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Week 10 

Backward approximate dynamic programming
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Backward MDP and the curse of 
dimensionality
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Curse of dimensionality
The ultimate policy is to optimize from now on:

Ideally, we would like to replace the future contributions 
with a single value function:

Sometimes we can compute this function exactly!
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Curse of dimensionality
Energy storage with stochastic prices, supplies and demands.
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Curse of dimensionality

Bellman’s optimality equation
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These are the “three curses of dimensionality.”
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Curse of dimensionality

Backward dynamic programming in one dimension
1 1 1

max

Step 0:  Initialize ( ) 0 for 0,1,...,100
Step 1:  Step backward , 1, 2,...
     Step 2: Loop over 0,1,...,100

          Step 3: Loop over all decisions ( )
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Curse of dimensionality

 

1 1Step 0:  Initialize ( ) 0 for all states.
Step 1:  Step backward , 1, 2,...
     Step 2: Loop over = , , ,   (four loops)
          Step 3: Loop over all decisions  (all dimensions)
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               End step 4;
          End Step 3;
          Find ( ) max ( , )

          Store ( ) arg max ( , ).  (This is our policy)
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Dynamic programming in multiple dimensions
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Curse of dimensionality

Notes:
» There are potentially three “curses of dimensionality” 

when using backward dynamic programming:
• The state variable – We need to enumerate all states.  If the 

state variable is a vector with more than two dimensions, the 
state space gets very big, very quickly.

• The random information – We have to sum over all possible 
realizations of the random variable.  If this has more than two 
dimensions, this gets very big, very quickly.

• The decisions – Again, decisions may be vectors (our energy 
example has five dimensions).  Same problem as the other two.

» Some problems fit this framework, but not very.  
However, when we can use this framework, we obtain 
something quite rare: an optimal policy.
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Curse of dimensionality

Strategies for approximating value functions:
» Backward dynamic programming

• Exact using lookup tables
• Backward approximate dynamic programming:

– Linear regression
– Low rank approximations

» Forward approximate dynamic programming
• Approximation architectures

– Lookup tables
» Correlated beliefs
» Hierarchical

– Linear models
– Convex/concave

• Updating schemes
– Pure forward pass TD(0)
– Double pass TD(1)
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Backward ADP-Chapter 16
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Backward ADP
Classical backward dynamic programming
» Uses lookup table representations of value functions
» Assumes the one-step transition matrix can be computed (which is 

also lookup table).
» “Dynamic programming” does not suffer from the curse of 

dimensionality (as we show below), but lookup tables do.
» There are three curses of dimensionality, but often it is the state 

variable that causes the most problems.
» Backward ADP uses a sample of states rather than all the states, 

and a statistical model for the value of being in a state.  At a 
minimum this fixes two of the three curses of dimensionality.
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Backward ADP

Backward approximate dynamic programming
» Basic idea is to step backward in time, just as we do 

with classical backward dynamic programming.
» Instead of looping over all the states, loop over a 

random sample.
» Now, use the sample of values and states to produce an 

approximate value function:
• Any statistical model
• Low-rank approximations (works well when value functions 

are smooth).

» You still need to take full expectation (although this 
might be approximated) and search over all actions.
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Backward ADP

Backward ADP
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Backward ADP

Backward ADP with the post-decision state
» Computing the imbedded expectation can be a pain.
» Instead of sampling over (pre-decision) states, sample 

post-decision states .
» Then draw a sample , and simulate our way to the 

next pre-decision state 
» From , compute the sampled value from

» Do this times and create a dataset ,

» Now use this dataset to fit a statistical model for 
.

» Repeat.
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Backward ADP

Backward ADP for a clinical trial problem
» Problem is to learn the value of a new drug within a 

budget of patients to be tested.
» Backward MDP required 268-485 hours.
» Forward ADP exploiting monotonicity (we will cover 

thiss later) required 18-30 hours.
» Backward ADP required 20 minutes, with a solution 

that was 1.2 percent within optimal.
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Backward ADP

Energy storage problem 
» Lookup table – 99.3 percent of optimal, .67 hours.
» Backward MDP 11.3 hours.
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Backward ADP

Resource allocation in Africa
» Extended widely cited myopic policy to a dynamic 

setting.
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Backward ADP

Notes
» By now I have applied backward ADP to approximate 

four projects, three with rigorous benchmarks, and one 
(the resource allocation problem) with a high quality 
benchmark (the myopic policy).

» Each time it seems to have worked very well.
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Histories of approximate dynamic 
programming and reinforcement learning

© 2019 Warren B. Powell



Histories of ADP/reinforcement learning

1959 – Operations research
» Bellman recognizes the limitations of classical 

backward dynamic programming.
» Introduces the idea of statistically approximating value 

functions.
» This line of research quickly died out in the operations 

research community.
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The fields of stochastic optimization
Approximate dynamic programming/reinforcement 
learning
» 1959 paper by Bellman – first attempt at ADP
» ADP in control theory – 1974 dissertation of Paul Werbos
» Reinforcement learning in computer science – 1980 research of 

Rich Sutton and Andy Barto
• 1998 book Reinforcement Learning establishes the field

» 1996 book Neuro-Dynamic programming – First to bridge the 
theory of stochastic approximation methods (Robbins and Monro) 
with reinforcement learning

» Late 1990’s – ADP returns to operations research
• 1994 dissertation of Ben van Roy
• Late 1990’s onward – Value function approximations for MDPs (discrete 

actions)
• 1998 onward – use of ADP for vector-valued actions (Powell and students)

» 2007 ADP book by Powell; second edition in 2011.
• Three curses of dimensionality; high dimensional decision vectors (action 

spaces)



Histories of ADP/reinforcement learning
1974 – Controls community
» Paul Werbos introduces “backpropagation” for approximating the “cost 

to go” function for continuous controls problems.
» Engineering controls community continues to develop these ideas, with 

special emphasis on the use of neural networks in two ways:
• Actor nets – A neural network for the policy (which chooses the action 

given a state).
• Critic nets – A neural network for approximating the value function (cost 

to go function in the language of control theory)
» Paul Werbos becomes an NSF program officer and continues to 

promote “approximate dynamic programming.”  Funded workshops on 
ADP in 2002 and 2006.

» 1994 – Beginning with 1994 paper of John Tsitsiklis, bridging of the 
heuristic techniques of Q-learning and the mathematics of stochastic 
approximation methods (Robbins-Monro).  

» 1996 book “Neuro-Dynamic Programming” by Bertsekas and Tsitsiklis
formally bridges Q-learning and stochastic approx. methods
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Histories of ADP/reinforcement learning

© 2019 Warren B. Powell

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the 
behavioral sciences. Ph.D. dissertation Harvard University.



Histories of ADP/reinforcement learning
History of Q-learning
» Began ~1980 with Andy Barto (supervisor) and Rich Sutton 

(student) studying behavior of mice in mazes.
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» Heuristically developed basic feedback 
mechanism:

» Late 1980’s the link to Markov 
decision processes was made, and the 
community adopted the basic notation 
of Markov decision processes.

» Bizarrely, the RL community adopted popular test problems from 
the controls community, which are primarily deterministic:

• Inverted pendulum problem.
• Hill-climbing
• Truck backer-upper
• Robotics applications.



Histories of ADP/reinforcement learning
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Reinforcement Learning



Histories of ADP/reinforcement learning

Second edition of Reinforcement Learning
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Histories of ADP/reinforcement learning

From Q-learning to other policies
» From the second edition:

» This hints at policy search, but still ignores lookahead policies 
(Monte Carlo tree search)
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Histories of ADP/reinforcement learning
1990’s – Operations research
» Ben van Roy (student of John Tsitsklis) developed the ideas of 

using regression models for solving the “curse of dimensionality 
problem” of dynamic programming.

» 1991 – Pereira and Pinto introduce the idea of Benders cuts for 
“solving the curse of dimensionality” for stochastic linear 
programs.  Method called “stochastic dual decomposition 
procedure” (SDDP)

» ~2000 – Work of WBP on “adaptive dynamic programming” for 
high-dimensional problems in logistics.

» With Ben van Roy (who first introduced the term), WBP 
developed the idea of the post-decision state which opened the 
door for solving high-dimensional convex DPs.

» WBP switches to “approximate dynamic programming” after 
attending Werbos’ 2002 conference on “Approximate dynamic 
programming and reinforcement learning”
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Histories of ADP/reinforcement learning
Today:
» Controls community now uses the term “adaptive dynamic 

programming”
• Balanced using of “control laws” (PFAs), Hamilton/Jacobi/Bellman 

equations (VFAs) and “model predictive control” (DLAs)
» “Reinforcement learning” has spread from Q-learning to include 

“policy search” and Monte Carlo tree search (a form of direct 
lookahead – we will get to this later).

» 2014-2016 Two tutorials by WBP establish the “four classes of 
policies”

» “Optimization under Uncertainty” book (being written for this 
class) is the first to truly unify all of the different subcommunities
of stochastic optimization.
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Next steps

What we are going to cover:
» Forward approximate dynamic programming

• Estimating the value of a fixed policy

• Optimizing while learning
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Learning the value of a policy

TD-learning
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TD-learning

Temporal difference learning
» The “temporal difference” is given by

𝛿 𝑆 , 𝑥 𝑉 𝑆 𝐶 𝑆 , 𝑥 𝑉 𝑆 𝑆 , 𝑥 , 𝑊  
𝑉 𝑆 𝑣

» In other words, this is “old estimate minus new estimate”.  
We can update our value function approximation using

𝑉 𝑆 𝑉 𝑆 𝛼 𝛿 𝑆 , 𝑥
1 𝛼 𝑉 𝑆 𝛼 𝑣

» This is a basic form of “temporal difference learning” 
known as TD(0). The “temporal difference” reflects 
learning from one decision to the next (which occurs over 
time).
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TD-learning

TD(
» A more general form of TD-learning uses discounted costs 

over the entire trajectory.

» Think of as an “algorithmic discount factor” that helps 
to give credit for downstream rewards to earlier decisions.  
This has to be carefully tuned.
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TD-learning

Approximating the value function
» Temporal difference updates can be used in any 

recursive estimation algorithm:
• Lookup tables

– Independent beliefs
– Correlated beliefs

• Parametric models
– Linear
– Nonlinear
– Shallow neural networks

• Nonparametric
– Kernel regression
– Locally linear
– Deep neural networks
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Q-learning

“Reinforcement learning”
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Q-learning

Mouse in a maze problem

© 2019 Warren B. Powell

Receive reward = 1



Q-learning

AlphaGo
» Much more complex state 

space.
» Uses hybrid of policies:

• PFA
• VFA
• Lookahead (DLA)
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Q-learning

Basic Q-learning algorithm
» Basic update:

where

» Given a state and action , we simulate our way to 
state . 

» Need to determine:
• State sampling process/policy
• Action sampling policy
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Q-learning

Some terms from reinforcement learning:
» “Behavior policy” is the policy used to choose actions

• E.g. these are actions observed by a real system

» “Target policy” is the policy that we are trying to learn, 
which is to say the policy we want to implement.

» When the target policy is different from the behavior 
policy, then this is termed “off policy learning”

In this course
» The “learning policy” is the policy (often called an 

algorithm) that learns the value functions (or Q-factors)
» The “implementation policy” is the policy determined 

by the value functions (or Q-factors).
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Q-learning

Learning policy
» This is the policy that determines what action to choose 

as a part of learning the Q-factors.
»

𝑎 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄 𝑠 , 𝑎

» Other policies that involve exploration:
• Epsilon-greedy – Choose greedy policy with probability 𝜖, and 

explore with probability 1 𝜖.
• Policies based on upper confidence bounding, Thompson 

sampling, knowledge gradient, …
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Q-learning

State sampling policies
» Trajectory following

𝑠 𝑆 𝑠 , 𝑎 , 𝑊

• Helps to avoid sampling states that never happen
• Problem is that a suboptimal policy may mean that you are 

not sampling important states.

» Exploration
• Pick a state at random 

» Hybrid
• Use trajectory following with randomization, e.g.

𝑠 𝑆 𝑠 , 𝑎 , 𝑊 𝜖
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Q-learning
Implementation policy
» This is the policy we are going to follow based on the Q-factors:

𝐴 𝑠 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄 𝑠, 𝑎

The value of the implementation policy:

» or

The goal is to find an effective learning policy so that we 
obtain the best implementation policy.

© 2019 Warren B. Powell
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Q-learning

Convergence rates:
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Q-learning
On vs off-policy learning:
» On-policy learning – Learning the value of a fixed policy:

» Off-policy learning:
• Sample actions according to a learning policy (called “behavior 

policy” in the RL literature). This is the policy used for learning the 
implementation policy (called the “target policy” in the RL literature).

• Needs to be combined with a state sampling policy.

'
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    argmax ( , ')
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Q-learning
Model-free vs. model-based
» Model-based means we have a mathematical statement of how the 

problem evolves that can be simulated in the computer.
» Model-free refers to a physical process that can be observed, but 

where we do not have equations describing the evolution over 
time.

• The behavior of a human or animal
• The behavior of the climate
• The behavior of a complex system such as a chemical plant

» Q-learning is often described as “model free” because it can be 
learned while observing a system.

» The resulting policy does not require a model:

• 𝐴 𝑠 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄 𝑠, 𝑎
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Q-learning

Notes
» Lookup table belief models are most popular, but do 

not scale (limit of 3 dimensions).
» Various smoothing strategies have been suggested 

(basically nonparametric statistics), but still limited to 3 
dimensions.  

» Need to be very careful with stepsizes.  Q-learning is a 
form of approximate value iteration where the 
backward learning is slowed by the use of stepsizes.
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Q-learning
Max operator bias:
» Second issue arises when there is randomness in the reward.
» Imagine that we are purchasing energy at a price 𝑝 which evolves 

randomly from one time period to the next.
» Imagine buying and selling energy using real time prices:

© 2019 Warren B. Powell



Q-learning

Max operator bias (cont’d)
» This introduces noise in 

» Finding the max over a set of noisy estimates 
introduces bias in the estimates .  This bias 
can be quite large.

» Testing on roulette 
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Q-learning
Roulette
» Optimal solution is not to play – optimal value of game is zero
» Q-learning over 10,000 iterations

© 2019 Warren B. Powell

Hint: Optimal Q = 0!



Q-learning
Roulette
» Optimal solution is not to play – optimal value of game is zero
» Q-learning over 10,000 iterations
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Q-learning
Roulette
» Optimal solution is not to play – optimal value of game is zero

© 2019 Warren B. Powell



… ongoing research.
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Approximate dynamic programming

Algorithms
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Algorithms

Approximate value iteration
» Single-pass

• Need to define policies for choosing states and actions

» Double-pass with “discount” 

Approximate policy iteration

Relationship to TD-learning
» Approximate value iteration uses TD(0) updates.
» Approximate policy iteration uses TD(1) updates.
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Approximate value iteration

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of and
compute the next pre-decision state:

Step 5: Return to step 1. 

, 1 ,
1 1 1 1 1 1 ˆ( ) (1 ) ( )n x n n x n n

t t n t t n tV S V S v 
       

 1 ,ˆ min ( , ) ( (        , )   )n n n M x n
t x t t t t t tv C S x V S S x 

n
tS

1 1( , , ( ))n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

Slide 56



Approximate value iteration

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of and
compute the next pre-decision state:

Step 5: Return to step 1. 

, 1 ,
1 1 1 1 1 1 ˆ( ) (1 ) ( )n x n n x n n

t t n t t n tV S V S v 
       

n
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Simulation

Deterministic
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Recursive
statistics
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Linear model for post-decision state

“Trajectory following”



Approximate policy iteration

Step 1: Start with a pre-decision state 
Step 2: Inner loop: Do for m=1,…,M:

Step 2a: Solve the deterministic optimization using
an approximate value function:

to obtain . 
Step 2b: Update the value function approximation

Step 2c: Obtain Monte Carlo sample of and
compute the next pre-decision state:

Step 3: Update           using                 and return to step 1. 
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Approximate policy iteration

Step 1: Start with a pre-decision state 
Step 2: Inner loop: Do for m=1,…,M:

Step 2a: Solve the deterministic optimization using
an approximate value function:

to obtain 
Step 2b: Update the value function approximation using 

recursive least squares.
Step 2c: Obtain Monte Carlo sample of and

compute the next pre-decision state:

Step 3: Update           using                 and return to step 1. 

n
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Approximate dynamic programming

Nomadic trucker problem
Approximate value iteration
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Fleet management

Fleet management problem
» Optimize the assignment of drivers to loads over time.
» Tremendous uncertainty in loads being called in
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Pre-decision state: we see the demands

$300

$150

$350

$450

Approximate dynamic programming
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We use initial value function approximations…

0 ( ) 0V CO 

0 ( ) 0V MN 

$300

$150

$350

$450
0 ( ) 0V CA 

0 ( ) 0V NY 

Approximate dynamic programming
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… and make our first choice:  

$300

$150

$350

$450

0 ( ) 0V CO 

0 ( ) 0V CA 

0 ( ) 0V NY 

Approximate dynamic programming
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Update the value of being in Texas.

1( ) 450V TX 

$300

$150

$350

$450

0 ( ) 0V CO 

0 ( ) 0V CA 

0 ( ) 0V NY 

Approximate dynamic programming
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Now move to the next state, sample new demands and make a new 
decision

$600

$400

$180

$125

0 ( ) 0V CO 

0 ( ) 0V CA 

0 ( ) 0V NY 

1( ) 450V TX 

Approximate dynamic programming
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Update value of being in NY

0 ( ) 600V NY 

$600

$400

$180

$125

0 ( ) 0V CO 
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Approximate dynamic programming
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Move to California.

$150

$400

$200

$350

0 ( ) 0V CA 
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Approximate dynamic programming
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Make decision to return to TX and update value of being in CA

$150

$400

$200

$350

0 ( ) 800V CA 

0 ( ) 0V CO 

1( ) 450V TX 

0 ( ) 500V NY 

Approximate dynamic programming
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An updated value of being in TX

1( ) 450V TX 

0 ( ) 0V CO 
0 ( ) 600V NY 

$275

$800

$385

$125

Approximate dynamic programming

0 ( ) 800V CA 
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TX
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Updating the value function:

1

2

2 1 2

Old value:
     ( ) $450

New estimate:
ˆ      ( ) $800

How do we merge old with new?
ˆ      ( ) (1 ) ( ) ( ) ( )

                   (0.90)$450+(0.10)$800
                   $485

V TX

v TX

V TX V TX v TX 





  



Approximate dynamic programming
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An updated value of being in TX

1( ) 485V TX 

0 ( ) 0V CO 
0 ( ) 600V NY 

$275

$800

$385

$125

Approximate dynamic programming

0 ( ) 800V CA 
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TX
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0 ( ) 0V MN 
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Approximate dynamic programming

Hierarchical learning
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Hierarchical learning

Resource attribute:
"State" that the trucker is currently ina

decision d

da
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Hierarchical learning

decision d’

'da
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Hierarchical learning

'( )?dv a
'

'( )?dv a
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Hierarchical learning
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Hierarchical learning

Our optimization problem at time t looks like:

» We had to develop novel machine learning strategies to 
estimate this function, since the attribute space was 
very large.

( ) max ( , )            x
t t x t t t ta ta

a
V S C S x v R



 
   

 



There are a lot of these attributes!
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Different levels of aggregation:



Time
Region Location

Type

 
 
 
  

33,264

a 

672

Time
Area Location
 
 
 

Time
Re gion Location
 
 
 

5,544

Time
Region Location
Region Domicile

Type

 
 
 
 
 
 

3,293,136

Hierarchical learning
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Estimating value functions
» Most aggregate level

   1 ˆ( ) (1 ) ( ) ( )n n

Location
Fleet

v Location v Location v Domicile
DOThrs

DaysFromHome

 

 
 
 
   
 
 
  

Hierarchical learning
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Estimating value functions
» Middle level of aggregation

1 ˆ( ) (1 ) ( ) ( )n n

Location
Fleet

Location Location
v v v Domicile

Fleet Fleet
DOThrs

DaysFromHome

 

 
 
    
      
    
 
  

Hierarchical learning
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Estimating value functions
» Most disaggregate level

1 ˆ( ) (1 ) ( ) ( )n n

Location
Location Location Fleet

v Fleet v Fleet v Domicile
Domicile Domicile DOThrs

DaysFromHome

 

 
                          
  

Hierarchical learning
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Adaptive hierarchical estimation procedure developed as 
part of this project (George, Powell and Kulkarni, 2008)
» Use weighted sum across different levels of aggregation.

    

( ) ( ) ( )

12( ) ( ) ( )

       1

where

       

g g g
a a a a

g g

g g g
a a a

v w v w

w Var v 


 

 

 

Estimate of bias

Both can be computed using simple recursive formulas. 

Estimate of variance - 2 ( )( ) g
a

Hierarchical learning

George, A., W.B. Powell and S. Kulkarni, “Value Function Approximation Using Hierarchical 
Aggregation for Multiattribute Resource Management,” Journal of Machine Learning Research, 
Vol. 9, pp. 2079-2111 (2008). © 2019 Warren B. Powell



v(a)
Aggregated function

Original function

a   = attribute selected

 1 Biasa 

Hierarchical learning

Approximating a 
nonlinear function 
using two-levels of 
aggregation.

Hierarchical aggregation
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x

f(x)

High bias Moderate bias Zero bias

Hierarchical aggregation

Hierarchical learning
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1( , )C a d 2( , )C a d
'
1( )V a

'
2( )V a

Hierarchical learning
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NE region
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PA NEv v

Hierarchical learning

© 2019 Warren B. Powell



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200

Iteration

W
ei

gh
ts

Iterations

W
ei

gh
ts

1

3
2

4

5

Aggregation level

6
7

Average weight on most disaggregate level

Average weight on most aggregate levels

Hierarchical aggregation

Hierarchical learning



Notes:
» In the early iterations, we do not have enough data to 

provide estimates at the detail level.
» So, we put more weight on the most aggregate 

estimates.
» As the algorithm progresses and we gain more 

information, we can put more weight on the more 
disaggregate estimates.

» But the weights depend on how much data we have in 
different regions.

» This type of adaptive learning, from coarse-grained to 
fine-grained, is common across all learning problems in 
stochastic optimization.

Hierarchical learning
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Disaggregate
Aggregate approximation 
shows faster initial 
convergence; disaggregate 
shows better asymptotic 
performance.

Hierarchical aggregation

Hierarchical learning
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Weighted Combination 

Aggregate

Disaggregate
But adaptive weighting 
outperforms both.  This 
hints at a strategy for 
adaptive learning.

Hierarchical aggregation

Hierarchical learning
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The exploration-exploitation problem
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1( , )C a d 2( , )C a d
'
1( )V a

'
2( )V a

Exploration vs. exploitation
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What decision do we make?

» The one we think is best?

• Exploitation

» Or do we make a decision just to try something and 
learn more about the result?

• Exploration

» This is the reason that the “exploration vs. exploitation” 
problem is so well known in ADP/RL.  

Exploration vs. exploitation
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Pure exploitation

Exploration vs. exploitation
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Exploration vs. exploitation
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Exploration vs. exploitation

Pure exploitation with generalized learning.
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Exploration vs. exploitation

Notes
» This is a learning problem in the presence of a physical 

state (the location)
» Above, we are using a pure exploitation strategy, but 

with generalized learning (visiting one location teaches 
us about another location).

» An active area of research, with painfully little 
progress, is how to do active learning for state-
dependent problems (in general) and more specifically, 
problems with a physical state.

» Note that we have avoided modeling the uncertainty in 
the value functions as part of the state variable.  This is 
a historical oversight.
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Optimal learning with a single physical state and hierarchical learning.
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Exploration vs. exploitation
Comparison of policies for pure learning problems
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Exploration vs. exploitation

Notes:
» We have extensive research on pure learning problems.
» Very little has been done with problems that combine a 

belief state (which is the basis of any active learning 
problem) and a physical state.

» Central to the value of making a decision that is 
balancing the value of information is how this 
information is used in future decisions.

• E.g. if we learn more about the cost 𝑐 by going from 𝑖 to 
𝑗, then this is only useful if we return to 𝑖 so that we can use 
this information.

• For this reason, the presence of generalized learning 
architectures is key.  
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Exploration vs. exploitation
What about learning?

» “Active learning” with 
general dynamic programs is 
a very young field.

» Typically “exploration vs. 
exploitation” issues are 
solved with CFAs using 
approximate value functions 
as part of the estimate of the 
value of a decision.

© 2019 W.B. Powell
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Exploration vs. exploitation
Some numerical experiments from Ryzhov et al. paper.
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Exploration vs. exploitation
Notes:
» The exploration vs. exploitation problem is well known in 

approximate dynamic programming, but lacks the elegant solution 
of pure learning problems.

» Most algorithms use fairly simple heuristics to balance exploration 
and exploitation.

» We have been pursuing research in optimal learning:
• First paper: optimally sampling a function represented by a 

hierarchical belief model.
• Second paper (in preparation): optimal learning with a physical state 

(the truck)
» Our research in optimal learning with a physical state is modest.  

The challenge is our ability to learn from one physical state, and 
generalize to others.

» Open question right now: how much does active learning 
contribute when there is a physical state?  This is likely to be very 
problem-dependent.
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From one truck to many
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Schneider National
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Optimizing fleets

From one truck to many trucks
» If there is one truck and N “states” (locations), then our 

dynamic program (post-decision state) has N states.
» But what if there is more than one truck?  Then we 

have to capture the state of the fleet.

© 2019 Warren B. Powell



© 2019 Warren B. Powell

The state of the fleet



© 2019 Warren B. Powell

The state of the fleet



© 2019 Warren B. Powell

The state of the fleet



© 2019 Warren B. Powell
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The state of the fleet
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Optimizing fleets

What if we have N > 1 trucks?

.  | | 1
| |

| | 1
No trucks Locations

States
Locations

  
   

Number 
of 

resources

Attribute 
space State space

1 1 1                                                                                                                                                                                        
1 100 100                                                                                                                                                                                     
1 1000 1,000                                                                                                                                                                                  
5 10 2,002                                                                                                                                                                                  
5 100 91,962,520                                                                                                                                                                          
5 1000 8,416,958,750,200                                                                                                                                                               

50 10 12,565,671,261                                                                                                                                                                    
50 100 13,419,107,273,154,600,000,000,000,000,000,000,000,000                                                                                                     
50 1000 109,740,941,767,311,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000      

Real problems: 500 to 5,000 trucks, attribute space 50,000 up to 10 attributes. 
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Optimizing fleets

( , )t t tS R D

The pre-decision state: drivers and loads
Drivers Loads
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, ( , )x M x
t t tS S S x

Optimizing fleets

The post-decision state - drivers and loads after a 
decision is made:
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Optimizing fleets

1 1 1
ˆ ˆ( , )t t tW R D  

x
tS ,

1 1( , )M W x
t t tS S S W 

The transition: Adding new information

© 2019 Warren B. Powell



Slide 122

Optimizing fleets

1tS 

The next pre-decision state
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Optimizing fleets
Assignment network

» Capture the value of 
downstream driver.

» Add this value to the 
assignment arc.

Drivers

3a

3 1( , )Ma a d

3 2( , )Ma a d

3 3( , )Ma a d

3 4( , )Ma a d

3 5( , )Ma a d

Loads

4a

5a

2a

1a

Future attributes

3 1( , ) Attribute vector of 
                    driverin the future 
                    given a decision .

Ma a d

d
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Optimizing fleets
The assignment problem

» We now have a basic assignment problem, but where we have to 
capture the downstream value of a truck:
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Optimizing fleets

Finding the marginal value of a driver:
» Dual variables

• Can provide unreliable estimates.
• Need to get the marginal value of drivers who are not actually 

there.

» Numerical derivatives:
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Optimizing fleets

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain     . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of               and
compute the next pre-decision state:

Step 5: Return to step 1. 

, 1 ,
1 1 1 1 1 1 ˆ( ) (1 ) ( )n x n n x n n

t t n t t n tV S V S v 
       

 1 ,ˆ min ( , ) ( (        , )   )n n n M x n
t x t t t t t tv C S x V S S x 

n
tS

( )n
tW 

1 1( , , ( ))n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

“on policy learning”

nx
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Optimizing fleets

t
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Optimizing fleets
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Optimizing fleets
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Approximate dynamic programming

… a typical performance graph.
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Approximate dynamic programming

Stepsizes for forward APD
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Stepsizes

Stepsizes:
» Approximate value iteration requires updates of the 

form:

1
1 1 1 1 1 1 ˆ( ) (1 ) ( )n x n x n

t t n t t n tV S V S v 
       

Old estimate New observationUpdated estimate

The stepsize
“Learning rate”

“Smoothing factor”
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Stepsizes
Single state, single action Markov chain
» Updating – receives reward=1 at last node. All other rewards = 0. 

» Same as adding up random rewards with mean of 1.  Noise may be 
zero, or quite high.

0 0 0 0 0
0 1 2 3 4 5

1
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Stepsizes

Bound on performance using 1/n:

210 410 610 810 1010 1210

Single state, single action

0 1
n

n
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¥
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= =
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1 1
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Stepsizes

   

   

2

21 2

2 21

2

1
1

where:

         1

As  increases, stepsize decreases toward 1/
As  increases, stepsize increases toward 1.

1At all times, 

n n n

n n
n n

n

n

n

n


  

   











 
 

  



Estimate of the variance

Estimate of the bias

Bias

Noise

Bias-adjusted Kalman filter (BAKF)
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Stepsizes

The bias-adjusted Kalman filter
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BAKF stepsize rule

1/n stepsize rule
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Stepsizes

The bias-adjusted Kalman filter
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BAKF stepsize rule
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Stepsizes

Notes:
» Because     and      have to be estimated from data, it is a 

stochastic stepsize policy.  The challenge is estimating     .

» This stepsize rule is designed for a nonstationary time 
series.  It does not recognize the feedback that arises in 
approximate value iteration.

 2
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Optimizing fleets

The effect of stepsizes
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Schneider National case study
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Calibrated model

Schneider National

We were able to calibrate our ADP 
model very closely to the behavior 
of the company, which helped to 
build confidence.  
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Schneider National

Average LOH for Solos
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Vanilla simulator

Using approximate dynamic programming
Acceptable region

The adaptive learning of value functions produced results 
that more accurately matched historical performance. 
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ADP for trucking

Notes:
» We can use the value functions to estimate the marginal 

value of drivers whose home is in a particular region.
» In the next slides, we are going to show two ways to 

estimate these values:

• In the first, we are going to run a series of (very expensive) 
simulations where we hire an increasing number of drivers in a 
region. Each time, we have to reoptimize the entire fleet over 
many iterations.  We would have to repeat this for each 
possible home location.

• In the second, we are going to estimate the marginal value by 
using the value function approximations to estimate the value 
of drivers in each region, from one run of the model.
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Case study: truckload trucking

simulation objective function
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Case study: truckload trucking

simulation objective function
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Case study: truckload trucking
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This shows that the value functions provide reasonable approximations of the 

Purple bars: Value of drivers from value function approximations
Error bars: Statistical estimate from rerunning the simulation.
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Case study: truckload trucking

Where to add drivers:
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Case study: truckload trucking

Where to reduce drivers:


