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Week 8 — Chapter 11

Policy function approximations

Policy search

© 2019 Warren B. Powell



Policy function approximations

© 2019 Warren B. Powell



Policy function approximations
N

@ Battery arbitrage — When to charge, when to
discharge, given volatile LMPs

ERCOT (Texas) price data
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Policy function approximations
N

® Grid operators require that batteries bid charge and
discharge prices, an hour in advance.
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® We have to search for the best values for the policy
parameters 6" and 6"
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Policy function approximations
N

® Our policy function might be the parametric
model (this 1s nonlinear in the parameters):
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Numerical derivatives
B 1

® Finding the best policy
» We need to maximize

4
max, F(0) =B y'C(S,, X[ (S, 10))
t=0

» We cannot compute the expectation, so we run simulations:

HDischarge
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PFAs

B 20000000 ]
12.1.3 Affine policies

An “affine policy” is any policy that is linear in the unknown parameters. Thus, an affine
policy might be of the form

U™(S¢|0) = 0o + 0101(S¢) + O202(Sy).

We first saw affine policies in chapter 4 when we presented the linear quadratic control
problem which, in our notation, is given by

T
miu[Ez ((Se)T QS + (x4)T Ryy). (12.2)
i t=0
After considerable algebra, it is possible to show that the optimal policy X/ (S;) is given

by
X7 (S;) = K, S;,

» Also called “linear decision rules”
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B EXAMPLE 12.1

A basic inventory policy is to order product when the inventory goes below some
value # where we order up to some upper value 8. If S; is the inventory level, this
policy might be written

{ g

- v — 8
AN = { 0 | Otherwise.

B EXAMPLE 12.3

{“?
The outflow u, of a water reservoir is given by a piecewise linear function of the

reservoir level /7, according to:

(0 R < B™n,
Hl [} x (Rma: s s len) S R.f e leﬂ S _Q{Rmur = Rm1n)‘
B 2% (™ - ™) < B — B L MR™" - B,
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O B (B R < Be— R € LI — ),
™= R, > R™=
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\

where we would expect 6,5, > 0,.
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PFAs

12.1.4 Locally linear policies

A surprisingly powerful strategy for many problems with continuous states and actions 1s
to assume locally linear responses. For example, S; may capture the level of a reservoir,
or the current speed and altitude of a helicopter. The control x; could be the rate at which
water 1s released from the reservoir, or the forces applied to the helicopter. Assume that
we use our understanding of the problem to create a family of regions &y, ..., Sy, which

are most likely going to be a set of rectangular regions (or intervals if there is only one
dimension). We might then create a family of linear (affine) policies of the form

X7 (Se|0) = Oio + Oi191(Se) + 0i2d2(S),

for Sf = Si.

This approach has been found to be very effective in some classes of control problems.
In practice, the regions S; are designed by someone with an understanding of the physics
of the problem. Further, instead of tuning one vector #, we have to tune #y,...,6;. While
this can represent a laboratory challenge, the approach can work quite well, and offers the
important feature that they can be computed extremely quickly.
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PFAs

12.1.2 Boltzmann policies for discrete actions

A Boltzmann policy chooses an action a € A, according to the probability distribution

E,ﬁf.-'{s,a}

S e €956

where f_'_?(s, a) 1s some sort of contribution to be maximized. This could be our estimate
of a function EF'(a, W) as we did in chapter 7, or an estimate of the one-step contribution
plus a downstream value, as in

C(S",a) =C(S",a) + E{V"(S"*)|S™,a},

flals,0) =

where V" (S) is our current estimate of the value of being in state S.
Let F'(a|S™,#) be the cumulative distribution of our probabilities

F(als,0) =) f(a'|s,0).

a’'<a

Let U € [0,1] be a uniformly distributed random number. Our policy A™(s|f) could be
written

A7 (s|#) = argmax{F(al|s.0)|F(al|s,0) < U}.

il

This is an example of a so-called “stochastic policy,” but we handle it just as we would any
other policy.
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12.1.5 Monotone policies

There are a number of problems where the decision increases, or decreases, with the state

L variable. If the state variable 1s multidimensional, then the decision (which we assume i1s
scalar) increases, or decreases, with each dimension of the state variable. Policies with this
structure are known as monotone policies. Some examples include:

e There are a number of problems with binary actions that can be modeled as x € {0, 1}.
For example

— We may hold a stock (z; = 0) or sell (z; = 1) if the price p; falls below a
smoothed estimate p; which we compute using

pr = (1 —a)pi—1 + ap;.
Our policy is then given by

. [ Ip<p—0
X7(5:0) _{ 0 Otherwise.

The function X ™ (S;|#) decreases monotonically in p; (as p; increases, X 7 (S;|0)
goes from 1 to 0).

— A shuttle bus waits until there are at least ; customers on the bus, or it has
waited 7;. The decision to dispatch goes from x; = 0 (hold the bus) to r; = 1
(dispatch the bus) as I?; exceeds a threshold A% or as 7; exceeds 67, which
means the policy X 7™(S;|#) increases monotonically in both state variables
St = (R, 11).
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® Neural networks as policies




PFAs

e ——
® Neural networks as policies

» Each link 1s characterized by a weight that 1s normally
called w;;, but which we will call 8;; for consistency

with our prior notation.

» We can represent our neural network policy then as
XNN(S™9).
» The weight vector 8 may easily have hundreds or even

thousands of dimensions. This 1s not a major problem
because we can compute derivatives of the policy.
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12.1.9 Constraints

An issue that arises with policy function approximations is the handling of constraints,
since it can be difficult or impossible to design analytical functions that guarantee that a
decision satisfies a set of constraints. Constraints are typically handled using a simple
projection. This is represented mathematically by a projfection operator I1y(x) (nothing
to do with policies) that maps a point = onto a region A’. So, we would write our policy
using

ry = Iy, [ X7 (S:)).

The easiest constraints to handle are box constraints of the form 0 < x; < u; where wu;
are upper bounds on each dimension of x;. In this case, if our function X (S;) returns
a (vector-valued) decision 74, we simply have to check each dimension of r; and impose
these constraints (elements less than 0 are set equal to 0, while elements greater than their
corresponding value in u, are set to the value in u;).

Slightly harder are constraints of the form Axr = b; or Ax < b;. The project process is
illustrated in figure 12.5. Figure 12.5a demonstrates a basic projection of a point " from

A A

A 4

(a): Simple projection (b): Compound projection

Figure 12.5 Illustration of projection onto a linear feasible region.
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PFAs

B
® Constraints:

For more genei'al problems, we have to fall back on the formal definition of the projection
operator, which involves minimizing the distance between the point x and the feasible region
A’. The most standard definition is

[y[z] = argmin ||z — 2'||2, (12.4)

z’'eX
where ||z — 2’||2 is the “Lo norm” defined by
2 — 2'lls = (s — )
i

The complexity of solving the nonlinear programming problem in (12.4) depends on the
nature of the feasible region A’
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Policy search

Derivative-based policy search
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Derivative-based policy search

® The core problem of policy search 1s a classical
stochastic search problem:

max E{F(x, W)|S,}

€C .9 ¢

where “x” 1s a policy, W represents any form of learning
or testing randomness, and Sy, might capture any prior
distributions.

» There will always be two solution approaches:
« Derivative-based (Chapter 5)
* Derivative-free (Chapter 7)

» ... but there are some details unique to policy search
arising from the sequential nature of these problems.
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12.2 POLICY SEARCH

Given a parametric (or locally parametric) function parameterized by € (typically a vector,
but not always), we now face the challenge of finding the best value of #. There are different

styles of policy search:

Derivative-based vs. derivative free In some cases we can approximate derivatives with
respect to #, although these are typically quite approximate. Alternatively we can
use the derivative-free methods in chapter 7, although it is likely that this will be
limited to low-dimensional parameter vectors.

Online vs. offline learning In online learning, we are learning in an environment where
updates come to us. As a rule, we have to live with the performance of our policy,
which means we are maximizing the cumulative reward. Most policy search uses
some form of adaptive algorithm, although this can be done in a laboratory where
we use one policy, the learning policy to find the best policy to implement, called the
implementation policy.

Stationary vs. nonstationary environments Most of the analysis of algorithms 1s per-
formed in the context of stationary (possibly even static) environments, where ex-
ogenous information comes from a single distribution. When working in online
settings (in the field). it is more often the case that data is coming from a nonstation-
ary setting.

Performance-based vs. supervisory learning Most policy search uses as a goal to max-
imize the total reward (either the final reward or cumulative reward). but there are
settings where we have an “expert” (the supervisor) who will specify what to do,
allowing us to fit our policies to the choices of the supervisor.
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Derivative-based policy search
|

address in chapter 5. To do this, it is useful to identify three classes of problems:

Discrete dynamic programs - These are problems where we are at a node (state) s,
choose a discrete action a and then transition to a node s’ with probability P(s’|s.a)
(which we represent but generally cannot compute). An important subclass of graph
problems are those where actions are chosen at random (known as a stochastic
policy), but transitions are made deterministically. Here, we wish to optimize a
parameterized policy A™(s|f), where action a; = A™(S;|0) is discrete.

Control problems - In this setting we choose a continuous control u; that impacts the state
S;.1 in a continuous way through a known (and differentiable) transition function.

Resource allocation - Here, we have a vector of resources ; which we move with a

vector ; to produce a new allocation ;, possibly with random perturbations,
according to the equation

Ri1 =Ry + Az + f?f+11

where R; and x; are vectors, and A; is a suitably defined matrix. This problem
class includes all of the physical resource allocation problems described in chapter 8.
For this problem class, we wish to optimize a parameterized policy X ™ (s|f), where
r; = X7(5;|0) 1s typically a vector (possibly high dimensional).
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Derivative-based policy search
|

We divide our discussion primarily along the two fundamental search strategies:
derivative-based and derivative-free. Derivative-based methods are attractive because they
allow us to draw on the foundation we provided in chapter 5, which is the only practical
way (at this time) to handle high dimensional vectors of parameters, as might arise when
our policy is represented by a neural network. Derivative-based policy search starts from
writing the value of a policy as

T
F~ () _E{Z C{St..x“{sqm}su}. (12.5)

t=>0

where Sy 1 = SM(S;, X™(5:|0),W;41). If we let W = (Wq,...,Wr), then this is
precisely

mguclEF{ﬂ. W), (12.6)
where we dropped the “7” superscript because in this setting, the structure of the policy

has been fixed and is otherwise determined by f. This is now the same problem we faced
in chapter 5, where we can search for # using a standard stochastic gradient algorithm

"t = 0" + 0, Vo F™ (9", Wnt1), (12.7)
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Derivative-based policy search
|

® Finite differences

» We wish to optimize the decision of when to charge or

discharge a battery
+1 if p, < g°heree
X ﬂ(St |9) —J O lf gcharge < pt < gdischarge
-1 if p, > gehes
o Ene _gy_ui St_Dra_,ge e = _ At — _
_F\ | N | ||r : ~.]‘|I_|’-.||| ’I||' J .] iy
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Derivative-based policy search
|

® Finding the best policy
» We need to maximize

4
max, F(0) =B y'C(S,, X[ (S, 10))
t=0

» We cannot compute the expectation, so we run simulations:

HDischarge
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Derivative-based policy search
|

® Si
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Battery size 5.00
Buy 30.00
Sell 50.00 Total profit/hr
L ]
Amt in
Price  Buy-sell storage Bought/sold
0.00

21.44 1.00 1.00 1.00
1.07 1.00 2.00 1.00
33.09 0.00 2.00 0.00
172.38 -1.00 1.00 -0.70
20.26 1.00 2.00 1.00
hE.5T -1.00 1.00 -0.70
60.83 -1.00 0.00 0.00
137.53 -1.00 0.00 0.00
13.50 1.00 1.00 1.00
147.96 -1.00 0.00 0.00
42.87 0.00 0.00 0.00
61.41 -1.00 0.00 0.00
12.10 1.00 1.00 1.00
2533 1.00 2.00 1.00
29.78 1.00 3.00 1.00
94.24 -1.00 2.00 -0.70
50.90 -1.00 1.00 -0.70
5.06 1.00 2.00 1.00
39.20 0.00 2.00 0.00
7532 -1.00 1.00 -0.70
327 1.00 2.00 1.00
117.79 -1.00 1.00 0.70
81.11 -1.00 0.00 0.00
27.58 1.00 1.00 1.00
59.45 -1.00 0.00 0.00
63.29 -1.00 0.00 0.00
24.42 1.00 1.00 1.00
26.58 1.00 2.00 1.00

$15.95

Revenue

-21.44
-1.07
0.00
120.66
-20.26
38.90
0.00
0.00
-13.50
0.00
0.00
0.00
-12.10
-25.33
-29.78
65.96
35.63
-5.06
0.00
52.72
-3.27
82.45
0.00
-27.58
0.00
0.00
-24.42
-26.58

Derivatives:
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39.20
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81.11
27.58
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63.29
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26.58
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Total profit/hr
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1.00
0.00
-0.70
1.00
-0.70
0.00
0.00
1.00
0.00
0.00
0.00
1.00
1.00
1.00
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-0.70
1.00
0.00
-0.70
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-0.70
0.00
1.00
0.00
0.00
1.00
1.00

$17.18
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120.66
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38.90
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-29.78
65.96
35.83
-5.06
0.00
52.72
-3.27
82.45
0.00
-27.58
0.00
0.00
-24.42
-26.58

Derivative
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Derivative-based policy search
|

® Finite differences
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Figure 5.1 Different estimates of the gradient of F'(x,W ) with a) the stochastic gradient
g™ (z™, WnthT WL (solid line), the expected finite difference Eg™ (™, W™+ wntlh—)

(dashed line), and the exact slope at =™, OEF (™, W™ 1) /9™
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Derivative-based policy search
|

® Finite differences

makes sense to estimate the derivative using finite differences. In this setting, we can
approximate gradients using finite differences. Assume that z is a K-dimensional vector,
and let e;. be a K-dimensional column vector of zeroes with a 1 in the kth position. Now
assume that we can run two simulations for each dimension, F(z" 4 dz" e, W,**1%) and
F(x™ —édx"ey, I—-V;'"l‘_) where dz™ e is the change in 2™, multiplied by e, so that we are
only changing the kth dimension. We use I-'if’;:"+1'+ and W o represent the sequences
of random variables that are generated when we run each simulation, which would be run in
the n + 1st iteration. Think of F(z" + dz"er, W ") and F(z™ — da"ex, Wi 17 ) as
calls to a black-box simulator where we start with a set of parameters =™, and then perturb
ittoz™ + dx"e;, and ™ — dx" e, and run two separate, independent simulations. We then
have to do this for each dimension k&, allowing us to compute

F(z" + 0z e, Wit F) — F(z™ — dz™er, W)
20" .
(5.22)

gg(wn ! H_rn+1 '+, I__Vn-l-l .—) e

where we divide the difference by the width of the change which is 262" to get the slope.

The calculation of the derivative (for one dimension) is illustrated in figure 5.1. We see
from figure 5.1 that shrinking d= can introduce a lot of noise in the estimate of the gradient.
At the same time, as we increase dx, we introduce bias, which we see in the difference
between the dashed line showing Eg™(z™, Wn+L+ Wn+1—) and the dotted line that
depicts OEF (z™, W™+1) /2™, If we want an algorithm that converges asymptotically in
the limit. we need dz™ decreasing. but in practice it is often set to a constant d. which is
then handled as a tunable parameter.



Derivative-based policy search
|

® Finite differences

There are several strategies we can pursue to reduce this computational burden:

e Instead of perturbing =™ up and down, just do it in one direction (typically up. unless
a dimension of z™ is up against a constraint). This means we have to do K + 1
function evaluations: a base estimate, and then one for each dimension.

e Just estimate the gradient for one dimension, where you would typically choose the
dimension at random.

e Randomly perturb all the dimensions all at once. This is known as the simultaneous
perturbation stochastic approximation procedure (or SPSA).

SPSA computes gradients in the following way. Let Z;,k = 1,..., K be a vector of
zero-mean random variables. We now compute our objective function twice: once to find
F(x" 4 Zx, W), and once to find F(z" — Z, W' 17).

n rn+1,+ rn—1,—
_FE"+ 2, Wit ) - FE" -2, Wi ™) oo

(" wnt 1,+ . H_rﬂ"}-lﬂ— T A
(J . ) QCHZL‘
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Derivative-based policy search
|

® Simultaneous perturbation stochastic approximation
» Let:

e x" be ap — dimensional vector.

e §™ be a scalar perturbation

e 7™ be a p —dimensional vector, with each element drawn from a normal (0,1)
distribution.

» We can obtain a sampled estimate of the gradient V,.F (x™, W™t1)
using two function evaluations: F(x™ + 6™Z™) and F(x™ + 6™"Z")
F(X"+68"Z")— F(X"+46"Z")
260"Z]
F(X"+6"Z")—F(x"+6"Z")
V F(x",W") = 26"Z)

F(X"+6"Z") — F(x" +6"Z")
26"Z"




Policy search

One-dimensional search
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Stepsizes for policy search
N

® Notes:

» As we saw before (chapter 5) we trade the elegant
simplicity of stochastic gradients for the frustration of
designing stepsize rules.

» The next few slides suggest that this application 1s
nonconvex, but unimodular.
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Stepsizes for policy search

® One-dimensional contour plots-uncertain forecast

» 6; for 1=1,..., 8 hours 1nto the future.

F(#) over changing # compenetwise with lookup table for =40
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Stepsizes for policy search
N

® One-dimensional contour plots-uncertain forecast

» 6; for1=9,..., 15 hours 1nto the future

= F{#) over changing # compenetwise with lookup table for +=40
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Stepsizes for policy search

® 2-D contours for uncertain forecasts

Parcentage of improvement (100* A F" (i)
=it

Percantage of improvemant (100°A F™(#))
T T T T '—

i .S, : : :
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18 0 2 4 L] a 10 12 14 18 18 2
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Stepsizes for policy search

X,

@® Stepsizes

» With deterministic problems, we
perform a one-dimensional search:

min F(x™ + aV,F(x™))
a

X" =x"+a"Vf(x")
» With stochastic problems, we use a
stepsize rule (or policy) that may miss T RS TH
the optimum completely. i

» Stepsize rules always have to be tuned,
and tuning depends on the starting
point.




Stepsizes for policy search
N

® Effect of starting points
» Stepsizes tuned for region [0,1].

- Performance of the lookup policy obtained by the SNG-CFA method
A ] T 1 T L T

6, =1 6, €(0,1) g, € [0.5,1.5] 6 €[1.2]

[ 1] <+ 4 > e L) »>

40 |
) ]
0

40

&0

&l [

100 L 1 L | L | 1
I 2 4 6 a8 10 12 14 16

Pct. Improvement over benchmark lookahead

Starting point




Stepsizes for policy search

@® Tuning the parameters

» Stepsizes tuned for region [0,2].

50
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Performance of the lookup policy obtained by the SGF-CFA method with batch size of 12, eta=1 and #<=1.5
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Stepsizes for policy search
N

® Notes:

» The two previous slides 1llustrate that tuning the
stepsize rules does depend on the starting point.

» Since stepsize rules for stochastic optimization do not
perform a one-dimensional search, tuning 1s critical.

» We have begun experimenting with the idea of using
the Fibonacci search, which is an optimal algorithm for
doing derivative-free search of deterministic,
unimodular functions.

» We have adapted the Fibonacci search for stochastic
problems.
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Stepsizes for policy search

® Fibonacci numbers: 1, 1, 2, 3,5, 8, 13, ...

Ve

A 3 5 8
P lor iter 1 / N
osterior 1ter —Excludend prob. 5 <—Exclude w. prob. g™
1-g™
A 3 5 Q

Posterior iter 2
{é E;(c)céudeggl > Exclude w. prob. g >

2 3 5 8
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® Fibonacci search

»

»

»

»

Fibonacci search is an optimal
algorithms for finding the
maximum of a unimodular
function.

This process requires that we be
able to evaluate the function
deterministically.

We assume Lipschitz continuity, as
well as knowledge of the error
distribution. This allows us to
estimate the probability that the
optimum 1s toward the left or right.

We then repeat this multiple times,
and create a distribution about where
the optimum is.

Probability

0.175 1

0.150 1

0.125 1

0.100 1

0.075 1

0.050 1

0.025 1

0.000 -

Discrete Distribution

3 4 5 b 7 B8 9 10
Function Values



Stepsizes for policy search
N

® Fibonacci search for
noisy functions

» 34 Fibonacci numbers

» Iterations: 1

Function and observations

» Deterministic response

» Always finds the correct
optimum.

Frequency

3 4 5 6 7
Function Values
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® Fibonacci search for
noisy functions

» 34 Fibonacci numbers
» Iterations: 1

» Medium noise

Probabilitv

Frequency

Function and observations

3 4 5 v 7 B 9 10

Discrete Distribution

I3 4 5 6 7 8 9 10
Function Values




Stepsizes for policy search

® Fibonacci search for
noisy functions

» 34 Fibonacci numbers
» Iterations: 1

» High noise

Frequency

Function and observations

5 6 7 8 9 10
Discrete Distribution

5 6 7 8 9 10
Function Values



Stepsizes for policy search

® Fibonacci search for
noisy functions

» 34 Fibonacci numbers
» Iterations: 1

» High noise

Frequency

Function and observations

10

5 6 7 8
Function Values

10




® Fibonacci search for
noisy functions

»

»

»

»

34 Fibonacci numbers

Iterations: 10

High noise

Clearly 10 1terations (340
function evaluations) are
not needed.

@
i

Frequency

N

Ld B w

Function and observations

Discrete Distribution

o
i

=

5 6 7 8 9 10

Function Values
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® Fibonacci search for
noisy functions

» 377 Fibonacci numbers
» Iterations: 10

» High noise

Function and observations

Discrete Distribution

Frequency

5 A 5 6 7 8 G 10
Function Values



Stepsizes for policy search
N

® Fibonacci search for
noisy functions

» 377 Fibonacci numbers

» Iterations: 10

Function and observations

» High noise

Frequency

-. l_l L] L} L

3 4 5 6 7 8 9 10
Function Values



Stepsizes for policy search
N

® Notes

» Even with very high noise, 1t appears that Fibonacci
does a very reliable job of finding a near-optimal point.

» The next step 1s to see how well this works 1n a
stochastic gradient algorithm.

© 2019 Warren B. Powell
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Derivative-based:

Categorical actions — Boltzmann policies
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Policy search
N
@ There are two classes of sequential decision problems that
have yielded two different approaches to doing gradient-
based policy search:

» Numerical actions — Here the action 1s a quantity, and the
downstream state 1s a function of this quantity.

» Categorical actions — These problems are easily viewed as graphs
with possibly stochastic transitions. We are not able to take a
derivative with respect to the action.

© 2019 Warren B. Powell
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® Discrete dynamic programs

» Maximizing expected single period reward

12.3 THE POLICY GRADIENT THEOREM FOR DISCRETE DYNAMIC
PROGRAMS

We assume that we are going to maximize the single-period expected reward in steady
state. We use the following notation

ris,.a) =

.'1#{:?]”} —

P,(s'|s,a) =

di (s|f) =

Reward if we are in state s € § and take action a € A,

Policy that determines the action a given that we are in state s, which
is parameterized by ,

Probability of transitioning to state s’ given that we are in state s and
take action a at time ¢ (we use P(s'|s, a) if the underlying dynamics
are stationary),

Probability of being in state s at time { while following policy 7,

» Need to skim this — just highlight “policy gradient

theorem.”

© 2019 Warren B. Powell
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12.3.1 A stochastic policy

We follow the standard practice in the literature of using what is called a stochastic policy,
where an action a is chosen probabilistically. We represent our policy using

pt (a|s.@) = The probability of choosing action a at time #, given that we are in state s,
where # is a tunable parameter (possibly a vector).

Most of the time we will use a stationary policy that we denote p™(a|s, #) which can be
viewed as a time-averaged version of our policy pf (a|s, #) which we might compute using

P (als.0) = llm TZ'PI 8.0).

A particularly popular policy (especially in computer science) assumes that actions are
chosen at random according to a Boltzmann distribution (also known as Gibbs sampling).
Assume at time { that we have

(Qi(s.a) = Estimated value at time  of being in state s and taking action a minus
the steady state .

Now define the probabilities (using our familiar Boltzmann distribution)
Fﬂ‘Q, (s.a)

w ; — 2
p; (als,f) = > )’ (12.8)

We can compute the values Qi(s,a) using Qq (s8,a) = r(s, a), although this means choosing
actions based on immediate rewards. Alternatively, we might use

Qi(s.a) = r(s,a +111:L‘{Qi+1{$ a'),

© 2019 Warren B. Powell
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If we are modeling a stationary pmwhlcm* it 1s natural to transition to a stationary policy.

Let p™(als, #) be our stationary action probabilities where we replace the time-dependent
values () (s, a) with stationary values (s, a) computed using

T
Q(s,alf) = r(s.ﬂ}-f-E{Z:'[Sy..fl”{Sy[H])Su:.q.ﬂn:a}. (12.9)

=1

This is the total reward over the horizon from starting in state s and taking action a (note
that we could use average or discounted rewards, over finite or infinite horizons). We
remind the reader we are never going to actually compute these expectations. Using these
values, we can create a stationary distribution for choosing actions using

Eﬂ‘j*{s,ulﬂ}

T en, TG
a s

Finally, our policy A™(s|f) is to choose action a with probability given by pJ (a|s,#).
The development below does not require that we use the Boltzmann policy, but it helps to
have an example in mind.

(12.10)

p"(a|s,0) =

© 2019 Warren B. Powell
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12.3.2 The objective function

To develop the gradient, we have to start by writing out our objective function which is to
maximize the average reward over time, given by

F™(8) =T11_131C? {ZZ (dT s10) > r(s,a)pf(als. 9))}. (12.11)

t GSES EEAP

A more compact form involves replacing the time-dependent state probabilities with their
time averages (since we are taking the limit). Let

d”(s|f) = ]“’ll—l>l:1>-c . Z dy (

t=>0

We can then write our average reward per time period as

F7(0) =) d"(s|f) > _ r(s,a)p™(als,0). (12.12)

sES ac A,
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12.3.3 The policy gradient

We are now ready to take d"rivatives. Differentiating both sides of (12.12) gives us

VoF™(0) = ) (vgcf“(sw) Y r(s,a)p”(als,0) +d"(s6) Y r(s,a)Vep"(als, a))

SES ac.A, ac A,
(12.13)

While we cannot compute probabilities such as d™ (s), we can simulate them (we show this
below). We also assume we can compute Vp™(als, #) by differentiating our probability
distribution in (12.10). Derivatives of probabilities such as V4d™ (s|8), however, are another
matter.

This is where the development known as the policy gradient theorem helps us. This
theorem tells us that we can calculate the gradient of F"‘T{H) with respect to # using

where Q7 (s, a) (defined below) is the expected difference between rewards earned each
time period from a starting state, and the expected reward (given by F'7(#)) earned each
period when we are in steady state. We will not be able to compute this derivative exactly,
but we show below that we can produce an unbiased estimate without too much difficulty.
What is most important is that, unlike equation (12.13), we do not have to compute (or
even approximate) V,d™ (s|@).
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|
We are going to begin by deﬁning two important quantities:

Q7(s,alf) = > E{r(si,a;) —F"(0)|so = s,a0 = a},
V™(slf) = Z]E{r(st,at) — F™(0)|so = s},

== Zp (ap = a|s,0) ZE{P (8¢, a4) "(0)|so = s,a0 = aj,

acA
= Zp (als,0)Q7 (s, a) (12.15)

Note that Q™ (s, a|f) is quite different than the quantities Q™ (s, a|#) used above for the
Boltzmann policy (which is consistent with @-learning, which we first saw in section
2.1.10). Q7 (s,alf) sums the difference between the reward each period and the steady
state reward per period (a difference that goes to zero on average), given that we start in
state s and initially take action a. V'™ (s|#) is simply the expectation over all initial actions
actions a as specified by our probabilistic policy

© 2019 Warren B. Powell



We next rewrite (7 (s, a) as the first term in the summation, plus the expected value of
the remainder of the infinite sum using

Q%(s,a) = ZE{T: 0)|so = s,a9 = a},

= r(s,a) — F7(0) +Z P(s'|s,a)V™(s'), Vs, a, (12.16)

where P(s’|s,a) is the one-step transition matrix (recall that this does not depend on #).
Solving for F'™(f) gives

F™() = r(s,a) +ZP §'|s,a)V™(s') — Q" (s, a). (12.17)

Now. note that F'™(#) is not a function of either s or a. even though they both appear
in the right hand side of (12.17). Noting that since our policy must pick some action,

EaeAﬁ’r(ﬂlﬁ- ) = 1, which means

Y p"(als,0)F7(0) = F™(9), Va.
acA

This means we can take the expectation of (12.17) over all actions, giving us

F7(6) = Zﬁﬂ[cﬂs, f) (r{s. a)+ Z P(5'|s,a)V™(s") — QT"[S,H)) , Vs.(12.18)

Again we note that (12.18) is true for all states s. We can now take derivatives using the
following steps (explanations follow the equations):



Policy gradient search

OF™(8) 0
oo 06

a

PR ITLRRS LTS P
il

+Zp (als,0) ZP(-: s, a]m i
- Z W (r[ﬁ, a) + Z P(s']s, a}l"“{..ﬁ"))

1]

i . OVT(s)  BVT(:
+Zji {uls.ﬂ]ZP{s |s,a) Ufg ) - le: )

=Y O (l%,9) 'ﬁ;ﬁ"ﬁ] (Q“(.ﬂ:*ﬂ} + F™(6) )

i1

V(s V*(s
+Zp (als, H]ZP[.&huﬁa{g 60’;}

Zﬁn(a]ﬁ.ﬁ]( 8.4 +ZF |qa1" ’) Q" (s, ﬂ})

(12.19)

UB(Zp (als, )Q’f(s.a})uz:

(12.22)

av™(s)

(4] 0) ovV=™(s'
- Z 'u{a|b Q{su}—L—Zp u}sf)zp |s, a) UEE&-J_

ia

Equation (12.19) is from (12.18); (12.

terms vanish because (s, a) and P(s’|s, a) do not depend on the policy p™ (als. #

06
(12.23)

20) is the direct expansion of (12.19), where two

) (12.19)

uses (12.15) for the last term; (12.22) uses (12.16); (12.15) uses the fact F'™(#) is constant
over states and actions, and ) _ p” (a|s. ) = 1. Finally, note that equation (12.23) is true

for all states.
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We proceed to write

Uf I[H Zﬂ, |H}Uf (8) (12.24)

. 85" (als,0) .
- Zd (s|0) (Z %LR}Q (s, a)

a

—I-ZP I:(IIN ff ZP('\ 8, u} Uﬁ' - Uf;’:‘,}) (12.25)

OF™(8) - Op™ (a|s,0) .,
0 = fo (s]6) Z_E)F)_Q (s,a)

-+-Z:dT q|H)ZpT{a|ﬂ ) ZP s'|s, ﬂ}
Zﬂ' (l"mzt‘)p (als, H}Q i)
+) d7( |a) ZI (s |a

_ Zd“(s]H]ZMQ (2,0). (12.28)

Zd*{ s|6) 4@1

Equation (12.24) uses ZH d™(s|f) = 1; (12.25) uses the fact (12.23) holds for all s;
(12.26) simply expands (12.25); (12.27) uses the property that since d™( s) is the stationary
distribution, then >~ _d™(s|0)P(s'|s,a) = d™(s’|#) (after substituting this result, then just
change the index from s’ to s). Equation (12.28) is the policy gradient theorem we first
presented in equation (12.14).
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12.3.4 Computing the policy gradient

As is always the case in stochastic optimization, the challenge boils down to computation.
To help the discussion, we repeat the policy gradient result:

dr Zd‘f{ew z or “‘9 op"(als,0) 4. q). (12.29)

We start by assuming that we have some analytical form for the policy which allows us to
compute dp™ (a|s, /06 (which is the case when we use our Boltzmann distribution). This
leaves the stationary probability distribution d™(s|#), and the marginal rewards Q7 (s, a).

Instead of computing d™ (s|@) directly, we instead simply simulate the policy, depending
on the fact that over a long simulation, we will visit each state with probability d™(s|f).
Thus, for large enough T', we can compute

ap f
VoF™(0) = ZZ P (Sl; ) Q7 (s¢.a), (12.30)

where we simulate according to a known transition function s, ; = S™ (s;,a, W,41). We
may simulate the process from a known transition function and a model of the exogenous
information process W, (if this is present), or we may simply observe the policy in action
over a period of time.
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This then leaves us with Q7 ( . We are going to approximate this with estimates
that we call QF (S;|#), which we wnll compute by running a simulation starting at time {
until 7" (or some horizon ¢ + H). This requires running a different simulation that can be
called a roll-out simulation, or a lookahead sigmlation. To avoid confusion, we are going
to let Sy be the state variable at time ' in a roll-out simulation that is initiated at time .
We let Wi be the simulated random information between ¢ — 1 and ¢’ for a simulation
that is initiated at time f. Recognizing that Syy = S¢, we can write

T-1
r(Sger s f'l:T{SrH ‘H)}

t'=t

Q7 (S:|0) = Ew T3

where 5}_;:“ = S‘?‘.‘r[g”f?jir:[g“f ). ﬁ".“pﬂ) represents the transitions in our lookahead

simulation. Of course, we cannot compute the expectation, so instead we use the simulated
estimate

T-1
Q7 (5,16) ~ % tzt r(Sur, A (S |6)). o (1231)
We note that while we write this lookahead simulation as spanning the period from f to
T, this is not necessary. We might run these lookahead simulations over a fixed interval
(t,t + H), and adjust the averaging accordingly.
We now have a computable estimate of F'™ () which we obtain from (12.31) by replacing
QT (S,10) with QT (S;|0). giving us a sampled estimate of policy 7 using

o) ~ 3 QISb)

t=0

© 2019 Warren B. Powell
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The final step is actually computing the derivative V,F'™(#). For this, we are going to
turn to numerical derivatives. Assume the lookahead simulations are fairly easy to compute.
We can then obtain estimates of V,Q7 (S;|f) using the finite difference. We can do this by
perturbing each element of 6. If # is a scalar, we might use

)T (8,10 + 8) — QT (S¢|0 — 6)
24

VoQT(S:]0) = (12.32)

If & 1s a vector, we might do fimte differences for each dimension, or turn to simultaneous
perturbation stochastic approximation (SPSA) (see section 5.4.3 for more details).

This strategy was first introduced under the name of the REINFORCE algorithm. It has
the nice advantage of capturing the downstream impact of changing ¢ on later states, but in
a very brute force manner.

© 2019 Warren B. Powell
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® Notes:

» The policy gradient search is typically illustrated in the
context of Boltzmann, which 1s characterized by a
scalar parameter.

» T

h1s can be optimized using specialized search routines

for scalar problems.

» It
1S

can also be tackled using the SPSA, where the model
viewed as a black-box simulator.

» Even policy gradient search involves the stepsize 1ssue.

© 2019 Warren B. Powell
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Derivative-based: Control problems
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N

® Control problems

» We use “control problem” to describe problems where
the downstream state 1s a continuous function of the
decision, captured by the transition function:

St41 = SM(St: Xn(5t|‘9)» Wt+1)

» We need to capture the effect of changing 8 on x; =
X™(S;]|0), and then the effect of x, on S;;; =
SM(St» Xe, Weg1).
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L
12.4 DERIVATIVE-BASED POLICY SEARCH: CONTROL PROBLEMS

In this section, we are going to assume that we are trying to find a control policy U™ (S¢|#)
(known as a control law in the engineering community) parameterized by # that returns

a continuous, vector-valued control u, = U7T(S,;|#). Using our control notation, our
optimization problem would be written
T

F™(#) =E {Z C(S., UT(S:|6)) SD} . (12.33)
t=0

where our dynamics evolve (as before) according to
SI-I'-]. = .(_'_)‘”II“’I {S;. Uy, li'rt_._l ].

where we are given an initial state S; and access to observations of the sequence W =
(Wi,..., W ). We have written our policy U7 (S;) in a time-dependent form for generality,
but this means estimating time-dependent parameters /; that characterize the policy. In most
applications we would use the stationary version U™ (.S, ), with a single set of parameters .

© 2019 Warren B. Powell



Policy gradient for control problems
L

® Applying the chain rule:

We find the gradient by differentiating (12.33) with respect to #, which requires a
meticulous application of the chain rule, recognizing that the contribution C'(S;, u;) is a
function of both S; and u,, the policy U™ (5;|#) is a function of both the state S; and the
parameter #, and the state S; is a function of the previous state S;_1, the previous control
t;—1. and the most recent exogenous information W, (which is assumed to be independent
of the control, although this could be handled). This gives us

o - o T Seid e Emee e
VoF™(0,w) = (*’)(-D(SD-UDJ) (df-'lr(SIl\H]) - Z [(dfn[-.‘}tni'p{fwﬂd-stf)

dug oo o —q Sy of
ICy (Spr. up AU (S @) 0S4 UL (S |0
4 Rovlon ) [N otowl|l) 950 . PHuloull) (12.35)
df[fﬂ' dS;r o dt
where

T 08, 08, _ 98, TOUZE (Su_110) 88, - "y b
.f:‘_.i _! 1+‘ t r‘—l{ t 1|) ‘HI+ :—-1'[t 1) (12.36)
o Sy O Miyr_q A0Sy _q 85 o

The derivatives 05/ /96 are computed using (12.36) by starting at ¢ = 0 where

5o

— = (),
of

and stepping forward in time.
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® Notes:

» Now we just have to take the derivative of the:
» Cost/contribution function
e Transition function
* Policy

» This approach 1s very popular using neural networks.
So popular that the derivatives can be computed using
libraries such as “Tensorflow.”

» ... but, we can also use numerical derivatives.
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Derivative-tree
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@ Derivative-free policy search

»

»

»

»

Apply everything we learned in chapter 7.

Policy search 1s typically performed in a simulator, in which case
we would use a “final reward” objective:

max E{F (x™,W)|S°} = EqoEy1 v s0EppsoF (x™N, W)
12

This 1s for state-independent problems, but what about state-
dependent problems? Instead of learning the implementation
decision x™", we need to learn the implementation decision as a
function of the state S, which is a policy that we call the
implementation policy X™ * (S). We are going to write this as
X™"P (8]16™MP) to express the likely dependence on tunable
parameters to be used in the implementation policy.

Just as we needed a “learning policy” m to learn the
implementation decision x™", we need a learning policy '™ in
the state-dependent case to learn the implementation policy P
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@ Derivative-free policy search

» We are going to assume that we are simulating over time:

(So, X0, W]_, Sl’ ,St, Xt, Wt+1’ )

» Now we need to solve
imp ; ~
max E{C (5, x7™ (s16%m), W) |S)

» This involves three types of uncertainty:
« Bayesian priors on uncertain parameters (if available), which we
capture in the initial state S.
» Uncertainty in the process of learning when applying the learning
policy m""™ using the realizations of Wy, W,, ...
« Uncertainty in the process of evaluating the implementation policy

XM (s,|9imP).
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® Derivative-free policy search

» We have to evaluate
imp : ~
max E{C (5, x™ (s16%m), W) |S)

» We first expand the expectations:
lrn imp

ya T . T
r7£1l§1’)l( ]ESO ]EW1,,WT|S()IESO IES'SO EW'SO{C (S’X

imp (S|9imp), W) 15}

» Next we have to write this out 1n a form we can simulate.
The hardest part 1s the expectation over the state S whose
distribution reflects the implementation policy. We do
this by simulating the implementation policy:

T-1
cimp rimp 1 e ' W
max ]ESOE?(—(H’{‘);T_O)N_O]SO (E‘E—I?I)T |SO.T Z C(SIQXT (Stlelmp), I"/t-{—l))

Ilrn t=0
-
! t=0

AMh
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® Derivative-free policy search

» To simulate

T-1
mp aimp 't im 117
maxEgoBf i nyr (E(W,) OISOTZQC(SHX "(Sil6 P),wm))

A

» Let:

1 be a sample of any variables in a Bayesian prior in .

w be a sampled sequence W, W,, ..., W (where we follow the
learning policy)

& be a sampled sequence Wy, W,, ..., Wy (where we follow the
implementation policy)

» Now replace each expectation with a sampled estimate.

© 2019 Warren B. Powell



Derivative-free policy search
N

® Issues:

» Dimensionality of control vector
 Scalar (specialized search algorithms)
* Low dimensional (enumeration?)
« High dimensional (use sampling)

» Creating belief models
* Linear models
* Locally linear
» Correlated beliefs (Gaussian process regression)
» Online (cumulative reward) vs. offline (terminal

reward)
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Locally quadratic knowledge gradient
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Knowledge gradient with local quadratic belief

® Locally quadratic knowledge gradient

» Uses locally quadratic approximation around proximal point X.

» Difference between true function and quadratic approx. is Lipschitz

» Encourages learning away from proximal point, but not too far.

Difference between truth and approximation

f(x10) = 8o + 01 (x — XPTO%) + 6, (x — xP7%)?

Estimate of og

rox

timal

solution

\
\

.III

Quadratic
approximation

\
\

Belief mode:
¥ = f(x]0) + BxIX) + ¢

Structural uncertainty:
B&xIX) ~ N(O, k|x —X|P)

(Gaussian noise:
e ~ N(0,02)



Knowledge gradient with local quadratic belief
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