Warren Powell
Princeton University

http://www.castlelab.princeton.edu

© 2018 W.B. Powell

Week 10

Backward approximate dynamic programming

© 2019 Warren B. Powell

Backward MDP and the curse of
dimensionality

© 2019 Warren B. Powell

Curse of dimensionality
N

@® The ultimate policy 1s to optimize from now on:

.
X, (S,) = arg max, (C(St, X,)+ E{maxﬁen {E Z C(S,, X[(S,)) | Sm} S, Xt}j

t'=t+1

@ Ideally, we would like to replace the future contributions
with a single value function:

X[(S) =argmax, (C(S;,x)+B{V,,(S.) S, x})

® Sometimes we can compute this function exactly!

© 2019 Warren B. Powell

Curse of dimensionality

@® Energy storage with stochastic prices, supplies and demands.

i Wind speed
win
-.\I II| MII Illr‘h"a'l"l \
\ﬁ ! | D,
Electricitvprices ?,/ 7
id
Pgrl |
t Iy P
Mum | |- | Rbattery
ind [= wind
Etv-vklln EtWln Etvrln
pod = por Ptg;'d = Exogenous inputs
’ - State variable
load | mload load
Dt+1 1 Dt Dt+1

RV S\R™ P 4 Ax, X, = Controllable inputs

© 2019 Warren B. Powell

Curse of dimensionality

® Bellman’s optimality equation

V = minxtex (C(St +7/E{V(St+1(staxt @) | St})

[—wind [, wind —battery | [S wind |
Et Xt Et+1
> grid wind —load 3 grid
t Xt I:)'[+1
load id —batter A
D x I y load
t t Dt+1
Qbattery Xgrid —load
|t _ t
battery—load

These are the “three curses of dimensionality.”

© 2019 Warren B. Powell

Curse of dimensionality
N

® Backward dynamic programming in one dimension

Step 0: Imitialize V; ,(R;,,) =0 forR;,, =0,1,...,100
Step 1: Step backwardt=T,T -1, T -2,...

Step 2: Loop over R =0,1,...,100

Step 3: Loop over all decisions —(R™ —R)<x <R

Step 4: Take the expectation over exogenous information:

100

Compute Q(R,,%) = C(R,,x)+ Y V|, (min {R™,R —x+w})P" (w)
w=0
End step 4;
End Step 3;
Find V, (R) = max, Q(R;,X,)
Store Xt”* (R;) =argmax, Q(R;,X). (This is our policy)

End Step 2;
End Step 1;

© 2019 Warren B. Powell

Curse of dimensionality
N

® Dynamic programming in multiple dimensions
Step 0: Initialize V; _,(S;,,) = 0 for all states.

Step 1: Step backwardt=T,T —-1,T —-2,...
Step 2: Loop over S,=(R,,D,, p,, E,) (four loops)

1> >

Step 3: Loop over all decisions x, (all dimensions)

~

Step 4: Take the expectation over each random dimension (13[, D, E)

Compute Q(S,, %) =C(S,, X)+
100 100 100

yj y YVM(SM (St9Xt9Wt+1 :(W1>W29W3))) pP* (W1»W2>W3)

End step 4;
End Step 3;

Find V,"(S,) = max, Q(S,%)
Store Xt”* (S,) =argmax, Q(S,,X). (This is our policy)

End Step 2;

End Step 1;
© 2019 Warren B. Powell

Curse of dimensionality
N

® Notes:

» There are potentially three “curses of dimensionality”

when using backward dynamic programming;:

» The state variable — We need to enumerate all states. If the
state variable is a vector with more than two dimensions, the
state space gets very big, very quickly.

e The random information — We have to sum over all possible
realizations of the random variable. If this has more than two
dimensions, this gets very big, very quickly.

* The decisions — Again, decisions may be vectors (our energy
example has five dimensions). Same problem as the other two.

» Some problems fit this framework, but not very.
However, when we can use this framework, we obtain
something quite rare: an optimal policy.

© 2019 Warren B. Powell

Curse of dimensionality
N

® Strategies for approximating value functions:

» Backward dynamic programming
« Exact using lookup tables
« Backward approximate dynamic programming:
— Linear regression
— Low rank approximations

» Forward approximate dynamic programming
e Approximation architectures
— Lookup tables
» Correlated beliefs
» Hierarchical
— Linear models
— Convex/concave
« Updating schemes
— Pure forward pass TD(0)
— Double pass TD(1)

© 2019 Warren B. Powell

Backward ADP-Chapter 16

© 2019 Warren B. Powell

Backward ADP

N
@ C(lassical backward dynamic programming

» Uses lookup table representations of value functions

» Assumes the one-step transition matrix can be computed (which is
also lookup table).

» “Dynamic programming’ does not suffer from the curse of
dimensionality (as we show below), but lookup tables do.

» There are three curses of dimensionality, but often it is the state
variable that causes the most problems.

» Backward ADP uses a sample of states rather than all the states,
and a statistical model for the value of being in a state. Ata
minimum this fixes two of the three curses of dimensionality.

© 2019 Warren B. Powell

Backward ADP

® Backward approximate dynamic programming

» Basic 1dea 1s to step backward 1n time, just as we do
with classical backward dynamic programming.

» Instead of looping over all the states, loop over a
random sample.

» Now, use the sample of values and states to produce an

approximate value function:
 Any statistical model

» Low-rank approximations (works well when value functions
are smooth).

» You still need to take full expectation (although this
might be approximated) and search over all actions.

© 2019 Warren B. Powell

Backward ADP

B
® Backward ADP

Step 0: Initialize V; _,(S;,,) = 0 for all states.
Step 1: Step backwardt=T,T —-1,T -2,...

Step 2: Loop over a random sample of states §,=(R,.D,. p,. £,) (one loop)

Step 3: Loop over all decisions X, (all dimensions)

Step 4: Take the expectation over each random dimension (I:A)t , Br Iét)

Compute Q(§t9 X) = C(§t, X))+

100 100 100

> 5 S0

s" (§t9Xt9Wt+1 - (W19W2>W3))) p" (W, W,, W)

End step 4;
End Step 3;
Find v, (5,) = max O(s,,x,) \
End Step 2; \
Use sampled v, (5,)'s to find an approximate V,(s).
End Step 1;

© 2019 Warren B. Powell

Backward ADP

e ——
® Backward ADP with the post-decision state

» Computing the imbedded expectation can be a pain.

» Instead of sampling over (pre-decision) states, sample
post-decision states s;- ;.

» Then draw a sample W, and simulate our way to the
next pre-decision state s;.

» From s;, compute the sampled value v; from
Ve = maX(C(st, x¢) + VF(st))

» Do this N times and create a dataset (St 1) vt ﬁ 1

» Now use this dataset to fit a statistical model for
Vtx— 1 (s gc— 1) :
» Repeat.

© 2019 Warren B. Powell

Backward ADP

e —
® Backward ADP for a clinical trial problem

» Problem i1s to learn the value of a new drug within a
budget of patients to be tested.

» Backward MDP required 268-485 hours.

» Forward ADP exploiting monotonicity (we will cover
thiss later) required 18-30 hours.

» Backward ADP required 20 minutes, with a solution
that was 1.2 percent within optimal.

Table 3 Computation Time Comparison between Backward MDP Algorithm and ADP Algorithm
MDP ADP Discretization Interval Length
:—}} :—-’; CPU |CPU Gap backward MDP algorithm ADP algorithm
' (hrs) | (hrs) Style (%) | Enrollment | Treatment | Control | Enrollment | Treatment | Control

0.351] 0.65 | 360 20 forward 3.2 20 20 20 40 80 80
0.40 | 0.65 | 290 18 forward | 0.1 20 20 20 40 80 80
040] 0.75 | 440 30 forward | -3.2 20 20 20 40 30 80
0.55|0.85| 485 18 forward | 3.7 10 20 20 40 80 80
0.55 | 0.85 | 2068 0.5 | backward | 1.2 10 136 (2 10 1487 16U

© 2019 Warren B. Powell

Backward ADP

e ——
® Energy storage problem

» Lookup table — 99.3 percent of optimal, .67 hours.
» Backward MDP 11.3 hours.

Table 2 Mean performance of policies in the various test cases over 100 trials, reported as a percent of the optimal policy.
Shown on the far right is the average time in hours needed to compute value functions for each algorithm (or time allotted for
policy search), but note that this is highly problem-dependent and can vary greatly between test cases. The optimal policy took an
average of 11.3 hours to compute.

Case 1 2 3 4 5 6 7 8 9 10 11 12 [Avg || CPU (hrs)

Lookup-.01 || 99.1 96.7 98.0 88.8 98.0 100.0 93.2 984 996 994 988 989|974 0.41
Lin-.01 96.2 96.4 96.9 91.8 882 952 954 989 9089 982 983 99.5]96.2 1.62
Lookup-.10 || 100.1 99.5 99.3 97.1 99.7 100.2 972 994 100.0 100.1 99.6 99.8(99.3 0.67
Lin-.10 96.3 96.5 98.1 91.1 883 952 949 989 089 982 99.0 99.2 | 96.2 2.72

API 82.7 779 795 57.3 76.2 908 50.5 804 947 900 R86.4 86.9|79.5 12.0
PFA 93.6 923 934 714 80.6 91.3 723 934 973 952 96.0 946 |89.3 5.14
DLA-24-05 || 87.7 86.6 874 73.5 848 933 904 899 9068 922 9023 95.3|R89.2 N/A
DLA-72-01 | 91.1 91.5 90.8 86.1 994 955 101.7 93.0 97.9 944 94.2 94.3|94.2 N/A

© 2019 Warren B. Powell

Backward ADP
L

® Resource allocation 1n Africa

» Extended widely cited myopic policy to a dynamic
setting.

Utility function in environment with shocks

',l" }

Utility_ valu_e

Time (years)
© 2019 Warren B. Powell

Backward ADP

B
® Notes

» By now I have applied backward ADP to approximate
four projects, three with rigorous benchmarks, and one
(the resource allocation problem) with a high quality
benchmark (the myopic policy).

» Each time 1t seems to have worked very well.

© 2019 Warren B. Powell

Histories of approximate dynamic
programming and reinforcement learning

© 2019 Warren B. Powell

Histories of ADP/reinforcement learning
N

® 1959 — Operations research

» Bellman recognizes the limitations of classical
backward dynamic programming.

» Introduces the idea of statistically approximating value
functions.

» This line of research quickly died out in the operations
research community.

//r FUNCTIONAL APPROXIMATIONS AND ﬁ\\
DYNAMIC PROGRAMMING

Richard Bellman
Stuart Dreyfus

P-1176

_ Revised 4-28-59 J/)

The fields of stochastic optimization
|

@ Approximate dynamic programming/reinforcement
learning

»

»

»

»

»

»

1959 paper by Bellman — first attempt at ADP
ADP in control theory — 1974 dissertation of Paul Werbos

Reinforcement learning in computer science — 1980 research of

Rich Sutton and Andy Barto
» 1998 book Reinforcement Learning establishes the field

1996 book Neuro-Dynamic programming — First to bridge the
theory of stochastic approximation methods (Robbins and Monro)
with reinforcement learning

Late 1990°s — ADP returns to operations research
» 1994 dissertation of Ben van Roy
« Late 1990’s onward — Value function approximations for MDPs (discrete
actions)
* 1998 onward — use of ADP for vector-valued actions (Powell and students)

2007 ADP book by Powell; second edition in 2011.

» Three curses of dimensionality; high dimensional decision vectors (action
spaces)

Histories of ADP/reinforcement learning
N

@ 1974 — Controls community

»

»

»

»

»

Paul Werbos introduces “backpropagation” for approximating the “cost
to go” function for continuous controls problems.

Engineering controls community continues to develop these ideas, with

special emphasis on the use of neural networks in two ways:
» Actor nets — A neural network for the policy (which chooses the action
given a state).
 Critic nets — A neural network for approximating the value function (cost
to go function in the language of control theory)

Paul Werbos becomes an NSF program officer and continues to

promote “approximate dynamic programming.” Funded workshops on
ADP in 2002 and 2006.

1994 — Beginning with 1994 paper of John Tsitsiklis, bridging of the
heuristic techniques of Q-learning and the mathematics of stochastic
approximation methods (Robbins-Monro).

1996 book “Neuro-Dynamic Programming” by Bertsekas and Tsitsiklis

formally bridges Q-learning and stochastic approx. methods
© 2019 Warren B. Powell

Histories of ADP/reinforcement learning

Paul Werbos <

Scientist

Paul J. Werbos is a scientist best known for his 1974 Harvard University
Ph.D. thesis, which first described the process of training artificial neural
networks through backpropagation of errors. Wikipedia

Born: September 4, 1947 (age 70), Philadelphia, PA
Education: Harvard University

Books: The roots of backpropagation

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the
behavioral sciences. Ph.D. dissertation Harvard University.

= &Vl / yvyvalliwvill 1J. 1 Uyvvwvill

Histories of ADP/reinforcement learning

N
@ History of Q-learning

» Began ~1980 with Andy Barto (supervisor) and Rich Sutton
(student) studying behavior of mice in mazes.

» Heuristically developed basic feedback
mechanism:

—]

Ll
)

§"(s",a") = C(s",a") + ymax , Q" (s',a") -
Qn(snjan> — (1_an_1>@n—1(8n’a}n> + an_lgn(sn’a}n> Ny - | |

é_
» Late 1980’°s the link to Markov]
.

decision processes was made, and the
community adopted the basic notation
of Markov decision processes.

» Bizarrely, the RL community adopted popular test problems from

the controls community, which are primarily deterministic:
 Inverted pendulum problem.
 Hill-climbing
» Truck backer-upper
» Robotics applications.
© 2019 Warren B. Powell

E

}L

I I |:_|_|

Histories of ADP/reinforcement learning
L

Richard S. Sutton <

Computer scientist

Richard S. Sutton is a Canadian computer scientist. Currently he is
professor of Computer Science and iICORE chair at the University of
Alberta. Wikipedia

Born: Ohio

Doctoral advisor: Andrew Barto

Residence: Canada

Alma maters: University of Massachusetts Amherst, Stanford University

Fields: Artificial intelligence, Reinforcement learning

Reinforcement Learning
Cited by 29594

Andrew Barto <

Professor

Andrew G. Barto is a professor of computer science at University of
Massachusetis Amherst, and chair of the department since January
2007. His main research area is reinforcement learning. Wikipedia

Born: 19438
Education: University of Michigan

Field: Computer Science

Books: Reinforcement Learning: An Introduction, Reinforcement Learning
Solutions Manaual

Notable student: Richard S. Sutton

annnnnnnnnnnnldl

13 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
© 2019 Warren B. Powell

Histories of ADP/reinforcement learning
N

® Second edition of Reinforcement Learning

Reinforcement
Learning

At Indnegd el Ll
[

Richard 5. Sufton and Andeew (. Bartn

© 2019 Warren B. Powell

Histories of ADP/reinforcement learning
N

® From Q-learning to other policies

» From the second edition:

1.4 Limitations and Scope

Most of the reinforcement learning methods we consider in this book are struc-

tured around estimating value functions, but it is not strictly necessary to do this to
solve reinforcement learning problems. For example, methods such as genetic algo-

rithms, genetic programming, simulated annealing, and other optimization methods
have been used to approach reinforcement learning problems without ever appealing
to value functions. These methods evaluate the “lifetime” behavior of many non-
learning agents, each using a different policy for interacting with its environment,
and select those that are able to obtain the most reward. We call these evolution-
ary methods because their operation is analogous to the way biological evolution
produces organisms with skilled behavior even when they do not learn during their
individual lifetimes. If the space of policies is sufficiently small, or can be structured
so that good policies are common or easy to find—or if a lot of time is available for
the search—then evolutionary methods can be effective. In addition, evolutionary
methods have advantages on problems in which the learning agent cannot accurately
sense the state of its environment.

» This hints at policy search, but still ignores lookahead policies

(Monte Carlo tree search)
© 2019 Warren B. Powell

Histories of ADP/reinforcement learning
N

@ 1990°s — Operations research

» Ben van Roy (student of John Tsitsklis) developed the 1deas of
using regression models for solving the “curse of dimensionality
problem” of dynamic programming.

» 1991 — Pereira and Pinto introduce the idea of Benders cuts for
“solving the curse of dimensionality” for stochastic linear

programs. Method called “stochastic dual decomposition
procedure” (SDDP)

» ~2000 — Work of WBP on “adaptive dynamic programming” for
high-dimensional problems in logistics.

» With Ben van Roy (who first introduced the term), WBP
developed the 1dea of the post-decision state which opened the
door for solving high-dimensional convex DPs.

» WBP switches to “approximate dynamic programming” after
attending Werbos’ 2002 conference on “Approximate dynamic
programming and reinforcement learning”

© 2019 Warren B. Powell

Histories of ADP/reinforcement learning
N

@ Today:

» Controls community now uses the term “adaptive dynamic
programming”’
« Balanced using of “control laws” (PFAs), Hamilton/Jacobi/Bellman
equations (VFAs) and “model predictive control” (DLAS)

» “Reinforcement learning” has spread from Q-learning to include
“policy search” and Monte Carlo tree search (a form of direct
lookahead — we will get to this later).

» 2014-2016 Two tutorials by WBP establish the “four classes of
policies”
» “Optimization under Uncertainty” book (being written for this

class) is the first to truly unify all of the different subcommunities
of stochastic optimization.

© 2019 Warren B. Powell

Next steps

e —
® What we are going to cover:

» Forward approximate dynamic programming
« Estimating the value of a fixed policy

* Optimizing while learning

© 2019 Warren B. Powell

Learning the value of a policy

TD-learning

© 2018 W.B. Powell Slide 32

TD-learning

e
® Temporal difference learning

» The “temporal difference” is given by

8 (St x) = VIH(SE) — (C(SE x) + V1 (SM (ST, xT', Wi)

=V (SH — vl

» In other words, this 1s “old estimate minus new estimate”.
We can update our value function approximation using
V& (SH) = VP H(SE) — an—16(SE x)
— (1 - an—l)th_l(Sp) + an—lvy

» This 1s a basic form of “temporal difference learning”
known as TD(0). The “temporal difference” reflects
learning from one decision to the next (which occurs over

time).
© 2019 Warren B. Powell

TD-learning
B]
@ TD(A)
» A more general form of TD-learning uses discounted costs
over the entire trajectory.

.
—_— —_—t—1 R
V,(8:) = V, (8)+a, IZA' 0. (17.7)

=i

We derived this formula without a time discount factor. We leave as an exercise to the
reader to show that if we have a time discount factor -, then the temporal-difference update

becomes

T
==L ;o sFn—1; - 4 4 P
V.(S5)) = V, (S)+a,, E (YA) 4. (17.8)

» Think of A as an “algorithmic discount factor” that helps
to give credit for downstream rewards to earlier decisions.

This has to be carefully tuned.

© 2019 Warren B. Powell

TD-learning

e ——
® Approximating the value function

» Temporal difference updates can be used 1n any

recursive estimation algorithm:

« Lookup tables

— Independent beliefs

— Correlated beliefs
e Parametric models

— Linear

— Nonlinear

— Shallow neural networks
« Nonparametric

— Kernel regression

— Locally linear

— Deep neural networks

© 2019 Warren B. Powell

Q-learning

“Reinforcement learning”

© 2018 W.B. Powell Slide 36

Q-learning

® Mouse 1n a maze problem

F]1

|, —
ﬂ I:I—l —_I—> Receive reward = 1

0

m

-|:I
H
I

—|
|i=

E—

i

h

© 2019 Warren B. Powell

Q-learning

® AlphaGo

» Much more complex state
space.

» Uses hybrid of policies:
« PFA
* VFA
* Lookahead (DLA)

© 2019 Warren B. Powell

Q-learning
N

® Basic Q-learning algorithm
» Basic update:
q"(s",a") =C(s",a") + ymax , @”_1(3',0,')
Q"(s",a") = (1 - an_l)@”_l(s”, a")+a q"(s",a")
where
S' —_ SM (Sn’a/n’WTHl)
» Given a state s and action a™, we simulate our way to

state s’.

» Need to determine:

 State sampling process/policy
» Action sampling policy

© 2019 Warren B. Powell

Q-learning
N

® Some terms from reinforcement learning:

» “Behavior policy” 1s the policy used to choose actions
« E.g. these are actions observed by a real system

» “Target policy” is the policy that we are trying to learn,
which 1s to say the policy we want to implement.

» When the target policy is different from the behavior
policy, then this 1s termed “off policy learning”

® In this course

» The “learning policy” 1s the policy (often called an
algorithm) that learns the value functions (or Q-factors)

» The “implementation policy” is the policy determined
by the value functions (or Q-factors).

© 2019 Warren B. Powell

Q-learning

® Learning policy

» This 1s the policy that determines what action to choose
as a part of learning the Q-factors.

» “Exploitation”:

an

= argmax Q" (s", a")
» Other policies that involve exploration:
 Epsilon-greedy — Choose greedy policy with probability €, and
explore with probability 1 — €.
 Policies based on upper confidence bounding, Thompson
sampling, knowledge gradient, ...

© 2019 Warren B. Powell

Q-learning
N

® State sampling policies

» Trajectory following

g+l — SM(Sn, an’ Wn+1)

e Helps to avoid sampling states that never happen
e Problem is that a suboptimal policy may mean that you are
not sampling important states.

» Exploration
 Pick a state at random

» Hybrid

 Use trajectory following with randomization, e.g.

g+l — SM(Sn, an’ Wn+1) + entl

© 2019 Warren B. Powell

Q-learning
N
@ Implementation policy

» This 1s the policy we are going to follow based on the Q-factors:

A™(s) = argmax,,Q"(s,a’)

@® The value of the implementation policy:

Zcxs X7(S) W, (w)) where S, =S"(S,X"(S).W,,,(w))

» Or

N—1

_7Tn

ET:C(S X7(S,),W,, (w")) where S

ﬁ _ =57 (5L X (S, (")

@ The goal 1s to find an effective learning policy so that we
obtain the best implementation policy.

© 2019 Warren B. Powell

Q-learning

® Convergence rates:

0.2 - Policy Improvement v. Updating Iterations

ADAM
AdaGrad

0.15

0.1

)
&

Improvement
o

-0.05

0.1 H

.0.15 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
Updating Iterations (N)

Q-learning
N
@ On vs off-policy learning:

» On-policy learning — Learning the value of a fixed policy:

From a state s", choose action

n

a" = argmax , Q"(s",a")
Now go to state s"*" :
8n+1 — SM (Sn,an,WrHl)

Where W™ is observed or sampled from some distribution.

» Off-policy learning;:
« Sample actions according to a learning policy (called “behavior
policy”” in the RL literature). This is the policy used for learning the

implementation policy (called the “target policy” in the RL literature).
* Needs to be combined with a state sampling policy.

© 2019 Warren B. Powell

Q-learning
N

® Model-free vs. model-based

»

»

»

»

Model-based means we have a mathematical statement of how the
problem evolves that can be simulated in the computer.

Model-free refers to a physical process that can be observed, but
where we do not have equations describing the evolution over
time.

» The behavior of a human or animal

* The behavior of the climate

» The behavior of a complex system such as a chemical plant

Q-learning 1s often described as “model free” because it can be
learned while observing a system.

The resulting policy does not require a model:

o A™(s) = argmax,Q"(s,a)

© 2019 Warren B. Powell

Q-learning
N

® Notes

» Lookup table belief models are most popular, but do
not scale (limit of 3 dimensions).

» Various smoothing strategies have been suggested
(basically nonparametric statistics), but still limited to 3
dimensions.

» Need to be very careful with stepsizes. Q-learning is a
form of approximate value iteration where the
backward learning is slowed by the use of stepsizes.

© 2019 Warren B. Powell

Q-learning
N

@® Max operator bias:
» Second i1ssue arises when there 1s randomness 1n the reward.

» Imagine that we are purchasing energy at a price p; which evolves
randomly from one time period to the next.

» Imagine buying and selling energy using real time prices:

Zone, PSEG current_hour|yang(29.00) —
. Zore.mﬁ_urrmt_hlnlﬂ.m —
Zone_PSEG current _zonal load 4427 $4h —

(20L7-04-00 14:20000 = 20070819 14:10:00)

© 2019 Warren B. Powell

Q-learning
N

® Max operator bias (cont’d)

» This introduces noise in g™ (s™, a™):

§"(s",a") = C(s",a") + ymax , Q" (s',a")

Q"(s",a")=(l-a,)Q" ' (s",a")+a,q"(s",a")

» Finding the max over a set of noisy estimates g™ (s", a™)
introduces bias in the estimates Q™ 1(s’,a’). This bias
can be quite large.

» Testing on roulette

© 2019 Warren B. Powell

Q-learning
L

@ Roulette
» Optimal solution is not to play — optimal value of game is zero

» Q-learning over 10,000 iterations

Value Function Estimates for Roulette
From 10 Runs of Q Learning

>

?n{'ﬁ)
(Estimated winnings from Roulette)

a

max(

il Hint: Optimal Q = 0! _

| | | 1
0 2000 4000 6000 8000 10000

n

(# of samples observed from Roulette)
© 2019 Warren B. Powell

Q-learning
N
@ Roulette
» Optimal solution is not to play — optimal value of game is zero

» Q-learning over 10,000 iterations

Value Function Estimates for Roulette
From 10 Runs of Q Learning

35“ T T T T

w
o
=]

Pt
Ln
=]

P
o
=]

- —
o L
] =]
L]

i

MAX0" (a)

{Estimated winnings from Roulette)
Ln
o
|

0 I 1 I 1
0 20000 40000 60000 80000 100000

i
(# of samples observed from Roulette)

© 2019 Warren B. Powell

Q-learning

® Roulette

» Optimal solution is not to play — optimal value of game is zero

State-visit Probability Weighted Sum of Bias of Value Estimate

250 i MO TTLIITI

11 iil

200+
150 K.

100

;-U-l{

0 LITTITT Y

¥ True value
O Q-learning

§ X Bias-corrected Q-learning
Double Q-learning
) Speedy Q-learning
-100
-150 |
-200
-250 - : :
0 2 4 6 8
Iteration Counter n 5

x 10

IEFE TRANSACTIONS ON ALTTOMATIC CONTROL

Controlling Sample Bias in Q-learning
through Bias-Corrected Q-Learning
with Multistate Extension

Donghun Lee, Warren B. Powell., Member, IEEE,

Abstract—()-learning s a samplk-based model-free algorithm
that solves Markov decision problems asymptotically, but in finite
time it can perform poorly when random rewards have large
variance. We pinpoint its cause to be the estimation bias due to
the maximum operator in ()-kcamning algorithm, and present the
evidence of max-operator bias in its) valee estimates. We then
present an asymptotically optimal blas-correction strategy and
construct bias-corrected Q-learning algorithm with asymptotic
convergence properties as strong as those [rom (3-learning.
We report the empirical performance of the bias-correcied -
learning algorithm in sclect real-world problems: a multi-armed
bandit problem and an clectricity storage control simulation. The
bias-corrected (-kaming algorithm with multistate extension s
shown lo be resistant lo max-operator bias.

Index Tearms—{)-kearning, Bias Correction, Ekctricily Storage,
Smart Grid

. INTRODUCTION

Large inherent randomness in reward function poses major
challenge in lkeaming the optimal control policy in many
classes of problems such as stochastic shortest path problem,
multi-armed bandit problem, and more generally, Markov

be seen as a blend of exact value ileration (V1) and siochastic
approximation (SA) as follows:

QI’I [C-'[a“_n“:l t -‘I‘:’g'T;ﬁ.‘.:](Q“ 1 (3"11_g:}]
i1
Q" (s",a") + (1 — ap_y (", a™)) Q" (™, a") + ap_y (s"

2)

where (s",a") is a determined state-action pair, and s"*! is a
realization of random state transition due to taking action a"
in state s™ (we defer the detailed definition of other terms).
Also, when the Q" estimate is represented in tabular format,
Q-learning enjoys asymptotic convergence properties with a
mild set of technical assumptions as demonstrated in [2], [3].
and [4] The assumptions in [2] allow many stochastic models
for C and s"*! given s, a™ that can be applied to Q-learning
with its convergence guarantee. Moreoever, the asymptotic rate
of convergence of Q-kaming has been studied theoretically
by a number of authors including [5]. [6], and [7]. Thanks
to its gpenerally applicable set of assumptions and robust
theoretical properties, Q-leaming has been applied to a wide

Lam)

... ongoing research.

© 2019 Warren B. Powell

Approximate dynamic programming

Algorithms

© 2018 W.B. Powell Slide 54

Algorithms

e ——
® Approximate value iteration

» Single-pass
« Need to define policies for choosing states and actions

» Double-pass with “discount” A
® Approximate policy iteration

® Relationship to TD-learning
» Approximate value iteration uses TD(0) updates.
» Approximate policy iteration uses TD(1) updates.

© 2019 Warren B. Powell

Approximate value 1teration
L

Step 1: Start with a pre-decision state S/

Step 2: Solve the deterministic optimization using L
Deterministic

an approximate value function: S
optimization

0 = min, (C,(S}",) +V,"" ("*(S!,x)))
to obtain x".
Step 3: Update the value function approximation Recursive
V" (P =(—a, V" '(S)+a, ¥ statistics
Step 4: Obtain Monte Carlo sample of W;(w™) and
compute the next pre-decision state:
Sty = S" (S X W, (@)
Step 5: Return to step 1.

Simulation

Slide 56

Approximate value 1teration

Step 1: Start with a pre-decision state S/
Step 2: Solve the deterministic optimization using

. . Deterministic
an approximate value function:
V" = min,

- optimization
C(S™ €S0 4,(S (@

Linear model for post-decision state
Step 3: Update the value function approximation Recursive

V" (S =(—a, V" '(S)+a, ¥ statistics
Step 4: Obtain Monte Carlo sample of Wt (w™) and

compute the next pre-decision state:

So, = SM (S, X' ,\W_, (0")) “Trajectory following”

Step 5: Return to step 1.

to obtain x™;

Simulation

Slide 57

Approximate policy iteration

Step 1: Start with a pre-decision state S/
Step 2: Inner loop: Do for m=1,...,M:

Step 2a: Solve the deterministic optimization using

an approximate valae function:
v = IIliIlX (C(Sm, X) @b M’X(Sm, X)))
to obtain x™.

pdate the value function approximation
@ M) = (1= V(S 4 07

Step 2¢: Obtain Monte Carlo sample of W (w™) and
compute the next pre-decision state:
gm+ _ gM (S™, x™ W (™))
Step 3: Update V"(S) using V" "™ (S) and return to step 1.
Slide 58

Step 2b:

Approximate policy iteration
L

Step 1: Start with a pre-decision state S/
Step 2: Inner loop: Do for m=1,...,M.:
Step 2a: Solve the deterministic optimization using
an approximate value function:
V" =min, | C(S",x)+ >_6{"'¢,(S" (sm,x))j
to obtain x ™. f

Step 2b: Update the value function approximation using
recursive least squares.

Step 2¢: Obtain Monte Carlo sample of W (w™) and
compute the next pre-decision state:
gm+ _ gM (S™, x™ W (™))
Step 3: Update yyn(g) using\/ "M (S) and return to step 1.
Slide 59

Approximate dynamic programming

Nomadic trucker problem

Approximate value iteration

© 2018 W.B. Powell Slide 60

Fleet management

® Fleet management problem
» Optimize the assignment of drivers to loads over time.

» Tremendous uncertainty in loads being called in

© 2019 Warren Powell

Approximate dynamic programming

® Pre-decision state: we see the demands

© 2018 W.B. Powell

Approximate dynamic programming

® We use 1nitial value function approximations. ..

}‘ VO(NY)=0
) 4
5450

VO(MN)=0

© 2018 W.B. Powell

Approximate dynamic programming

® ... and make our first choice: X'

VO(MN)=0

V°(CO)=0 v (NY) =0

NS N —
. :((NY]) \.

t+1

g
2

.
B t.\

© 2018 W.B. Powell

Approximate dynamic programming

@ Update the value of being 1n Texas.

VO(MN) =0

VO(NY)=0

V°(C0)=0

R e

X _
@Il [

y
- ((NY]) \.

t+1

g
2

.
B t.\

© 2018 W.B. Powell

Approximate dynamic programming

@ Now move to the next state, sample new demands and make a new
decision

VO(MN) =0

r

) ~~{V°(NY)=0

-

|
\~ ~

* \
su=([0 e ..\

© 2018 W.B. Powell

Approximate dynamic programming

® Update value of being in NY

VO(MN) =0

QQ 180

~~V"(NY) =600

V°(C0)=0)

P it

N 70X = 450 L
S Z([sz) . \. - .\

t+1

© 2018 W.B. Powell

Approximate dynamic programming

® Move to California.

VO(MN) =0

V(NY) =600

T

.
St+2 = ([jaljuz) \.
t+2

© 2018 W.B. Powell

Approximate dynamic programming

@® Make decision to return to TX and update value of being in CA

VO(MN) =0

] s

VO (NY) =500

V°(CA) =800

© 2018 W.B. Powell

Approximate dynamic programming

® An updated value of being in TX

)‘ V°(NY) = 600

VO(MN) =0

V°(C0)=0

N N

St+3 = ((t n 3j t+3)

l\.

© 2018 W.B. Powell

Approximate dynamic programming
N

® Updating the value function:

Old value:
V!(TX) =$450

New estimate:
A (TX)=$800

How do we merge old with new?
VITX)=1-a)V'(TX)+(x)V*(TX)
=(0.90)$450+(0.10)$800
=$485

© 2018 W.B. Powell

Approximate dynamic programming

® An updated value of being in TX

)‘ V°(NY) = 600

VO(MN) =0

V°(C0)=0

N N

St+3 = ((t n 3j t+3)

l\.

© 2018 W.B. Powell

Approximate dynamic programming

Hierarchical learning

© 2018 W.B. Powell Slide 73

Hierarchical learning
L

~

decision d
Resource attribute:

a ="State" that the trucker 1s currently in

© 2019 Warren B. Powell

Hierarchical learning

© 2019 Warren B. Powell

Hierarchical learning

© 2019 Warren B. Powell

Hierarchical learning
L

© 2019 Warren B. Powell

Hierarchical learning

® Our optimization problem at time t looks like:

Vt(St) = max, (Ct(stﬂxt)_l_ 2 Via Rt);]

There are a lot of these attributes!

» We had to develop novel machine learning strategies to
estimate this function, since the attribute space was
very large.

© 2019 Warren B. Powell

Hierarchical learning
L

® Different levels of aggregation:

Al =

Time

Region Location

Region Domicile

Type

3,293,136

Time
Region Location

Type

33,264

|

Time

Region Location

5,544

© 2019 Warren B. Powell

|

Time

Area Location

672

|

Hierarchical learning

® Estimating value functions
» Most aggregate level

v" ([Location]) = (1—a)V"" ([Location]) + erV(

© 2019 Warren B. Powell

Location
Fleet
Domicile
DOThrs

| DaysFromHome |

Hierarchical learning
L

® Estimating value functions
» Middle level of aggregation

Location
_ _ Fleet
_ .| Location _ .| Location . .
Vv Y=(1-a)V" ()+ aV(Domicile
Fleet Fleet
DOThrs
| DaysFromHome |

© 2019 Warren B. Powell

Hierarchical learning
L

® Estimating value functions

» Most disaggregate level

[Location |
Fleet

Domicile

)=(1—a)V"(

[Location |
Fleet

Domicile

)+ aV(

© 2019 Warren B. Powell

Location
Fleet
Domicile
DOThrs

| DaysFromHome |

Hierarchical learning

@ Adaptive hierarchical estimation procedure developed as
part of this project (George, Powell and Kulkarni, 2008)

» Use weighted sum across different levels of aggregation.

- (@) (9) @) _
va_ZWa V, Zwa —1

g g
where
) -1
W, OC(+(1B2))
Estimate of variance - (o>)'9’ Estimate of bias

Both can be computed using simple recursive formulas.

George, A., W.B. Powell and S. Kulkarni, “Value Function Approximation Using Hierarchical
Aggregation for Multiattribute Resource Management,” Journal of Machine Learning Research,

Vol. 9, pp. 2079-2111 (2008). © 2019 Warren B. Powell

Hierarchical learning
N

® Hierarchical aggregation

Original function

v(a)“

Aggregated function

I Approximating a
|> /7(1) — Bias nonlinear function
" using two-levels of
aggregation.

= attribute selected

© 2019 Warren B. Powell

Hierarchical learning
N

o Hierarchical aggregatlon

f(x)]

High bias I Moderate bias E Zero bias

© 2019 Warren B. Powell

Hierarchical learning

© 2019 Warren B. Powell

Hierarchical learning

© 2019 Warren B. Powell

Hierarchical learning

® Hierarchical aggregation

0.35

Weights

<
—

0.05

Average weight on most disaggregate level

e WA

M ~A
‘

- W

Average weight on most aggregate levels

o

200

400

600 800 1000

lterations

1200

Aggregation level h

1

3
2

Hierarchical learning
N

® Notes:

» In the early iterations, we do not have enough data to
provide estimates at the detail level.

» S0, we put more weight on the most aggregate
estimates.

» As the algorithm progresses and we gain more
information, we can put more weight on the more
disaggregate estimates.

» But the weights depend on how much data we have in
different regions.

» This type of adaptive learning, from coarse-grained to
fine-grained, 1s common across all learning problems 1n
stochastic optimization.

© 2019 Warren B. Powell

Objective function

Hierarchical learning

® Hierarchical aggregation

1900000

1850000 -

1800000

1750000 -

1700000 -

1650000 -

1600000

1550000

1500000 -

1450000

1400000

Aggregate

Aggregate approximation

Disaggregate shows faster 1nitial
convergence; disaggregate
shows better asymptotic
performance.

160 260 360 460 560 660 760 860 960

Iterations

© 2019 Warren B. Powell

1000

Objective function

Hierarchical learning
L
® Hierarchical aggregation

1900000

1850000

1800000 -

1750000 -

1700000 -

1650000 -

1600000

1550000

1500000 -

1450000

1400000

Weighted Combination

Disaggregate

Aggregate

But adaptive weighting
outperforms both. This
hints at a strategy for
adaptive learning.

100 200 300 400 500
Iterations

© 2019 Warren B. Powell

600 700 800 900

1000

The exploration-exploitation problem

© 2018 W.B. Powell Slide 92

Exploration vs. exploitation

© 2019 Warren B. Powell

Exploration vs. exploitation
L

® What decision do we make?

» The one we think 1s best?

« Exploitation

» Or do we make a decision just to try something and
learn more about the result?

« Exploration

» This 1s the reason that the “exploration vs. exploitation”
problem 1s so well known in ADP/RL.

© 2019 Warren B. Powell

Exploration vs. exploitation

Pure exploitation

© 2019 Warren B. Powell

Exploration vs. exploitation

© 2019 Warren B. Powell

Exploration vs. exploitation

Pure exploitation with generalized learning.

© 2019 Warren B. Powell

Exploration vs. exploitation
N

® Notes

» This 1s a learning problem 1n the presence of a physical
state (the location)

» Above, we are using a pure exploitation strategy, but
with generalized learning (visiting one location teaches
us about another location).

» An active area of research, with painfully little
progress, 1s how to do active learning for state-
dependent problems (in general) and more specifically,
problems with a physical state.

» Note that we have avoided modeling the uncertainty in
the value functions as part of the state variable. This i1s
a historical oversight.

© 2019 Warren B. Powell

Journal of Machine Laaming Resaarch 12 (2011) 2031-2074 Submitted 11/09; Revised 3/11: Published 10711

Hierarchical Knowledge Gradient for Sequential Sampling

Martjn R.K. Mes MEEMES@UTWENTENL
Department of Operational Method: for Production and Logistics

University of Twente

Enschede, The Netherland:

Warren B. Powell POWELL@PRINCETON.EDU
Deparment of Operations Research and Financial Enginesring

Princeton Universigy

Princeton, NJ 05544, US4

Peter L. Frazier PF98@ CORNELL EDU
Department af Operations Research and Information Engineering

Cornall Univerzity

Ithaca, NY 14853, USA

Editor: Ronald Parr

Abstract

We propose a sequental sampling policy for noisy discrete global optimization and ranking and
selection, m which we amm to efficiently explore a fimite set of alternatives before selecting an
alternatrve as best when exploration stops. Each alternatrve may be charactenzed by a mult-
dimensional vector of categoncal and numencal attmbutes and has independent nommal rewards.
We use a Bayesian probability model for the unknown reward of each alternative and follow a fully
sequential samplimg policy called the knowledge-gradient pohcy. Thiz policy myopically optimizes
the expected increment in the value of zampling information 1n each time period. We propose a hier-
archical agzregation techmque that uses the common features shared by alternatives to learn about

Optimal learning with a single physical state and hierarchical learning.

© 2019 Warren B. Powell

Exploration vs. exploitation
N

@ Comparison of policies for pure learning problems

log(E[OC(n)])

log(E[OC(n)])

GP1 with A=0.5

NSO with A=0.5

1 T T T T T T T
EXPl, = KGCB +-voeeer SKQ ======- EXPL —— KGCB -------- SKQ =====e-
HKG IE BOLTZ 05 HKG IE BOLTZ
CEEY
g
i) i
= 01 [e, N &
003 | | | A 00: 1 1 1 1
0 100 200 300 400 500 0 100 200 300 400 500
number of measurements (n) number of measurements (n)
GP1 with =1 NSO with A=1
1 T | |
EXPL., —— KGCB -------- SKQ ==eee=-
HKG IE BOLTZ
0.5
z
3
0.2 g
=
0.1 P
i Lﬁb::’_*:'hp_.« ""-J‘I-!-\.‘;‘
U[h | |]] UO{\ 1 1 1 1
100 200 300 400 500 0 100 200 300 400 500

number of measurements (n)

© 2019 Warren B. Powell

number of measurements (n)

Exploration vs. exploitation

® Notes:

» We have extensive research on pure learning problems.

» Very little has been done with problems that combine a

belief state (which 1s the basis of any active learning
problem) and a physical state.

» Central to the value of making a decision that 1s
balancing the value of information 1s how this
information 1s used 1n future decisions.

* E.g. if we learn more about the cost ¢;; by going from i to

J, then this 1s only useful if we return to i so that we can use
this information.

 For this reason, the presence of generalized learning
architectures is key.

© 2019 Warren B. Powell

Exploration vs. exploitation
N

@ What about learning?

» “Active learning” with
general dynamic programs 1s
a very young field.

» Typically “exploration vs.
exploitation™ 1ssues are
solved with CFAs using
approximate value functions
as part of the estimate of the
value of a decision.

informs.

http://pubsonline.informs.org/ journal/opre/

OPERATIONS RESEARCH

Vol. 67, No. 1, January—February 2019, pp. 198-214
ISSN 0030-364X (print), ISSN 1526-5463 (online)

Jan, 2019

Bayesian Exploration for Approximate Dynamic Programming

liya O. Ryzhov,*® Martijn R. K. Mes,® Warren B. Powell,? Gerald van den Berg®

Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742; B Institute for Systems Research, A. James Clark
School of Engineering, University of Maryland, College Park, Maryland 20742; © Industrial Engineering and Business Information
Systems, University of Twente, 7500 AE Enschede, Netherlands; ®Operations Research and Financial Engineering, Princeton University,

Princeton, New Jersey 08540
Contact: iryzhov@rhsmith.umd.edu,

http: // orcid.org/0000-0002-4191-084X (IOR); m.r.k. mes@utwente.nl (MRKM); powell@princeton.edu

(WBP); geraldvandenberg@gmail com (GvdB)

Received: July 22, 2015

Revised: March 22, 2017, December 18, 2017,

February 19, 2018; April 12, 2018
Accepted: May 10, 2018

Published Online in Articles in Advance:
January 18, 2019

Subject Classifications: sequental:

deckion analysis; models: dynamic programming;
Bayesian: stlidics

Area of Review: Optimization
httpsi'doi.org/10.1267/opre.2018.1772

Copyright: © 2019 INFORMS

Abstract. Approximate dynamic programming (ADP) is a general methodological frame-
work for multistage stochastic optimization problems in transportation, finance, energy,
and other domains. We propose a new approach to the exploration/exploitation dilemma
in ADP that leverages two important concepts from the optimal leaming literature: first, we
show how a Bayesian belief structure can be used to express uncertainty about the value
function in ADP; second, we develop a new exploration strategy based on the concept of
value of information and prove that it systematically explores the state space. An important
advantage of our framework is that it can be integrated into both parametric and non-
parametric value function approximations, which are widely used in practical implementa-
tions of ADP. We evaluate this strategy on a variety of distinct resource allocation problems
and demonstrate that, although more computationally intensive, it is highly competitive
against other exploration strategies.

Funding: This research was funded in part by the Air Force Office of Sdentific Research [Grant FA9550-
08-1-0195], and in part by the National Science Foundation [Grant CMMI-1745198].
Supplemental Material: The e-companion is available at https: //doi.org/10.1287 fopre.2018.1772.

Keywords: approximate dynamic programming « optimal learning - Bayesian leaming - correlated beliefs « value of information

1. Introduction

Approximate dvnamic oroerammine (ADP)Y provides

1. Commodity storage. A firm stores a commodity such
as electridty or natural gas (Lai et al. 2010, Lohndorf and

© 2019 W.B. Powell

Exploration vs. exploitation
N

@ Some numerical experiments from Ryzhov et al. paper.

Figure 2. Experimental Comparisons for Commodity Storage with Stochastic Price

(a) (b)
300 : . TP ' r ' ’ ' ‘]
o= S OO OO0 ey
- i 600 | - < e
- r 2 = = i
QGD 4 P - =] ¥ - PP i
o = i
§ 100+ o] & 400 =
100 L Ay, = -
& y JI A BBt SraeT e a -
e “ 3 = .—1-'-'— £ & A - e - TR A A - -
g n O i aAbbdaAseanaRELT T g ”

E F _‘aﬁ_&& g—n—“ ‘f}n O -4-.'*_-_'_. W [
= D;HH_‘*‘**+'¢**""**‘+'.‘*‘*+‘ g 200/ "“"*u;ﬁh;,‘a—a a8 9 i
i & - -G S i A SO T Y
2100 o 8 wh_}*}-—rj.gﬁ#-ﬁ—ﬂ-%q—ninﬁLuLﬁ_ﬂ_‘}ﬁf‘}f_’ﬂ"ir
8- . = * . &
é | H'erh KG E D"‘ l&. '1:" -~ 1\. ..-. :\ OBy -y o & D a4 s 4

—&— Hierarch. z-greedy *
% -200} a— VP E_ 5— Hierarch. KG o
: 1 o Lookup KG 2 “v— Hierarch. s-greedy L
% =300 b\ & Lookup e-greedy £ -200 —&— P o SRR & :
o \ —+—E3 @ Lookup KG
* R-max < Lookup e-greedy
-400F : ' —+—B3
- -400 |
.. * R-max
500 : Wt F—Fh— P} ~— | ’ A
50 100 150 200 250 200 50 100 150 200 250 300
Time step Time stcp

Notes. (a) Online performance. (b) Offline performance.

© 2019 Warren B. Powell

Exploration vs. exploitation
N

@ Notes:

»

»

»

»

»

The exploration vs. exploitation problem i1s well known in
approximate dynamic programming, but lacks the elegant solution
of pure learning problems.

Most algorithms use fairly simple heuristics to balance exploration
and exploitation.

We have been pursuing research in optimal learning:
 First paper: optimally sampling a function represented by a
hierarchical belief model.
» Second paper (in preparation): optimal learning with a physical state
(the truck)
Our research in optimal learning with a physical state 1s modest.
The challenge 1s our ability to learn from one physical state, and
generalize to others.

Open question right now: how much does active learning
contribute when there is a physical state? This is likely to be very

problem-dependent.
© 2019 Warren B. Powell

From one truck to many

© 2018 W.B. Powell Slide 105

Optimizing fleets

e ——
® From one truck to many trucks

» If there 1s one truck and N “‘states™ (locations), then our
dynamic program (post-decision state) has N states.

» But what if there 1s more than one truck? Then we
have to capture the state of the fleet.

© 2019 Warren B. Powell

The state of the fleet

2019 Warren B. Pow

iell

The state of the fleet

2019 Warren B. Pow

iell

The state of the fleet

2019 Warren B. Pow

iell

The state of the fleet

©|2019 Warren B. Powell

The state of the fleet

©|2019 Warren B. Powell

The state of the fleet

2019 Warren B. Pow

iell

The state of the fleet

2019 Warren B. Pow

iell

The state of the fleet

2019 Warren B. Pow

iell

The state of the fleet

2019 Warren B. Pow

iell

Optimizing fleets

® What if we have N > 1 trucks?

No. trucks + | Locations | —1

| States |= _
| Locations | —1

Number Attribute
of State space
space
resources
1 1 1
1 100 100
1 1000 1,000
5 10 2,002
5 100 91,962,520
5 1000 8,416,958,750,200
50 10 12,565,671,261
50 100 13,419,107,273,154,600,000,000,000,000,000,000,000,000
50 1000 109,740,941,767,311,000

Real problems: 500 to 5,000 trucks, attribute space 50,000 up to 1029 attributes.

© 2019 Warren B. Powell

Optimizing fleets

® The pre-decision state: drivers and loads

Drivers Loads

S, =(R.,D,)

© 2019 Warren B. Powell Slide 119

Optimizing fleets

@ The post-decision state - drivers and loads after a
decision 1s made:

Stx _ SM’X(St,Xt)

O\>

® ------—---- >
B--------- >
®--------- >

© 2019 Warren B. Powell Slide 120

Optimizing fleets

@ The transition: Adding new information

S, Sen =S (S W)

Wt+1 — (Rt+19 Dt+1)
© 2019 Warren B. Powell Slide 121

Optimizing fleets
L

@ The next pre-decision state

St+1
¢ []
O
[]
O
[]
O

© 2019 Warren B. Powell Slide 122

Optimizing fleets

® Assignment network Drivers L oads Future attributes

M
» Capture the value of a”(a;,d,)

downstream driver.

a" (a,,d,) = Attribute vector of

driverin the future

given a decision d. a, A | — 3" (a,, d 5)

» Add this value to the
assignment arc. a, A' | — a"(a,,d,)

> a" (a3>d4)

a" (a,,d,)

© 2019 Warren B. Powell

Optimizing fleets

N
@ The assignment problem

» We now have a basic assignment problem, but where we have to
capture the downstream value of a truck:

X (S) E‘Igmax(z Z{Iiirt:rf+?z Lr.l'rr

aded de= a'esd

DRI F 7 d):c,..“;)

aci de

= argmax) Z(Lm—%‘y Y 7.0,(a a’))
e w) acsl de= a'es]

(14)

Recognizing that }°,_,6,(a,d) = é,m, 4 (a,d) =1,
we can write Equation {1-1) as

X;“(Sr):argmaxz Z fm‘+yt;r ;i‘ll[f f})lf.td' {15}

ned(w) gesd des

‘ 1, ifaM(a,d)=a,
(ﬂ, d) =

0, otherwise.

© 2019 Warren B. Powell

Optimizing fleets
N

® Finding the marginal value of a driver:

» Dual variables
« Can provide unreliable estimates.
e Need to get the marginal value of drivers who are not actually

there.

» Numerical derivatives:

(a) Initial solution (b) Without driver a, (c) Difference

B> v(@;1.22)

V(diyy, 45)

© 2019 Warren B. Powell

Optimizing fleets

Step 1: Start with a pre-decision state S/

Step 2: Solve the deterministic optimization using L
Deterministic

optimization

Recursive
statistics

btain Monte \Carlo sample of W, (") and _. ,
Simulation

\ t+1 (a)n))

Step 5: Return to step 1.
“on policy learning”

© 2019 Warren B. Powell

Optimizing fleets

9’
A

X
XX

N
N
¢

/ /)

sl
\
58

7

%_

'\

4
O
%%

7, \qz. A / !

© 2018 Warren B. Powell

Optimizing fleets

N

_»V_V_I V_»

¢
AN

B 5\ VARANDY o

D .\ \GRLVAYAY 4 WREN,

iy
N - /. SR

© 2018 Warren B. Powell

B |\ YERIAYS” .

/y \Q/o \

Optimizing fleets

A X /7 TIRAN 7 X

© 2018 Warren B. Powell

Objective function

Approximate dynamic programming
N

® ... a typical performance graph.

1900000

1800000

1700000

1600000

1500000

1400000

1300000

1200000

[AL
AT, i

)

T\ “w)1)“ '|‘ b ' | , r'! h
b l U' '.." , | \ hl)‘lw\ l!‘.“ ‘.d‘“n‘llllljmf‘ ‘ ~
T ! 1”1‘) | v

Dl .
Jh/‘ ‘ "*“
T

© 2018 Was+wenrn B. Powell

1 } i]
) o\ WIN WA I
|P“ |1 [» ‘41]l‘ h“
.‘l ‘“
J1
I
1 pl u ‘
m
) | ‘,g»h\'
i)[",i/’
’I‘.‘}
L [
/I' I
0 100 200 300 400 500 600 700 800 900

1000

Approximate dynamic programming

Stepsizes for forward APD

© 2018 W.B. Powell Slide 131

Stepsizes

® Stepsizes:

» Approximate value iteration requires updates of the

form;

Updated estimate

New observation

The stepsize
“Learning rate”
“Smoothing factor”

© 2019 Warren B. Powell

Stepsizes

@ Single state, single action Markov chain

» Updating — receives reward=1 at last node. All other rewards = 0.

0 1
O——0O——0—"—0—"—0——0——
» Same as adding up random rewards with mean of 1. Noise may be
zero, or quite high.

566 FORWARD ADP |: THE VALUE OF A POLICY

lteration ?{} i T[l_) 1__1 U3 ?;; U4 Va Us

0 0.000 0.000 0.000 0.000 0.000
0.000 0000 0000 0.000 0.000 0000 0000 0000 1.000
0.000 0000 0.000 0000 0000 0000 0500 1.000 1.000
0.000 0.000 0000 0000 0.167 0500 0667 1.000 1.000

b =

fad

1
1
1
1
4 0.000 0.000 0042 0.167 0292 0.667 0.750 1.000 1.000 1
5 0.008 0.042 0.092 0292 0.383 0750 0800 1.000 1000 1
6 0022 0.092 0.140 0383 0453 0800 0.833 1.000 1000 1
7 0.039 0.140 0.185 0453 0507 0833 0.857 1.000 1000 1
8 0.057 0.185 0.225 0507 0551 0.857 0875 1.000 1.000 1
9 0076 0225 0.261 0551 0.587 0875 0.880 1.000 1000 1
10 0.095 0.261 0294 0587 0617 0889 0900 1.000 1000 1

Table 17.1 Effect of stepsize on backward learning

Stepsizes

@ Bound on performance using 1/n:

Single state, single action

. o = 1 (- ()

Jii

- C
V = ”}/nC = — 2
; I=7
V't =c+ MW 5 i
/

. = An+1
Vo =(1—q, V"' +a V"

v —0C
10 / 7 =0.90

© 2019 Warren B. Powell

Stepsizes

® Bias-adjusted Kalman filter (BAKF)

a =1—

O

2

Estimate of the variance

EREG

Estimate of the bias

where:

]
K.

A" =(1-a,)2 A"+ (e,)2

2 . .
As o Increases, stepsize decreases toward 1/n

As " increases, stepsize increases toward 1.

At all times, o, 2 1

N

© 2019 Warren B. Powell

Stepsizes
N

® The bias-adjusted Kalman filter

1.2

0.2

0.8

0.6

0.4

Observed values

BAKTEF stepsize rule

AAAAAAAAAAAAAAAAAAAAAAAAAA
A

''_'_'_'_'_'_'_'_'_'_'_'_'_'_
1 21 41 61 81

© 2019 Warren B. Powell

Stepsizes
N

® The bias-adjusted Kalman filter

\/\/\/yv \/v ik \jvl\,/\\ |

AAAAAAAAA
Y UTUWUWUWEN

..

© 2019 Warren B. Powell

Stepsizes
N

® Notes:

» Because £ and o have to be estimated from data, it is a
stochastic stepsize policy. The challenge 1s estimating £ .

» This stepsize rule 1s designed for a nonstationary time
series. It does not recognize the feedback that arises in
approximate value iteration.

© 2019 Warren B. Powell

Optimizing fleets

® The effect of stepsizes

5,000
‘ Backward pass | Numerical derivatives 1
OSA stepsize \

4.000
=
2
_5 3.000 +4-1-%.
w
-
e
-
)
) 2.000 4
v
>
<

1,000

0 —

0 50 100
Iterations

Figure 5 Average Value Function When We Use Forward and Backward Passes, Numerical Derivatives and Dual Variables, and the OSA Stepsize or
the McClain Stepsize

© 2019 Warren B. Powell

Schneider National case study

© 2018 W.B. Powell Slide 140

Schneider National

1400

Calibrated model

1200
-
1000 A:

y/

(o]
o
o

D
[a=]
o

=

Revenue per WU

== Historical maximum
=== Simulation

e=fe== Historical mnimum

US SOLO us IC US_TEAM
Capacity category

Historical min and max

Utilization

Revenue per WU

We were able to calibrate our ADP
model very closely to the behavior
of the company, which helped to
build confidence.

Utilization

1200

1000

800

600

400 -

200

Vi

== Historical maximum
=== Simulation

e=ge= Historical minimum

US_SOLO us_IC US_TEAM
Capacity category

© 2019 Warren B. Powell

Schneider National
L

LOH (miles)

Average LOH for Solos

850

Vanilla simulator

800 /

750 : = .

700 T

\-— Acceptable region

650

c0+—/n-kenoono” 4??r - -1 o v e o 07—V 0T T T T T T T T T T T T T T T T T T
1 3 5 7 9 1M1 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iterations

The adaptive learning of value functions produced results
that more accurately matched historical performance.

© 2019 Warren B. Powell

ADP for trucking

® Notes:

» We can use the value functions to estimate the marginal
value of drivers whose home 1s 1n a particular region.

» In the next slides, we are going to show two ways to
estimate these values:

* In the first, we are going to run a series of (very expensive)
simulations where we hire an increasing number of drivers in a
region. Each time, we have to reoptimize the entire fleet over
many iterations. We would have to repeat this for each
possible home location.

 In the second, we are going to estimate the marginal value by
using the value function approximations to estimate the value
of drivers in each region, from one run of the model.

© 2019 Warren B. Powell

Case study: truckload trucking

1900000

simulation objective function

1890000

1880000

1870000
1860000
1850000 -
1840000

1830000
1820000

1810000

1800000

580

610 620 630 640 650

of drivers with attribute a

s2
s3
s4
X sb
® s6
+ s7
- s8

s10

pred

© 2019 Warren B. Powell

Case study: truckload trucking

1900000

simulation objective function

1890000

1880000

1870000
1860000
1850000 -
1840000

1830000
1820000

1810000

1800000

580

610 620 630 640 650

of drivers with attribute a

s2
s3
s4
X sb
® s6
+ s7
- s8

s10

e=li== nred

© 2019 Warren B. Powell

Case study: truckload trucking

3500

3000

Purple bars: Value of drivers from value function approximations

2500

Error bars: Statistical estimate trom rerunning the simulation.

2000 -

MO e

1500

g

|

1000 -

500 -

T2 Sl G e g [I8 i8I it 29222 1113

-500

A5 T w160 1147

18- 19 20

This shows that the value functions provide reasonable approximations of the

© 2019 Warren B. Powell

Case study: truckload trucking

; (N
Where to add drivers: ‘{

Case study: truckload trucking

Where to reduce drivers:

)

