
.

ORF 544

Stochastic Optimization and Learning
Spring, 2019

Warren Powell
Princeton University

http://www.castlelab.princeton.edu

© 2018 W.B. Powell

Week 8 – Chapter 11

Policy function approximations
Policy search

© 2019 Warren B. Powell

Policy function approximations

© 2019 Warren B. Powell

Policy function approximations

Battery arbitrage – When to charge, when to
discharge, given volatile LMPs

© 2019 Warren B. Powell

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Grid operators require that batteries bid charge and
discharge prices, an hour in advance.

We have to search for the best values for the policy
parameters

Discharge
Charge

Charge Dischargeand . 

Policy function approximations

© 2019 Warren B. Powell

Policy function approximations

Our policy function might be the parametric
model (this is nonlinear in the parameters):

charge

charge discharge

charge

1 if
(|) 0 if

1 if

t

t t

t

p
X S p

p




  



 
  
 

Energy in storage:

Price of electricity:

© 2019 Warren B. Powell

Numerical derivatives

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max () , (|)
T

t
t t t

t
F C S X S

   


 

© 2019 Warren Powell Slide 7

PFAs

» Also called “linear decision rules”

© 2019 Warren B. Powell

© 2019 Warren B. Powell

PFAs

© 2019 Warren B. Powell

PFAs

© 2019 Warren B. Powell

PFAs

© 2019 Warren B. Powell

PFAs

Neural networks as policies

© 2019 Warren B. Powell

1tS

2tS

3tS



tIS

()tX S

PFAs

Neural networks as policies
» Each link is characterized by a weight that is normally

called ௜௝, but which we will call ௜௝ for consistency
with our prior notation.

» We can represent our neural network policy then as
ேே ௡ .

» The weight vector may easily have hundreds or even
thousands of dimensions. This is not a major problem
because we can compute derivatives of the policy.

© 2019 Warren B. Powell

PFAs

© 2019 Warren B. Powell

PFAs

Constraints:

© 2019 Warren B. Powell

Policy search

© 2019 Warren B. Powell

Derivative-based policy search

Derivative-based policy search

The core problem of policy search is a classical
stochastic search problem:

௫ ଴

where “ ” is a policy, represents any form of learning
or testing randomness, and ଴ might capture any prior
distributions.
» There will always be two solution approaches:

• Derivative-based (Chapter 5)
• Derivative-free (Chapter 7)

» … but there are some details unique to policy search
arising from the sequential nature of these problems.

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Derivative-based policy search

© 2019 Warren B. Powell

Derivative-based policy search

© 2019 Warren B. Powell

Derivative-based policy search

Finite differences
» We wish to optimize the decision of when to charge or

discharge a battery

© 2019 Warren B. Powell

charge

charge discharge

charge

1 if
(|) 0 if

1 if

t

t t

t

p
X S p

p




  



 
  
 

Derivative-based policy search

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max () , (|)
T

t
t t t

t
F C S X S

   


 

© 2019 Warren B. Powell

Derivative-based policy search

Simulating finite difference

© 2019 Warren B. Powell

Derivative-based policy search

Finite differences

© 2019 Warren B. Powell

Derivative-based policy search

Finite differences

© 2019 Warren B. Powell

Derivative-based policy search

Finite differences

© 2019 Warren B. Powell

Derivative-based policy search

Simultaneous perturbation stochastic approximation
» Let:

• 𝑥௡ be a p െ dimensional vector.
• 𝛿௡ be a scalar perturbation
• 𝑍௡ be a p െdimensional vector, with each element drawn from a normal (0,1)

distribution.

» We can obtain a sampled estimate of the gradient 𝛻௫𝐹ሺ𝑥௡, 𝑊௡ାଵሻ
using two function evaluations: 𝐹 𝑥௡ ൅ 𝛿௡𝑍௡ and 𝐹 𝑥௡ ൅ 𝛿௡𝑍௡

1

1
2

() ()
2

() ()
2(,)

() ()
2

n n n n n n

n n

n n n n n n

n nn n
x

n n n n n n

n n
p

F x Z F x Z
Z

F x Z F x Z
ZF x W

F x Z F x Z
Z

d d
d

d d
d

d d
d

+

é ù+ - +ê ú
ê ú
ê ú
ê ú+ - +ê ú
ê ú = ê ú
ê ú
ê ú
ê ú
ê ú+ - +
ê ú
ê úë û



Policy search

© 2019 Warren B. Powell

One-dimensional search

Stepsizes for policy search

Notes:
» As we saw before (chapter 5) we trade the elegant

simplicity of stochastic gradients for the frustration of
designing stepsize rules.

» The next few slides suggest that this application is
nonconvex, but unimodular.

© 2019 Warren B. Powell

Stepsizes for policy search

One-dimensional contour plots-uncertain forecast
௜ for i=1,…, 8 hours into the future.

Stepsizes for policy search

One-dimensional contour plots-uncertain forecast
௜ for i=9,…, 15 hours into the future

Stepsizes for policy search

2-D contours for uncertain forecasts

Stepsizes for policy search

Stepsizes
» With deterministic problems, we

perform a one-dimensional search:

min
ఈ

𝐹ሺ𝑥௡ ൅ 𝛼𝛻௫𝐹 𝑥௡ ሻ

» With stochastic problems, we use a
stepsize rule (or policy) that may miss
the optimum completely.

» Stepsize rules always have to be tuned,
and tuning depends on the starting
point.

1 ()n n n nx x f x   

Stepsizes for policy search

Effect of starting points
» Stepsizes tuned for region [0,1].

Pc
t.

Im
pr

ov
em

en
t o

ve
r b

en
ch

m
ar

k
lo

ok
ah

ea
d

Starting point

Stepsizes for policy search
Tuning the parameters
» Stepsizes tuned for region [0,2].

𝜃௜ ൌ 1 𝜃௜ ∈ ሾ0,1ሿ 𝜃௜ ∈ ሾ0.5,1.5ሿ 𝜃௜ ∈ ሾ1,2ሿ

Stepsizes for policy search

Notes:
» The two previous slides illustrate that tuning the

stepsize rules does depend on the starting point.
» Since stepsize rules for stochastic optimization do not

perform a one-dimensional search, tuning is critical.
» We have begun experimenting with the idea of using

the Fibonacci search, which is an optimal algorithm for
doing derivative-free search of deterministic,
unimodular functions.

» We have adapted the Fibonacci search for stochastic
problems.

© 2019 Warren B. Powell

Stepsizes for policy search
Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, …

83 5

83 5

83 52

Prior

Posterior iter 1

Posterior iter 2
Exclude w.
prob. 𝑞௡ାଵ

Exclude w. prob. 𝑞௡
Exclude w. prob.

1-𝑞௡

Exclude w. prob. 𝑞௡

Stepsizes for policy search
Fibonacci search
» Fibonacci search is an optimal

algorithms for finding the
maximum of a unimodular
function.

» This process requires that we be
able to evaluate the function
deterministically.

» We assume Lipschitz continuity, as
well as knowledge of the error
distribution. This allows us to
estimate the probability that the
optimum is toward the left or right.

» We then repeat this multiple times,
and create a distribution about where
the optimum is.

Stepsizes for policy search
Fibonacci search for
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

» Deterministic response

» Always finds the correct
optimum.

Fu
nc

tio
n

an
d

ob
se

rv
at

io
ns

Fr
eq

ue
nc

y

Stepsizes for policy search

Fu
nc

tio
n

an
d

ob
se

rv
at

io
ns

Fr
eq

ue
nc

y

Fibonacci search for
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

» Medium noise

Stepsizes for policy search

Fu
nc

tio
n

an
d

ob
se

rv
at

io
ns

Fr
eq

ue
nc

y

Fibonacci search for
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

» High noise

Stepsizes for policy search

Fu
nc

tio
n

an
d

ob
se

rv
at

io
ns

Fr
eq

ue
nc

y

Fibonacci search for
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

» High noise

Fu
nc

tio
n

an
d

ob
se

rv
at

io
ns

Fr
eq

ue
nc

y

Fibonacci search for
noisy functions

» 34 Fibonacci numbers

» Iterations: 10

» High noise

» Clearly 10 iterations (340
function evaluations) are
not needed.

Stepsizes for policy search

Fu
nc

tio
n

an
d

ob
se

rv
at

io
ns

Fr
eq

ue
nc

y

Fibonacci search for
noisy functions

» 377 Fibonacci numbers

» Iterations: 10

» High noise

Stepsizes for policy search

Fu
nc

tio
n

an
d

ob
se

rv
at

io
ns

Fr
eq

ue
nc

y

Fibonacci search for
noisy functions

» 377 Fibonacci numbers

» Iterations: 10

» High noise

Stepsizes for policy search

Notes
» Even with very high noise, it appears that Fibonacci

does a very reliable job of finding a near-optimal point.
» The next step is to see how well this works in a

stochastic gradient algorithm.

© 2019 Warren B. Powell

Policy gradient I

© 2019 Warren Powell Slide 48

Derivative-based:
Categorical actions – Boltzmann policies

Policy search
There are two classes of sequential decision problems that
have yielded two different approaches to doing gradient-
based policy search:

» Numerical actions – Here the action is a quantity, and the
downstream state is a function of this quantity.

» Categorical actions – These problems are easily viewed as graphs
with possibly stochastic transitions. We are not able to take a
derivative with respect to the action.

© 2019 Warren B. Powell

Policy gradient search

Discrete dynamic programs
» Maximizing expected single period reward

» Need to skim this – just highlight “policy gradient
theorem.”

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

© 2019 Warren B. Powell

Policy gradient search

Notes:
» The policy gradient search is typically illustrated in the

context of Boltzmann, which is characterized by a
scalar parameter.

» This can be optimized using specialized search routines
for scalar problems.

» It can also be tackled using the SPSA, where the model
is viewed as a black-box simulator.

» Even policy gradient search involves the stepsize issue.

© 2019 Warren B. Powell

Policy gradient II

© 2019 Warren Powell Slide 63

Derivative-based: Control problems

Policy gradient for control problems

Control problems
» We use “control problem” to describe problems where

the downstream state is a continuous function of the
decision, captured by the transition function:

௧ାଵ
ெ

௧
గ

௧ ௧ାଵ

» We need to capture the effect of changing on ௧
గ

௧ ௧ ௧ାଵ
ெ

௧ ௧ ௧ାଵ

© 2019 Warren B. Powell

Policy gradient for control problems

© 2019 Warren B. Powell

Policy gradient for control problems

Applying the chain rule:

© 2019 Warren B. Powell

Policy gradient for control problems

Notes:
» Now we just have to take the derivative of the:

• Cost/contribution function
• Transition function
• Policy

» This approach is very popular using neural networks.
So popular that the derivatives can be computed using
libraries such as “Tensorflow.”

» … but, we can also use numerical derivatives.

© 2019 Warren B. Powell

Policy search

© 2019 Warren B. Powell

Derivative-free

Derivative-free policy search
Derivative-free policy search
» Apply everything we learned in chapter 7.
» Policy search is typically performed in a simulator, in which case

we would use a “final reward” objective:
max

గ
𝔼ሼ𝐹 xగ,ே, 𝑊෡ 𝑆଴ ൌ 𝔼ௌబ𝔼ௐభ,…,ௐಿ|ௌబ𝔼ௐ෡ |ௌబ𝐹ሺ𝑥గ,ே, 𝑊෡ ሻ

» This is for state-independent problems, but what about state-
dependent problems? Instead of learning the implementation
decision 𝑥గ,ே, we need to learn the implementation decision as a
function of the state 𝑆, which is a policy that we call the
implementation policy 𝑋గ೔೘೛ሺ𝑆ሻ. We are going to write this as
𝑋గ೔೘೛ሺ𝑆|𝜃௜௠௣ሻ to express the likely dependence on tunable
parameters to be used in the implementation policy.

» Just as we needed a “learning policy” 𝜋 to learn the
implementation decision 𝑥గ,ே, we need a learning policy 𝜋௟௥௡ in
the state-dependent case to learn the implementation policy 𝜋௜௠௣.

© 2019 Warren B. Powell

Derivative-free policy search
Derivative-free policy search
» We are going to assume that we are simulating over time:

ሺ𝑆଴, 𝑥଴, 𝑊ଵ, 𝑆ଵ, … , 𝑆௧, 𝑥௧, 𝑊௧ାଵ, … ሻ

» Now we need to solve

max
గ೗ೝ೙

𝔼ሼ𝐶 𝑆, Xగ೔೘೛ 𝑆|𝜃௜௠௣ , 𝑊෡ 𝑆

» This involves three types of uncertainty:
• Bayesian priors on uncertain parameters (if available), which we

capture in the initial state 𝑆଴.
• Uncertainty in the process of learning when applying the learning

policy 𝜋௟௥௡ using the realizations of 𝑊ଵ, 𝑊ଶ, …
• Uncertainty in the process of evaluating the implementation policy

𝑋గ೔೘೛ሺ𝑆௧|𝜃௜௠௣ሻ.

© 2019 Warren B. Powell

Derivative-free policy search

Derivative-free policy search
» We have to evaluate

max
గ೗ೝ೙

𝔼ሼ𝐶 𝑆, Xగ೔೘೛ 𝑆|𝜃௜௠௣ , 𝑊෡ 𝑆

» We first expand the expectations:
max
గ೗ೝ೙

𝔼ௌబ𝔼ௐభ,…,ௐ೅|ௌబ𝔼ೄబ
గ೗ೝ೙

𝔼ௌ|ௌబ
గ೔೘೛

𝔼ௐ෡ |ௌబሼ𝐶 𝑆, Xగ೔೘೛ 𝑆|𝜃௜௠௣ , 𝑊෡ 𝑆

» Next we have to write this out in a form we can simulate.
The hardest part is the expectation over the state whose
distribution reflects the implementation policy. We do
this by simulating the implementation policy:

© 2019 Warren B. Powell

Derivative-free policy search

Derivative-free policy search
» To simulate

» Let:
𝜓 be a sample of any variables in a Bayesian prior in 𝑆଴.
𝜔 be a sampled sequence 𝑊ଵ, 𝑊ଶ, … , 𝑊் (where we follow the

learning policy)
𝜔ෝ be a sampled sequence 𝑊෡ଵ, 𝑊෡ଶ, … , 𝑊෡் (where we follow the

implementation policy)

» Now replace each expectation with a sampled estimate.

© 2019 Warren B. Powell

Derivative-free policy search

Issues:
» Dimensionality of control vector

• Scalar (specialized search algorithms)
• Low dimensional (enumeration?)
• High dimensional (use sampling)

» Creating belief models
• Linear models
• Locally linear
• Correlated beliefs (Gaussian process regression)

» Online (cumulative reward) vs. offline (terminal
reward)

© 2019 Warren B. Powell

Policy search

© 2019 Warren B. Powell

Locally quadratic knowledge gradient

Knowledge gradient with local quadratic belief

Locally quadratic knowledge gradient
» Uses locally quadratic approximation around proximal point 𝑥.
» Difference between true function and quadratic approx. is Lipschitz
» Encourages learning away from proximal point, but not too far.

𝑓 𝑥 𝜃 ൌ 𝜃଴ ൅ 𝜃ଵ 𝑥 െ 𝑥௣௥௢௫ ൅ 𝜃ଶ 𝑥 െ 𝑥௣௥௢௫ ଶ

Estimate of optimal
solution

Error between true function
and quadratic approximation

Truth

Belief mode:
yො ൌ f x θ ൅ β x xത ൅ ε

Structural uncertainty:
β x xത ∼ Nሺ0, κ x െ xത ୮ሻ

Gaussian noise:
ε ∼ Nሺ0, σக

ଶሻ

Quadratic
approximation

𝑥௣௥௢௫

Assumes polynomial approx. is
globally accurate.

Assumes polynomial approx. is
locally accurate.

True optimum

Estimated optimum

Statement A: Approved for public release: distribution unlimited 76

Knowledge gradient with local quadratic belief

Knowledge gradient with local quadratic belief

Knowledge gradient with local quadratic belief

Knowledge gradient with local quadratic belief

Knowledge gradient with local quadratic belief

Knowledge gradient with local quadratic belief

Knowledge gradient with local quadratic belief

