s, a)vt+1(s′) is supermodular on S ×A.

Then there exists a decision rule a(s) that is nondecreasing on S.

Proof: Let

w(s, a) = Ct(s, a) +
∑
s′∈S

P(s′|s, a)vt+1(s′) (14.92)
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The two terms on the right-hand side of (14.92) are assumed to be supermodular, and we
know that the sum of two supermodular functions is supermodular, which tells us that
w(s, a) is supermodular. Let

a∗(s) = arg max
a∈A

w(s, a)

From Lemma 14.10.2, we obtain the result that the decision a∗(s) increases monotonically
over S, which proves our result.

The proof that the one-period reward functionCt(s, a) is supermodular must be based on
the properties of the function for a specific problem. Of greater concern is establishing the
conditions required to prove condition (b) of the theorem because it involves the property
of the value function, which is not part of the basic data of the problem.

In practice, it is sometimes possible to establish condition (b) directly based on the
nature of the problem. These conditions usually require conditions on the monotonicity of
the reward function (and hence the value function) along with properties of the one-step
transition matrix. For this reason, we will start by showing that if the one-period reward
function is nondecreasing (or nonincreasing), then the value functions are nondecreasing
(or nonincreasing). We will first need the following technical lemma:

Lemma 14.10.3. Let pj , p′j , j ∈ J be probability mass functions defined over J that
satisfy

∞∑
j=j′

pj ≥
∞∑
j=j′

p′j ∀j′ ∈ J (14.93)

and let vj , j ∈ J be a nondecreasing sequence of numbers. Then
∞∑
j=0

pjvj ≥
∞∑
j=0

p′jvj (14.94)

We would say that the distribution represented by {pj}j∈J stochastically dominates the
distribution {p′j}j∈J . If we think of pj as representing the probability a random variable
V = vj , then equation (14.94) is saying that EpV ≥ Ep

′
V . Although this is well known,

a more algebraic proof is as follows:
Proof: Let v−1 = 0 and write

∞∑
j=0

pjvj =

∞∑
j=0

pj

j∑
i=0

(vi − vi−1) (14.95)

=

∞∑
j=0

(vj − vj−1)

∞∑
i=j

pi (14.96)

=

∞∑
j=1

(vj − vj−1)

∞∑
j=i

pi + v0

∞∑
i=0

pi (14.97)

≥
∞∑
j=1

(vj − vj−1)

∞∑
i=j

p′j + v0

∞∑
i=0

p′j (14.98)

=

∞∑
j=0

p′jvj (14.99)
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In equation (14.95), we replace vj with an alternating sequence that sums to vj . Equation
(14.96) involves one of those painful change of variable tricks with summations. Equation
(14.97) is simply getting rid of the term that involves v−1. In equation (14.98), we
replace the cumulative distributions for pj with the distributions for p′j , which gives us the
inequality. Finally, we simply reverse the logic to get back to the expectation in (14.99).�

We stated that lemma 14.10.3 is true when the sequences {pj} and {p′j} are probability
mass functions because it provides an elegant interpretation as expectations. For example,
we may use vj = j, in which case equation (14.94) gives us the familiar result that when
one probability distribution stochastically dominates another, it has a larger mean. If we
use an increasing sequence vj instead of j, then this can be viewed as nothing more than
the same result on a transformed axis.

In our presentation, however, we need a more general statement of the lemma, which
follows:

Lemma 14.10.4. Lemma 14.10.3 holds for any real valued, nonnegative (bounded) se-
quences {pj} and {p′j}.

The proof involves little more than realizing that the proof of lemma 14.10.3 never
required that the sequences {pj} and {p′j} be probability mass functions.

Proposition 14.10.4. Suppose that:

(a) Ct(s, a) is nondecreasing (nonincreasing) in s for all a ∈ A and t ∈ T .

(b) CT (s) is nondecreasing (nonincreasing) in s.

(c) qt(s̄|s, a) =
∑
s′≥s̄ P(s′|s, a), the reverse cumulative distribution function for the

transition matrix, is nondecreasing in s for all s ∈ S, a ∈ A and t ∈ T .

Then, vt(s) is nondecreasing (nonincreasing) in s for t ∈ T .

Proof: As always, we use a proof by induction. We will prove the result for the
nondecreasing case. Since vT (s) = Ct(s), we obtain the result by assumption for t = T .
Now, assume the result is true for vt′(s) for t′ = t + 1, t + 2, . . . , T . Let a∗t (s) be the
decision that solves:

vt(s) = max
a∈A

Ct(s, a) +
∑
s′∈S

P(s′|s, a)vt+1(s′)

= Ct(s, a
∗
t (s)) +

∑
s′∈S

P(s′|s, a∗t (s))vt+1(s′) (14.100)

Let ŝ ≥ s. Condition (c) of the proposition implies that:∑
s′≥s

P(s′|s, a) ≤
∑
s′≥s

P(s′|ŝ, a) (14.101)

Lemma 14.10.4 tells us that when (14.101) holds, and if vt+1(s′) is nondecreasing (the
induction hypothesis), then:∑

s′∈S
P(s′|s, a)vt+1(s′) ≤

∑
s′∈S

P(s′|ŝ, a)vt+1(s′) (14.102)
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Combining equation (14.102) with condition (a) of proposition 14.10.4 into equation
(14.100) gives us

vt(s) ≤ Ct(ŝ, a
∗(s)) +

∑
s′∈S

P(s′|ŝ, a∗(s))vt+1(s′)

≤ max
a∈A

Ct(ŝ, a) +
∑
s′∈S

P(s′|ŝ, a)vt+1(s′)

= vt(ŝ),

which proves the proposition. �
With this result, we can establish condition (b) of theorem 14.10.5:

Proposition 14.10.5. If

(a) qt(s̄|s, a) =
∑
s′≥s̄ P(s′|s, a) is supermodular on S ×A and

(b) v(s) is nondecreasing in s,

then
∑
s′∈S P(s′|s, a)v(s′) is supermodular on S ×A.

Proof: Supermodularity of the reverse cumulative distribution means:∑
s′≥s̄

P(s′|s+, a+) +
∑
s′≥s̄

P(s′|s−, a−) ≥
∑
s′≥s̄

P(s′|s+, a−) +
∑
s′≥s̄

P(s′|s−, a+)

We can apply Lemma 14.10.4 using ps̄ =
∑
s′≥s̄ P(s′|s+, a+) +

∑
s′≥s̄ P(s′|s−, a−) and

p′s̄ =
∑
s′≥s̄ P(s′|s+, a−) +

∑
s′≥s̄ P(s′|s−, a+), which gives∑

s′∈S

(
P(s′|s+, a+) + P(s′|s−, a−)

)
v(s′) ≥

∑
s′∈S

(
P(s′|s+, a−) + P(s′|s−, a+)

)
v(s′)

which implies that
∑
s′∈S P(s′|s, a)v(s′) is supermodular. �

Remark: Supermodularity of the reverse cumulative distribution
∑
s′∈S P(s′|s, a) may seem like a

bizarre condition at first, but a little thought suggests that it is often satisfied in practice. As stated,
the condition means that∑

s′∈S

P(s′|s+, a+)−
∑
s′∈S

P(s′|s+, a−) ≥
∑
s′∈S

P(s′|s−, a+)−
∑
s′∈S

P(s′|s−, a−)

Assume that the state s is the water level in a dam, and the decision a controls the release of water
from the dam. Because of random rainfalls, the amount of water behind the dam in the next time
period, given by s′, is random. The reverse cumulative distribution gives us the probability that the
amount of water is greater than s+ (or s−). Our supermodularity condition can now be stated as: “If
the amount of water behind the dam is higher one month (s+), then the effect of the decision of how
much water to release (a) has a greater impact than when the amount of water is initially at a lower
level (s−).” This condition is often satisfied because a control frequently has more of an impact when
a state is at a higher level than a lower level.

For another example of supermodularity of the reverse cumulative distribution, assume
that the state represents a person’s total wealth, and the control is the level of taxation. The
effect of higher or lower taxes is going to have a bigger impact on wealthier people than
on those who are not as fortunate (but not always: think about other forms of taxation that
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affect less affluent people more than the wealthy, and use this example to create an instance
of a problem where a monotone policy may not apply).

We now have the result that if the reward function Ct(s, a) is nondecreasing in s for
all a ∈ A and the reverse cumulative distribution

∑
s′∈S P(s′|s, a) is supermodular, then∑

s′∈S P(s′|s, a)v(s′) is supermodular on S ×A. Combine this with the supermodularity
of the one-period reward function, and we obtain the optimality of a nondecreasing decision
function.

14.11 BIBLIOGRAPHIC NOTES

This chapter presents the classic view of Markov decision processes, for which the literature
is extensive. Beginning with the seminal text of Bellman (Bellman (1957)), there have
been numerous, significant textbooks on the subject, including Howard (1960), Nemhauser
(1966), White (1969), ?, Bellman (1971), Dreyfus & Law (1977), Dynkin & Yushkevich
(1979), Denardo (1982), Ross (1983) and Heyman & Sobel (1984). As of this writing, the
current high-water mark for textbooks in this area is the landmark volume by ?. Most of
this chapter is based on ?, modified to our notational style.

Section 14.8 - The linear programming method was first proposed in Manne (1960) (see
subsequent discussions in ? and ?). The so-called “linear programming method”
was ignored for many years because of the large size of the linear programs that
were produced, but the method has seen a resurgence of interest using approximation
techniques. Recent research into algorithms for solving problems using this method
are discussed in section 18.8.

Section 14.10.6 - In addition to ?, see also Topkins (1978).

PROBLEMS

14.1 Discrete Markov decision processes have been studied since the 1950’s as a way of
solving stochastic, dynamic programs. Yet, in chapter 4, this is used as an example of a
stochastic optimization problem that can be solved deterministically. Explain.

14.2 A classical inventory problem works as follows: Assume that our state variable Rt
is the amount of product on hand at the end of time period t and thatDt is a random variable
giving the demand during time interval (t − 1, t) with distribution pd = P(Dt = d). The
demand in time interval tmust be satisfied with the product on hand at the beginning of the
period. We can then order a quantity at at the end of period t that can be used to replenish
the inventory in period t+ 1.

(a) Give the transition function that relates Rt+1 to Rt if the order quantity is at (where
at is fixed for all Rt).

(b) Give an algebraic version of the one-step transition matrix Pπ = {pπij} where
pπij = P(Rt+1 = j|Rt = i, Aπ = at).

14.3 Repeat the previous exercise, but now assume that we have adopted a policy π that
says we should order a quantity at = 0 if Rt ≥ s and at = Q−Rt if Rt < q (we assume
that Rt ≤ Q). Your expression for the transition matrix will now depend on our policy π
(which describes both the structure of the policy and the control parameter s).
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14.4 We are going to use a very simple Markov decision process to illustrate how the
initial estimate of the value function can affect convergence behavior. In fact, we are going
to use a Markov reward process to illustrate the behavior because our process does not have
any decisions. Assume we have a two-stage Markov chain with one-step transition matrix

P =

[
0.7 0.3
0.05 0.95

]
.

The contribution from each transition from state i ∈ {1, 2} to state j ∈ {1, 2} is given by
the matrix [

10 30
30 5

]
.

That is, a transition from state 1 to state 2 returns a contribution of 30. Apply the value
iteration algorithm for an infinite horizon problem (note that you are not choosing a decision
so there is no maximization step). The calculation of the value of being in each state will
depend on your previous estimate of the value of being in each state. The calculations can
be easily implemented in a spreadsheet. Assume that your discount factor is .8.

(a) Plot the value of being in state 1 as a function of the number of iterations if your initial
estimate of the value of being in each state is 0. Show the graph for 50 iterations of
the algorithm.

(b) Repeat this calculation using initial estimates of 100.

(c) Repeat the calculation using an initial estimate of the value of being in state 1 of 100,
and use 0 for the value of being in state 2. Contrast the behavior with the first two
starting points.

14.5 Show that P(St+τ |St), given that we are following a policy π (for stationary prob-
lems), is given by (14.14). [Hint: first show it for τ = 1, 2 and then use inductive reasoning
to show that it is true for general τ .]

14.6 Apply policy iteration to the problem given in exercise 14.4. Plot the average value
function (that is, average the value of being in each state) after each iteration alongside the
average value function found using value iteration after each iteration (for value iteration,
initialize the value function to zero). Compare the computation time for one iteration of
value iteration and one iteration of policy iteration.

14.7 Now apply the hybrid value-policy iteration algorithm to the problem given in
exercise 14.4. Show the average value function after each major iteration (update of
n) with M = 1, 2, 3, 5, 10. Compare the convergence rate to policy iteration and value
iteration.

14.8 An oil company will order tankers to fill a group of large storage tanks. One full
tanker is required to fill an entire storage tank. Orders are placed at the beginning of
each four week accounting period but do not arrive until the end of the accounting period.
During this period, the company may be able to sell 0, 1 or 2 tanks of oil to one of the
regional chemical companies (orders are conveniently made in units of storage tanks). The
probability of a demand of 0, 1 or 2 is 0.40, 0.40 and 0.20, respectively.

A tank of oil costs $1.6 million (M) to purchase and sells for $2M. It costs $0.020M to
store a tank of oil during each period (oil ordered in period t, which cannot be sold until
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period t + 1, is not charged any holding cost in period t). Storage is only charged on oil
that is in the tank at the beginning of the period and remains unsold during the period. It
is possible to order more oil than can be stored. For example, the company may have two
full storage tanks, order three more, and then only sell one. This means that at the end of
the period, they will have four tanks of oil. Whenever they have more than two tanks of
oil, the company must sell the oil directly from the ship for a price of $0.70M. There is no
penalty for unsatisfied demand.

An order placed in time period t must be paid for in time period t even though the order
does not arrive until t+ 1. The company uses an interest rate of 20 percent per accounting
period (that is, a discount factor of 0.80).

(a) Give an expression for the one-period reward function r(s, d) for being in state s and
making decision d. Compute the reward function for all possible states (0, 1, 2) and
all possible decisions (0, 1, 2).

(b) Find the one-step probability transition matrix when your action is to order one or
two tanks of oil. The transition matrix when you order zero is given by

From-To 0 1 2
0 1 0 0
1 0.6 0.4 0
2 0.2 0.4 0.4

(c) Write out the general form of the optimality equations and solve this problem in
steady state.

(d) Solve the optimality equations using the value iteration algorithm, starting with
V (s) = 0 for s = 0, 1 and 2. You may use a programming environment, but the
problem can be solved in a spreadsheet. Run the algorithm for 20 iterations. Plot
V n(s) for s = 0, 1, 2, and give the optimal action for each state at each iteration.

(e) Give a bound on the value function after each iteration.

14.9 Every day, a salesman visits N customers in order to sell the R identical items
he has in his van. Each customer is visited exactly once and each customer buys zero
or one item. Upon arrival at a customer location, the salesman quotes one of the prices
0 < p1 ≤ p2 ≤ . . . ≤ pm. Given that the quoted price is pi, a customer buys an item with
probability ri. Naturally, ri is decreasing in i. The salesman is interested in maximizing
the total expected revenue for the day. Show that if ripi is increasing in i, then it is always
optimal to quote the highest price pm.

14.10 You need to decide when to replace your car. If you own a car of age y years, then
the cost of maintaining the car that year will be c(y). Purchasing a new car (in constant
dollars) costs P dollars. If the car breaks down, which it will do with probability b(y) (the
breakdown probability), it will cost you an additional K dollars to repair it, after which
you immediately sell the car and purchase a new one. At the same time, you express
your enjoyment with owning a new car as a negative cost −r(y) where r(y) is a declining
function with age. At the beginning of each year, you may choose to purchase a new car
(z = 1) or to hold onto your old one (z = 0). You anticipate that you will actively drive a
car for another T years.

(a) Identify all the elements of a Markov decision process for this problem.
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(b) Write out the objective function which will allow you to find an optimal decision
rule.

(c) Write out the one-step transition matrix.

(d) Write out the optimality equations that will allow you to solve the problem.

14.11 You are trying to find the best parking space to use that minimizes the time needed
to get to your restaurant. There are 50 parking spaces, and you see spaces 1, 2, . . . , 50 in
order. As you approach each parking space, you see whether it is full or empty. We assume,
somewhat heroically, that the probability that each space is occupied follows an independent
Bernoulli process, which is to say that each space will be occupied with probability p, but
will be free with probability 1− p, and that each outcome is independent of the other.

It takes 2 seconds to drive past each parking space and it takes 8 seconds to walk past.
That is, if we park in space n, it will require 8(50 − n) seconds to walk to the restaurant.
Furthermore, it would have taken you 2n seconds to get to this space. If you get to the last
space without finding an opening, then you will have to drive into a special lot down the
block, adding 30 seconds to your trip.

We want to find an optimal strategy for accepting or rejecting a parking space.

(a) Give the sets of state and action spaces and the set of decision epochs.

(b) Give the expected reward function for each time period and the expected terminal
reward function.

(c) Give a formal statement of the objective function.

(d) Give the optimality equations for solving this problem.

(e) You have just looked at space 45, which was empty. There are five more spaces
remaining (46 through 50). What should you do? Using p = 0.6, find the optimal
policy by solving your optimality equations for parking spaces 46 through 50.

f) Give the optimal value of the objective function in part (e) corresponding to your
optimal solution.

1 2 3 4

.7

.3

.8

.2

.9

.1

$20
$15

$10

14.12 We have a four-state process (shown in the figure). In state 1, we will remain in
the state with probability 0.7 and will make a transition to state 2 with probability 0.3. In
states 2 and 3, we may choose between two policies: Remain in the state waiting for an
upward transition or make the decision to return to state 1 and receive the indicated reward.
In state 4, we return to state 1 immediately and receive $20. We wish to find an optimal
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long run policy using a discount factor γ = .8. Set up and solve the optimality equations
for this problem.

14.13 Assume that you have been applying value iteration to a four-state Markov decision
process, and that you have obtained the values over iterations 8 through 12 shown in the
table below (assume a discount factor of 0.90). Assume you stop after iteration 12. Give
the tightest possible (valid) bounds on the optimal value of being in each state.

Iteration
State 8 9 10 11 12

1 7.42 8.85 9.84 10.54 11.03

2 4.56 6.32 7.55 8.41 9.01

3 11.83 13.46 14.59 15.39 15.95

4 8.13 9.73 10.85 11.63 12.18

14.14 In the proof of theorem 14.10.3 we showed that if v ≥ Mv, then v ≥ v∗. Go
through the steps of proving the converse, that if v ≤Mv, then v ≤ v∗.

14.15 Theorem 14.10.3 states that if v ≤Mv, then v ≤ v∗. Show that if vn ≤ vn+1 =
Mvn, then vm+1 ≥ vm for all m ≥ n.

14.16 Consider a finite-horizon MDP with the following properties:

- S ∈ <n, the action space A is a compact subset of <n, A(s) = A for all s ∈ S.

- Ct(St, at) = ctSt + gt(at), where gt(·) is a known scalar function, and CT (ST ) =
cTST .

- If action at is chosen when the state is St at time t, the next state is

St+1 = AtSt + ft(at) + ωt+1,

where ft(·) is scalar function, andAt and ωt are respectively n×n and n× 1-dimensional
random variables whose distributions are independent of the history of the process prior to
t.

(a) Show that the optimal value function is linear in the state variable.

(b) Show that there exists an optimal policy π∗ = (a∗1, . . . , a
∗
T−1) composed of constant

decision functions. That is, Aπ
∗

t (s) = A∗t for all s ∈ S for some constant A∗t .

14.17 Assume that you have invested R0 dollars in the stock market which evolves
according to the equation

Rt = γRt−1 + εt

where εt is a discrete, positive random variable that is independent and identically dis-
tributed and where 0 < γ < 1. If you sell the stock at the end of period t, it will earn a
riskless return r until time T , which means it will evolve according to

Rt = (1 + r)Rt−1.
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You have to sell the stock, all on the same day, some time before T .

(a) Write a dynamic programming recursion to solve the problem.

(b) Show that there exists a point in time τ such that it is optimal to sell for t ≥ τ , and
optimal to hold for t < τ .

(c) How does your answer to (b) change if you are allowed to sell only a portion of the
assets in a given period? That is, if you have Rt dollars in your account, you are
allowed to sell at ≤ Rt at time t.

14.18 Show that the matrix Hn in the recursive updating formula from equation (3.81)

θ̄n = θ̄n−1 −Hnxnε̂n

reduces to Hn = 1/n for the case of a single parameter (which means we are using
Y =constant, with no independent variables).

14.19 An airline has to decide when to bring an aircraft in for a major engine overhaul.
Let st represent the state of the engine in terms of engine wear, and let dt be a nonnegative
amount by which the engine deteriorates during period t. At the beginning of period t,
the airline may decide to continue operating the aircraft (zt = 0) or to repair the aircraft
(zt = 1) at a cost of cR, which has the effect of returning the aircraft to st+1 = 0 . If the
airline does not repair the aircraft, the cost of operation is co(st), which is a nondecreasing,
convex function in st.

(a) Define what is meant by a control limit policy in dynamic programming, and show
that this is an instance of a monotone policy.

(b) Formulate the one-period reward function Ct(st, zt), and show that it is submodular.

(c) Show that the decision rule is monotone in st. (Outline the steps in the proof, and
then fill in the details.)

(d) Assume that a control limit policy exists for this problem, and let γ be the control
limit. Now, we may write Ct(st, zt) as a function of one variable: the state s. Using
our control limit structure, we can write the decision zt as the decision rule zπ(st).
Illustrate the shape of Ct(st, zπ(s)) by plotting it over the range 0 ≤ s ≤ 3γ (in
theory, we may be given an aircraft with s > γ initially).

14.20 A dispatcher controls a finite capacity shuttle that works as follows: In each time
period, a random number At arrives. After the arrivals occur, the dispatcher must decide
whether to call the shuttle to remove up toM customers. The cost of dispatching the shuttle
is c, which is independent of the number of customers on the shuttle. Each time period that
a customer waits costs h. If we let z = 1 if the shuttle departs and 0 otherwise, then our
one-period reward function is given by

ct(s, z) = cz + h[s−Mz]+,

where M is the capacity of the shuttle. Show that ct(s, a) is submodular where we would
like to minimize r. Note that we are representing the state of the system after the customers
arrive.
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14.21 Assume that a control limit policy exists for our shuttle problem in exercise 2 that
allows us to write the optimal dispatch rule as a function of s, as in zπ(s). We may write
r(s, z) as a function of one variable, the state s.

(a) Illustrate the shape of r(s, z(s)) by plotting it over the range 0 < s < 3M (since we
are allowing there to be more customers than can fill one vehicle, assume that we are
allowed to send z = 0, 1, 2, . . . vehicles in a single time period).

(b) Let c = 10, h = 2, and M = 5, and assume that At = 1 with probability 0.6 and is
0 with probability 0.4. Set up and solve a system of linear equations for the optimal
value function for this problem in steady state.

14.22 A general aging and replenishment problem arises as follows: Let st be the “age”
of our process at time t. At time t, we may choose between a decision d = C to continue
the process, incurring a cost g(st) or a decision d = R to replenish the process, which
incurs a cost K + g(0). Assume that g(st) is convex and increasing. The state of the
system evolves according to

st+1 =

{
st +Dt if d = C,

0 if d = R,

where Dt is a nonnegative random variable giving the degree of deterioration from one
epoch to another (also called the “drift”).

(a) Prove that the structure of this policy is monotone. Clearly state the conditions
necessary for your proof.

(b) How does your answer to part (1) change if the random variable Dt is allowed to
take on negative outcomes? Give the weakest possible conditions on the distribution
of required to ensure the existence of a monotone policy.

(c) Now assume that the action is to reduce the state variable by an amount q ≤ st at a
cost of cq (instead of K ). Further assume that g(s) = as2 . Show that this policy is
also monotone. Say as much as you can about the specific structure of this policy.

14.23 Show that the matrix Hn in the recursive updating formula from equation (3.81)

θ̄n = θ̄n−1 −Hnxnε̂n

reduces to Hn = 1/n for the case of a single parameter (which means we are using
Y =constant, with no independent variables).

14.24 An airline has to decide when to bring an aircraft in for a major engine overhaul.
Let st represent the state of the engine in terms of engine wear, and let dt be a nonnegative
amount by which the engine deteriorates during period t. At the beginning of period t,
the airline may decide to continue operating the aircraft (zt = 0) or to repair the aircraft
(zt = 1) at a cost of cR, which has the effect of returning the aircraft to st+1 = 0 . If the
airline does not repair the aircraft, the cost of operation is co(st), which is a nondecreasing,
convex function in st.

(a) Define what is meant by a control limit policy in dynamic programming, and show
that this is an instance of a monotone policy.
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(b) Formulate the one-period reward function Ct(st, zt), and show that it is submodular.

(c) Show that the decision rule is monotone in st. (Outline the steps in the proof, and
then fill in the details.)

(d) Assume that a control limit policy exists for this problem, and let γ be the control
limit. Now, we may write Ct(st, zt) as a function of one variable: the state s.
Using our control limit structure in section 14.9.3, we can write the decision zt as
the decision rule zπ(st). Illustrate the shape of Ct(st, zπ(s)) by plotting it over the
range 0 ≤ s ≤ 3γ (in theory, we may be given an aircraft with s > γ initially).

14.25 A dispatcher controls a finite capacity shuttle that works as follows: In each time
period, a random number At arrives. After the arrivals occur, the dispatcher must decide
whether to call the shuttle to remove up toM customers. The cost of dispatching the shuttle
is c, which is independent of the number of customers on the shuttle. Each time period that
a customer waits costs h. If we let z = 1 if the shuttle departs and 0 otherwise, then our
one-period reward function is given by

ct(s, z) = cz + h[s−Mz]+,

where M is the capacity of the shuttle. Show that ct(s, a) is submodular where we would
like to minimize r. Note that we are representing the state of the system after the customers
arrive.

14.26 Assume that a control limit policy exists for our shuttle problem in exercise 2 that
allows us to write the optimal dispatch rule as a function of s, as in zπ(s). We may write
r(s, z) as a function of one variable, the state s.

(a) Illustrate the shape of r(s, z(s)) by plotting it over the range 0 < s < 3M (since we
are allowing there to be more customers than can fill one vehicle, assume that we are
allowed to send z = 0, 1, 2, . . . vehicles in a single time period).

(b) Let c = 10, h = 2, and M = 5, and assume that At = 1 with probability 0.6 and is
0 with probability 0.4. Set up and solve a system of linear equations for the optimal
value function for this problem in steady state.

14.27 A general aging and replenishment problem arises as follows: Let st be the “age”
of our process at time t. At time t, we may choose between a decision d = C to continue
the process, incurring a cost g(st) or a decision d = R to replenish the process, which
incurs a cost K + g(0). Assume that g(st) is convex and increasing. The state of the
system evolves according to

st+1 =

{
st +Dt if d = C,

0 if d = R,

where Dt is a nonnegative random variable giving the degree of deterioration from one
epoch to another (also called the “drift”).

(a) Prove that the structure of this policy is monotone. Clearly state the conditions
necessary for your proof.
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(b) How does your answer to part (1) change if the random variable Dt is allowed to
take on negative outcomes? Give the weakest possible conditions on the distribution
of required to ensure the existence of a monotone policy.

(c) Now assume that the action is to reduce the state variable by an amount q ≤ st at a
cost of cq (instead of K ). Further assume that g(s) = as2 . Show that this policy is
also monotone. Say as much as you can about the specific structure of this policy.



CHAPTER 15

DYNAMIC PROGRAMS WITH SPECIAL
STRUCTURE

15.1 OPTIMAL MYOPIC POLICIES

15.2 SPECIAL CASES WITH ANALYTICAL SOLUTIONS

Square/square-root/log cost functions.

15.3 SIMPLIFIED POST-DECISION STATE VARIABLE

Produces optimal myopic policies.

15.3.1 Empty post-decision state variable

15.3.2 Discrete post-decision state variable

Example on graphs - small number of discrete states. Use JOC article.
Shortest path where costs are revealed when you arrive at a node.

15.4 MONOTONE DYNAMIC PROGRAMMING

Move material from MDP chapter.

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
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15.5 LINEAR-QUADRATIC REGULATION

15.5.1 Budgeting problems

The budgeting problem is a simple resource allocation problem where we start with a
resource R which then has to be allocated over a series of activities.

15.5.1.1 The discrete budgeting problem Assume we have to allocate a budget
of size R to a series of tasks T . Let xt be a discrete action representing the amount of
money allocated to task t, and let Ct(xt) be the contribution (or reward) that we receive
from this allocation. We would like to maximize our total contribution

max
x

∑
t∈T

Ct(xt) (15.1)

subject to the constraint on our available resources∑
t∈T

xt = R. (15.2)

In addition, we cannot allocate negative resources to any task, so we include

xt ≥ 0. (15.3)

We refer to (15.1)-(15.3) as the budgeting problem (other authors refer to it as the “resource
allocation problem,” a term we find too general for such a simple problem). In this example,
all data are deterministic. There are a number of algorithmic strategies for solving this
problem that depend on the structure of the contribution function, but we are going to show
how it can be solved without any assumptions.

We will approach this problem by first deciding how much to allocate to task 1, then
to task 2, and so on, until the last task, T . In the end, however, we want a solution that
optimizes over all tasks. Let

Vt(Rt) = The value of having Rt resources remaining to allocate to task t and later
tasks.

Implicit in our definition of Vt(Rt) is that we are going to solve the problem of allocating
Rt over tasks t, t + 1, . . . , T in an optimal way. Imagine that we somehow know the
function Vt+1(Rt+1). The relationship between Rt+1 and Rt is given by

Rt+1 = Rt − xt. (15.4)

In the language of dynamic programming,Rt is known as the state variable, which captures
all the information we need to model the system forward in time (we provide a more careful
definition in chapter 9). Equation (15.4) is the transition function which relates the state
at time t to the state at time t + 1. Sometimes we need to explicitly refer to the transition
function (rather than just the state at time t+ 1), in which case we use

RM (Rt, xt) = Rt − xt. (15.5)

Equation (15.5) is referred to in some communities as the system model, since it models
the physics of the system over time (hence our use of the superscript M ).
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The relationship between Vt(Rt) and Vt+1(Rt+1) is given by

Vt(Rt) = max
0≤xt≤Rt

(
Ct(xt) + Vt+1(RM (Rt, xt))

)
. (15.6)

Equation (15.6) is the optimality equation and represents the foundational equation for
dynamic programming. It says that the value of having Rt resources for task t is the value
of optimizing the contribution from task t plus the value of then having RM (Rt, xt) =
Rt+1 = Rt−xt resources for task t+1 (and beyond). It forces us to balance the contribution
from task t against the value that we would receive from all future tasks (which is captured
in Vt+1(Rt − xt)). One way to solve (15.6) is to assume that xt is discrete. For example,
if our budget isR = $10 million, we might require xt to be in units of $100,000 dollars. In
this case, we would solve (15.6) simply by searching over all possible values of xt (since it
is a scalar, this is not too hard). The problem is that we do not know what Vt+1(Rt+1) is.

The simplest strategy for solving our dynamic program in (15.6) is to start by using
VT+1(R) = 0 (for any value of R). Then we would solve

VT (RT ) = max
0≤xT≤RT

CT (xT ) (15.7)

for 0 ≤ RT ≤ R. Now we know VT (RT ) for any value of RT that might actually happen.
Next we can solve

VT−1(RT−1) = max
0≤xT−1≤RT−1

(CT−1(xT−1) + VT (RT−1 − xT−1)) . (15.8)

Clearly, we can play this game recursively, solving (15.6) for t = T−1, T−2, . . . , 1. Once
we have computed Vt for t = (1, 2, . . . , T ), we can then start at t = 1 and step forward in
time to determine our optimal allocations.

This strategy is simple, easy, and optimal. It has the nice property that we do not need
to make any assumptions about the shape of Ct(xt), other than finiteness. We do not need
concavity or even continuity; we just need the function to be defined for the discrete values
of xt that we are examining.

15.5.1.2 The continuous budgeting problem It is usually the case that dynamic
programs have to be solved numerically. In this section, we introduce a form of the
budgeting problem that can be solved analytically. Assume that the resources we are
allocating are continuous (for example, how much money to assign to various activities),
which means thatRt is continuous, as is the decision of how much to budget. We are going
to assume that the contribution from allocating xt dollars to task t is given by

Ct(xt) =
√
xt.

This function assumes that there are diminishing returns from allocating additional re-
sources to a task, as is common in many applications. We can solve this problem exactly
using dynamic programming. We first note that if we have RT dollars left for the last task,
the value of being in this state is

VT (RT ) = max
xT≤RT

√
xT .

Since the contribution increases monotonically with xT , the optimal solution is xT = RT ,
which means that VT (RT ) =

√
RT . Now consider the problem at time t = T − 1. The

value of being in state RT−1 would be

VT−1(RT−1) = max
xT−1≤RT−1

(√
xT−1 + VT (RT (xT−1))

)
(15.9)
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where RT (xT−1) = RT−1 − xT−1 is the money left over from time period T − 1. Since
we know VT (RT ) we can rewrite (15.9) as

VT−1(RT−1) = max
xT−1≤RT−1

(√
xT−1 +

√
RT−1 − xT−1

)
. (15.10)

We solve (15.10) by differentiating with respect to xT−1 and setting the derivative equal to
zero (we are taking advantage of the fact that we are maximizing a continuously differen-
tiable, concave function). Let

FT−1(RT−1, xT−1) =
√
xT−1 +

√
RT−1 − xT−1.

Differentiating FT−1(RT−1, xT−1) and setting this equal to zero gives

∂FT−1(RT−1, xT−1)

∂xT−1
=

1

2
(xT−1)−

1
2 − 1

2
(RT−1 − xT−1)−

1
2

= 0.

This implies

xT−1 = RT−1 − xT−1

which gives

x∗T−1 =
1

2
RT−1.

We now have to find VT−1. Substituting x∗T−1 back into (15.10) gives

VT−1(RT−1) =
√
RT−1/2 +

√
RT−1/2

= 2
√
RT−1/2.

We can continue this exercise, but there seems to be a bit of a pattern forming (this is a
common trick when trying to solve dynamic programs analytically). It seems that a general
formula might be

VT−t+1(RT−t+1) = t
√
RT−t+1/t (15.11)

or, equivalently,

Vt(Rt) = (T − t+ 1)
√
Rt/(T − t+ 1). (15.12)

How do we determine if this guess is correct? We use a technique known as proof by
induction. We assume that (15.11) is true for VT−t+1(RT−t+1) and then show that we get
the same structure for VT−t(RT−t). Since we have already shown that it is true for VT and
VT−1, this result would allow us to show that it is true for all t.

Finally, we can determine the optimal solution using the value function in equation
(15.12). The optimal value of xt is found by solving

max
xt

(√
xt + (T − t)

√
(Rt − xt)/(T − t)

)
. (15.13)

Differentiating and setting the result equal to zero gives

1

2
(xt)

− 1
2 − 1

2

(
Rt − xt
T − t

)− 1
2

= 0.
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This implies that

xt = (Rt − xt)/(T − t).

Solving for xt gives

x∗t = Rt/(T − t+ 1).

This gives us the very intuitive result that we want to evenly divide the available budget
among all remaining tasks. This is what we would expect since all the tasks produce the
same contribution.

15.6 BIBLIOGRAPHIC NOTES

• Section xx -

PROBLEMS

15.1 Repeat the derivation in section 15.5.1.2 assuming that the reward for task t is
ct
√
xt.

15.2 Repeat the derivation in section 15.5.1.2 assuming that the reward for task t is given
by ln(x).

15.3 Repeat the derivation in section 15.5.1.2 one more time, but now assume that all
you know is that the reward is continuously differentiable, monotonically increasing and
concave.

15.4 What happens to the answer to the budget allocation problem in section 15.5.1.2 if
the contribution is convex instead of concave (for example, Ct(xt) = x2

t )?

15.5 You have to send a set of questionnaires to each of N population segments. The
size of each population segment is given by wi. You have a budget of B questionnaires to
allocate among the population segments. If you send xi questionnaires to segment i, you
will have a sampling error proportional to

f(xi) = 1/
√
xi.

You want to minimize the weighted sum of sampling errors, given by

F (x) =

N∑
i=1

wif(xi)

You wish to find the allocation x that minimizes F (x) subject to the budget constraint∑N
i=1 xi ≤ B. Set up the optimality equations to solve this problem as a dynamic program

(needless to say, we are only interested in integer solutions).





CHAPTER 16

BACKWARD APPROXIMATE DYNAMIC
PROGRAMMING

Chapter 14 presented the most classical solution methods from discrete Markov decision
processes, which are often referred to as “backward dynamic programming” since it is
necessary to step backward in time, using the value Vt+1(St+1) to compute Vt(St). While
we can occasionally apply this strategy to problems with continuous states and actions (as
we showed in chapter 15), most often this is used for problems with discrete states and
actions, and where the one-step transition matrix P (St+1 = s′|St = s, a).

The basic backward dynamic programming strategy summarized in figure 14.3 suffers
from what we have identified as the three curses of dimensionality:

1) State variables - As the state variable grows past two or three dimensions, the number
of states tends to become too large to enumerate.

2) Action (decision) variables - Enumerating all possible actions tends to become in-
tractable if there are more than three or four dimensions, unless it is possible to
significantly prune the number of actions using constraints. Problems with more
than five or six dimensions tend to require special structure such as convexity.

3) Exogenous information - As we pointed out in section 9.6 finding the one-step transition
matrix requires computing the expectation

P (s′|s, x) = E{1{s′=SM (St,x,Wt+1)}|St = s}

=
∑

ωt+1∈Ωt+1

P (Wt+1 = ωt+1)1{s′=SM (St,x,ωt+1)}. (16.1)

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
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If Wt+1 is a vector (again, with more than two or three dimensions), this becomes
computationally intractable.

This is best illustrated by rewriting the algorithm in figure 14.3 for a problem where the
state s = (s1, s2, s3), actiona = (a1, a2, a3) and exogenous informationw = (w1, w2, w3)
each have three dimensions. The resulting algorithm is summarized in figure 16.1, where we
have oversimplified the challenges by not showing the nesting of each of the dimensions.
However, as written, there are 10 nested loops: one going backward in time, three for
the states, three for the actions, and three expressed as nested sums for the exogenous
information. Depending on how many values there are for each state, action and exogenous
information, this simple recursion could easily require a year or more to execute.

Step 0. Initialization:

Step 0a. Initialize the terminal contribution VT (ST ).

Step 0b. Set t = T − 1.

Step 1a. Step backward in time t = T, T − 1, . . . , 0:

Step 2a. Loop over states s1 ∈ S1:

Step 2b. Loop over states s2 ∈ S2:

Step 2c. Loop over states s3 ∈ S3:

Step 2d. Let s = (s1, s2, s3).

Step 2e. Initialize Vt(s) = −M (where M is very large).

Step 3a. Loop over each action a1 ∈ A1(s):
Step 3b. Loop over each action a2 ∈ A2(s):
Step 3c. Loop over each action a3 ∈ A3(s):
Step 3d. Let a = (a1, a2, a3).

Step 4a. Initialize Q(s, a) = 0.
Step 4b. Find the expected value of being in state s and taking action a:
Step 4c. Compute Qt(s, a) =∑

w1∈W1

∑
w2∈W2

∑
w3∈W3

P(w1, w2, w3|s, a)Vt+1(s′ = sM (s, a, (w1, w2, w3))).

Step 3e. If Qt(s, a) > Vt(s) then
Step 3f. Store the best value Vt(s) = Qt(s, a).
Step 3g. Store the best action At(s) = a.

Step 1b. Return the value Vt(s) and policy At(s) for all s ∈ S and t = 0, . . . , T .

Figure 16.1 A backward dynamic programming algorithm.

These computational issues have motivated the development of fields with names like
“approximate dynamic programming,” “adaptive dynamic programming,” (the term more
widely used in engineering), “neuro-dynamic programming,” or “reinforcement learning,”
(the highly popular field that evolved within computer science). In this book, we refer to
all of these approaches as “forward approximate dynamic programming” since they are all
based on the principle of stepping forward in time. Many authors (including this author)
have assumed that if you cannot do “backward dynamic programming” then you need to
turn to “approximate dynamic programming” (which means forward approximate dynamic
programming).

While we will see that forward ADP methods can be quite powerful, we are going to
first present the idea of backward approximate dynamic programming, which has received
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comparatively little attention. In fact, we are going to show that backward ADP methods
can work much better than forward methods on certain problem classes where classical
exact backward dynamic programming does not work.

We will present this idea in several stages:

1) Lookup tables with sampled states - The core idea of backward ADP is to avoid
enumerating the entire state space by using a sampled set of states instead. In this
first stage, we will still use a lookup table representation of the value functions, and
we will also assume we can do full expectations, and maximize over all actions
(which generally means a not-too-large set of discrete actions).

2) Sampled expectations - Here we are going to replace the exact expectation with a
sampled approximation.

3) Sampled actions - If the number of actions is too large, we can replace the maximization
over actions with a maximization over a sampled set.

4) Parametric approximations of the value function - Here we replace the lookup table
representation of the value function with a parametric approximation.

16.1 SAMPLED STATES WITH LOOKUP TABLES

The basic idea of backward approximate dynamic programming is to perform classical
backward dynamic programming as described in chapter 14, but instead of enumerating
all the states S, we work with a sampled set Ŝ. We illustrate the basic strategy of
using a sampled set of states by breaking Bellman’s equation into two steps (illustrated
in figure 16.2), where the sampled states are shown in gray. Instead of using our basic
transition function St+1 = SM (St, xt,Wt+1) to describe the transition from pre-decision
state St to the next pre-decision state St+1, we use the function Sxt = SM,x(St, xt) to
model the transition from pre-decision state St to post-decision state Sxt , and the function
St+1 = SM,x(Sxt ,Wt+1) to model the transition from post-decision state Sxt to the next
pre-decision state St+1. Pre- and post-decision states are discussed in more detail in section
9.3.4.

We are also going to make the simplifying assumption (true for some, but hardly all,
applications) that the post-decision state space Sx is “not too large.” By contrast, we are
going to allow the pre-decision state space S to be arbitrarily large. This situation arises
frequently when there is information needed to make a decision, but which is no longer
needed once a decision has been made. Some examples where this arises are:

EXAMPLE 16.1

As a car traverses from node i to node j on a transportation network, it incurs random
costs ĉij which it learns when it first arrives at node i. The (pre-decision) state when
it arrives at node i is then S = (i, (ĉij)j). After making the decision to traverse from
i to some node j′ (but before moving to j′), the post-decision state is Sx = (j), since
we no longer need the realization of the costs (ĉij)j).

EXAMPLE 16.2
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Figure 16.2 Illustration of transitions from pre-decision St to post-decision Sxt to pre-decision
St+1 and so on..

A truck driver arrives in city i and learns a set Li of loads that need to be moved to
other cities. This means when it arrives at i that the state of our driver is S = (i,Li).
Once the driver chooses a load ` ∈ Li, but before moving to the destination of load
`, the (post-decision) state is Sx = (`) (or we might use the destination of load `).

EXAMPLE 16.3

A cement truck is given a set of orders to deliver set to a set of work sites. Let Rt be
the inventory of cement, and letDt be the set of construction sites needing deliveries
(the set includes how much cement is needed by each site). The decision that needs
to be made by the cement plant is how much cement to make to replenish inventory.
The pre-decision state is St = (Rt,Dt), while the post-decision state is Sxt = Rxt
which is the amount of inventory left over after making all the deliveries.

In each of these examples, the number of pre-decision states may be extremely large.
Instead of looping over all states in S (as we had to do in figure 16.1), we are going to take
a sample Ŝ which is of manageable size.

The steps of the algorithm are described in detail in figure 16.4, but we refer to figure 16.3
to explain the idea. The pre-decision states are depicted as squares while post-decision
states are circles. We represent the states in our sampled set Ŝ using the gray-hatched
squares. Assuming we know V t+2(s) for states s ∈ Ŝ, we compute the value of each
post-decision state V

x

t+1(s) for each post-decision state s in Sx by taking the expectation
over all random outcomes that take us to states in our sampled set Ŝ. Since not all states
are in Ŝ , when we sum the probabilities over outcomes that take us to states in Ŝ, these
probabilities may not sum to 1.0, so we have to normalize the expected value.

This quickly raises a potential problem. What if none of the random outcomes take
us to states in Ŝ? When this happens, we choose a subset of random outcomes from a
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Figure 16.3 Calculation of value of post-decision state Sxt+1 using full expectation.

post-decision state, find the pre-decision states that these outcomes take us to, and then add
these states to the sampled set Ŝ. We then repeat the calculation.

Once we have the value of being in each post-decision state, we then step back to find
the value of being in each sampled pre-decision state, which is depicted in figure 16.5.
Since we assume we have computed the value of being in each post-decision state, finding
the value of being in any pre-decision state involves simply searching over all actions and
finding the action with the highest one-period reward plus downstream value.

This algorithm can easily encounter two problems, each of which can be solved using a
sampling strategy:

1) What if the exogenous information W is continuous and/or multidimensional? We
can circumvent this by choosing a sampled set Ŵt(s

x
t ) = {w1, . . . , wK} for post-

decision state sxt . Then compute the probability that we reach an element of Ŝ
using

ρ =
1

K

∑
w∈Ŵt(sxt )

1{SM,W (sxt ,w)∈Ŝ}.

If ρ > 0, which means we reached at least one state in Ŝ , then we approximate the
expected value of being in post-decision state sx using

V
x

t (sxt ) =
1

K

∑
w∈Ŵt(s)

V t+1(St = SM (sxt , x, w)).

If ρ = 0, then this means that none of the outcomes w ∈ Ŵ produce transitions from
our post-decision state sxt to a state in Ŝ. We can circumvent this by adding the states
that we do reach to the set Ŝ and then repeat the process.

2) What if the decision x is continuous and/or multidimensional? We can use the same
process we did above for W , but instead sample a set of K decisions X̂t(st) =
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Step 0. Initialization:

0a. Initialize the terminal contribution VT (ST ).

0b. Create a sampled set of pre-decision states Ŝ (we assume we can use this same sample each time
period).

0c. Create a full set of post-decision states Sx (presumably a manageable size).

0d. Set t = T − 1.

Step 1a. Step backward in time t = T, T − 1, . . . , 0:

Compute the value of each post-decision state:

Step 2a. Initialize pre-decision value function approximation V t(s) = −M .

Step 2b. Loop over the sampled set of pre-decision states s ∈ Ŝ.

Step 2c. Loop over each action a ∈ A(s):

Step 3a. Compute Qt(s, a) = C(s, a) + V
x
t (s′ = sM,x(s, a)).

Step 3b. If Qt(s, a) > V t(s) then set V t(s) = Qt(s, a).

Compute the value of each sampled pre-decision state:

Step 4a. Loop over the full set of post-decision states sx ∈ Sx.

Step 4b. Step back in time: t = t− 1.

Step 4b. Initialize post-decision value function approximation V xt (s) = −M .

Step 4a. Initialize Q(s, a) = 0.
Step 4b. Initialize total probability ρ = 0.
Step 4c. Loop over each w ∈ W:

Step 5a. Compute Qt(s, a) = Qt(s, a) + P(w|s, a)V t+1(s′ = sM (s, a, w)).
Step 5b. ρ = ρ+ P(w|s, a).

Step 4d. If ρ > 0 then (we have to normalize Qt(s, a) in case ρ < 1):
Step 6a. Qt(s, a) = Qt(s, a)/ρ

Else: Get here if ρ = 0, which means there were no random transitions to states in Ŝ:
Step 6b. Choose a sample of outcomes ŵ (at least one), find the downstream pre-decision

state ŝ = SM,W (s, ŵ), and add each ŝ to Ŝ.
Step 6c. Return to step 4a.

Step 1b. Return the values V t(s) for all s ∈ S and t = 0, . . . , T .

Figure 16.4 A backward dynamic programming algorithm using lookup tables.

{x1, . . . , xK} from pre-decision state st. Then, we solve the maximization problem

v̂t = max
x∈X̂t(st)

(
C(st, x) + V

x

t (xxt = SM,x(st, x))
)
.

We are not aware of any experimental work with these ideas, so we anticipate that both
would benefit from putting some care into how these samples are created. At a minimum,
experimentation would be required to determine how large these samples need to be.
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Figure 16.5 Calculation of value of pre-decision state St+1 using full maximization.

16.2 VALUE FUNCTION APPROXIMATION STRATEGIES

We illustrated the basic idea of backward approximate dynamic programming using a
standard lookup table representation for the value function, but this would quickly cause
problems if we have a multidimensional state (the classic curse of dimensionality). In this
section, we suggest three strategies for approximating value functions that mitigate this
problem to some degree.

16.2.1 Monotone functions

There are a number of sequential decision problems where the state variable has three to
six or seven dimensions, which tends to be the range where the state space is too large to
estimate value functions using lookup tables. There are, however, a number of applications
where the value function is monotone in each dimension, which is to say that as the state
variable increases in each dimension, so does the value of being in the state. Some examples
include:

• Optimal replacement of parts and equipment tend to exhibit value functions which
are monotone in variables describing the age and/or condition of the parts.

• The problem of controlling the number of patients enrolled in clinical trials produces
value functions that are monotone in variables such as the number of enrolled patients,
the efficacy of the drug, and the rate at which patients drop out of the study.

• Initiation of drug treatments (statins for cholesteral, metformin for lowering blood
sugar) result in value functions that are monotone in health metrics such as cholesterol
or blood sugar, the age of a patient and their weight.

• Economic models of expenditures tend to be monotone in the resources available
(e.g. personal savings), and other indices such as stock market, interest rates, and
unemployment.
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Monotonicity can be exploited when we are using a lookup table representation of a value
function. Assume that a state s consists of four dimensions (st1, st2, st3, st4), where each
dimension takes on one of a set of discrete values, such as st2 ∈ {st21, st22, st23, . . . , st2J2

}.
Assume we have a sampled estimate of the value of being in state snt , which we might
compute using

v̂nt (snt ) = max
x

(
C(snt , x) + EWt

{V n−1

t (St+1)|snt }
)
,

where St+1 = SM (snt , x,Wt+1). We might then use our sampled estimate (regardless of
how it is found) to update the value function approximation at state snt using

V
n

t (snt ) = (1− αn)V
n−1

t (snt ) + αnv̂
n
t (snt ).

We assume that V
n−1

t (s) is monotone in s before the update. Assume that s′ � smeans
that each element s′ij ≥ sij . Then if V

n−1

t (s) is monotone in s, then s′ � s means that

V
n−1

t (s′) ≥ V n−1

t (s). However, we cannot assume that this is true of V
n

t (s) just after we
have done an update for state snt . We can quickly check if V

n

t (s) ≤ V
n

t (s′) for each s′

with at least one element that is larger than the corresponding element of s.
The idea is illustrated in 16.6. Starting with the upper left corner, we start with an initial

value function V (s) = 0, and make an observation (the blue dot) of 10 in the middle. We
then use the monotone structure to make all points to the right and above of this point to
equal 10. We then make an observation of 5, and use this observation to update all the
points to the left and below the last observation.

Figure 16.7 shows snapshots from a video where monotonicity is being used to update
a two-dimensional function. Again starting from the upper right, the first three screenshots
were from the first 20 iterations, while the last one (lower right) was at the end, long after
the function had stopped changing. The use of monotonicity

Monotonicity is an important structural property. When it holds, it dramatically speeds
the process of learning the value functions. We have used this idea for matrices with as many
as seven dimensions, although at that point a lookup representation of a seven-dimensional
function becomes quite large.

There will be situations where a value function is monotone in some dimensions, but
not in others. This can be handled (somewhat clumsily) but imposing monotonicity over
the subset of states where monotonicity holds. For the remaining states, we have to resort
to brute force lookup table methods. If s̄ is the set of states where the value function is
not monotone, while s̃ is the states over which the value function is monotone (of course,
s = (s̃, s̄)), then we can think of a value function V (s̃, s̄) where we have a monotone value
function V (s̃|s̄) for each state s̄ (we hope there are not too many of these).

16.2.2 Linear models

Arguably the most natural strategy for approximating the value function is to fit a statistical
model, where the most natural starting point is a linear model of the form

V t(St|θt) =
∑
f∈F

θtfφf (St).

Here, φf (St) are a set of appropriately chosen features. For example, if St is a continuous
scalar (such as price), we might use φ1(St) = St and φ2(St) = S2

t .
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Exploiting monotonicity

Figure 16.6 Illustration of the use of monotonicity. Starting from upper left: 1) Initial value
function all 0, with observation (blue dot) of 10; 2) using observation to update all points to the right
and above to 10; 3) new observation (pink dot) of 5; 4) updating all points to the left and below to 5.
(Graphic due to Daniel Jiang)

The idea is very simple. For each ŝ in our sampled set of pre-decision states Ŝ, compute
a sampled estimate v̂nt of the value of being in a state snt

v̂nt = arg max
x

(
C(ŝnt , x) + E{V t+1(St+1)|St}

)
,

where St+1 = SM (ŝnt , x,Wt+1).
Now, we have a set of data (v̂nt , ŝ

n
t ) for n = 1, . . . , |Ŝ|. We can use this dataset to

estimate any statistical model V t(St|θt) which gives us an estimate of the value of being
in every state, not just the sampled states. For example, assume we have a linear model
(remember this means linear in the parameters)

V t(St|θ̄t) = θ̄t1φ1(St) + θ̄t2φ2(St) + θ̄t3φ3(St) + . . . ,

=
∑
f∈F

θtfφf (St),

where φf (St) is some feature of the state. This might be the inventory Rt (money in the
bank, units of blood), or R2

t , or ln(Rt). Create the (column) vector φn using

φn =


φn1
φn2
...
φnF


where φnf = φf (Snt ).
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Exploiting monotonicity

Figure 16.7 Video snapshot of use of monotonicity for a two-dimensional function for three
updates; fourth snapshot (lower right) is a value function where monotonicity was not used.

Let v̂nt be computed using (16.2), which we can think of as a sample realization of the
estimate V

n−1

t (St). We can think of

ε̂nt = V
n−1

t (St)− v̂nt

as the “error” in our estimate. Using the methods we first introduced in section 3.8.1, we
can update our estimates of the parameter vector θ̄n−1

t using

θ̄nt = θ̄n−1
t −Hn

t φ
n
t ε̂
n
t , (16.2)

where Hn
t is a matrix computed using

Hn
t =

1

γn
Bn−1
t . (16.3)

Bn−1
t is an |F| by |F| matrix which is updated recursively using

Bnt = Bn−1
t − 1

γnt
(Bn−1

t φnt (φnt )TBn−1
t ). (16.4)

γnt is a scalar computed using

γnt = 1 + (φnt )TBn−1
t φnt . (16.5)

Parametric approximations are particularly attractive because we get an estimate of the
value of being in every state from a small sample. The price we pay for this generality is
the errors introduced by our parametric approximation.
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16.2.3 Other approximation models

We encourage readers to experiment with other methods from chapter 3 (or your favorite
book in statistics or machine learning). We note that approximation errors will accumulate
with backward ADP, so you should not have much confidence that V t(St) is actually a
good approximation of the value of being in state St. However, we have found that even
when there is a significant difference between V t(St) and the true value function Vt(St)
(when we can find this), the approximation V t(St) may still provide a high quality policy
(but not always).

16.3 NUMERICAL APPROXIMATION METHODS

There are many problems that are hard primarily because the state, information and controls
are continuous. These problems may be multidimensional, but typically are relatively low
dimensional (one to five dimensions is fairly typical).

16.4 COMPUTATIONAL NOTES

Some thoughts to keep in mind while designing and testing algorithms using backward
approximate dynamic programming:

Approximation architectures It is possible to use any of the statistical learning methods
described in chapter 3.8.1 (or your favorite book on statistics/machine learning). We
note that most of the methods in this book involve adaptive learning (this is the focus
of chapter 3.8.1), but with backward ADP, we actually return to the more familiar
setting (in the statistical learning community) of batch learning. Following standard
advice in the specification of any statistical model, make sure that the dimensionality
of the model (measured by the number of parameters) is much smaller than the
number of datapoints to avoid overfitting.

Tuning Virtually all adaptive learning algorithms have tunable parameters, and this is the
Achilles heel of this entire approach to solving stochastic optimization problem. In
chapter 9, section 9.10 summarizes four problem classes (see table 9.2), we describe
four problem classes, where classes (1) and (4) are posed as finding the best learning
policy. These “learning policies” represent the process of finding the best search
algorithm, which includes tuning the parameters that govern a particular class of
algorithm. In practice, this search for the best learning policy (or equivalently, the
search for the best search algorithm) is typically done in an ad hoc way. There are
thousands of papers which will prove asymptotic convergence, but the actual design
of an algorithm depends on ad hoc testing.

Validating A major challenge with any approximation strategy, backward ADP included,
is validation. Backward ADP can work extremely well on problems where the value
function is a fairly good approximation of the true value function, but there are no
guarantees.

Performance We have obtained exceptionally good performance on some problem classes,
including energy storage problems with thousands of time periods. In compar-
isons against optimal policies (obtained using the methods from chapter 14 for
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low-dimensional problem instances), we have obtained solutions that were over 95
percent of optimality, but on occasions the performance was as low as 70 percent
when we did a poor job with the approximations.

16.5 BIBLIOGRAPHIC NOTES

• Section xx -



CHAPTER 17

FORWARD ADP I: THE VALUE OF A
POLICY

In chapter 11, we described a number of different ways of constructing a policy. One
of the most important ways, and the way that is most widely associated with the term
“approximate dynamic programming,” requires approximating the value of being in a state.
Chapter 3 described a number of different approximation strategies, including lookup table,
aggregated functions, parametric models and nonparametric models. All of these statistical
models are created by generating a state Sn, next computing some observation of a value v̂n

of being in state Sn, and finally using the pair (Sn, v̂n) to estimate (or update the estimate)
of the value of being in a state.

In this chapter, we focus primarily on the different ways of calculating v̂n, and then
using this information to estimate a value function approximation, for a fixed policy. To
emphasize that we are computing values for a fixed policy, we index parameters such as
the value function V π by the policy π. After we establish the fundamentals for estimating
the value of a policy, chapter 18 addresses the last step of searching for good policies.

17.1 SAMPLING THE VALUE OF A POLICY

On first glance, the problem of statistically estimating the value of a fixed policy should not
be any different than estimating a function from noisy observations. We start by showing
that from one perspective, this is precisely correct. However, the context of dynamic
programming, even when we fix a policy, introduces opportunities and challenges when
we realize that we can take advantage of the dynamics of information, which may arise in
both finite and infinite horizon settings.

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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Step 0. Initialization:

Step 0a. Initialize V 0.

Step 0b. Initialize S1.

Step 0c. Set n = 1.

Step 1. Choose a sample path ωn.

Step 2. Choose a starting state Sn0 .

Step 3. Do for t = 0, 1, . . . , T :

Step 3a. ant = Aπ(Snt ).

Step 3b. Ĉnt = C(Snt , a
n
t ).

Step 3c. Wn
t+1 = Wt+1(ωn).

Step 3d. Snt+1 = SM (Snt , a
n
t ,W

n
t+1).

Step 4. Compute v̂n0 =
∑T
t=0 γ

tĈnt .

Step 5. Increment n. If n ≤ N go to Step 1.

Step 6. Use the sequence of state-value pairs (Si, v̂i)Ni=1 to fit a value function approximation V π(s).

Figure 17.1 Basic policy approximation method.

17.1.1 Direct policy evaluation for finite horizon problems

Imagine that we have a fixed policyAπ(s) (orXπ(s) if we are working with vector-valued
decisions). The policy may take any of the forms described in chapter 11. For iteration n,
if we are in state Snt at time t, we then choose action ant = Aπ(Snt ), after which we sample
the exogenous information Wn

t+1. We sometimes say that we are following sample path
ωn from which we observe Wn

t+1 = Wt+1(ωn). The exogenous information Wn
t+1 may

depend on both Snt and the action ant . From this, we may compute our contribution (cost
if we are minimizing) from

Ĉnt = C(Snt , a
n
t ,W

n
t+1).

Finally, we compute our next state from our transition function

Snt+1 = SM (Snt , a
n
t ,W

n
t+1).

This process continues until we reach the end of our horizon T . The basic algorithm is
described in figure 17.1. In step 6, we use a batch routine to fit a statistical model. It
is often more natural to use some sort of recursive procedure and imbed the updating of
the value function within the iterative loop. The type of recursive procedure depends on
the nature of the value function approximation. Later in this chapter, we describe several
recursive procedures if we are using linear regression.

Finite horizon problems are sometimes referred to as episodic, where an episode refers
to a simulation of a policy until the end of the horizon (also known as trials). However, the
term episodic can also be interpreted more broadly. For example, an emergency vehicle
may repeatedly return to base where the system then restarts. Each cycle of starting from
a home base and then returning to the home base can be viewed as an episode. As a result,
if we are working with a finite horizon problem, we prefer to refer to these specifically as
such.
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Evaluating a fixed policy is mathematically equivalent to making unbiased observations
of a noisy function. Fitting a functional approximation is precisely what the entire field of
statistical learning has been trying to do for decades. If we are fitting a linear model, then
there are some powerful recursive procedures that can be used. These are discussed below.

17.1.2 Policy evaluation for infinite horizon problems

Not surprisingly, infinite horizon problems introduce a special complication, since we
cannot obtain an unbiased observation in a finite number of measurements. Below we
present some methods that have been used for infinite horizon applications.

Recurrent visits

There are many problems which are infinite horizon, but where the system resets itself
periodically. A simple example of this is a finite horizon problem, where hitting the end
of the horizon and starting over (as would occur in a game) can be viewed as an episode.
A different example is a queueing system, where perhaps we are trying to manage the
admission of patients to an emergency room. From time to time the queue may become
empty, at which point the system resets and starts over. For such systems, it makes sense
to estimate the value of following a policy π when starting from this base state.

Even if we do not have such a renewal system, imagine that we find ourselves in a state
s. Now follow a policy π until we re-enter state s again. Let Rn(s) be the reward earned,
and let τn(s) be the number of time periods required before re-entering state s. Here, n is
counting the number of times we visit state s. An observation of the average reward earned
when in state s and following policy π would be given by

v̂n(s) =
Rn(s)

τn(s)
.

v̂n(s) would be computed when we return to state s. We might then update the average
value of being in state s using

v̄n(s) = (1− αn−1)v̄n−1(s) + αn−1v̂
n(s).

Note that as we make each transition from some state s′ to some state s′′, we are accumu-
lating rewards in R(s) for every state s that we have visited prior to reaching state s′. Each
time we arrive at some state s′′, we stop accumulating rewards for s′′, and compute v̂n(s′′),
and then smooth this into the current estimate of v̄(s′′). Note that we have presented this
only for the case of computing the average reward per time period.

Partial simulations

While we may not be able to simulate an infinite trajectory, we may simulate a long trajectory
T , long enough to ensure that we are producing an estimate that is “good enough.” When
we are using discounting, we realize that eventually γt becomes small enough that a longer
simulation does not really matter. This idea can be implemented in a relatively simple way.

Consider the algorithm in figure 17.1, and insert the calculation in step 3:

c̄t =
t− 1

t
c̄t−1 +

1

t
Ĉnt .
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c̄t is an average over the time periods of the contribution per time period. As we follow
our policy over progressively more time periods, c̄t approaches an average contribution per
time period. Over an infinite horizon, we would expect to find

v̂n0 = lim
t→∞

∞∑
t=0

γtĈnt =
1

1− γ
c̄∞.

Now assume that we only progress T time periods, and let c̄T be our estimate of c̄∞ at this
point. We would expect that

v̂n0 (T ) =

T∑
t=0

γtĈnt

≈ 1− γT+1

1− γ
c̄T . (17.1)

The error between our T -period estimate v̂n0 (T ) and the infinite horizon estimate v̂n0 is
given by

δnT =
1

1− γ
c̄∞ −

1− γT+1

1− γ
c̄T

≈ 1

1− γ
c̄T −

1− γT+1

1− γ
c̄T

=
γT+1

1− γ
c̄T .

Thus, we just have to find T to make δT small enough. This strategy is imbedded in some
optimal algorithms, which only require that δnT → 0 as n → ∞ (meaning that we have to
steadily allow T to grow).

Infinite horizon projection

The analysis above leads to another idea that has received considerable attention in the
approximate dynamic programming community under the name least squares temporal
differencing (LSTD), although we present it here with a somewhat different development.
We can easily see from (17.1) that if we stop after T time periods, we will underestimate
the infinite horizon contribution by a factor 1−γT+1. Assuming that T is reasonably large
(say, γT+1 < 0.1), we might introduce the correction

v̂n0 =
1

1− γT+1
v̂n0 (T ).

In essence we are taking a sample estimate of a T -period path, and projecting it out over
an infinite horizon.

17.1.3 Temporal difference updates

Assume that we are in state Snt and we make decision ant (using policy π), after which
we observe the information Wt+1 which puts us in state Snt+1 = SM (Snt , a

n
t ,W

n
t+1).

The contribution from this transition is given by C(Snt , a
n
t ) (or C(Snt , a

n
t ,W

n
t+1) if the
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contribution depends on the outcome Wt+1). Imagine now that we continue this until the
end of our horizon T . For simplicity, we are going to drop discounting. In this case, the
contribution along this path would be

v̂nt = C(Snt , a
n
t ) + C(Snt+1, a

n
t+1) + . . .+ C(SnT , a

n
T ). (17.2)

This is the contribution from following the path produced by a combination of the infor-
mation from outcome ωn (this determines Wn

t+1,W
n
t+2, . . . ,W

n
T ) and policy π. v̂nt is an

unbiased sample estimate of the value of being in state St and following policy π over
sample path ωn. We can use a stochastic gradient algorithm to estimate the value of being
in state St using

V
n

t (Snt ) = V
n−1

t (Snt )− αn
(
V
n−1

t (Snt )− v̂nt
)
. (17.3)

We can obtain a richer class of algorithms by breaking down our path cost in (17.2) by
using

v̂nt =

T∑
τ=t

C(Snτ , a
n
τ ,W

n
τ+1)

−

{
T∑
τ=t

(
V
n−1

τ (Sτ )− V n−1

τ+1(Sτ+1)
)}

+ (V
n−1

t (St)− V
n−1

T+1(ST+1)).︸ ︷︷ ︸
=0

We now use the fact that V
n−1

T+1(ST+1) = 0 (this is where our finite horizon model is
useful). Rearranging gives

v̂nt = V
n−1

t (St) +

T∑
τ=t

(
C(Snτ , a

n
τ ,W

n
τ+1) + V

n−1

τ+1(Sτ+1)− V n−1

τ (Sτ )
)
.

Let

δτ = C(Snτ , a
n
τ ,W

n
τ+1) + V

n−1

τ+1(Snτ+1)− V n−1

τ (Snτ ). (17.4)

The terms δτ are called temporal differences. If we were using a standard single-pass
algorithm, then at time t, v̂nt = C(Snt , a

n
t ,W

n
t+1) + V

n−1

t+1 (Snt+1) would be our sample

observation of being in state St, while V
n−1

t (St) is our current estimate of the value of
being in state St. This means that the temporal difference at time t, δt = v̂nt −V

n−1

t (St), is
the difference in our estimate of the value of being in state St between our current estimate
and the updated estimate. The temporal difference is also known as the Bellman error.

Using (17.4), we can write v̂nt in the more compact form

v̂nt = V
n−1

t (St) +

T∑
τ=t

δτ . (17.5)

Substituting (17.5) into (17.3) gives

V
n

t (St) = V
n−1

t (St)− αn−1

[
V
n−1

t (St)−

(
V
n−1

t (St) +

T∑
τ=t

δτ

)]

= V
n−1

t (St) + αn−1

T−1∑
τ=t

δτ . (17.6)
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We next use this bit of algebra to build an important class of updating mechanisms for
estimating value functions.

17.1.4 TD(λ)

The temporal differences δτ are the errors in our estimates of the value of being in state Sτ .
We can think of each term in (17.6) as a correction to the estimate of the value function.
It makes sense that updates farther along the path should not be given as much weight as
those earlier in the path. As a result, it is common to introduce an artificial discount factor
λ, producing updates of the form

V
n

t (St) = V
n−1

t (St) + αn−1

T∑
τ=t

λτ−tδτ . (17.7)

We derived this formula without a time discount factor. We leave as an exercise to the
reader to show that if we have a time discount factor γ, then the temporal-difference update
becomes

V
n

t (St) = V
n−1

t (St) + αn−1

T∑
τ=t

(γλ)τ−tδτ . (17.8)

Equation (17.8) shows that the discount factor γ, which is typically viewed as capturing the
time value of money, and the algorithmic discount λ, which is a purely algorithmic device,
have exactly the same effect. Not surprisingly, modelers in operations research have often
used a discount factor γ set to a much smaller number than would be required to capture
the time-value of money. Artificial discounting allows us to look into the future, but then
discount the results when we feel that the results are not perfectly accurate. Note that our
use of λ in this setting is precisely equivalent to our discounting (also using λ) when we
presented discounted rolling horizon policies in section 20.4.3.

Updates of the form given in equation (17.7) produce an updating procedure that is
known as TD(λ) (or, temporal difference learning with discount λ). We have seen this
form of discounting in section 20.3.4, when we first introduced λ as a form of algorithmic
discounting.

The updating formula in equation (17.7) requires that we step all the way to the end of
the horizon before updating our estimates of the value. There is, however, another way
of implementing the updates. The temporal differences δτ are computed as the algorithm
steps forward in time. As a result, our updating formula can be implemented recursively.
Assume we are at time t′ in our simulation. We would simply execute

V
n

t (Snt ) := V
n

t (St) + αn−1λ
t′−tδt′ for all t ≤ t′. (17.9)

Here, our notation “:=” means that we take the current value of V
n

t (St), add αn−1λ
t′−tδt′

to it to obtain an updated value of V
n

t (St). When we reach time t′ = T , our value functions
would have undergone a complete update. We note that at time t′, we need to update the
value function for every t ≤ t′.
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17.1.5 TD(0) and approximate value iteration

An important special case of TD(λ) occurs when we use λ = 0. In this case,

V
n

t (Snt ) = V
n−1

t (Snt ) + αn−1

(
C(Snt , a

n
t ) + γV

n−1
(SM (Snt , a

n
t ,W

n
t+1))

− V n−1

t (Snt )
)
. (17.10)

Now consider value iteration. In chapter 14, when we did not have to deal with Monte
Carlo samples and statistical noise, value iteration (for a fixed policy) looked like

V nt (s) = C(s,Aπ(s)) + γ
∑
s′∈S

pπ(s′|s)V nt+1(s′).

In steady state, we would write it as

V n(s) = C(s,Aπ(s)) + γ
∑
s′∈S

pπ(s′|s)V n−1(s′).

When we use approximate dynamic programming, we are following a sample path that puts
us in state Snt , where we observe a sample realization of a contribution Ĉnt , after which we
observe a sample realization of the next downstream state Snt+1 (the action is determined
by our fixed policy). A sample observation of the value of being in state Snt would be
computed using

v̂nt = C(Snt , a
n
t ) + γV

n−1

t+1 (Snt+1).

We can then use this to update our estimate of the value of being in state Snt using

V
n

t (Snt ) = (1− αn−1)V
n−1

t (Snt ) + αn−1v̂
n
t

= (1− αn−1)V
n−1

t (Snt )

+ αn−1

(
C(Snt , a

n
t ) + γV

n−1
(SM (Snt , a

n
t ,W

n
t+1))

)
. (17.11)

It is not hard to see that (17.10) and (17.11) are the same. The idea is popular because it is
particularly easy to implement. It is also well suited to high-dimensional decision vectors
x, as we illustrate in chapter 19.

Temporal difference learning derives its name because V
n−1

(S) is viewed as the “cur-
rent” value of being in state S, while C(S, a) + V

n−1
(SM (S, a,W )) is viewed as the up-

dated value of being in stateS. The differenceV
n−1

(S)−(C(S, a)+V
n−1

(SM (S, a,W )))
is the difference in these estimates across iterations (or time), hence the name. TD(0) is a
form of statistical bootstrapping, because rather than simulate the full trajectory, it depends
on the current estimate of the value V

n−1
(SM (S, a,W )) of being in the downstream state

SM (S, a,W ).
While TD(0) can be very easy to implement, it can also produce very slow convergence.

The effect is illustrated in figure 17.1, where there are five steps before earning a reward of
1 (which we always earn). In this illustration, there are no decisions and the contribution
is zero for every other time period. A stepsize of 1/n was used throughout.

The table illustrates that the rate of convergence for V 0 is dramatically slower than for
V 4. The reason is that as we smooth v̂t into V t−1, the stepsize has a discounting effect.
The problem is most pronounced when the value of being in a state at time t depends on
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Iteration V 0 v̂1 V 1 v̂2 V 2 v̂3 V 3 v̂4 V 4 v̂5

0 0.000 0.000 0.000 0.000 0.000 1
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1
2 0.000 0.000 0.000 0.000 0.000 0.000 0.500 1.000 1.000 1
3 0.000 0.000 0.000 0.000 0.167 0.500 0.667 1.000 1.000 1
4 0.000 0.000 0.042 0.167 0.292 0.667 0.750 1.000 1.000 1
5 0.008 0.042 0.092 0.292 0.383 0.750 0.800 1.000 1.000 1
6 0.022 0.092 0.140 0.383 0.453 0.800 0.833 1.000 1.000 1
7 0.039 0.140 0.185 0.453 0.507 0.833 0.857 1.000 1.000 1
8 0.057 0.185 0.225 0.507 0.551 0.857 0.875 1.000 1.000 1
9 0.076 0.225 0.261 0.551 0.587 0.875 0.889 1.000 1.000 1

10 0.095 0.261 0.294 0.587 0.617 0.889 0.900 1.000 1.000 1

Table 17.1 Effect of stepsize on backward learning

contributions that are a number of steps into the future (imagine the challenge of training
a value function to play the game of chess). For problems with long horizons, and in
particular those where it takes many steps before receiving a reward, this bias can be so
serious that it can appear that temporal differencing (and algorithms that use it) simply
does not work. We can partially overcome the slow convergence by carefully choosing a
stepsize rule. Stepsizes are discussed in depth in chapter 6.

17.1.6 TD learning for infinite horizon problems

We can perform updates using a general TD(λ) strategy as we did for finite horizon
problems. However, there are some subtle differences. With finite horizon problems, it is
common to assume that we are estimating a different function V t for each time period t.
As we step through time, we obtain information that can be used for a value function at
a specific point in time. With stationary problems, each transition produces information
that can be used to update the value function, which is then used in all future updates. By
contrast, if we update V t for a finite horizon problem, then this update is not used until the
next forward pass through the states.

When we move to infinite horizon problems, we drop the indexing by t. Instead of
stepping forward in time, we step through iterations, where at each iteration we generate a
temporal difference

δn = C(sn, an) + γV
n−1

(SM,a(sn, an))− V n−1
(sn).

To do a proper update of the value function at each state, we would have to use an infinite
series of the form

V
n
(s) = V

n−1
(s) + αn

∞∑
m=0

(γλ)mδn+m, (17.12)

where we can use any initial starting state s0 = s. Of course, we would use the same
update for each state sm that we visit, so we might write

V
n
(sm) = V

n−1
(sm) + αn

∞∑
n=m

(γλ)(n−m)δn. (17.13)
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Step 0. Initialization:

Step 0a. Initialize V 0
(S) for all S.

Step 0b. Initialize the state S0.

Step 0c. Set n = 1.

Step 1. Choose ωn.

Step 2. Solve

an = arg max
a∈An

(
C(Sn, a) + γV

n−1
(SM,a(Sn, a))

)
. (17.15)

Step 3. Compute the temporal difference for this step:

δn = C(Sn, an) + γ
(
V
n−1

(SM,a(Sn, an))− V n−1
(Sn)

)
.

Step 4. Update V for m = n, n− 1, . . . , 1:

V
n

(Sm) = V
n−1

(Sm) + (γλ)n−mδn. (17.16)

Step 5. Compute Sn+1 = SM (Sn, an,W (ωn)).

Step 6. Let n = n+ 1. If n < N , go to step 1.

Figure 17.2 A TD(λ) algorithm for infinite horizon problems.

Equations (17.12) and (17.13) both imply stepping forward in time (presumably a “large”
number of iterations) and computing temporal differences before performing an update.
A more natural way to run the algorithm is to do the updates incrementally. After we
compute δn, we can update the value function at each of the previous states we visited. So,
at iteration n, we would execute

V
n
(sm) := V

n
(sm) + αn(γλ)n−mδm, m = n, n− 1, . . . , 1. (17.14)

We can now use the temporal difference δn to update the estimate of the value function for
every state we have visited up to iteration n.

Figure 17.2 outlines the basic structure of a TD(λ) algorithm for an infinite horizon
problem. Step 1 begins by computing the first post-decision state, after which step 2 makes
a single step forward. After computing the temporal-difference in step 3, we traverse
previous states we have visited in Step 4 to update their value functions.

In step 3, we update all the states (Sm)nm=1 that we have visited up to then. Thus, at
iteration n, we would have simulated the partial update

V
n
(S0) = V

n−1
(S0) + αn−1

n∑
m=0

(γλ)mδm. (17.17)

This means that at any iteration n, we have updated our values using biased sample
observations (as is generally the case in value iteration). We avoided this problem for
finite horizon problems by extending out to the end of the horizon. We can obtain unbiased
updates for infinite horizon problems by assuming that all policies eventually put the system
into an “absorbing state.” For example, if we are modeling the process of holding or selling
an asset, we might be able to guarantee that we eventually sell the asset.

One subtle difference between temporal difference learning for finite horizon and infinite
horizon problems is that in the infinite horizon case, we may be visiting the same state two
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or more times on the same sample path. For the finite horizon case, the states and value
functions are all indexed by the time that we visit them. Since we step forward through
time, we can never visit the same state at the same point in time twice in the same sample
path. By contrast, it is quite easy in a steady-state problem to revisit the same state over
and over again. For example, we could trace the path of our nomadic trucker, who might
go back and forth between the same pair of locations in the same sample path. As a result,
we are using the value function to determine what state to visit, but at the same time we are
updating the value of being in these states.

17.2 STOCHASTIC APPROXIMATION METHODS

A central idea in recursive estimation is the use of stochastic approximation methods and
stochastic gradients. We have already seen this in one setting in section 5.3.1. We review the
idea again here, but in a different context. We begin with the same stochastic optimization
problem, which we originally introduced as the problem

min
x

EF (x,W ).

Now assume that we are choosing a scalar value v to solve the problem

min
v

EF (v, V̂ ), (17.18)

where

F (v, V̂ ) =
1

2
(v − V̂ )2,

and where V̂ is a random variable with unknown mean. We would like to use a series of
sample realizations v̂n to guide an algorithm that generates a sequence vn that converges to
the optimal solution v∗ that solves (17.18). We use the same basic strategy as we introduced
in section 5.3.1 where we update vn using

vn = vn−1 − αn−1∇F (vn−1, v̂n) (17.19)
= vn−1 − αn−1(vn−1 − v̂n).

Now if we make the transition that instead of updating a scalar vn, we are updating V
n

t (Snt ).
This produces the updating equation

V
n

t (Snt ) = V
n−1

t (Snt )− αn−1(V
n−1

t (Snt )− v̂n). (17.20)

If we use v̂n = C(Snt , a
n
t ) + γV

n−1
(Snt+1), we quickly see that the updating equation

produced using our stochastic gradient algorithm (17.20) gives us the same update that
we obtained using temporal difference learning (equation (17.10)) and approximate value
iteration (equation (17.11)). In equation (17.19), αn is called a stepsize, because it controls
how far we go in the direction of ∇F (vn−1, v̂n), and for this reason this is the term that
we adopt for αn throughout this book. In contrast to our first use of this idea in section 5.3,
where the stepsize had to serve a scaling function, in this setting the units of the variable
being optimized, vn, and the units of the gradient are the same. Indeed, we can expect that
0 < αn ≤ 1, which is a major simplification.
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Now consider what happens when we replace the lookup table representation V (s) that
we used above, with a linear regression V (s|θ) = θTφ. Now we want to find the best value
of θ, which we can do by solving

min
θ

E
1

2
(V (s|θ)− v̂)2.

Applying a stochastic gradient algorithm, we obtain the updating step

θn = θn−1 − αn−1(V (s|θn−1)− v̂n)∇θV (s|θn). (17.21)

Since V (s|θn) =
∑
f∈F θ

n
f φf (s) = (θn)Tφ(s), the gradient with respect to θ is given by

∇θV (s|θn) =


∂V (s|θn)
∂θ1

∂V (s|θn)
∂θ2
...

∂V (s|θn)
∂θF

 =


φ1(sn)
φ2(sn)

...
φF (sn)

 = φ(sn).

Thus, the updating equation (17.21) is given by

θn = θn−1 − αn−1(V (s|θn−1)− v̂n)φ(sn)

= θn−1 − αn−1(V (s|θn−1)− v̂n)


φ1(sn)
φ2(sn)

...
φF (sn)

 . (17.22)

Using a stochastic gradient algorithm requires that we have some starting estimate θ0 for
the parameter vector, although θ0 = 0 is a common choice.

While this is a simple and elegant algorithm, we have reintroduced the problem of scaling.
Just as we encountered in section 5.3, the units of θn−1 and the units of (V (s|θn−1) −
v̂n)φ(sn) may be completely different. What we have learned about stepsizes still applies,
except that we may need an initial stepsize that is quite different than 1.0 (our common
starting point). Our experimental work has suggested that the following policy works well:
When you choose a stepsize formula, scale the first value of the stepsize so that the change
in θn in the early iterations of the algorithm is approximately 20 to 50 percent (you will
typically need to observe several iterations). You want to see individual elements of θn

moving consistently in the same direction during the early iterations. If the stepsize is too
large, the values can swing wildly, and the algorithm may not converge at all. If the changes
are too small, the algorithm may simply stall out. It is very tempting to run the algorithm
for a period of time and then conclude that it appears to have converged (presumably to a
good solution). While it is important to see the individual elements moving in the same
direction (consistently increasing or decreasing) in the early iterations, it is also important
to see oscillatory behavior toward the end.

17.3 BELLMAN’S EQUATION USING A LINEAR MODEL

It is possible to solve Bellman’s equation for infinite horizon problems by starting with the
assumption that the value function is given by a linear model V (s) = θTφ(s) where Φ(s)
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is a column vector of basis functions for a particular state s. Of course, we are still working
with a single policy, so we are using Bellman’s equation only as a method for finding the
best linear approximation for the infinite horizon value of a fixed policy π.

We begin with a derivation based on matrix linear algebra, which is more advanced and
which does not produce expressions that can be implemented in practice. We follow this
discussion with a simulation-based algorithm which can be implemented fairly easily.

17.3.1 A matrix-based derivation*

In section 18.4.2, we provided a geometric view of basis functions, drawing on the elegance
and obscurity of matrix linear algebra. We are going to continue this presentation and
present a version of Bellman’s equation assuming linear models. However, we are not
yet ready to introduce the dimension of optimizing over policies, so we are still simply
trying to approximate the value of being in a state. Also, we are only considering infinite
horizon models, since we have already handled the finite horizon case. This presentation
can be viewed as another method for handling infinite horizon models, while using a linear
architecture to approximate the value function.

First recall that Bellman’s equation (for a fixed policy) is written

V π(s) = C(s,Aπ(s)) + γ
∑
s′∈S

p(s′|s,Aπ(s))V π(s′).

In vector-matrix form, we let V π be a vector with element V π(s), we let cπ be a vector with
element C(s,Aπ(s)) and finally we let Pπ be the one-step transition matrix with element
p(s′|s,Aπ(s)) at row s, column s′. Using this notation, Bellman’s equation becomes

V π = cπ + γPπV π,

allowing us to solve for V π using

V π = (I − γPπ)−1cπ.

This works with a lookup-table representation (a value for each state). Now assume that
we replace V π with an approximation V

π
= Φθ where, Φ is a |S| × |F| matrix with

element Φs,f = φf (s). Also let dπs be the steady state probability of being in state s while
following policy π, and let Dπ be a |S| × |S| diagonal matrix where the state probabilities
(dπ1 , . . . , d

π
|S| make up the diagonal. We would like to choose θ to minimize the weighted

sum of errors squared, where the error for state s is given by

εn(s) =
∑
f

θfφf (s)−

cπ(s) + γ
∑
s′∈S

pπ(s′|s,Aπ)
∑
f

θnf φf (s′)

 . (17.23)

The first term on the right hand side of (17.23) is the predicted value of being in each state
given θ, while the second term on the right hand side is the “predicted” value computed
using the one-period contribution plus the expected value of the future which is computed
using θn. The expected sum of errors squared is then given by

min
θ

∑
s∈S

dπs

∑
f

θfφf (s)−

cπ(s) + γ
∑
s′∈S

pπ(s′|s,Aπ)
∑
f

θnf φf (s′)

2

,
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In matrix form, this can be written

min
θ

(Φθ − (cπ + γPπΦθn))TDπ(Φθ − (cπ + γPπΦθn)) (17.24)

where Dπ is a |S| × |S| diagonal matrix with elements dπs which serves a scaling role (we
want to focus our attention on states we visit the most). We can find the optimal value of θ
(given θn) by taking the derivative of the function being optimized in (17.24) with respect
to θ and setting it equal to zero. Let θn+1 be the optimal solution, which means we can
write

ΦTDπ
(
Φθn+1 − (cπ + γPπΦθn)

)
= 0, (17.25)

We can find a fixed point limn→∞ θn = limn→∞ θn+1 = θ∗, which allows us to write
equation (17.25) in the form

Aθ∗ = b, (17.26)

where A = ΦTDπ(I − γPπ)Φ and b = ΦTDπcπ . This allows us, in theory at least, to
solve for θ∗ using

θ∗ = A−1b, (17.27)

which can be viewed as a scaled version of the normal equations (equation 3.56). Equation
(17.27) is very similar to our calculation of the steady state value of being in each state
introduced in chapter 14, given by

V π = (I − γPπ)−1cπ.

Equation (17.27) differs only in the scaling by the probability of being in each state (Dπ)
and then the transformation to the feature space by Φ.

We note that equation (17.25) can also be written in the form

Aθ − b = ΦTDπ (Φθ − (cπ + γPπΦθ)) . (17.28)

The term Φθ can be viewed as the approximate value of each state. The term (cπ+γPπΦθ)
can be viewed as the one-period contribution plus the expected value of the state that you
transition to under policy π, again computed for each state. Let δπ be a column vector
containing the temporal difference for each state when we choose an action according
to policy π. By tradition, the temporal difference has always been written in the form
C(St, a) + V (St+1)− V (St), which can be thought of as “estimated minus predicted.” If
we continue to let δπ be the traditional definition of the temporal difference, it would be
written

δπ = −
(
Φθ − (cπ + γPπΦθ)

)
. (17.29)

The pre-multiplication of δπ by Dπ in (17.28) has the effect of factoring each temporal
difference by the probability that we are in each state. Then pre-multiplying Dπδπ by ΦT

has the effect of transforming this scaled temporal difference for each state into the feature
space.

The goal is to find the value θ that produces Aθ − b = 0, which means we are trying to
find the value θ that produces a scaled version of Φθ− (cπ+γPπΦθ) = 0, but transformed
to the feature space.



572 FORWARD ADP I: THE VALUE OF A POLICY

Linear algebra offers a compact elegance, but at the same time can be hard to parse,
and for this reason we encourage the reader to stop and think about the relationships. One
useful exercise is to think of a set of basis functions where we have a “feature” for each
state, with φf (s) = 1 if feature f corresponds to state s. In this case, Φ is the identity
matrix. Dπ , the diagonal matrix with diagonal elements dπs giving the probability of being
in state s, can be viewed as scaling quantities for each state by the probability of being in
a state. If Φ is the identity matrix, then A = Dπ − γDπPπ where DπPπ is the matrix of
joint probabilities of being in state s and then transitioning to state s′. The vector b becomes
the vector of the cost of being in each state (and then taking the action corresponding to
policy π) times the probability of being in the state.

When we have a smaller set of basis functions, then multiplying cπ or Dπ(I − γPπ)
times Φ has the effect of scaling quantities that are indexed by the state into the feature
space, which also transforms an |S|-dimensional space into an |F|-dimensional space.

17.3.2 A simulation-based implementation

We start by simulating a trajectory of states, actions and information,

(S0, a0,W 1, S1, a1,W 2, . . . , Sn, an,Wn+1).

Recall that φ(s) is a column vector with an element φf (s) for each feature f ∈ F . Using
our simulation above, we also obtain a sequence of column vectors φ(si) and contributions
C(Si, ai,W i+1). We can create a sample estimate of the |F| by |F|matrixA in the section
above using

An =
1

n

n−1∑
i=0

φ(Si)(φ(Si)− γφ(Si+1))T . (17.30)

We can also create a sample estimate of the vector b using

bn =
1

n

n−1∑
i=0

φ(Si)C(Si, ai,W i+1). (17.31)

To gain some intuition, again stop and assume that there is a feature for every state,
which means that φ(Si) is a vector of 0’s with a 1 corresponding to the element for state
i, which means it is a kind of indicator variable telling us what state we are in. The
term (φ(Si) − γφ(Si+1)) is then a simulated version of Dπ(I − γPπ), weighted by the
probability that we are in a particular state, where we replace the probability of being in a
state with a sampled realization of actually being in a particular state.

We are going to use this foundation to introduce two important algorithms for infinite
horizon problems when using linear models to approximate value function approximations.
These are known as least squares temporal differences (LSTD), and least squares policy
evaluation (LSPE).

17.3.3 Least squares temporal differences (LSTD)

As long as An is invertible (which is not guaranteed), we can compute a sample estimate
of θ using

θn = (An)−1bn. (17.32)



BELLMAN’S EQUATION USING A LINEAR MODEL 573

This algorithm is known in the literature as least squares temporal differences. As long
as the number of features is not too large (as is typically the case), the inverse is not too
hard to compute. LSTD can be viewed as a batch algorithm which operates by collecting
a sample of temporal differences, and then using least squares regression to find the best
linear fit.

We can see the role of temporal differences more clearly by doing a little algebra. We
use equations (17.30) and (17.31) to write

Anθn − bn =
1

n

n−1∑
i=0

(
φ(Si)(φ(Si)− γφ(Si+1))T θn − φ(Si)C(Si, ai,W i+1)

)
=

1

n

n−1∑
i=0

φ(Si)
(
φ(Si)T θn − (cπ + αφ(Si+1)T θn)

)
=

1

n

n−1∑
i=0

φ(Si)δi(θn),

where δi(θn) = φ(Si)T θn − (cπ + αφ(Si+1)T θn) is the ith temporal difference given
the parameter vector θn. Thus, we are doing a least squares regression so that the sum
of the temporal differences over the simulation (which approximations the expectation) is
equal to zero. We would, of course, like it if θ could be chosen so that δi(θ) = 0 for all i.
However, when working with sample realizations the best we can expect is that the average
across the observations of δi(θ) tends to zero.

17.3.4 Least squares policy evaluation (LSPE)

LSTD is basically a batch algorithm, which requires collecting a sample of n observations
and then using regression to fit a model. An alternative strategy uses a stochastic gradient
algorithm which successively updates estimates of θ. The basic updating equation is

θn = θn−1 − α

n
Gn

n−1∑
i=0

φ(Si)δi(n), (17.33)

where Gn is a scaling matrix. Although there are different strategies for computing Gn,
the most natural is a simulation-based estimate of (ΦTDπΦ)−1 which can be computed
using

Gn =

(
1

n+ 1

n∑
i=0

φ(Si)φ(Si)T

)−1

.

To visualize Gn, return again to the assumption that there is a feature for every state. In
this case, φ(Si)φ(Si)T is an |S| by |S| matrix with a 1 on the diagonal for row Si and
column Si. As n approaches infinity, the matrix(

1

n+ 1

n∑
i=0

φ(Si)φ(Si)T

)

approaches the matrixDπ of the probability of visiting each state, stored in elements along
the diagonal.
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17.4 ANALYSIS OF TD(0), LSTD AND LSPE USING A SINGLE STATE

A useful exercise to understand the behavior of recursive least squares, LSTD and LSPE is
to consider what happens when they are applied to a trivial dynamic program with a single
state and a single action. Obviously, we are interested in the policy that chooses the single
action. This dynamic program is equivalent to computing the sum

F = E
∞∑
i=0

γiĈi, (17.34)

where Ĉi is a random variable giving the ith contribution. If we let c̄ = EĈi, then clearly
F = 1

1−γ c̄. But let’s pretend that we do not know this, and we are using these various
algorithms to compute the expectation.

17.4.1 Recursive least squares and TD(0)

Let v̂n be an estimate of the value of being in state Sn. We continue to assume that the
value function is approximated using

V (s) =
∑
f∈F

θfφf (s).

We wish to choose θ by solving

min
θ

n∑
i=1

v̂i −
∑
f∈F

θfφf (Si)

2

.

Let θn be the optimal solution. We can determine this recursively using the techniques
presented earlier in this chapter which gives us the updating equation

θn = θn−1 − 1

1 + (xn)TBn−1xn
Bn−1xn(V

n−1
(Sn)− v̂n) (17.35)

where xn = (φ1(Sn), . . . , φf (Sn), . . . , φF (Sn)), and the matrix Bn is computed using

Bn = Bn−1 − 1

1 + (xn)TBn−1xn
(
Bn−1xn(xn)TBn−1

)
.

If we have only one state and one action, we only have one basis function φ(s) = 1 and
one parameter θn = V

n
(s). Now the matrixBn is a scalar and equation (17.35) reduces to

vn = vn−1 − Bn−1

1 +Bn−1
(vn−1 − v̂n)

=

(
1− Bn−1

1 +Bn−1

)
vn−1 +

Bn−1

1 +Bn−1
.

If B0 = 1, Bn−1 = 1/n, giving us

vn =
n− 1

n
vn−1 +

1

n
v̂n.
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Imagine now that we are using TD(0) where v̂n = Ĉn + γvn−1. In this case, we obtain

vn =

(
1− (1− γ)

1

n

)
vn−1 +

1

n
Ĉn. (17.36)

Equation (17.36) can be viewed as an algorithm for finding

v =

∞∑
n=0

γnĈn,

where the solution is v∗ = 1
1−γEĈ.

Equation (17.36) shows us that recursive least squares, when v̂n is computed using
temporal difference learning, has the effect of successively adding sample realizations of
costs, with a “discount factor” of 1/n. The factor 1/n arises directly as a result of the need
to smooth out the noise in Ĉn. For example, if Ĉ = c is a known constant, we could use
standard value iteration, which would give us

vn = c+ γvn−1. (17.37)

It is easy to see that vn in (17.37) will rise much more quickly toward v∗ than the algorithm
in equation (17.36). We return to this topic in some depth in chapter 6.

17.4.2 LSPE

LSPE requires that we first generate a sequence of states Si and contributions Ĉi for
i = 1, . . . , n. We then compute θ by solving the regression problem

θn = arg min
θ

n∑
i=1

∑
f

θfφf (Si)−
(
Ĉi + γV

n−1
(Si+1)

)2

.

For a problem with one state where θn = vn, this reduces to

vn = arg min
θ

n∑
i=1

(
θ −

(
Ĉi + γvn−1

))2

.

This problem can be solved in closed form, giving us

vn =

(
1

n

n∑
i=1

Ĉi

)
+ γvn−1.

17.4.3 LSTD

Finally, we showed above that the LSTD procedure finds θ by solving the system of
equations

n∑
i=1

φf (Si)(φf (Si)− γφf (Si+1))T θn =

n∑
i=1

φf (Si)Ĉi,

for each f ∈ F . Again, since we have only one basis function φ(s) = 1 for our single state
problem, this reduces to finding the scalar θn = vn using

vn =
1

1− γ

(
1

n

n∑
i=1

Ĉn

)
.
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17.4.4 Discussion

This presentation illustrates three different styles for estimating an infinite horizon sum.
In recursive least squares, equation (17.35) demonstrates the successive smoothing of
the previous estimate vn and the latest estimate v̂n. We are, at the same time, adding
contributions over time while also trying to smooth out the noise.

LSPE, by contrast, separates the estimation of the mean of the single period contribution,
and the process of summing contributions over time. At each iteration, we improve our
estimate of EĈ, and then accumulate our latest estimate in a telescoping sum.

LSTD, finally, updates its estimate of EĈ, and then projects this over the infinite horizon
by factoring the result by 1/(1− γ).

17.5 GRADIENT-BASED METHODS FOR APPROXIMATE VALUE ITERATION

There has been a strong desire for approximation algorithms with the following features:
1) off-policy learning, 2) temporal-difference learning, 3) linear models for value function
approximation and 4) complexity (in memory and computation) that is linear in the number
of features. The last requirement is primarily of interest in specialized applications which
require thousands or even millions of features. Off-policy learning is desirable because it
provides an important degree of control over exploration. Temporal-difference learning is
useful because it is so simple, as are the use of linear models, which make it possible to
provide an estimate of the entire value function with a small number of measurements.

Off-policy, temporal-difference learning was first introduced in the form of Q-learning
using a lookup table representation, where it is known to convergence. But we lose this
property if we introduce value function approximations that are linear in the parameters.
In fact, Q-learning can be shown to diverge for any positive stepsize. The reason is that
there is no guarantee that our linear model is accurate, which can introduce significant
instabilities in the learning process.
Q-learning and temporal difference learning can be viewed as forms of stochastic gradi-

ent algorithms, but the problem with earlier algorithms when we use linear value function
approximations can be traced to the choice of objective function. For example, if we wish
to find the best linear approximation V (s|θ), a hypothetical objective function would be to
minimize the expected mean squared difference between V (s|θ) and the true value function
V (s). If dπs is the probability of being in state s, this objective would be written

MSE(θ) =
1

2

∑
s

dπs (V (s|θ)− V (s))2.

If we are using approximate value iteration, a more natural objective function is to minimize
the mean squared Bellman error. We use the Bellman operatorMπ (as we did in chapter
14) for policy π to represent

Mπv = cπ + γPπv,

where v is a column vector giving the value of being in state s, and cπ is the column vector
of contributions C(s,Aπ(s)) if we are in state s and choose an action a according to policy
π. This allows us to define

MSBE(θ) =
1

2

∑
s

dπs

(
V (s|θ)− (cπ(s) + γ

∑
s′

pπ(s′|s)V (s′|θ))

)2

= ‖V (θ)−MV (θ)‖2D.
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We can minimize MSBE(θ) by generating a sequence of states (S1, . . . , Si, Si+1, . . .) and
then computing a stochastic gradient

∇θMSBE(θ) = δπ,i(φ(Si)− γφ(Si+1))

where φ(Si) is a column vector of basis functions evaluated at state Si. The scalar δπ,i is
the temporal difference given by

δπ,i = V (Si|θ)− (cπ(Si) + γV (Si+1|θ)).

We note that δπ,i depends on the policy π which affects both the single period contribution
and the likelihood of transitioning to state Si+1. To emphasize that we are working with a
fixed policy, we carry the superscript π throughout.

For this section, we are defining the temporal difference as δπ,i = V (Si|θ)− (cπ(Si) +
γV (Si+1|θ)), because it is a natural byproduct when deriving algorithms based on stochas-
tic gradient methods. Earlier in this chapter, we defined the temporal difference as
δτ = C(Snτ , a

n
τ ,W

n
τ+1) + V

n−1

τ+1(Snτ+1)− V n−1

τ (Snτ ) (see equation (17.4)), which is more
natural when used to represent telescoping sums (for example, see equation (17.5)). A
stochastic gradient algorithm, then, would seek to optimize θ using

θn+1 = θn − αn∇θMSBE(θ) (17.38)
= θn − αnδπ,n(φ(Sn)− γφ(Sn+1)). (17.39)

Were we to use the more traditional definition of a temporal difference, our equation would
be written

θn+1 = θn + αnδ
π,n(φ(Sn)− γφ(Sn+1)),

which runs counter to the classical statement of a stochastic gradient algorithm (given in
equation (17.38)) for minimization problems.

A variant of this basic algorithm, called the generalized TD(0) (or, GTD(0)) algorithm,
is given by

θn+1 = θn − αn(φ(Sn)− γφ(Sn+1))φ(Sn)Tun, (17.40)

where

un+1 = un − βn(un − δπ,nφ(Sn)). (17.41)

αn and βn are both stepsizes. un is a smoothed estimate of the product δπ,nφ(Sn).
Gradient descent methods based on temporal differences will not minimize MSBE(θ)

because there does not exist a value of θ that would allow v̂(s) = cπ(s) + γV (s|θ) to be
represented as V (s|θ). We can fix this using the mean squared projected Bellman error
(MSPBE(θ)) which we compute as follows. It is more compact to do this development
using matrix-vector notation. We first recall the projection operator Π given by

Π = Φ(ΦTDπΦ)−1ΦTDπ.

(See section 18.4.2 for a derivation of this operator.) If V is a vector giving the value of
being in each state, ΠV is the nearest projection of V on the space generated by θφ(s).
We are trying to find V (θ) that will match the one-step lookahead given byMπV (θ), but
this produces a column vector that cannot be represented directly as Φθ, where Φ is the
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|S| × |F| matrix of feature vectors φ. We accomplish this by pre-multiplying MπV (θ)
by the projection operator Π. This allows us to form the mean squared projected Bellman
error using

MSPBE(θ) =
1

2
‖V (θ)−ΠMπV (θ)‖2D (17.42)

=
1

2

(
V (θ)−ΠMπV (θ)

)T
D
(
V (θ)−ΠMπV (θ)

)
. (17.43)

We can now use this new objective function as the basis of an optimization algorithm to find
θ. Recall thatDπ is a |S|× |S| diagonal matrix with elements dπs , giving us the probability
that we are in state s while following policy π. We use Dπ as a scaling matrix to give us
the probability that we are in state s. We start by noting the identities

E[φφT ] =
∑
s∈S

dπsφsφ
T
s

= ΦTDπΦ.

E[δπφ] =
∑
s∈S

dπsφs

(
cπ(s) + γ

∑
s′∈S

pπ(s′|s)V (s′|θ)− V (s|θ)

)
= ΦTDπ(MπV (θ)− V (θ)).

The derivations here and below make extensive use of matrices, which can be difficult to
parse. A useful exercise is to write out the matrices assuming that there is a feature φf (s)
for each state s, so that φf (s) = 1 if feature f corresponds to state s. See exercise 17.3.

We see that the role of the scaling matrix Dπ is to enable us to take the expectation of
the quantities φφT and δπφ. Below, we are going to simulate these quantities, where a state
will occur with probability dπs . We also use

ΠTDπΠ = (Φ(ΦTDπΦ)−1ΦTDπ)TDπ(Φ(ΦTDπΦ)−1ΦTDπ)

= (Dπ)TΦ(ΦTDπΦ)−1ΦTDπΦ(ΦTDπΦ)−1ΦTDπ

= (Dπ)TΦ(ΦTDπΦ)−1ΦTDπ.

We have one last painful piece of linear algebra that gives us a more compact form for
MSPBE(θ). Pulling the 1/2 to the left hand side (this will later vanish when we take the
derivative), we can write

2MSPBE(θ) = ‖V (θ)−ΠMπV (θ)‖2D
= ‖Π(V (θ)−MπV (θ))‖2D
= (Π(V (θ)−MπV (θ)))TDπ(Π(V (θ)−MπV (θ)))

= (V (θ)−MπV (θ))TΠTDπΠ(V (θ)−MπV (θ))

= (V (θ)−MπV (θ))T (Dπ)TΦ(ΦT (Dπ)Φ)−1ΦTDπ(V (θ)−MπV (θ))

= (ΦTDπ(MπV (θ)− V (θ)))T (ΦTDπΦ)−1ΦTDπ(MV (θ)− V (θ))

= E[δπφ]TE[φφT ]−1E[δπφ]. (17.44)

We next need to estimate the gradient of this error ∇θMSPBE(θ). Keep in mind that
δπ = cπ + γPπΦθ − Φθ. If φ is the column vector with element φ(s), assume that s′

occurs with probability pπ(s′|s) under policy π, and let φ′ be the corresponding column



GRADIENT-BASED METHODS FOR APPROXIMATE VALUE ITERATION 579

vector. Differentiating (17.44) gives

∇θMSPBE(θ) = E[(γφ′ − φ)φT ]E[φφT ]−1E[δπφ]

= −E[(φ− γφ′)φT ]E[φφT ]−1E[δπφ].

We are going to use a standard stochastic gradient updating algorithm for minimizing the
error given by MSPBE(θ), which is given by

θn+1 = θn − αn∇θMSPBE(θ) (17.45)
= θn + αnE[(φ− γφ′)φT ]E[φφT ]−1E[δπφ]. (17.46)

We can create a linear predictor which approximates

w ≈ E[φφT ]−1E[δπφ].

where w is approximated using

wn+1 = wn + βn(δπ,n − (φn)Twn)φn.

This allows us to write the gradient

∇θMSPBE(θ) = −E[(φ− γφ′)φT ]E[φφT ]−1E[δπφ]

≈ −E[(φ− γφ′)φT ]w.

We have now created the basis for two algorithms. The first is called generalized temporal
difference 2 (GTD2), given by

θn+1 = θn + αn(φn − γφn+1)((φn)Twn). (17.47)

Here, φn is the column vector of basis functions when we are in state Sn, while φn+1 is
the column vector of basis functions for the next state Sn+1. Note that if equation (17.47)
is executed right to left, all calculations are linear in the number of features F .

An important feature of the algorithm, especially for applications with large number of
features, is that the algorithm is linear in the number of features.

A variant, called TDC (temporal difference with gradient corrector) is derived by using
a slightly modified calculation of the gradient

∇θMSPBE(θ) = −E[(φ− γφ′)φT ]E[φφT ]−1E[δπφ]

= −
(
E[φφT ]− γE[φ′φT ]

)
E[φφT ]−1E[δπφ]

= −
(
E[δπφ]− γE[φ′φT ]E[φφT ]−1E[δπφ]

)
≈ −

(
E[δπφ]− γE[φ′φT ]w

)
.

This gives us the TDC algorithm

θn+1 = θn + αn

(
δπ,nφn − γφn

′
((φn)Twn)

)
. (17.48)

GTD2 and TDC are both proven to converge to the optimal value of θ for a fixed target
policy Aπ(s) which may be different than the behavior (sampling) policy. That is, after
updating θn where the temporal difference δπ,n is computed assuming we are in state Sn

and follow policy π, we are allowed to follow a separate behavior policy to determine
Sn+1. This allows us to directly control the states that we visit, rather than depending on
the decisions made by the target policy.
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17.6 LEAST SQUARES TEMPORAL DIFFERENCING WITH KERNEL
REGRESSION*

In section 3.10.2, we introduced the idea of kernel regression, where we can approximate
the value of a function by using a weighted sum of nearby observations. If Si is the ith
observation of a state, and we observe a value v̂i, we can approximate the value of visiting
a generic state s by using

V (s) =

∑n
i=1Kh(s, Si)v̂i∑n
i=1Kh(s, Si)

,

where Kh(s, Si) is a weighting function that declines with the distance between s and Si.
Kernel functions are introduced in section 3.10.2.

We now use two properties of kernels. One, which we first introduced in section 3.10.2,
is that for most kernel functions Kh(s, s′), there exists a potentially high-dimensional set
of basis functions φ(s) such that

Kh(s, s′) = φ(s)Tφ(s′).

There is also a result known as the kernel representor theorem that states that there exists a
vector of coefficients βi, i = 0, . . . ,m that allows us to write

θm =

m∑
i=0

φ(si)βi. (17.49)

This allows us to write our value function approximation using

V (s) = φ(s)T θm

=

m∑
i=0

φ(Si)Tβi

=

m∑
i=0

φ(s)Tφ(Si)βi

=

m∑
i=0

Kh(s, Si)βi.

Recall from equations (17.26), (17.30) and (17.31) that

Amθ = bm,

where (
1

m

m∑
i=1

φ(Si)(φ(Si)− γφ(Si+1))T

)
θ =

1

m

m∑
i=1

φ(Si)Ĉi + εi,

where εi represents the error in the fit. Substituting in (17.49) gives us(
1

m

m∑
i=1

φ(Si)(φ(Si)− γφ(Si+1))T

)
m∑
i=1

φiβi =
1

m

m∑
i=1

φ(Si)Ĉi + εi.
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The single step regression function is given by

φ(Si)(φ(Si)− γφ(Si+1))T
m∑
i=1

φiβi =
1

m

m∑
i=1

φ(Si)Ĉi + εi. (17.50)

Let Φm = [φ(S1), . . . , φ(Sm)]T be a m× |F|matrix, where each row is the vector φ(Si),
and let km(Si) = [Kh(S1, Si), . . . ,Kh(Sm, Si)]T be a column vector of the kernel
functions capturing the weight between each observed state S1, . . . , Sm, and a particular
state Si. Multiplying both sides of (17.50) by Φm gives us,

Φmφ(Si)(φ(Si)− γφ(Si+1))T
m∑
i=1

φiβi = Φm
1

m

m∑
i=1

φ(Si)Ĉi + Φmεi.

Keeping in mind that products of basis functions can be replaced with kernel functions, we
obtain

m∑
i=1

km(Si)(km(Si)− γkm(Si+1))βm =

m∑
i=1

km(Si)Ĉi.

Define the m×m matrix and m-vector bm

Mm =

m∑
i=1

km(Si)(km(si)− γkm(Si+1)),

bm =

m∑
i=1

km(Si)Ĉi.

Then, we can solve for βm recursively using

βm = (Mm)−1bm,

Mm+1 = Mm + km+1(Sm+1)((km+1(Sm+1))T − γ(km+2(Sm+2))T ),

bm+1 = bm + km+1(Sm+1)Ĉm.

The power of kernel regression is that it does not require specifying basis functions.
However, this flexibility comes with a price. If we are using a parametric model, we have
to deal with a vector θ with |F| elements. Normally we try to specify a relatively small
number of features, although there are applications which might use a million features.
With kernel regression, we have to invert the m × m matrix Mm, which can become
very expensive as m grows. As a result, practical algorithms would have to use advanced
research on sparsification.

17.7 VALUE FUNCTION APPROXIMATIONS BASED ON BAYESIAN
LEARNING*

A different strategy for updating value functions is one based on Bayesian learning. Assume
that we start with a prior V 0(s) of the value of being in state s, and we assume that we have
a known covariance function Cov(s, s′) that captures the relationship in our belief about
V (s) and V (s′). A good example where this function would be known might be a function
where s is continuous (or a discretization of a continuous surface), where we might use

Cov(s, s′) ∝ e−
‖s−s′‖2

b (17.51)
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where b is a bandwidth. This function captures the intuitive behavior that if two states are
close to each other, their covariance is higher. So, if we make an observation that raises our
belief about V (s), then our belief about V (s′) will increase also, and will increase more if
s and s′ are close to each other. We also assume that we have a variance function λ(s) that
captures the noise in a measurement v̂(s) of the function at state s.

Our Bayesian updating model is designed for applications where we have access to
observations v̂n of our true function V (s) which we can view as coming from our prior
distribution of belief. This assumption effectively precludes using updating algorithms
based on approximate value iteration, Q-learning and least squares policy evaluation. We
cannot eliminate the bias, but below we describe how to minimize it. We then describe
Bayesian updating using lookup tables and parametric models.

17.7.1 Minimizing bias

We would very much like to have observations v̂n(s) which we can view as an unbiased
observation of V (s). One way to do this is to build on the methods described in section
17.1.

To illustrate, assume that we have a policy π that determines the action at we take when
in state St, generating a contribution Ĉnt . Assume we simulate this policy for T time
periods using

v̂n(T ) =

T∑
t=0

γtĈt.

If we have a finite horizon problem and T is the end of our horizon, then we are done. If
our problem has an infinite horizon, we can project the infinite horizon value of our policy
by first approximating the one-period contribution using

c̄nT =
1

T

T∑
t=0

Ĉnt .

Now assume this estimates the average contribution per period starting at time T + 1. Our
infinite-horizon estimate would be

v̂n = v̂0(T ) + γT+1 1

1− γ
c̄nT .

Finally, we use v̂n to update our value function approximation V
n−1

to obtain V
n

.
We next illustrate the Bayesian updating formulas for lookup tables and parametric

models.

17.7.2 Lookup tables with correlated beliefs

Previously when we have used lookup tables, if we update the value V
n
(s) for some state s,

we do not use this information to update the values of any other states. With our Bayesian
model, we can do much more if we have access to a covariance function such as the one
we illustrated in equation (17.51).

Assume that we have discrete states, and assume that we have a covariance function
Cov(s, s′) in the form of a covariance matrix Σ where Cov(s, s′) = Σ(s, s′). Let V n be
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our vector of beliefs about the value V (s) of being in each state (we use V n to represent
our Bayesian beliefs, so that V

n
can represent our frequentist estimates). Also let Σn be

the covariance matrix of our belief about the vector V . If v̂n(Sn) is an (approximately)
unbiased sample observation of V (s), the Bayesian formula for updating V n is given by

V
n+1

(s) = V n(s) +
v̂n(Sn)− V n(s)

λ(Sn) + Σn(Sn, Sn)
Σn(s, Sn).

This has to be computed for each s (or at least each s where Σn(s, Sn) > 0). We update
the covariance matrix using

Σn+1(s, s′) = Σn(s, s′)− Σn(s, Sn)Σn(Sn, s′)

λ(Sn) + Σn(Sn, Sn)
.

17.7.3 Parametric models

For most applications, a parametric model (specifically, a linear model) is going to be much
more practical. Our frequentist updating equations for our regression vector θn were given
above as

θn = θn−1 − 1

γn
Bn−1φnε̂n, (17.52)

Bn = Bn−1 − 1

γn
(Bn−1φn(φn)TBn−1), (17.53)

γn = 1 + (φn)TBn−1φn, (17.54)

where ε̂n = V (θn−1)(Sn)−v̂n is the difference between our current estimateV (θn−1)(Sn)
of the value function at our observed state Sn and our most recent observation v̂n. The
adaptation for a Bayesian model is quite minor. The matrix Bn represents

Bn = [(Xn)TXn]−1.

It is possible to show that the covariance matrix Σθ (which is dimensioned by the number
of basis functions) is given by

Σθ = Bnλ.

In our Bayesian model, λ is the variance of the difference between our observation v̂n and
the true value function v(Sn), where we assume λ is known. This variance may depend on
the state that we have observed, in which case we would write it as λ(s), but in practice,
since we do not know the function V (s), it is hard to believe that we would be able to
specify λ(s). We replace Bn with Σθ,n and rescale γn to create the following set of
updating equations

θn = θn−1 − 1

γn
Σθ,n−1φnε̂n, (17.55)

Σθ,n = Σθ,n−1 − 1

γn
(Σθ,n−1φn(φn)TΣθ,n−1), (17.56)

γn = λ+ (φn)TΣθ,n−1φn. (17.57)
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17.7.4 Creating the prior

Approximate dynamic programming has been approached from a Bayesian perspective
in the research literature, but otherwise has apparently received very little attention. We
suspect that while there exist many applications in stochastic search where it is valuable to
use a prior distribution of belief, it is much harder to build a prior on a value function.

Lacking any specific structural knowledge of the value function, we anticipate that the
easiest strategy will be to start with V 0(s) = v0, which is a constant across all states. There
are several strategies we might use to estimate v0. We might sample a state Si at random,
and find the best contribution Ĉi = maxa C(Si, a). Repeat this n times and compute

c̄ =
1

n

n∑
i=1

Ĉi.

Finally, let v0 = 1
1−γ c̄ if we have an infinite horizon problem. The hard part is that the

variance λ has to capture the variance of the difference between v0 and the true V (s). This
requires having some sense of the degree to which v0 differs from V (s). We recommend
being very conservative, which is to say choose a varianceλ such that v0+2

√
λ easily covers

what V (s) might be. Of course, this also requires some judgment about the likelihood of
visiting different states.

17.8 LEARNING ALGORITHMS AND STEPSIZES

A useful exercise to understand the behavior of recursive least squares, LSTD and LSPE is
to consider what happens when they are applied to a trivial dynamic program with a single
state and a single action. Obviously, we are interested in the policy that chooses the single
action. This dynamic program is equivalent to computing the sum

F = E
∞∑
i=0

γiĈi, (17.58)

where Ĉi is a random variable giving the ith contribution. If we let c̄ = EĈi, then clearly
F = 1

1−γ c̄. But let’s pretend that we do not know this, and we are using these various
algorithms to compute the expectation.

We first used the single-state problem in section 17.4, but did not focus on the implica-
tions for stepsizes. Here, we use our ability to derive analytical solutions for the optimal
value function for least squares temporal differences (LSTD), least squares policy evalua-
tion (LSPE), and recursive least squares and temporal differences. These expressions allow
us to understand the types of behaviors we would like to see in a stepsize formula.

In the remainder of this section, we start by assuming that the value function is approx-
imated using a linear model

V (s) =
∑
f∈F

θfφf (s).

However, we are going to then transition to a problem with a single state, and a single basis
function φ(s) = 1. We assume that v̂ is a sampled estimate of the value of being in the
single state.
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17.8.1 Least squares temporal differences

In section 17.3 we showed that the LSTD method, when using a linear architecture, applied
to infinite horizon problems required solving

n∑
i=1

φf (Si)(φf (Si)− γφf (Si+1))T θ =

n∑
i=1

φf (Si)Ĉi,

for each f ∈ F . Let θn be the optimal solution. Again, since we have only one basis
function φ(s) = 1 for our single state problem, this reduces to finding vn = θn

vn =
1

1− γ

(
1

n

n∑
i=1

Ĉn

)
. (17.59)

Equation (17.59) shows that we are trying to estimate EĈ using a simple average. If we let
C̄n be the average over n observations, we can write this recursively using

C̄n =

(
1− 1

n

)
C̄n−1 +

1

n
Ĉn.

For the single state (and single action) problem, the sequence Ĉn comes from a stationary
sequence. In this case a simple average is the best possible estimator. In a dynamic
programming setting with multiple states, and where we are trying to optimize over policies,
vn would depend on the state. Also, because the policy that determines the action we take
when we are in a state is changing over the iterations, the observations Ĉn, even when we
fix a state, would be nonstationary. In this setting, simple averaging is no longer the best.
Instead, it is better to use

C̄n = (1− αn−1)C̄n−1 + αn−1Ĉ
n, (17.60)

and use one of the stepsizes described in section 6.1, 6.2 or 6.3. As a general rule, these
stepsize rules do not decline as quickly as 1/n.

17.8.2 Least squares policy evaluation

Least squares policy evaluation, which is developed using basis functions for infinite
horizon applications, finds the regression vector θ by solving

θn = arg min
θ

n∑
i=1

∑
f

θfφf (Si)−
(
Ĉi + γV

n−1
(Si+1)

)2

.

When we have one state, the value of being in the single state is given by vn = θn which
we can write as

vn = arg min
θ

n∑
i=1

(
θ −

(
Ĉi + γvn−1

))2

.

This problem can be solved in closed form, giving us

vn =

(
1

n

n∑
i=1

Ĉi

)
+ γvn−1.
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Similar to LSTD, LSPE works to estimate EĈ. For a problem with a single state
and action (and therefore only one policy), the best estimate of EĈ is a simple average.
However, as we already argued with LSTD, if we have multiple states and are searching
for the best policy, the observation Ĉ for a particular state will come from a nonstationary
series. For such problems, we should again adopt the updating formula in (17.60) and use
one of the stepsize rules described section 6.1, 6.2 or 6.3.

17.8.3 Recursive least squares

Using our linear model, we start by using the following standard least squares model to fit
our approximation

min
θ

n∑
i=1

v̂i −
∑
f∈F

θfφf (Si)

2

.

As we have already discussed in chapter 3, we can fit the parameter vector θ using least
squares, which can be computed recursively using

θn = θn−1 − 1

1 + (xn)TBn−1xn
Bn−1xn(V

n−1
(Sn)− v̂n)

where xn = (φ1(Sn), . . . , φf (Sn), . . . , φF (Sn)), and the matrix Bn is computed using

Bn = Bn−1 − 1

1 + (xn)TBn−1xn
(
Bn−1xn(xn)TBn−1

)
.

For the special case of a single state, we use the fact that we have only one basis function
φ(s) = 1 and one parameter θn = V

n
(s) = vn. In this case, the matrixBn is a scalar, and

the updating equation for θn (now vn), becomes

vn = vn−1 − Bn−1

1 +Bn−1
(vn−1 − v̂n)

=

(
1− Bn−1

1 +Bn−1

)
vn−1 +

Bn−1

1 +Bn−1
v̂n.

If B0 = 1, Bn−1 = 1/n, giving us

vn =

(
1− 1

n

)
vn−1 +

1

n
v̂n. (17.61)

Now imagine we are using approximate value iteration. In this case, v̂n = Ĉn + γvn.
Substituting this into equation (17.61) gives us

vn =

(
1− 1

n

)
vn−1 +

1

n
(Ĉn + γv̂n)

=

(
1− 1

n
(1− γ)

)
vn−1 +

1

n
Ĉn. (17.62)

Recursive least squares has the behavior of averaging the observations of v̂. The problem
is that v̂n = Ĉn+γvn, since v̂n is also trying to be a discounted accumulation of the costs.
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Figure 17.3 v̄n plotted against log10(n) when we use a 1/n stepsize rule for updating.

Assume that the contribution was deterministic, where Ĉ = c. If we were doing classical
approximate value iteration, we would write

vn = c+ γvn−1. (17.63)

Comparing (17.62) and (17.63), we see that the one-period contribution carries a coef-
ficient of 1/n in (17.62) and a coefficient of 1 in (17.62). We can view equation (17.62) as
a steepest ascent update with a stepsize of 1/n. If we change the stepsize to 1, we obtain
(17.63).

17.8.4 Bounding 1/n convergence for approximate value iteration

It is well known that a 1/n stepsize will produce a provably convergent algorithm when
used with approximate value iteration. Experimentalists know that the rate of convergence
can be quite slow, but people new to the field can sometimes be found using this stepsize
rule. In this section, we hope to present evidence that the 1/n stepsize should never be
used with approximate value iteration or its variants.

Figure 17.3 is a plot of vn computed using equation (17.62) as a function of log10(n)
for γ = 0.7, 0.8, 0.9, and 0.95, where we have set Ĉ = 1. For γ = 0.90, we need 1010

iterations to get v̄n = 9, which means we are still 10 percent from the optimal. For
γ = 0.95, we are not even close to converging after 100 billion iterations.

It is possible to derive compact bounds, νL(n) and νU (n) for v̄n where

νL(n) < vn < νU (n).
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These are given by

νL(n) =
c

1− γ

(
1−

(
1

1 + n

)1−γ
)
, (17.64)

νU (n) =
c

1− γ

(
1− 1− γ

γn
− 1

γn1−γ

(
γ2 + γ − 1

))
. (17.65)

Using the formula for the lower bound (which is fairly tight when n is large enough that
vn is close to v∗), we can derive the number of iterations to achieve a particular degree of
accuracy. Let Ĉ = 1, which means that v∗ = 1/(1− γ). For a value of v < 1/(1− γ), we
would need at least n(v) to achieve v̄∗ = v, where n(v) is found (from (17.64)) to be

n(v) ≥ [1− (1− γ)v]−1/(1−γ). (17.66)

If γ = 0.9, we would need n(v) = 1020 iterations to reach a value of v = 9.9, which gives
us a one percent error. On a 3-GHz chip, assuming we can perform one iteration per clock
cycle (that is, 3×109 iterations per second), it would take 1,000 years to achieve this result.

17.8.5 Discussion

We can now see the challenge of choosing stepsizes for approximate value iteration,
temporal-difference learning andQ-learning, compared to algorithms such as LSPE, LSTD
and approximate policy iteration (the finite horizon version of LSPE). If we observe Ĉ with
noise, and if the discount factor γ = 0 (which means we are not trying to accumulate con-
tributions over time), then a stepsize of 1/n is ideal. We are just averaging contributions
to find the average value. As the noise in Ĉ diminishes, and as γ increases, we would
like a stepsize that approaches 1. In general, we have to strike a balance between accumu-
lating contributions over time (which is more important as γ increases) and averaging the
observations of contributions (for which a stepsize of 1/n is ideal).

By contrast, LSPE, LSTD and approximate policy iteration are all trying to estimate
the average contribution per period for each state. The values Ĉ(s, a) are nonstationary
because the policy that chooses the action is changing, making the sequence Ĉ(sn, an) non-
stationary. But these algorithms are not trying to simultaneously accumulate contributions
over time.

17.9 WHY DOES IT WORK*

17.10 BIBLIOGRAPHIC NOTES

Section 17.1 - This section reviews a number of classical methods for estimating the value
of a policy drawn from the reinforcement learning community. The best overall
reference for this is Sutton & Barto (1998). Least-squares temporal differencing is
due to Bradtke & Barto (1996).

Section 17.2 - Tsitsiklis (1994) and Jaakkola et al. (1994b) were the first to make the
connection between emerging algorithms in approximate dynamic programming (Q-
learning, temporal difference learning) and the field of stochastic approximation
theory (Robbins & Monro (1951), Blum (1954a), ?).
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Section 3.8 - L. & Soderstrom (1983) and Young (1984) provide nice treatments of
recursive statistics. Precup et al. (2001) gives the first convergent algorithm for
off-policy temporal-difference learning using basis functions by using an adjustment
which based on the relative probabilities of choosing an action from the target
and behavioral policies. Lagoudakis et al. (2002) and Bradtke & Barto (1996)
present least squares methods in the context of reinforcement learning. Van Roy
& Choi (2006) uses the Kalman filter to perform scaling for stochastic gradient
updates, avoiding the scaling problems inherent in stochastic gradient updates such
as equation (17.22). Nedic et al. (2003) describes the use of least squares equation
with a linear (in the parameters) value function approximation using policy iteration
and proves convergence for TD(λ) with general λ. Bertsekas et al. (2004) presents a
scaled method for estimating linear value function approximations within a temporal
differencing algorithm. Section ?? is based on Soderstrom et al. (1978).

Section 17.3 - The development of Bellman’s equation using linear models is based
on Tsitsiklis & Van Roy (1997), Lagoudakis & Parr (2003) and Bertsekas (2009).
Tsitsiklis & Van Roy (1997) highlights the central role of the D-norm used in this
section, which also plays a central role in the design of a simulation-based version
of the algorithm.

Section 17.4 - The analysis of dynamic programs with a single state is based on Ryzhov
et al. (2009).

Section 17.5 - Baird (1995) provides a nice example showing that approximate value
iteration may diverge when using a linear architecture, even when the linear model
may fit the true value function perfectly. Tsitsiklis & Van Roy (1997) establishes
the importance of using Bellman errors weighted by the probability of being in a
state. de Farias & Van Roy (2000) shows that there does not necessarily exist a fixed
point to the projected form of Bellman’s equation Φθ = ΠMΦθ where M is the
max operator. This paper also shows that a fixed point does exist for a projection
operator ΠD defined with respect to the norm ‖ · ‖D which weights a state s with
the probability ds of being in this state. This results is first shown for a fixed policy,
and then for a class of randomized policies. GTD2 and TDC are due to Sutton et al.
(2009), with material from Sutton et al. (2008).

Section 17.6 - Our adaptation of least squares temporal differencing using kernel regression
was presented in Ma & Powell (2010).

Section 17.7 - Dearden et al. (1998b) introduces the idea of using Bayesian updating for
Q-learning. Dearden et al. (1998a) then considers model-based Bayesian learning.
Our presentation is based on Ryzhov & Powell (2010) which introduces the idea of
correlated beliefs.

Section 3.13.2 - The Sherman-Morrison updating formulas are given in a number of
references, such as L. & Soderstrom (1983) and Golub & Loan (1996).

PROBLEMS

17.1 Consider a “Markov decision process” with a single state and single policy. Assume
that we do not know the expected value of the contribution Ĉ, but each time it is sampled,
draw a sample realization from the uniform distribution between 0 and 20. Also assume a
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discount factor of γ = 0.90. Let V =
∑∞
t=0 γ

tĈt. The exercises below can be formed in
a spreadsheet.

a) Estimate V using LSTD using 100 iterations.

b) Estimate V using LSPE using 100 iterations.

c) Estimate V using recursive least squares, executing the algorithm for 100 iterations.

d) Estimate V using temporal differencing (approximate value iteration) and a stepsize
of 1/n.7.

e) Repeat (d) using a stepsize of 5/(5 + n− 1.

d) Compare the rates of convergence of the different procedures.

17.2 Repeat the exercise above using a discount factor of 0.95.

17.3 We are going to walk through the derivation of the equations in section 17.5 assuming
that there is a feature for each state, where φf (s) = 1 if feature f corresponds to state s,
and 0 otherwise. When asked for a sample of a vector or matrix, assume there are three
states and three features. As above, let dπs be the probability of being in state s under policy
π, and let Dπ be the diagonal matrix consisting of the elements dπs .

a) What is the column vector φ if s = 1? What does φφT look like?

b) If dπs is the probability of being in state s under policy π, write out E[φφT ].

c) Write out the matrix Φ.

d) What is the projection matrix Π?

e) Write out equation (17.44) for MSPBE(θ).



CHAPTER 18

FORWARD ADP II: POLICY OPTIMIZATION

We are finally ready to tackle the problem of searching for good policies while simultane-
ously trying to produce good value function approximations. Our discussion is restricted
to problems where the policy is based on the value function approximation, since chapter
12 has already addressed the strategy of direct policy search. The guiding principle in this
chapter is that we can find good policies if we can find good value function approximations.

The statistical tools presented in chapter 3 focused on finding the best statistical fit
within a particular approximation architecture. We actually did not address whether we
had chosen a good architecture. This is particularly true of our linear models, where we
used the tools of stochastic optimization and linear regression to ensure that we obtain the
best fit given a model, without regard to whether it was a good model.

In this chapter, we return to the problem of trying to find the best policy, where we
assume throughout that our policies are of the form

Aπ(S) = arg max
a∈A

(
C(S, a) + γEV (SM (S, a,W ))

)
,

if we have an infinite horizon problem with discrete actions. Or, we may consider finite-
horizon problems with vector-valued decisions xt, where a policy would look like

Xπ
t (St) = arg max

xt∈Xt

(
C(St, xt) + γEV t(SM (St, xt,Wt+1))

)
.

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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The point is that the policy depends on some sort of value function approximation. When
we write our generic optimization problem

max
π

E
T∑
t=0

γtC(St, A
π
t (St)),

the maximization over policies can mean choosing an architecture for V t(St), and choosing
the parameters that control the architecture. For example, we might be choosing between
a myopic policy, or perhaps a simple linear architecture with one basis function

V (S) = θ0 + θ1S, (18.1)

or perhaps a linear architecture with two basis functions,

V (S) = θ0 + θ1S + θ2S
2. (18.2)

We might even use a nonlinear architecture such as

V (S) =
eθ0+θ1S

1 + eθ0+θ1S
.

Optimizing over policies may consist of choosing a value function approximation such as
(18.1) or (18.2), but then we still have to choose the best parameter vector within each
class.

We begin our presentation with an overview of the basic algorithmic strategies that we
cover in this chapter, all of which are based on using value function approximations that
are intended to approximate the value of being in a state. The remainder of the chapter is
organized around covering the following strategies:

Approximate value iteration - These are policies that iteratively update the value function
approximation, and then immediately update the policy. We strive to find a value
function approximation that estimates the value of being in each state while following
a (near) optimal policy, but only in the limit. We intermingle the treatment of finite
and infinite horizon problems. Variations include

Lookup table representations - Here we introduce three major strategies that re-
flect the use of the pre-decision state, state-action pairs, and the post-decision
state:

AVI for pre-decision state - Approximate value iteration using the classical
pre-decision state variable.

Q-learning - Estimating the value of state-action pairs.
AVI for the post-decision state - Approximate value iteration where value

function approximations are approximated around the post-decision state.

Parametric architectures - We summarize some of the extensive literature which
depends on linear models (basis functions), and touch on nonlinear models.

Approximate policy iteration - These are policies that attempt to explicitly approximate
the value of a policy to some level of accuracy within an inner loop, within which
the policy is held fixed.

API using lookup tables - We use this setting to present the basic idea.
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API using linear models - This is perhaps one of the most important areas of re-
search in approximate dynamic programming.

API using nonparametric models - This is a relatively young area of research, and
we summarize some recent results.

The linear programming method - The linear programming method, first introduced in
chapter 14, can be adapted to exploit value function approximations.

18.1 OVERVIEW OF ALGORITHMIC STRATEGIES

The algorithmic strategies that we examine in this chapter are based on the principles of
value iteration and policy iteration, first introduced in chapter 14. We continue to adapt our
algorithms to finite and infinite horizons. Basic value iteration for finite horizon problems
work by solving

Vt(St) = max
at

(
C(St, at) + γE{Vt+1(St+1)|St}

)
. (18.3)

Equation (18.3) works by stepping backward in time, where Vt(St) is computed for each
(presumably discrete) state St. This is classical “backward” dynamic programming which
suffers from the well known curse of dimensionality, because we typically are unable to
“loop over all the states.”

Approximate dynamic programming approaches finite horizon problems by solving
problems of the form

v̂nt = max
at

(
C(Snt , at) + γV

n−1

t+1 (SM,a(Snt , at))
)
. (18.4)

Here, we have formed the value function approximation around the post-decision state. We
execute the equations by stepping forward in time. If ant is the action that optimizes (18.4),
then we compute our next state using Snt+1 = SM (Snt , a

n
t ,W

n
t+1) where Wn

t+1 is sampled
from some distribution. The process runs until we reach the end of our horizon, at which
point we return to the beginning of the horizon and repeat the process.

Classical value iteration for infinite horizon problems is centered on the basic iteration

V n(S) = max
a

(
C(S, a) + γE{V n−1(S′)|S}

)
. (18.5)

Again, equation (18.5) has to be executed for each state S. After each iteration, the new
estimate V n replaces the old estimate V n−1 on the right, after which n is incremented.

When we use approximate methods, we might observe an estimate of the value of being
in a state using

v̂n = max
a

(
C(Sn, a) + γV

n−1
(SM,a(Sn, an))

)
. (18.6)

We then use the observed state-value pair (Sn, v̂n) to update the value function approxi-
mation.

When we use approximate value iteration, v̂n (or v̂nt ) cannot be viewed as a noisy but
unbiased observation of the value of being in a state. These observations are calculated as a
function of the value function V

n−1
(s). While we hope the value function approximation

converges to something, we generally cannot say anything about the function prior to
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convergence. This means that v̂n does not have any particular property. We are simply
guided by the basic value iteration update in equation (18.5) (or (18.3)), which suggests
that if we repeat this step often enough, we may eventually learn the right value function
for the right policy. Unfortunately, we have only limited guarantees that this is the case
when we depend on approximations.

Approximate value iteration imbeds a policy approximate loop within an outer loop
where policies are updated. Assume we fix our policy using

Aπ,n(S) = arg max
a∈A

(
C(S, a) + γV

n−1
(SM,a(S, a))

)
, (18.7)

Now perform the loop over m = 1, . . . ,M

v̂n,m = max
a∈A

(
C(Sn,m, a) + γV

n−1
(SM,a(Sn,m, a))

)
where Sn,m+1 = SM (Sn, an,Wn+1). Note that the value function V

n−1
(s) remains

constant within this inner loop. After executing this loop, we take the series of observations
v̂n,1, . . . , v̂n,M and use them to update V

n−1
(s) to obtain V

n
(s). Typically, V

n
(s) does

not depend on V
n−1

(s), other than to influence the calculation of v̂n,m. If M is large
enough, V

n
(s) will represent an accurate approximation of the value of being in state s

while following the policy in equation (18.7). In fact, it is specifically because of this
ability to approximate a policy that approximate policy iteration is emerging as a powerful
algorithmic strategy for approximate dynamic programming. However, the cost of using
the inner policy evaluation loop can be significant, and for this reason approximate value
iteration and its variants remain popular.

18.2 APPROXIMATE VALUE ITERATION AND Q-LEARNING USING
LOOKUP TABLES

Arguably the most natural and elementary approach for approximate dynamic programming
uses approximate value iteration. In this section we explore variations of approximate value
iteration and a closely related algorithm widely known as Q-learning.

18.2.1 Value iteration using a pre-decision state variable

Classical value iteration (for a finite-horizon problem) estimates the value of being in a
specific state Snt

v̂nt = max
at

(
C(Snt , at) + γE{Vt+1(St+1)|Snt }

)
, (18.8)

where St+1 = SM (Snt , xt,W
n
t+1), and Snt is the state that we are in at time t, iteration n.

We assume that we are following a sample pathωn, where we computeWn
t+1 = Wt+1(ωn).

After computing v̂nt , we update the value function using the standard equation

V
n

t (Snt ) = (1− αn−1)V
n−1

(Snt ) + αn−1v̂
n
t . (18.9)

If we sample states at random (rather than following the trajectory) and repeat equations
(18.8) and (18.9), we will eventually converge to the correct value of being in each state.
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Step 0. Initialization:

Step 0a. Initialize V 0
t , t ∈ T .

Step 0b. Set n = 1.

Step 0c. Initialize S0.

Step 1. Sample ωn.

Step 2. Do for t = 0, 1, . . . , T :

Step 2a: Choose Ω̂n ⊆ Ω and solve:

v̂nt = max
at

(
Ct(S

n−1
t , at) + γ

∑
ω̂∈Ω̂n

pn(ω̂)V
n−1
t+1 (SM (Sn−1

t , at,Wt+1(ω̂))
)

and let ant be the value of at that solves the maximization problem.
Step 2b: Compute:

Snt+1 = SM (Snt , a
n
t ,Wt+1(ωn)).

Step 2c. Update the value function:

V
n
t ← UV (V

n−1
t , Snt , v̂

n
t )

Step 3. Increment n. If n ≤ N , go to Step 1.

Step 4. Return the value functions (V
n
t )Tt=1.

Figure 18.1 Approximate dynamic programming using a pre-decision state variable.

Note that we are assuming a finite-horizon model, and that we can compute the expectation
exactly. When we can compute the expectation exactly, this is very close to classical value
iteration, with the only exception that we are not looping over all the states at every iteration.

One reason to use the pre-decision state variable is that for some problems, computing
the expectation is easy. For example, Wt+1 might be a binomial random variable (did a
customer arrive, did a component fail) which makes the expectation especially easy. If this
is not the case, then we have to approximate the expectation. For example, we might use

v̂nt = max
at

C(Snt , at) + γ
∑
ω̂∈Ω̂n

pn(ω̂)V
n−1

t+1 (SM (Snt , at,Wt+1(ω̂)))

 . (18.10)

Either way, using a lookup table representation we can update the value of being in state
Snt using

V
n

t (Snt ) = (1− αn−1)V
n−1

t (Snt ) + αn−1v̂
n
t .

Keep in mind that if we can compute an expectation (or if we approximate it using a
large sample Ω̂), then the stepsize should be much larger than when we are using a single
sample realization (as we did with the post-decision formulation). An outline of the overall
algorithm is given by figure 18.1.

At this point a reasonable question to ask is: Does this algorithm work? The answer is
possibly, but not in general. Before we get an algorithm that will work (at least in theory),
we need to deal with what is known as the exploration-exploitation problem.
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1 2

-$5

$20

$0 $0

Figure 18.2 Two-state dynamic program, with transition contributions.

18.2.2 On-policy, off-policy and the exploration-exploitation problem

The algorithm in figure 18.1 uses a kind of default logic for determining the next state to
visit. Specifically, we solve the optimization problem in equation (18.10) and from this,
we not only determine v̂nt which we use to update the value of being in a state, we also
determine an action ant . Then, in Step 2b of the algorithm, we use this action to help
determine the next state to visit using the transition function

Snt+1 = SM (Snt , a
n
t ,W

n
t+1).

Using the action ant , which is the action determined by the policy we are trying to optimize,
means that we are using a concept known as trajectory following . The policy that deter-
mines the action we would like to take is known in the reinforcement learning community
as the target policy. When we are optimizing policies, what we are doing is trying to
improve the target policy. When we are approximating the value of being in a state while
following a fixed policy, we are evaluating the target policy, which is sometimes referred
to as the learning policy.

We can encounter serious problems if we use the target policy to determine the next
state to visit. Consider the two-stage dynamic program illustrated in figure 18.2. Assume
we start in state 1, and further assume that we initialize the value of being in each of the
two states to V

0
(1) = V

0
(2) = 0. We see a negative contribution of -$5 to move from

state 1 to 2, but a contribution of $0 to stay in state 1. We do not see the contribution of
$20 to move from state 2 back to state 1, to it appears to be best to stay in state 1.

We need some way to force the system to visit state 2, so that we discover the contribution
of $20. One way to do this is to adopt logic that forces the system to explore by choosing
actions at random. For example, we may flip a coin and choose an action with probability
ε, or choose the action ant determined by the target policy with probability 1 − ε. This
policy is known in the literature as epsilon greedy.

The policy that determines which action to use to determine the next state to visit, if it
is different than the target policy, is known as the behavior policy or the sampling policy.
The name “behavior policy” arises when we are modeling a real system such as a human
playing a game or a factory assembling components. The behavior policy is, literally, the
policy that describes how the system behaves. By contrast, if we are simply designing an
algorithm, we feel that the term “sampling policy” more accurately describes the actual
function being served by this policy. We also note that while it is common to implement a
sampling policy through the choice of action, we may also simply choose a state at random.



APPROXIMATE VALUE ITERATION ANDQ-LEARNING USING LOOKUP TABLES 597

If the target policy also determines the next state we visit, then we say that the algorithm
is on policy. If the sampling policy is different than the target policy, then we say that the
algorithm is off policy, which means that the policy that we use to determine the next state
to visit does not follow the policy we are trying to optimize.

In the remainder of this chapter, we are going to make a distinction between on-policy
and off-policy algorithms.

18.2.3 Q-learning

One of the earliest and most widely studied algorithms in the reinforcement learning
literature is known as Q-learning. The name is derived simply from the notation used in
the algorithm, and appears to have initiated the tradition of naming algorithms after the
notation.

To motivate Q-learning, return for the moment to the classical way of making decisions
using dynamic programming. Normally we would want to solve

ant = arg max
at∈Ant

{
Ct(S

n
t , at) + γEV n−1

t+1 (St+1(Snt , at,Wt+1)))
}
. (18.11)

Solving equation (18.11) can be problematic for two different reasons. The first is that
we may not be able to compute the expectation because it is computationally too complex
(the second curse of dimensionality). The second is that we may simply not have the
information we need to compute the expectation. This might happen if a) we do not know
the probability distribution of the random information or b) we may not know the transition
function. In either of these cases, we say that we do not “know the model” and we need
to use a “model-free” formulation. When we can compute the expectation, which means
we have the transition function and we know the probability distribution, then we are using
what is known as a “model-based” formulation. Many authors equate “model-based” with
knowing the one-step transition matrix, but this ignores the many problems where we know
the transition function, we know the probability law for the exogenous information, but we
simply cannot compute the transition function either because the state space is too large (or
continuous), or the exogenous information is multidimensional.

Earlier, we circumvented this problem by approximating the expectation by using a
subset of outcomes (see equation (18.10)), but this can be computationally clumsy for
many problems. One thought is to solve the problem for a single sample realization

ant = arg max
at∈Ant

(
Ct(S

n
t , at) + γV

n−1

t+1 (St+1(Snt , at,Wt+1(ωn)))
)
. (18.12)

The problem is that this means we are choosing at for a particular realization of the future
information Wt+1(ωn). If we use the same sample realization of Wt+1(ωn) to make the
decision that will actually happen (when we step forward in time), then this is what is
known as cheating (peeking into the future), which can seriously distort the behavior of
the system. If we use a single sample realization for Wt+1(ω) that is different than the
one we use when we simulate forward, then this is simply unlikely to produce good results
(imagine computing averages based on a single observation).

What if we instead choose the decision ant first, then observe Wn
t+1 (so we are not using

this information when we choose our action) and then compute the cost? Let the resulting
cost be computed using

q̂nt (St, at) = C(St, at) + γmax
at+1

V
n−1

t+1 (SM (Snt , at,Wt+1(ωn))). (18.13)
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Step 0. Initialization:

Step 0a. Initialize an approximation for the value function Q̄0
t (St, at) for all states St and decisions

at ∈ At, t = {0, 1, . . . , T}.
Step 0b. Set n = 1.

Step 0c. Initialize S1
0 .

Step 1. Choose a sample path ωn.

Step 2. Do for t = 0, 1, . . . , T :

Step 2a: Determine the action using ε-greedy. With probability ε, choose an action an at random
fromA. With probability 1− ε, choose an using

ant = arg max
at∈At

Q̄n−1
t (Snt , at).

Step 2b. SampleWn
t+1 = Wt+1(ωn) and compute the next stateSnt+1 = SM (Snt , a

n
t ,W

n
t+1).

Step 2c. Compute:

q̂nt = C(Snt , a
n
t ) + γ max

at+1∈At+1

Q̄n−1
t+1 (Snt+1, at+1).

Step 2d. Update Q̄n−1
t and V n−1

t using:

Q̄nt (Snt , a
n
t ) = (1− αn−1)Q̄n−1

t (Snt , a
n
t ) + αn−1q̂

n
t

Step 3. Increment n. If n ≤ N go to Step 1.

Step 4. Return the Q-factors (Q̄nt )Tt=1.

Figure 18.3 A Q-learning algorithm.

We could now smooth these values to obtain

Q̄nt (St, at) = (1− αn−1)Q̄n−1
t (Snt , a

n
t ) + αn−1q̂

n
t (St, at).

Not surprisingly, we can compute the value of being in a state from the Q-factors using

V
n

t (St) = max
a

Q̄nt (St, a). (18.14)

If we combine (18.14) and (18.13), we obtain

q̂nt = C(St, at) + γmax
at+1

Q̄n−1(St+1, at+1),

where St+1 = SM (Snt , at,Wt+1(ωn)) is the next state resulting from action at and the
sampled information Wt+1(ωn).

The functions Qt(St, at) are known as Q-factors and they capture the value of being in
a state and taking a particular action. We can now choose an action by solving

ant = arg max
at∈Ant

Q̄n−1
t (Snt , at). (18.15)

This strategy is known as Q-learning. The complete algorithm is summarized in figure
18.3.

A variation of Q-learning is known as “Sarsa.” Imagine that we start in a state s and
choose action a. After this, we observe a reward r and the next state s′. Finally, use some
policy to choose the next action a′. This sequence forms “sarsa.” A common strategy,
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given the initial state s, is to choose the action a and the action a′ (given the state s′) using
an epsilon-greedy strategy. When a and a′ are chosen using the same policy, the algorithm
is referred to as on-policy. Alternatively, we may choose the initial action a at random, but
then choose a′ greedily, which is to say

a′t+1 = arg max
a′

Q̄n−1
t+1 (S′, a′).

If the policy used to choose a is different than the policy used to choose a′, then we say
that the algorithm is off-policy.

Many authors describe Q-learning as a technique for “model-free” dynamic program-
ming, where we either do not know the transition function or the probability law of the
exogenous information. The key idea is that we can choose an action using (18.15) without
needing to directly approximate the future in any way. After choosing an action an (or
ant ), we can then simply observe the next state we transition to, without an explicit model
of how we got there.

18.2.4 Value iteration using a post-decision state variable

For the many applications that lend themselves to a compact post-decision state variable,
it is possible to adapt approximate value iteration to value functions estimated around the
post-decision state variable. At the heart of the algorithm we choose actions (and estimate
the value of being in state Snt ) using

v̂nt = arg max
at∈At

(
C(Snt , at) + γV

n−1

t (SM,a(Snt , at))
)
.

The distinguishing feature when we use the post-decision state variable is that the maxi-
mization problem is now deterministic. The key step is how we update the value function
approximation. Instead of using v̂nt to update a pre-decision value function approximation
V
n−1

(Snt ), we use v̂nt to update a post-decision value function approximation around the
previous post-decision state Sa,nt−1. This is done using

V
n

t−1(Sa,nt−1) = (1− αn−1)V
n−1

t−1 (Sa,nt−1) + αn−1v̂
n
t .

The post-decision state not only allows us to solve deterministic optimization problems,
there are many applications where the post-decision state has either the same dimensionality
as the pre-decision state, or, for some applications, a much lower dimensionality.

A complete summary of the algorithm is given in figure 18.4.
Q-learning shares certain similarities with dynamic programming using a post-decision

value function. In particular, both require the solution of a deterministic optimization
problem to make a decision. However, Q-learning accomplishes this goal by creating an
artificial post-decision state given by the state/action pair (S, a). We then have to learn the
value of being in (S, a), rather than the value of being in state S alone (which is already
very hard for most problems).

If we compute the value function approximation V
n
(Sa) around the post-decision state

Sa = SM,a(S, a), we can create Q-factors directly from the contribution function and the
post-decision value function using

Q̄n(S, a) = C(S, a) + γV
n

t (SM,a(S, a)).

Viewed this way, approximate value iteration using value functions estimated around a
post-decision state variable is equivalent to Q-learning. However, if the post-decision state
is compact, then estimating V (Sa) is much easier than estimating Q̄(S, a).
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Step 0. Initialization:

Step 0a. Initialize an approximation for the value function V 0
t (S

a
t ) for all post-decision states Sat ,

t = {0, 1, . . . , T}.
Step 0b. Set n = 1.

Step 0c. Initialize Sa,10 .

Step 1. Choose a sample path ωn.

Step 2. Do for t = 0, 1, . . . , T :

Step 2a: Determine the action using ε-greedy. With probability ε, choose an action an at random
fromA. With probability 1− ε, choose an using

v̂nt = arg max
at∈At

(
C(Snt , at) + γV

n−1
t (SM,a(Snt , at))

)
.

Let ant be the action that solves the maximization problem.

Step 2b. Update V n−1
t−1 using:

V
n
t−1(Sa,nt−1) = (1− αn−1)V

n−1
t−1 (Sa,nt−1) + αn−1v̂

n
t

Step 2c. SampleWn
t+1 = Wt+1(ωn) and compute the next stateSnt+1 = SM (Snt , a

n
t ,W

n
t+1).

Step 3. Increment n. If n ≤ N go to Step 1.

Step 4. Return the value functions (V
n
t )Tt=1.

Figure 18.4 Approximate value iteration for finite horizon problems using the post-decision state
variable.

18.2.5 Value iteration using a backward pass

Classical approximate value iteration, which is equivalent to temporal difference learning
with λ = 0 (also known as TD(0)), can be implemented using a pure forward pass, which
enhances its simplicity. However, there are problems where it is useful to simulate decisions
moving forward in time, and then updating value functions moving backward in time. This
is also known as temporal difference learning with λ = 1, but we find “backward pass” to
be more descriptive. The algorithm is depicted in figure 18.5.

In this algorithm, we step forward through time creating a trajectory of states, actions,
and outcomes. We then step backwards through time, updating the value of being in a state
using information from the same trajectory in the future. We are going to use this algorithm
to also illustrate ADP for a time-dependent, finite horizon problem. In addition, we are
going to illustrate a form of policy evaluation. Pay careful attention to how variables are
indexed.

The idea of stepping backward through time to produce an estimate of the value of
being in a state was first introduced in the control theory community under the name of
backpropagation through time (BTT). The result of our backward pass is v̂nt , which is
the contribution from the sample path ωn and a particular policy. Our policy is, quite
literally, the set of decisions produced by the value function approximation V

n−1
. Unlike

our forward-pass algorithm (where v̂nt depends on the approximation V
n−1

t (Sat )), v̂nt is a
valid, unbiased estimate of the value of being in state Snt at time t and following the policy
produced by V

n−1
.
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Step 0. Initialization:

Step 0a. Initialize V 0
t , t ∈ T .

Step 0b. Initialize S1
0 .

Step 0c. Choose an initial policy Aπ,0.

Step 0d. Set n = 1.

Step 1. Repeat for m = 1, 2, . . . ,M :

Step 1. Choose a sample path ωm.

Step 2: Do for t = 0, 1, 2, . . . , T :

Step 2a: Find

an,mt = Aπ,n−1(Snt )

Step 2b: Update the state variable

Sn,mt+1 = SM (Sn,mt , an,mt ,Wt+1(ωn)).

Step 3: Set v̂n,mT+1 = 0 and do for t = T, T − 1, . . . , 1:

v̂n,mt = C(Sn,mt , an,mt ) + γv̂n,mt+1 .

Step 4: Compute the average value from starting in state S1
0 :

v̄n0 =
1

M

M∑
m=1

v̂n,m0 .

Step 5. Update the value function approximation by using the average values:

V
n
0 ← UV (V

n−1
0 , Sa,n0 , v̄nt ).

Step 6. Update the policy

Aπ,n(S) = arg max
a∈A

(
C(Sn0 , a) + γV

n
0 (SM,a(Sn0 , a))

)
Step 6. Increment n. If n ≤ N go to Step 1.

Step 7. Return the value functions (V
n
t )Tt=1.

Figure 18.5 Double-pass version of the approximate dynamic programming algorithm for a finite
horizon problem.

We introduce an inner loop so that rather than updating the value function approximation
with a single v̂n0 , we average across a set of samples to create a more stable estimate, v̄n0 .

These two strategies are easily illustrated using our simple asset selling problem. For
this illustration, we are going to slightly simplify the model we provided earlier, where we
assumed that the change in price, p̂t, was the exogenous information. If we use this model,
we have to retain the price pt in our state variable (even the post-decision state variable).
For our illustration, we are going to assume that the exogenous information is the price
itself, so that pt = p̂t. We further assume that p̂t is independent of all previous prices (a
pretty strong assumption). For this model, the pre-decision state is St = (Rt, pt) while
the post-decision state variable is simply Sat = Rat = Rt − at which indicates whether we
are holding the asset or not. Further, St+1 = Sat since the resource transition function is
deterministic.
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t = 0 t = 1 t = 2 t = 3
Iteration αn−1 v̄0 v̂1 p̂1 a1 v̄1 v̂2 p̂2 a2 v̄2 v̂3 p̂3 a3 v̄3

0 0 0 0 0
1 1 30 30 30 1 34 34 34 1 31 31 31 1 0
2 0.50 31 32 24 0 31.5 29 21 0 29.5 30 30 1 0
3 0.3 32.3 35 35 1 30.2 27.5 24 0 30.7 33 33 1 0

Table 18.1 Illustration of a single-pass algorithm

With this model, a single-pass algorithm (approximate value iteration) is performed by
stepping forward through time, t = 1, 2, . . . , T . At time t, we first sample p̂t and we find

v̂nt = max
at∈{0,1}

(
p̂nt at + (1− at)(−ct + v̄n−1

t )
)
. (18.16)

Assume that the holding cost ct = 2 for all time periods.
Table 18.1 illustrates three iterations of a single-pass algorithm for a three-period prob-

lem. We initialize v̄0
t = 0 for t = 0, 1, 2, 3. Our first decision is a1 after we see p̂1. The

first column shows the iteration counter, while the second shows the stepsize αn−1 = 1/n.
For the first iteration, we always choose to sell because v̄0

t = 0, which means that v̂1
t = p̂1

t .
Since our stepsize is 1.0, this produces v̄1

t−1 = p̂1
t for each time period.

In the second iteration, our first decision problem is

v̂2
1 = max{p̂2

1,−c1 + v̄1
1}

= max{24,−2 + 34}
= 32,

which means a2
1 = 0 (since we are holding). We then use v̂2

1 to update v̄2
0 using

v̄2
0 = (1− α1)v̄1

0 + α1v̂
1
1

= (0.5)30.0 + (0.5)32.0

= 31.0

Repeating this logic, we hold again for t = 2 but we always sell at t = 3 since this is the
last time period. In the third pass, we again sell in the first time period, but hold for the
second time period.

It is important to realize that this problem is quite simple, and we do not have to deal
with exploration issues. If we sell, we are no longer holding the asset and the forward
pass should stop (more precisely, we should continue to simulate the process given that
we have sold the asset). Instead, even if we sell the asset, we step forward in time and
continue to evaluate the state that we are holding the asset (the value of the state where we
are not holding the asset is, of course, zero). Normally, we evaluate only the states that we
transition to (see step 2b), but for this problem, we are actually visiting all the states (since
there is, in fact, only one state that we really need to evaluate).

Now consider a double-pass algorithm. Table 18.2 illustrates the forward pass, followed
by the backward pass, where for simplicity we are going to use only a single inner iteration
(M = 1). Each line of the table only shows the numbers determined during the forward or
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t = 0 t = 1 t = 2 t = 3
Iteration Pass v̄0 v̂1 p̂1 a1 v̄1 v̂2 p̂2 a2 v̄2 v̂3 p̂3 a3 v̄3

0 0 0 0 0
1 Forward → → 30 1 → → 34 1 → → 31 1
1 Back 30 30 ← ← 34 34 ← ← 31 31 ← ← 0
2 Forward → → 24 0 → → 21 0 → → 27 1
2 Back 26.5 23 ← ← 29.5 25 ← ← 29 27 ← ← 0

Table 18.2 Illustration of a double-pass algorithm

backward pass. In the first pass, we always sell (since the value of the future is zero), which
means that at each time period the value of holding the asset is the price in that period.

In the second pass, it is optimal to hold for two periods until we sell in the last period.
The value v̂2

t for each time period is the contribution of the rest of the trajectory which, in
this case, is the price we receive in the last time period. So, since a1 = a2 = 0 followed
by a3 = 1, the value of holding the asset at time 3 is the $27 price we receive for selling in
that time period. The value of holding the asset at time t = 2 is the holding cost of -2 plus
v̂2

3 , giving v̂2
2 = −2 + v̂2

3 = −2 + 27 = 25. Similarly, holding the asset at time 1 means
v̂2

1 = −2 + v̂2
2 = −2 + 25 = 23. The smoothing of v̂nt with v̄n−1

t−1 to produce v̄nt−1 is the
same as for the single pass algorithm.

The value of implementing the double-pass algorithm depends on the problem. For
example, imagine that our asset is an expensive piece of replacement equipment for a
jet aircraft. We hold the part in inventory until it is needed, which could literally be
years for certain parts. This means there could be hundreds of time periods (if each time
period is a day) where we are holding the part. Estimating the value of the part now
(which would determine whether we order the part to hold in inventory) using a single-pass
algorithm could produce extremely slow convergence. A double-pass algorithm would
work dramatically better. But if the part is used frequently, staying in inventory for only a
few days, then the single-pass algorithm will work fine.

18.3 STATISTICAL BIAS IN THE MAX OPERATOR

A subtle type of bias arises when we are optimizing because we are taking the maximum
over a set of random variables. In algorithms such as Q-learning or approximate value
iteration, we are computing q̂nt by choosing the best of a set of decisions which depend on
Q̄n−1(S, a). The problem is that the estimates Q̄n−1(S, a) are random variables. In the
best of circumstances, assume that Q̄n−1(S, a) is an unbiased estimate of the true value
Vt(S

a) of being in (post-decision) state Sa. Because it is still a statistical estimate with
some degree of variation, some of the estimates will be too high while others will be too
low. If a particular action takes us to a state where the estimate just happens to be too high
(due to statistical variation), then we are more likely to choose this as the best action and
use it to compute q̂n.

To illustrate, assume we have to choose an action a ∈ A, where C(S, a) is the contribu-
tion earned by using decision a (given that we are in state S) which then takes us to state
Sa(S, a) where we receive an estimated value V (Sa(S, a)). Normally, we would update
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the value of being in state S by computing

v̂n = max
a∈A

(
C(S, a) + V

n−1
(Sa(S, a))

)
.

We would then update the value of being in state S using our standard update formula

V
n
(S) = (1− αn−1)V

n−1
(S) + αn−1v̂

n.

Since V
n−1

(Sa(S, a)) is a random variable, sometimes it will overestimate the true value
of being in state Sa(S, a) while other times it will underestimate the true value. Of course,
we are more likely to choose an action that takes us to a state where we have overestimated
the value.

We can quantify the error due to statistical bias as follows. Fix the iteration counter n
(so that we can ignore it), and let

Ua = C(S, a) + V (Sa(S, a))

be the estimated value of using action a. The statistical error, which we represent as β, is
given by

β = E{max
a∈A

Ua} −max
a∈A

EUa. (18.17)

The first term on the right-hand side of (18.17) is the expected value of V (S), which is
computed based on the best observed value. The second term is the correct answer (which
we can only find if we know the true mean). We can get an estimate of the difference by
using a strategy known as the “plug-in principle.” We assume that EUa = V (Sa(S, a)),
which means that we assume that the estimates V (Sa(S, a)) are correct, and then try to
estimate E{maxa∈A Ua}. Thus, computing the second term in (18.17) is easy.

The challenge is computing E{maxa∈A Ua}. We assume that while we have been com-
puting V (Sa(S, a)), we have also been computing σ̄2(a) = Var(Ua) = Var

(
V (Sa(S, a))

)
.

Using the plug-in principle, we are going to assume that the estimates σ̄2(a) represent the
true variances of the value function approximations. Computing E{maxa∈A Ua} for more
than a few decisions is computationally intractable, but we can use a technique called
the Clark approximation to provide an estimate. This strategy finds the exact mean and
variance of the maximum of two normally distributed random variables, and then assumes
that this maximum is also normally distributed. Assume the decisions can be ordered so
that A = {1, 2, . . . , |A|}. Now let

Ū2 = max{U1, U2}.

We can compute the mean and variance of Ū2 as follows. First, we temporarily define α
using

α2 = σ2
1 + σ2

2 − 2σ1σ2ρ12

where σ2
1 = Var(U1), σ2

2 = Var(U2), and ρ12 is the correlation coefficient between U1 and
U2 (we allow the random variables to be correlated, but shortly we are going to approximate
them as being independent). Next find

z =
µ1 − µ2

α
.
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where µ1 = EU1 and µ2 = EU2. Now let Φ(z) be the cumulative standard normal
distribution (that is, Φ(z) = P[Z ≤ z] where Z is normally distributed with mean 0 and
variance 1), and let φ(z) be the standard normal density function. If we assume that U1 and
U2 are normally distributed (a reasonable assumption when they represent sample estimates
of the value of being in a state), then it is a straightforward exercise to show that

EŪ2 = µ1Φ(z) + µ2Φ(−z) + αφ(z) (18.18)
Var(Ū2) =

[
(µ2

1 + σ2
1)Φ(z) + (µ2

1 + σ2
2)Φ(−z) + (µ1 + µ2)αφ(z)

]
−(EŪ2)2. (18.19)

Now assume that we have a third random variable, U3, where we wish to find
Emax{U1, U2, U3}. The Clark approximation solves this by using

Ū3 = Emax{U1, U2, U3}
≈ Emax{U3, Ū2},

where we assume that Ū2 is normally distributed with mean given by (18.18) and variance
given by (18.19). For our setting, it is unlikely that we would be able to estimate the
correlation coefficient ρ12 (or ρ23), so we are going to assume that the random estimates
are independent. This idea can be repeated for large numbers of decisions by using

Ūa = Emax{U1, U2, . . . , Ua}
≈ Emax{Ua, Ūa−1}.

We can apply this repeatedly until we find the mean of Ū|A|, which is an approximation of
E{maxa∈A Ua}. This, in turn, allows us to compute an estimate of the statistical bias β
given by equation (18.17).

Figure 18.6 plots β = Emaxa Ua−maxa EUa as it is being computed for 100 decisions,
averaged over 30 sample realizations. The standard deviation of each Ua was fixed at
σ = 20. The plot shows that the error increases steadily until the setA reaches about 20 or
25 decisions, after which it grows much more slowly. Of course, in an approximate dynamic
programming application, each Ua would have its own standard deviation which would
tend to decrease as we sample a decision repeatedly (a behavior that the approximation
above captures nicely).

This brief analysis suggests that the statistical bias in the max operator can be significant.
However, it is highly data dependent. If there is a single dominant decision, then the error
will be negligible. The problem only arises when there are many (as in 10 or more)
decisions that are competitive, and where the standard deviation of the estimates is not
small relative to the differences between the means. Unfortunately, this is likely to be the
case in most large-scale applications (if a single decision is dominant, then it suggests that
the solution is probably obvious).

The relative magnitudes of value iteration bias over statistical bias will depend on the
nature of the problem. If we are using a pure forward pass (TD(0)), and if the value of being
in a state at time t reflects rewards earned over many periods into the future, then the value
iteration bias can be substantial (especially if the stepsize is too small). Value iteration bias
has long been recognized in the dynamic programming community. By contrast, statistical
bias appears to have received almost no attention, and as a result we are not aware of any
research addressing this problem. We suspect that statistical bias is likely to inflate value
function approximations fairly uniformly, which means that the impact on the policy may
be quite small. However, if the goal is to obtain the value function itself (for example, to
estimate the value of an asset or a contract), then the bias can distort the results.
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Figure 18.6 Emaxa Ua − maxa EUa for 100 decisions, averaged over 30 sample realizations.
The standard deviation of all sample realizations was 20.

Step 0. Initialization:

Step 0a. Initialize V 0.

Step 0b. Initialize S1.

Step 0c. Set n = 1.

Step 1. Solve

v̂n = max
a∈An

(
C(Sn, a) + γ

∑
f

θn−1
f φf (SM,a(Sn, a))

)
(18.20)

and let an be the value of a that solves (18.20).

Step 2. Update the value function recursively using equations (3.57) -(3.61) from chapter 17 to obtain
θn.

Step 3. Choose a sample Wn+1 = W (ωn+1) and determine the next state using some policy such as

Sn = SM (Sn, an,Wn+1).

Step 3. Increment n. If n ≤ N go to Step 1.

Step 4. Return the value functions V N .

Figure 18.7 Approximate value iteration using a linear model.

18.4 APPROXIMATE VALUE ITERATION USING LINEAR MODELS

Approximate value iteration, Q-learning and temporal difference learning (with λ = 0) are
clearly the simplest methods for updating an estimate of the value of being in a state. Linear
models are the simplest methods for approximating a value function. Not surprisingly, then,
there has been considerable interest in putting these two strategies together.
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Figure 18.7 depicts a basic adaptation of linear models updated using recursive least
squares in an approximate value iteration. However, not only are there no convergence
proofs for this algorithm, there are examples that show that it may not diverge, even for
problems where the linear approximation has the potential for identifying the correct value
function. As a result, approximate value iteration using a linear model is not a sound
algorithmic strategy.

Despite the potentially poor performance of this algorithm, it remains a popular strategy
because it is so easy to implement. In addition, while it may not work, on the other hand it
might work quite well! The important point here is that it is a strategy that may be worth
trying, but caution needs to be used. Given these observations, this section is aimed at
providing some guidance to improve the chances that the algorithm will work.

The most important step whenever a linear model is used, regardless of the setting, is to
choose the basis functions carefully so that the linear model has a chance of representing
the true value function accurately. The biggest strength of a linear model is also its biggest
weakness. A large error can distort the update of θn which then impacts the accuracy of the
entire approximation. Since the value function approximation determines the policy (see
Step 1), a poor approximation leads to poor policies, which then distorts the observations
v̂n. This can be a vicious circle from which the algorithm may never recover.

A second step is in the specific choice of recursive least squares updating. Figure 18.7
refers to the classic recursive least squares updating formulas in equations (3.57)-(3.61).
However, buried in these formulas is the implicit use of a stepsize rule of 1/n. We show
in chapter 6 that a stepsize 1/n is particularly bad for approximate value iteration (as
well as Q-learning and TD(0) learning). While this stepsize can work well (indeed, it is
optimal) for stationary data, it is very poorly suited for the backward learning that arises
in approximate value iteration. Fortunately, the problem is easily fixed if we replace the
updating equations for Bn and γ, which are given as

Bn = Bn−1 − 1

γn
(Bn−1φn(φn)TBn−1),

γn = 1 + (φn)TBn−1φn,

in equations (3.60) and (3.61) with

Bn =
1

λ

(
Bn−1 − 1

γn
(Bn−1φn(φn)TBn−1)

)
,

γn = λ+ (φn)TBn−1φn,

in equations (3.63) and (3.64). Here, λ discounts older errors. λ = 1 produces the original
recursive formulas. When used with approximate value iteration, it is important to use
λ < 1. In section 3.8.2, we argue that if you choose a stepsize rule for αn such as
αn = a/(a+ n− 1), you should set λn at iteration n using

λn = αn−1

(
1− αn
αn

)
.

The last issue that needs special care is the rule for determining the next state to visit.
In step 3, we use Sn = SM (Sn, an,W (ωn)) which we are using what we think is our best
action to determine the next state. This strategy is known in the reinforcement learning
community as an “on-policy” algorithm, which means that the action that is used to update
the value of being in a state is also used to determine the next state to visit. It is very easy
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to create examples where this strategy will not work, and it is further complicated if there
are structural problems with our linear model.

The issue of choosing the next state to visit is known as the exploration vs. exploitation
problem. We first encountered this in chapter 7. How it should be solved is problem
dependent. If you have a small action space, a standard strategy is to use ε-greedy, which
we first mentioned briefly in chapter 11. In this strategy, we choose an action at random
with probability ε, or use our optimal action an from step 1 with probability 1 − ε. If the
state variable is continuous, we might simply add a noise term to force an exploration to
nearby states. See chapter 7 for a thorough discussion of the issues and other strategies that
can be used.

Approximate value iteration using a linear architecture has to be used with extreme care.
Provable convergence results are rare, and there are examples of divergence. This does not
mean the strategy should not be used, but its performance will be very problem dependent.
It is particularly valuable to design some sort of benchmark (such as using lookup tables
for a simplified version of the problem) against which your results can be compared. If
your algorithm appears successful (for example, it outperforms a human, or provides high
value), then you have a success. But if it performs poorly, it is impossible to know if this is
the best you can do, or if your algorithm simply is not finding a good policy. It is precisely
because of this lack of convergence guarantees that the research community has devoted
increasing attention to approximate policy iteration.

18.4.1 Illustrations using regression models

There are many problems where we can exploit structure in the state variable, allowing
us to propose functions characterized by a small number of parameters which have to be
estimated statistically. Section 3.6.3 represented one version where we had a parameter for
each (possibly aggregated) state. The only structure we assumed was implicit in the ability
to specify a series of one or more aggregation functions.

The remainder of this section illustrates the use of regression models in specific appli-
cations. The examples use a specific method for estimating the parameter vector θ that will
typically prove to be somewhat clumsy in practice.

Pricing an American option
Consider the problem of determining the value of an American-style put option which gives
us the right to sell an asset (or contract) at a specified price at any of a set of discrete time
periods. For example, we might be able to exercise the option on the last day of the month
over the next 12 months.

Assume we have an option that allows us to sell an asset at $1.20 at any of four time
periods. We assume a discount factor of 0.95 to capture the time value of money. If we wait
until time period 4, we must exercise the option, receiving zero if the price is over $1.20.
At intermediate periods, however, we may choose to hold the option even if the price is
below $1.20 (of course, exercising it if the price is above $1.20 does not make sense). Our
problem is to determine whether to hold or exercise the option at the intermediate points.

From history, we have found 10 samples of price trajectories which are shown in table
18.3.

If we wait until time period 4, our payoff is shown in table 18.4, which is zero if the
price is above 1.20, and 1.20− p4 for prices below $1.20.

At time t = 3, we have access to the price history (p1, p2, p3). Since we may not be
able to assume that the prices are independent or even Markovian (where p3 depends only
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Stock prices

Time period
Outcome 1 2 3 4

1 1.21 1.08 1.17 1.15

2 1.09 1.12 1.17 1.13

3 1.15 1.08 1.22 1.35

4 1.17 1.12 1.18 1.15

5 1.08 1.15 1.10 1.27

6 1.12 1.22 1.23 1.17

7 1.16 1.14 1.13 1.19

8 1.22 1.18 1.21 1.28

9 1.08 1.11 1.09 1.10

10 1.15 1.14 1.18 1.22

Table 18.3 Ten sample realizations of prices over four time periods

on p2), the entire price history represents our state variable, along with an indicator that
tells us if we are still holding the asset. We wish to predict the value of holding the option
at time t = 4. Let V4(S4) be the value of the option if we are holding it at time 4, given the
state (which includes the price p4) at time 4. Now let the conditional expectation at time 3
be

V 3(S3) = E{V4(S4)|S3}.

Our goal is to approximate V 3(S3) using information we know at time 3. We propose a
linear regression of the form

Y = θ0 + θ1X1 + θ2X2 + θ3X3,

where

Y = V4,

X1 = p2,

X2 = p3,

X3 = (p3)2.

The variables X1, X2 and X3 are our basis functions. Keep in mind that it is important
that our explanatory variables Xi must be a function of information we have at time t = 3,
whereas we are trying to predict what will happen at time t = 4 (the payoff). We would
then set up the data matrix given in table 18.5.

We may now run a regression on this data to determine the parameters (θi)
3
i=0. It makes

sense to consider only the paths which produce a positive value in the fourth time period,
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Option value at t = 4

Time period
Outcome 1 2 3 4

1 - - - 0.05

2 - - - 0.07

3 - - - 0.00

4 - - - 0.05

5 - - - 0.00

6 - - - 0.03

7 - - - 0.01

8 - - - 0.00

9 - - - 0.10

10 - - - 0.00

Table 18.4 The payout at time 4 if we are still holding the option

since these represent the sample paths where we are most likely to still be holding the
asset at the end. The linear regression is only an approximation, and it is best to fit the
approximation in the region of prices which are the most interesting (we could use the same
reasoning to include some “near misses”). We only use the value function to estimate the
value of holding the asset, so it is this part of the function we wish to estimate. For our
illustration, however, we use all 10 observations, which produces the equation

V 3 ≈ 0.0056− 0.1234p2 + 0.6011p3 − 0.3903(p3)2.

V 3 is an approximation of the expected value of the price we would receive if we hold
the option until time period 4. We can now use this approximation to help us decide what
to do at time t = 3. Table 18.6 compares the value of exercising the option at time 3
against holding the option until time 4, computed as γV 3(S3). Taking the larger of the two
payouts, we find, for example, that we would hold the option given samples 1-4, 6, 8, and
10, but would sell given samples 5, 7, and 9.

We can repeat the exercise to estimate V 2(St). This time, our dependent variable
“Y ” can be calculated two different ways. The simplest is to take the larger of the
two columns from table 18.6 (marked in bold). So, for sample path 1, we would have
Y1 = max{.03, 0.03947} = 0.03947. This means that our observed value is actually
based on our approximate value function V 3(S3).

An alternative way of computing the observed value of holding the option in time 3 is
to use the approximate value function to determine the decision, but then use the actual
price we receive when we eventually exercise the option. Using this method, we receive
0.05 for the first sample path because we decide to hold the asset at time 3 (based on our
approximate value function) after which the price of the option turns out to be worth 0.05.
Discounted, this is worth 0.0475. For sample path 2, the option proves to be worth 0.07
which discounts back to 0.0665 (we decided to hold at time 3, and the option was worth



APPROXIMATE VALUE ITERATION USING LINEAR MODELS 611

Regression data

Independent variables Dependent variable
Outcome X1 X2 X3 Y

1 1.08 1.17 1.3689 0.05

2 1.12 1.17 1.3689 0.07

3 1.08 1.22 1.4884 0.00

4 1.12 1.18 1.3924 0.05

5 1.15 1.10 1.2100 0.00

6 1.22 1.23 1.5129 0.03

7 1.44 1.13 1.2769 0.01

8 1.18 1.21 1.4641 0.00

9 1.11 1.09 1.1881 0.10

10 1.14 1.18 1.3924 0.00

Table 18.5 The data table for our regression at time 3

0.07 at time 4). For sample path 5 the option is worth 0.10 because we decided to exercise
at time 3.

Regardless of which way we compute the value of the problem at time 3, the remainder
of the procedure is the same. We have to construct the independent variables “Y ” and
regress them against our observations of the value of the option at time 3 using the price
history (p1, p2). Our only change in methodology would occur at time 1 where we would
have to use a different model (because we do not have a price at time 0).

Playing “lose tic-tac-toe”
The game of “lose tic-tac-toe” is the same as the familiar game of tic-tac-toe, with the
exception that now you are trying to make the other person get three in a row. This nice
twist on the popular children’s game provides the setting for our next use of regression
methods in approximate dynamic programming.

Unlike our exercise in pricing options, representing a tic-tac-toe board requires capturing
a discrete state. Assume the cells in the board are numbered left to right, top to bottom as
shown in figure 18.8a. Now consider the board in figure 18.8b. We can represent the state
of the board after the tth play using

Sti =


1 if cell i contains an “X,”
0 if cell i is blank,
−1 if cell i contains an ”O,”

St = (Sti)
9
i=1.

We see that this simple problem has up to 39 = 19, 683 states. While many of these states
will never be visited, the number of possibilities is still quite large, and seems to overstate
the complexity of the game.
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Rewards

Decision
Outcome Exercise Hold

1 0.03 0.04155 ×.95 = 0.03947

2 0.03 0.03662 ×.95 = 0.03479

3 0.00 0.02397 ×.95 = 0.02372

4 0.02 0.03346 ×.95 = 0.03178

5 0.10 0.05285 ×.95 = 0.05021

6 0.00 0.00414 ×.95 = 0.00394

7 0.07 0.00899 ×.95 = 0.00854

8 0.00 0.01610 ×.95 = 0.01530

9 0.11 0.06032 ×.95 = 0.05731

10 0.02 0.03099 ×.95 = 0.02944

Table 18.6 The payout if we exercise at time 3, and the expected value of holding based on
our approximation. The best decision is indicated in bold.

We quickly realize that what is important about a game board is not the status of every
cell as we have represented it. For example, rotating the board does not change a thing, but
it does represent a different state. Also, we tend to focus on strategies (early in the game
when it is more interesting) such as winning the center of the board or a corner. We might
start defining variables (basis functions) such as

φ1(St) = 1 if there is an “X” in the center of the board, 0 otherwise,
φ2(St) = The number of corner cells with an “X,”
φ3(St) = The number of instances of adjacent cells with an “X” (horizontally,

vertically, or diagonally).

1 2 3
4 5 6
7 8 9

X
X O O
O X O

18.8a 18.8b

Figure 18.8 Some tic-tac-toe boards. (18.8a) Our indexing scheme. (18.8b) Sample board.
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There are, of course, numerous such functions we can devise, but it is unlikely that we
could come up with more than a few dozen (if that) which appeared to be useful. It is
important to realize that we do not need a value function to tell us to make obvious moves.

Once we form our basis functions, our value function approximation is given by

V t(St) =
∑
f∈F

θtfφf (St).

We note that we have indexed the parameters by time (the number of plays) since this might
play a role in determining the value of the feature being measured by a basis function, but
it is reasonable to try fitting a model where θtf = θf . We estimate the parameters θ by
playing the game (and following some policy) after which we see if we won or lost. We let
Y n = 1 if we won the nth game, 0 otherwise. This also means that the value function is
trying to approximate the probability of winning if we are in a particular state.

We may play the game by using our value functions to help determine a policy. Another
strategy, however, is simply to allow two people (ideally, experts) to play the game and use
this to collect observations of states and game outcomes. This is an example of supervised
learning. If we lack a “supervisor” then we have to depend on simple strategies combined
with the use of slowly learned value function approximations. In this case, we also have
to recognize that in the early iterations, we are not going to have enough information to
reliably estimate the coefficients for a large number of basis functions.

18.4.2 A geometric view of basis functions*

For readers comfortable with linear algebra, we can obtain an elegant perspective on the
geometry of basis functions. In section 3.7.1, we found the parameter vector θ for a
regression model by minimizing the expected square of the errors between our model and
a set of observations. Assume now that we have a “true” value function V (s) which gives
the value of being in state s, and let p(s) be the probability of visiting state s. We wish to
find the approximate value function that best fits V (s) using a given set of basis functions
(φf (s))f∈F . If we minimize the expected square of the errors between our approximate
model and the true value function, we would want to solve

min
θ
F (θ) =

∑
s∈S

p(s)

V (s)−
∑
f∈F

θfφf (s)

2

, (18.21)

where we have weighted the error for state s by the probability of actually being in state
s. Our parameter vector θ is unconstrained, so we can find the optimal value by taking the
derivative and setting this equal to zero. Differentiating with respect to θf ′ gives

∂F (θ)

∂θf ′
= −2

∑
s∈S

p(s)

V (s)−
∑
f∈F

θfφf (s)

φf ′(s).

Setting the derivative equal to zero and rearranging gives∑
s∈S

p(s)V (s)φf ′(s) =
∑
s∈S

p(s)
∑
f∈F

θfφf (s)φf ′(s). (18.22)
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At this point, it is much more elegant to revert to matrix notation. Define an |S| × |S|
diagonal matrix D where the diagonal elements are the state probabilities p(s), as follows

D =


p(1)

0
...
0

0
p(2)

0
...

. . .

0
0
...

p(|S|)

 .

Let V be the column vector giving the value of being in each state

V =


V (1)
V (2)

...
V (|S|)

 .

Finally, let Φ be an |S| × |F| matrix of the basis functions given by

Φ =


φ1(1)
φ1(2)

...
φ1(|S|)

φ2(1)
φ2(2)

...
φ2(|S|)

. . .

φ|F|(1)
φ|F|(2)

...
φ|F|(|S|)

 .

Recognizing that equation (18.22) is for a particular feature f ′, with some care it is possible
to see that equation (18.22) for all features is given by the matrix equation

ΦTDV = ΦTDΦθ. (18.23)

It helps to keep in mind that Φ is an |S| × |F|matrix, D is an |S| × |S| diagonal matrix, V
is an |S|× 1 column vector, and θ is an |F|× 1 column vector. The reader should carefully
verify that (18.23) is the same as (18.22).

Now, pre-multiply both sides of (18.23) by (ΦTDΦ)−1. This gives us the optimal value
of θ as

θ = (ΦTDΦ)−1ΦTDV. (18.24)

This equation is closely analogous to the normal equations of linear regression, given by
equation (3.52), with the only difference being the introduction of the scaling matrix D
which captures the probability that we are going to visit a state.

Now, pre-multiply both sides of (18.24) by Φ, which gives

Φθ = V = Φ(ΦTDΦ)−1ΦTDV.

Φθ is, of course, our approximation of the value function, which we have denoted by V .
This, however, is the best possible value function given the set of functions φ = (φf )f∈F .
If the vector φ formed a complete basis over the space formed by the value function V (s)
and the state space S, then we would obtain Φθ = V = V . Since this is generally not
the case, we can view V as the nearest point projection (where “nearest” is defined as a
weighted measure using the state probabilities p(s)) onto the space formed by the basis
functions. In fact, we can form a projection operator Π defined by

Π = Φ(ΦTDΦ)−1ΦTD
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so that V = ΠV is the value function closest to V that can be produced by the set of basis
functions.

This discussion brings out the geometric view of basis functions (and at the same time,
the reason why we use the term “basis function”). There is an extensive literature on basis
functions that has evolved in the approximation literature.

18.5 APPROXIMATE POLICY ITERATION

One of the most important tools in the toolbox for approximate dynamic programming
is approximate policy iteration. This algorithm is neither simpler nor more elegant than
approximate value iteration, but it can offer convergence guarantees while using linear
models to approximate the value function.

In this section we review several flavors of approximate policy iteration, including

a) Finite horizon problems using lookup tables.

b) Finite horizon problems using basis functions.

c) Infinite horizon problems using basis functions.

Finite horizon problems allow us to obtain Monte Carlo estimates of the value of a policy by
simulating the policy until the end of the horizon. Note that a “policy” here always refers to
decisions that are determined by value function approximations. We use the finite horizon
setting to illustrate approximating value function approximations using lookup tables and
basis functions, which allows us to highlight the strengths and weaknesses of the transition
to basis functions.

We then present an algorithm based on least squares temporal differences (LSTD) and
contrast the steps required for finite horizon and infinite horizon problems when using basis
functions.

18.5.1 Finite horizon problems using lookup tables

A fairly general purpose version of an approximate policy iteration algorithm is given in
figure 18.9 for an infinite horizon problem. This algorithm helps to illustrate the choices
that can be made when designing a policy iteration algorithm in an approximate setting.
The algorithm features three nested loops. The innermost loop steps forward and backward
in time from an initial state Sn,0. The purpose of this loop is to obtain an estimate of the
value of a path. Normally, we would choose T large enough so that γT is quite small
(thereby approximating an infinite path). The next outer loop repeats this process M times
to obtain a statistically reliable estimate of the value of a policy (determined by V

π,n
). The

third loop, representing the outer loop, performs policy updates (in the form of updating
the value function). In a more practical implementation, we might choose states at random
rather than looping over all states.

Readers should note that we have tried to index variables in a way that shows how
they are changing (do they change with outer iteration n? inner iteration m? the forward
look-ahead counter t?). This does not mean that it is necessary to store, for example, each
state or decision for every n, m, and t. In an actual implementation, the software should
be designed to store only what is necessary.

We can create different variations of approximate policy iteration by our choice of
parameters. First, if we let T → ∞, we are evaluating a true infinite horizon policy. If
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Step 0. Initialization:

Step 0a. Initialize V π,0.

Step 0b. Set a look-ahead parameter T and inner iteration counter M .

Step 0c. Set n = 1.

Step 1. Sample a state Sn0 and then do:

Step 2. Do for m = 1, 2, . . . ,M :

Step 3. Choose a sample path ωm (a sample realization over the lookahead horizon T ).

Step 4. Do for t = 0, 1, . . . , T :

Step 4a. Compute

an,mt = arg max
at∈An,mt

(
C(Sn,mt , at) + γV

π,n−1
(SM,a(Sn,mt , at))

)
.

Step 4b. Compute

Sn,mt+1 = SM (Sn,mt , an,mt ,Wt+1(ωm)).

Step 5. Initialize v̂n,mT+1 = 0.

Step 6: Do for t = T, T − 1, . . . , 0:

Step 6a: Accumulate v̂n,m:

v̂n,mt = C(Sn,mt , an,mt ) + γv̂n,mt+1 .

Step 6b: Update the approximate value of the policy:

v̄n,m = (
m− 1

m
)v̄n,m−1 +

1

m
v̂n,m0 .

Step 8. Update the value function at Sn:

V
π,n

= (1− αn−1)v̄n−1 + αn−1v̂
n,M
0 .

Step 9. Set n = n+ 1. If n < N , go to Step 1.

Step 10. Return the value functions (V
π,N

).

Figure 18.9 A policy iteration algorithm for infinite horizon problems

we simultaneously let M → ∞, then v̄n approaches the exact, infinite horizon value of
the policy π determined by V

π,n
. Thus, for M = T = ∞, we have a Monte Carlo-based

version of exact policy iteration.
We can choose a finite value of T that produces values v̂n,m that are close to the infinite

horizon results. We can also choose finite values of M , including M = 1. When we
use finite values of M , this means that we are updating the policy before we have fully
evaluated the policy. This variant is known in the literature as optimistic policy iteration
because rather than wait until we have a true estimate of the value of the policy, we update
the policy after each sample (presumably, although not necessarily, producing a better
policy). We may also think of this as a form of partial policy evaluation, not unlike the
hybrid value/policy iteration described in section 14.6.
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Step 0. Initialization:

Step 0a. Fix the basis functions φf (s).

Step 0b. Initialize θπ,0tf for all t. This determines the policy we simulate in the inner loop.

Step 0c. Set n = 1.

Step 1. Sample an initial starting state Sn0 :

Step 2. Initialize θn,0 (if n > 1, use θn,0 = θn−1), which is used to estimate the value of policy
π produced by θpi,n. θn,0 is used to approximate the value of following policy π determined
by θπ,n.

Step 3. Do for m = 1, 2, . . . ,M :
Step 4. Choose a sample path ωm.
Step 5. Do for t = 0, 1, . . . , T :

Step 5a. Compute

an,mt = arg max
at∈An,mt

C(Sn,mt , at) + γ
∑
f

θπ,n−1
tf φf (SM,a(Sn,mt , at))

 .

Step 5b. Compute

Sn,mt+1 = SM (Sn,mt , an,mt ,Wt+1(ωm)).

Step 6. Initialize v̂n,mT+1 = 0.
Step 7: Do for t = T, T − 1, . . . , 0:

v̂n,mt = C(Sn,mt , an,mt ) + γv̂n,mt+1 .

Step 8. Update θn,m−1
t using recursive least squares to obtain θn,mt (see section 3.8).

Step 9. Set n = n+ 1. If n < N , go to Step 1.

Step 10. Return the value functions (V
π,N

).

Figure 18.10 A policy iteration algorithm for finite horizon problems using basis functions.

18.5.2 Finite horizon problems using basis functions

The simplest demonstration of approximate policy iteration using basis functions is in the
setting of a finite horizon problem. Figure 18.10 provides an adaption of the algorithm
using lookup tables when we are using basis functions. There is an outer loop over nwhere
we fix the policy using

Aπt (St) = arg max
a

C(St, a) + γ
∑
f

θπ,ntf φf (St)

 . (18.25)

We are assuming that the basis functions are not themselves time-dependent, although
they depend on the state variable St which, of course, is time dependent. The policy is
determined by the parameters θπ,ntf .

We update the policyAπt (s) by performing repeated simulations of the policy in an inner
loop that runs m = 1, . . . ,M . Within this inner loop, we use recursive least squares to
update a parameter vector θn,mtf . This step replaces step 6b in figure 18.9.

If we let M → ∞, then the parameter vector θn,Mt approaches the best possible fit
for the policy Aπt (s) determined by θπ,n−1. However, it is very important to realize that
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this is not equivalent to performing a perfect evaluation of a policy using a lookup table
representation. The problem is that (for discrete states), lookup tables have the potential
for perfectly approximating a policy, whereas this is not generally true when we use basis
functions. If we have a poor choice of basis functions, we may be able find the best possible
value of θn,m as m goes to infinity, but we may still have a terrible approximation of the
policy produced by θπ,n−1.

18.5.3 LSTD for infinite horizon problems using basis functions

We have built the foundation for approximate policy iteration using lookup tables and basis
functions for finite horizon problems. We now make the transition to infinite horizon prob-
lems using basis functions, where we introduce the dimension of projecting contributions
over an infinite horizon. There are several ways of accomplishing this (see section 17.1.2).
We use least squares temporal differencing, since it represents the most natural extension
of classical policy iteration for infinite horizon problems.

To begin, we let a sample realization of a one-period contribution, given state Sm, action
am and random information Wm+1 be given by

Ĉm = C(Sm, am,Wm+1).

As in the past, we let φm = φ(Sm) be the column vector of basis functions evaluated at
state Sm. We next fix a policy which chooses actions greedily based on a value function
approximation given by V

n
(s) =

∑
f θ

n
f φf (s) (see equation (18.25)). Imagine that we

have simulated this policy over a set of iterations i = (0, 1, . . . ,m), giving us a sequence
of contributions Ĉi, i = 1, . . . ,m. Drawing on the foundation provided in section 17.3,
we can use standard linear regression to estimate θm using

θm =

[
1

1 +m

m∑
i=0

φi(φ
i − γφi+1)T

]−1 [
1

1 +m

m∑
i=1

φiĈiφi

]
. (18.26)

As a reminder, the term φi − γφi+1 can be viewed as a simulated, sample realization of
I − γPπ , projected into the feature space. Just as we would use (I − γPπ)−1 in our basic
policy iteration to project the infinite-horizon value of a policy π (for a review, see section
14.5), we are using the term[

1

1 +m

m∑
i=0

φi(φ
i − γφi+1)T

]−1

to produce an infinite-horizon estimate of the feature-projected contribution[
1

1 +m

m∑
i=1

φiĈiφi

]
.

Equation (18.26) requires solving a matrix inverse for every observation. It is much
more efficient to use recursive least squares, which is done by using

εm = Ĉm − (φm − γφm+1)T θm−1, (18.27)

Bm = Bm−1 − Bmφm(φm − γφm+1)TBm−1

1 + (φm − γφm+1)TBm−1φm
, (18.28)

θm = φm−1 +
εmBm−1φm

1 + (φm − γφm+1)TBm−1φm
. (18.29)
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Step 0. Initialization:

Step 0a. Initialize θ0.

Step 0b. Set the initial policy:

Aπ(s|θ0) = arg max
a∈A

(
C(s, a) + γφ(SM (s, a))T θ0

)
.

Step 0c. Set n = 1.

Step 1. Do for n = 1, . . . , N .

Step 2. Initialize Sn0 .

Step 3. Do for m = 0, 1, . . . ,M :

Step 4: Initialize θn,m.
Step 5: Sample Wm+1.
Step 6: Do the following:

Step 6a: Computing the action an,m = Aπ(Sm|θn−1).
Step 6b: Compute the post-decision state Sa,m = SM,a(Sn,m, an,m).
Step 6c: Compute the next pre-decision state Sn,m+1 = SM (Sn,m, an,m,Wm+1).
Step 6d: Compute the input variable φ(Sn,m)− γφ(Sn,m+1) for equation (18.26).

Step 7: Do the following:
Step 7a: Compute the response variable Ĉm = C(Sn,m, an,m,Wm+1).
Step 7b: Compute θn,m using equation (18.26).

Step 8: Update θn and the policy:

θn+1 = θn,m

Aπ,n+1(s) = arg max
a∈A

(
C(s, a) + γφ(SM (s, a))θn+1

)
.

Step 9. Return the Aπ(s|θN ) and parameter θN .

Figure 18.11 Approximate policy iteration for infinite horizon problems using least squares
temporal differencing.

Figure 18.11 provides a detailed summary of the complete algorithm. The algorithm
has some nice properties if we are willing to assume that there is a vector θ∗ such that
the true value function V (s) =

∑
f∈F θfφf (s) (admittedly, a pretty strong assumption).

First, if the inner iteration limit M increases as a function of n so that the quality of the
approximation of the policy gets better and better, then the overall algorithm will converge
to the true optimal policy. Of course, this means letting M → ∞, but from a practical
perspective, it means that the algorithm can find a policy arbitrarily close to the optimal
policy.

Second, the algorithm can be used with vector-valued and continuous actions (we
normally use the notation xt in this case). There are several features of the algorithm
that allow this. First, computing the policy Aπ(s|θn) requires solving a deterministic
optimization problem. If we are using discrete actions, it means simply enumerating the
actions and choosing the best one. If we have continuous actions, we need to solve a
nonlinear programming problem. The only practical issue is that we may not be able to
guarantee that the objective function is concave (or convex if we are minimizing). Second,
note that we are using trajectory following (also known as on-policy training) in Step 6c,
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without an explicit exploration step. It can be very difficult implementing an exploration
step for multidimensional decision vectors.

We can avoid exploration as long as there is enough variation in the states we visit that
allows us to compute θm in equation (18.26). When we use lookup tables, we require
exploration to guarantee that we eventually will visit every state infinitely often. When we
use basis functions, we only need to visit states with sufficient diversity that we can estimate
the parameter vector θm. In the language of statistics, the issue is one of identification (that
is, the ability to estimate θ) rather than exploration. This is a much easier requirement to
satisfy, and one of the major advantages of parametric models.

18.6 THE ACTOR-CRITIC PARADIGM

It is very popular in some communities to view approximate dynamic programming in terms
of an “actor” and a “critic.” Simply put, the actor is a policy and the critic is the mechanism
for updating the policy, typically through updates to the value function approximation.

In this setting, a decision function that chooses a decision given the state is known as
an actor. The process that determines the contribution (cost or reward) from a decision is
known as the critic, from which we can compute a value function. The interaction of making
decisions and updating the value function is referred to as an actor-critic framework. The
slight change in vocabulary brings out the observation that the techniques of approximate
dynamic programming closely mimic human behavior. This is especially true when we
drop any notion of costs or contributions and simply work in terms of succeeding (or
winning) and failing (or losing).

The policy iteration algorithm in figure 18.12 provides one illustration of the actor-critic
paradigm. The decision function is equation (18.30), where V π,n−1 determines the policy
(in this case). This is the actor. Equation (18.31), where we update our estimate of the
value of the policy, is the critic. We fix the actor for a period of time and perform repeated
iterations where we try to estimate value functions given a particular actor (policy). From
time to time, we stop and use our value function to modify our behavior (something critics
like to do). In this case, we update the behavior by replacing V π with our current V .

In other settings, the policy is a rule or function that does not directly use a value function
(such as V π or V ). For example, if we are driving through a transportation network (or
traversing a graph) the policy might be of the form “when at node i, go next to node j.”
As we update the value function, we may decide the right policy at node i is to traverse to
node k. Once we have updated our policy, the policy itself does not directly depend on a
value function.

Another example might arise when determining how much of a resource we should
have on hand. We might solve the problem by maximizing a function of the form f(x) =
β0 − β1(x − β2)2. Of course, β0 does not affect the optimal quantity. We might use the
value function to update β0 and β1. Once these are determined, we have a function that
does not itself directly depend on a value function.

18.7 POLICY GRADIENT METHODS

Perhaps the cleanest illustration of the actor-critic framework arises when we parameterize
both the value of being in a state as well as the policy. We use a standard strategy from the
literature which usesQ-factors, and where the goal is to maximize the average contribution
per time period (see section 14.7 for a brief introduction using the classical derivation based
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Step 0. Initialization:

Step 0a. Initialize V π,0t , t ∈ T .

Step 0b. Set n = 1.

Step 0c. Initialize S1
0 .

Step 1. Do for n = 1, 2, . . . , N :

Step 2. Do for m = 1, 2, . . . ,M :

Step 3. Choose a sample path ωm.
Step 4: Initialize v̂m = 0

Step 5: Do for t = 0, 1, . . . , T :
Step 5a. Solve:

an,mt = arg max
at∈An,mt

(
Ct(S

n,m
t , at) + γV π,n−1

t (SM,a(Sn,mt , at))
)

(18.30)

Step 5b. Compute:

Sa,n,mt = SM,a(Sn,mt , an,mt )

Sn,mt+1 = SM (Sa,n,mt , an,m,Wt+1(ωm)).

Step 6. Do for t = T − 1, . . . , 0:
Step 6a. Accumulate the path cost (with v̂mT = 0)

v̂mt = Ct(S
n,m
t , amt ) + γv̂mt+1

Step 6b. Update approximate value of the policy starting at time t:

V
n,m
t−1 ← UV (V

n,m−1
t−1 , Sa,n,mt−1 , v̂mt ) (18.31)

where we typically use αm−1 = 1/m.

Step 7. Update the policy value function

V π,nt (Sat ) = V
n,M
t (Sat ) ∀t = 0, 1, . . . , T

Step 8. Return the value functions (V π,Nt )Tt=1.

Figure 18.12 Approximate policy iteration using value function-based policies.

on transition matrices). Our presentation here represents only a streamlined sketch of an
idea that is simple in principle but which involves some fairly advanced principles.

We assume that the Q-factors are parameterized using

Q̄(s, a|θ) =
∑
f

θfφf (s, a),

The policy is represented using a function such as

Aπ(s|η) =
eηφ(s,a)∑
a′ ηφ(s, a′)

.

This choice of policy has the important feature that the probability that an action is chosen
is greater than zero. Also, Aπ(s|η) is differentiable in the policy parameter vector η.

In the language of actor-critic algorithms, Q̄(s, a|θ) is an approximation of the critic
parameterized by θ, while Aπ(s|η) is an approximate policy parameterized by η. We can
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update θ and η using standard stochastic gradient methods. We begin by defining

ψθ(s, a) = ∇θ lnπθ(a|s)

=
∇θπθ(a|s)
πθ(a|s)

.

Since we are maximizing the average reward per time period, we begin by estimating the
average reward per time period using

c̄n+1 = (1− αn)c̄n + αnC(Sn+1, an+1).

We then compute the temporal difference in terms of the difference between the contribution
of a state-action pair, and the average contribution, using

δn = C(Sn, an)− c̄n + (θn)Tφθn(Sn+1, an+1)− (θn)Tφθn(Sn, an).

Assume we are using a TD(λ) updating procedure where we assume 0 < λ < 1. We
compute the eligibility trace using

Zn+1 = λZn + φθn(Sn+1, an+1)

We can now present the updating equations for the actor (the policy) and the critic (the
Q-factors) in a simple and compact way. The actor update is given by

ηn+1 = ηn − βnΓ(θn)(θn)Tφθn(Sn+1, an+1)ψθn(Sn+1, an+1). (18.32)

The critic update is given by

θn+1 = θn + αnδ
nZn. (18.33)

Equations (18.32) and (18.33) provide an elegant and compact illustration of an actor-
critic updating equation, where both the value function and the policy are approximated
using parametric models. This method is likely to be of limited practical value, largely
because of the form of the policy which requires a positive probability that any action may
be chosen.

18.8 THE LINEAR PROGRAMMING METHOD USING BASIS FUNCTIONS

In section 14.8, we showed that the determination of the value of being in each state can be
found by solving the following linear program

min
v

∑
s∈S

βsv(s) (18.34)

subject to

v(s) ≥ C(s, x) + γ
∑
s′∈S

p(s′|s, x)v(s′) for all s and x. (18.35)

The problem with this formulation arises because it requires that we enumerate the state
space to create the value function vector (v(s))s∈S . Furthermore, we have a constraint for
each state-action pair, a set that will be huge even for relatively small problems.
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We can partially solve this problem by replacing the discrete value function with a
regression function such as

V (s|θ) =
∑
f∈F

θfφf (s).

where (φf )f∈F is an appropriately designed set of basis functions. This produces a
revised linear programming formulation

min
θ

∑
s∈S

βs
∑
f∈F

θfφf (s)

subject to:

v(s) ≥ C(s, x) + γ
∑
s′∈S

p(s′|s, x)
∑
f∈F

θfφf (s′) for all s and x.

This is still a linear program, but now the decision variables are (θf )f∈F instead of
(v(s))s∈S . Note that rather than use a stochastic iterative algorithm, we obtain θ directly
by solving the linear program.

We still have a problem with a huge number of constraints. Since we no longer have
to determine |S| decision variables (in (18.34)-(18.35) the parameter vector (v(s))s∈S
represents our decision variables), it is not surprising that we do not actually need all the
constraints. One strategy that has been proposed is to simply choose a random sample of
states and actions. Given a state space S and set of actions (decisions)X , we can randomly
choose states and actions to create a smaller set of constraints.

Some care needs to be exercised when generating this sample. In particular, it is
important to generate states roughly in proportion to the probability that they will actually
be visited. Then, for each state that is generated, we need to randomly sample one or more
actions. The best strategy for doing this is going to be problem-dependent.

This technique has been applied to the problem of managing a network of queues. Figure
18.13 shows a queueing network with three servers and eight queues. A server can serve
only one queue at a time. For example, server A might be a machine that paints components
one of three colors (say, red, green, and blue). It is best to paint a series of parts red before
switching over to blue. There are customers arriving exogenously (denoted by the arrival
rates λ1 and λ2). Other customers arrive from other queues (for example, departures from
queue 1 become arrivals to queue 2). The problem is to determine which queue a server
should handle after each service completion.

If we assume that customers arrive according to a Poisson process and that all servers
have negative exponential service times (which means that all processes are memoryless),
then the state of the system is given by

St = Rt = (Rti)
8
i=1,

where Rti is the number of customers in queue i. Let K = {1, 2, 3} be our set of servers,
and let at be the attribute vector of a server given by at = (k, qt), where k is the identity
of the server and qt is the queue being served at time t. Each server can only serve a subset
of queues (as shown in figure 18.13). LetD = {1, 2, . . . , 8} represent a decision to serve a
particular queue, and let Da be the decisions that can be used for a server with attribute a.
Finally, let xtad = 1 if we decide to assign a server with attribute a to serve queue d ∈ Da.
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Figure 18.13 Queueing network with three servers serving a total of eight queues, two with
exogenous arrivals (λ) and six with arrivals from other queues (from de Farias & Van Roy (2003)).

Policy Cost

ADP 33.37
Longest 45.04

FIFO 45.71

Table 18.7 Average cost estimated using simulation (from de Farias & Van Roy (2003)).

The state space is effectively infinite (that is, too large to enumerate). But we can still
sample states at random. Research has shown that it is important to sample states roughly in
proportion to the probability they are visited. We do not know the probability a state will be
visited, but it is known that the probability of having a queue with r customers (when there
are Poisson arrivals and negative exponential servers) follows a geometric distribution. For
this reason, it was chosen to sample a state with r =

∑
iRti customers with probability

(1− γ)γr, where γ is a discount factor (a value of 0.95 was used).
Further complicating this problem class is that we also have to sample actions. Let X

be the set of all feasible values of the decision vector x. The number of possible decisions
for each server is equal to the number of queues it serves, so the total number of values for
the vector x is 3 × 2 × 3 = 18. In the experiments for this illustration, only 5,000 states
were sampled (in portion to (1 − γ)γr), but all the actions were sampled for each state,
producing 90,000 constraints.

Once the value function is approximated, it is possible to simulate the policy produced
by this value function approximation. The results were compared against two myopic
policies: serving the longest queue, and first-in, first-out (that is, serve the customer who
had arrived first). The costs produced by each policy are given in table 18.7, showing that
the ADP-based strategy significantly outperforms these other policies.

Considerably more numerical work is needed to test this strategy on more realistic sys-
tems. For example, for systems that do not exhibit Poisson arrivals or negative exponential
service times, it is still possible that sampling states based on geometric distributions may
work quite well. More problematic is the rapid growth in the feasible region X as the
number of servers, and queues per server, increases.
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An alternative to using constraint sampling is an advanced technique known as column
generation. Instead of generating a full linear program which enumerates all decisions
(that is, v(s) for each state), and all constraints (equation (18.35)), it is possible to generate
sequences of larger and larger linear programs, adding rows (constraints) and columns
(decisions) as needed. These techniques are beyond the scope of our presentation, but
readers need to be aware of the range of techniques available for this problem class.

18.9 APPROXIMATE POLICY ITERATION USING KERNEL REGRESSION*

We build on the foundation provided in section 17.6 that describes the use of kernel
regression in the context of least squares temporal difference (LSTD) learning. As we
have done earlier, we let the one-period contribution be given by

Ĉm = C(Sn,m, an,m,Wm+1).

Let Sa,i, i = 1, . . . ,m be the sample-path of post-decision states produced by following a
policy. Let k(Sa,i, Sa,j) be the normalized kernel function given by

k(Sa,i, Sa,j) =
Kh(Sa,i, Sa,j)∑m−1
i=0 Kh(Sa,i, Sa,j)

,

which means that
∑m−1
i=0 k(Sa,i, Sa,j) = 1. Then, let Pπ,n be a M ×M matrix where the

(i, j)th entry is given by

Pπ,ni,j = k(Sa,i−1, Sa,j).

By construction,Pπ,n is a stochastic matrix (its rows sum to 1), which means that I−γPπ,n
is invertible.

Define the kernel-based approximation of Bellman’s operator for a fixed policy M̂π,m

from the sample path of post-decision states Sa,0, . . . , Sa,m+1 using

M̂π,mV (s) =

m−1∑
i=0

k(Sa,i, s)(Ĉi + γV (SM,a(Si, ai,W i+1)).

We would like to find the fixed point of the kernel-based Bellman equation defined by

V̂ π = M̂π,mV̂ π

= Pπ[cπ + γV̂ π]

= [I − γPπ]−1cπ.

We can avoid the matrix inversion by using a value iteration approximation

V̂ π,k+1 = Pπ(cπ + γV̂ π,i).

The vector V̂ π has an element V̂ π(Sa,i) for each of the (post-decision) states Sa,i that
we have visited. We then extrapolate from this vector of calculated values for the states we
have visited, giving us the continuous function

V
π
(s) =

m−1∑
i=0

k(Sa,i, s)
(
Ĉi + γV̂ π(Sa,i+1)

)
.

This approximation forms the basis of our approximate policy iteration. The full algorithm
is given in figure 18.14.
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Step 0. Initialization:

Step 0a. Initialize the policy Aπ(s).

Step 0b. Choose the kernel function Kh(s, s′).

Step 0b. Set n = 1.

Step 1. Do for n = 1, . . . , N .

Step 2. Choose an initial state Sn0 .

Step 3. Do for m = 0, 1, . . . ,M :

Step 4: Let an,m = Aπ,n(Sn,m).
Step 5: Sample Wm+1.
Step 6: Compute the post-decision state Sa,m = SM,a(Sn,m, an,m) and the next state

Sm+1 = SM (Sn,m, an,m,Wm+1).

Step 7: Let cπ be a vector of dimensionality M with element Ĉm = C(Sn,m, an,m,Wm+1), m =
1, . . . ,M .

Step 8: Let Pπ,n be a M × M matrix where the (i, j)th entry is given by Kh(Sa,i−1, Sa,j) for
i, j ∈ {1, . . . ,m}.

Step 9: Solve for v̂n = (I − γPπ,n)−1, where v̂n is an m-dimensional vector with ith element
v̂n(Sa,i) for i = 1, . . . ,m. This can be approximated using value iteration.

Step 10: Let V n(s) =
∑m−1
i=0 Kh(Sa,i, s)(Ĉi + γv̂n(Sa,i)) be our kernel-based value function

approximation.

Step 11: Update the policy:

Aπ,n+1(s) = arg max
a

(
C(s, a) + γV

n
(SM,a(s, a)).

Step 12. Return the Aπ,N (s) and parameter θN .

Figure 18.14 Approximate policy iteration using least squares temporal differencing and kernel
regression.

18.10 FINITE HORIZON APPROXIMATIONS FOR STEADY-STATE
APPLICATIONS

It is easy to assume that if we have a problem with stationary data (that is, all random
information is coming from a distribution that is not changing over time), then we can solve
the problem as an infinite horizon problem, and use the resulting value function to produce
a policy that tells us what to do in any state. If we can, in fact, find the optimal value
function for every state, this is true.

There are many applications of infinite horizon models to answer policy questions. Do
we have enough doctors? What if we increase the buffer space for holding customers in a
queue? What is the impact of lowering transaction costs on the amount of money a mutual
fund holds in cash? What happens if a car rental company changes the rules allowing
rental offices to give customers a better car if they run out of the type of car that a customer
reserved? These are all dynamic programs controlled by a constraint (the size of a buffer or
the number of doctors), a parameter (the transaction cost), or the rules governing the physics
of the problem (the ability to substitute cars). We may be interested in understanding the
behavior of such a system as these variables are adjusted. For infinite horizon problems
that are too complex to solve exactly, ADP offers a way to approximate these solutions.
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Figure 18.15 Exact value function (sine curve) and value function approximations for t = 1, 2, 3,
which change with the probability distribution of the states that we can reach from S0.

Infinite horizon models also have applications in operational settings. Assume that we
have a problem governed by stationary processes. We could solve the steady-state version
of the problem, and use the resulting value function to define a policy that would work
from any starting state. This works if we have, in fact, found at least a close approximation
of the optimal value function for any starting state. However, if you have made it this far
in this book, then that means you are interested in working on problems where the optimal
value function cannot be found for all states. Typically, we are forced to approximate the
value function, and it is always the case that we do the best job of fitting the value function
around states that we visit most of the time.

When we are working in an operational setting, then we start with some known initial
state S0. From this state, there are a range of “good” decisions, followed by random
information, that will take us to a set of states S1 that is typically heavily influenced by our
starting state. Figure 18.15 illustrates the phenomenon. Assume that our true, steady-state
value function approximation looks like the sine function. At time t = 1, the probability
distribution of the state St that we can reach is shown as the shaded area. Assume that
we have chosen to fit a quadratic function of the value function, using observations of St
that we generate through Monte Carlo sampling. We might obtain the dotted curve labeled
as V 1(S1), which closely fits the true value function around the states S1 that we have
observed.

For times t = 2 and t = 3, the distribution of states S2 and S3 that we actually observe
grows wider and wider. As a result, the best fit of a quadratic function spreads as well. So,
even though we have a steady-state problem, the best value function approximation depends
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on the initial state S0 and how many time periods into the future that we are projecting.
Such problems are best modeled as finite horizon problems, but only because we are forced
to approximate the problem.

18.11 BIBLIOGRAPHIC NOTES

Section 18.2 - Approximate value iteration using lookup tables encompasses the family
of algorithms that depend on an approximation of the value of a future state to
estimate the value of being in a state now, which includes Q-learning and temporal-
difference learning. These methods represent the foundation of approximate dynamic
programming and reinforcement learning.

Section 18.4 - The problems with the use of linear models in the context of approximate
value iteration (TD learning) are well known in the research literature. Good dis-
cussions of these issues are found in Bertsekas & Tsitsiklis (1996), Tsitsiklis et al.
(1997), Baird (1995) and Precup et al. (2001), to name a few.

Section 18.5 - Bradtke & Barto (1996) first introduced least squares temporal differencing,
which is a way of approximating the one-period contribution using a linear model,
and then projecting the infinite horizon performance. Lagoudakis & Parr (2003)
describes the least squares policy iteration algorithm (LSPI) which uses a linear model
to approximate the Q-factors, which is then imbedded in a model-free algorithm.

Section 18.6 - There is a long history of referring to policies as “actors” and value functions
as “critics” (see, for example, Barto et al. (1983), Williams & Baird (1990), Bertsekas
& Tsitsiklis (1996) and Sutton & Barto (1998)). Borkar & Konda (1997) and Konda
& Borkar (1999) analyze actor-critic algorithms as an updating process with two
time-scales, one for the inner iteration to evaluate a policy, and one for the outer
iteration where the policy is updated. Konda & Tsitsiklis (2003) discusses actor-
critic algorithms using linear models to represent both the actor and the critic, using
bootstrapping for the critic. Bhatnagar et al. (2009) suggest several new variations
of actor-critic algorithms, and proves convergence when both the actor and the critic
use bootstrapping.

Section 18.7 - Policy gradient methods have received considerable attention in the re-
inforcement learning community. The material in this section is based on Konda
& Tsitsiklis (2003), but we have provided only a streamlined presentation, and we
urge readers to consult the original article before attempting to implement the equa-
tions given in this section. One of the earliest policy-gradient algorithms is given in
Williams (1992). Marbach & Tsitsiklis (2001) provides gradient-based algorithms
for optimizing Markov reward processes, which is a mathematically equivalent prob-
lem. Sutton et al. (2000) provides a version of a policy-gradient algorithm, but in
a form which is difficult to compute. Sutton et al. (1983) compares several policy
gradient algorithms. Szepesvari (2010) provides a recent summary of policy gradient
algorithms.

Section 18.8 - Schweitzer & Seidmann (1985) describes the use of basis functions in the
context of the linear programming method. The idea is further developed in Farias
& van Roy (2003) which also develops performance guarantees. Farias & Roy
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(2001) investigates the use of constraint sampling and proves results on the number
of samples that are needed.

Section 18.9 - This material is based on Ma & Powell (2010).

PROBLEMS

18.1 We are going to try again to solve our asset selling problem, We assume we are
holding a real asset and we are responding to a series of offers. Let p̂t be the tth offer, which
is uniformly distributed between 500 and 600 (all prices are in thousands of dollars). We
also assume that each offer is independent of all prior offers. You are willing to consider
up to 10 offers, and your goal is to get the highest possible price. If you have not accepted
the first nine offers, you must accept the 10th offer.

(a) Write out the decision function you would use in a dynamic programming algorithm
in terms of a Monte Carlo sample of the latest price and a current estimate of the
value function.

(b) Write out the updating equations (for the value function) you would use after solving
the decision problem for the tth offer.

(c) Implement an approximate dynamic programming algorithm using synchronous state
sampling. Using 1000 iterations, write out your estimates of the value of being in
each state immediately after each offer. For this exercise, you will need to discretize
prices for the purpose of approximating the value function. Discretize the value
function in units of 5 dollars.

(d) From your value functions, infer a decision rule of the form “sell if the price is greater
than p̄t.”





CHAPTER 19

FORWARD ADP III: CONVEX FUNCTIONS

There is a genuinely vast range of problems that can be broadly described as resource
allocation, where we are managing the flows of vaccines, blood, money, trucks, inventory
and people. In many of these problems, the objective function is concave (convex if
minimizing) in the resource vector, which means that the value function is concave. It turns
out that concavity is a particularly valuable property when solving dynamic programs using
value function approximations.

We are going to address the following problem classes:

• Scalar resource allocation problems - These arise often when managing the inventory
of a single product, cash management, and energy storage problems (to name just a
few).

• Multidimensional resource allocation problems - Once again,

Both of these problems can be solved using different models of information other than the
resource state. Variations include:

• No side information.

• Side information, which is memoryless - For example while managing the energy
in a battery to store excess power from a solar panel, we may be willing to model
the solar energy at time t as being independent of the solar energy at time t − 1.
With a memoryless process, their is no post-decision information state, since all past
information can be forgotten once we have made a decision.

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.

631



632 FORWARD ADP III: CONVEX FUNCTIONS

• Side information which is first-order Markov - Now we allow the information at time
t (such as prices, wind) to depend on the information state at time t−1. We note that
the information state at time t − 1 may depend on information that arrived before
t− 1. It also may be a general function of past information.

19.1 PIECEWISE LINEAR APPROXIMATIONS FOR SCALAR FUNCTIONS

There are many problems where we have to estimate the value of having a quantity R of
some resource (where R is a scalar). We might want to know the value of having R dollars
in a budget, R pieces of equipment, or R units of some inventory. R may be discrete or
continuous, but we are going to focus on problems where R is either discrete or is easily
discretized.

Assume now that we want to estimate a function V (R) that gives the value of having
R resources. There are applications where V (R) increases or decreases monotonically in
R. There are other applications where V (R) is piecewise linear, concave (or convex) in
R, which means the slopes of the function are monotonically decreasing (if the function is
concave) or increasing (if it is convex). When the function (or the slopes of the function)
is steadily increasing or decreasing, we would say that the function is monotone. If
the function is increasing in the state variable, we might say that it is “monotonically
increasing,” or that it is isotone (although the latter term is not widely used). To say that a
function is “monotone” can mean that it is monotonically increasing or decreasing.

Assume we have a function that is monotonically decreasing, which means that while
we do not know the value function exactly, we know that V (R + 1) ≤ V (R) (for scalar
R). If our function is piecewise linear concave, then we will assume that V (R) refers
to the slope at R (more precisely, to the right of R). Assume our current approximation
V
n−1

(R) satisfies this property, and that at iteration n, we have a sample observation of
V (R) for R = Rn. If our function is piecewise linear concave, then v̂n would be a sample
realization of a derivative of the function. If we use our standard updating algorithm, we
would write

V
n
(Rn) = (1− αn−1)V

n−1
(Rn) + αn−1v̂

n.

After the update, it is quite possible that our updated approximation no longer satisfies our
monotonicity property. Below we review three strategies for maintaining monotonicity:

The leveling algorithm - A simple method that imposes monotonicity by simply forcing
elements of the series which violate monotonicity to a larger or smaller value so that
monotonicity is restored.

The SPAR algorithm - SPAR takes the points that violate monotonicity and simply aver-
ages them.

The CAVE algorithm - If there is a monotonicity violation after an update, CAVE simply
expands the range of the function over which the update is applied.

The leveling algorithm and the SPAR algorithm enjoy convergence proofs, but the CAVE
algorithm is the one that works the best in practice. We report on all three to provide a
sense of algorithmic choices, and an enterprising reader may design a modification of one
of the first two algorithms to incorporate the features of CAVE that make it work so well.
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19.1.0.1 The leveling algorithm The leveling algorithm uses a simple updating
logic that can be written as follows:

V
n
(y) =


(1− αn−1)V

n−1
(Rn) + αn−1v̂

n if y = Rn,

V
n
(y) ∨

{
(1− αn−1)V

n−1
(Rn) + αn−1v̂

n
}

if y > Rn,

V
n
(y) ∧

{
(1− αn−1)V

n−1
(Rn) + αn−1v̂

n
}

if y < Rn,

(19.1)

where x∧ y = max{x, y}, and x∨ y = min{x, y}. Equation (19.1) starts by updating the
slope V

n
(y) for y = Rn. We then want to make sure that the slopes are declining. So, if

we find a slope to the right that is larger, we simply bring it down to our estimated slope
for y = Rn. Similarly, if there is a slope to the left that is smaller, we simply raise it to the
slope for y = Rn. The steps are illustrated in figure 19.1.

The leveling algorithm is easy to visualize, but it is unlikely to be the best way to
maintain monotonicity. For example, we may update a value at y = Rn for which there
are very few observations. But because it produces an unusually high or low estimate, we
find ourselves simply forcing other slopes higher or lower just to maintain monotonicity.

19.1.0.2 The SPAR algorithm A more elegant strategy is the SPAR (separable pro-
jective approximation routine) which works as follows. Assume that we start with our
original set of values (V

n−1
(y))y≥0, and that we sample y = Rn and obtain an estimate

of the slope v̂n. After the update, we obtain the set of values (which we store temporarily
in the function ȳn(y))

z̄n(y) =

{
(1− αn−1)V

n−1
(y) + αn−1v̂

n, y = Rn

V
n−1

(y) otherwise.
(19.2)

If z̄n(y) ≥ z̄n(y + 1) for all y, then we are in good shape. If not, then either z̄n(Rn) <
z̄n(Rn + 1) or z̄n(Rn − 1) < z̄n(Rn). We can fix the problem by solving the projection
problem

min
v
‖v − z̄n‖2. (19.3)

subject to

v(z + 1)− v(z) ≤ 0. (19.4)

Solving this projection is especially easy. Imagine that after our update, we have a
violation to the left. The projection is achieved by averaging the updated cell with all the
cells to the left that create a monotonicity violation. This means that we want to find the
largest i ≤ Rn such that

z̄n(i− 1) ≥ 1

Rn − i+ 1

Rn∑
y=i

z̄n(y).

In other words, we can start by averaging the values forRn and Rn− 1 and checking to
see if we now have a concave function. If not, we keep lowering the left end of the range
until we either restore monotonicity or reach y = 0. If our monotonicity violation is to the
right, then we repeat the process to the right.
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19.1a: Initial monotone function.
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19.1b: After update of a single segment.
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19.1c: After leveling operation.

Figure 19.1 Steps of the leveling algorithm. Figure 19.1a shows the initial monotone function,
with the observed R and observed value of the function v̂. Figure 19.1b shows the function after
updating the single segment, producing a non-monotone function. Figure 19.1c shows the function
after monotonicity restored by leveling the function.
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The steps of the algorithm are given in figure 19.2, with an illustration given in figure
19.3. We start with a monotone set of values (a), then update one of the values to produce
a monotonicity violation (b), and finally average the violating values together to restore
monotonicity (c).

There are a number of variations of these algorithms that help with convergence. For
example, in the SPAR algorithm, we can solve a weighted projection that gives more weight
to slopes that have received more observations. To do this, we weight each value of ȳ(r)
by the number of observations that segment r has received when computing ȳn(i− 1).

19.1.0.3 The CAVE algorithm A particularly useful variation is to perform an initial
update (when we compute ȳ) over a wider interval than just y = Rn. Assume we are given
a parameter δ0 which has been chosen so that it is approximately 20 to 50 percent of the
maximum value that Rn might take. Now compute z̄(y) using

z̄n(y) =

{
(1− αn−1)V

n−1
(y) + αn−1v̂

n, Rn − δn ≤ y ≤ Rn + δn,

V
n−1

(y) otherwise.

Here, we are using v̂n to update a wider range of the interval. We then apply the same logic
for maintaining monotonicity (concavity if these are slopes). We start with the interval
Rn± δ0, but we have to periodically reduce δ0. We might, for example, track the objective
function (call it Fn), and update the range using

δn =

{
δn−1 If Fn ≥ Fn−1 − ε,
max{1, .5δn−1} otherwise.

While the rules for reducing δn are generally ad hoc, we have found that this is critical for
fast convergence. The key is that we have to pick δ0 so that it plays a critical scaling role,
since it has to be set so that it is roughly on the order of the maximum value that Rn can
take. If SPAR or the leveling algorithm are going to be successful, then these will have to
be adapted to solve these scaling problems.

Step 0 Initialize V 0 and set n = 1.

Step 1 Sample Rn.

Step 2 Observe a sample of the value function v̂n.

Step 3 Calculate the vector zn as follows

zn(y) =

{
(1− αn−1)V n−1

Rn + αn−1v̂n if y = Rn,
vn−1(y) otherwise

Step 4 Project the updated estimate onto the space of monotone functions:

vn = Π(zn),

by solving (19.3)-(19.4). Increase n by one and go to Step 1.

Figure 19.2 The learning form of the separable, projective approximation routine (SPAR).
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19.3a: Initial monotone function.
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19.3b: After update of a single segment.
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19.3c: After projection.

Figure 19.3 Steps of the SPAR algorithm. Figure 19.3a shows the initial monotone function, with
the observed R and observed value of the function v̂. Figure 19.3b shows the function after updating
the single segment, producing a non-monotone function. Figure 19.3c shows the function after the
projection operation.
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19.2 MULTIPLE CONVEX DIMENSIONS

19.2.1 Benders decomposition

19.2.1.1 SDDP - Intertemporal independence

19.2.1.2 Regularization

19.2.2 Benders with exogenous state variable

19.3 HIGH-DIMENSIONAL APPLICATIONS

Multiattribute
Linear VFA
Hierarchical

In chapter 3, we introduced general purpose approximation tools for approximating
functions without assuming any special structural properties. In this chapter, we focus on
approximating value functions that arise in resource allocation problems. For example,
if R is the amount of resource available (water, oil, money, vaccines) and V (R) is the
value of having R units of our resource, we often find that V (R) might be linear (or
approximately linear), nonlinear (concave), piecewise linear, or in some cases, simply
something continuous. Value functions with this structure yield to special approximation
strategies.

We consider a series of strategies for approximating the value function using increasing
sophistication:

Linear approximations - These are typically the simplest nontrivial approximations that
work well when the functions are approximately linear over the range of interest.
It is important to realize that we mean “linear in the state” as opposed to the more
classical “linear in the parameters” model that we considered earlier.

Separable, piecewise linear, concave (convex if minimizing) - These functions are espe-
cially useful when we are interested in integer solutions. Separable functions are
relatively easy to estimate and offer special structural properties when solving the
optimality equations.

Auxiliary functions - This is a special class of algorithms that fixes an initial approximation
and uses stochastic gradients to adjust the function.

General nonlinear regression equations - Here, we bring the full range of tools available
from the field of regression.

Cutting planes - This is a technique for approximating multidimensional, piecewise linear
functions that has proven to be particularly powerful for multistage linear programs
such those that arise in dynamic resource allocation problems.

An important dimension of this chapter will be our use of derivatives to estimate value
functions, rather than just the value of being in a state. When we want to determine how
much oil should be sent to a storage facility, what matters most is the marginal value
of additional oil. For some problem classes, this is a particularly powerful device that
dramatically improves convergence.
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19.4 VALUES VERSUS MARGINAL VALUES

It is common in dynamic programming to talk about the problem of estimating the value
of being in a state. There are many applications where it is more useful to work with the
derivative or gradient of the value function. In one community, where “heuristic dynamic
programming” represents approximate dynamic programming based on estimating the value
of being in a state, “dual heuristic programming” refers to approximating the gradient.

We are going to use the context of resource allocation problems to illustrate the power
of using the gradient. In principal, the challenge of estimating the slope of a function is
the same as that of estimating the function itself (the slope is simply a different function).
However, there can be important, practical advantages to estimating slopes. First, if the
function is approximately linear, it may be possible to replace estimates of the value of
being in each state (or set of states) with a single parameter which is the estimate of the
slope of the function. Estimating constant terms is typically unnecessary.

A second and equally important difference is that if we estimate the value of being in a
state, we get one estimate of the value of being in a state when we visit that state. When
we estimate a gradient, we get an estimate of a derivative for each type of resource. For
example, if Rt = (Rtr)r∈R is our resource vector and Vt(Rt) is our value function, then
the gradient of the value function with respect to Rt would look like

∇RtVt(Rt) =


v̂tr1
v̂tr2

...
v̂tr|A|

 ,

where

v̂tri =
∂Vt(Rt)

∂Rtri
.

There may be additional work required to obtain each element of the gradient, but the
incremental work can be far less than the work required to get the value function itself.
This is particularly true when the optimization problem naturally returns these gradients
(for example, dual variables from a linear program), but this can even be true when we have
to resort to numerical derivatives. Once we have all the calculations to solve a problem
once, solving small perturbations can be relatively inexpensive.

There is one important problem class where finding the value of being in a state is
equivalent to finding the derivative. That is the case of managing a single resource. In this
case, the state of our system (the resource) is the attribute vector r, and we are interested in
estimating the value V (r) of our resource being in state r. Alternatively, we can represent
the state of our system using the vector Rt, where Rtr = 1 indicates that our resource has
attribute r (we assume that

∑
r∈RRtr = 1). In this case, the value function can be written

Vt(Rt) =
∑
r∈R

vtrRtr.

Here, the coefficient vtr is the derivative of Vt(Rt) with respect to Rtr.
In a typical implementation of an approximate dynamic programming algorithm, we

would only estimate the value of a resource when it is in a particular state (given by the
vector r). This is equivalent to finding the derivative v̂r only for the value of r where
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Rtr = 1. By contrast, computing the gradient ∇RtVt(Rt) implicitly assumes that we are
computing v̂r for each r ∈ R. There are some algorithmic strategies (we will describe
an example of this in section 19.9) where this assumption is implicit in the algorithm.
Computing v̂r for all r ∈ R is reasonable if the attribute state space is not too large (for
example, if r is a physical location among a set of several hundred locations). If r is a
vector, then enumerating the attribute space can be prohibitive (it is, in effect, the “curse of
dimensionality” revisited).

Given these issues, it is critical to first determine whether it is necessary to estimate the
slope of the value function, or the value function itself. The result can have a significant
impact on the algorithmic strategy.

19.5 LINEAR APPROXIMATIONS

There are a number of problems where we are allocating resources of different types. As
in the past, we let r be the attributes of a resource andRtr be the quantity of resources with
attribute r in our system at time t with Rt = (Rtr)r∈R. Rt may describe our investments
in different resource classes (growth stocks, value stocks, index funds, international mutual
funds, domestic stock funds, bond funds). Or Rt might be the amount of oil we have in
different reserves or the number of people in a management consulting firm with particular
skill sets. We want to make decisions to acquire or sell resources of each type, and we want
to capture the impact of decisions now on the future through a value function Vt(Rt).

Rather than attempt to estimate Vt(Rt) for each value of Rt, it may make more sense
to estimate a linear approximation of the value function with respect to the resource
vector. Linear approximations can work well when the single-period contribution function
is continuous and increases or decreases monotonically over the range we are interested
in (the function may or may not be differentiable). They can also work well in settings
where the value function increases or decreases monotonically, even if the value function
is neither convex nor concave, nor even continuous.

To illustrate, consider the problem of purchasing a commodity. Let

D̂t = The random demand during time interval t,
Rt = The resources on hand at time t just before we make an ordering decision,
xt = The quantity ordered at time t to be used during time interval t+ 1,

Rxt = The resources available just after we make a decision,
p̂t = The market price for selling commodities during time interval t,
ct = The purchase cost for commodities purchased at time t.

At time t, we know the price p̂t and demand D̂t for time interval t, but we have to choose
how much to order for the next time interval. The transition equations are given by

Rxt = Rt + xt,

Rt+1 = [Rxt − D̂t+1]+.

The value of being in state Rt is given by

Vt(Rt) = max
xt

E
(
p̂t+1 min{Rt + xt, D̂t+1} − ctxt + V xt (Rt + xt)

)
, (19.5)
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where V xt (Rxt ) is the post-decision value function, while Vt(Rt) is the traditional value
function around the pre-decision state. Now assume that we introduce a linear value
function approximation

V
x

t (Rxt ) ≈ v̄tRxt .

The resulting approximation can be written

Ṽ t(Rt) = max
xt

E
(
p̂t+1 min{Rt + xt, D̂t+1} − ctxt + v̄tR

x
t

)
= max

xt
E
(
p̂t+1 min{Rt + xt, D̂t+1} − ctxt + v̄t(Rt + xt)

)
. (19.6)

We assume that we can compute, or at least approximate, the expectation in equation
(19.6). If this is the case, we may approximate the gradient at iteration n using a numerical
derivative, as in

v̂t = Ṽ t(Rt + 1)− Ṽ t(Rt).

We now use v̂t to update the value function V t−1 using

v̄t−1 ← (1− α)v̄t−1 + αv̂t.

Normally, we would use v̂t to update V t−1(Rxt−1) around the previous post-decision state
variable Rxt−1. Linear approximations, however, are a special case, since the slope is the
same for all Rxt−1, which means it is also the same for Rt−1 = Rxt−1 − xt−1.

Linear approximations are useful in two settings. First, the value function may be
approximately linear over the range that we are interested in. Imagine, for example, that
you are trying to decide how many shares of stock you want to sell, where the range is
between 0 and 1,000. As an individual investor, it is unlikely that selling all 1,000 shares
will change the market price. However, if you are a large mutual fund and you are trying to
decide how many of your 50 million shares you want to sell, it is quite likely that such a high
volume would, in fact, move the market price. When this happens, we need a nonlinear
function.

A second use of linear approximations arises when managing resources such as people
and complex equipment such as locomotives or aircraft. Let r be the attributes of a resource
and Rtr be the number of resources with attribute r at time t. Then it is likely that Rtr will
be 0 or 1, implying that a linear function is all we need. For these problems, a linear value
function is particularly convenient because it means we need one parameter, v̄tr, for each
attribute r.

19.6 PIECEWISE LINEAR FUNCTIONS FOR RESOURCE ALLOCATION

Scalar, piecewise linear functions have proven to be an exceptionally powerful way of
solving high dimensional stochastic resource allocation problems. We can describe the
algorithm with a minimum of technical details using what is known as a “plant-warehouse-
customer” model, which is a form of multidimensional newsvendor problem. Imagine that
we have the problem depicted in figure 19.4a. We start by shipping “product” out of the
four “plant” nodes on the left, and we have to decide how much to send to each of the
five “warehouse” nodes in the middle. After making this decision, we then observe the
demands at the five “customer” nodes on the right.
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We can solve this problem using separable, piecewise linear value function approxima-
tions. Assume we have an initial estimate of a piecewise linear value function for resources
at the warehouses (setting these equal to zero is fine). This gives us the network shown in
figure 19.4b, which is a small linear program (even when we have hundreds of plant and
warehouse nodes). Solving this problem gives us a solution of how much to send to each
node.

We then use the solution to the first stage (which gives us the resources available at each
warehouse node), take a Monte Carlo sample of each of the demands, and solve a second
linear program that sends product from each warehouse to each customer. What we want
from this stage is the dual variable for each warehouse node, which gives us an estimate of
the marginal value of resources at each node. Note that some care needs to be used here,
because these dual variables are not actually estimates of the value of one more resources,
but rather are subgradients, which means that they may be the value of the last resource or
the next resource, or something in between.

Finally, we use these dual variables to update the piecewise linear value functions using
the methods described above. This process is repeated until the solution no longer seems
to be improving.

Although we have described this algorithm in the context of a two-stage problem,
the same basic strategy can be applied for problems with many time periods. Using
approximate value iteration (TD(0)), we would step forward in time, and after solving each
linear program we would stop and use the duals to update the value functions from the
previous time period (more specifically, around the previous post-decision state). For a
finite horizon problem, we would proceed until the last time period, then repeat the entire
process until the solution seems to be converging.

With more work, we can implement a backward pass (TD(1)) by avoiding any value
function updates until we reach the final time period, but we would have to retain information
about the effect of incrementing the resources at each node by one unit (this is best done
with a numerical derivative). We would then need to step back in time, computing the
marginal value of one more resource at time t using information about the value of one
more resource at time t + 1. These marginal values would be used to update the value
function approximations.

This algorithmic strategy has some nice features:

• This is a very general model with applications that span equipment, people, product,
money, energy and vaccines. It is ideally suited for “single layer” resource allocation
problems (one type of resource, rather than pairs such as pilots and aircraft, locomo-
tives and trains or doctors and patients), although many two-layer problems can be
reasonably approximated as single-layer problems.

• The methodology scales to very large problems, with hundreds or thousands of nodes,
and tens of thousands of dimensions in the decision vector.

• We do not need to solve the exploration-exploitation problem. A pure exploitation
strategy works fine. The reason has to do with the concavity of the value function
approximations, which has the effect of pushing suboptimal value functions toward
the correct solution.

• Piecewise linear value function approximations are quite robust, and avoid making
any simplifying assumptions about the shapes of the value functions.
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19.4a: The two-stage problem with stochastic second-stage data.
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19.4b: Solving the first stage using a separable, piecewise linear ap-
proximation of the second stage.
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19.4c: Solving a Monte Carlo realization of the second stage and
obtaining dual variables.

Figure 19.4 Steps in estimating separable, piecewise-linear approximations for two-stage stochastic
programs.



REGRESSION METHODS 643

19.7 REGRESSION METHODS

As in chapter 3 we can create regression models where the basis functions are manipulations
of the number of resources of each type. For example, we might use

V (R) = θ0 +
∑
a∈A

θ1aRa +
∑
a∈A

θ2aR
2
a, (19.7)

where θ = (θ0, (θ1r)r∈R, (θ2r)r∈R) is a vector of parameters that are to be determined. The
choice of explanatory terms in our approximation will generally reflect an understanding
of the properties of our problem. For example, equation (19.7) assumes that we can use
a mixture of linear and separable quadratic terms. A more general representation is to
assume that we have developed a family F of basis functions (φf (R))f∈F . Examples of a
basis function are

φf (R) = R2
rf
,

φf (R) =

∑
r∈Rf

Rr

2

for some subsetRf ,

φf (R) = (Rr1 −Rr2)2,

φf (R) = |Rr1 −Rr2 |.

A common strategy is to capture the number of resources at some level of aggregation. For
example, if we are purchasing emergency equipment, we may care about how many pieces
we have in each region of the country, and we may also care about how many pieces of a
type of equipment we have (regardless of location). These issues can be captured using a
family of aggregation functions Gf , f ∈ F , where Gf (r) aggregates an attribute vector
r into a space R(f) where for every basis function f there is an element rf ∈ R(f). Our
basis function might then be expressed using

φf (R) =
∑
r∈R

1{Gf (r)=rf}Rr.

As we originally introduced in section 18.4.1, the explanatory variables used in the
examples above, which are generally referred to as independent variables in the regres-
sion literature, are typically referred to as basis functions by the approximate dynamic
programming community. A basis function can be linear, nonlinear separable, nonlinear
nonseparable, and even nondifferentiable, although the nondifferentiable case will intro-
duce additional technical issues. The challenge, of course, is that it is the responsibility
of the modeler to devise these functions for each application. We have written our basis
functions purely in terms of the resource vector, but it is possible for them to be written in
terms of other parameters in a more complex state vector, such as asset prices.

Given a set of basis functions, we can write our value function approximation as

V (R|θ) =
∑
f∈F

θfφf (R). (19.8)

It is important to keep in mind thatV (R|θ) (or more generally, V (S|θ)), is any functional
form that approximates the value function as a function of the state vector parameterized
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by θ. Equation (19.8) is a classic linear-in-the-parameters function. We are not constrained
to this form, but it is the simplest and offers some algorithmic shortcuts.

The issues that we encounter in formulating and estimating V (R|θ) are the same that
any student of statistical regression would face when modeling a complex problem. The
major difference is that our data arrives over time (iterations), and we have to update our
formulas recursively. Also, it is typically the case that our observations are nonstationary.
This is particularly true when an update of a value function depends on an approximation
of the value function in the future (as occurs with value iteration or any of the TD(λ) classes
of algorithms). When we are estimating parameters from nonstationary data, we do not
want to equally weight all observations.

The problem of finding θ can be posed in terms of solving the following stochastic
optimization problem

min
θ

E
1

2
(V (R|θ)− V̂ )2.

We can solve this using a stochastic gradient algorithm, which produces updates of the
form

θ̄n = θ̄n−1 − αn−1(V (Rn|θ̄n−1)− V̂ (ωn))∇θV (Rn|θn)

= θ̄n−1 − αn−1(V (Rn|θ̄n−1)− V̂ (ωn))


φ1(Rn)
φ2(Rn)

...
φF (Rn)

 .

If our value function is linear in Rt, we would write

V (R|θ) =
∑
r∈R

θrRr.

In this case, our number of parameters has shrunk from the number of possible realizations
of the entire vector Rt to the size of the attribute space (which, for some problems, can
still be large, but nowhere near as large as the original state space). For this problem,
φ(Rn) = Rn.

It is not necessarily the case that we will always want to use a linear-in-the-parameters
model. We may consider a model where the value increases with the number of resources,
but at a declining rate that we do not know. Such a model could be captured with the
representation

V (R|θ) =
∑
r∈R

θ1rR
θ2r
r ,

where we expect θ2 < 1 to produce a concave function. Now, our updating formula will
look like

θn1 = θn−1
1 − αn−1(V (Rn|θ̄n−1)− V̂ (ωn))(Rn)θ2 ,

θn2 = θn−1
2 − αn−1(V (Rn|θ̄n−1)− V̂ (ωn))(Rn)θ2 lnRn

where we assume the exponentiation operator in (Rn)θ2 is performed componentwise.
We can put this updating strategy in terms of temporal differencing. As before, the

temporal difference is given by

δτ = Cτ (Rτ , xτ+1) + V
n−1

τ+1(Rτ+1)− V n−1

τ (Rτ ).
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The original parameter updating formula (equation (17.7)) when we had one parameter per
state now becomes

θ̄n = θ̄n−1
t + αn−1

T∑
τ=t

λτ−tδτ∇θV (Rn|θ̄n).

It is important to note that in contrast with most of our other applications of stochastic
gradients, updating the parameter vector using gradients of the objective function requires
mixing the units of θ with the units of the value function. In these applications, the stepsize
αn−1 has to also perform a scaling role.

19.8 VALUE ITERATION FOR MULTIDIMENSIONAL DECISION VECTORS

In the previous section we saw that the use of the post-decision state variable meant
that the process of choosing the best action required solving a deterministic optimization
problem. This opens the door to considering problems where the decision is a vector xt.
For example, imagine that we have a problem of assigning an agent in a multiskill call
center to customers requiring help with their computers. An agent of type i might have
a particular set of language and technical skills. A customer has answered a series of
automated questions, which we capture with a label j. Let

Rti = The number of agents available at time t with skill set i,
Dtj = The number of customers waiting at time t whose queries are char-

acterized by j.

We let Rt = (Rti)i and Dt = (Dtj)j , and finally let our state variable be St = (Rt, Dt).
Let our decision vector be defined using

xtij = Number of agents of type i who are assigned to customers of type j
at time t,

xt = (xtij)i,j .

For realistic problems, it is easy to create vectors xt with hundreds or thousands of dimen-
sions. Finally, let

cij = Estimated time required for an agent of type i to serve a customer of
type j.

The state variables evolve according to

Rt+1,i = Rti −
∑
j

xtij + R̂t+1,i,

Dt+1,j = Dtj −
∑
i

xtij + D̂t+1,j .

Here, R̂t+1,i represents the number of agents that were busy but which became idle between
t and t+ 1 because they completed their previous assignment. D̂t+1,j represents arrival of
new customers. We note thatRt andDt are pre-decision state variables. Their post-decision
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counterparts are given by

Rxt+1,i = Rti −
∑
j

xtij , (19.9)

Dx
t+1,j = Dtj −

∑
i

xtij . (19.10)

We are going to have to create a value function approximation V (Sxt ). For the purpose
of illustrating the basic idea, assume we use a separable approximation, which we can write
using

V t(R
x
t , D

x
t ) =

∑
i

V
R

ti(R
x
ti) +

∑
j

V
D

tj(D
x
tj).

Since we are minimizing, we intend to create scalar, convex approximations for V
R

ti(R
x
ti)

and V
D

tj(D
x
tj). Now, our VFA policy requires solving a linear (or nonlinear) math pro-

gramming problem of the form

min
xt

∑
i

∑
j

cijxtij +
∑
i

V
R

t−1,i(R
x
ti) +

∑
j

V
D

t−1,j(D
x
tj) (19.11)

where Rxti and Dx
tj are given by (19.9) and (19.10), respectively. Also, our optimization

problem has to be solved subject to the constraints∑
j

xtij ≤ Rti, (19.12)

∑
i

xtij ≤ Dtj , (19.13)

xtij ≥ 0. (19.14)

The optimization problem described by equations (19.11) - (19.14) is a linear or nonlinear
optimization problem. If the scalar, separable value function approximations are convex,
this is generally fairly easy to solve, even when xt has hundreds or thousands of dimensions.

Elsewhere, we would let v̂nt be the value of the optimal objective function, which we
then use to update the value function approximation. For this problem class, we are going
to take advantage of the fact that the optimal solution will yield dual variables for the
constraints (19.12) and (19.13). Call these dual variables v̂Rti and v̂Dtj , respectively. Thus,
we can interpret v̂Rti as an approximation of the marginal value of Rti, while v̂Dtj is an
approximation of the marginal value of Dtj . We can use these marginal values to update
our value function approximations. However, we would use v̂Rt and v̂Dt to update the
value function approximations V

R

t−1(Rxt−1) and V
D

t−1(Dx
t−1), which means we are using

information from the problem we solve at time t to update value function approximations
at time t− 1 around the previous, post-decision state variable.

19.9 CUTTING PLANES FOR MULTIDIMENSIONAL FUNCTIONS

Cutting planes represent a powerful strategy for representing concave (or convex if we
are minimizing), piecewise-linear functions for multidimensional problems. This method
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evolved originally not as a method for approximating dynamic programs, but instead as
a technique for solving linear programs in the presence of uncertainty. In the 1950’s, the
research community recognized that many optimization problems involve different forms
of uncertainty, with the most common being the challenge of allocating resources now to
serve demands in the future that have not yet been realized. For this reason, a subcom-
munity within math programming, known as the stochastic programming community, has
developed a rich theory and some powerful algorithmic strategies for handling uncertainty
within linear programs and, more recently, integer programs.

Historically, dynamic programming has been viewed as a technique for small, discrete
optimization problems, while stochastic programming has been the field that handles un-
certainty within math programs (which are typically characterized by high-dimensional
decision vectors and large numbers of constraints). The connections between stochastic
programming and dynamic programming, historically viewed as diametrically competing
frameworks, have been largely overlooked. This section is designed to bridge the gap be-
tween stochastic programming and approximate dynamic programming. Our presentation
is facilitated by notational decisions (in particular the use of x as our decision vector) that
we made in the beginning of the book.

19.9.1 Convexity with exogenous information state

Information state is purely exogenous
Information state influenced by decisions

19.10 WHY DOES IT WORK?**

19.10.1 The projection operation

Let vn−1
s be the value (or the marginal value) of being in state s at iteration n − 1 and

assume that we have a function where we know that we should have vn−1
s+1 ≥ vn−1

s (we
refer to this function as monotone). For example, if this is marginal values, we would
expect this if we were describing a concave function. Now assume that we have a sample
realization v̂ns which is the value (or marginal value) of being in state s. We would then
smooth this new observation with the previous estimates using

zns =

{
(1− αn−1)vn−1

s + αn−1v̂
n if s = sn,

vns otherwise.
(19.15)

Since v̂ns is random, we cannot expect zns to also be monotone. In this section, we want to
restore monotonicity by defining an operator vn = ΠV (z) where vns+1 ≥ vns . There are
several ways to do this. In this section, we define the operator v = ΠV (z), which takes
a vector z (which is not necessarily monotone) and produces a monotone vector v. If we
wish to find v that is as close as possible to z, we would solve

min
1

2
‖v − z‖2

subject to: vs+1 − vs ≤ 0, s = 0, . . . ,M. (19.16)

Assume that v0 is bounded above by B, and vM+1, for s < M , is bounded from below by
−B. Let λs ≥ 0, s = 0, 1, . . . ,M be the Lagrange multipliers associated with equation
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(19.16). It is easy to see that the optimality equations are

vs = zs + λs − λs−1, s = 1, 2, . . . ,M, (19.17)
λs(vs+1 − vs) = 0, s = 0, 1, . . . ,M. (19.18)

Let i1, . . . , i2 be a sequence of states where

vi1−1 > vi1 = vi1+1 = · · · = c = · · · = vi2−1 = vi2 > vi2+1.

We can then add equations (19.17) from i1 to i2 to yield

c =
1

i2 − i1 + 1

i2∑
s=i1

zs.

If i1 = 1, then c is the smaller of the above andB. Similarly, if i2 = M , then c is the larger
of the above and −B.

We also note that vn−1 ∈ V and zn computed by (19.15) differs from vn−1 in just one
coordinate. If zn 6∈ V then either znsn−1 < znsn , or znsn+1 > znsn .

If znsn−1 < znsn , then we we need to find the largest 1 < i ≤ sn where

zni−1 ≥
1

sn − i+ 1

sn∑
s=i

zns .

If i cannot be found, then we use i = 1. We then compute

c =
1

sn − i+ 1

sn∑
s=i

zns

and let

vn+1
j = min(B, c), j = i, . . . , sn.

We have λ0 = max(0, c−B), and

λs =


0 s = 1, . . . , i− 1,

λs−1 + zs − vs s = i, . . . , sn − 1,

0 s = sn, . . . ,M.

It is easy to show that the solution found and the Lagrange multipliers satisfy equations
(19.17) -(19.18).

If znsn < znsn+1, then the entire procedure is basically the same with appropriate inequal-
ities reversed.

19.11 BIBLIOGRAPHIC NOTES

Section 19.4 - The decision of whether to estimate the value function or its derivative
is often overlooked in the dynamic programming literature, especially within the
operations research community. In the controls community, use of gradients is
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sometimes referred to as dual heuristic dynamic programming (see Werbos (1992)
and Venayagamoorthy et al. (n.d.)).

Section 19.1 - The theory behind the projective SPAR algorithm is given in Powell et al.
(2004). A proof of convergence of the leveling algorithm is given in Topaloglu &
Powell (2003).

Section 19.9 - The first paper to formulate a math program with uncertainty appears to
be Dantzig & Ferguson (1956). For a broad introduction to the field of stochastic
optimization, see Ermoliev (1988) and Pflug (1996). For complete treatments of the
field of stochastic programming, see ?, Shapiro (2003), Birge & Louveaux (1997),
and Kall & Mayer (2005). For an easy tutorial on the subject, see Sen & Higle (1999).
A very thorough introduction to stochastic programming is given in Ruszczyński &
Shapiro (2003). Mayer (1998) provides a detailed presentation of computational
work for stochastic programming. There has been special interest in the types of
network problems we have considered (see ?, Wallace (1986) and ?). Rockafellar
& Wets (1991) presents specialized algorithms for stochastic programs formulated
using scenarios. This modeling framework has been of particular interest in the are
of financial portfolios (Mulvey & Ruszczyński (1995)). Benders’ decomposition for
two-stage stochastic programs was first proposed by ? as the “L-shaped” method.
Higle & Sen (1991) introduce stochastic decomposition, which is a Monte-Carlo
based algorithm that is most similar in spirit to approximate dynamic programming.
Chen & Powell (1999) present a variation of Benders that falls between stochastic
decomposition and the L-shaped method. The relationship between Benders’ de-
composition and dynamic programming is often overlooked. A notable exception is
?, which uses Benders to solve a resource allocation problem arising in the manage-
ment of reservoirs. This paper presents Benders as a method for avoiding the curse
of dimensionality of dynamic programming. For an excellent review of Benders’
decomposition for multistage problems, see Ruszczyński (2003). Benders has been
extended to multistage problems in Birge (1985), Ruszczyński (1993), and Chen &
Powell (1999), which can be viewed as a form of approximate dynamic programming
using cuts for value function approximations.

Section 19.10.1 - The proof of the projection operation is based on Powell et al. (2004).

PROBLEMS

19.1 Consider a newsvendor problem where we solve

max
x

EF (x, D̂),

where

F (x, D̂) = pmin(x, D̂)− cx.

We have to choose a quantity x before observing a random demand D̂. For our problem,
assume that c = 1, p = 2, and that D̂ follows a discrete uniform distribution between 1
and 10 (that is, D̂ = d, d = 1, 2, . . . , 10 with probability 0.10). Approximate EF (x, D̂)
as a piecewise linear function using the methods described in section 19.1, using a stepsize
αn−1 = 1/n. Note that you are using derivatives of F (x, D̂) to estimate the slopes of the
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function. At each iteration, randomly choose x between 1 and 10. Use sample realizations
of the gradient to estimate your function. Compute the exact function and compare your
approximation to the exact function.

19.2 Repeat exercise 19.1, but this time approximate EF (x, D̂) using a linear approxi-
mation:

F (x) = θx.

Compare the solution you obtain with a linear approximation to what you obtained using a
piecewise-linear approximation. Now repeat the exercise using demands that are uniformly
distributed between 500 and 1000. Compare the behavior of a linear approximation for the
two different problems.

19.3 Repeat exercise 19.1, but this time approximate EF (x, D̂) using the SHAPE algo-
rithm. Start with an initial approximation given by

F
0
(x) = θ0(x− θ1)2.

Use the recursive regression methods of sections 19.7 and 3.8 to fit the parameters. Justify
your choice of stepsize rule. Compute the exact function and compare your approximation
to the exact function.

19.4 Repeat exercise 19.1, but this time approximate EF (x, D̂) using the regression
function given by

F (x) = θ0 + θ1x+ θ2x
2.

Use the recursive regression methods of sections 19.7 and 3.8 to fit the parameters. Justify
your choice of stepsize rule. Compute the exact function and compare your approximation
to the exact function. Estimate your value function approximation using two methods:

(a) Use observations of F (x, D̂) to update your regression function.

(b) Use observations of the derivative of F (x, D̂), so that F (x) becomes an approxima-
tion of the derivative of EF (x, D̂).

19.5 Approximate the function EF (x, D̂) in exercise 19.1, but now assume that the
random variable D̂ = 1 (that is, it is deterministic). Using the following approximation
strategies:

(a) Use a piecewise linear value function approximation. Try using both left and right
derivatives to update your function.

(b) Use the regression F (x) = θ0 + θ1x+ θ2x
2.

19.6 We are going to solve the basic asset acquisition problem (section 8.2.2) where we
purchase assets (at a price pp) at time t to be used in time interval t+ 1. We sell assets at
a price ps to satisfy the demand D̂t that arises during time interval t. The problem is to be
solved over a finite time horizon T . Assume that the initial inventory is 0 and that demands
follow a discrete uniform distribution over the range [0, Dmax]. The problem parameters
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are given by

γ = 0.8,

Dmax = 10,

T = 20,

pp = 5,

ps = 8.

Solve this problem by estimating a piecewise linear value function approximation (section
19.1). Choose αn+1 = a/(a + n) as your stepsize rule, and experiment with different
values of a (such as 1, 5, 10, and 20). Use a single-pass algorithm, and report your
profits (summed over all time periods) after each iteration. Compare your performance for
different stepsize rules. Run 1000 iterations and try to determine how many iterations are
needed to produce a good solution (the answer may be substantially less than 1000).

19.7 Repeat exercise 19.6, but this time use the SHAPE algorithm to approximate the
value function. Use as your initial value function approximation the function

V
0

t (Rt) = θ0(Rt − θ2)2.

For each of the exercises below, you may have to tweak your stepsize rule. Try to find a rule
that works well for you (we suggest stick with a basic a/(a + n) strategy). Determine an
appropriate number of training iterations, and then evaluate your performance by averaging
results over 100 iterations (testing iterations) where the value function is not changed.

(a) Solve the problem using θ0 = 1, θ1 = 5.

(b) Solve the problem using θ0 = 1, θ1 = 50.

(c) Solve the problem using θ0 = 0.1, θ1 = 5.

(d) Solve the problem using θ0 = 10, θ1 = 5.

(e) Summarize the behavior of the algorithm with these different parameters.

19.8 Repeat exercise 19.6, but this time assume that your value function approximation
is given by

V
0

t (Rt) = θ0 + θ1Rt + θ2R
2
t .

Use the recursive regression techniques of sections 19.7 and 3.8 to determine the values for
the parameter vector θ.

19.9 Repeat exercise 19.6, but this time assume you are solving an infinite horizon
problem (which means you only have one value function approximation).

19.10 Repeat exercise 19.8, but this time assume an infinite horizon.

19.11 Repeat exercise 19.6, but now assume the following problem parameters:

γ = 0.99,

T = 200,

pp = 5,

ps = 20.
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For the demand distribution, assume that D̂t = 0 with probability 0.95, and that D̂t = 1
with probability 0.05. This is an example of a problem with low demands, where we have
to hold inventory for a fairly long time.



CHAPTER 20

LOOKAHEAD POLICIES

Up to now we have considered three classes of policies: policy function approximations
and parametric cost function approximations, both of which need to be tuned using policy
search, and policies that depend on value function approximations which approximate the
impact of a decision on the future through the state variable. All three of these policies
depend on approximating some function, which means we are limited by our ability to
approximate the function.

Not surprisingly, we cannot always develop sufficiently accurate functional approxi-
mations. Policy function approximations have been most successful when decisions are
low-dimensional, continuous controls (for example, you would never use a PFA to dispatch
locomotives for a railroad). Similarly, approximating the value of being in a state works
very well when problems are simple, or when we can exploit problem structure (as we did
in chapter 19 when we used the convexity of the problem), but there are many problems
where the value function is simply too complex.

When all else fails (and it often does), we have to resort to direct lookahead policies
(DLAs), which optimize over some horizon to help capture the impact of decisions now on
the future, from which we can extract the decision we would make now. This is a much
more brute force approach and, not surprisingly, is typically very hard computationally. As
a result, the challenge here is introducing approximations that make this problem tractable.

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
Copyright c© 2019 John Wiley & Sons, Inc.
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20.1 OPTIMAL POLICIES USING LOOKAHEAD MODELS

Lookahead policies are best described by restating our objective function

F (S0) = V0(S0) = max
π∈Π

Eπ
{

T∑
t′=0

C(St′ , X
π
t′(St′))|S0

}
(20.1)

Now imagine solving this starting at time t:

Vt(St) = max
π∈Π

Eπ
{

T∑
t′=t

C(St′ , X
π
t′(St′))|St

}
(20.2)

Equation (20.2) is Bellman’s optimality equation, which is nothing more than the definition
of the value of starting in a state St and following an optimality policy.

Since the decision xt is a deterministic function of the state St, we can rewrite (20.2) as

Vt(St) = max
xt

C(St, xt) + E

max
π∈Π

Eπ


T∑
t′=t+1

C(St′ , X
π
t′(St′))|St+1

 |St, xt

 (20.3)

Finally, we can write this as a policy

XLA
t (St) = arg max

xt

C(St, xt) + E

min
π∈Π

Eπ


T∑
t′=t+1

C(St′ , X
π
t′ (St′ ))|St+1

 |St, xt

(20.4)

= arg max
xt

(C(St, xt) + E{Vt+1(St+1)|St, xt}) (20.5)

= arg max
xt

(C(St, xt) + V xt (Sxt )) . (20.6)

Equation (20.6) is the basic statement of a lookahead policy, where we make a decision
now while optimizing over the entire horizon. Needless to say, computing this policy is
computationally intractable for all but a small class of problems (such as decision trees,
which we first saw in section 2.1.4, but which we revisit below). If we could solve equation
(20.6), that is like saying that we can solve the original problem (20.1) directly. If that were
possible, we are done.

In chapters 17-18 (and chapter 19 for convex problems), we pursued a strategy of replac-
ing Vt+1(St+1) (or the post-decision version V xt (Sxt )) with an approximation V t+1(St+1)
(or V

x

t (Sxt )). The difficulty is that there are many applications where it is simply not
possible to obtain high quality approximations of the value of being in a state.

Some examples of problems where the value of the future is not easy to approximate
include

• Problems with complex interactions - Imagine a stochastic scheduling problem (rout-
ing vehicles, scheduling machines, scheduling doctors) which involve complex in-
teractions in the future. To make a decision now (for example, to commit to serve
a job or patient in the future), it is necessary to explicitly plan the schedule in the
future.

• Problems with forecasts - Consider a problem of managing inventories of products
over a holiday, where we have a forecast ft = (ftt′)t′≥t for the demands. Since
forecasts evolve over time, they should be a part of the state variable, but this is never
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done. Forecasts can be modeled as latent (hidden) variables (as we discuss below),
but they are more naturally handled in a lookahead model.

• Multilayer resource allocation problems - Value functions can be effective when
modeling single layer resource allocation problems (managing water, blood, money),
but many problems involve multiple layers (jobs and machines, trucks and packages,
blood and patients). It is very hard to capture the value of being in a state that includes
more than one resource layer.

Lookahead models are widely used, and as such have evolved in different communities
under different names, including

Rolling horizon procedure Often used in operations research, it refers to the process of
optimizing over an interval (t, t+H), implementing decisions for time t, rolling to
t+ 1 (and sampling/observing new information), and then solving over the interval
(t+ 1, t+H + 1) (hence the name “rolling horizon”).

Receding horizon procedure This is a term often used in computer science, but means
the same as rolling horizon procedure.

Model predictive control This is the term used in the engineering-controls community,
and refers to the fact that if we create a lookahead model, we need an explicit
model of the problem. It is quite common in engineering that we do not have
such a model, which limits the use of lookahead models (we might be able to
create an approximation). The controls literature in engineering focuses mostly on
deterministic problems, and as a result, MPC (the standard abbreviation for model
predictive control) is typically associated with deterministic models of the future.
However, the term “model predictive control” technically applies to any model-
based approximation of the future, and they may be deterministic (which is most
common) or stochastic.

20.2 STRATEGIES FOR APPROXIMATING THE LOOKAHEAD MODEL

There are a variety of strategies that we can use for approximating the lookahead model to
make solving (20.6) computationally intractable. These include

Limiting the horizon - We may reduce the horizon from (t, T ) to (t, t+H), where H is
a suitable short horizon that is chosen to capture important behaviors. For example,
we might want to model water reservoir management over a 10 year period, but a
lookahead policy that extends one year might be enough to produce high quality
decisions. We can then simulate our policy to produce forecasts of flows over all 10
years.

Stage aggregation - A stage represents the process of revealing information followed by
the need to make a decision. A common approximation is a two-stage formulation
(see Figure 20.1(a)), where we make a decision xt, then observe all future events
(until t + H), and then make all remaining decisions. By contrast, a multistage
formulation would explicitly model the sequence: decision, information, decision,
information, and so on. Figure 20.1(b) illustrates the many possible paths in a
multistage formulation, which generally make these formulations computationally
intractable.
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Figure 20.1 Illustration of (a) a two-stage scenario tree and (b) a multistage scenario tree.

Outcome aggregation or sampling - Instead of using the full set of outcomes Ω (which
is often infinite), we can use Monte Carlo sampling to choose a small set of possible
outcomes that start at time t (assuming we are in state Snt during the nth simulation
through the horizon) through the end of our horizon t + H . We refer to this as Ω̃nt
to capture that it is constructed for the decision problem at time t while in state Snt .
The simplest model in this class is a deterministic lookahead, which uses a single
point estimate.

Discretization - Time, states, and decisions may all be discretized in a way that makes the
resulting model computationally tractable. In some cases, this may result in a Markov
decision process that may be solved exactly using backward dynamic programming
(which we introduced in chapter 14). Because the discretization generally depends
on the current state St, this model will have to be solved all over again after we make
the transition from t to t+ 1.

Dimensionality reduction - We may ignore some variables in our lookahead model as a
form of simplification. For example, a forecast of weather or future prices can add
a number of dimensions to the state variable. While we have to track these in the
base model (including the evolution of these forecasts), we can hold them fixed in
the lookahead model, and then ignore them in the state variable (these become latent
variables).

Of these, the most subtle is the last one, where we introduce simplifications by holding
some variables constant in the lookahead model that actually change (randomly) in the base
model (or the real world, if our policy is being tested in an online setting). One example
is a forecast, where it is common to hold a forecast constant over the horizon (although it
may vary over time within the horizon), while in fact forecasts evolve randomly over time.

Given these approximations, it is important to make a distinction between the lookahead
model, and the base model which we are trying to optimize with our lookahead policy. We
begin by noting that a lookahead model has to be indexed by the time t at which it is being
formulated. Since it extends over a horizon from t to min{t + H,T}, we index every
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variable by t (which fixes the information content of the model) and t′, which is the time
period within the lookahead horizon.

Then, we suggest using the same variables as in the base model, but with a “tilde.” Thus,
S̃tt′ would be the state in our lookahead model at time t′ within the lookahead horizon, for
a model being solved at time t. S̃tt′ might have fewer variables than St (or St′ ), and we
might also use a different level of aggregation. Using this notation, our lookahead policy
would be written

XLA
t (St) = arg max

xt

C(St, xt) + E

max
π̃∈Π̃

Ẽπ


t+H∑
t′=t+1

C(S̃tt′ , X̃
π
tt′ (S̃tt′ ))|S̃t,t+1

 |St, xt



(20.7)

where S̃t,t′+1 = S̃M (S̃tt′ , X̃
π̃
t (S̃tt′), W̃ t,t′+1) describes the dynamics within our looka-

head model, and where X̃ π̃
t (S̃tt′) is the policy corresponding to π̃.

Here, we write Π̃ as a modified set of policies, and Ẽ as a modified set of random
outcomes. We might even be modeling time differently (e.g. hourly time steps instead of
5 minutes), but we are going to keep the same time notation for simplicity.

The remainder of this chapter describes different strategies that have been used for
approximating lookahead models.

20.3 LOOKAHEAD MODELS WITH DISCRETE ACTIONS

We begin with problems with discrete actions, where we assume that there are no more than
perhaps 100 actions possible from each state (and 100 is reasonably large). Our methods
are actually quite robust with respect to complex state variables and forms of uncertainty,
but we need to keep the action spaces reasonable.

Problems with discrete action spaces represents a very important class of problems by
themselves. At the same time, we will be illustrating methods that we can draw on when
decisions are vectors.

20.3.1 A deterministic lookahead: shortest path problems

The best way to illustrate a lookahead policy is the process of finding the best path over a
transportation network where travel times are evolving randomly as traffic moves. Imagine
that we are trying to get from an origin q to a destination r, and assume that we are at an
intermediate node i (trying to get to r). Our navigation system will recommend that we go
from i to some node j by first finding the shortest path from i to r, and then using this path
to determine what to do now.

This problem is solved as a deterministic (but time-dependent) dynamic programming
problem. To simplify the notation, we are going to assume that each movement over a link
(i, j) takes one time period. We represent our traveler only when he is at a node, since this
is the only time when there is a real decision. Imagine that it is time t, and that we are at
node q heading to r. Define

ctij = The estimated cost, made at time t, of traversing link (i, j),
xtij = The flow that we plan, at time t, on traversing link (i, j) (typically at some

time in the future.)

In our shortest path problem, the flow xtij is either 1, meaning that link (i, j) is in the
shortest path from q to r, and 0 otherwise.
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Assume that we are sure we can arrive by time T , but if we arrive earlier, then we do
nothing at node r until time T . We can write our problem as

min
xt,...,XT

T∑
t′=t

∑
i

∑
j

ctijxtij (20.8)

subject to flow conservation constraints:∑
j

xtqj = 1, (20.9)

∑
k

xt′,ki −
∑
j

xt′+1,ij = 0, t′ = t, . . . , T − 1, ∀i, (20.10)

∑
i

xT−1,ir = 1. (20.11)

The optimization model (20.8)-(20.11) is a lookahead model that is optimizing the problem
from time t until the end of the horizon T . Constraint (20.9) specifies that one unit of flow
has to go out of origin node q at time t. Constraints (20.10) ensure that flow into each
intermediate node is equal to the flow out. Finally, constraint (20.11) ensures that there is
one unit of flow into node r at time T .

Shortest path problems are always solved as (highly specialized) dynamic programs.
When combined with some careful software engineering, problem (20.8)-(20.11) can be
easily solved using Bellman’s equation (for deterministic problems):

Vt′i = min
j

(
ct′ij + Vt′+1,j

)
, (20.12)

for t′ = t, . . . , T and all nodes i.
Both the linear program (20.8)-(20.11) and the deterministic dynamic program (20.12)

represent deterministic lookahead models. When we solve the linear program, all we use
is the decision xt that tells us what to do at time t. Similarly, we use the decision from our
dynamic program

x∗t = arg min
j

(
ctqj + Vt+1,j

)
which tells us which node j we should go to. If xtqj = 1, we will reoptimize when we
arrive at node j at time t+ 1, at which time the costs may have changed.

It does not matter whether we are solving the linear program (20.8)-(20.11) or the
deterministic dynamic program (20.12), both methods are solving a deterministic approx-
imation of the future, because our real problem is, of course, stochastic. For example, if
we encounter unexpected congestion, we will re-optimize (but again using a deterministic
approximation).

20.3.2 Lookahead dynamic programs

It is important not to overlook the potential of solving the lookahead model as a dynamic
program using the modeling and algorithmic framework of Markov decision processes
which we introduced in chapter 14. Here, we take advantage of the opportunity to introduce
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a variety of approximations in the lookahead model that might not exist in the base model.
The state St in the base model might be multidimensional and continuous. For example,
there are many problems that feature rolling forecasts ft = (ftt′)t′≥t, which is clearly
multidimensional. Yet, we might solve a lookahead model at time t using a fixed set of
forecasts which we hold constant over the horizon of the lookahead model. In this case,
the forecast would be a latent variable in the lookahead dynamic program.

In addition to ignoring variables, there are other ways of approximating a lookahead
model that might open the door to using the methods of Markov decision processes:

• Discretizing (or more coarsely discretizing) different dimensions of the state variable.

• Using a coarser discretization of time.

• Simplifying the exogenous information process (discretization, ignoring one or more
dimensions, using a sampled representation).

• Simplifying the decision variable (discretization, clustering vectors into a smaller,
discrete set of actions).

It is not uncommon for a paper to formulate and solve a Markov decision problem where
these approximations have already been made. The resulting MDP may still be hard to
solve - even reducing a problem to a discretized five-dimensional state variable will still
require the use of approximation methods. As a result, it is possible to become so focused
on solving the approximate MDP that we lose sight of the fact that the resulting model is
still just an approximate lookahead model. We return to this issue at the end of the chapter.

20.3.3 Decision trees

One of the most effective ways of communicating the process of making decisions under
uncertainty is to use decision trees. Figure 20.2 illustrates a problem facing a Little League
baseball coach trying to schedule a playoff game under the threat of bad weather. The
coach first has to decide if he should check the weather report. Then he has to decide if he
should schedule the game. Bad weather brings a poor turnout that reduces revenues from
tickets and the concession stand. There are costs if the game is scheduled (umpires, food,
people to handle parking and the concession stand) that need to be covered by the revenue
the game might generate.

In figure 20.2, squares denote decision nodes where we have to choose an action (Does he
check the weather report? Does he schedule the game?), while circles represent outcome
nodes where new (and random) information arrives (What will the weather report say?
What will the weather be?). We can “solve” the decision tree (that is, find the best decision
given the information available), by rolling backward through the tree. In figure 20.3(a),
we have found the expected value of being at each of the end outcome nodes. For example,
if we check the weather report and see a forecast of rain, the probability it will actually rain
is 0.80, producing a loss of $2000; the probability that it will be cloudy is 0.20, producing
a profit of $1000; the probability it will be sunny is zero (if it were sunny, we would
make a profit of $5000). The expected value of scheduling the game, when the weather
forecast is rain, is (0.80)(−$2000) + (0.20)($1000) + (0)($5000) = −$1400. Repeating
this calculation for each of the ending outcome nodes produces the results given in figure
20.3(a).
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Figure 20.2 Decision tree showing decision nodes and outcome nodes.

At a decision node, we get to choose an action, and of course we choose the action
with the highest expected profit. The results of this calculation are given in figure 20.3(b).
Finally, we have to determine the expected value of checking the weather report by again by
multiplying the probability of each possible weather forecast (rainy, cloudy, sunny) times
the expected value of each outcome. Thus, the expected value of checking the weather
report is (.1)(−$200)+(.3)($2300)+(.6)($3500) = $2770, shown in figure 20.3(c). The
expected value of making decisions without the weather report is $2400, so the analysis
shows that we should check the weather report. Alternatively, we can interpret the result
as telling us that we would be willing to pay up to $300 for the weather report.

Almost any decision problem with discrete states and actions can be modeled as a
decision tree. The problem is that they are not practical when there is a large number of
actions, as well as a large number of information outcomes. Even when these are not too
large, decision trees still grow exponentially, sharply limiting the number of time periods
that can be modeled. We return to figure 20.4, that we first saw in chapter 14 that illustrates
how quickly decision trees explode, even for relatively small problems.

20.3.4 Monte Carlo tree search

For problems where the number of actions per state is not too large (but where the set
of random outcomes may be quite large), we may replace the explicit enumeration of the
entire tree with a heuristic policy to evaluate what might happen after we reach a state.
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Figure 20.3 Evaluating a decision tree. (a) Evaluating the final outcome nodes. (b) Evaluating the
final decision nodes. (c) Evaluating the first outcome nodes.

Decision         Outcome     Decision      Outcome      Decision

Figure 20.4 Decision tree illustrating the sequence of decisions and new information, illustrating
the explosive growth of decision trees.

Imagine that we are trying to evaluate if we should take action a0 which takes us to state
Sa0 (the post-decision state), after which we choose at random an outcome of W1, which
puts us in the next (pre-decision) state S1. If we repeat this process for each action a0, and
then for each action a1 out of each of the downstream states S1, the tree would explode in
size.
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Rollout
policy

Selection Expansion Simulation Backpropagation

Tree policy

Action selection
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(a)            (b)                              (c)                              (d)

Figure 20.5 Illustration of Monte Carlo tree search, illustrating (left to right): selection, expansion,
simulation and backpropagation.

Monte Carlo tree search is a technique that originated in computer science, where it has
been primarily used for deterministic problems. MCTS (as it is widely known) proceeds
by applying a simple test to each action out of a node, and then using this test to choose
one action to explore. This may result in a traversal to a state we have visited before, at
which point we simply repeat the process, or we may find ourselves at a new state. We
then call a roll out policy which is some simple rule for making decisions that depends on
the problem at hand. The rollout policy gives us a rough estimate of the value of being in
this new state. If the state is attractive enough, it is added to the tree.

Each node (state) in the tree is described by four quantities:

1) The pre-decision value function Ṽ tt′(S̃tt′), the post-decision value function Ṽ
a

tt′(S̃
a
tt′),

and the contribution C(S̃tt′ , ãtt′) from being in state S̃tt′ and taking action ãtt′ .

2) The visit count, N(S̃tt′), which counts the number of times we have performed rollouts
(explained below) from state S̃tt′ .

3) The count, N(S̃tt′ , ãtt′), which counts the number of times we have taken decision ãtt′
from state S̃tt′ .

4) The set of actions As from each state s and the random outcomes Ω̃t,t′+1(S̃att′) that
might happen when in post-decision state S̃att′ .

Monte Carlo tree search progresses in four steps which are illustrated in figure 20.5,
where the detailed steps of the MCTS are described in a series of procedures. Note that,
as before, we let S̃tt′ be the pre-decision state, which is the node that precedes a decision.
A deterministic function SM,a(S̃tt′ , ãtt′) takes us to a post-decision state S̃att′ , after which
a Monte Carlo sample of the exogenous information takes us to the next pre-decision state
S̃t,t′+1.

1) Selection There are two steps in the selection phase. The first (and most difficult)
requires choosing an action, while the second involves taking a Monte Carlo sample
of any random information.
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function MCTS(St)

Step 0. Create root note S̃tt = St; set iteration counter n = 0.

Step 1. while n < nthr

Step 1.1 S̃tt′ ← TreePolicy(S̃tt)

Step 1.2 Ṽ tt′ (S̃tt′ )← SimPolicy(S̃tt′ )

Step 1.3 Backup(S̃tt′ , Ṽ tt′ (S̃tt′ ))

Step 1.4 n← n+ 1

Step 2. ã∗t = arg maxãtt∈Ãtt(S̃tt) C̃(S̃tt, ãtt) + Ṽ
a
tt(S̃

a
tt)

Step 3. return a∗t .

Figure 20.6 Sampled MCTS algorithm.

1a) Choosing the action The first step from any node (already generated) is to
choose an action (see figure 20.5(a) and the algorithm in figure 20.6). The
most popular policy for choosing an action is to use a type of upper confidence
bound (recall we introduced UCB policies in section 7.3.2) adapted for trees,
hence its name, Upper Confidence bounding for Trees (UCT). We could simply
choose the action that appears to be best, but we could get stuck in a solution
were we avoid actions that do not look attractive. Since our estimates are only
approximations, we have to recognize that we may not have explored them
enough (the classic exploration-exploitation tradeoff). In this setting, the UCT
policy is given by

AUCTtt′ (S̃tt′ |θUCT ) = arg max
ã∈Ãtt′

((
C(S̃tt′ , ã) + Ṽ

a

tt′(S̃
a
tt′)
)

+ θUCT

√
lnN(S̃tt′)

N(S̃tt′ , ãtt′)

)

The parameter θUCT has to be tuned, just as we would tune any policy. As with
UCB policies, the square root term is designed to encourage exploration, by
putting a bonus for actions that have not been explored as often. A nice feature
of UCT policies is that they are very easy to compute, which is important in an
MCTS setting where we need to quickly evaluate many actions.

1b) Sampling the outcome Here we assume that we can simply take a Monte Carlo
sample of any random information (see section 10.4). There are settings where
simple Monte Carlo sampling is not very efficient, such as when the random
outcome might be a success or failure, where one or the other dominates.

2) Expansion If the action we choose above is one we have chosen before, then we progress
to the next post-decision state (the solid line connecting the square node to the round
node in figure 20.5(b)) at which point when then sample another random outcome
which brings us to a new pre-decision state (see the algorithm in figure 20.7). But
if we have not chosen this action before, then we expand our tree by first adding
the link associated with the decision to the post-decision state node, followed by a
Monte Carlo sample which takes us to the subsequent pre-decision state. At this
point we have to deal with the fact that we would not have an estimate of the value
of being in this state (which we need for our UCT policy). To overcome this, we call
our simulation policy, which is a form of roll-out policy (discussed next).
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function TreePolicy(S̃tt)

Step 0. t′ ← t

Step 1. while S̃tt′ is non-terminal do

Step 2. if |Ãtt′ (S̃tt′ )| < dthr do (Expanding a decision out of a pre-decision state)
Step 2.1 Choose decision ã∗

tt′ by optimizing on the basis of the contribution of the decision
C̃(S̃tt′ , ãtt′ ), then taking a Monte Carlo sample to the next pre-decision state S̃t,t′+1, and
then finally using the rollout policy to approximate the value of being in state S̃t,t′+1.

Step 2.2 S̃a
tt′ = SM (S̃tt′ , ã

∗
tt′ ) (Expansion step)

Step 2.3 Ãtt′ (S̃tt′ )← Ãtt′ (S̃tt′ )
⋃
{ã∗
tt′}

Step 2.4 Ãu
tt′ (S̃tt′ )← Ã

u
tt′ (S̃tt′ )− {ã

∗
tt′}

else Step 2.5 ã∗
tt′ = arg maxãtt′∈Ãtt′ (S̃tt′ )

((
C̃(S̃tt′ , ãtt′ ) + Ṽ

a
tt′ (S̃

a
tt′ )
)

+ θUCT
√

lnN(S̃tt′ )

N(S̃tt′ ,ãtt′ )

)
Step 2.6 S̃a

tt′ = SM (S̃tt′ , ã
∗
tt′ )

end if
Step 3 if |Ω̃t,t′+1(S̃a

tt′ )| < ethr do (Expanding an exogenous outcome out of a post-decision state)

Step 3.1 Choose exogenous event W̃ t,t′+1,

Step 3.2 S̃t,t′+1 = SM,a(S̃a
tt′ , W̃ t,t′+1) (Expansion step)

Step 3.3 Ω̃t,t′+1(S̃a
tt′ )← Ω̃t,t′+1(S̃a

tt′ )
⋃
{W̃ t,t′+1}

Step 3.4 Ω̃u
t,t′+1

(S̃a
tt′ )← Ω̃u

t,t′+1
(S̃a
tt′ )− {W̃ t,t′+1}

Step 3.5 t′ ← t′ + 1

return S̃tt′ (stops execution of while loop)

else Step 3.6 Choose exogenous event W̃ t,t′+1,

Step 3.7 S̃t,t′+1 = SM,a(S̃a
tt′ , W̃ t,t′+1)

Step 3.8 t′ ← t′ + 1

end if
end while

Figure 20.7 The tree policy.

3) Simulation The simulation step assumes we have access to some policy which is easy
to execute that allows us to obtain a quick and reasonable estimate of the value of
being in a state (see figure 20.5(c) and the algorithm in figure 20.8). Of course, this
is very problem dependent. Some strategies include:

• A myopic policy, which greedily makes choices. There are problems where
myopic policies are reasonable starting estimates (of course they are subopti-
mal). However, such a greedy policy can be extremely poor (imagine finding
the shortest path through a network by always choosing the shortest link out of
a node).

• A parameterized policy with reasonable estimates of the parametres. We might
have a rule for selling an asset if its price rises by some percentage. Such a rule
will not be ideal, but it will be reasonable.

• A posterior bound. We might sample all future information, and then make the
best decision assuming that this future information comes true.
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function SimPolicy(S̃tt′ )

Step 0. Choose a sample path ω̃ ∈ Ω̃tt′

Step 1. while S̃tt′ is non-terminal

Step 2.1 Choose ãtt′ ← π̃(S̃tt′ ) where π̃ is the rollout policy.
Step 2.2 S̃t,t′+1 ← SM (S̃tt′ , ãtt′ (ω̃))

Step 2.3 t′ ← t′ + 1

end while

return Ṽ tt′ (S̃tt′ ) (Value function of S̃tt′ )

Figure 20.8 This function simulates the policy.

function Backup(S̃tt′ , Ṽ tt′ (S̃tt′ ))

while S̃tt′ is not null do

Step 1.1 N(S̃tt′ )← N(S̃tt′ ) + 1

Step 1.2 t∗ ← t’-1.
Step 1.3 N(S̃t,t∗−1, ãt,t∗−1)← N(S̃t,t∗−1, ãt,t∗−1) + 1

Step 1.4 Ṽ
a
t,t∗−1(S̃at,t∗−1) ← 1∑

ω̃t,t∗+1∈Ω̃t,t∗+1(S̃a
tt∗ )

p(ω̃t,t∗+1)
·

Eg [p(W̃ t,t∗+1)/g(W̃ t,t∗+1 )̃V tt∗ (SM,a(S̃att∗ , W̃ t,t∗+1))]

Step 1.5 S̃tt∗ ← predecessor of S̃att∗

Step 1.6 ∆← C̃(S̃tt∗ , ãtt∗ ) + Ṽ
a
tt∗ (S̃att∗ )

Step 1.7 Ṽ tt∗ (S̃tt∗ )← Ṽ tt∗ (S̃tt∗ ) +
∆−Ṽ tt∗ (S̃tt∗ )

N(S̃tt∗ )

Step 1.8 t′ ← t∗

end while

Figure 20.9 Backup process which updates the value of each decision node in the tree.

4) Backpropagation After simulating forward using our rollout policy to obtain an initial
estimate of the value of being in our newly generated state, we now backtrack and
obtain updated estimates of the value of each of the states on the path to the newly
generated state (see figure 20.5(d) and the algorithm in figure 20.9).

Figure 20.10 shows a tree produced by an MCTS algorithm, which illustrates the varying
degrees to which MCTS explores the tree. An indication that MCTS is adding value is the
presence of narrow sections of the tree which are explored at much greater depth than other
portions of the tree. If the tree is fairly balanced, then it means that MCTS is not pruning
decisions which means it is basically enumerating the tree. Of course, the real question is
how well the resulting tree works as a policy to solve the base model.

20.4 DETERMINISTIC LOOKAHEAD POLICIES WITH VECTOR DECISIONS

There is a distinct transition when we move from discrete actions a ∈ A to vectors x ∈ X .
While we can handle surprisingly complex stochastics and high dimensional state variables
using Monte Carlo tree search, we cannot handle vector-valued decisions, since there are
steps in the algorithm where we have to enumerate every single action.
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Figure 20.10 Sample of a tree produced by Monte Carlo tree search, illustrating the variable depth
produced by an MCTS algorithm.

It is perhaps not surprising that the most widely used policy used in industry when
decisions xt are vector valued is to use a deterministic forecast of the future. Using our
notation, we typically distinguish between the decision xt that is to be implemented now
(at time t), and decisions x̃tt′ that we plan for a future time period t′ but which only serve
the purpose of helping us do a better job of determining xt (we can think of xt as being the
same as x̃tt).

XLA−Det
t (St) = arg min

xt

(
ctxt + min

x̃t,t+1,...,x̃t,t+H

t+H∑
t′=t+1

c̃tt′ x̃tt′

)
, (20.13)

subject to constraints on the current decision xt, and the decisions in the lookahead model
(x̃tt′)t′>t.
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Figure 20.11 Energy storage system, with energy from a wind farm with random supply, the grid
with random prices, serving a load with time-dependent demands.

20.4.1 An energy application

A popular method in practice for building a policy for stochastic, dynamic problems is to
use a point forecast of future exogenous information to create a deterministic model over a
H-period horizon. In fact, the term rolling horizon procedure (or model predictive control)
is often interpreted to specifically refer to the use of deterministic forecasts. We illustrate
the idea using a simple example drawn from energy systems analysis which is illustrated in
figure 20.11. We switch to vector-valued decisions x, since a major feature of deterministic
forecasts is that it makes it possible to use standard math programming solvers which scale
to large problems.

Consider the problem of managing how much energy we should store in a battery to
help power a building which receives energy from the electric power grid (but at a random
price) or solar panels (but with random production due to cloud cover). We assume that we
can always purchase power from the grid, but the price may be quite high.

Let

Rt = The amount of energy stored in the battery at time t,
pt = The price of electricity purchased at time t from the grid,
qt = The energy production from the solar panel at time t,
Dt = The demand for electrical power in the building at time t.

The state of our system is given by St = (Rt, pt, qt, Dt). The system is controlled using

xgbt = The amount of energy stored in the battery from the grid at price pt
at time t,

xsbt = The amount of energy stored in the battery from the solar panels at
time t,

xsdt = The amount of energy directed from the solar panels to serve demand
at time t,

xbdt = The amount of energy drawn from the battery to serve demand at
time t,

xgdt = The amount of energy drawn from the grid to serve demand at time
t.
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We let xt = (xgbt , x
sb
t , x

sd
t , x

bd
t ) be the decision vector. The cost to meet demand at time t

is given by

C(St, xt) = pt
(
xgbt + xgdt

)
.

The challenge with deciding what to do right now is that we have to think about demands,
prices and solar production in the future. Demand and solar production tend to follow a daily
pattern, although demand rises early in the morning more quickly than solar production,
and can remain high in the evening after solar production has disappeared. Prices tend to
be highest in the middle of the afternoon, and as a result we try to have energy stored in the
battery to reduce our demand for expensive electricity at this time.

We can make the decision xt by optimizing over the horizon from t to t + H . While
pt′ , qt′ and Dt′ , for t′ > t, are all random variables, we are going to replace them with
forecasts p̄tt′ , q̄tt′ and D̄tt′ , all made with information available at time t. Since these are
deterministic, we can formulate the following deterministic optimization problem:

min
x̃tt,...,x̃t,t+H

t+H∑
t′=t

p̄tt′
(
x̃gbtt′ + x̃gdtt′

)
− θpenx̃slacktt′ , (20.14)

subject to, for t′ = t+ 1, . . . , t+H:

Rt′+1 −
(
x̃gbtt′ + x̃sbtt′ − x̃bdtt′

)
= Rt′ , (20.15)

x̃sdtt′ + x̃sbtt′ ≤ q̄tt′ , (20.16)

x̃bdtt′ + x̃sdtt′ + x̃gdtt′ + x̃slacktt′ ≤ D̄tt′ , (20.17)

x̃gbtt′ , x̃
sb
tt′ , x̃

bd
tt′ , x̃

sd
tt′ , x̃

slack
tt′ ≥ 0. (20.18)

We note that we are letting x̃tt′ be a plan of what we think we will do at time t′ when
we solve the optimization problem at time t. It is useful to think of this as a forecast of a
decision. We project decisions over this horizon because we need to know what we would
do in the future in order to know what we should do right now (which is the case with all
lookahead models).

The optimization problem (20.14) - (20.18) is a deterministic linear program. We can
solve this using, say, 1 minute increments over the next 12 hours (720 time periods) without
difficulty. However, we are not interested in the values of x̃t,t+1, . . . , x̃t,t+H . We are only
interested in xt = x̃tt, which we implement at time t. As we advance the clock from t to
t+ 1, we are likely to find that the random variables have not evolved precisely according
to the forecast, giving us a problem starting at time t + 1 (extending through t + H + 1)
that is slightly different than what we thought would be the case.

Our deterministic model offers several advantages. First, we have no difficulty handling
the property that xt is a continuous vector. Second, the model easily handles the highly
nonstationary nature of this problem, with daily cycles in demand, prices and solar produc-
tion. Third, if a weather forecast tells us that the solar production will be less than normal
six hours from now, we have no difficulty taking this into account. Thus, knowledge about
the future does not complicate the problem.

At the same time, the inability of the model to handle uncertainty in the future introduces
significant weaknesses. One problem is that we would not feel that we need to store energy
in the battery in the event that solar production might be lower than we expect. Second,
we may wish to store electricity in the battery during periods where electricity prices are
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Figure 20.12 Growth in CPU times as we increase the horizon in a deterministic lookahead model.

lower than normal, something that would be ignored in a forecast of future prices, since we
would not forecast stochastic variations from the mean.

Deterministic rolling horizon policies are widely used in operations research, where a
deterministic approximation provides value. The real value of this strategy is that it opens
the door for using commercial solvers that can handle vector-valued decisions. These
policies are rarely seen in the classical examples of reinforcement learning which focus on
small action spaces, but which also focus on problems where a deterministic approximation
of the future would not produce an interesting model.

We close by noting that solving deterministic lookahead models, while easier than a
stochastic lookahead, can actually be quite hard to solve in some situations. Figure 20.12
shows the increase in CPU times for a transportation application that involves managing
locomotives over time. If we increase the horizon to four days, which is not unreasonable
in this setting, the CPU time to solve a single instance of a lookahead model grows to 50
hours (this work was done around year 2010 using Cplex and a large memory computer).
Similarly, there are real-time control problems (such as managing a battery controller with
updates every 2 seconds), where a lookahead policy would simply be too slow.

20.4.2 A lookahead-cost function approximation

Deterministic lookahead models are widely used in practice, and widely criticized by the
academic research community because the models are “deterministic.” Often lost in this
discussion is that the lookahead model is just a form of policy for a stochastic base model.
In real applications, these are almost always modified so that the solutions work better
under uncertainty. Tuning these models is stochastic optimization.

We first saw a simple example of a hybrid lookahead with modified constraints, which
is a form of cost function approximation, in section 11.8 when we demonstrated that each
of five classes of policies (our four core classes plus a hybrid) might work best for a simple
energy storage problem. Hybrid lookahead-CFAs are a particularly powerful approach,
because they combine the features of a deterministic lookahead (not too hard to solve, and
can handle a forecast) with robustness against uncertainty.

We revisit the idea of a hybrid lookahead-CFA using the energy problem we introduced
in section 20.4.1. We formulated a deterministic lookahead model in equations (20.14)-
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(20.18), which depends on point forecasts for prices p̄tt′ , solar, q̄tt, and the demand (load)
D̄tt′ . One way to handle the uncertainty in these forecasts is to factor them based on how
far into the future we are forecasting. Instead, we can adjusts the forecasts by factors θτ
where τ = t′− twhich is how far into the future we are forecasting. Using factors for each
forecast, equations (20.16)-(20.17) would become

x̃sdtt′ + x̃sbtt′ ≤ θsolart′−t q̄tt′ , (20.19)

x̃bdtt′ + x̃sdtt′ + x̃gdtt′ + x̃slacktt′ = θloadt′−tD̄tt′ . (20.20)

We might use the factors to underestimate the energy from solar, or overestimate the load,
to produce a conservative plan. Further, the degree of this adjustment should probably
depend on how far into the future we are looking, hence the depence on t′ − t.

Finally, we might want to have a plan where the energy in storage stays between upper
and lower bounds in the future (of course, we always want to be able to use the full range
of the battery at time t). Thus, we might introduce a new constraint

R̃tt′ ≤ θmaxt′−tR
max, (20.21)

R̃tt′ ≥ θmint′−tR
max. (20.22)

We how have a set of tunable parameters θ = (θsolarτ , θloadτ , θminτ , θmaxτ ) for τ =
1, 2, . . . ,H . This would be called a lookup table representation because there is a different
parameter θτ for each value of τ giving the number of time periods into the future.

An alternative strategy would be to parameterize the relationship. We might instead
using a function such as

θτ = α(1− e−βτ ),

if we want an increasing function, or

θτ = αe−βτ ,

if we want a decreasing one. We would use different values of (α, β) for each type of
constraint. Now, instead of having H parameters for each type of constraint, we have two.

Our policy would be written

XLA−CFA(St|θ) = arg min
x̃tt,...,x̃t,t+H

t+H∑
t′=t

p̄tt′
(
x̃gbtt′ + x̃gdtt′

)
− θpenx̃slacktt′ , (20.23)

subject to (20.15) (which updates the inventory), along with our revised equations (20.19)-
(20.22) (which is where the tunable parameters appear).

We still face the problem of finding the best value of θ. For this purpose, we return to
our familiar objective function (remember that this is a minimization problem):

min
θ
FLA−CFA(θ) = E

T∑
t=0

C(St, X
LA−CFA(St|θ)).

Optimizing FLA−CFA(θ) has been discussed in chapter 13 on cost function approxi-
mations, as well as chapters 5 and 7 for derivative based and derivative free stochastic
optimization.
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20.4.3 Rolling horizon with discounting

A common objective function in dynamic programming uses discounted costs, whether
over a finite or infinite horizon. If C(St, xt) is the contribution earned from implementing
decision xt when we are in state St, our objective function might be written

max
π

E
∞∑
t=0

γtC(St, X
π(St))

where γ is a discount factor that captures, typically, the time value of money. If we choose
to use a rolling horizon policy (with deterministic forecasts), our policy might be written

Xπ(St) = arg max
xt,...,xt+H

t+H∑
t′=t

γt
′−tC(St′ , xt′).

Let’s consider what a discount factor might look like if it only captures the time value of
money. Imagine that we are solving an operational problem where each time step is one
hour (there are many applications where time steps are in minutes or even seconds). If we
assume a time value of money of 10 percent per year, then we would use γ = 0.999989
for our hourly discount factor. If we use a horizon of, say, 100 hours, then we might as
well use γ = 1. Not surprisingly, it is common to introduce an artificial discount factor to
reflect the fact that decisions made at t′ = t+ 10 should not carry the same weight as the
decision xt that we are going to implement right now. After all, x̃tt′ for t′ > t is only a
forecast of a decision that might be implemented.

In our presentation of rollout heuristics, we introduced an artificial discount factor λ to
reduce the influence of poor decisions backward through time. In our rolling horizon model,
we are actually making optimal decisions, but only for a deterministic approximation (or
perhaps an approximation of a stochastic model). When we use introduce this new discount
factor, our rolling horizon policy would be written

Xπ(St|λ) = arg max
xt,...,xt+H

t+H∑
t′=t

γt
′−tλt

′−tC(St′ , xt′).

In this setting, γ plays the role of the original discount factor (which may be equal to 1.0,
especially for finite horizon problems), while λ is a tunable parameter. We use λ because it
is exactly analogous to the use of λ in the temporal differencing (see section 17.1.3). The
motivation for the use of λ in a rolling horizon setting is the recognition that we are solving
a deterministic approximation over a horizon in which events are uncertain.

20.5 TWO-STAGE STOCHASTIC PROGRAMMING

After deterministic linear programming was invented, researchers quickly realized that
there were uncertainties in many applications, leading to an effort (initiated by none other
than George Dantzig, who invented the simplex method that started the math programming
revolution) to incorporate uncertainty into a linear program.

Not surprisingly, the introduction of uncertainty into mathematical programs opened a
Pandora’s box of modeling and computational issues that challenges the research commu-
nity today. For decades the community focused on what became known as the two-stage
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stochastic programming problem, which consists of “make decision, see information, make
one more decision.” The two-stage stochastic programming formulation remains a foun-
dational tool for approximating fully sequential problems. Below, we introduce the basic
two-stage stochastic programming problem, and then show how it can be used to build
a lookahead policy for the fully sequential inventory problem we introduced above. We
then show how this can be used as an approximate lookahead model for fully sequential
problems.

As a historical note: the field of stochastic programming evolved in the 1950’s along-
side the development of the field of Markov decision processes by Richard Bellman, with
stochastic programming focusing on vector-valued decisions and Markov decision pro-
cesses working with discrete action spaces. These communities evolved in parallel with
distinctly different notational systems and modeling frameworks.

20.5.1 The basic two-stage stochastic program

In section 4.3.2, we introduced what is known as the two stage stochastic program where
we make an initial decision x0 (such as where to locate warehouses), after which we see
information W1 = Wt(ω) (which might be the demands for product), and then we make
a second set of decisions x1(ω) which depend on this information (the decisions x1 are
known as the recourse variables).

As we did in section 4.3.2, the two-stage stochastic programming problem is written

max
x0

(
c0x0 + EQ1(x0,W1)

)
, (20.24)

subject to the constraints,

A0x0 = b0, (20.25)
x0 ≥ 0, (20.26)

The initial decisions x0 (which determines the inventories in the warehouses) then im-
pacts the decisions that can be made after the information (the demand) becomes known,
producing the second stage problem

Q1(x0, ω) = max
x1(ω)

c1(ω)x1(ω), (20.27)

subject to, for all ω ∈ Ω,

A1x1(ω) ≤ B1x0, (20.28)
B1x1(ω) ≤ D1(ω), (20.29)
x1(ω) ≥ 0. (20.30)

We note that while Q1(x0) = EQ1(x0,W1) is a value function, the Q(·) notation is
standard in this literature. Oddly, while x0 is not, strictly speaking, a state variable, it
deterministically determines the state at time 1. For example, we could write

R1 = B1x0,

and then write the first stage objective as

max
x0

(
c0x0 + EQ1(R1,W1)

)
.
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In fact, for many applications R1 is lower dimensional (and possibly much lower dimen-
sional) than x0. For example,R1 might be a vector of inventories, whereR1i is the amount
of inventory at location i, while x0 is a high dimensional vector with elements x0ij . Our
version above represents standard convention in this community.

We cannot actually compute this model if Ω represents all the potential outcomes, so
we have to use the idea of a sampled model that we first introduced in section 4.3. We note
that even when Ω is carefully designed and “not too big,” the two-stage problem can still
be hard to solve (if the decision vectors are large enough).

There are several computational strategies that have been used to solve problem (20.24)
- (20.30):

The “deterministic equivalent” method The problem (20.24) - (20.30), when formulated
using a sampled set of observations Ω, is basically a single (potentially large) deter-
ministic linear program, leading some to refer to this problem as the “deterministic
equivalent.” Modern solvers can handle problems with hundreds of thousands of
variables with minimal training (specialists have worked on problems with millions
of variables).

Relaxation If we replace x0 with x0(ω), this means that we are allowing x0 to see the
future. We can fix this with a nonanticipativity constraint that looks like

x0(ω) = x0, for all ω ∈ Ω̂. (20.31)

This formulation allows us to design algorithms that relax this constraint, allowing
us to solve |Ω| independent problems with logic that penalizes deviations of (20.31).
This methodology has become known under the name of progressive hedging which
has made it possible to approach two-stage stochastic programs that would otherwise
be too large.

Benders decomposition In section 4.3.2 we introduced the idea of using Benders decom-
position, where the function EQ1(x0,W1) is replaced with a series of cuts. This is
really a form of approximate dynamic programming, which we showed in chapter
19.

We are now going to transition to using this two-stage model as a policy for fully
sequential problems.

20.5.2 Two-stage approximation of a sequential problem

While there are true two-stage stochastic programming problems, there is a vast range of
fully sequential problems of the types that we have been pursuing in this book that involve
vector-valued decisions in the presence of uncertainty. A widely used strategy is to solve
these problems by approximating them as two-stage problems, where there is a decision to
be made now at time t, represented by xt, after which we then pretend that we observe all
the future information over the rest of our horizon (t + 1, t + H). After this information
is revealed, we then make all remaining decisions x̃tt′ for t′ = t + 1, . . . , t + H , which
represents (along with the revealed information) the second stage of our decision problem.

In our two-stage approximation, the decisions x̃tt′ are allowed to “see” into the future,
which means that they depend on the future information. We create a sampled set of
observations that we call Ω̃t (indexed by t because it is generated at time t), where each
ω̃t ∈ Ω̃t represents a full sequence of the random variables Wt+1,Wt+2, . . . ,Wt+H .
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Given ω̃t ∈ Ω̃t (that is, given the rest of the future), we index all future decisions with
the same outcome (scenario in the language of stochastic programming) ω̃t, giving us the
vector x̃tt′(ω̃t), for t′ = t+ 1, t+ 2, . . . , t+H . These decisions violate nonanticipativity,
because each ω̃t ∈ Ω̃t represents a full realization of information over the entire planning
horizon. This introduces errors, but there is a tremendous computational benefit over full
multistage models (which we discuss below).

If we fix ω̃t ∈ Ω̃t, then this is like solving the deterministic optimization problem above,
but instead of using forecasts of prices, p̄tt′ , the energy from solar q̄tt′ , and the demand D̄tt′ ,
we use sample realizations p̃tt′(ω̃t), h̃tt′(ω̃t) and D̃tt′(ω̃t). Let p(ω̃t) be the probability
that ω̃t happens, where this might be as simple as p(ω̃t) = 1/|Ω̃t|.

There are two ways to model data and decisions at time t. Consider the price pt at time t,
which is stochastic in the future. We can write p̃tt′(ω̃t) to represent a potential value of the
price at time t′ when we are solving a lookahead model at time t, where ω simply identifies
which price in a sampled set Ω̃t. We could write the price at time t as p̃tt(ω̃t), but the price
at time t is deterministic, so we could write p̃tt(ω̃t) but recognize that p̃tt(ω̃t) = pt for all
ω̃t.

Writing pt as p̃tt(ω̃t) seems clumsy, but it takes on a different meaning when we model
decisions. We need to make a single decision xt, but we can also write x̃tt(ω̃t). However,
ω̃t is the information that becomes available in the future, while x̃tt is a decision that we
have to make now before we know this future information. Writing x̃tt(ω̃t) means making
a decision at time t knowing the future ω̃t. For this reason, we have to impose a constraint

x̃tt(ω̃t) = xt. (20.32)

Equation (20.32) is known in the stochastic programming literature as a nonanticipativity
constraint. The first question that a reader should ask is: why would we even use the
notation xtt(ω)? The reason is computational. Imagine that we write the time t decision as
xtt(ω) and temporarily ignore equation (20.32). In this case, the problem would decompose
into a series of problems, one for each ω̃t ∈ Ω̃t. These are much smaller problems than a
single problem where we have to deal with all the different scenarios at the same time, but
it means that we can get a different answer x̃tt(ω̃t) at time t, which is a problem. However,
there are algorithmic strategies that take advantage of this problem structure.

We can model the first period decision as x̃tt(ω̃t) and impose a nonanticipativity con-
straint (20.32), or we can simply use xt and just let all the future decisions x̃tt′(ω̃t) for
t′ > t depend on the scenario. If we use the latter formulation (which is simpler to write,
but may be harder to solve), we get

min
xt,(x̃tt′ (ω̃t))

t+H
t′=t+1

, ω̃t∈Ω̃t

pt
(
xgbt + ptx

gd
t

)
+
∑
ω̃t∈Ω̃t

P (ω̃t)

t+H∑
t′=t+1

(
p̃tt′(ω̃t)

(
x̃gbtt′(ω̃t) + x̃gdtt′(ω̃t)

)
− θpenx̃slacktt′

)
subject to the constraints

R̃t′+1(ω̃t)−
(
x̃gbtt′(ω̃t) + x̃sbtt′(ω̃t)− x̃bdtt′(ω̃t)

)
= R̃t′(ω̃t), (20.33)

x̃sdtt′(ω̃t) + x̃sbtt′(ω̃t) ≤ h̃t′(ω̃t), (20.34)

x̃bdtt′(ω̃t) + x̃gdtt′(ω̃t) + x̃sdtt′(ω̃t) + x̃slacktt′ = D̃t′(ω̃t), (20.35)

x̃gbtt′(ω̃t), x̃
sb
tt′(ω̃t), x̃

bd
tt′(ω̃t), x̃

sd
tt′(ω̃t), x̃

slack
tt′ ≥ 0. (20.36)

Equation (20.33) is the flow conservation constraint for our battery, while equation (20.34)
limits the power available from the solar farm. Equation (20.35) limits how much we can
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deliver to the customer, where x̃slacktt′ is the slack variable that captures how much demand
is not satisfied, which carries a penalty θpen in the objective function.

This formulation allows us to make a decision at time t while modeling the stochastic
variability in future time periods. In the stochastic programming community, the outcomes
ω̃t are often referred to as scenarios. If we model 20 scenarios, then our optimization
problem becomes roughly 20 times larger, so the introduction of uncertainty in the future
comes at a significant computational cost. However, this formulation allows us to capture
the variability in future outcomes, which can be a significant advantage over using simple
forecasts. Furthermore, while the problem is certainly much larger, we can approach it
using one of the three algorithmic strategies described in section 20.5.1.

20.5.3 Decomposition strategies

Although the two-stage approximation is dramatically smaller than a full multistage model
(as we show below), even two-stage approximations can be quite challenging. The problem
is that there are many applications where even a deterministic lookahead model can be quite
hard.

20.6 MULTISTAGE STOCHASTIC PROGRAMMING

Introducing uncertainty in multistage optimization problems in the presence of vector-
valued decisions is intrinsically difficult, and not surprisingly there does not exist a compu-
tationally tractable algorithm to provide an exact solution to this problem. However, some
practical approximations have evolved. We illustrate the simplest strategy here.

20.6.1 Modeling multistage stochastic programs

It is common to model a stochastic program as if it starts at time 0, and extends over a
horizon t = (1, 2, . . . , T ), ignoring the fact that this is a lookahead model that starts at
time t, and extends over a horizon t′ = (t, t + 1, . . . , t + H). This ignores the fact that
the stochastic program, which is, by itself, a challenging stochastic optimization problem,
is really just a lookahead policy for another stochastic optimization problem that we have
been calling the base model. We are going to stay with our notation to model the fact that
our lookahead model is being created at time t in the base model, and we use t′ to indicate
the time within the lookahead model. We also use tilde’s (most of the time) to indicate
variables in the lookahead model.

We begin by describing modeling assumptions used when formulating multistage (or
even two-stage) stochastic programs. Most important is to separate the physical process
controlled by x̃tt′ which determines the physical state R̃tt′ , and the information process
Ĩtt′ that evolves exogenously. Combined these make up the state

S̃tt′ = (R̃tt′ , Ĩtt′).

These are treated separately, which also means that decisions cannot have an impact on
information, an assumption that we do not require in any of our other classes of policies
(PFAs, CFAs, VFAs). It is important to recognize that just as R̃tt′ is the physical state at
time t′, Ĩtt′ is only the information we need at time t′ to model the lookahead model from
time t′ onward. Thus, while Ĩtt′ might include the entire history htt′ , in most applications
Ĩtt′ is likely to be much more compact than htt′ (but it may still be quite high dimensional).
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To model the physical process, we let R̃tt′t be a vector of resources, where an element
might be R̃t,t′k where k is a location (the number of freight containers at port or rail yard
k), or a type of blood k. We might also use R̃tt′r where r = (r1, . . . , rM ) is a vector
of attributes, perhaps to describe a driver or complex equipment such as an aircraft. The
problem that arises when r is a vector is that the dimensionality of R̃tt′ becomes extremely
large. For this reason, we will assume that R̃tt′ = (R̃tt′k)k∈K where the size of the set K
is “not too large” (100’s, perhaps 1,000’s, maybe 10,000).

We then assume that our decision x̃tt′ at time t′ in the lookahead model is subject to
constraints of the form

Ãtt′ x̃tt′ = R̃tt′ ,

where these are typically flow conservation constraints. We then assume that this vector
evolves over time according to

R̃t,t′+1 = B̃tt′ x̃tt′ + δR̃t,t′+1, (20.37)

Ãt,t′+1x̃t,t′+1 = R̃t,t′+1, (20.38)

where δR̃t+1 represents exogenous changes (new arrivals, departures, theft of product,
rainfall). Previously, we used R̂tt′ to capture these exogenous changes, but in this section,
we are modeling every variable indexed by t′ as if it first becomes known at time t′.

Separate from the physical process is the information process. The data in our linear
program at time t′ in the lookahead model consists of costs c̃tt′ , the constraint matrices Ãtt′
and B̃tt′ , and the exogenous changes in supplies δR̃tt′ (that enters the problem inRt,t′+1 at
time t′ + 1). We let W̃ tt′ = (Ãtt′ , B̃tt′ , c̃tt′ , δR̃tt′) be our exogenous information process
if everything is random (there are many applications where only δR̃tt′ is random, while the
other variables are time-dependent but deterministic).

Let h̃tt′ be the history of our information process which we can write

h̃tt′ = (W̃ tt, W̃ t,t+1, . . . , W̃ tt′),

= ((Ãtt, B̃tt, c̃tt, δR̃tt), . . . , (Ãtt′ , B̃tt′ , c̃tt′ , δR̃tt′)).

We next let Ω̃t be the set of all the sample paths W̃ tt, . . . , W̃ t,t+H over our horizon. This
means that when we use an index ω̃t ∈ Ω̃t, it refers to the information over the entire
planning horizon (in our lookahead model). Specifying ω̃t is like specifying the entire
future (within the lookahead model).

It is useful to be able to label all the elements ω̃t that correspond to a particular history
h̃tt′ . For this purpose, we define the set of outcomes that share a history, which we write as

Ht(h̃tt′) = {ω̃t ∈ Ω̃t|(W̃ tt, . . . , W̃ tt′) = htt′}.

Figure 20.13 depicts a set of sample paths ω̃t from a set Ω̃t, where we have constructed
these sample paths as they might happen in reality, with branching occurring at each time
period. Figure 20.14 illustrates a subset of outcomesHt(h̃tt′) ∈ Ω̃t where the information
from t to t′ matches a particular history h̃tt′ .

The set Ω̃t, when generated in a way that it captures the branching process of real
information processes, is known in the stochastic programming literature as a scenario
tree. The challenge, that we address below, is that we need to make decisions x̃tt′ that
reflect the information available at time t′. Thus, it is common to write x̃tt′(ω̃t), when in
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Figure 20.13 A multistage scenario tree.
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Figure 20.14 The sample paths corresponding to a history htt′ .

fact what we want to write is x̃tt′(htt′) to reflect the dependence of the decision on the
history rather than the entire sample path.

In reality, for most applications, the decision does not even depend on the entire sample
path. Rather, it only depends on what we need to know, which is what we call the state
variable S̃tt′ . For example, our information process might be modeling a stochastic prices
process or the speed of wind. These processes might only depend on the current value, or
perhaps the trailing two or three values. In this case the state does not capture the entire
history; rather it captures only what we need to know. For example, our stochastic linear
program might easily be described by the state variable

S̃tt′ = (R̃tt′ , (Ãtt′ , B̃tt′ , c̃tt′ , δR̃tt′))

= (R̃tt′ , Ĩtt′),

where, in the language of chapter 9, R̃tt′ is the physical state at time t′, and Ĩtt′ is the
information state (which includes exogenous changes to the resource state variable). While
this is quite a messy state variable, at least it does not include the entire history.
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20.6.2 The multistage stochastic program

A classical approach for writing a multistage stochastic optimization problems, solved at
time t over a horizon t′ = t, . . . , t+H is given by

max
Ãt0x̃t0=R̃t0

x̃t0≥0

c̃t0x̃t0 + E

 max
B̃t0x̃t0+Ãt1x̃t1=R̃t1

x̃t1≥0

c̃t1x̃t1 + E

· · ·+
E

 max
B̃t,T−1x̃t,T−1+ÃtT x̃tT=R̃tT

x̃tT≥0

c̃tT , x̃tT |Ht(htT )

 . . . |Ht(ht2)

 |Ht(ht1)

 .
(20.39)

Equation (20.39) captures the nesting of decisions and information (represented by the
expectations), which precisely mimics the decision tree we presented for discrete actions.
This formulation assumes that x̃tt′ is a vector which has to satisfy constraints of the form
Ãtt′ x̃tt′ = R̃tt′ .

We remind the reader that an expectation in this setting would be over the entire set of
sample paths Ω̃t where ωt ∈ Ω̃t represents a sample of W̃ tt, . . . , W̃ t,t+H . A conditional
expectation given Ht(htt′) simply means an expectation over the subset of Ω̃t that belong
to the setHt(htt′).

We treat as potentially new information (arriving between t′ − 1 and t′) the matrices
Ãtt′ and B̃tt′ , the cost vector c̃tt and the exogenous changes to the resource vector δR̃tt′
from which we can determine R̃tt′ (along with the previous decision x̃t,t′−1). Thus we
would write

W̃ tt′ = (Ãtt′ , B̃tt′ , c̃tt′ , δR̃tt′).

We note that there are many applications where the only source of randomness is δR̃tt′ ,
often in the form of random demands (and possibly supplies). However, the matrices Ãtt′
and B̃tt′ would represent how we model random travel times, and there are many problems
where costs or prices are random.

This model illustrates information where the exogenous information (that is,
(Ãtt′ , B̃tt′ , c̃tt′)) goes directly into the (information) state Ĩtt′ , while other information,
δR̃tt′ , is used in the updating of the resource state R̃tt′ .

Conditioning on a set Ht(htt′) is the same as fixing a node in the scenario tree cor-
responding to the end of the history htt′ in figure 20.14. Some authors even replace the
history htt′ with the index of the node corresponding to the end of the history at time t′, but
requires that we condition on the entire history. While there are situations where this may
be appropriate (applications in finance may use this), in most applications the information
state does not require the entire history. In fact, in our problem the information state is just
the exogenous information, which is to say

Ĩtt′ = W̃ tt′

= (Ãtt′ , B̃tt′ , c̃tt′ , δR̃tt′).

We caution that problems where Ĩtt′ = W̃ tt′ arise fairly frequently, as in most model free
settings where we can only observe the state without any knowledge of the dynamics, but
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this will not always be the case. An information state may easily require information from
recent time periods, as would arise in any setting where the dynamics are described by a
time series model.

Given this structure, we may condition all of our expectations on the information state
Ĩtt′ rather than the full state S̃tt′ , in which case equation (20.39) is equivalent to

max
x̃tt∈Xt(St)

C(S̃tt, x̃tt) + E

[
max

x̃t1∈Xt1(S̃t1)
C(S̃t1, x̃t1) + E

[
. . .

+E

[
max

x̃tT∈XT (S̃tT )
C(S̃tT , x̃tT )|ĨtT

]
. . . |Ĩt2

]
|Ĩt1

]
, (20.40)

which is closer to the form we have used throughout the text. Here we have replaced
conditioning on the history htt′ with conditioning on the information state Ĩtt′ (which by
construction, contains the information needed in the history). Of course, the decisions
still depend on the resource state R̃tt′ , which are the only variables that depend on prior
decisions.

The biggest difference between (20.40) and the standard form we have used previously
is that we are not explicitly maximizing over policies. The reason is that the policy is
imbedded in the formulation as

X̃SP
tt′ (S̃tt′) = arg max

x̃tt′∈Xtt′ (S̃tt′ )
C(S̃tt′ , x̃tt′) + E

[
. . . |Ĩtt′

]
We again emphasize that this is just the vector-valued version of what we did in our decision
tree, with the only difference being that Ĩtt′ is a node in the scenario tree of the information
process (in our decision tree, the node would have corresponded to the complete state
variable).

This formulation can look quite frightening. As with almost every problem in stochastic
optimization, there is a computational challenge once we create the model. We have
already seen how to solve these problems using VFA-based methods (such as Benders
cuts) in chapter 19, but we next describe how to use a sampled model to do a true direct
lookahead policy.

20.6.3 Stochastic programming with scenario trees

The optimization problem represented by the stochastic program in equation (20.39) (or
more precisely, (20.40)), is really just one very large linear program that is best visualized
as a decision tree, with the exception that at each node we have a linear program that is
coupled with the downstream nodes (and linear programs) that are affected by the decisions
we made.

We begin by constructing our scenario tree. Unlike a typical decision tree that combines
decisions and (random) information, our scenario tree is constructed purely of the exogenous
information process. We start with the initial state of information Ĩtt drawn from the state
St in the base model. We next generate a sample Ω̃tt(Ĩtt) of observations from the random
variable W̃ tt, each of which take us to a downstream information state Ĩt,t+1. We continue
this from each information state Ĩtt′ until we have populated our tree. Finally, let I be the
set of all information states (which is the same as all the nodes in the scenario tree).

The outcomes ω̃tt ∈ Ω̃tt′ each take us to a downstream information node Ĩt,t+1, so there
is a downstream information state for each element of Ω̃tt′(Ĩtt′). We assign a probability
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p̃tt′(ω̃tt′ |Ĩtt′) for each of these outcomes, where we often have

p̃tt′(ω̃tt′ |Ĩtt′) =
1

|Ω̃tt′(Ĩtt′)|
.

Since these trees grow exponentially, a fairly common strategy is to use a larger number of
outcomes for the first branching (the set Ω̃tt), and then use successively smaller samples.

In the discussion that follows, we are going to be making decisions x̃tt′ at time t′ (in
the lookahead model), given the information state Ĩtt′ (think of this as a linear program for
each node in the scenario tree, but the linear programs are linked). For this reason, we are
going to need to index all of our variables by the corresponding information state. Thus,
x̃tt′(Ĩtt′) represents a decision made at time t′ given the information state Ĩtt′ . Similarly,
we will have random data such as the contributions that we might label using c̃tt′(Ĩtt′).
Eventually, we will simply index these variables by i ∈ I, but we have to use Ĩtt′ when the
timing is important.

We next have to deal with the resource states R̃tt′ which are the variables that we actually
control (with noise). When we make a decision x̃tt′ while in information state Ĩtt′ , we need
to know R̃tt′ . If we stepped forward in time (as we do with our other classes of policies),
we would determine R̃tt′ before having to determine x̃tt′ , but in our multistage stochastic
program, we are going to be optimizing over all the decisions x̃tt′ for t′ = t, . . . , t+H at
the same time.

We overcome this problem by taking advantage of the relationship between the scenario
tree (that is, the set of information nodes) and the linking of the resource states through a
system of linear equations. The resource state R̃tt′(Ĩtt′) depends on x̃t,t′−1(Ĩt,t′−1) and
the information in Ĩtt′ . The decisions x̃t,t′−1(Ĩt,t′−1) in turn depend on x̃t,t′−2(Ĩt,t′−2)

and Ĩt,t−1, and so on. If we fix R̃tt′(Ĩtt′), then it is fairly straightforward to solve the linear
program to determine x̃tt′(Ĩtt′) (if we had a way of approximating the downstream node).
But we cannot fix R̃tt′(Ĩtt′), since we are not solving the problems in sequence (as we
have done earlier while simulating a policy). The problem is that we are optimizing over
all x̃tt′(Ĩtt′) for all t′ = (t, . . . , t + H), and all the information states Ĩtt′ , all at the same
time (in one call to our linear programming solver).

What we do instead is to recognize that all of the resource variables are linked through
the updating equation

R̃t,t′+1(Ĩt,t′+1) = B̃tt′(Ĩtt′)x̃tt′(Ĩtt′) + δR̃t,t′+1(Ĩt,t′+1). (20.41)

Equation (20.41) exploits the fact that Ĩt,t+1 uniquely determines Ĩtt′ (which in turn
determines B̃tt′(Ĩtt′)), and Ĩt,t′+1, which also determines the exogenous resource changes
δR̃t,t′+1(Ĩt,t′+1). Equation (20.41), then, forms what can be an extremely large set of
equations linking the resource variables across the entire scenario tree, producing a single,
albeit potentially quite large, deterministic optimization problem.

We can now formulate our stochastic linear program. Assuming that the contribution
functions are linear

C(S̃t1, x̃t1) = c̃tt(Ĩtt′)x̃tt′(Ĩtt′), (20.42)

we can write our stochastic linear program as

max
xtt′ (i),t

′=t,...,t+H,i∈I

t+H∑
t′=t

c̃tt′(i)x̃tt′(i), (20.43)
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subject to (20.41), the constraints at time (t, t′)

Ãtt′(Ĩtt′)xtt′(Ĩtt′) = R̃tt′(Ĩtt′). (20.44)

and nonnegativity constraints for each x̃tt′(i) for all t′ = t, . . . , t+H and i ∈ I.
The optimization problem (20.43) with constraints (20.41) and (20.44) (and nonnegativ-

ity) produces what may be a very large linear program. Remembering that each xtt′(i) is
itself a vector, this can be extremely large, and as a result a community has evolved that fo-
cuses on algorithmic strategies for these problems. As of this writing, most of this research
is still directed at two-stage problems, especially when integer variables are concerned.

The approach we have used here is widely used (although our notation here is new as
of this writing), but it is not the only way to model a multistage stochastic program. The
other approach creates a sample ω ∈ Ω̃t, which determines the entire information sequence
W̃ tt, . . . , W̃ t,t+H . We would then write x̃tt′(ω), which means we are letting x̃tt′ “see”
the entire future. We handle this problem as we did for two-stage stochastic programs by
imposing nonanticipativity constraints. We would do this by writing a constraint such as

x̃tt′(htt′) = x̃tt′(ω̃t) for all ω̃t ∈ Ht(htt′)

Ultimately, this approach is equivalent to what we have described above, which we find is
more natural.

20.7 EVALUATING LOOKAHEAD POLICIES

Regardless of the approximations made to produce a tractable lookahead model in equation
(20.7), it is still an optimization problem, and possibly a fairly difficult optimization problem
(especially if we use a stochastic lookahead model). It is very easy to forget that this is
just a class of policy, the quality of which depends on how well we have approximated the
lookahead model. For this reason, we still have to evaluate the policy, possibly to help tune
any parameters used, possibly to compare it against other classes of policies, and possibly
to simply evaluate whether the policy is working at an acceptable level.

We can let θ parameterize all the approximations that we made in forming an approximate
lookahead model. Examples include the number of stages (a stage is a combination of a
decision followed by new information), the number of scenarios (when using a sampled
approximation of the random variables), and the horizon. We can then represent this
dependence by writing our policy as XLA

t (St|θ), which is a form we have also used when
representing policies for policy search.

We can evaluate our parameter choices θ by simulating the policy, which we can write
as

FLA(θLA, ω) =

T∑
t=0

C(St, X
LA(St(ω)|θ)), (20.45)

where St+1(ω) = SM (St(ω), XLA(St(ω)|θ),Wt+1(ω)) represents the state transition
while following sample path ωn of the exogenous process W1(ω), . . . ,WT (ω). We might
do one sample path (if it is long enough), or take an average over a series of samples.

The process of simulating a lookahead policy is shown in figure 20.15, which depicts
a deterministic lookahead model. The lookahead model is shown on a slanted line, that
indicates projecting into the future. Then, we step forward in time where we execute
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Figure 20.15 Illustration of rolling horizon procedure, using a deterministic model of the future
(from Powell et al. (2012)).
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Figure 20.16 Illustration of rolling horizon procedure, using a stochastic model of the future.

St+1(ω) = SM (St(ω), XLA(St(ω)|θ),Wt+1(ω)), which means either simulating the
base model, or perhaps observing the policy work in the field.

Even if we use a stochastic lookahead based on scenario trees, we still need to run
simulations to evaluate the policy. This is depicted in 20.16. Presented this way, it seems
natural to simulate a stochastic lookahead policy, but this is surprisingly rare in practice,
largely because stochastic lookahead policies can be quite hard to solve computationally,
even with the introduction of approximations. Using backward dynamic programming for
problems with state variables with three or four dimensions can require several days of
computer time. Two-stage stochastic programming problems can easily require several
hours (or days, depending on the implementation), and multistage stochastic programs can
be virtually intractable, even when using relatively small samples. Obtaining an optimal
solution to a stochastic lookahead policy is considered a major achievement, so much so
that it is easy to forget that an optimal solution to an (approximate) lookahead model, even
if it is stochastic, is still not an optimal policy.

Regardless of how we have approximated our lookahead model, we may need to evaluate
different parameter settings which we represent by a vector θLA. This no longer makes
sense when tuning a lookahead policy, since it is often the case that a lookahead parameter
(such as the horizon, the number of samples in the lookahead model, the number of
stages) satisfies the property of “the bigger the better.” The problem is that as we make
the lookahead model more realistic (longer horizons, larger samples, more stages), the
lookahead model becomes much harder to solve.

We could create a utility function that trades off the performance of the policy (evaluated
using (20.45)) against computational costs. In practice, scientists have a sense of their
computational budget, but there is typically a nonlinear tradeoff which has to be evaluated
empirically. The decision of how to choose θ is typically ad hoc, if for no other reason than
the reality that most projects that involve creating a lookahead policy (especially stochastic
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lookaheads), do not create the type of simulator that is required to compute estimates of
(20.45).

20.8 DISCUSSION

A number of comments are in order regarding the use of lookahead policies:

• It is common when using lookahead policies to form a model, and then assume that
this is the model we have to solve. The real problem is the base model, while the
lookahead policy is just one way of solving the base model.

• Optimal solutions of stochastic lookahead models can be quite difficult to find, but
an optimal solution of an approximate lookahead model is not an optimal policy.

• It is sometimes hard to know if a model is a lookahead model or a base model. There
are many instances of stochastic dynamic programs which are base models, but these
might also be lookahead models. We provide some guidance below.

• While simulating a policy (any policy) is typically the best way to tune and compare
policies, this is critical when using policy search (policy function approximations, or
cost function approximations). By contrast, it is less important when using lookahead
models. Given the complexity of building simulators, along with the approximations
inherent in any simulation, there are many situations where lookahead policies are
just tested in the field.

As of this writing, the vocabulary of “base models” and “lookahead models” has not
entered the language of modeling in stochastic optimization. As a result, it can be difficult
to identify whether a stochastic optimization model is a base model or lookahead model.
Some guidelines include:

• How is the model being used? If the primary output of a model is the decision we
make in the first time period, this is almost always a lookahead model. However,
there are instances where the lookahead model is the same as the base model, in
which case our policy is an optimal policy. On the other hand, it is possible the
model is being used to answer strategic questions, where we are using optimization
to simulate good decisions, then this is a base model.

• If we are using a deterministic lookahead model, or a stochastic lookahead using
scenario trees, to make decisions in a setting that is stochastic, then this is a lookahead
model. The future decisions in the lookahead model (that is, x̃tt′ for t′ > t) are not
going to be implementable in a stochastic setting.

Perhaps the most important take-away of this chapter is the need to clearly distinguish
the lookahead model from the base model, and to remember that the problem we are trying
to solve is the base model. The lookahead model is just a form of policy, which we may
compare to other policies we have discussed in this book.

20.9 BIBLIOGRAPHIC NOTES



PART VI - RISK

Up to now this book has dealt almost exclusively with expectations. This reflects both the
rich literature and wide range of applications. Yet, it is easy to make the case that in the
presence of uncertainty, risk is of central importance.
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CHAPTER 21

RISK AND ROBUSTNESS

Utility functions
Risk measures
Dynamic risk measures
Importance sampling? Lina’s work and Daniel Jiang’s work

21.0.1 Risk-based and robust objective functions

xxxx
Of course, this formulation assumes that we are maximizing the expected value of the

sum. Eventually (well, not until chapter 21) we are going to consider the issue of risk.
For example, there are problems in energy systems where the cost of power for a building
operator depends on the peak usage over the course of a month. In this case, we are trying
to design an energy control policy that minimizes the maximum consumption of energy
across all the time periods.

To handle these situations, we introduce the risk measure ρ(·) which acts on the full
sequence of costs or contributions. The key difference between our risk operator ρ(·) and
the expectation E(·) is that the expectation of a sum is equal to the sum of the expectations,
while the risk operator is nonlinear. To illustrate, let Cπt = C(St, X

π
t (St),Wt+1) for

Reinforcement Learning and Stochastic Optimization. By Warren B. Powell
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t = 0, . . . , T − 1, and CπT = C(ST , X
π
T (ST )) and let

Fπ =

T∑
t=0

Cπt ,

where Fπ is a random variable. Examples of risk operators are

ρ(C0, C1, . . . , CT ) = max
t
Cπt ,

ρ(C0, C1, . . . , CT ) = (Fπ)
2
.

In this case, we write our objective as

max
π∈Π

ρ (C0, C1, . . . , CT ) .

xxx
When you introduce uncertainty, there is a number of applications in which doing well

on average is not enough. There are two approaches that are being actively researched for
handling these situations. The first is to replace the expectation with a risk measure that
we denote by % which can take many forms. One version uses a weighted combination of
the mean and variance, given by

%(X) = EX + ηE
[
(X − EX)2

] 1
2 ,

where η is a parameter that controls how much weight we put on the variance. Often we
wish to focus on tails, so we might use

%(X|α) = EX + ηEmax{0, X − α},

for a given threshold α, where outcomes of X above α are of special interest. We could
turn this around, using max{0, α −X} if our concern is with values of X less than α, as
might arise if we are worried about running out of energy (or money).

A different objective that has been receiving growing attention under the label of robust
optimization , which focuses on the worst case outcome within some constructed uncertainty
set. Robust optimization originated as a static optimization problem, where you make a
deterministic decision x and then observe a stochastic outcome W . A classical example
involves designing a building or device that will withstand the worst possible outcome
(the wind on a building, the stress on an airplane wing, the load on a transformer). We
first define an uncertainty set W(θ), which might be envisioned as 95 percent confidence
intervals (if θ = .05). The static robust optimization problem would be formulated as

min
x

max
w∈W(θ)

F (x,w). (21.1)

Recently, this idea has been applied to multiperiod problems. Imagine that we are trying
to make a decision xt at time t that reflects this worst-case thinking. We can extend the
idea of robust optimization for static problems by building a multiperiod uncertainty set
Wt,t+H(θ) for the random variables Wt, . . . ,Wt+H . For example, we could create 95
percent confidence intervals for each Wt′ over the entire horizon. We can then construct a
robust policy by solving

Xπ
t (St) = arg min

xt,...,xt+H

max
wt,...,wt+H

t+H∑
t′=t

ct′(wt′)xt′ . (21.2)
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This is a deterministic optimization problem which returns xt, which is the decision that
would be implemented at time t. However, equation (21.2) is not a model of a problem
(that is, a base model); it is a form of lookahead policy. We revisit lookahead policies in
chapter 20.

Risk measures, including the worst-case objective of robust optimization, are signifi-
cantly harder to work with than expectation. Perhaps the biggest source of complexity is
that risk operators, which is to say that the risk associated with the sum is not the sum of
the risks (a probably that is enjoyed by expectations). This is less of a problem for policy
search algorithms (discussed in chapter 12, but represents a major hurdle for algorithms
that depend on Bellman’s equation. The field of dynamic risk measures has evolved to
address this issue. We address this topic in greater depth in chapter 21. ,

21.1 BIBLIOGRAPHIC NOTES

• Section xx -
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Stochastic Optimization and Learning
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a) This is an open book, take-home midterm. You have four days to finish the exam.
Turn the exam in to Kim Lupinacci in Room 120 in Sherrerd Hall by 4pm.

b) Under no circumstances are you to discuss the midterm with anyone.

c) The questions below take you on a tour through the course textbook Stochastic
Optimization and Learning. Each question is numbered xx.yy, where xx indicates
the chapter from which the question is derived.
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8.1 (5 points) What is the distinguishing characteristic of a state-dependent problem, as
opposed to the state-independent problems we considered in chapters 5 and 7? Why
do we make the distinction between the two problem classes, since both can still be
modeled as dynamic programs?

8.2 (20 points) Below is a series of variants of our familiar newsvendor (or inventory)
problem. In each, describe the pre- and post-decision states, decision and exogenous
information in the form:

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 ,W2, . . .)

Specify St, Sxt , xt and Wt in terms of the variables of the problem.

a) (5 points) The basic newsvendor problem where we wish to find x that solves

max
x

E{pmin(x, D̂)− cx} (22.1)

where the distribution of D̂ is unknown.

b) (3 points) The same as (a), but now we are given a price pt at time t and asked
to solve (22.1) using this information. Note that pt is unrelated to any prior
history or decisions.

c) (3 points) Repeat (b), but now pt+1 = pt + p̂t+1.

d) (3 points) Repeat (c), but now leftover inventory is held to the next time period.

e) (3 points) Of the problems above, which (if any) are not dynamic programs?
Explain.

f) (3 points) Of the problems above, which would be classified as solving state-
dependent vs. state-independent functions.

9.1 (5 points) What are the five elements of a sequential decision problem?

9.2 (5 points) Two definitions are given of a state variable. Explain the difference in the
two settings.

9.3 (5 points) Explain the statement Every properly modeled problem is Markovian. I will
give 25 points to anyone who can show a counterexample (remember: you cannot
simply leave information out of the state variable, since this would be an example of
a problem that is not being properly modeled).

9.4 Consider the problem of controlling the amount of cash a mutual fund keeps on hand.
Let Rt be the cash on hand at time t. Let R̂t+1 be the net deposits (if R̂t+1 > 0) or
withdrawals (if R̂t+1 < 0), where we assume that R̂t+1 is independent of R̂t. Let
Mt be the stock market index at time t, where the evolution of the stock market is
given by Mt+1 = Mt + M̂t+1 where M̂t+1 is independent of Mt. Let xt be the
amount of money moved from the stock market into cash (xt > 0) or from cash into
the stock market (xt < 0).

a) (10 points) Give a complete model of the problem, including both pre-decision
and post-decision state variables.

b) (5 points) Suggest a simple parametric policy function approximation, and give
the objective function as an online learning problem.
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9.5 (20 points) In this exercise you are going to model an energy storage problem, which
is a problem class that arises in many settings (how much cash to keep on hand,
how much inventory on a store shelf, how many units of blood to hold, how many
milligrams of a drug to keep in a pharmacy, ...). We will begin by describing the
problem in English with a smattering of notation. Your job will be to develop it into
a formal dynamic model.

Our problem is to decide how much energy to purchase from the electric power grid
at a price pt. Let xgst be the amount of power we buy (if xgs > 0) or sell (if xgs < 0).
We then have to decide how much energy to move from storage to meet the demand
Dt in a commercial building, where xsbt ≥ 0 is the amount we move to the building
to meet the demand Dt. Unsatisfied demand is penalized at a price c per unit of
energy.

Assume that prices evolve according to a time-series model given by

pt+1 = θ0pt + θ1pt−1 + θ2pt−2 + εt+1, (22.2)

where εt+1 is a random variable with mean 0 that is independent of the price process.
We do not know the coefficients θi for i = 0, 1, 2, so instead we use estimates θ̄ti.
As we observe pt+1, we can update the vector θ̄t using the recursive formulas for
updating linear models as described in chapter 3, section 3.8 (you will need to review
this section to answer parts of this question).

Every time period we are given a forecast fDtt′ of the demand Dt′ at time t′ in the
future, where t′ = t, t + 1, . . . , t + H . We can think of fDtt = Dt as the actual
demand. We can also think of the forecasts fDt+1,t′ as the “new information” or
define a “change in the forecast” f̂Dt+1,t′ in which case we would write

fDt+1,t′ = fDtt′ + f̂Dt+1,t′ .

a) What are the elements of the state variable St (we suggest filling in the other
elements of the model to help identify the information needed in St). Define
both the pre- and post-decision states.

b) What are the elements of the decision variable xt? What are the constraints
(these are the equations that describe the limits on the decisions). Finally
introduce a function Xπ(St) which will be our policy for making decisions to
be designed later (but we need it in the objective function below).

c) What are the elements of the exogenous information variableWt+1 that become
known at time t+ 1 but which were not known at time t.

d) Write out the transition function St+1 = SM (St, xt,Wt+1), which is the
equations that describe how each element of the state variable St evolves over
time. There needs to be one equation for each state variable.

e) Write out the objective function by writing:

The contribution function C(St, xt).
The objective function where you maximize expected profits over some
general set of policies (to be defined later - not in this exercise).

10.1 (3 points for each uncertainty class) Pick a sequential decision problem of your
choosing. Provide a brief explanation, and then list all the types of uncertainty that
might arise in this setting. You will get more points if you pick a richer problem.
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11.1 Consider two policies:

XπA(St|θ) = arg max
xt

C(St, xt) +
∑
f∈F

θfφf (St)

 , (22.3)

and

XπB (St|θ) = arg max
xt

C(St, xt) +
∑
f∈F

θfφf (St)

 . (22.4)

In the case of the policy πA in equation (22.3), we search for the parameter vector θ
by solving

max
θ

E
T∑
t=0

C(St, X
πA(St|θ)). (22.5)

In the case of policy πB , we wish to find θ so that

∑
f∈F

θfφf (St) ≈ E
T∑
t′=t

C(St, X
πB (St|θ)). (22.6)

a) (5 points) Classify policies πA and πB among the four classes of policies.

b) (5 points) Which of the two policies πA and πB should work best? Explain.

11.2 Below is a list of problems with a proposed method for making decisions. Classify
each method based on the four classes of policies (you may decide that a method is
a hybrid of more than one class).

a) (3 points) You use Google maps to find the best path to your destination.

b) (3 points) You are managing a shuttle service between the mainland and a small
resort island. You decide to dispatch the shuttle as soon as you reach a minimum
number of people, or when the wait time of the first person to board exceeds a
particular amount.

c) (3 points) An airline optimizes its schedule over a month using schedule slack to
protect against potential delays.

d) (3 points) Upper confidence bounding policies for performing sequential learning
(these were introduced in chapter 7).

e) (3 points) A computer program for playing chess using a point system to evaluate
the value of each piece that has not yet been captured. Assume it chooses the
move that leaves it with the highest number of points after one move.

f) (3 points) Imagine an improved computer program that enumerates all possible
chess moves after three moves, and then applies its point system.

g) (3 points) Thompson sampling for sequential learning (also introduced in chapter
7).

12.1 (10 points) What is an affine policy? Give an example, and set up the general objective
function for finding the best affine policy for a particular model.
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12.2 (3 points) What is meant by a monotone policy?

12.3 (10 points) Consider a problem of managing water in a reservoir where the water
level Rt evolves according to

Rt+1 = max{0, Rt − xt + R̂t+1}

where R̂t+1 represents exogenous input (rainfall) between t and t+ 1. Assume your
control is given by

Xπ(St|θ) = θ0 + θ1Rt + θ2R
2
t .

Analytically fill in as much of equations (12.35) and (12.36) as you can given this
information. Your goal is to try to find the gradient of the objective function with
respect to the policy parameter vector θ.

14.1 (5 points) Give the relationship between the one-step transition matrix and the tran-
sition function.

14.2 (5 points) Approximate value iteration (which includes Q-learning) is probably the
most widely used strategy in approximate dynamic programming (this is the original
form of reinforcement learning).

a) Write out the basic equations for performing approximate value iteration when
using a lookup table architecture for the value function and a pure forward pass
learning process.

b) A stepsize of 1/n is known to produce a convergent learning algorithm if we
use appropriate exploration policies. What is the problem with a 1/n stepsize
rule?

c) Write out the basic equation if we use a two-pass algorithm. What role is the
value function approximation playing here?

d) How does the use of a two-pass learning process change your thoughts toward
the choice of stepsize.

14.3 (5 points) Illustrate how each of the three curses of dimensionality can arise when
computing a one-step transition matrix?

20.1 (5 points) What are the five types of approximations that are made when creating an
approximate lookahead model?

20.2 (5 points) What approximations are being made when using two-stage stochastic
programs as the basis of a policy? If we can solve the two-stage stochastic program
optimally (this is hard for some large problems), is the resulting policy optimal?
Briefly explain.

20.3 (5 points) What is meant by a “scenario tree.” Sketch an example of a scenario tree. If
we model a multistage problem with 10 time periods, and where there are 5 different
outcomes in each time period, how many sample paths would we be representing in
our scenario tree?
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Powell, W. B., Ruszczyński, A. & Topaloglu, H. (2004), ‘Learning Algorithms for Sep-
arable Approximations of Discrete Stochastic Optimization Problems’, Mathematics of
Operations Research 29(4), 814–836.

Powell, W. B., Simao, H. P. & Bouzaiene-Ayari, B. (2012), ‘Approximate dynamic pro-
gramming in transportation and logistics: a unified framework’, EURO Journal on
Transportation and Logistics 1(3), 237–284.

Powell, W. B., Simao, H. P. & Shapiro, J. A. (2001), A representational paradigm for
dynamic resource transformation problems, in R, in F. C. Coullard & J. Owens, H., eds,
‘Annals of Operations Research’, J. C. Baltzer AG, pp. 231–279.

Powell, W. B., Spivey, M. Z. & Engineering, F. (2003), ‘The Dynamic Assignment Prob-
lem’, Operations Research.

Precup, D., Sutton, R. S. & Dasgupta, S. (2001), Off-policy temporal-difference learning
with function approximation, in ‘19th International Conference on Machine Learning’,
pp. 417–424.

Psaraftis, H. N. & Tsitsiklis, J. N. (1993), ‘Dynamic Shortest Paths in Acyclic Networks
with Markovian Arc Costs’, Operations Research 41, 91–101.

Puterman, M. (2005), Markov Decision Processes, 2nd edn, John Wiley & Sons Inc,
Hoboken, NJ.

Robbins, H. & Monro, S. (1951), ‘A stochastic approximation method’, The Annals of
Mathematical Statistics 22(3), 400–407.

Rockafellar, R. T. & Wets, R. J.-B. (1991), ‘Scenarios and policy aggregation in optimization
under uncertainty’, Mathematics of Operations Research 16(1), 119–147.

Rogers, D., Plante, R., Wong, R. & Evans, J. (1991), ‘Aggregation and Disaggregation
Techniques and Methodology in Optimization’, Operations Research 39, 553–582.

Ross, S. M. (1983), ‘Introduction to Stochastic Dynamic Programming’, Academic Press,
New York.
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