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Week 4

Chapter 7: Derivative-free stochastic 
search
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Derivative-free stochastic search

Notes:
» The material for this week and next will all be drawn 

from chapter 7.
» Chapter 7 is 60 pages, and desperately in need of a 

rewrite.  I don’t have time to do this, but the lectures 
will follow a new (and improved) outline.

» Derivative-free stochastic optimization is an extremely 
rich problem class.  We will use this to illustrate four 
fundamental classes of policies, which can be organized 
along two core strategies:

• Policy search – Here we will search within a class of policies 
to identify which work best over time/iterations.

• Lookahead policies – These are policies that are constructed to 
optimize the value of an experiment plus the value of the 
downstream state.
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Derivative-free stochastic search

Week 4 (this week): We will cover:
» Introduction to derivative-free stochastic optimization
» Introduction to two strategies for developing policies:

• Policy search class
• Lookahead class

» Then we will focus on the “policy search” class, which 
can be divided into two classes:

• Policy function approximations (PFAs)
• Cost function approximations (CFAs)

» We will do the more difficult lookahead classes next 
week.
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Introduction to derivative-free stochastic 
search
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Sports

Finding the best 
player
» We have a set of 

players from which to 
choose a team

» The effectiveness of a 
certain team is best 
revealed by playing a 
game

» We maximize the 
total number of games 
won in the season
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Optimal learning in diabetes
How do we find the best treatment 
for diabetes?

» The standard treatment is a 
medication called metformin, 
which works for about 70 percent 
of patients.

» What do we do when metformin 
does not work for a patient?

» There are about 20 other 
treatments, and it is a process of 
trial and error.  Doctors need to 
get through this process as quickly 
as possible.
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Drug discovery

Biomedical research
» How do we find the 

best drug to cure 
cancer?

» There are millions of 
combinations, with 
laboratory budgets 
that cannot test 
everything.

» We need a method 
for sequencing 
experiments.
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Drug discovery

Designing molecules

» X and Y are sites where we can hang substituents to change the 
behavior of the molecule.  We approximate the performance using 
a linear belief model:

0
  

ij ij
sites i substituents j

Y X    

» How to sequence experiments to 
learn the best molecule as quickly 
as possible?
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Designing menus

What should you offer?
» No-one will like 

everything on a menu.

» The trick is to find 
choices that will satisfy 
people.

» You will probably need to 
observe the response to a 
particular menu over a 
period of time.

» So, observations are time © 2019 Warren Powell



Derivative free stochastic search

Settings
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The multiarmed bandit problem
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Multiarmed bandit problems
Bandit problems and objective functions
» The classical bandit problem is cumulative reward:

where

» The essential characteristic of bandit problems is the exploration 
vs. exploitation tradeoff.  Do you try something that does not look 
as good, potentially incurrent a lower reward, so you can learn and 
make better decisions in the future. 

» Then the bandit community discovered that the same tradeoff 
exists in final reward.  These problems became known as “best 
arm” bandit problems in the bandit vocabulary.
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Multiarmed bandit problems
 Arms:



 Bandits:

Multiarmed bandit problems
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Multiarmed bandit problems

Dimensions of a “bandit” problem:
» The “arms” (decisions) may be

• Binary (A/B testing, stopping problems)
• Discrete alternatives (drug, catalyst, …)
• Continuous choices (price)
• Vector-valued (basketball team, products, movies, …)
• Multiattribute (attributes of a movie, song, person)
• Static vs. dynamic choice sets
• Sequential vs. batch

» Information (what we observe)
• Success-failure/discrete outcome
• Exponential family (e.g. Gaussian, exponential, …)
• Heavy-tailed (e.g. Cauchy)
• Data-driven (distribution unknown)
• Stationary vs. nonstationary processes
• Lagged responses?
• Adversarial?



Multiarmed bandit problems

Dimensions of a “bandit” problem:
» Belief models

• Lookup tables (these are most common)
– Independent or correlated beliefs

• Parametric models
– Linear or nonlinear in the parameters

• Nonparametric models
– Locally linear
– Deep neural networks/SVM

• Bayesian vs. frequentist

» Objective function
• Expected performance (e.g. regret)
• Offline (final reward) vs. online (cumulative reward)

– Just interested in final design?
– Or optimizing while learning?

• Risk metrics



Multiarmed bandit problems
What is a “bandit problem”?

» The literature seems to characterize a “bandit problem” as any problem 
where a policy has to balance exploration vs. exploitation.

» But this means that a bandit “problem” is defined by how it is solved.  
E.g., if you use a pure exploration policy, is it a bandit problem?

My definition:
» Any sequential learning problem:

• Maximizing cumulative rewards (finite or infinite horizon)
• Maximizing the terminal reward with a finite budget. 

» Fundamental elements of a “bandit” problem:
• A belief model that describes what we know about the function
• The ability to learn sequentially about the function.

» I prefer to distinguish three problem classes:
• Active learning – These problems arise when our decisions affect the 

information that arrives.  This opens the door to making decisions that balance 
current performance against learning to improve future performance.

• Passive learning – Here we may learn as we go, but we do not directly 
influence the learning process through our decisions.

• No learning – This would be for problems where there is no element of 
learning.



An energy storage problem

Transition function
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An energy storage problem

Types of learning:
» No learning ( ᇱ are known)

» Passive learning (learn from price data)

We have no control over the evolution of prices.

» Active learning (“bandit problems”)
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Learning in stochastic optimization

Learning the pricing model:
» Let ௧ାଵ be the new price and let

» We update our estimate ௧ using our recursive least 
squares equations:
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An energy storage problem

Types of learning:
» No learning ( ᇱ are known)

» Passive learning (learn from price data)

» Active learning (“bandit problems”)
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Buy/sell decisions

Our decisions influence the prices we observe, which helps 
with learning.



Classes of problems
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Major problem classes
Special structure
» There are special cases where we can solve

exactly.  But not very many.

Sampled problems (SAA, scenario trees)
» If the only problem is that we cannot compute the expectation, we 

might solve a sampled approximation

Adaptive learning algorithms
» This is what we have to turn to for most problems, and is the focus 

of this tutorial.
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Major problem classes

State independent problems
» The problem does not depend on the state of the system.

» The only state variable is what we know (or believe) about 
the unknown function                , called the belief state ௧, 
so ௧ ௧.

State dependent problems
» Now the problem may depend on what we know at time t:

» Now the state is ௧ ௧ ௧ ௧

 max ( , ) min( , )
x
F x W p x W cx  

( , )F x W

 0
max ( , , ) min( , )

tx R t
C S x W p x W cx    



Major problem classes

Offline (final reward)
» We can iteratively search for the best solution, but only 

care about the final answer.
» Asymptotic formulation:

» Finite horizon formulation: 

Online (cumulative reward)
» We have to learn as we go

max ( , )
x
F x W

,max ( , )NF x W
 

1
1

0

max ( ( ), )
N

n n

n

F X S W








üïïïïïýïïïïïþ

“ranking and selection”
or

“stochastic search”



Major problem classes

There are entire fields of stochastic optimization 
built around “final reward” and “cumulative 
reward” objections:
» Final reward

• Stochastic search (e.g. derivative-based stochastic optimization)
• Ranking and selection (finding the best out of a set of choices)

» Cumulative reward
• Multiarmed bandit problems
• Classical dynamic programming, optimal control, stochastic 

programming, …

» Our presentation will not care whether we are optimizing 
final or cumulative reward – it is just an objective 
function.
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Major problem classes

“Offline” vs. “online” learning
» My view (or perhaps the view of stochastic optimization):

• “offline learning” is learning in the computer.  We do not care 
about making mistakes as long as we get a good answer in the 
end.

• “online learning” would be learning in the field, where you have 
to live with your mistakes.

» The machine learning community uses these terms 
differently:

• “offline learning” means batch – you have a batch dataset from 
which you fit a model.

• “online learning” is sequential, as would happen if data is arriving 
in the field over time.

• The problem is that there are many sequential algorithms that are 
used in “offline” (e.g. laboratory) settings, and the machine 
learning community calls these “online.”
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Major problem classes

Notes:
» For chapter 7, we will focus on the top row, “state 

independent problems.”
» These are pure learning problems, where we are trying 

to learn a deterministic decision or policy.
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Modeling
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Modeling
Any learning problem can be written

଴ ଴ ଵ ଵ ଵ ଶ

where:
» 𝑆௡ ൌ 𝜇௫

௡, 𝛽௫
௡

௫∈௑,   𝑥 ∈ 𝑋 ൌ ሼ𝑥ଵ, … , 𝑥ெሽ
= Belief about the value of 𝜇௫.

» 𝑆଴ ൌ Initial belief
» 𝑥௡ ൌ Decision made using information from first 𝑛 experiments.
» 𝑥଴ ൌ Initial decision based on information in 𝑆^0.
» 𝑊௡ ൌObservation from 𝑛𝑡ℎ experiment, 𝑛 ൌ 1,2, … , 𝑁

Decisions are made using a policy:
𝑥௡ ൌ 𝑋గሺ𝑆௡ሻ



Modeling
All sequential decision problems can be described using:
» States 

• Belief states – what do we know about 𝔼𝐹ሺ𝑥, 𝑊ሻ, or any other function 
we are learning (transition functions, value functions, policies)

• Physical and informational states (we will get to these later).
» Decisions – What are our choices?

• Pure information collection decisions (e.g. run an MRI, purchase a credit 
report)

• Implementation decisions, but which may also affect what we learn.
» Exogenous information

• Initial belief/prior
• What we learn from an experiment

» Transition function
• Updating beliefs (statistical estimation)
• Possibly updating physical state.

» Objective function
• Performance metrics
• Finding the best policy
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Modeling

State variables
» For derivative-free, we often just have a belief state, 

capturing what we know about our function:
• Lookup tables
• Parametric models
• Nonparametric models

» Physical state 
• What node we are at in a network
• How much inventory do we have
• We will get to this in the second half of the course

» Information state
• Weather forecast, current price
• Information state at time t may be independent of the state at t-1.
• State at time t depends on state at t-1:

– Information evolves exogenously
– Our decisions influence the state (e.g. selling stock)
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Modeling

Decisions
» We have a finite set of choices:

• 𝑥 ∈ 𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ெሽ

» Examples:
• Experimenting with different drugs to kill cancer in mice.
• Running simulations to plan operations (e.g. for Amazon)
• Evaluating different players for baseball during spring training.
• Testing different materials to maximize the energy density of a 

battery.
• Test marketing new products in specific regions.

» We only care about the performance at the end of a set 
of N experiments. We do not care about how well we 
do along the way.



Modeling

Types of decisions
» Binary

» Finite

» Continuous scalar

» Continuous vector

» Discrete vector

» Categorical

 0,1x X 

 1,2,...,x X M 

 ,x X a b 

1( ,..., ),    K kx x x x 

1( ,..., ),    K kx x x x 

1( ,..., ),     is a category (e.g. red/green/blue)I ix a a a

There are entire fields dedicated to particular classes of decisions.



Modeling

Exogenous information
» Simplest: let ௫೙

௡ାଵ be the performance of alternative 
௡.

» If we are using a lookup table representation with a 
Bayesian belief model, we would assume:

௫೙
௡ାଵ

௫೙ ௡ାଵ

» If we are using a parametric representation, we would 
write

௫೙
௡ାଵ ௡ ௡ାଵ
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Modeling

Transition function:
» Now use ௫೙

௡ାଵ to update our belief model:
• Frequentist?

• Bayesian?

» Use any of the recursive learning methods from chapter 
3.

© 2019 Warren Powell
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Modeling

Objective functions for
» State independent and state dependent problems.
» Final reward and cumulative reward



Modeling

Simulating objective functions
» It is important to know how to simulate objective 

functions. We will get to this in chapter 9.



Modeling

Learning policies:
Approximate dynamic programming
Q-learning
SDDP
…

Objective functions

We will focus on these in the second half 
of the course. 



Modeling

“Online” (cumulative reward) dynamic programming is recognized as the 
“dynamic programming problem,” but the entire literature on solving 
dynamic programs describes class (4) problems. Class (3) appears to be an 
open problem class.

Objective functions



Belief models
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Belief models

Notes:
» With derivative-based search, we had gradients.
» With derivative-free, we have to form a belief model 

about               .  Classes of belief models are
• Lookup table

– Independent beliefs
– Correlated beliefs

• Parametric models
– Linear
– Nonlinear

» Logistic regression
» Step functions (sell if price is over some number)
» Neural network

( , )F x W
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Approximation strategies

Approximation strategies
» Lookup tables

• Independent beliefs 
• Correlated beliefs 

» Linear parametric models
• Linear models 
• Sparse-linear
• Tree regression

» Nonlinear parametric models
• Logistic regression
• Neural networks 

» Nonparametric models
• Gaussian process regression
• Kernel regression
• Support vector machines
• Deep neural networks 
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Approximating strategies

Lookup tables

» Independent beliefs

» Correlated beliefs
• A few dozen observations can 

teach us about thousands of 
points.

» Hierarchical models
• Create beliefs at different levels of 

aggregation and then use weighted 
combinations

 1( , )   ,...,n
x MF x W x x x  
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Approximating strategies

Parametric models
» Linear models

• Might include sparse-additive, 
where many parameters are zero.

» Nonlinear models

• (Shallow) Neural networks
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Approximating strategies

Nonparametric models
» Kernel regression

• Weighted average of neighboring 
points

• Limited to low dimensional 
problems

» Locally linear methods
• Dirichlet process mixtures
• Radial basis functions

» Splines
» Support vector machines
» Deep neural networks
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Belief models

Lookup table
» We can organize potential catalysts into groups
» Scientists using domain knowledge can estimate 

correlations in experiments between similar catalysts.
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Belief models

We start with a belief about each material (lookup table)

1 2 3 4 4 5

© 2019 Warren Powell Slide 53



54

Belief models

Testing one material teaches us about other materials

1 2 3 4 4 5
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Belief models

We express our belief using a linear, additive QSAR model
»
»

0
  

ij ij
sites i substituents j

Y X    
  Indicator variable for molecule .m m

ij ij
X X m 
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Belief models

A sampled belief model

1

2

3

4

R
es

po
ns

e 
   

   
 

1 2

1 2

( )

0 ( )( | )
1

i i

i

x

i i x

eR x
e

 

  
 

 


 0 1 2, ,i i i i   

Thickness proportional to n
kp

Concentration/temperature

© 2019 Warren Powell



Belief models
Parametric belief models
» Value of information (the 

KG) behaves in an 
unexpected way

» Graph to right shows the 
value of information while 
learning a quadratic 
approximation.

» We are using these insights 
to develop simple rules for 
where to run experiments 
that avoid the complexity of 
KG calculations.
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Belief models

Truckload brokerages:
» Now we have a logistic curve for 

each origin-destination pair (i,j)

» Number of offers for each (i,j) pair 
is relatively small.

» Need to generalize the learning 
across “traffic lanes.”
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Belief models

Hotel revenue management
» Locally linear curves
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Belief models

Hotel revenue management
» Guessing the right logistics curve
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Designing policies
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Designing policies

We have to start by describing what we mean by a 
policy.
» Definition:

A policy is a mapping from a state to an action.  
… any mapping.

How do we search over an arbitrary space of 
policies?



Designing policies

Two fundamental strategies:

1) Policy search – Search over a class of functions for 
making decisions to optimize some metric.

2) Lookahead approximations – Approximate the impact 
of a decision now on the future. 
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Designing policies
Policy search:
1a) Policy function approximations (PFAs)

• Lookup tables 
– “when in this state, take this action”

• Parametric functions
– Order-up-to policies: if inventory is less than s, order up to S.
– Affine policies -
– Neural networks

• Locally/semi/non parametric
– Requires optimizing over local regions

1b) Cost function approximations (CFAs)
• Optimizing a deterministic model modified to handle uncertainty 

(buffer stocks, schedule slack)
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Designing policies
Lookahead approximations – Approximate the impact of a 
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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Designing policies
Lookahead approximations – Approximate the impact of a 
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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Designing policies
Lookahead approximations – Approximate the impact of a 
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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The ultimate lookahead policy is optimal
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Designing policies

The ultimate lookahead policy is optimal

Expectations that we 
cannot compute

Maximization that we 
cannot compute



Designing policies

The ultimate lookahead policy is optimal

» 2b) Instead, we have to solve an approximation called 
the lookahead model:

» A lookahead policy works by approximating the 
lookahead model.
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Designing policies
Types of lookahead approximations 
» One-step lookahead – Widely used in pure learning 

policies:
• Bayes greedy/naïve Bayes
• Expected improvement
• Value of information (knowledge gradient)

» Multi-step lookahead
• Deterministic lookahead, also known as model predictive 

control, rolling horizon procedure
• Stochastic lookahead:

– Two-stage (widely used in stochastic linear programming)
– Multistage

» Monte carlo tree search (MCTS) for discrete action 
spaces

» Multistage scenario trees (stochastic linear 
programming) – typically not tractable.



1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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Optimal policies

Online vs. offline learning

Slide 75



Optimal policies

Earlier we expressed an optimal policy using 
Bellman’s equation:
» Recall that we used a graph:

» Bellman equation (state = node)



Optimal policies
Bellman’s equation for a learning problem:
» A belief state

» Bellman equation (state = node)

» Can only solve this in very special cases (and not with normally 
distributed beliefs).  5 alternatives -> 10-dimensional continuous state.



Optimal policies

Online (cumulative reward) vs. offline (final 
reward)

» Bellman’s equation for online (cumulative reward) 
learning:

௡ ௡
௫

௡ ௡ ௡ାଵ ௡ାଵ ௡

» Bellman’s equation for offline (final reward) learning:

௡ ௡
௫

௡ାଵ ௡ାଵ ௡

» If we only care about the final reward, we do not care 
h h k l h



Policy function approximation
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Policy function approximation

Examples:

» Optimizing buying-selling energy from the grid

» Finding the best selling price for my book on Amazon.

© 2019 Warren Powell



Policy function approximations

Battery arbitrage – When to charge, when to 
discharge, given volatile LMPs
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Grid operators require that batteries bid charge and 
discharge prices, an hour in advance.

We have to search for the best values for the policy 
parameters 

Discharge
Charge

Charge Dischargeand . 

Policy function approximations



Policy function approximations

Our policy function might be the parametric 
model (this is nonlinear in the parameters):

charge

charge discharge

charge

1 if 
( | ) 0 if 

1 if 

t

t t

t

p
X S p
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Energy in storage:

Price of electricity:



Policy function approximations

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
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max ( ) , ( | )
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t
t t t
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F C S X S
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Policy function approximation

Optimal pricing



Policy function approximation

Dynamic pricing
» After n sales, our estimate of the 

demand function is
௡

଴
௡

ଵ
௡

» Revenue is
௡ ௡

଴
௡

ଵ
௡ ଶ

» The optimal price given our 
estimates would be:

௡ ఏഥబ
೙

ଶఏഥభ
೙



Revenue management
Earning vs. learning

» You earn the most 
with prices near the 
middle.

» You learn the most 
with extreme prices.

» Challenge is to strike 
a balance.



Policy function approximation

Designing a policy:
» Just doing what appears to be best will encourage prices 

too close to the middle.  
» We can try an excitation policy by adding noise:

௡ గ ௡ ଴
௡

ଵ
௡

where ଶ , where is a tunable parameter.  
» After charging price ௡, we observe revenue:

௡ାଵ ௡
଴ ଵ

௡ ௗ௘௠௔௡ௗ,௡ାଵ

where ௗ௘௠௔௡ௗ,௡ାଵ ௐ,ଶ is the noise when 
observing demand.

© 2019 Warren Powell



Policy function approximation

Designing a policy:
is a tunable parameter that needs to solve:

ఘ ఏ ஽భ,஽మ,…,஽ಿ|ఏ

ே

௡ୀଵ

గ ௡ ଴

» The best value of should strike a balance between 
doing a better job of exploration, without overdoing it.

© 2019 Warren Powell



Policy function approximation

Other examples of PFAs:
» A basic linear decision rule

గ ௡
௙ ௙

௡

௙∈ி

» Where the features ௙ for have to be 
designed by hand.

© 2019 Warren Powell



Cost function approximation
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Materials science example
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Materials science application

Heuristic measurement policies
» Boltzmann exploration

• Explore choice x with probability

•
» Upper confidence bounding

» Thompson sampling

» Interval estimation (or upper confidence bounding)
• Choose x which maximizes
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Materials science application

Notes:
» Each one of these policies has an imbedded “max” (or 

“min”) operator.
» But each one still has a tunable parameter – this is the 

distinguishing feature of “policy search” policies.
» For these policies, the max involves a simple search 

over a set of discrete choices, so this is not too difficult. 
» Another example is solving a shortest path into New 

York.  The tunable parameter might be how much time 
you add to the trip to deal with traffic.

» The max/min could also be a large optimization 
problem, such as what is solved to plan energy 
generation for tomorrow.

© 2019 Warren Powell



Materials science application

Lookup table
» We can organize potential catalysts into groups
» Scientists using domain knowledge can estimate 

correlations in experiments between similar catalysts.
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Materials science application

Correlated beliefs: Testing one material teaches us about other 
materials

1 2 3 4 4 5
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Materials science application

Heuristic measurement policies
» Boltzmann exploration

• Explore choice x with probability

•
» Upper confidence bounding

» Thompson sampling

» Interval estimation
• Choose x which maximizes
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Materials science application

Notes:
» Upper confidence bounding and Thompson sampling 

are very popular in the computer science community.
» These have been shown to have provable regret bounds, 

which the CS community then uses to claim that they 
must be very good.

» My own experimental work has not supported this 
claim, but we have found that a properly tuned version 
of interval estimation tends to work surprisingly well.

» … The problem is the tuning.

© 2019 Warren Powell
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Materials science application

Picking ூா means we are evaluating each choice 
at the mean. 

1 2 3 4 4 5
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Materials science application

Picking ூா means we are evaluating each choice 
at the 95th percentile. 

1 2 3 4 4 5



Materials science application
Optimizing the policy
» We optimize 𝜃ூா to maximize:

where

Notes:
» This can handle any belief model, 

including correlated beliefs, nonlinear 
belief models.

» All we require is that we be able to 
simulate a policy.  
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Materials science application

Other applications

» Airlines optimizing schedules with schedule slack to 
handle weather uncertainty.

» Manufacturers using buffer stocks to hedge against 
production delays and quality problems.

» Grid operators scheduling extra generation capacity in 
case of outages.

» Adding time to a trip planned by Google maps to 
account for uncertain congestion.



Materials science application

Notes:
» CFA policies are exceptionally popular in internet 

applications:
» Choosing ads, news articles, products, … that 

maximize ad-clicks.
» The ease of computation of the policies is very 

attractive.
» Representative from google once noted: “We can use 

any policy that can be computed in under 50 
milliseconds.”

© 2019 Warren Powell



Cost function approximation
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Fleet management example



Schneider National

© 2018 Warren B. Powell
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Fleet management application

DemandsDrivers

© 2018 Warren B. Powell



Fleet management application

t t+1 t+2

The assignment of drivers to loads evolves over time, with new loads 
being called in, along with updates to the status of a driver.

© 2018 Warren B. Powell



Fleet management application

A purely myopic policy would solve this problem 
using

where

What if a load it not assigned to any driver, and has been 
delayed for a while?  This model ignores the fact that we 
eventually have to assign someone to the load.

1 If we assign driver  to load 
0 Otherwise                              

Cost of assigning driver  to load  at time 

tdl

tdl

d l
x

c d l t


 




min x tdl tdl
d l

c x
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Fleet management application

We can minimize delayed loads by solving a 
modified objective function:

where

We refer to our modified objective function as a cost 
function approximation.

How long load  has been delayed by time 
Bonus for moving a delayed load

tl l t




 min x tdl tl tdl
d l

c x
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Fleet management application

We now have to tune our policy, which we define 
as:

We can now optimize    , another form of  policy search, 
by solving

 ( | ) arg mint x tdl tl tdl
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Cost function approximation
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Logistics example



Logistics application

Inventory management

» How much product 
should I order to 
anticipate future 
demands?

» Need to accommodate 
different sources of 
uncertainty.

• Market behavior
• Transit times
• Supplier uncertainty
• Product quality

© 2018 Warren B. Powell



Logistics application

Imagine that we want to purchase parts from 
different suppliers.  Let      be the amount of 
product we purchase at time t from supplier p to 
meet forecasted demand      .  We would solve 

» This assumes our demand forecast      is accurate.  
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Imagine that we want to purchase parts from 
different suppliers.  Let      be the amount of 
product we purchase at time t from supplier p to 
meet forecasted demand      .  We would solve 

» This is a “parametric cost function approximation”
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Logistics application

tD

tpx

Reserve

Buffer stock
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An even more general CFA model:
» Define our policy:

subject to

» We tune     by optimizing:

Logistics application

( ) arg max ( , | )t x t tX C S x  
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Parametrically
modified costs

Parametrically
modified constraints
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Cost function approximation
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Energy storage example



Parametric cost function approximation

Notes:
» In this set of slides, we are going to illustrate the use of 

a parametrically modified lookahead policy.
» This is designed to handle a nonstationary problem with 

rolling forecasts.  This is just what you do when you 
plan your path with google maps.

» The lookahead policy is modified with a set of 
parameters that factor the forecasts.  These parameters 
have to be tuned using the basic methods of policy 
search.
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Parametric cost function approximation

An energy storage problem:



Parametric cost function approximation
Forecasts evolve over time as new information arrives:

Actual

Rolling forecasts, 
updated each 
hour.







Forecast made at 
midnight:



Parametric cost function approximation

Benchmark policy – Deterministic lookahead

' ' ' '

' ' '

' ' '

max
' ' '

' ' '
arg

' '
arg

' '

wd rd gd D
tt tt tt tt

gd gr G
tt tt tt
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tt tt tt
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tt tt tt
wr wd E
tt tt tt
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tt tt
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x x x f
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x x R

x x R R
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Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

.  .  .  .
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t 1t  2t  3t 
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Lookahead policies
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Lookahead policies
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Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model
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Parametric cost function approximation

Benchmark policy – Deterministic lookahead

' ' ' '

' ' '

' ' '

max
' ' '

' ' '
arg

' '
arg

' '

wd rd gd D
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gd gr G
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Parametric cost function approximation

Parametric cost function approximations
» Replace the constraint 

with:
» Lookup table modified forecasts (one adjustment term for 

each time in the future):

» We can simulate the performance of a parameterized policy

» The challenge is to optimize the parameters:

't t  

' ' ' '
wr wd E
tt tt t t tt
x x f  

'
wr
tt
x '

wd
tt
x

 
0

( , ) ( ), ( ( ) | )
T

t t t
t

F C S X S    


 

 
0

min , ( | )
T

t t t
t

C S X S
 






Parametric cost function approximation

One-dimensional contour plots – perfect forecast
௜ for i=1,…, 8 hours into the future.

q
0.0                      0.2                       0.4                       0.6                       0.8                   1.0                       1.2 

* 1 for perfect forecasts.iq =



Parametric cost function approximation

One-dimensional contour plots-uncertain forecast
௜ for i=9,…, 15 hours into the future

0.0       0.2        0.4         0.6        0.8          1.0        1.2       1.4           1.6        1.8        2.0      2.2  2.4

q



Parametric cost function approximation
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Parametric cost function approximation
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Parametric cost function approximation
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Parametric cost function approximation
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Numerical derivatives

Simultaneous perturbation stochastic approximation
» Let:

• 𝑥௡ be a p െ dimensional vector.
• 𝛿௡ be a scalar perturbation
• 𝑍௡ be a p െdimensional vector, with each element drawn from a normal (0,1) 

distribution.

» We can obtain a sampled estimate of the gradient 𝛻௫𝐹ሺ𝑥௡, 𝑊௡ାଵሻ
using two function evaluations: 𝐹 𝑥௡ ൅ 𝛿௡𝑍௡ and 𝐹 𝑥௡ ൅ 𝛿௡𝑍௡

1

1
2

( ) ( )
2

( ) ( )
2( , )

( ) ( )
2

n n n n n n

n n

n n n n n n

n nn n
x

n n n n n n

n n
p

F x Z F x Z
Z

F x Z F x Z
ZF x W

F x Z F x Z
Z

d d
d

d d
d

d d
d

+

é ù+ - +ê ú
ê ú
ê ú
ê ú+ - +ê ú
ê ú = ê ú
ê ú
ê ú
ê ú
ê ú+ - +
ê ú
ê úë û





Numerical derivatives

Finite differences
» We use finite differences in MOLTE-DB:

• We wish to optimize the decision of when to charge or 
discharge a battery

charge

charge discharge

charge

1 if 
( | ) 0 if 

1 if 

t

t t

t

p
X S p

p




  



 
  
 
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Numerical derivatives

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max ( ) , ( | )
T

t
t t t

t
F C S X S

   


 
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Cost function approximation

© 2019 Warren Powell Slide 136

Stochastic shortest path



Stochastic shortest path problem
A stochastic network, costs revealed as we arrive to a 
node:

1

2

3

4

5

6

7

8

9

10

11

3.6

8.1

13.5

8.9

12.7
12.6

8.4

9.2

15.9
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Stochastic shortest path problem

Modeling:
» State variable (iteration n, time t)

• 𝑅௧
௡ ൌ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 ൌ 𝑖௧

௡ during pass 𝑛
• 𝐼௧

௡ ൌ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ൌ 𝑐௧̅௜௝
௡ ൌ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 𝑜𝑓 𝑐𝑜𝑠𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

during pass 𝑛
• 𝑆௧

௡ ൌ ሺ𝑅௧
௡, 𝐼௧

௡)

» Decisions

௧,௜೟
೙,௝=1 if we traverse ௧

௡ at time 
• We want a policy 𝑋௧

గ 𝑆௧ ൌ 𝑥௧,௜೟
೙ୀ௜,௝

గ
௜௝

for all links 𝑖, 𝑗.

» Costs
• 𝑐௧௜௝ ൌActual realization of costs at time 𝑡 to traverse ሺ𝑖, 𝑗ሻ
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Stochastic shortest path problem
Modeling:
» Objective function

• Cost per period
CሺS୲, X୲

గ 𝑆௧ ሻ ൌ ሺ𝑋௧
గ 𝑆௧ ሻ்𝑐௧

ൌ ෍ 𝑥௧,௜೟
೙,௝

గ

௜,௝

𝑐௧௜௝

ൌCosts incurred at time t.
• Total costs:

min
గ

𝔼 ∑ CሺS୲, X୲
గ 𝑆௧ ሻ்

௧ୀ଴

» This is the base model.
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Stochastic shortest path problem
A policy based on a lookahead model
» At each time 𝑡 we are going to optimize over an estimate of the 

network that we are going to call the lookahead model.
» Notation: all variables in the lookahead model have tilde’s, and 

two time indices.
• First time index, 𝑡, is the time at which we are making a decision.  

This determines the information content of all parameters (e.g. costs) 
and decisions.

• A second time index, 𝑡′, is the time within the lookahead model.
» Decisions

• 𝑥෤௧௜௝ ൌ 1 if we plan on traversing link 𝑖, 𝑗 in the lookahead model.
• 𝑐௧௜௝ ൌ Estimated cost at time 𝑡 of traversing link ሺ𝑖, 𝑗ሻ in the 

lookahead model.
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Stochastic shortest path problem
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Stochastic shortest path problem
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Stochastic shortest path problem
A static, deterministic network

1
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5
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16.5 20.2

13.5

8.9
12.7

15.9
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7.3
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Stochastic shortest path problem

t

t + 1

t + 2

t + 3
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A time-dependent, deterministic network



The base model
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Stochastic shortest path problem
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A time-dependent, deterministic lookahead network

't t

' 1t t 

' 2t t 

' 3t t 

' 4t t 



The base model

t 1t  2t  3t 

.  .  .  .

Stochastic shortest path problem

© 2018 W.B. Powell

A time-dependent, deterministic lookahead network
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Stochastic shortest path problem
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A time-dependent, deterministic lookahead network
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Stochastic shortest path problem

Imagine that the lookahead is just a black box:
» Solve the optimization problem

» subject to

» This is a deterministic shortest path problem that we 
could solve using Bellman’s equation, but for now we 
will just view it as a black box optimization problem.

( ) arg min    
i

n n
t t tij tij

i N j N

X S c xp

+Î Î

= åå  

,

,

, ,

1   Flow out of current node where we are located

1    Flow into destination node 

 0  for all other nodes. 

n
ti j

j

i r
i

i j j k
i k

x

x r

x x

=

=

- =

å

å

å å





 
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Stochastic shortest path problem

Simulating a lookahead policy

, ,
0 ,

, ', 1, ', 2, ',

We would like to compute

ˆ     ( )

but this is intractable.
Let  be a sample realization of costs 

ˆ ˆ ˆ     ( ), ( ), ( ),...

Now simulate the policy

     

T

t ij t t ij
t i j

t t ij t t ij t t ij

F X S c

c c c

p p

w
w w w

=

+ +

= åå

, ,
0 ,

1

ˆ ˆ( ) ( ( )) ( )

Finally, get the average performance
1 ˆ     ( )

T
n n n

t ij t t ij
t i j

N
n

n

F X S c

F F
N

p p

p p

w w w

w

=

=

=

=

åå

å

Talk through how this 
works.
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Stochastic shortest path problem

Notes:
» The deterministic lookahead is still a policy for a 

stochastic problem.
» Can we make it better?

Idea:
» Instead of using the expected cost, what about using a 

percentile.
» Use pdf of ௜௝ to find percentile (e.g. ).  Let 

௜௝
௣ The percentile of ௜௝

» Which means ௜௝ ௜௝
௣
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Stochastic shortest path problem

The percentile policy.
» Solve the linear program (shortest path problem):

» subject to

» This is a deterministic shortest path problem that we 
could solve using Bellman’s equation, but for now we 
will just view it as a black box optimization problem.

( | ) arg min ( )     (Vector with 1 if decision is to take ( , ))
i

n p
t t tij tij tij

i N j N

X S c x x i jp q q
+Î Î

= =åå  

, ,
1   Flow out of current node where we are located

1    Flow into destination node 

 0  for all other nodes. 

n
tt i j

j

tir
i

tij tjk
i k

x

x r

x x

=

=

- =

å

å

å å





 
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Stochastic shortest path problem

Simulating a lookahead policy

, ', 1, ', 2, ',

, ',
0 ,

Let  be a sample realization of costs 
ˆ ˆ ˆ( ), ( ), ( ),...

Now simulate the policy

ˆ ˆ( ) ( ) ( ( ) | )

Finally, get the average performance
1 ˆ( ) (

t t ij t t ij t t ij

T
n n

t t ij t t
t i j

n

c c c

F c X S

F F
N

p p

p p

w
w w w

w w w q

q w

+ +

=

=

=

åå

1

)
N

n=
å
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Stochastic shortest path problem

Policy tuning
» Cost vs. lateness (risk)
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Notes on cost function approximations
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Cost function approximations

Notes:
» CFAs are the dirty secret of real-world stochastic 

optimization.  They are easy to understand, easier to 
solve, and make it possible to incorporate problem 
structure.

» The first challenge is to identify an effective 
parameterization.  This requires having insights into the 
problem.

» The second challenge is to optimize over the 
parameters.

» There are close parallels between policy search and 
machine learning.

© 2019 Warren Powell



Cost function approximations

Tuning the parameters
» Let

గ ௡ Tunable policy
» The simulated performance of the policy is given by

• Final reward:
– Let 𝑥గ,ேሺ𝜃ሻ be the solution produced by following 

policy 𝜋 parameterized by 𝜃.  The performance of the 
policy is given by

గ గ,ே

• Cumulative reward

𝐹గ 𝜃, 𝑊 ൌ ෍ 𝐶ሺ𝑆௧

்

௧ୀ଴

, 𝑋గ 𝑆௡ 𝜃 ሻ
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Cost function approximations

Tuning the parameters
» We can write any parameter tuning problem as

ఏ ௐ

» This is a basic stochastic learning problem.  We can 
approach it using:

• Derivative-based stochastic search – Will probably need to use 
numerical derivatives.

• Derivative-free stochastic search – We might represent the set 
of possible values of 𝜃 ∈ ሼ𝜃ଵ, … , 𝜃௄ሽ and then search over this 
finite set.
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Learning and tuning policies
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Learning policies
Simulating a policy
» Regardless of our belief model (frequentist or Bayesian), a learning 

process looks like

» Our observations might come from
𝑊௫೙

௡ାଵ ൌ 𝜇௫೙ ൅ 𝜀௡ାଵ

or perhaps
𝐹෠௡ ൌ 𝐹ሺ𝑥௡, 𝑊௡ାଵሻ

There are different ways to  interpret our “W” variable.
» Imagine that we have three policies 𝜋஺, 𝜋஻, and 𝜋஼.  Let Π ൌ ሺ𝜋஺,

𝜋஻, 𝜋஼).  
» In offline learning, we only care about our final answer which we 

call:

0 1 1
0 0 1 1 1 2 1 1( , , , , , ,..., , , , )N

N N N N
x x x

S x W S x W S x W S-
- -

, maxN N
x xxp m=



Learning policies
Learning the best policy
» Imagine that we have three policies 𝜋஺, 𝜋஻, and 𝜋஼.  Let Π ൌ ሺ𝜋஺,

𝜋஻, 𝜋஼). 
» In offline (final reward) learning, we will optimize the final reward

max
గ

𝔼ఓ𝔼ௐభ,…,ௐಿ|ఓ𝜇௫
ே

or
max

గ
𝔼ఓ𝔼ௐభ,…,ௐಿ|ఓ𝔼ௐ෡ |ఓ𝐹ሺ𝑥గ,ே, 𝑊෡ ሻ

» In online (cumulative reward) learning, we optimize the 
cumulative rewards:

max
గ

𝔼ఓ𝔼ௐభ,…,ௐಿ|ఓ𝔼ௐ෡ |ఓ ෍ 𝐹ሺ𝑋గ 𝑆௡ 𝜃 , 𝑊௡ାଵሻ
ேିଵ

௡ୀ଴

» x



Learning policies
Finding a policy
» Imagine that we have three classes of policies 𝜋஺, 𝜋஻, and 𝜋஼.  Let 

Π ൌ ሺ𝜋஺, 𝜋஻, 𝜋஼).  
» For each class of policy, we might have a set of parameters 𝜃 ∈ Θ஺

(for example) that have to be tuned.
» In offline learning, we only care about our final answer which we 

call:
𝑥గ,ே ൌ max

௫
𝜇௫

ே

Note that the policy 𝜋 is implicit in the estimate 𝜇௫
ே.  We make it 

explicit when we write the final design 𝑥గ,ே.
» Now we wish to solve the optimization problem that finds the best 

policy (best class, and best within the class).



Learning policies
Notes
» Buried in the estimate of 𝜇௫

ே is:

• The truth 𝜇௫

• The set of observations:

𝑊௫బ
ଵ , 𝑊௫భ

ଶ , …, 𝑊௫ಿషభ
ே

» …where the choices 𝑥଴, 𝑥ଵ, … , 𝑥ேିଵ are determined by our 
learning policy 𝑥௡ ൌ 𝑋గሺ𝑆௡ሻ. This is the reason we label

with the policy 𝜋.

, maxN N
x xxp m=



Learning policies
Evaluating a policy
» The final design 𝑥గ,ே is a random variable since it depends on:

• The true 𝜇௫ (in our Bayesian model, we treat this as a random 
variable)

• The observations 𝑊ଵ, 𝑊ଶ, … , 𝑊ே

» We can evaluate a policy 𝑋గሺ𝑆ሻ using

» Finally, we write our optimization problem as

» It is useful to express what the expectations are over, so we write

, ,     (these are equivalent - more on this later).N N
N

x x
F p p

p m m= = 

,max N
N
xpp m

1 2 ,, ,..., |
max N N

N
W W W xpp m m

m 



Learning policies
Simulating a policy
» We cannot compute expectations, so we have to learn how to 

simulate:

» Let 𝜇ሺ𝜓ሻ be a sampled truth, and let 𝑊ଵ 𝜔 , … , 𝑊ேሺ𝜔ሻ be a 
sample path of function observations.  

» Assume we have truths 𝜓ℓ, ℓ ൌ 1, … , 𝐿, and sample paths 
𝜔ଵ, … , 𝜔௄.  

» Let 𝜇௫
గ,ேሺ𝜓ℓ, 𝜔௞ሻ be the estimate of 𝜇௫ when the truth is 𝜓ℓ and 

the sample path of realizations is 𝜔௞, while following experimental 
policy 𝜋.

» Now evaluate the policy using

𝐹തగ ൌ max
గ

1
𝐿 ෍

1
𝐾 ෍ 𝜇௫

గ,ேሺ𝜓ℓ, 𝜔௞ሻ
௄

௞ୀଵ

௅

ℓୀଵ

1 2 ,, ,..., |
max N N

N
W W W xpp m m

m 



“Contextual” learning
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Contextual learning
What if we are given information before making a 
decision?
» We see the attributes of a patient before prescribing treatment.
» We are given a weather report before having to decide how many 

newspapers to put in our kiosk.
» Let’s call this an “environmental state” variable (this is not 

standard, but there is not a standard name for this).

Example: 
» Newsvendor problem with a dynamic state variable (the price):

» Further assume that 𝑝௧ is independent of any previous prices, and 
that it is revealed before we make our decision 𝑥.

The price 𝑝௧ is known as a “context.”  This would be called a 
“contextual learning problem” or a “contextual bandit problem.”
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Contextual learning

Why is this special?
» Without the dynamic information, we would be 

searching for the best 
» With the contextual information, we are now looking 

for where is the revealed price. This means that 
instead of looking for a deterministic variable (or 
vector), we are now looking for a function.

» When we are looking for a decision as a function of a 
state variable (even part of a state variable), then this is 
what we call a policy.  

» The learning literature makes a big deal about 
“contextual bandit problems.”  For us, there is nothing 
different about this than any state-dependent problem.
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