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Direct lookahead

© 2019 W.B. Powell



Direct lookahead

Modeling lookahead policies
» Lookahead policies solve a lookahead model, which is an 

approximation of the future.
» It is important to understand the difference between the:

• Base model – this is the model we are trying to solve by finding 
the best policy.  This is usually some form of simulator.

• The lookahead model, which is our approximation of the future 
to help us make better decisions now.

» The base model is typically a simulator, or it might be the 
real world.
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Direct lookahead

An optimal policy:

» The base model:

» The optimal lookahead policy:

» If you can solve this exactly, you do not need any 
tunable parameters!
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Direct lookahead

The ultimate lookahead policy is optimal

» 2b) Instead, we have to solve an approximation called 
the lookahead model:

» A lookahead policy works by approximating the 
lookahead model.
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Direct lookahead

Direct lookahead policies
» With rare exception, direct lookahead policies are 

trying to solve approximate lookahead models, where 
we might write the policy as

» The challenge is creating a tractable set of 
approximations of the lookahead model.
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The ultimate lookahead policy is optimal
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Direct lookahead

The lookahead policy
» This can be any of the four classes of policies, but 

optimality is less important, and simplicity is more 
important.

Some options:
» Parameterized policy

• E.g. “order up to”, or “sell when price goes above some point”
• VFA-based policy – We could solve a lookahead DP (exact or 

with ADP)
• Deterministic lookahead
• Stochastic lookahead

– Monte Carlo tree search
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Direct lookahead

We can use this notation to create a policy based 
on our lookahead model:

» Simplest lookahead is deterministic.
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Sampled set of realizations (or deterministic);
Aggregated staging of decisions and information

Limited horizon
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Direct lookahead

Planning your next chess move:

» You put your finger on the piece while you think about 
moves into the future.  This is a lookahead policy, 
illustrated for a problem with discrete actions.
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Direct lookahead

Decision trees:
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Direct lookahead

Lookahead models use five classes of 
approximations:
» Horizon truncation – Replacing a longer horizon problem 

with a shorter horizon
» Stage aggregation – Replacing multistage problems with 

two-stage approximation.
» Outcome aggregation/sampling – Simplifying the 

exogenous information process
» Discretization – Of time, states and decisions
» Dimensionality reduction – We may ignore some variables 

(such as forecasts) in the lookahead model that we capture 
in the base model (these become latent variables in the 
lookahead model).
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Direct lookahead

Lookahead policies are the trickiest to model:
» We create “tilde variables” for the lookahead model:

» All variables are indexed by t (when the lookahead
model is being generated) and t’ (the time within the 
lookahead model).
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Direct lookahead policies

Deterministic approximations
“Model predictive control”
Rolling horizon procedure

Receding horizon procedure
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Deterministic lookahead

Deterministic lookahead policies
» When we eliminate uncertainty, our lookahead model 

looks like:

» Now we just have to pick an optimal action in the 
future (think of a shortest path problem).
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17

We can handle vector-valued decisions by solving 
linear (or integer) programs over a horizon.

Deterministic lookahead
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We optimize into the future, but then ignore the 
decisions that would not be implemented until later.

Deterministic lookahead
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 Assume that this is the full model (over T time 
periods)

Deterministic lookahead

T
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 But we solve a smaller lookahead model (from t to t+H)

Deterministic lookahead

0 0+H
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 Following a lookahead policy

Deterministic lookahead

1 1+H
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… which rolls forward in time.

Deterministic lookahead

2 2+H
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… which rolls forward in time.

Deterministic lookahead

3 3+H
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… which rolls forward in time.

Deterministic lookahead

t t+H
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Deterministic lookahead

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process
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Deterministic lookahead

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process
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Deterministic lookahead

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process
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Deterministic lookahead

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process
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Deterministic lookahead

Notes
» It is common in a deterministic lookahead to introduced 

a tunable parameter, as we did with our energy storage 
problem.

» In effect, we are compensating for the simplicity of our 
lookahead with a tunable parameter.
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Direct lookahead

Energy planning problem
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Parameterized deterministic lookahead

Recall from the CFA lecture:
» We can do a lookahead, but parameterize it to handle 

uncertainty.
» In the energy storage problem, we multiplied the 

forecasts times a coefficient to accommodate 
uncertainty….
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Parameterized deterministic lookahead

An energy storage problem:
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Parameterized deterministic lookahead

Benchmark policy – Deterministic lookahead
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Parameterized deterministic lookahead

Parametric cost function approximations
» Now we need to find the best parameterization:

» We evaluate the policy via simulation:
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Parameterized deterministic lookahead

Designing the policy
» The structure of the policy

• Should the coefficients 𝜃 be indexed by:
– Time 𝑡, as in 𝜃௧𝑓௧௧ᇱ

ௐ

– Or number of time periods in the future 𝜃௧ᇲି௧𝑓௧௧ᇱ
ௐ.

• Should we have additive terms?
• This is the art of parametric modeling.

» Tuning the parameters
• We can use any of the algorithms in chapters 5 (derivative-based) or 

7 (derivative-free).
• This is the science of parametric modeling.
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Direct lookahead

Dynamic shortest path problem
Deterministic lookahead
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Dynamic shortest paths

The problem
» Finding the best path through a stochastic dynamic 

network.  

The policy
» We can try to solve a stochastic lookahead model 

(perhaps using approximate dynamic programming).
» We can solve a deterministic lookahead model using 

point estimates of travel times that are updated from 
time to time.

» We can solve a parameterized lookahead model, where 
we use the -percentile of the travel time on each link.
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Dynamic shortest paths

Flavors of stochastic networks
» Arc costs are known after we make a decision – This is 

a deterministic shortest path problem that we can solve 
as a linear program or a classical deterministic shortest 
path problem.

» Arc costs are known before we make a decision – Now 
we would have to use approximate dynamic 
programming to solve the lookahead model.  This then  
has to be re-optimized as the mean arc costs are 
updated.
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Dynamic shortest paths
A stochastic network, costs revealed as we arrive to a 
node:
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Dynamic shortest paths

Modeling:
» Objective function

• Cost per period
                   C S୲, X୲

గ 𝑆௧ ൌ ሺ𝑋௧
గ 𝑆௧ ሻ்𝑐௧

ൌ ෍ 𝑥௧,௜೟
೙,௝

గ

௝

𝑐௧௜௝

ൌ Costs incurred at time t.
• Total costs:

min
గ

𝔼 ∑ CሺS୲, X୲
గ 𝑆௧ ሻ்

௧ୀ଴

» This is the base model.
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Dynamic shortest paths

A policy based on a lookahead model
» At each time 𝑡 we are going to optimize over an estimate of the 

network that we are going to call the lookahead model.
» Notation: all variables in the lookahead model have tilde’s, and 

two time indices.
• First time index, 𝑡, is the time at which we are making a decision.  

This determines the information content of all parameters (e.g. costs) 
and decisions.

• A second time index, 𝑡′, is the time within the lookahead model.
» Decisions

• 𝑥෤௧௜௝ ൌ 1 if we plan on traversing link 𝑖, 𝑗 in the lookahead model.
• 𝑐௧௜௝ ൌ Estimated cost at time 𝑡 of traversing link ሺ𝑖, 𝑗ሻ in the 

lookahead model.
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Dynamic shortest paths

Imagine that the lookahead is just a black box:
» Solve the optimization problem

» subject to

» This is a deterministic shortest path problem that we 
could solve using Bellman’s equation, but for now we 
will just view it as a black box optimization problem.
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Dynamic shortest paths
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Dynamic shortest paths

© 2019 W.B. Powell



Dynamic shortest paths
A static, deterministic network
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A time-dependent, deterministic network

Dynamic shortest paths



The base model
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A time-dependent, deterministic lookahead network
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A time-dependent, deterministic lookahead network
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The base model
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A time-dependent, deterministic lookahead network

Th
e 

lo
ok

ah
ea

d
m

od
el

't t

' 1t t 

' 2t t 

' 3t t 

' 4t t 

Dynamic shortest paths



Dynamic shortest paths

Simulating a lookahead policy
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Dynamic shortest paths

Discuss:

» The lookahead model uses forecasted costs ௧௜௝.  These 
are estimates made at time .

» The policy is simulated using sampled costs ௧௜௝.

» Both are updated with time and from one iteration to 
another.
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Direct lookahead

Dynamic shortest path problem
Parameterized deterministic lookahead
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Dynamic shortest paths

Notes:
» The deterministic lookahead is still a policy for a 

stochastic problem.
» Can we make it better?

Idea:
» Instead of using the expected cost, what about using a 

percentile.
» Use pdf of ௜௝ to find percentile (e.g. ).  Let 

௜௝
௣ The percentile of ௜௝

» Which means ௜௝ ௜௝
௣
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Parameterized deterministic lookahead

The percentile policy.
» Solve the linear program (shortest path problem):

» subject to

» This is a deterministic shortest path problem that we 
could solve using Bellman’s equation, but for now we 
will just view it as a black box optimization problem.
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Parameterized deterministic lookahead

Simulating a lookahead policy
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Parameterized deterministic lookahead

Policy tuning
» Cost vs. lateness (risk)
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Direct lookahead

Monte Carlo tree search
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Decision         Outcome     Decision      Outcome      Decision
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Monte Carlo tree search

Monte Carlo tree search:

© 2019 W.B. Powell

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,  S. Samothrakis and S. 
Colton, “A survey of Monte Carlo tree search methods,” IEEE Transactions on Computational Intelligence and AI in Games, 
vol. 4, no. 1, pp. 1–49, March 2012.



Monte Carlo tree search

Monte Carlo tree search
» Explores some nodes more than others.
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Monte Carlo tree search

Elements of MCTS:
» Selection – Choose decision and random outcome:

• Decision – Use “upper confidence bounding fore trees”, UCT, 
to decide which action to take

– Requires enumerating all actions.
– Depends on having estimate of the value of the 

downstream state.
• Sampling the outcome

– Use Monte Carlo simulation to sample our way to the next 
pre-decision state.
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Monte Carlo tree search

Elements of MCTS:
» Expansion

• If action taken goes to a state we have already generated, then 
update the value of being in the state we are searching from.

• If action takes us to a new state, then we add the post-decision 
node, and sample our way to the next pre-decision node.

• Use our rollout policy to get an initial estimate of the value of 
being in a state.

» Simulation
• We assume we have access to some default policy that we can 

use to simulate our way forward to get an estimate of the value 
of being in a state.

• This is known under different names, but we use the term 
“rollout policy” first introduced by Bertsekas.

• Rollout policy is typically suboptimal, but it is possible to 
produce an optimistic estimate by optimizing over a sampled 
future.
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Monte Carlo tree search

Elements of MCTS:
» Backpropagation

• After using our rollout policy to step forward, we then do a 
backward traversal (“backpropagation”) to update all upstream 
value functions.

• Use standard smoothing to update values.
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Monte Carlo tree search
Notes:
» Even with discrete actions, decision trees explode in size extremely 

quickly.
» Monte Carlo tree search is a method for generating the most 

promising parts of the trees.
» The key is the availability of a simple rollout policy that does a 

“good” job of approximating an optimal policy.
» The UCB policy guarantees asymptotic optimality because it ensures 

that each action will be tested infinitely often:

» … but MCTS does not work well with large sets of actions.

 1 1

log ( )ˆargmax ( , ) ( )
( , )

t
t x t t t

t

N s
x C s x V s

N s x
 

 
   
   If we do not try 𝑥…

… this keeps growing.
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Monte Carlo tree search
Notes:
» MCTS is immune to large state spaces.  This means that it can 

easily handle the very large belief state.
» MCTS is sensitive to large numbers of decisions.
» You can use action-sampling strategies to handle large action 

sets…
» … or try “sampled lookahead” policies (sample the future, and 

solve a larger optimization problem).  
» Since it is exploring a substantial part of the tree, calculations need 

to be quite fast, which means that Bayesian updating within the 
search may be too expensive.
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Monte Carlo tree search

Case application – emergency storm 
response
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Case study: MCTS for storm response

Hurricane Sandy
» Once in 100 years?
» Rare convergence of events
» But, meteorologists did an 

amazing job of forecasting 
the storm.

The power grid
» Loss of power creates 

cascading failures (lack of 
fuel, inability to pump water)

» How to plan?
» How to react?

© 2019 W.B. Powell



Known customers in outage







Unknown outages

Outage calls
(known)

Network outages
(unknown)

Storm 
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Exploiting the information from phone calls
» We have to blend the following….

• What we knew before the phone calls came in – this is called 
the prior belief. 

• The outage calls – this is called information.

» …to produce the updated estimates of outage – this is 
called the posterior.

To compute this we have to use Bayes theorem:

Prob[lights-out calls | segment  is out]Prob[  is out]Prob[segment  is out|lights-out calls]
Prob[lights-out calls]

l ll 

The prior
The information

The posterior

The phone call distribution

The conditional outage distribution

© 2019 W.B. Powell
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State variables:
» Physical state

• Location/status of the truck
• Known state of the grid (from visiting segments)

» Other information
• Might be phone calls, weather forecast

» Belief state
• Probabilities of outages on each unobserved link.

» State variable is high-dimensional, and continuous, but 
MCTS is not sensitive to the complexity of the state 
space.  It is sensitive to the action space.

© 2019 W.B. Powell
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36150

55110

Industry heuristic

Lookahead policy

Performance metrics
» Total outage minutes
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MCTS vs. posterior optimal benchmark





Prob. a customer calls in if 
lights are out.

Posterior optimal

Posterior optimal

MCTS budget (nodes in tree)
© 2019 W.B. Powell
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Direct lookahead

Stochastic programming with vector-
valued decisions
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Stochastic programming

Setting:
» Amazon needs to allocate inventory to its fulfillment 

centers.
» It then observes the demand for product.
» It then has to decide from which fulfillment center to 

use to fill an order.

We can approach this as a:
» Two-stage decision problem

• Decision, information, decision, stop.

» A “multistage” decision problem.
• Decision, information, decision, information, decision, …
• We saw earlier how these decision trees really explode.
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Decision         Outcome     Decision      Outcome      Decision

A decision tree “decision – information – decision – information”
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Stochastic programming

Stochastic programming methodology:
» Future information is represented in a form known as a 

scenario tree, which is a sampled version of what might
happen.

» Here we just model

Information, information, information, …

» The decisions are handled separately.  But even with 
this approach, the information process still explodes 
very quickly:
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Stochastic programming

Stochastic lookahead
» Here, we approximate the information model by using a 

Monte Carlo sample to create a scenario tree: 
1am          2am          3am         4am         5am   …..

Change in wind speed

Change in wind speed

Change in wind speed
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Multistage stochastic program
» We are going to model the nesting of decisions 𝑥௧ and new 

information 𝑊௧ାଵ:

» Remember that 𝑥௧ is a vector.
» Don’t worry, no-one can solve this directly, so the challenge is 

designing something that we can solve.
» There is one special case that can be solved with an asymptotically 

optimal algorithm, approximate dynamic programming with 
Benders cuts, called stochastic dual dynamic programming
(SDDP). 

© 2019 W.B. Powell
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Stochastic programming

Information evolves using sequential branching:

© 2019 W.B. Powell
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Stochastic programming

We can then simulate this lookahead policy over 
time:

.  .  .  .

t 1t  2t  3t 

Th
e 

lo
ok

ah
ea

d
m

od
el

The base model
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Stochastic programming

Notes:
» In most applications of stochastic programming, 

decision ௧ is a vector (and may even have to be 
integer).

» Solving even one instance of a multistage stochastic 
lookahead model is rarely tractable.
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Direct lookahead

Two-stage stochastic programming

© 2019 W.B. Powell



Classical approximation strategy:  Two-stage 
stochastic programming
» Collapse all the states (decision-information) for 

periods into a single stage:

• Assume we see 𝑊௧ାଶ, 𝑊௧ାଷ, … , 𝑊௧ାு.  Let 𝜔 be a sample 
realization of 𝑊௧ାଶ, 𝑊௧ାଷ, … , 𝑊௧ାு, and create a sample Ω෡௧.

• Then make decisions 𝑥෤௧,௧ାଵሺ𝜔ሻ, 𝑥෤௧,௧ାଶሺ𝜔ሻ, … , 𝑥෤௧,௧ାுሺ𝜔ሻ

» This produces the two-stage stochastic optimization 
problem:

௫೟,ሺ௫෤೟,೟శభ ఠ ,…,௫෤೟,೟శಹ ఠ ,,ఠ∈ஐ೟ሻ ௧ ௧ ௧௧ᇲ ௧௧ᇱ

௧ାு

௧ᇲୀ௧ାଵఠ∈ஐ೟

Direct lookahead
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Stochastic programming

Actual vs. forecasted energy from wind

This is our forecast      of the wind power at 
time t’, made at time t.

'ttf

This is the actual energy from wind, showing
the deviations from forecast.

Current timet  ' Some point in the futuret 
© 2019 W.B. Powell



Stochastic programming

Creating wind scenarios (Scenario #1)
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Stochastic programming

Creating wind scenarios (Scenario #3)
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Stochastic programming

Creating wind scenarios (Scenario #4)
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Stochastic programming

Creating wind scenarios (Scenario #5)
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Stochastic programming

Creating wind scenarios (Scenario #2)

© 2019 W.B. Powell



Stochastic programming

1) Schedule
steam

tx

2) See wind:

3) Schedule turbines
© 2019 W.B. Powell
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Classical approximation strategy:  Two-stage 
stochastic programming
» Take a look at the two-stage stochastic program

min
௫೟,ሺ௫෤೟,೟శభ ఠ ,…,௫෤೟,೟శಹ ఠ ,,ఠ∈ஐ೟ሻ

𝑐௧𝑥௧ ൅ ෍ ෍ 𝑐௧௧ᇲሺ𝜔ሻ𝑥෤௧௧ᇱሺ𝜔ሻ
௧ାு

௧ᇲୀ௧ାଵఠ∈ஐ೟

» We are choosing a single (vector) ௧ for the decision to 
be made now, along with a family of vectors ௧,௧ାଵ
representing decisions to be made in the future.

» Note that the decision ௧௧ᇱ given “scenario” is 
allowed to see the entire future.  This is dismissed as a 
reasonable approximation, as long as ௧ is not allowed 
to see the future.

Direct lookahead
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Stochastic programming
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Stochastic programming
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Stochastic programming

Notes:
» In practice, it is quite rare to simulate a lookahead

policy based on scenario trees. 
» Solving even one instance of a stochastic lookahead

problem can be extremely difficult:

௫೟,ሺ௫෪೟,೟శభ ఠ ,…,௫෤೟,೟శಹ ఠ ,ఠ∈ஐ೟ሻ
௧ ௧ ௧௧ᇲ ௧௧ᇱ

௧ାு

௧ᇲୀ௧ାଵఠ∈ஐ೟

» A number of authors (in stochastic programming) 
confuse the lookahead model with the “problem” being 
solved (we call this the base model).  Even when we 
can solve the two-stage stochastic program, it is not an 
optimal policy because of all the approximations.
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Direct lookahead

DP lookahead
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Stochastic lookahead

Probabilistic lookahead
» We can also solve the lookahead model using convex value 

function approximations (“dynamic programming”)

» We can try to solve this as a single “deterministic” 
optimization problem.  This is a direct lookahead policy.
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Lookahead policies

Probabilistic lookahead
» We can also solve the lookahead model using convex value 

function approximations (“dynamic programming”)
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Lookahead policies
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Lookahead policies

Probabilistic lookahead
» We can also solve the lookahead model using convex value 

function approximations (“dynamic programming”)
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Lookahead policies

We can then simulate this lookahead policy over 
time:

The real process
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Lookahead policies
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Direct lookahead

Multistage stochastic programming
a) This material is really hard.
b) You are never going to use it.
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Two-stage stochastic programming
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Two-stage stochastic programming

Notes
» This strategy replaces the second-stage expectation 

with a sampled approximation
» Discuss two ways of representing first stage decision:

• One decision – Means that the second stage problems are all 
linked.

• One decision per scenario (outcome) – Implies that the first 
stage decision is allowed to see the future.  We then introduce 
“nonanticipativity constraint”:

» Distinguish between:
• A two-stage stochastic programming problem
• A two-stage stochastic program as an approximate lookahead

for a fully sequential problem
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Modeling as a stochastic program

An alternative strategy is to use the vocabulary of 
“stochastic programming.”

where

» This is the canonical form of stochastic programming, 
which might also be written over multiple periods:

0 0 0 0 0 1min ( , )x X c x Q x  

1 10 1 ( ) ( ) 1 1( , ( )) min ( ) ( )x XQ x c x    

0 0
1

min ( ) ( ) ( )
T

t t
t

c x p c x


  
 

  
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Modeling as a stochastic program

An alternative strategy is to use the vocabulary of 
“stochastic programming.”

where

» This is the canonical form of stochastic programming, 
which might also be written over multiple periods:

1min ( , )
t tx X t t t tc x Q x  

1 11 ( ) ( ) 1 1( , ( )) min ( ) ( )
t tt t x X t tQ x c x    
    

' '
' 1

min ( ) ( ) ( )
t t

t H

t t t tt tt
t t

c x p c x


  


  

  
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Lookahead policies

Lookahead policies are the trickiest to model:
» We create “tilde variables” for the lookahead model:

» This notation helps avoid confusion between the base 
model and the lookahead model.

 

, '

, '

, , 1 ,

Approximated state variable (e.g coarse discretization)
Decision we plan on implementing at time '  when we are

          planning at time ,  ' , 1,...,

, ,...,

t t

t t

t t t t t t t H

S
x t

t t t t t H

x x x x 





  







   


, '

, '

, '

Approximation of information process
Forecast of costs at time '  made at time 

Forecast of right hand sides for time '  made at time 

t t

t t

t t

W
c t t

b t t









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Two-stage stochastic programming

Energy systems application
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Multistage-stage stochastic programming
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Multistage-stage stochastic programming

Physical process
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Multistage-stage stochastic programming

The scenario tree models the evolution of 
information
» Wind speed, prices, rainfall, …

© 2019 W.B. Powell
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Multistage-stage stochastic programming

Information process
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Multistage-stage stochastic programming

The information process:
» The sampled process 
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Multistage-stage stochastic programming

The information process:

© 2019 W.B. Powell
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Multistage-stage stochastic programming

The state variable
» Resource state, and information state, in the lookahead

model
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Multistage-stage stochastic programming
Classical formulation:

State/policy formulation
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Multistage-stage stochastic programming
Stochastic programming with scenario trees
» Associate each node with an information state 
» Expectation over sampled events out of an information node:

» LP at node       indexes all variables (costs, decisions, constraints) 
with 

© 2019 W.B. Powell
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Multistage-stage stochastic programming
Stochastic programming with scenario trees
» There is a linear program at each information node      :

» Resource variables are linked through a large set of linear equations:

» This creates one very large linear program.  Not surprising that almost 
no-one actually formulates these.
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Multistage lookahead models

From multistage lookahead …

1am          2am          3am         4am         5am   …..

Change in wind speed

Change in wind speed

Change in wind speed
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Multistage lookahead models

We can then simulate this lookahead policy over 
time:
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Stochastic lookahead policies

Some common misconceptions about stochastic 
programming (for sequential problems):

» Solving a “stochastic program” is hard, but getting an 
optimal solution does not produce an optimal policy.

» Bounds on the quality of the solution to a stochastic 
program is not a bound on the quality of the policy.

» We only care about the quality of the policy, which can 
only be evaluated using a stochastic base model.  
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Direct lookahead

Scenario trees with two-stage 
approximation
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The unit commitment problem (for PJM)
Planning tomorrow’s schedule
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Stochastic programming

Strategies for generating scenarios
» 1) Pull sample paths from history

• Avoids modeling assumptions
• Will not look like the branching tree

» 2) Build a mathematical model
• Draw on the tools from uncertainty modeling (e.g. chapter 10) 

to create a mathematical model of the process.
• Then, simulate the branching process of a scenario tree.
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Multistage lookahead models

From multistage lookahead …

1am          2am          3am         4am         5am   …..

Change in wind speed

Change in wind speed

Change in wind speed
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Lookahead policies

Deterministic lookahead

Stochastic lookahead (with two-stage 
approximation)

X t
LAD (St )  arg minC( Stt , xtt )   t 'tC( Stt ' , xtt ' )

t 't1

T


xtt , xt ,t1,..., xt ,tT

'
' '

' 1
( ) arg min ( , ) ( ) ( ( ), ( ))

t

T
LA S t t
t t tt tt tt tt

t t
X S C S x p C S x



    

 

   


    
xtt , xt ,t1,..., xt ,tT

Scenario trees

© 2019 W.B. Powell



Modeling stochastic wind

Actual vs. forecasted energy from wind

This is our forecast      of the wind power at 
time t’, made at time t.

'ttf

This is the actual energy from wind, showing
the deviations from forecast.

Current timet  ' Some point in the futuret 
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Modeling stochastic wind

Creating wind scenarios (Scenario #1)
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Modeling stochastic wind

Creating wind scenarios (Scenario #3)
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Stochastic lookahead policies

Creating wind scenarios (Scenario #4)
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Stochastic lookahead policies

Creating wind scenarios (Scenario #5)
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Modeling stochastic wind

Creating wind scenarios (Scenario #2)
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Two-stage lookahead models

… to a two-stage approximation

0

1) Schedule
steam

x

2) See wind:

3) Schedule turbines
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Lookahead policies

We can then simulate this lookahead policy over 
time:
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Lookahead policies
Notes:
» Two-stage approximations of the unit commitment problem have 

been pursued by a number of national labs in the U.S.
• Sandia, Argonne, Livermore, National Renewable Energy Laboratory

» Deterministic unit commitment problems are hard; two-stage 
stochastic models, even with a small number of scenarios, are 
much harder.

» The two-stage approximation introduces serious errors.  Our 
biggest problem is not the uncertainty in wind forecasting 
tomorrow, it is forecasting wind an hour from now.  This is 
ignored in a two-stage model.

» The stochastic programming community does not understand the 
concept that the two-stage lookahead is a policy, to solve a base 
model (which at best they think of as a simulator).  Relatively few 
teams build simulators to test two-stage policies.  
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Direct lookahead

Case study: Stochastic unit commitment
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Stochastic unit commitment

March 18, 2019
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Stochastic unit commitment

March 18, 2019
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Stochastic unit commitment

When solving the unit commitment problem, 
people often ask:

» Should we use a deterministic model?

• … which is what we are doing now.

» Or should we adopt a stochastic model?

This is the wrong question!
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Stochastic unit commitment

Observations:
» The real world is stochastic, always has been.
» Grid operators already have to manage different types 

of uncertainty:
• Will a generator fail?
• Will a transmission line fail?
• What will the temperature be?
• How much will people increase air conditioning if the 

temperature or humidity increases unexpectedly?

» Grid operators have been dealing with uncertainty all 
the time, using different strategies to account for 
uncertainty.
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Stochastic unit commitment

There are two models we need to recognize:
» The “base model” – This might be:

• A computer simulator, or
• The real world.

» The “lookahead model” 
• This is the model we solve when we are peeking into the 

future.

» Notes:
• The base model is always stochastic.
• Lookahead models are usually designed to handle the 

uncertainty in the base model/real world.  Strategies:
– Stochastic lookahead:

» Scenario trees
» Stochastic dynamic programming (e.g. SDDP)

– Parametric cost function approximation
» Parametrically modified deterministic lookahead

© 2019 W.B. Powell



Stochastic unit commitment

Strategies for handling uncertainties:

» We can build a “stochastic” lookahead model.

» We can build a robust “parametric cost function 
approximation” which is a modified deterministic 
model, designed to handle uncertainty.

• These modifications are designed based on an intuitive 
understanding of how decisions should change to handle 
uncertainty.

• This is what industry does, but without a formal model, 
or formal methodology for designing and setting these 
parameters.
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Stochastic unit commitment

Notes:

» Multistage scenario trees produce extremely large 
problems.

» Benders cuts are likely to introduce significant errors.

Alternative:
» Use two-stage approximation.
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Stochastic unit commitment

Notes:
» Standard practice for the “stochastic unit commitment 

problem” (in the U.S.) is to use this “two-stage” 
formulation:

• Make steam generation decisions today
• Model the entire sample path of what might happen tomorrow
• Optimize gas generators tomorrow as if you can see the entire 

future.

» Problem – The big uncertainty is not the day-ahead 
forecast, but the hour-ahead forecast.

• If we get the day-ahead forecast wrong, we can use gas 
turbines to handle the error.

• If we get the hour-ahead forecast wrong, all we can do is to 
ramp generators that are already on.
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Stochastic unit commitment

Notes:
» In the next slides, we are going to demonstrate the 

problems when the energy from wind dips quickly.
» A problem is that short-term forecasting is hard.  

Meteorologists do not know the state of the atmosphere 
right now, so forecasting an hour from now is hard.

» Industry standard practice for short-term forecasting is 
to use persistence forecasting, which means they 
assume that               .

» If we know that the wind is going to dip, we can turn on 
extra gas turbines now (these are planned an hour in the 
future). 

1t tW W 
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Stochastic unit commitment

Actual wind

Hour 
ahead

forecast

How forecasting uncertainty causes outages.
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Stochastic unit commitment

What happens if we have a 
perfect forecast?
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Stochastic unit commitment

Eliminate outage by scheduling 
more steam in the day-ahead 
market at 10am
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Stochastic unit commitment

Using random samples, we will not reflect the 
reality that these sudden drops can happen any time. 

But if we just use a 
random sample, it is 
very likely that we will 
not simulate these 
drops for many times 
of the day.

This means that if 
these drops happen at 
these times of day, we 
are not protected.
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Stochastic unit commitment

We can construct drops at every time of day…

0

1) Schedule
steam

x

2) See wind:

3) Schedule turbines

We can construct a 
series of scenarios so 
that these extreme 
drops happen at every 
time of day.

This will make sure 
that we schedule 
reserve at every time 
of day.
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Stochastic unit commitment

Notes:
» We can construct a set of scenarios that reflects that 

sudden drops can happen at any time of day.
» We will need a lot of scenarios to communicate that 

these drops where we need extra reserve can happen at 
any time….

» … or we could simply require that we schedule reserves 
for all times of the day!
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A deterministic lookahead model
» We use a point forecast of the future

» These decisions need to made with different horizons
• Steam generation is made day-ahead
• Gas turbines can be planned an hour ahead or less

Stochastic unit commitment

Steam generation Gas turbines
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
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
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A deterministic lookahead policy

» No ISO would ever use a policy like this – it is too 
vulnerable to variability.

Stochastic unit commitment
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A robust cost function approximation
» We add in up and down fast ramping reserves

» This is a (parametric) cost function approximation, 
parameterized by the ramping parameters      .

» Now we can be sure that we will have ramping reserves 
at every time of day.

Stochastic unit commitment

max
, ' , ' '

max
, ' , ' '

+          Up-ramping reserve

+        Down-ramping reserve

up
t t t t tt

down
t t t t tt

x x L

x x L





 

 


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We then have to tune the parameters of this policy 
in our stochastic base model.

» The challenge now is to adaptively estimate the 
ramping constraints                         .

» This is policy search – it can be done in a simulator, or 
online using real-world observations.  

Stochastic unit commitment

 
0

min , ( | )
T

t
t t

t
E C S X S 
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 
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 ,up down    

 ,up down  

Stochastic 
base 

model

Robust CFA policy
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Stochastic unit commitment
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SMART‐ISO ‐ Unconstrained Grid ‐ 22‐28 Jul 2010 
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Stochastic unit commitment

0 

20000 

40000 

60000 

80000 

100000 

120000 

140000 

1 36
 

71
 

10
6 

14
1 

17
6 

21
1 

24
6 

28
1 

31
6 

35
1 

38
6 

42
1 

45
6 

49
1 

52
6 

56
1 

59
6 

63
1 

66
6 

70
1 

73
6 

77
1 

80
6 

84
1 

87
6 

91
1 

94
6 

98
1 

10
16

 
10

51
 

10
86

 
11

21
 

11
56

 
11

91
 

12
26

 
12

61
 

12
96

 
13

31
 

13
66

 
14

01
 

14
36

 
14

71
 

15
06

 
15

41
 

15
76

 
16

11
 

16
46

 
16

81
 

17
16

 
17

51
 

17
86

 
18

21
 

18
56

 
18

91
 

19
26

 
19

61
 

19
96

 

M
W

 

5‐min Time Intervals 

SMART‐ISO ‐ Unconstrained Grid ‐ 22‐28 Jul 2010 
Wind Buildout 4 ‐ No ramping reserves 

Actual Demand (Exc) 
Simulated (Used) Wind 
Simulated Storage Power 
Simulated Fast Power 
Simulated Slow Power 

0 

20000 

40000 

60000 

80000 

100000 

120000 

140000 

1 36
 

71
 

10
6 

14
1 

17
6 

21
1 

24
6 

28
1 

31
6 

35
1 

38
6 

42
1 

45
6 

49
1 

52
6 

56
1 

59
6 

63
1 

66
6 

70
1 

73
6 

77
1 

80
6 

84
1 

87
6 

91
1 

94
6 

98
1 

10
16

 
10

51
 

10
86

 
11

21
 

11
56

 
11

91
 

12
26

 
12

61
 

12
96

 
13

31
 

13
66

 
14

01
 

14
36

 
14

71
 

15
06

 
15

41
 

15
76

 
16

11
 

16
46

 
16

81
 

17
16

 
17

51
 

17
86

 
18

21
 

18
56

 
18

91
 

19
26

 
19

61
 

19
96

 

M
W

 

5‐min Time Intervals 

SMART‐ISO ‐ Unconstrained Grid ‐ 22‐28 Jul 2010 
Wind Buildout 4 ‐ Ramping reserves 9GW 

Actual Demand (Exc) 
Simulated (Used) Wind 
Simulated Storage Power 
Simulated Fast Power 
Simulated Slow Power 

Less steam
Uniform increase in gas 
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Stochastic unit commitment

Notes:
» This is an example of a parametric cost function 

approximation.
» We have modified our deterministic lookahead so we 

produce the behaviors that we need to make our 
solution robust.

» We know that to handle uncertainty we need to 
schedule reserve…

» … so rather than solving a complex stochastic 
lookahead model, we modify our deterministic 
lookahead model to force it to schedule reserve.

» Now we just have to figure out how much reserve to 
schedule!
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Stochastic unit commitment

Stochastic lookahead model
» Uses approximation of the information process in the 

lookahead model

Parametric distribution (pdf) Nonparametric distribution (cdf)





 2
21( )

2

x

f x e






  
 
 

( )f x ( )F x

© 2019 W.B. Powell



Stochastic unit commitment

Parametric vs. nonparametric

» Robust CFAs are parametric
» Scenario trees are nonparametric

True function

Nonparametric fit

Parametric fit

Observations

Price of product

To
ta

l r
ev

en
ue
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Stochastic unit commitment

Notes:
» Our parametric cost function approximation is just like 

any parametric model.
» It is able to capture structure, as long as we know the 

structure exists.
» For example, we could see that we needed extra reserve 

whenever there was a sudden drop in the wind.
» In a sampled model, we only scheduled reserve when 

drops happened, but in a large enough sample, this 
could happen at any time.

» With a parametric model, we simply force reserves at 
all points in time.  But this only works because we can 
identify the structure of a robust policy.

© 2019 W.B. Powell



Choosing the best policy

Some sample problems
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Optimizing energy storage

Take advantage of price variations 
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Schneider National



Blood management

Managing blood inventories
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Choosing a policy

 Robust cost function 
approximation

 Lookahead policy

 Policy function 
approximation

 Policy based on value 
function approximation
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Choosing a policy

Which policy to use?
» PFAs are best for low-

dimensional problems 
where the structure of the 
policy is apparent from the 
problem.

» CFAs work for high-
dimensional problems, 
where we can get desired 
behavior by manipulating 
the cost function.

 ( ) arg mint x tdl l tdl
d l

X c x   
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Choosing a policy

Which policy to use?
» VFAs work best when the 

lookahead model is easy to 
approximate

» Lookahead models should 
be used only when all else 
fails (which is often)
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Modeling sequential decision problems
First build your model
» Objective function

» Policy

» Constraints at time t

» Transition function

» Exogenous information

 
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T

t
t t t

t
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 
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 
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( )t t t tx X S 

 1 1, ,M
t t t tS S S x W 

1 2( , ,..., )TW W W

:X S  

Then design your policies:
» PFA? Exploit obvious 

problem structure.

» CFA? Can you tune a 
deterministic approximation 
to make it work better?

» VFA? Can you approximate 
the value of being in a 
downstream state?

» Lookahead?  Do you have a 
forecast?  What is the nature 
of the uncertainty? 

» Hybrid?
© 2019 W.B. Powell



Stochastic 
programming

Markov 
decision 
processes

Reinforcement 
learning

Optimal 
control

Model 
predictive 

control

Robust 
optimization

Approximate 
dynamic 

programming

Online 
computation

Simulation 
optimization

Stochastic 
search

Decision

analysis

Stochastic 
control

Simulation 
optimization

Dynamic
Programming

and
control

Optimal 
learning

Bandit
problems
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Multi-armed bandits
/optimal learning

Reinforcement
learning/ADP

Stochastic search

Simulation
optimization

Stochastic 
programming

Optimal controlMarkov decision
processes

Lookahead policies 
(DLAs)

Derivative-based

© Warren Powell 2019

Derivative-free

Policy search
(PFAs)

Cost function
approx. (CFAs)

Value function 
approx. (VFAs)
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Theory

Applications

Computation

Modeling
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