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Week 12

Direct lookahead
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Direct lookahead

e ——
® Modeling lookahead policies

» Lookahead policies solve a lookahead model, which is an
approximation of the future.

» It 1s important to understand the difference between the:

« Base model — this is the model we are trying to solve by finding
the best policy. This is usually some form of simulator.

* The lookahead model, which is our approximation of the future
to help us make better decisions now.

» The base model is typically a simulator, or it might be the
real world.
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Direct lookahead

® An optimal policy:
» The base model:

max _E {iC (St,
t=0

|SO} - Base model

» The optimal lookahead policy:

;
= arg max, (C(St, X, )+ E{maxﬂen {E D C(S, X (S| Sm} St Xt}]

t'=t+1

» If you can solve this exactly, you do not need any
tunable parameters!
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Direct lookahead

e ——
® The ultimate lookahead policy 1s optimal

t'=t+1

Xt*(st) = argmax, (C(SD Xt)+E{maX7zeH {E i C(St RS (S )] St+1} | St’ Xt}j

» 2b) Instead, we have to solve an approximation called
the lookahead model:

DLA(S ) argmax, (C(S Xt)+]E{maX {E tiH: C(Stt 'S Xtt (Stt )) | St t+1} | St’ Xt}j

t'=t+1

» A lookahead policy works by approximating the
lookahead model.
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Direct lookahead

e ——
® Direct lookahead policies

» With rare exception, direct lookahead policies are
trying to solve approximate lookahead models, where
we might write the policy as

_ _ t+H - B ~ - -
XtDLA(St) = argmax, [C(Sta X, )+ E{maxﬁef{ {E Z C(Si, X (Sy)) | St,t+1} | Sies X }]

t'=t+1

» The challenge 1s creating a tractable set of
approximations of the lookahead model.
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Direct lookahead

® The ultimate lookahead policy 1s optimal

X (S,) C(Sp %) @%@ C(st.,x;f(st'))li@}j

N/
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Direct lookahead

® The lookahead policy
» This can be any of the four classes of policies, but
optimality 1s less important, and simplicity 1s more
important.

® Some options:

» Parameterized policy
« E.g. “order up to”, or “sell when price goes above some point”
* VFA-based policy — We could solve a lookahead DP (exact or
with ADP)
e Deterministic lookahead
 Stochastic lookahead
— Monte Carlo tree search
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Direct lookahead

® We can use this notation to create a policy based
on our lookahead model:

Limited horizon

(Se XX (S| S}| S, xt}

~

X, (S,) =argmax C(S,, x,)+ B maxﬁE

\ 4
Restricted/simplified set of policies

\ 4
Sampled set of realizations (or deterministic);
Aggregated staging of decisions and information

\ 4

Simplified/discretized set of state variables

v
Simplified/discretized set of state variables

» Simplest lookahead 1s deterministic.
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Direct lookahead

® Planning your next chess move:

» You put your finger on the piece while you think about
moves into the future. This is a lookahead policy,

illustrated for a problem with discrete actions.
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Direct lookahead

® Decision trees:

Decisions Experiment Decision Experiment
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Direct lookahead

® Lookahead models use five classes of
approximations:

» Horizon truncation — Replacing a longer horizon problem
with a shorter horizon

» Stage aggregation — Replacing multistage problems with
two-stage approximation.

» Outcome aggregation/sampling — Simplifying the
exogenous information process

» Discretization — Of time, states and decisions

» Dimensionality reduction — We may 1gnore some variables
(such as forecasts) in the lookahead model that we capture

in the base model (these become latent variables in the
lookahead model).
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Direct lookahead
L

® Lookahead policies are the trickiest to model:
» We create “tilde variables” for the lookahead model:

SNt’t, = Approximated state variable (e.g coarse discretization)
X, = Decision we plan on implementing at time t" when we are

planning at time t, t'=t,t+1,....,t + H

%= (Ko Koo Koo )
W, .. = Approximation of information process

C. . = Forecast of costs at time t' made at time t

~

b

. = Forecast of right hand sides for time t' made at time t

» All variables are indexed by t (when the lookahead
model 1s being generated) and t’ (the time within the
lookahead model).
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Direct lookahead policies

Deterministic approximations
“Model predictive control”
Rolling horizon procedure

Receding horizon procedure
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Deterministic lookahead
I

® Deterministic lookahead policies

» When we eliminate uncertainty, our lookahead model
looks like:

t+H - - -
XtDLA(St) = argmax, (C(Sto Xt) T {maxit,m,...,it,tm { Z C(Stt" )ztt) | St,t+1} | Stt’ X }]

t'=t+1

t+H -
—argmax, ¢ ... %o (C(Stﬂ X )+ Z C(Sy» )?tt)j

t'=t+1

» Now we just have to pick an optimal action in the
future (think of a shortest path problem).
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Deterministic lookahead

B We can handle vector-valued decisions by solving
linear (or integer) programs over a horizon.
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Deterministic lookahead

B We optimize into the future, but then ignore the
decisions that would not be implemented until later.
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Deterministic lookahead

B Assume that this 1s the full model (over T time

periods)
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Deterministic lookahead

B But we solve a smaller lookahead model (from t to t+H)
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Deterministic lookahead

B Following a lookahead policy

1+H

1
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Deterministic lookahead

2+H
>

. which rolls forward in time.
2
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Deterministic lookahead

. which rolls forward in time.
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Deterministic lookahead

. which rolls forward in time.

t+H
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Deterministic lookahead

The lookahead model

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model

t+1 t+2 t+3

The real process
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Deterministic lookahead
I

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model
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The real process
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Deterministic lookahead

The lookahead model

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model
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Deterministic lookahead
I

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model
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Deterministic lookahead
I

® Notes

» It 1s common 1n a deterministic lookahead to introduced
a tunable parameter, as we did with our energy storage
problem.

» In effect, we are compensating for the simplicity of our
lookahead with a tunable parameter.
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Direct lookahead

Energy planning problem
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Parameterized deterministic lookahead

® Recall from the CFA lecture:

» We can do a lookahead, but parameterize it to handle
uncertainty.

» In the energy storage problem, we multiplied the
forecasts times a coefficient to accommodate
uncertainty....

© 2019 W.B. Powell



Parameterized deterministic lookahead

® An energy storage problem:

Wind speed
m ol [V
Electricityprices
U itti -
. [ =

Demand

P‘w’lb \

. ﬁl
W .'\-']I _.-'nl
\\‘ /j v I\

The state of the system can be represented by

r,

St — (Rt._ Er. Pt. Dt. Gt)

where

R: € [0, Rmax] is the level of energy in storage at time t

E; is the amount of energy available from wind

P; is the spot price of electricity
D, is the power demand

G; is the energy available from the grid

© 2019 W.B. Powell
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Parameterized deterministic lookahead

® Benchmark policy — Deterministic lookahead

Xe-(8:) = argmin C(Se,xt) +
¥ V=t L H)

R+ OGR4 R <
R+ X < 18
X % <Ry
R4 XE <R™ R,
T, + x;‘jd < Qt,_t]if
K+ X<
K <
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Parameterized deterministic lookahead
I

® Parametric cost function approximations

» Now we need to find the best parameterization:
T
min EZC(St,Xt”(St | (9))

» We evaluate the policy via simulation:

6’a)=

T
t=0

C (S, (@), X7 (S, () | 0))

© 2019 W.B. Powell



Parameterized deterministic lookahead
I

® Designing the policy

» The structure of the policy
» Should the coefficients § be indexed by:
— Time t, as in 0,
— Or number of time periods in the future 8,/_, f,.
« Should we have additive terms?
 This 1s the art of parametric modeling.

» Tuning the parameters
 We can use any of the algorithms 1n chapters 5 (derivative-based) or
7 (derivative-free).
 This 1s the science of parametric modeling.

© 2019 W.B. Powell



Direct lookahead

Dynamic shortest path problem
Deterministic lookahead

© 2019 W.B. Powell



Dynamic shortest paths

|
® The problem
» Finding the best path through a stochastic dynamic
network.
@® The policy
» We can try to solve a stochastic lookahead model
(perhaps using approximate dynamic programming).

» We can solve a deterministic lookahead model using
point estimates of travel times that are updated from
time to time.

» We can solve a parameterized lookahead model, where
we use the 8-percentile of the travel time on each link.
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Dynamic shortest paths
N

® Flavors of stochastic networks

» Arc costs are known after we make a decision — This 1s
a deterministic shortest path problem that we can solve
as a linear program or a classical deterministic shortest
path problem.

» Arc costs are known before we make a decision — Now
we would have to use approximate dynamic
programming to solve the lookahead model. This then
has to be re-optimized as the mean arc costs are
updated.

© 2019 W.B. Powell



Dynamic shortest paths

@ A stochastic network, costs revealed as we arrive to a
node:

© 2019 W.B. Powell



Dynamic shortest paths

e ——
® Modeling:

» Objective function
 Cost per period

C(St: X%T(St)) = (XZ“T (St))Tét

= Z xgi?,j étij
J
= Costs incurred at time t.
* Total costs:

minkE Y¢_o C(Se, XT (Sp))
T

» This 1s the base model.

© 2019 W.B. Powell



Dynamic shortest paths

® A policy based on a lookahead model

» At each time t we are going to optimize over an estimate of the
network that we are going to call the lookahead model.

» Notation: all variables in the lookahead model have tilde’s, and
two time indices.
 First time index, t, 1s the time at which we are making a decision.
This determines the information content of all parameters (e.g. costs)
and decisions.
« A second time index, t’, is the time within the lookahead model.

» Decisions
e X;;j = 1if we plan on traversing link (i, j) in the lookahead model.
e (;jj = Estimated cost at time t of traversing link (i, j) in the
lookahead model.

© 2019 W.B. Powell



Dynamic shortest paths

e ——
® Imagine that the lookahead 1s just a black box:

» Solve the optimization problem

X[ (S)=arg minz Z Ci X

IEN jeN;"

» subject to

Z )?in = 1 Flow out of current node where we are located
i

Z X. =1 Flow into destination node r

i,r
i

Z X i —Z X;, = 0 for all other nodes.

i k

» This 1s a deterministic shortest path problem that we
could solve using Bellman’s equation, but for now we

will just view it as a black box optimization problem.
© 2019 W.B. Powell



Dynamic shortest paths
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Dynamic shortest paths
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Dynamic shortest paths

[ —
@ A static, deterministic network

© 2019 W.B. Powell



Dynamic shortest paths

@ A time-dependent, deterministic network

© 2019 W.B. Powell



Dynamic shortest paths

The lookahead model

@ A time-dependent, deterministic lookahead network

e
t':t+4A /
t'=t+3
t'=t+2 %/7’4 :
t=t+1 i E
t':tt t+2 t+3

The base model
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Dynamic shortest paths

@ A time-dependent, deterministic lookahead network

i

T 1:':t-|-4¢‘ /
E t'=t+3
IS 4
Qt'=t+2
S t'=t+] i
2
= =t

t +2 t+3

The base model
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Dynamic shortest paths

@ A time-dependent, deterministic lookahead network

t'=t+4 /

8 A

S t'=t+3 ’
gt':t+2 I /

g : ///
gt':tﬂ : :

= t'=t

t+1 t+2 t+3

—+

The base model
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Dynamic shortest paths

e ——
® Simulating a lookahead policy

We would like to compute

]
F* = EZ Z Xeii (S)C

t=0 i,j
but this 1s intractable.

Let w be a sample realization of costs
ét,t',ij (w), ét+1,t',ij (w), ét—i—Z,t',ij (W),...

Now simulate the policy

T i
F T (wn) — Z Z X;)Tij (St (wn ))ét’ij (wl’l) Talk through how this

e works.

Finally, get the average performance
N
F T __ i Z F T (wn)
N =

© 2019 W.B. Powell



Dynamic shortest paths

B
® Discuss:

» The lookahead model uses forecasted costs C;;;. These
are estimates made at time t.

» The policy is simulated using sampled costs Cy;;.

» Both are updated with time and from one iteration to
another.

© 2019 W.B. Powell



Direct lookahead

Dynamic shortest path problem

Parameterized deterministic lookahead

© 2019 W.B. Powell



Dynamic shortest paths

B ]
® Notes:

» The deterministic lookahead is still a policy for a
stochastic problem.

» Can we make 1t better?

® Idea:

» Instead of using the expected cost, what about using a
percentile.

» Use pdf of ¢;; to find 6 percentile (e.g. 6 = .8). Let
5?9_ (6) =The 8 —percentile of ¢;;

» Which means Prob [cl j <G (6)] = 0.

© 2019 W.B. Powell



Parameterized deterministic lookahead
I

® The 6 —percentile policy.
» Solve the linear program (shortest path problem):
X[ (S/ |0) = arg minz Z Ci (X (Vector with x; = 1 if decision is to take (i, j))
iEN jeN;*

» subject to

Z )~(t o= 1 Flow out of current node where we are located

j

Z X, =1 Flow into destination node r
i

Z X —Z Xj = 0 for all other nodes.
i k

» This 1s a deterministic shortest path problem that we
could solve using Bellman’s equation, but for now we

will just view it as a black box optimization problem.
© 2019 W.B. Powell



Parameterized deterministic lookahead
I

® Simulating a lookahead policy

Let w be a sample realization of costs
c,:\'[,t',ij (CU), é’[—l—l,t',ij (w)a ét—|—2,t',ij (UJ),

Now simulate the policy

ﬁw(wn) — Zzét,t',ij (W)X (S (w") [ 0)

t=0 i,j

Finally, get the average performance

ﬁ”(@):ﬁz F™(w")

© 2019 W.B. Powell



Parameterized deterministic lookahead
I

® Policy tuning

» Cost vs. lateness (risk)

Comparison of theta”cost - origin 0, destination 24, dist 6 - deadline 780.0 and number of iterations 100

Average Cost Probability of being late (Risk)
am 0.14 1
695 -
0.12
690 1
0.10
685 -
0.08 4
# 680 - R
0.06 -
675 -
0.04 -
670 -
0.02 -
665 -
0.0 0.2 0.4 0.6 0.B 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Percentile Percentile
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Direct lookahead

Monte Carlo tree search

© 2019 W.B. Powell
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Monte Carlo tree search

® Monte Carlo tree search:

- é/%o @/%\@ O/O\C
gﬁé%ééb C;ﬁéé%ééb gé%ééé gé%@éé

A

E6SOEED ééi?\ééé oe! Jelefe)e é@gbééb
é ¢

Rollout

Tree policy policy

N
v

(a) (b) (c) (d)

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis and S.
Colton, “A survey of Monte Carlo tree search methods,” IEEE Transactions on Computational Intelligence and Al in Games,
vol. 4, no. 1, pp. 1-49, March 2012.



Monte Carlo tree search

® Monte Carlo tree search

» Explores some nodes more than others.

\ /
f} a’m /mx / q
ﬁllllllf IIIIII III".I,||'

I H 1’[ |l"|’ ‘ A " M' M
[ |\|

——
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Monte Carlo tree search
I

® Elements of MCTS:

» Selection — Choose decision and random outcome:
* Decision — Use “upper confidence bounding fore trees”, UCT,
to decide which action to take

- 5 o . B5E InN(S,)
AT (Sw]07CT) = argmax | (C(Swr, @) + Vi (Siir)) + 677 / —
tt ( tt | ) EEA“’ ( (Seer, ) et (St )) \ NS, dw)

— Requires enumerating all actions.
— Depends on having estimate of the value of the
downstream state.
e Sampling the outcome
— Use Monte Carlo simulation to sample our way to the next
pre-decision state.

© 2019 W.B. Powell



Monte Carlo tree search

@® Choosing an action:

No. times
visited node S . Expansion

_ L ]
. log VI
T, = argmax_ (C(st,x) + Vm(sm)) + 9\/ m

7 AN
- \ N
— . J/

. "I\\\ p .
Downstream 5 O O O O
S

value

/l\

R No. times tested AN RN
» Downstream value V. (s,,) | actionz from S, Qéio OOO

1s obtained by simulating
some policy (not too
complicated) to “peek” into V., (SH) X
the future. é

A
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Monte Carlo tree search
I

® Elements of MCTS:

» Expansion
 If action taken goes to a state we have already generated, then
update the value of being in the state we are searching from.
 If action takes us to a new state, then we add the post-decision
node, and sample our way to the next pre-decision node.
« Use our rollout policy to get an initial estimate of the value of
being in a state.

» Simulation

* We assume we have access to some default policy that we can
use to simulate our way forward to get an estimate of the value
of being 1n a state.

* This 1s known under different names, but we use the term
“rollout policy” first introduced by Bertsekas.

* Rollout policy 1s typically suboptimal, but it 1s possible to
produce an optimistic estimate by optimizing over a sampled

future.
© 2019 W.B. Powell



Monte Carlo tree search
I

® Elements of MCTS:

» Backpropagation
 After using our rollout policy to step forward, we then do a
backward traversal (“backpropagation”) to update all upstream
value functions.
« Use standard smoothing to update values.

© 2019 W.B. Powell



Monte Carlo tree search
I

@ Notes:

» Even with discrete actions, decision trees explode in size extremely

quickly.

» Monte Carlo tree search 1s a method for generating the most
promising parts of the trees.

» The key 1s the availability of a simple rollout policy that does a
“g00d” job of approximating an optimal policy.

» The UCB policy guarantees asymptotic optimality because it ensures
that each action will be tested infinitely often:

T, = argmax_

(C(st,az) +

A

7

log N(s,)

(5,)) + eJ

N(s,,x)

... this keeps growing.

If we donot try x...

» ... but MCTS does not work well with large sets of actions.

© 2019 W.B. Powell



Monte Carlo tree search
I

@ Notes:

»

»

»

»

»

MCTS is immune to large state spaces. This means that it can
casily handle the very large belief state.

MCTS i1s sensitive to large numbers of decisions.

You can use action-sampling strategies to handle large action
sets...

... or try “sampled lookahead” policies (sample the future, and
solve a larger optimization problem).

Since it 1s exploring a substantial part of the tree, calculations need
to be quite fast, which means that Bayesian updating within the
search may be too expensive.

© 2019 W.B. Powell
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Monte Carlo tree search

Case application — emergency storm
response

© 2019 W.B. Powell



Case study: MCTS for storm response

HURRICANE CENTRAL & Hurricane Sandy
SANDY THREAT ||\|DEX

ALER » Once in 100 years?

Syraéuse Bo:‘:tfm

New York » Rare convergence of events

Pittsb h
[ EJurg

on Wahgeten » But, meteorologists did an
e S amazing job of forecasting
nginggm: westhes the Storm.

;;;;;;;;

@® The power grid

» Loss of power creates
cascading failures (lack of
fuel, inability to pump water)

» How to plan?

» How to react?

© 2019 WiBS
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Case study: MCTS for storm response

e —
@ Exploiting the information from phone calls

» We have to blend the following....
 What we knew before the phone calls came in — this is called
the prior belief.
» The outage calls — this is called information.

» ...to produce the updated estimates of outage — this 1s
called the posterior.

@ To compute this we have to use Bayes theorem:

coment | is out _(Prob[lights-out calls | segment | is out{Prob[l is out]
: T

FIo0 A
The posterior

Prob]

lights-out calls]

The conditional outage distribution

\

The phone call distribution

The prior

The information
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Case study: MCTS for storm response

® State variables:

» Physical state
» Location/status of the truck
« Known state of the grid (from visiting segments)

» Other information
« Might be phone calls, weather forecast

» Belief state
 Probabilities of outages on each unobserved link.

» State variable 1s high-dimensional, and continuous, but
MCTS 1s not sensitive to the complexity of the state
space. It 1s sensitive to the action space.

© 2019 W.B. Powell
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Case study: MCTS for storm response
N
® Performance metrics

» Total outage minutes
200

180 -
160 |

140 | -
Industry heuristic

120 |
100 |
|| 55110
60 |

wl || Lookabead policy
20 | 36150

0

No. of Customers in Outage

1
0 50 100 150 200 250 300 350 400 450 500
time t (minutes)
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Case study: MCTS for storm response

e —
® MCTS vs. posterior optimal benchmark

x 10°
30 Prob. a customer calls inif [.| < =001
| ights are out. _
N ' —k—p=1.0
Hla Posterior optimal : *— Post. Optimal
25 _|.'.I ............. S I ...........................................

=

(8]
T

L1
|

Customer Outage Hour
r
e

~ Posterior optimal

0 1000 2000 3000 4000 5000
MCTS budget (nodes in tree)
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Direct lookahead

Stochastic programming with vector-
valued decisions
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Stochastic programming
N

® Setting:
» Amazon needs to allocate inventory to its fulfillment
centers.
» It then observes the demand for product.

» It then has to decide from which fulfillment center to
use to fill an order.

® We can approach this as a:

» Two-stage decision problem
* Decision, information, decision, stop.

» A “multistage” decision problem.
* Decision, information, decision, information, decision, ...
 We saw earlier how these decision trees really explode.

© 2019 W.B. Powell
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Stochastic programming
N

® Stochastic programming methodology:

» Future information is represented in a form known as a
scenario tree, which is a sampled version of what might
happen.

» Here we just model
Information, information, information, ...

» The decisions are handled separately. But even with
this approach, the information process still explodes
very quickly:

© 2019 W.B. Powell



Stochastic programming
N

® Stochastic lookahead

» Here, we approximate the information model by using a
Monte Carlo sample to create a scenario tree:

lam 2am 3am 4am 5am .....

= =

fr— —
U ~—

Change in wind speed

Change in wind speed

Change in wind speed
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@® Multistage stochastic program

» We are going to model the nesting of decisions x; and new
information Wi q:

min,_, (COXO + By, {minxlex1 (C1X1 +E,, {minX2€X2 (02X2 + By, 5 {min)(3€>(3 (¢,%; +...)] SZ}...) | Sl}) s, }]

» Remember that x; 1s a vector.

» Don’t worry, no-one can solve this directly, so the challenge is
designing something that we can solve.

» There 1s one special case that can be solved with an asymptotically
optimal algorithm, approximate dynamic programming with
Benders cuts, called stochastic dual dynamic programming
(SDDP).
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Stochastic programming
N

® Information evolves using sequential branching:

3

@,
@Ws

(9, ()

j[t(htt')EQt
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Stochastic programming
N

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Stochastic programming
N

@ We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Stochastic programming
N

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Stochastic programming
N

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Stochastic programming
N

® Notes:

» In most applications of stochastic programming,
decision x; 1s a vector (and may even have to be
integer).

» Solving even one instance of a multistage stochastic
lookahead model is rarely tractable.

© 2019 W.B. Powell



Direct lookahead

Two-stage stochastic programming
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Direct lookahead

e ——
® Classical approximation strategy: Two-stage
stochastic programming

» Collapse all the states (decision-information) for
periods t + 1,t + 2, ..., t + H into a single stage:

e Assume we see Wiy, Wiis, ..., Wiy, Let w be a sample
realization of Wy ,,, Wi .3, ..., Wiy, and create a sample ();.

* Then make decisions X; ;41 (W), X¢ 42 (W), ..., X¢ 4 g (@)

» This produces the two-stage stochastic optimization

problem:
t+H

., min CeXe + E E Cep' (W) Xger (W)
xt, (Xt t4+1 (@)X e+ H(W), WEQL)

wWEQ: t'=t+1

© 2019 W.B. Powell



Stochastic programming
N

@® Actual vs. forecasted energy from wind

—Fcast
e ) . Observed
This is our forecast f,. of the wind power at -
h time t’, made at time t.
oy % This 1s the actual energy from wind, showing
2. the deviations from forecast.
Loa 1
¢T~mmn-~m::n:qzﬁa=q=‘~=wss~zTngn:::w:—»;a,:mﬁgzaﬁrs
, | .
t = Current time t'=Some point in the future
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Stochastic programming
N

@ Creating wind scenarios (Scenario #1)

Wind Power from All Farms in the Plains - July 2013

—Fcast
5im 1

o -

L e e e - E- P4 ord i e rS s P rS rd g v ed rd ol e e p o pd £

10-min Time Intervals
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Stochastic programming
N

@ Creating wind scenarios (Scenario #3)

Wind Power from All Farms in the Plains - July 2013

—Fcast
Sim 3

B e N I F R s E i b R i i L e R B T e R T

10-min Time Intervals
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Stochastic programming
N

@ Creating wind scenarios (Scenario #4)

Wind Power from All Farms in the Plains - July 2013

—Fcast
5im 4

AR R R SRR RONOEOECRERANARARRRARCOO SRR AR TIPS TSR RN RIC RIS IR R R PR ERRCOGIECEEFRSCFRFRFEFRE

10-min Time Intervals
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Stochastic programming
N

@ Creating wind scenarios (Scenario #5)

- Wind Power from All Farms in the Plains - July 2013

=—Fcast
Sim 5

10-min Time Intervals
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Stochastic programming
N

@ Creating wind scenarios (Scenario #2)

Wind Power from All Farms in the Plains - July 2013

—Fcast
Sim 2

10-min Time Intervals
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Stochastic programming

Lanin et Y G @@ Xy (W) X (W) Xy (W)
’ WEQ t'=t+1 _
= W
1) Schedule !
steam

] W
;.._ 2 I
A M
J ﬂlw
2) See wind: : i L
: W
3) Schedule turbines M
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Direct lookahead

® Classical approximation strategy: Two-stage
stochastic programming

» Take a look at the two-stage stochastic program

t+H

i min CeXe + z z Cep' (W) Xer (W)
xt,(Xt,t+1 (@), Xt 4+ H(W),WEN)

wWEQ: t'=t+1

» We are choosing a single (vector) x; for the decision to
be made now, along with a family of vectors X, ;11 (w),

representing decisions to be made in the future.

» Note that the decision X;;, (w) given “scenario” w 1S
allowed to see the entire future. This 1s dismissed as a
reasonable approximation, as long as x; 1s not allowed

to see the future.
© 2019 W.B. Powell



Stochastic programming
N

® We can then simulate this lookahead policy over

time:

A
o
.o
S
Fc /..-, ‘/
cs / .
) v 7
R ~ 2
S o __,_/ pt S
8 / ,~ ~ |
o y |
=

( t+1 t+2 t+3

The base model
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Stochastic programming
N

® We can then simulate this lookahead policy over

time:

A
o
=
S
=
o
< A
v, < E- "':/,f P 2
=
S AN S
"o : ,/ v/
= v L

t t+1 t+2 t+3

The base model

© 2019 W.B. Powell



Stochastic programming
N

® We can then simulate this lookahead policy over

time:
A
o
=

S

=
o _

g}

O _
< ' gy
Y, | - ddr;j b

8 | /- ,* Z
ﬁ v | |

t t+1 t+2 t+3
The base model
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Stochastic programming
N

® Notes:

» In practice, it 1s quite rare to simulate a lookahead
policy based on scenario trees.

» Solving even one instance of a stochastic lookahead

problem can be extremely difficult:
t+H

_ min CeXe + E E Crr' (W)Xt (w)
xt,(Xt t+1(W), Xt 4 g (W), WEQL)

wWEQ: t'=t+1

» A number of authors (in stochastic programming)
confuse the lookahead model with the “problem” being
solved (we call this the base model). Even when we
can solve the two-stage stochastic program, it 1s not an
optimal policy because of all the approximations.
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Direct lookahead

DP lookahead
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Stochastic lookahead

® Probabilistic lookahead
» We can also solve the lookahead model using convex value

function approximations (“dynamic programming”)

Z3—<
? N

» We can try to solve this as a single “deterministic
his 1s a direct lookahead policy.

optimization problem. TI
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Lookahead policies

® Probabilistic lookahead
» We can also solve the lookahead model using convex value

function approximations (“dynamic programming”)

—

o, ——— X

a3 &

S 7 S
7

===
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Lookahead policies

® Probabilistic lookahead

» We can also solve the lookahead model using convex value
function approximations (“dynamic programming”)
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Lookahead policies

® Probabilistic lookahead

» We can also solve the lookahead model using convex value
function approximations (“dynamic programming”)
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Lookahead policies
|

® Probabilistic lookahead

» We can also solve the lookahead model using convex value
function approximations (“dynamic programming”)

—
<
—
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Lookahead policies

The lookahead model

® We can then simulate this lookahead policy over
time:

A
7
‘ _'/‘-"'/,t :i?/
y/ / ) ‘! ",.'_,'.‘ - ///
4 P V ¥
L 's — " |
A /,/
T
v
t t+1 t+2 t+3

The real process

© 2019 W.B. Powell



Lookahead policies
|

® We can then simulate this lookahead policy over

time:
3 [
: N
9 e e
40:1; ’ / 7 “_;#_\‘{/ﬁ
A A X
O L < o I
O of - f
o < L = Z
= |
=\

t t+1 t+2 t+3

The real process
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Lookahead policies
|

® We can then simulate this lookahead policy over

The lookahead model

time:
A
- ' =
T
t t+1 t+2 t+3

The real process
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Lookahead policies
|

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3

The real process
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Lookahead policies
|

® We can then simulate this lookahead policy over

time:

A
3
o
=
)
3 :
e
o ‘ I
s o

t Ct+1 t+2 t+3

The real process
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Lookahead policies

The lookahead model

® We can then simulate this lookahead policy over
time:

t+1 t+2 t+3

The real process
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Lookahead policies
|

® We can then simulate this lookahead policy over

I .
v
v
t t+1 t+2 t+3

The real process

time:

A —
o
= )
o e
s e
40:; : / 7 :,_\(/d
A s
E =
QO
=
—
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Lookahead policies
|

® We can then simulate this lookahead policy over

time:

A
o .
= -
s N~
D] L7 : —
= TN
- e _ e
o |~ v
2 [ )
= \ 4

t t+1 t+2 t+3

The real process
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Lookahead policies
|

® We can then simulate this lookahead policy over

time:
A

O

0

@)

S y

E Pl

e AN
.

Y o

O I 5 -

< L

P |

= Y

t t+1 t+2 t+3

The real process
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Lookahead policies
|

® We can then simulate this lookahead policy over

time:

A
3
o
=
)
S
&
S -.
o | N
= v

t t+1  t+2 t+3

The real process
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Direct lookahead

Multistage stochastic programming
a) This material 1s really hard.

b) You are never going to use it.
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Two-stage stochastic programming
N

20.5.1 The basic two-stage stochastic program

In section 4.3.2, we introduced what is known as the rwo stage stochastic program where
we make an initial decision xp (such as where to locate warehouses), after which we see
information W; = W, (w) (which might be the demands for product), and then we make
a second set of decisions ry(w) which depend on this information (the decisions r; are
known as the recourse variables).

As we did in section 4.3.2, the two-stage stochastic programming problem is written

max (cozrg + EQy(z0, Wh)), (20.24)
L0
subject to the constraints,
."1[].!'0 = h(_]. (2025)
zg > 0, (20.26)

The initial decisions x; (which determines the inventories in the warehouses) then im-
pacts the decisions that can be made after the information (the demand) becomes known,
producing the second stage problem

Qi1(xo,w) = 1111?:‘.'1] c1(w)zy(w), (20.27)
subject to, for all w € (2,
Ajri(w) < Bz, (20.28)
Biri(w) < Di(w), (20.29)
ri(w) > 0. (20.30)
We note that while Q;(xp) = EQ;(rg,W;) is a value function, the Q(-) notation is

standard in this literature.
© 2019 W.B. Powell



Two-stage stochastic programming
N

® Notes

» This strategy replaces the second-stage expectation
with a sampled approximation

» Discuss two ways of representing first stage decision:
* One decision — Means that the second stage problems are all
linked.
* One decision per scenario (outcome) — Implies that the first
stage decision 1s allowed to see the future. We then introduce
“nonanticipativity constraint™;

xo(w) = g, forall w € Q.

» Distinguish between:
A two-stage stochastic programming problem
* A two-stage stochastic program as an approximate lookahead
for a fully sequential problem

© 2019 W.B. Powell



Modeling as a stochastic program
|

® An alternative strategy 1s to use the vocabulary of
“stochastic programming.”

minXOEXO CoXo + EQ(X,6))

where

Q(Xy, 5 () = minxl(a))exl(a)) C,(w)X (w)

» This 1s the canonical form of stochastic programming,
which might also be written over multiple periods:

minc,x, + 3 p@)Y ¢ (@) (o)

we) t

© 2019 W.B. Powell



Modeling as a stochastic program
|

® An alternative strategy 1s to use the vocabulary of
“stochastic programming.”

min, . CX +BQMX, 6.

where

QX & (@) = minxm(a))exm(a)) Ci (@)X, (@)

» This 1s the canonical form of stochastic programming,

which might also be written over multiple periods:
t+H

min C X, + Z p(@,) Z Cyp (@) Xy (@)

o, €Q, t'=t+1

© 2019 W.B. Powell



Lookahead policies
|

® Lookahead policies are the trickiest to model:

» We create “tilde variables” for the lookahead model:

~

S

X. ., = Decision we plan on implementing at time t' when we are

= Approximated state variable (e.g coarse discretization)

planning at time t, t'=t,t+1,...,t + H

%= (%o Koo Keon )
W, .. = Approximation of information process

C, . = Forecast of costs at time t" made at time t

ISU. = Forecast of right hand sides for time t' made at time t

» This notation helps avoid confusion between the base
model and the lookahead model.

© 2019 W.B. Powell



Two-stage stochastic programming

® Energy systems application

Wind farm
A .
’;JE :J 1 u Battery storage Eferm'a'{rr load
L | A\ .'II'
L I"L '
The grid
1 b d -~ ~ ~ ~gb s~ ~ad 7 ~
min Pt(-r? + pexy )+ Z P(cw.) Z (Pu’(wt)(i’f:.'(“z)JI‘T‘?H(‘“'E})
Tpy(Fy 0 (@0)),t" =t+1,..,t+H, &€y B =
g A t'=t+1
. gppﬂ%slﬁu‘k)
Ty
subject to the constraints
- ~ ~gb / ~ ~sb ¢~ ~bd / ~ > ~
Ru 1 (@) — (895 (@) + Fib (@) — (@) = Ru (@), (2033)
Fio (@) + 50 (@) < ho(d), (20.34)
~b{f ~ ~ ~ Y ol i ,._I K — -~
Fopr (@) + B35 () + E50 (@) + 230" = Dy (Gr), (20.35)

795 (@), Foo (@), Foer (@), Foo (@), Foer® > 0. (20.36)



Multistage-stage stochastic programming
N
20.6.1 Modeling multistage stochastic programs

It is common to model a stochastic program as if it starts at time 0, and extends over a
horizon ¢t = (1,2,...,T), ignoring the fact that this is a lookahead model that starts at
time f, and extends over a horizon t' = (¢,t + 1,....t 4+ H). This ignores the fact that
the stochastic program, which is, by itself, a challenging stochastic optimization problem,
is really just a lookahead policy for another stochastic optimization problem that we have
been calling the base model. We are going to stay with our notation to model the fact that
our lookahead model is being created at time £ in the base model. and we use #’ to indicate
the time within the lookahead model. We also use tilde’s (most of the time) to indicate
variables in the lookahead model.

We begin by describing modeling assumptions used when formulating multistage (or
even two-stage) stochastic programs. Most important is to separate the physical process
controlled by Z¢+ which determines the physical state Ry, and the information process
I, that evolves exogenously. Combined these make up the state

S‘”, = (ﬁ-ff’-.fﬂ’}-

These are treated separately, which also means that decisions cannot have an impact on
information, an assumption that we do not require in any of our other classes of policies
(PFAs, CFAs, VFAs). It is important to recognize that just as R,y is the physical state at
time t', f“r is only the information we need at time ¢’ to model the lookahead model from
time t' onward. Thus, while f”n might include the entire history h;, in most applications
I ¢¢+ 18 likely to be much more compact thaq h¢e (but it may still be quite high dimensional).

© 2019 W.B. Powell



Multistage-stage stochastic programming
N

® Physical process

To model the physical process, we let Ryt be a vector of resources, where an element
might be R, ;. where k is a location (the number of freight containers at pOork,or rail yard
k). or a type of blood k. We might also use ﬁ’,,rr where ¥ = (P54 ras) is a vector
of attributes, perhaps to describe a driver or complex equipment such as an aircraft. The
problem that arises when r is a vector is that the dimensionality of R”r becomes extremely
large For this reason, we will assume that R,,s = [I?,,:;. )rex Where the size of the set X
is “not too large™ (100’s, perhaps 1,000’s, maybe 10,000).

We then assume that our decision - at time t’ in the lookahead model is subject to
constraints of the form

A Ty = thh

where these are typically flow conservation constraints. We then assume that this vector
evolves over time according to

f?r.t’+1 = Btr-‘i’u"l‘&f?t‘turl- (20.37)
Aty 1Teev+1 = Ripsa, (20.38)

where 4R, represents exogenous changes (new arrivals, departures, theft of product,
rainfall). Previously, we used F;; to capture these exogenous changes. but in this section.
we are modeling every variable indexed by £’ as if it first becomes known at time #'.

© 2019 W.B. Powell



Multistage-stage stochastic programming
N

® The scenario tree models the evolution of

information
» Wind speed, prices, rainfall, ...

‘ > 23
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< ~c—=

N
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Multistage-stage stochastic programming

® Information process

Separate from the physical process is the information process. The data in our linear
program at time ¢’ in the lookahead model consists of costs &, the constraint matrices A,/

and Bw. and the exogenous changes in supplies JR“; (thatenters the problemin F; 4 at

time t’ + 1). We let W,y = (A, Busr, G440, 6 Regr ) be our exogenous information process
if everything is random (there are many applications where only  ?; is random, while the
other variables are time-dependent but deterministic).

Let h;4 be the history of our information process which we can write

'izrf’ = Eﬁ'rr-ﬁ'r.wln--eﬁ'rt*]-
= [i{."it!-étt-ﬁtt.(iﬁtt} ..... (:’iuf.B;f:.ﬁg;:,ﬁﬁ?tta)}.

We next let €, be the set of all the sample paths ﬁ‘“ ..... ﬁ",.H i over our horizon. This

means that when we use an index w; € (), it refers to the information over the entire
planning horizon (in our lookahead model). Specifying w; is like specifying the entire
future (within the lookahead model).

It is useful to be able to label all the elements w; that correspond to a particular history
fl,,:_ For this purpose, we define the set of outcomes that share a history, which we write as

’Ht{’f’tf-*} = {i‘t = Qt!(ﬁym ey ﬁrw:' = h-w}-

© 2019 W.B. Powell



Multistage-stage stochastic programming
N

® The information process:

» The sampled process Q,

© 2019 W.B. Powell



Multistage-stage stochastic programming
N

® The information process:

(9, ()

j[t(htt')EQt
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Multistage-stage stochastic programming
N

® The state variable

» Resource state, and information state, in the lookahead

model
gtt' — (I?tt', (fitu ’ Bur, Etg: ’ (Sﬁ’ur))
= (Rtt’aItt’)a

I’Tfttr —_ (Att’: Bttl, 5“: ) 6Rttl )

Conditioning on a set H;(hy) is the same as fixing a node in the scenario tree cor-
responding to the end of the history hy; in figure 20.13. Some authors even replace the
history h;;+ with the index of the node corresponding to the end of the history at time t’, but
requires that we condition on the entire history. While there are situations where this may
be appropriate (applications in finance may use this), in most applications the information
state does not require the entire history. In fact, in our problem the information state is just
the exogenous information, which is to say

Iy = Wy
[-4”*-Brrh‘:'u’-f”?rtf}- m
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Multistage-stage stochastic programming
N

® C(lassical formulation:

A classical approach for writing a multistage stochastic optimization problems, solved at
time t overa horizont’ =t,...,t + H is given by

_ max Gy +E max ey +E|---+
AwZwo=Rwo Buzw+Ania=Ru
Z020 Ty 20
E|._ max G Ty |He(her) | -- - |[He(he2) | [He(her) | -
By r 13 r—1+AwrTer=Rer
>0

@ State/policy formulation

_ Given this structure, we may condition all of our expectations on the information state
I+ rather than the full state S;;, in which case equation (20.39) is equivalent to

1113..\; (‘r( 5'“ - j'“] - E max : (-"(SI( 1y j'(] ] —+ E
Ty €X(Se) FTe1€X:1(Se1)
+E max  C(Ser, #)|ler| ... JEQI f,l] . (20.40)

= — wy i
T EXp(Ser)

Afr::fj(g”l} — argm&): C{S‘T”i,‘j'frr)—FE {_._|f,t,J

F ot EXppr (Sper)
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Multistage-stage stochastic programming
N

@ Stochastic programming with scenario trees
» Associate each node with an information state /
» Expectation over sampled events out of an information node:

The outcomes wy; € {14 each take us to a downstream information node I; ;. , so there
is a downstream information state for each element of €2, (I, ). We assign a probability
Prer (weer |40 ) for each of these outcomes, where we often have

ﬁrr*{u:’tr*ﬁrrf:l S - AT
1Q4gr (Lyer )|

» LP at node I ., Indexes all variables (costs, decisions, constraints)
with [
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Multistage-stage stochastic programming
N

@ Stochastic programming with scenario trees

» There 1s a linear program at each information node

C(Su,Zn) = Cu(Lewr )Zeer (L1er),
we can write our stochastic linear program as

t+H

> G () (i),

max
-‘rttl(i),t’zt,...,t"*‘]{,ieI t t

subject to (20.41), the constraints at time (£,t’)

fitt'(ftt’)xtt’(ftt’) = j?tt’(ftt’)- 0

» Resource variables are linked through a large set of linear equations:

Rt,t’+l(ft,t’+l) = B'u'(ftu)-’?tt'(f:u')'4‘(5}=\’t,t'+1(ft,t'+1)-

» This creates one very large linear program. Not surprising that almost
no-one actually formulates these.
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Multistage lookahead models
|

® From multistage lookahead ...

lam 2am 3am dam 5am .....

<

Change in wind speed

)

Change in wind speed

Change in wind speed
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Multistage lookahead models

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Multistage lookahead models

@ We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Multistage lookahead models

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Multistage lookahead models

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model
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Stochastic lookahead policies
|

® Some common misconceptions about stochastic
programming (for sequential problems):

» Solving a “stochastic program” is hard, but getting an
optimal solution does not produce an optimal policy.

» Bounds on the quality of the solution to a stochastic
program 1s not a bound on the quality of the policy.

» We only care about the quality of the policy, which can
only be evaluated using a stochastic base model.
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Direct lookahead

Scenario trees with two-stage
approximation
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The unit commitment problem (for PJM)
Planning tomorrow’s schedule
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Stochastic programming
N

® Strategies for generating scenarios
» 1) Pull sample paths from history

* Avoids modeling assumptions
e Will not look like the branching tree

» 2) Build a mathematical model
e Draw on the tools from uncertainty modeling (e.g. chapter 10)
to create a mathematical model of the process.
* Then, simulate the branching process of a scenario tree.
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Multistage lookahead models
|

® From multistage lookahead ...

lam 2am 3am dam 5am .....

<

Change in wind speed

)

Change in wind speed

Change in wind speed
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Lookahead policies
|

® Deterministic lookahead

]
X AP(S,) =argminC(S,,X, )+ Z 7' 'C(S,.,%,)

AR, t'=t+1
Xtt’Xt,t+1""’X ,

® Stochastic lookahead (with two-stage
approximation)

~ T ~
X (,) =argminC(S,, %)+ Y. p@) Y. 7 'C(S,(), % (@)

X X t'=t+1
Ko Xt,t+1 """ X , @

Scenario trees
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Modeling stochastic wind
|

@® Actual vs. forecasted energy from wind

—Fcast
e ) . Observed
This is our forecast f,. of the wind power at -
h time t’, made at time t.
oy % This 1s the actual energy from wind, showing
2. the deviations from forecast.
Loa 1
¢T~mmn-~m::n:qzﬁa=q=‘~=wss~zTngn:::w:—»;a,:mﬁgzaﬁrs
, | .
t = Current time t'=Some point in the future

© 2019 W.B. Powell



Modeling stochastic wind
|

@ Creating wind scenarios (Scenario #1)

Wind Power from All Farms in the Plains - July 2013

—Fcast
5im 1

o -

L e e e - E- P4 ord i e rS s P rS rd g v ed rd ol e e p o pd £

10-min Time Intervals
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Modeling stochastic wind
|

@ Creating wind scenarios (Scenario #3)

Wind Power from All Farms in the Plains - July 2013

—Fcast
Sim 3

B e N I F R s E i b R i i L e R B T e R T

10-min Time Intervals
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Stochastic lookahead policies
|

@ Creating wind scenarios (Scenario #4)

Wind Power from All Farms in the Plains - July 2013

—Fcast
5im 4

ARy e RS RO NIOENE RN RS RN AR AR R R AR I RIS ISR R R AR R RN R TP RIS ISR PRI FEEEEE O CAEECERFFERIRRERRE

10-min Time Intervals
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Stochastic lookahead policies
|

@ Creating wind scenarios (Scenario #5)

- Wind Power from All Farms in the Plains - July 2013

=—Fcast
Sim 5

10-min Time Intervals
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Modeling stochastic wind
|

@ Creating wind scenarios (Scenario #2)

Wind Power from All Farms in the Plains - July 2013

—Fcast
Sim 2

10-min Time Intervals
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Two-stage lookahead models
|

® ... to a two-stage approximation

1) Schedule

steam

X

2) See wind:

3) Schedule turbines

VANV
A a s
ATV WS
VNI

: ©2019 W.B. Powell



Lookahead policies

The lookahead model

® We can then simulate this lookahead policy over
time:

- ) _,/"'
,-"/ =~ v
par— P A
. e W/ /{fu_‘: ez ! I//""
P (P =
2 Z I
/ - {r" e
// ,.-/ /{,__.. -
S . |
// = I

t+1 t+2 t+3
The base model
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Lookahead policies
|

® We can then simulate this lookahead policy over

time:

A
o
=
S
=
o
< A
v, < E- "':/,f P 2
=
S AN S
"o : ,/ v/
= v L

t t+1 t+2 t+3

The base model
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Lookahead policies
|

® We can then simulate this lookahead policy over

time:

A
o
=
S
=
o _
g}
O o
< ' gy
v, | d‘rfjw ,
8 | /- ,* Z
,ﬁ v | |

t t+1 t+2 t+3

The base model
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Lookahead policies
|

@ Notes:

»

»

»

»

Two-stage approximations of the unit commitment problem have

been pursued by a number of national labs in the U.S.
« Sandia, Argonne, Livermore, National Renewable Energy Laboratory

Deterministic unit commitment problems are hard; two-stage
stochastic models, even with a small number of scenarios, are
much harder.

The two-stage approximation introduces serious errors. Our
biggest problem 1s not the uncertainty in wind forecasting
tomorrow, it is forecasting wind an hour from now. This 1s
ignored 1n a two-stage model.

The stochastic programming community does not understand the
concept that the two-stage lookahead is a policy, to solve a base
model (which at best they think of as a simulator). Relatively few
teams build simulators to test two-stage policies.
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Direct lookahead

Case study: Stochastic unit commitment
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Stochastic unit commitment
I

® March 18, 2019

Use/benefits of stochastic unit commitment Inbox x B B
e Ben Hobbs via princetonu.onmicrosoft.com Mon, Mar 18,3:27 PM (2days ago) Y¢ & :
to Warren, Venkat, Elina ~

Hi Warren,
My colleague Venkat Krishnan of NREL is on a panel tomorrow at a meeting about solar forecasting, and he anticipates being asked "why don't
ISOs do stochastic dispatch and commitment?"

| know you'll have an opinion about using explicitly stochastic methods (e.g., 2 or more stage with scenarios, an expected cost objective, and
redispatch/commitment by scenario). Do you think it is something that some ISO will seriously consider in the near future? Are you testing it on
the PJM or other large systems?
many thanks!
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Stochastic unit commitment

@

® March 18, 2019

Warren Powell <wbpowell328@gmail.com> G Mon, Mar 18,4:09 PM (2daysago) ¢ &
to Scott, Ben, Venkat, Elina ~

Ben

I am cc'ing in Scott Baker from PJM. [ just gave a talk on this issue a few weeks ago.

1) I do not think a stochastic lookahead with scenario trees will ever be useful. Even without CPU time issues (which are severe), the use of
scenario trees to obtain a robust solution is deeply flawed. | have some powerpoint slides that report on a specific instance where we "fixed" a
problem by using a scenario describing a drop in the wind that produced an outage. The fix was to increase steam in the day-ahead model over a
specific 30 minute time period. Since we would never know *when* an outage like this would happen, we would need 48 scenarios to recreate
the outage at each time of day. Further, for PJM, this would have to be done for *each* of about seven zones.

2) What the ISOs are doing is using something that | have named a "parametric cost function approximation.” In plain English, the ISOs use a
deterministic lookahead, with parameters inserted to produce the reserves needed in different regions of the network. This is *far* more powerful
than scenario trees. It is amazing that industry is already doing something that is better than what the academic community (and research labs)
have been pushing.

Attached is a paper (and powerpoint presentation) where | illustrate the parametric cost function approximation. You can see it most easily in the
powerpoint slide, where we show the deterministic lookahead. | then put a red box around a constraint that uses a forecast, and the next slide |
show how this constraint can be parameterized (in this simple example, we just multiple the forecast by a tunable parameter that depends on how
many time periods you are forecasting into the future).

A parametric CFA is much simpler and more effective than scenario trees, which are highly simplified approximations of the stochastic lookahead
(not just the use of a small sample - the whole two-stage assumption is a much bigger approximation than this community recognizes). The hard
part of a parametric CFA is the tuning, and PJM knows this. They have an elaborate process called "perfect dispatch” that helps them, but | think
that there is a lot of domain knowledge in the tuning.
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Stochastic unit commitment
I

® When solving the unit commitment problem,
people often ask:

» Should we use a deterministic model?

e ... which is what we are doing now.

» Or should we adopt a stochastic model?

This Is the wrong question!
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Stochastic unit commitment
I

® Observations:

» The real world 1s stochastic, always has been.

» Grid operators already have to manage different types

of uncertainty:
* Will a generator fail?
e Will a transmission line fail?
* What will the temperature be?
 How much will people increase air conditioning if the
temperature or humidity increases unexpectedly?

» Grid operators have been dealing with uncertainty all

the time, using different strategies to account for
uncertainty.

© 2019 W.B. Powell



Stochastic unit commitment
I

® There are two models we need to recognize:

» The “base model” — This might be:
« A computer simulator, or
e The real world.

» The “lookahead model”

 This 1s the model we solve when we are peeking into the
future.

» Notes:
* The base model is always stochastic.
» Lookahead models are usually designed to handle the
uncertainty in the base model/real world. Strategies:
— Stochastic lookahead:
» Scenario trees
» Stochastic dynamic programming (e.g. SDDP)
— Parametric cost function approximation
» Parametrically modified deterministic lookahead
© 2019 W.B. Powell



Stochastic unit commitment
I

® Strategies for handling uncertainties:
» We can build a “stochastic”’ lookahead model.

» We can build a robust “parametric cost function
approximation” which 1s a modified deterministic
model, designed to handle uncertainty.

* These modifications are designed based on an intuitive
understanding of how decisions should change to handle
uncertainty.

 This 1s what industry does, but without a formal model,
or formal methodology for designing and setting these
parameters.
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Stochastic unit commitment
I

® Notes:

» Multistage scenario trees produce extremely large
problems.

» Benders cuts are likely to introduce significant errors.

® Alternative:

» Use two-stage approximation.

© 2019 W.B. Powell



Stochastic unit commitment
I

® Notes:

» Standard practice for the “stochastic unit commitment
problem” (in the U.S.) is to use this “two-stage”

formulation:
« Make steam generation decisions today
* Model the entire sample path of what might happen tomorrow
« Optimize gas generators tomorrow as if you can see the entire
future.

» Problem — The big uncertainty 1s not the day-ahead

forecast, but the hour-ahead forecast.
 If we get the day-ahead forecast wrong, we can use gas
turbines to handle the error.
 If we get the hour-ahead forecast wrong, all we can do 1s to
ramp generators that are already on.
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Stochastic unit commitment
I

® Notes:

» In the next slides, we are going to demonstrate the
problems when the energy from wind dips quickly.

» A problem i1s that short-term forecasting is hard.
Meteorologists do not know the state of the atmosphere
right now, so forecasting an hour from now 1s hard.

» Industry standard practice for short-term forecasting 1s
to use persistence forecasting, which means they
assume that W, =W, .

» If we know that the wind 1s going to dip, we can turn on
extra gas turbines now (these are planned an hour in the
future).

© 2019 W.B. Powell



Stochastic unit commitment

How forecasting uncertainty causes outages.
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Stochastic unit commitment
I

SMART-ISO - Unconstrained Grid - 22-28 Jul 2010
«oeee —— WWind Buildout 3 - Sample 2 - No ramping reserves

room0 ® Actual Demand (Exc)
What happens if we have a simulated (Used) Wind
9 = Simulated Storage Power
20000 pCI'fCCt forecast’ m Simulated Fast Power

m Simulated Slow Power

LF]

" ENERRRAHYISNEEEENEEIENEHEEN SARANAEIENEEEENEEFED ¢

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

© 20190 1P Aftervals



MW

Stochastic unit commitment
I

SMART-ISO - Unconstrained Grid - 22-28 Jul 2010
weee — \Wind Buildout 3 - Sample 2 - Perfect information

ro000 m Actual Demand (Exc)
Eliminate outage by scheduling simulated (Used) Wind
- m Simulated Storage Power
I more steam in the day-ahead - Simulated Fast Power

market at 1 Oam m Simulated Slow Power
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Stochastic unit commitment

® Using random samples, we will not reflect the
reality that these sudden drops can happen any time.

But if we just use a

1) Schedule .
i — A random sample, it 1s
steam oo s very likely that we will
o not simulate these

drops for many times

} / A _ MU/ hnY ee day.

N

WA NG A AN A This means that if
\\ | ~ these drops happen at
N o A these times of day, we
b Yo ~ are not protected.
2) See wind: \

3) Schedule turbines
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Stochastic unit commitment
I

® We can construct drops at every time of day...

eEmontey (avail) wind -
L wind

) ™1™ 7 We can construct a
1) Schedule L . - F seri '
oo N b i /- series of scenarios so
Ll HIJ “”12*" b l f th
g | at these extreme
steam L e LA TN, U1
- e drops happen at every
pabll { .
X, I - e time of day.
T L j Ft
a 4 V A "Jf | P ) )
b | T fUof /e This will make sure
. R ¢ , that we schedule
|'TI e IF“‘.\ I."l" II | | |'f [ .
- R - - : LA | . Teserve at every time
al Lk 1 |
| "i"\:; I"| "'l f‘,\‘ [’ IIJ | | ‘|
S A -1 M/ ofday.
e W LA ] TN
a s — :
'a i k-
[ P An L
n Il | o
BN RLY Y N I—
i) Lr'*aﬂhm | | y Jﬂ‘ | ’;% " i{
. e Ly W
2) See wind:  FEeE
i -
. . /et [ - "
‘ﬁ il Y ———
. I S j | J ' I 15
II.“'"" ‘ ! ||. 0 i '-"1« i I‘.‘
3) Schedule turbines o P W Y
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Stochastic unit commitment
I

® Notes:

» We can construct a set of scenarios that reflects that
sudden drops can happen at any time of day.

» We will need a lot of scenarios to communicate that
these drops where we need extra reserve can happen at
any time....

» ... or we could simply require that we schedule reserves
for all times of the day!
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Stochastic unit commitment

® A deterministic lookahead model

» We use a point forecast of the future

t+48
IIllIl Z
Xtt t'=1,..,24 t'=t
(Yet dr=1,..24
Steam generation Gas turbines

» These decisions need to made with different horizons
e Steam generation 1s made day-ahead

 Gas turbines can be planned an hour ahead or less
© 2019 W.B. Powell



Stochastic unit commitment

® A deterministic lookahead policy

t+48

X" (S;)=arg min ZC(Xtt'aytt')

(&Vhemmg4 t'=t
(%vhemmg4

» No ISO would ever use a policy like this — 1t 1s too
vulnerable to variability.
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Stochastic unit commitment

® A robust cost function approximation

» We add i up and down fast ramping reserves

t+48

arg min 9 ClKes V)

(tt)tl 24 t'=t

,24
Up-ramping reserve

Down-ramping reserve

» This 1s a (parametric) cost function approximation,
parameterized by the ramping parameters & .

» Now we can be sure that we will have ramping reserves
at every time of day.
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Stochastic unit commitment

® We then have to tune the parameters of this policy

in our stochastic base model.

mig§ | 270 (s ) —
t=0

T=0= (gup , gdown) Robust CFA policy

» The challenge now 1s to adaptively estimate the
ramping constraints @ = (H“p Lg% )

Stochastic
base
model

» This 1s policy search — 1t can be done 1n a simulator, or

online using real-world observations.
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Stochastic unit commitment

MW
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Stochastic unit commitment
I

MW
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Stochastic unit commitment
I

® Notes:

» This i1s an example of a parametric cost function
approximation.

» We have modified our deterministic lookahead so we
produce the behaviors that we need to make our
solution robust.

» We know that to handle uncertainty we need to
schedule reserve. ..

» ... so rather than solving a complex stochastic
lookahead model, we modify our deterministic
lookahead model to force it to schedule reserve.

» Now we just have to figure out how much reserve to
schedule!
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Stochastic unit commitment
I

® Stochastic lookahead model

» Uses approximation of the information process in the
lookahead model

Parametric distribution (pdf)  Nonparametric distribution (cdf)

A A gr—

f(X) F(X)

o — o T @ L 2 —Foo—q o ® >
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Stochastic unit commitment
I

® Parametric vs. nonparametric

Observations

Total revenue

_ Price of produlct
» Robust CFAs are parametric

» Scenario trees are honparametric
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Stochastic unit commitment
I

® Notes:

»

»

»

»

»

Our parametric cost function approximation is just like
any parametric model.

It 1s able to capture structure, as long as we know the
structure exists.

For example, we could see that we needed extra reserve
whenever there was a sudden drop 1n the wind.

In a sampled model, we only scheduled reserve when
drops happened, but in a large enough sample, this
could happen at any time.

With a parametric model, we simply force reserves at
all points 1in time. But this only works because we can
identify the structure of a robust policy.
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Choosing the best policy

Some sample problems
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Optimizing energy storage
L

® Take advantage of price variations

ERCOT (Texas) price data

£
&

g
H

g
&

g
H

Dollars per megawatt-hour
g
2

Average price ~ $50/megawatt-hour |
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Blood management

® Managing blood inventories

Type of Type of
Donated Blood Recipient Blood
AB+ AB+
AB- AB-
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Choosing a policy

a Robust cost function
approximation

=

T

Q Lookahead policy

a Policy function
approximation

Q Policy based on value
function approximation
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Choosing a policy

e ——
® Which policy to use?

» PFAs are best for low-
dimensional problems
where the structure of the e m—ﬂf‘\ﬁf
policy is apparent from the — 6°* _ = ’
problem.

» CFAs work for high-
dimensional problems,
where we can get desired
behavior by manipulating
the cost function.
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Choosing a policy

® Which policy to use?

» VFAs work best when the
lookahead model is easy to
approximate

» Lookahead models should

be used only when all else
fails (which 1s often)

The lookahead model

© 2019 W.B. Powell




Modeling sequential decision problems
|

@ First build your model @ Then design your policies:

» Objective function »
T

min_E” {Z y'C(S.. x;f(st))}
t=0

» Policy
X*: S X

» Constraints at time t

»

»

X =X (S) €&

» Transition function »

St+1 =S" (St,Xt,Wm)

» Exogenous information

W, W,,...\W,) »
© 2019 W.B. Powell

PFA? Exploit obvious
problem structure.

CFA? Can you tune a
deterministic approximation
to make 1t work better?

VFA? Can you approximate
the value of being in a
downstream state?

Lookahead? Do you have a
forecast? What is the nature
of the uncertainty?

Hybrid?
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