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Week 8 – Chapter 11 

Policy function approximations
Policy search
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Policy function approximations
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Policy function approximations

Battery arbitrage – When to charge, when to 
discharge, given volatile LMPs
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Grid operators require that batteries bid charge and 
discharge prices, an hour in advance.

We have to search for the best values for the policy 
parameters 
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Policy function approximations
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Policy function approximations

Our policy function might be the parametric 
model (this is nonlinear in the parameters):
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Energy in storage:

Price of electricity:
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Numerical derivatives

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:
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PFAs

» Also called “linear decision rules”
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PFAs
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PFAs
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PFAs
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PFAs

Neural networks as policies
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PFAs

Neural networks as policies
» Each link is characterized by a weight that is normally 

called , but which we will call for consistency 
with our prior notation.

» We can represent our neural network policy then as 
.

» The weight vector may easily have hundreds or even 
thousands of dimensions.  This is not a major problem 
because we can compute derivatives of the policy.
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PFAs
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PFAs

Constraints:
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Policy search
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Derivative-based policy search



Derivative-based policy search

The core problem of policy search is a classical 
stochastic search problem:

where “ ” is a policy, represents any form of learning 
or testing randomness, and might capture any prior 
distributions.
» There will always be two solution approaches:

• Derivative-based (Chapter 5)
• Derivative-free (Chapter 7)

» … but there are some details unique to policy search 
arising from the sequential nature of these problems.
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Policy gradient search

© 2019 Warren B. Powell



Derivative-based policy search
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Derivative-based policy search
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Derivative-based policy search

Finite differences
» We wish to optimize the decision of when to charge or 

discharge a battery
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Derivative-based policy search

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:
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Derivative-based policy search

Simulating finite difference
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Derivative-based policy search

Finite differences
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Derivative-based policy search

Finite differences
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Derivative-based policy search

Finite differences
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Derivative-based policy search

Simultaneous perturbation stochastic approximation
» Let:

• 𝑥 be a p dimensional vector.
• 𝛿 be a scalar perturbation
• 𝑍 be a p dimensional vector, with each element drawn from a normal (0,1) 

distribution.

» We can obtain a sampled estimate of the gradient 𝛻 𝐹 𝑥 , 𝑊
using two function evaluations: 𝐹 𝑥 𝛿 𝑍 and 𝐹 𝑥 𝛿 𝑍
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Policy search
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One-dimensional search



Stepsizes for policy search

Notes:
» As we saw before (chapter 5) we trade the elegant 

simplicity of stochastic gradients for the frustration of 
designing stepsize rules.

» The next few slides suggest that this application is 
nonconvex, but unimodular.  
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Stepsizes for policy search

One-dimensional contour plots-uncertain forecast
for i=1,…, 8 hours into the future.



Stepsizes for policy search

One-dimensional contour plots-uncertain forecast
for i=9,…, 15 hours into the future



Stepsizes for policy search

2-D contours for uncertain forecasts



Stepsizes for policy search

Stepsizes
» With deterministic problems, we 

perform a one-dimensional search:

min 𝐹 𝑥 𝛼𝛻 𝐹 𝑥

» With stochastic problems, we use a 
stepsize rule (or policy) that may miss 
the optimum completely.

» Stepsize rules always have to be tuned, 
and tuning depends on the starting 
point.
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Stepsizes for policy search

Effect of starting points
» Stepsizes tuned for region [0,1].

Pc
t. 

Im
pr

ov
em

en
t o

ve
r b

en
ch

m
ar

k 
lo

ok
ah

ea
d

Starting point



Stepsizes for policy search
Tuning the parameters
» Stepsizes tuned for region [0,2].

𝜃 1 𝜃 ∈ 0,1 𝜃 ∈ 0.5,1.5 𝜃 ∈ 1,2



Stepsizes for policy search

Notes:
» The two previous slides illustrate that tuning the 

stepsize rules does depend on the starting point.
» Since stepsize rules for stochastic optimization do not 

perform a one-dimensional search, tuning is critical.
» We have begun experimenting with the idea of using 

the Fibonacci search, which is an optimal algorithm for 
doing derivative-free search of deterministic, 
unimodular functions.

» We have adapted the Fibonacci search for stochastic 
problems.
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Stepsizes for policy search
Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, …

83                 5

83                 5

83                52

Prior

Posterior iter 1

Posterior iter 2
Exclude w. 
prob. 𝑞

Exclude w. prob. 𝑞Exclude w. prob.
1-𝑞

Exclude w. prob. 𝑞



Stepsizes for policy search
Fibonacci search
» Fibonacci search is an optimal 

algorithms for finding the 
maximum of a unimodular
function.

» This process requires that we be 
able to evaluate the function 
deterministically.

» We assume Lipschitz continuity, as 
well as knowledge of the error 
distribution.  This allows us to 
estimate the probability that the 
optimum is toward the left or right.

» We then repeat this multiple times, 
and create a distribution about where 
the optimum is.



Stepsizes for policy search
Fibonacci search for 
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

» Deterministic response

» Always finds the correct 
optimum.
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Stepsizes for policy search
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Fibonacci search for 
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

» Medium noise



Stepsizes for policy search
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Fibonacci search for 
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

» High noise



Stepsizes for policy search
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Fibonacci search for 
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

» High noise
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Fibonacci search for 
noisy functions

» 34 Fibonacci numbers

» Iterations: 10

» High noise

» Clearly 10 iterations (340 
function evaluations) are 
not needed.



Stepsizes for policy search
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Fibonacci search for 
noisy functions

» 377 Fibonacci numbers

» Iterations: 10

» High noise



Stepsizes for policy search
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Fibonacci search for 
noisy functions

» 377 Fibonacci numbers

» Iterations: 10

» High noise



Stepsizes for policy search

Notes
» Even with very high noise, it appears that Fibonacci 

does a very reliable job of finding a near-optimal point.
» The next step is to see how well this works in a 

stochastic gradient algorithm.

© 2019 Warren B. Powell



Policy gradient I
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Derivative-based:
Categorical actions – Boltzmann policies



Policy search
There are two classes of sequential decision problems that 
have yielded two different approaches to doing gradient-
based policy search:

» Numerical actions – Here the action is a quantity, and the 
downstream state is a function of this quantity.

» Categorical actions – These problems are easily viewed as graphs 
with possibly stochastic transitions.  We are not able to take a 
derivative with respect to the action.
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Policy gradient search

Discrete dynamic programs
» Maximizing expected single period reward

» Need to skim this – just highlight “policy gradient 
theorem.”
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Policy gradient search
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Policy gradient search
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Policy gradient search
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Policy gradient search
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Policy gradient search
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Policy gradient search
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Policy gradient search
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Policy gradient search

© 2019 Warren B. Powell



Policy gradient search
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Policy gradient search
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Policy gradient search
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Policy gradient search

Notes:
» The policy gradient search is typically illustrated in the 

context of Boltzmann, which is characterized by a 
scalar parameter.

» This can be optimized using specialized search routines 
for scalar problems.

» It can also be tackled using the SPSA, where the model 
is viewed as a black-box simulator.

» Even policy gradient search involves the stepsize issue.
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Policy gradient II
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Derivative-based: Control problems



Policy gradient for control problems

Control problems
» We use “control problem” to describe problems where 

the downstream state is a continuous function of the 
decision, captured by the transition function:

» We need to capture the effect of changing on 
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Policy gradient for control problems
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Policy gradient for control problems

Applying the chain rule:

© 2019 Warren B. Powell



Policy gradient for control problems

Notes:
» Now we just have to take the derivative of the:

• Cost/contribution function
• Transition function
• Policy

» This approach is very popular using neural networks.  
So popular that the derivatives can be computed using 
libraries such as “Tensorflow.”

» … but, we can also use numerical derivatives.
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Policy search
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Derivative-free



Derivative-free policy search
Derivative-free policy search
» Apply everything we learned in chapter 7.
» Policy search is typically performed in a simulator, in which case 

we would use a “final reward” objective:
max 𝔼 𝐹 x , , 𝑊 𝑆 𝔼 𝔼 ,…, | 𝔼 | 𝐹 𝑥 , , 𝑊

» This is for state-independent problems, but what about state-
dependent problems? Instead of learning the implementation 
decision 𝑥 , , we need to learn the implementation decision as a 
function of the state 𝑆, which is a policy that we call the 
implementation policy 𝑋 𝑆 .  We are going to write this as 
𝑋 𝑆|𝜃 to express the likely dependence on tunable 
parameters to be used in the implementation policy.

» Just as we needed a “learning policy” 𝜋 to learn the 
implementation decision 𝑥 , , we need a learning policy 𝜋 in 
the state-dependent case to learn the implementation policy 𝜋 .
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Derivative-free policy search
Derivative-free policy search
» We are going to assume that we are simulating over time:

𝑆 , 𝑥 , 𝑊 , 𝑆 , … , 𝑆 , 𝑥 , 𝑊 , …

» Now we need to solve

max 𝔼 𝐶 𝑆, X 𝑆|𝜃 , 𝑊 𝑆

» This involves three types of uncertainty:
• Bayesian priors on uncertain parameters (if available), which we 

capture in the initial state 𝑆 .
• Uncertainty in the process of learning when applying the learning 

policy 𝜋 using the realizations of 𝑊 , 𝑊 , …
• Uncertainty in the process of evaluating the implementation policy 

𝑋 𝑆 |𝜃 .
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Derivative-free policy search

Derivative-free policy search
» We have to evaluate

max 𝔼 𝐶 𝑆, X 𝑆|𝜃 , 𝑊 𝑆

» We first expand the expectations:     
max 𝔼 𝔼 ,…, | 𝔼 𝔼 | 𝔼 | 𝐶 𝑆, X 𝑆|𝜃 , 𝑊 𝑆

» Next we have to write this out in a form we can simulate.  
The hardest part is the expectation over the state whose 
distribution reflects the implementation policy.  We do 
this by simulating the implementation policy:
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Derivative-free policy search

Derivative-free policy search
» To simulate

» Let:
𝜓 be a sample of any variables in a Bayesian prior in 𝑆 .
𝜔 be a sampled sequence 𝑊 , 𝑊 , … , 𝑊  (where we follow the 

learning policy)
𝜔 be a sampled sequence 𝑊 , 𝑊 , … , 𝑊 (where we follow the 

implementation policy)

» Now replace each expectation with a sampled estimate.
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Derivative-free policy search

Issues: 
» Dimensionality of control vector

• Scalar (specialized search algorithms)
• Low dimensional (enumeration?)
• High dimensional (use sampling) 

» Creating belief models
• Linear models
• Locally linear
• Correlated beliefs (Gaussian process regression)

» Online (cumulative reward) vs. offline (terminal 
reward)
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Policy search
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Locally quadratic knowledge gradient



Knowledge gradient with local quadratic belief

Locally quadratic knowledge gradient
» Uses locally quadratic approximation around proximal point 𝑥.
» Difference between true function and quadratic approx. is Lipschitz
» Encourages learning away from proximal point, but not too far.

𝑓 𝑥 𝜃 𝜃 𝜃 𝑥 𝑥 𝜃 𝑥 𝑥

Estimate of optimal 
solution

Error between true function
and quadratic approximation

Truth

Belief mode:
y f x θ β x x ε

Structural uncertainty:
β x x ∼ N 0, κ x x

Gaussian noise:
ε ∼ N 0, σ

Quadratic 
approximation

𝑥



Assumes polynomial approx. is 
globally accurate.

Assumes polynomial approx. is 
locally accurate.

True optimum

Estimated optimum
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Knowledge gradient with local quadratic belief



Knowledge gradient with local quadratic belief



Knowledge gradient with local quadratic belief



Knowledge gradient with local quadratic belief



Knowledge gradient with local quadratic belief



Knowledge gradient with local quadratic belief



Knowledge gradient with local quadratic belief


