
.

ORF 544

Stochastic Optimization and Learning
Spring, 2019

Warren Powell
Princeton University

http://www.castlelab.princeton.edu

© 2018 W.B. Powell

Week 10

Backward approximate dynamic programming

© 2019 Warren B. Powell

Backward MDP and the curse of
dimensionality

© 2019 Warren B. Powell

Curse of dimensionality
The ultimate policy is to optimize from now on:

Ideally, we would like to replace the future contributions
with a single value function:

Sometimes we can compute this function exactly!

  *
1 1() arg max (,) () | ,

tt t x t t t t t tX S C S x V S S x  

*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

© 2019 Warren B. Powell

Curse of dimensionality
Energy storage with stochastic prices, supplies and demands.

wind
tE

grid
tP

tD

battery
tR

1 1

1 1

1 1

1

ˆ

ˆ

ˆ

wind wind wind
t t t

grid grid grid
t t t

load load load
t t t

battery battery
t t t

E E E

P P P

D D D

R R Ax

 

 

 



 

 

 

 

1 Exogenous inputstW  
State variabletS 

Controllable inputstx 

© 2019 Warren B. Powell

Curse of dimensionality

Bellman’s optimality equation

  1 1() min (,) ((, ,) |
tt x t t t t t t tV S C S x V S S x W S   X 

wind
t
grid

t
load
t
battery
t

E

P

D

R

 
 
 
 
 
  

wind battery
t

wind load
t
grid battery
t
grid load
t

battery load
t

x

x

x

x

x











 
 
 
 
 
 
 
  

1

1

1

ˆ

ˆ

ˆ

wind
t

grid
t

load
t

E

P

D







 
 
 
 
  

These are the “three curses of dimensionality.”

© 2019 Warren B. Powell

Curse of dimensionality

Backward dynamic programming in one dimension
1 1 1

max

Step 0: Initialize () 0 for 0,1,...,100
Step 1: Step backward , 1, 2,...
 Step 2: Loop over 0,1,...,100

 Step 3: Loop over all decisions ()

T T T

t

t t t

V R R
t T T T

R

R R x R

   
  


   

 
100

max
1

0

 Step 4: Take the expectation over exogenous information:

 Compute (,) (,) (min ,) ()

 End step 4;
 End Step 3;
 Find

W
t t t t t t

w

t

Q R x C R x V R R x w P w

V




   

*

*() max (,)

 Store () arg max (,). (This is our policy)

 End Step 2;
End Step 1;

t

t

t x t t

t t x t t

R Q R x

X R Q R x





© 2019 Warren B. Powell

Curse of dimensionality

 

1 1Step 0: Initialize () 0 for all states.
Step 1: Step backward , 1, 2,...
 Step 2: Loop over = , , , (four loops)
 Step 3: Loop over all decisions (all dimensions)

T T

t t t t t

t

V S
t T T T

S R D p E
x

  
  

 

  1 1 1 2 3 1

ˆ ˆˆ Step 4: Take the expectation over each random dimension , ,

 Compute (,) (,)

 , , (, ,) (,

t t t

t t t t

M W
t t t t

D p E

Q S x C S x

V S S x W w w w P w w 

 


1 2 3

*

100 100 100

2 3
0 0 0

*

,)

 End step 4;
 End Step 3;
 Find () max (,)

 Store () arg max (,). (This is our policy)

 End Step 2;
End Step

t

t

w w w

t t x t t

t t x t t

w

V S Q S x

X S Q S x

  





  

 1;

Dynamic programming in multiple dimensions

© 2019 Warren B. Powell

Curse of dimensionality

Notes:
» There are potentially three “curses of dimensionality”

when using backward dynamic programming:
• The state variable – We need to enumerate all states. If the

state variable is a vector with more than two dimensions, the
state space gets very big, very quickly.

• The random information – We have to sum over all possible
realizations of the random variable. If this has more than two
dimensions, this gets very big, very quickly.

• The decisions – Again, decisions may be vectors (our energy
example has five dimensions). Same problem as the other two.

» Some problems fit this framework, but not very.
However, when we can use this framework, we obtain
something quite rare: an optimal policy.

© 2019 Warren B. Powell

Curse of dimensionality

Strategies for approximating value functions:
» Backward dynamic programming

• Exact using lookup tables
• Backward approximate dynamic programming:

– Linear regression
– Low rank approximations

» Forward approximate dynamic programming
• Approximation architectures

– Lookup tables
» Correlated beliefs
» Hierarchical

– Linear models
– Convex/concave

• Updating schemes
– Pure forward pass TD(0)
– Double pass TD(1)

© 2019 Warren B. Powell

Backward ADP-Chapter 16

© 2019 Warren B. Powell

Backward ADP
Classical backward dynamic programming
» Uses lookup table representations of value functions
» Assumes the one-step transition matrix can be computed (which is

also lookup table).
» “Dynamic programming” does not suffer from the curse of

dimensionality (as we show below), but lookup tables do.
» There are three curses of dimensionality, but often it is the state

variable that causes the most problems.
» Backward ADP uses a sample of states rather than all the states,

and a statistical model for the value of being in a state. At a
minimum this fixes two of the three curses of dimensionality.

© 2019 Warren B. Powell

Backward ADP

Backward approximate dynamic programming
» Basic idea is to step backward in time, just as we do

with classical backward dynamic programming.
» Instead of looping over all the states, loop over a

random sample.
» Now, use the sample of values and states to produce an

approximate value function:
• Any statistical model
• Low-rank approximations (works well when value functions

are smooth).

» You still need to take full expectation (although this
might be approximated) and search over all actions.

© 2019 Warren B. Powell

Backward ADP

Backward ADP

 

1 1Step 0: Initialize () 0 for all states.
Step 1: Step backward , 1, 2,...

ˆ Step 2: Loop over a random sample of states = , , , (one loop)
 Step 3: Loop over all decisi

T T

t t t t t

V S
t T T T

s R D p E

  
  

 

1

ons (all dimensions)
ˆ ˆˆ Step 4: Take the expectation over each random dimension , ,

ˆ ˆ Compute (,) (,)

ˆ

t

t t t

t t t t

M
t

x

D p E

Q s x C s x

V S

 

  
1 2 3

100 100 100

1 1 2 3 1 2 3
0 0 0

, , (, ,) (, ,)

 End step 4;
 End Step 3;

ˆ ˆ ˆ Find () max (,)

 End Step 2;
ˆ ˆ Use sampled () ' to find an app

t

W
t t t

w w w

t t x t t

t t

s x W w w w P w w w

v s Q s x

v s s


  





  

roximate ().
End Step 1;

tV s

© 2019 Warren B. Powell

Backward ADP

Backward ADP with the post-decision state
» Computing the imbedded expectation can be a pain.
» Instead of sampling over (pre-decision) states, sample

post-decision states ௧ିଵ
௫ .

» Then draw a sample ௧, and simulate our way to the
next pre-decision state ௧

» From ௧, compute the sampled value ௧ from
௧ ௫ ௧ ௧ ௧

௫
௧
௫

» Do this times and create a dataset ௧ିଵ
௫,௡

௧
௡

௡ୀଵ
ே

» Now use this dataset to fit a statistical model for
௧ିଵ
௫

௧ିଵ
௫ .

» Repeat.

© 2019 Warren B. Powell

Backward ADP

Backward ADP for a clinical trial problem
» Problem is to learn the value of a new drug within a

budget of patients to be tested.
» Backward MDP required 268-485 hours.
» Forward ADP exploiting monotonicity (we will cover

thiss later) required 18-30 hours.
» Backward ADP required 20 minutes, with a solution

that was 1.2 percent within optimal.

© 2019 Warren B. Powell

Backward ADP

Energy storage problem
» Lookup table – 99.3 percent of optimal, .67 hours.
» Backward MDP 11.3 hours.

© 2019 Warren B. Powell

Backward ADP

Resource allocation in Africa
» Extended widely cited myopic policy to a dynamic

setting.

© 2019 Warren B. Powell

Backward ADP

Notes
» By now I have applied backward ADP to approximate

four projects, three with rigorous benchmarks, and one
(the resource allocation problem) with a high quality
benchmark (the myopic policy).

» Each time it seems to have worked very well.

© 2019 Warren B. Powell

Histories of approximate dynamic
programming and reinforcement learning

© 2019 Warren B. Powell

Histories of ADP/reinforcement learning

1959 – Operations research
» Bellman recognizes the limitations of classical

backward dynamic programming.
» Introduces the idea of statistically approximating value

functions.
» This line of research quickly died out in the operations

research community.

© 2019 Warren B. Powell

The fields of stochastic optimization
Approximate dynamic programming/reinforcement
learning
» 1959 paper by Bellman – first attempt at ADP
» ADP in control theory – 1974 dissertation of Paul Werbos
» Reinforcement learning in computer science – 1980 research of

Rich Sutton and Andy Barto
• 1998 book Reinforcement Learning establishes the field

» 1996 book Neuro-Dynamic programming – First to bridge the
theory of stochastic approximation methods (Robbins and Monro)
with reinforcement learning

» Late 1990’s – ADP returns to operations research
• 1994 dissertation of Ben van Roy
• Late 1990’s onward – Value function approximations for MDPs (discrete

actions)
• 1998 onward – use of ADP for vector-valued actions (Powell and students)

» 2007 ADP book by Powell; second edition in 2011.
• Three curses of dimensionality; high dimensional decision vectors (action

spaces)

Histories of ADP/reinforcement learning
1974 – Controls community
» Paul Werbos introduces “backpropagation” for approximating the “cost

to go” function for continuous controls problems.
» Engineering controls community continues to develop these ideas, with

special emphasis on the use of neural networks in two ways:
• Actor nets – A neural network for the policy (which chooses the action

given a state).
• Critic nets – A neural network for approximating the value function (cost

to go function in the language of control theory)
» Paul Werbos becomes an NSF program officer and continues to

promote “approximate dynamic programming.” Funded workshops on
ADP in 2002 and 2006.

» 1994 – Beginning with 1994 paper of John Tsitsiklis, bridging of the
heuristic techniques of Q-learning and the mathematics of stochastic
approximation methods (Robbins-Monro).

» 1996 book “Neuro-Dynamic Programming” by Bertsekas and Tsitsiklis
formally bridges Q-learning and stochastic approx. methods

© 2019 Warren B. Powell

Histories of ADP/reinforcement learning

© 2019 Warren B. Powell

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the
behavioral sciences. Ph.D. dissertation Harvard University.

Histories of ADP/reinforcement learning
History of Q-learning
» Began ~1980 with Andy Barto (supervisor) and Rich Sutton

(student) studying behavior of mice in mazes.

© 2019 Warren B. Powell

1
'

1
1 1

ˆ (,) (,) max (', ')

ˆ(,) (1) (,) (,)

n n n n n n
a

n n n n n n n n n
n n

q s a C s a Q s a

Q s a Q s a q s a


 




 

 

  

» Heuristically developed basic feedback
mechanism:

» Late 1980’s the link to Markov
decision processes was made, and the
community adopted the basic notation
of Markov decision processes.

» Bizarrely, the RL community adopted popular test problems from
the controls community, which are primarily deterministic:

• Inverted pendulum problem.
• Hill-climbing
• Truck backer-upper
• Robotics applications.

Histories of ADP/reinforcement learning

© 2019 Warren B. Powell

Reinforcement Learning

Histories of ADP/reinforcement learning

Second edition of Reinforcement Learning

© 2019 Warren B. Powell

Histories of ADP/reinforcement learning

From Q-learning to other policies
» From the second edition:

» This hints at policy search, but still ignores lookahead policies
(Monte Carlo tree search)

© 2019 Warren B. Powell

Histories of ADP/reinforcement learning
1990’s – Operations research
» Ben van Roy (student of John Tsitsklis) developed the ideas of

using regression models for solving the “curse of dimensionality
problem” of dynamic programming.

» 1991 – Pereira and Pinto introduce the idea of Benders cuts for
“solving the curse of dimensionality” for stochastic linear
programs. Method called “stochastic dual decomposition
procedure” (SDDP)

» ~2000 – Work of WBP on “adaptive dynamic programming” for
high-dimensional problems in logistics.

» With Ben van Roy (who first introduced the term), WBP
developed the idea of the post-decision state which opened the
door for solving high-dimensional convex DPs.

» WBP switches to “approximate dynamic programming” after
attending Werbos’ 2002 conference on “Approximate dynamic
programming and reinforcement learning”

© 2019 Warren B. Powell

Histories of ADP/reinforcement learning
Today:
» Controls community now uses the term “adaptive dynamic

programming”
• Balanced using of “control laws” (PFAs), Hamilton/Jacobi/Bellman

equations (VFAs) and “model predictive control” (DLAs)
» “Reinforcement learning” has spread from Q-learning to include

“policy search” and Monte Carlo tree search (a form of direct
lookahead – we will get to this later).

» 2014-2016 Two tutorials by WBP establish the “four classes of
policies”

» “Optimization under Uncertainty” book (being written for this
class) is the first to truly unify all of the different subcommunities
of stochastic optimization.

© 2019 Warren B. Powell

Next steps

What we are going to cover:
» Forward approximate dynamic programming

• Estimating the value of a fixed policy

• Optimizing while learning

© 2019 Warren B. Powell

Learning the value of a policy

TD-learning

© 2018 W.B. Powell Slide 32

TD-learning

Temporal difference learning
» The “temporal difference” is given by

𝛿௧ 𝑆௧
௡, 𝑥௧

௡ ൌ 𝑉ത௧
௡ିଵ 𝑆௧

௡ െ 𝐶 𝑆௧
௡, 𝑥௧

௡ ൅ 𝑉ത ௡ିଵ 𝑆ெሺ𝑆௧
௡, 𝑥௧

௡, 𝑊௧ାଵ
ൌ 𝑉ത௧

௡ିଵ 𝑆௧
௡ െ 𝑣௧

௡

» In other words, this is “old estimate minus new estimate”.
We can update our value function approximation using

𝑉ത௧
௡ 𝑆௧

௡ ൌ 𝑉ത௧
௡ିଵ 𝑆௧

௡ െ 𝛼௡ିଵ𝛿 𝑆௧
௡, 𝑥௧

௡

ൌ 1 െ 𝛼௡ିଵ 𝑉ത௧
௡ିଵ 𝑆௧

௡ ൅ 𝛼௡ିଵ𝑣௧
௡

» This is a basic form of “temporal difference learning”
known as TD(0). The “temporal difference” reflects
learning from one decision to the next (which occurs over
time).

© 2019 Warren B. Powell

TD-learning

TD(
» A more general form of TD-learning uses discounted costs

over the entire trajectory.

» Think of as an “algorithmic discount factor” that helps
to give credit for downstream rewards to earlier decisions.
This has to be carefully tuned.

© 2019 Warren B. Powell

TD-learning

Approximating the value function
» Temporal difference updates can be used in any

recursive estimation algorithm:
• Lookup tables

– Independent beliefs
– Correlated beliefs

• Parametric models
– Linear
– Nonlinear
– Shallow neural networks

• Nonparametric
– Kernel regression
– Locally linear
– Deep neural networks

© 2019 Warren B. Powell

Q-learning

“Reinforcement learning”

© 2018 W.B. Powell Slide 36

Q-learning

Mouse in a maze problem

© 2019 Warren B. Powell

Receive reward = 1

Q-learning

AlphaGo
» Much more complex state

space.
» Uses hybrid of policies:

• PFA
• VFA
• Lookahead (DLA)

© 2019 Warren B. Powell

Q-learning

Basic Q-learning algorithm
» Basic update:

where

» Given a state ௡ and action ௡, we simulate our way to
state .

» Need to determine:
• State sampling process/policy
• Action sampling policy

1
'

1
1 1

ˆ (,) (,) max (', ')

ˆ(,) (1) (,) (,)

n n n n n n
a

n n n n n n n n n
n n

q s a C s a Q s a

Q s a Q s a q s a


 




 

 

  

 1' , ,M n n ns S s a W 

© 2019 Warren B. Powell

Q-learning

Some terms from reinforcement learning:
» “Behavior policy” is the policy used to choose actions

• E.g. these are actions observed by a real system

» “Target policy” is the policy that we are trying to learn,
which is to say the policy we want to implement.

» When the target policy is different from the behavior
policy, then this is termed “off policy learning”

In this course
» The “learning policy” is the policy (often called an

algorithm) that learns the value functions (or Q-factors)
» The “implementation policy” is the policy determined

by the value functions (or Q-factors).

© 2019 Warren B. Powell

Q-learning

Learning policy
» This is the policy that determines what action to choose

as a part of learning the Q-factors.
»

𝑎௡ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥௔ᇲ𝑄ത௡ 𝑠௡, 𝑎ᇱ

» Other policies that involve exploration:
• Epsilon-greedy – Choose greedy policy with probability 𝜖, and

explore with probability 1 െ 𝜖.
• Policies based on upper confidence bounding, Thompson

sampling, knowledge gradient, …

© 2019 Warren B. Powell

Q-learning

State sampling policies
» Trajectory following

𝑠௡ାଵ ൌ 𝑆ெ 𝑠௡, 𝑎௡, 𝑊௡ାଵ

• Helps to avoid sampling states that never happen
• Problem is that a suboptimal policy may mean that you are

not sampling important states.

» Exploration
• Pick a state at random

» Hybrid
• Use trajectory following with randomization, e.g.

𝑠௡ାଵ ൌ 𝑆ெ 𝑠௡, 𝑎௡, 𝑊௡ାଵ ൅ 𝜖௡ାଵ

© 2019 Warren B. Powell

Q-learning
Implementation policy
» This is the policy we are going to follow based on the Q-factors:

𝐴గሺ𝑠ሻ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥௔ᇱ𝑄ത௡ሺ𝑠, 𝑎ᇱሻ

The value of the implementation policy:

» or

The goal is to find an effective learning policy so that we
obtain the best implementation policy.

© 2019 Warren B. Powell

,
1 1 1

0

(, (), ()) where (, (), ())
T

n M
t t t t t t t

t

F C S X S W S S S X S Wp p pw w+ + +
=

= =å

1
,

1 1 1
1 0

1 (, (), ()) where (, (), ()))
N T

n n M n
t t t t t t t

n t

F C S X S W S S S X S W
N

p p pw w
-

+ + +
= =

= =åå

Q-learning

Convergence rates:

© 2019 Warren B. Powell

Q-learning
On vs off-policy learning:
» On-policy learning – Learning the value of a fixed policy:

» Off-policy learning:
• Sample actions according to a learning policy (called “behavior

policy” in the RL literature). This is the policy used for learning the
implementation policy (called the “target policy” in the RL literature).

• Needs to be combined with a state sampling policy.

'
1

1 1

1

From a state , choose action

 argmax (, ')

Now go to state :

 (, ,)

Where is observed or sampled from some distribution.

n

n n n
a
n

n M n n n

n

s

a Q s a

s

s S s a W

W



 







© 2019 Warren B. Powell

Q-learning
Model-free vs. model-based
» Model-based means we have a mathematical statement of how the

problem evolves that can be simulated in the computer.
» Model-free refers to a physical process that can be observed, but

where we do not have equations describing the evolution over
time.

• The behavior of a human or animal
• The behavior of the climate
• The behavior of a complex system such as a chemical plant

» Q-learning is often described as “model free” because it can be
learned while observing a system.

» The resulting policy does not require a model:

• 𝐴గሺ𝑠ሻ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥௔𝑄ത௡ሺ𝑠, 𝑎ሻ

© 2019 Warren B. Powell

Q-learning

Notes
» Lookup table belief models are most popular, but do

not scale (limit of 3 dimensions).
» Various smoothing strategies have been suggested

(basically nonparametric statistics), but still limited to 3
dimensions.

» Need to be very careful with stepsizes. Q-learning is a
form of approximate value iteration where the
backward learning is slowed by the use of stepsizes.

© 2019 Warren B. Powell

Q-learning
Max operator bias:
» Second issue arises when there is randomness in the reward.
» Imagine that we are purchasing energy at a price 𝑝௧ which evolves

randomly from one time period to the next.
» Imagine buying and selling energy using real time prices:

© 2019 Warren B. Powell

Q-learning

Max operator bias (cont’d)
» This introduces noise in ௡ ௡ ௡

» Finding the max over a set of noisy estimates ௡ ௡ ௡

introduces bias in the estimates ௡ିଵ ᇱ ᇱ . This bias
can be quite large.

» Testing on roulette

1
'

1
1 1

ˆ (,) (,) max (', ')

ˆ(,) (1) (,) (,)

n n n n n n
a

n n n n n n n n n
n n

q s a C s a Q s a

Q s a Q s a q s a


 




 

 

  

© 2019 Warren B. Powell

Q-learning
Roulette
» Optimal solution is not to play – optimal value of game is zero
» Q-learning over 10,000 iterations

© 2019 Warren B. Powell

Hint: Optimal Q = 0!

Q-learning
Roulette
» Optimal solution is not to play – optimal value of game is zero
» Q-learning over 10,000 iterations

© 2019 Warren B. Powell

Q-learning
Roulette
» Optimal solution is not to play – optimal value of game is zero

© 2019 Warren B. Powell

… ongoing research.

© 2019 Warren B. Powell

Approximate dynamic programming

Algorithms

© 2018 W.B. Powell Slide 54

Algorithms

Approximate value iteration
» Single-pass

• Need to define policies for choosing states and actions

» Double-pass with “discount”

Approximate policy iteration

Relationship to TD-learning
» Approximate value iteration uses TD(0) updates.
» Approximate policy iteration uses TD(1) updates.

© 2019 Warren B. Powell

Approximate value iteration

Step 1: Start with a pre-decision state
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain ௡.
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of ௧
௠ and

compute the next pre-decision state:

Step 5: Return to step 1.

, 1 ,
1 1 1 1 1 1 ˆ() (1) ()n x n n x n n

t t n t t n tV S V S v 
       

 1 ,ˆ min (,) ((,))n n n M x n
t x t t t t t tv C S x V S S x 

n
tS

1 1(, , ())n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

Slide 56

Approximate value iteration

Step 1: Start with a pre-decision state
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain ௡.
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of ௧
௠ and

compute the next pre-decision state:

Step 5: Return to step 1.

, 1 ,
1 1 1 1 1 1 ˆ() (1) ()n x n n x n n

t t n t t n tV S V S v 
       

n
tS

1 1(, , ())n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

1 ((,)) ˆ min (,) nm M m
f f

f

m
x S S xv C S x  
 

  
 



Slide 57

Linear model for post-decision state

“Trajectory following”

Approximate policy iteration

Step 1: Start with a pre-decision state
Step 2: Inner loop: Do for m=1,…,M:

Step 2a: Solve the deterministic optimization using
an approximate value function:

to obtain ௠.
Step 2b: Update the value function approximation

Step 2c: Obtain Monte Carlo sample of ௠ and
compute the next pre-decision state:

Step 3: Update using and return to step 1.

1, , 1, 1 ,
1 1 ˆ() (1) ()n m x m n m x m m

m mV S V S v   
   

 1 , ˆ min (,) ((,)) m m n M x m
xv C S x V S S x 

n
tS

1 (, , ())m M m m mS S S x W  
1, ()n MV S()nV S

Slide 58

Approximate policy iteration

Step 1: Start with a pre-decision state
Step 2: Inner loop: Do for m=1,…,M:

Step 2a: Solve the deterministic optimization using
an approximate value function:

to obtain ௠

Step 2b: Update the value function approximation using
recursive least squares.

Step 2c: Obtain Monte Carlo sample of ௠ and
compute the next pre-decision state:

Step 3: Update using and return to step 1.

n
tS

1 (, , ())m M m m mS S S x W  
1, ()n MV S

1 ((,)) ˆ min (,) nm M m
f f

f

m
x S S xv C S x  
 

  
 



()nV S
Slide 59

Approximate dynamic programming

Nomadic trucker problem
Approximate value iteration

© 2018 W.B. Powell Slide 60

Fleet management

Fleet management problem
» Optimize the assignment of drivers to loads over time.
» Tremendous uncertainty in loads being called in

© 2019 Warren Powell

Pre-decision state: we see the demands

$300

$150

$350

$450

Approximate dynamic programming

ˆ(,)t t

TX
S D

t
 

  
 

© 2018 W.B. Powell

We use initial value function approximations…

0 () 0V CO 

0 () 0V MN 

$300

$150

$350

$450
0 () 0V CA 

0 () 0V NY 

Approximate dynamic programming

ˆ(,)t t

TX
S D

t
 

  
 

© 2018 W.B. Powell

… and make our first choice:

$300

$150

$350

$450

0 () 0V CO 

0 () 0V CA 

0 () 0V NY 

Approximate dynamic programming
1x

()
1

x
t

NY
S

t
 

   

0 () 0V MN 

© 2018 W.B. Powell

Update the value of being in Texas.

1() 450V TX 

$300

$150

$350

$450

0 () 0V CO 

0 () 0V CA 

0 () 0V NY 

Approximate dynamic programming

()
1

x
t

NY
S

t
 

   

0 () 0V MN 

© 2018 W.B. Powell

Now move to the next state, sample new demands and make a new
decision

$600

$400

$180

$125

0 () 0V CO 

0 () 0V CA 

0 () 0V NY 

1() 450V TX 

Approximate dynamic programming

1 1
ˆ(,)

1t t

NY
S D

t 

 
   

0 () 0V MN 

© 2018 W.B. Powell

Update value of being in NY

0 () 600V NY 

$600

$400

$180

$125

0 () 0V CO 

0 () 0V CA 

1() 450V TX 

Approximate dynamic programming

1 ()
2

x
t

CA
S

t

 
   

0 () 0V MN 

© 2018 W.B. Powell

Move to California.

$150

$400

$200

$350

0 () 0V CA 

0 () 0V CO 

1() 450V TX 

Approximate dynamic programming

0 () 600V NY 

2 2
ˆ(,)

2t t

CA
S D

t 

 
   

0 () 0V MN 

© 2018 W.B. Powell

Make decision to return to TX and update value of being in CA

$150

$400

$200

$350

0 () 800V CA 

0 () 0V CO 

1() 450V TX 

0 () 500V NY 

Approximate dynamic programming

2 2
ˆ(,)

2t t

CA
S D

t 

 
   

0 () 0V MN 

© 2018 W.B. Powell

An updated value of being in TX

1() 450V TX 

0 () 0V CO 
0 () 600V NY 

$275

$800

$385

$125

Approximate dynamic programming

0 () 800V CA 

3 3
ˆ(,)

3t t

TX
S D

t 

 
   

0 () 0V MN 

© 2018 W.B. Powell

Updating the value function:

1

2

2 1 2

Old value:
 () $450

New estimate:
ˆ () $800

How do we merge old with new?
ˆ () (1) () () ()

 (0.90)$450+(0.10)$800
 $485

V TX

v TX

V TX V TX v TX 





  



Approximate dynamic programming

© 2018 W.B. Powell

An updated value of being in TX

1() 485V TX 

0 () 0V CO 
0 () 600V NY 

$275

$800

$385

$125

Approximate dynamic programming

0 () 800V CA 

3 3
ˆ(,)

3t t

TX
S D

t 

 
   

0 () 0V MN 

© 2018 W.B. Powell

Approximate dynamic programming

Hierarchical learning

© 2018 W.B. Powell Slide 73

Hierarchical learning

Resource attribute:
"State" that the trucker is currently ina

decision d

da

© 2019 Warren B. Powell

Hierarchical learning

decision d’

'da

© 2019 Warren B. Powell

Hierarchical learning

'()?dv a
'

'()?dv a

© 2019 Warren B. Powell

1

2

n

a
a

a

 
 
 
 
 
 



1

2

n

a
a

a

 
 
 
 
 
 



1

2

n

a
a

a

 
 
 
 
 
 


1

2

n

a
a

a

 
 
 
 
 
 



Hierarchical learning

© 2019 Warren B. Powell

Hierarchical learning

Our optimization problem at time t looks like:

» We had to develop novel machine learning strategies to
estimate this function, since the attribute space was
very large.

() max (,) x
t t x t t t ta ta

a
V S C S x v R



 
   

 



There are a lot of these attributes!

© 2019 Warren B. Powell

Different levels of aggregation:



Time
Region Location

Type

 
 
 
  

33,264

a 

672

Time
Area Location
 
 
 

Time
Re gion Location
 
 
 

5,544

Time
Region Location
Region Domicile

Type

 
 
 
 
 
 

3,293,136

Hierarchical learning

© 2019 Warren B. Powell

Estimating value functions
» Most aggregate level

   1 ˆ() (1) () ()n n

Location
Fleet

v Location v Location v Domicile
DOThrs

DaysFromHome

 

 
 
 
   
 
 
  

Hierarchical learning

© 2019 Warren B. Powell

Estimating value functions
» Middle level of aggregation

1 ˆ() (1) () ()n n

Location
Fleet

Location Location
v v v Domicile

Fleet Fleet
DOThrs

DaysFromHome

 

 
 
    
      
    
 
  

Hierarchical learning

© 2019 Warren B. Powell

Estimating value functions
» Most disaggregate level

1 ˆ() (1) () ()n n

Location
Location Location Fleet

v Fleet v Fleet v Domicile
Domicile Domicile DOThrs

DaysFromHome

 

 
                          
  

Hierarchical learning

© 2019 Warren B. Powell

Adaptive hierarchical estimation procedure developed as
part of this project (George, Powell and Kulkarni, 2008)
» Use weighted sum across different levels of aggregation.

    

() () ()

12() () ()

 1

where

g g g
a a a a

g g

g g g
a a a

v w v w

w Var v 


 

 

 

Estimate of bias

Both can be computed using simple recursive formulas.

Estimate of variance - 2 ()() g
a

Hierarchical learning

George, A., W.B. Powell and S. Kulkarni, “Value Function Approximation Using Hierarchical
Aggregation for Multiattribute Resource Management,” Journal of Machine Learning Research,
Vol. 9, pp. 2079-2111 (2008). © 2019 Warren B. Powell

v(a)
Aggregated function

Original function

a = attribute selected

 1 Biasa 

Hierarchical learning

Approximating a
nonlinear function
using two-levels of
aggregation.

Hierarchical aggregation

© 2019 Warren B. Powell

x

f(x)

High bias Moderate bias Zero bias

Hierarchical aggregation

Hierarchical learning

© 2019 Warren B. Powell

1(,)C a d 2(,)C a d
'
1()V a

'
2()V a

Hierarchical learning

© 2019 Warren B. Powell

NE region
PA

TX

?PAv 

NEv

PA NEv v

Hierarchical learning

© 2019 Warren B. Powell

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 200 400 600 800 1000 1200

Iteration

W
ei

gh
ts

Iterations

W
ei

gh
ts

1

3
2

4

5

Aggregation level

6
7

Average weight on most disaggregate level

Average weight on most aggregate levels

Hierarchical aggregation

Hierarchical learning

Notes:
» In the early iterations, we do not have enough data to

provide estimates at the detail level.
» So, we put more weight on the most aggregate

estimates.
» As the algorithm progresses and we gain more

information, we can put more weight on the more
disaggregate estimates.

» But the weights depend on how much data we have in
different regions.

» This type of adaptive learning, from coarse-grained to
fine-grained, is common across all learning problems in
stochastic optimization.

Hierarchical learning

© 2019 Warren B. Powell

1400000

1450000

1500000

1550000

1600000

1650000

1700000

1750000

1800000

1850000

1900000

0 100 200 300 400 500 600 700 800 900 1000

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n

Aggregate

Disaggregate
Aggregate approximation
shows faster initial
convergence; disaggregate
shows better asymptotic
performance.

Hierarchical aggregation

Hierarchical learning

© 2019 Warren B. Powell

1400000

1450000

1500000

1550000

1600000

1650000

1700000

1750000

1800000

1850000

1900000

0 100 200 300 400 500 600 700 800 900 1000

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n

Weighted Combination

Aggregate

Disaggregate
But adaptive weighting
outperforms both. This
hints at a strategy for
adaptive learning.

Hierarchical aggregation

Hierarchical learning

© 2019 Warren B. Powell

The exploration-exploitation problem

© 2018 W.B. Powell Slide 92

1(,)C a d 2(,)C a d
'
1()V a

'
2()V a

Exploration vs. exploitation

© 2019 Warren B. Powell

What decision do we make?

» The one we think is best?

• Exploitation

» Or do we make a decision just to try something and
learn more about the result?

• Exploration

» This is the reason that the “exploration vs. exploitation”
problem is so well known in ADP/RL.

Exploration vs. exploitation

© 2019 Warren B. Powell

Pure exploitation

Exploration vs. exploitation

© 2019 Warren B. Powell

1

2

n

a
a

a

 
 
 
 
 
 



 
11

110 0 1 1 2 2
11 12

12
13

a a a

a
a

w V a w V w V a
a

a

 
          

 

Exploration vs. exploitation

© 2019 Warren B. Powell

Exploration vs. exploitation

Pure exploitation with generalized learning.

© 2019 Warren B. Powell

Exploration vs. exploitation

Notes
» This is a learning problem in the presence of a physical

state (the location)
» Above, we are using a pure exploitation strategy, but

with generalized learning (visiting one location teaches
us about another location).

» An active area of research, with painfully little
progress, is how to do active learning for state-
dependent problems (in general) and more specifically,
problems with a physical state.

» Note that we have avoided modeling the uncertainty in
the value functions as part of the state variable. This is
a historical oversight.

© 2019 Warren B. Powell

Optimal learning with a single physical state and hierarchical learning.
© 2019 Warren B. Powell

Exploration vs. exploitation
Comparison of policies for pure learning problems

© 2019 Warren B. Powell

Exploration vs. exploitation

Notes:
» We have extensive research on pure learning problems.
» Very little has been done with problems that combine a

belief state (which is the basis of any active learning
problem) and a physical state.

» Central to the value of making a decision that is
balancing the value of information is how this
information is used in future decisions.

• E.g. if we learn more about the cost 𝑐௜௝ by going from 𝑖 to
𝑗, then this is only useful if we return to 𝑖 so that we can use
this information.

• For this reason, the presence of generalized learning
architectures is key.

© 2019 Warren B. Powell

Exploration vs. exploitation
What about learning?

» “Active learning” with
general dynamic programs is
a very young field.

» Typically “exploration vs.
exploitation” issues are
solved with CFAs using
approximate value functions
as part of the estimate of the
value of a decision.

© 2019 W.B. Powell

Jan, 2019

Exploration vs. exploitation
Some numerical experiments from Ryzhov et al. paper.

© 2019 Warren B. Powell

Exploration vs. exploitation
Notes:
» The exploration vs. exploitation problem is well known in

approximate dynamic programming, but lacks the elegant solution
of pure learning problems.

» Most algorithms use fairly simple heuristics to balance exploration
and exploitation.

» We have been pursuing research in optimal learning:
• First paper: optimally sampling a function represented by a

hierarchical belief model.
• Second paper (in preparation): optimal learning with a physical state

(the truck)
» Our research in optimal learning with a physical state is modest.

The challenge is our ability to learn from one physical state, and
generalize to others.

» Open question right now: how much does active learning
contribute when there is a physical state? This is likely to be very
problem-dependent.

© 2019 Warren B. Powell

From one truck to many

© 2018 W.B. Powell Slide 105

© 2008 Warren B. Powell Slide 106

Schneider National

© 2019 Warren B. Powell

© 2008 Warren B. Powell Slide 107© 2019 Warren B. Powell

Optimizing fleets

From one truck to many trucks
» If there is one truck and N “states” (locations), then our

dynamic program (post-decision state) has N states.
» But what if there is more than one truck? Then we

have to capture the state of the fleet.

© 2019 Warren B. Powell

© 2019 Warren B. Powell

The state of the fleet

© 2019 Warren B. Powell

The state of the fleet

© 2019 Warren B. Powell

The state of the fleet

© 2019 Warren B. Powell

The state of the fleet

© 2019 Warren B. Powell

The state of the fleet

© 2019 Warren B. Powell

The state of the fleet

© 2019 Warren B. Powell

The state of the fleet

© 2019 Warren B. Powell

The state of the fleet

© 2019 Warren B. Powell

The state of the fleet

Optimizing fleets

What if we have N > 1 trucks?

. | | 1
| |

| | 1
No trucks Locations

States
Locations

  
   

Number
of

resources

Attribute
space State space

1 1 1
1 100 100
1 1000 1,000
5 10 2,002
5 100 91,962,520
5 1000 8,416,958,750,200

50 10 12,565,671,261
50 100 13,419,107,273,154,600,000,000,000,000,000,000,000,000
50 1000 109,740,941,767,311,000

Real problems: 500 to 5,000 trucks, attribute space 50,000 up to 10ଶ଴ attributes.

© 2019 Warren B. Powell

Slide 119

Optimizing fleets

(,)t t tS R D

The pre-decision state: drivers and loads
Drivers Loads

© 2019 Warren B. Powell

Slide 120

, (,)x M x
t t tS S S x

Optimizing fleets

The post-decision state - drivers and loads after a
decision is made:

© 2019 Warren B. Powell

Slide 121

Optimizing fleets

1 1 1
ˆ ˆ(,)t t tW R D  

x
tS ,

1 1(,)M W x
t t tS S S W 

The transition: Adding new information

© 2019 Warren B. Powell

Slide 122

Optimizing fleets

1tS 

The next pre-decision state

© 2019 Warren B. Powell

Optimizing fleets
Assignment network

» Capture the value of
downstream driver.

» Add this value to the
assignment arc.

Drivers

3a

3 1(,)Ma a d

3 2(,)Ma a d

3 3(,)Ma a d

3 4(,)Ma a d

3 5(,)Ma a d

Loads

4a

5a

2a

1a

Future attributes

3 1(,) Attribute vector of
 driverin the future
 given a decision .

Ma a d

d

© 2019 Warren B. Powell

Optimizing fleets
The assignment problem

» We now have a basic assignment problem, but where we have to
capture the downstream value of a truck:

© 2019 Warren B. Powell

Optimizing fleets

Finding the marginal value of a driver:
» Dual variables

• Can provide unreliable estimates.
• Need to get the marginal value of drivers who are not actually

there.

» Numerical derivatives:

© 2019 Warren B. Powell

Optimizing fleets

Step 1: Start with a pre-decision state
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain .
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of and
compute the next pre-decision state:

Step 5: Return to step 1.

, 1 ,
1 1 1 1 1 1 ˆ() (1) ()n x n n x n n

t t n t t n tV S V S v 
       

 1 ,ˆ min (,) ((,))n n n M x n
t x t t t t t tv C S x V S S x 

n
tS

()n
tW 

1 1(, , ())n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

“on policy learning”

nx

© 2019 Warren B. Powell

Optimizing fleets

t

© 2018 Warren B. Powell

Optimizing fleets

© 2018 Warren B. Powell

Optimizing fleets

© 2018 Warren B. Powell

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

0 100 200 300 400 500 600 700 800 900 1000

O
bj

ec
tiv

e
fu

nc
tio

n

Iterations

Approximate dynamic programming

… a typical performance graph.

© 2018 Warren B. Powell

Approximate dynamic programming

Stepsizes for forward APD

© 2018 W.B. Powell Slide 131

Stepsizes

Stepsizes:
» Approximate value iteration requires updates of the

form:

1
1 1 1 1 1 1 ˆ() (1) ()n x n x n

t t n t t n tV S V S v 
       

Old estimate New observationUpdated estimate

The stepsize
“Learning rate”

“Smoothing factor”

© 2019 Warren B. Powell

Stepsizes
Single state, single action Markov chain
» Updating – receives reward=1 at last node. All other rewards = 0.

» Same as adding up random rewards with mean of 1. Noise may be
zero, or quite high.

0 0 0 0 0
0 1 2 3 4 5

1

© 2019 Warren B. Powell

Stepsizes

Bound on performance using 1/n:

210 410 610 810 1010 1210

Single state, single action

0 1
n

n

cV cg
g

¥

=

= =
-å

1

1 1

ˆ
ˆ(1)

n n

n n n
n n

v c v
v v v

g

a a

+

+ +

= +

= - +

© 2019 Warren B. Powell

Stepsizes

   

   

2

21 2

2 21

2

1
1

where:

 1

As increases, stepsize decreases toward 1/
As increases, stepsize increases toward 1.

1At all times,

n n n

n n
n n

n

n

n

n


  

   











 
 

  



Estimate of the variance

Estimate of the bias

Bias

Noise

Bias-adjusted Kalman filter (BAKF)

© 2019 Warren B. Powell

Stepsizes

The bias-adjusted Kalman filter

0

0.2

0.4

0.6

0.8

1

1.2

1 21 41 61 81

Observed values

BAKF stepsize rule

1/n stepsize rule

© 2019 Warren B. Powell

Stepsizes

The bias-adjusted Kalman filter

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 21 41 61 81

Observed values

BAKF stepsize rule

© 2019 Warren B. Powell

Stepsizes

Notes:
» Because and have to be estimated from data, it is a

stochastic stepsize policy. The challenge is estimating .

» This stepsize rule is designed for a nonstationary time
series. It does not recognize the feedback that arises in
approximate value iteration.

 2


© 2019 Warren B. Powell

Optimizing fleets

The effect of stepsizes

© 2019 Warren B. Powell

Schneider National case study

© 2018 W.B. Powell Slide 140

0

200

400

600

800

1000

1200

1400

US_SOLO US_IC US_TEAM

Capacity category

R
ev

en
ue

 p
er

 W
U

Historical maximum

Simulation

Historical minimum

0

200

400

600

800

1000

1200

US_SOLO US_IC US_TEAM

Capacity category

U
til

iz
at

io
n Historical maximum

Simulation

Historical minimumRevenue per WU

Utilization

Historical min and max
Calibrated model

Schneider National

We were able to calibrate our ADP
model very closely to the behavior
of the company, which helped to
build confidence.

© 2019 Warren B. Powell

Schneider National

Average LOH for Solos

600

650

700

750

800

850

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iterations

LO
H

(m
ile

s)

Vanilla simulator

Using approximate dynamic programming
Acceptable region

The adaptive learning of value functions produced results
that more accurately matched historical performance.

© 2019 Warren B. Powell

ADP for trucking

Notes:
» We can use the value functions to estimate the marginal

value of drivers whose home is in a particular region.
» In the next slides, we are going to show two ways to

estimate these values:

• In the first, we are going to run a series of (very expensive)
simulations where we hire an increasing number of drivers in a
region. Each time, we have to reoptimize the entire fleet over
many iterations. We would have to repeat this for each
possible home location.

• In the second, we are going to estimate the marginal value by
using the value function approximations to estimate the value
of drivers in each region, from one run of the model.

© 2019 Warren B. Powell

Case study: truckload trucking

simulation objective function

1800000

1810000

1820000

1830000

1840000

1850000

1860000

1870000

1880000

1890000

1900000

580 590 600 610 620 630 640 650

of drivers w ith attribute a

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

avg

pred

© 2019 Warren B. Powell

Case study: truckload trucking

simulation objective function

1800000

1810000

1820000

1830000

1840000

1850000

1860000

1870000

1880000

1890000

1900000

580 590 600 610 620 630 640 650

of drivers w ith attribute a

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

avg

pred

av

© 2019 Warren B. Powell

Case study: truckload trucking

-500

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

This shows that the value functions provide reasonable approximations of the

Purple bars: Value of drivers from value function approximations
Error bars: Statistical estimate from rerunning the simulation.

© 2019 Warren B. Powell

© 2019 Warren B. Powell

Case study: truckload trucking

Where to add drivers:

© 2019 Warren B. Powell

Case study: truckload trucking

Where to reduce drivers:

