
.

ORF 544

Stochastic Optimization and Learning
Spring, 2019

Warren Powell
Princeton University

http://www.castlelab.princeton.edu

© 2018 W.B. Powell

Week 4

Chapter 7: Derivative-free stochastic
search

© 2019 Warren Powell Slide 2

Derivative-free stochastic search

Notes:
» The material for this week and next will all be drawn

from chapter 7.
» Chapter 7 is 60 pages, and desperately in need of a

rewrite. I don’t have time to do this, but the lectures
will follow a new (and improved) outline.

» Derivative-free stochastic optimization is an extremely
rich problem class. We will use this to illustrate four
fundamental classes of policies, which can be organized
along two core strategies:

• Policy search – Here we will search within a class of policies
to identify which work best over time/iterations.

• Lookahead policies – These are policies that are constructed to
optimize the value of an experiment plus the value of the
downstream state.

© 2019 Warren Powell

Derivative-free stochastic search

Week 4 (this week): We will cover:
» Introduction to derivative-free stochastic optimization
» Introduction to two strategies for developing policies:

• Policy search class
• Lookahead class

» Then we will focus on the “policy search” class, which
can be divided into two classes:

• Policy function approximations (PFAs)
• Cost function approximations (CFAs)

» We will do the more difficult lookahead classes next
week.

© 2019 Warren Powell

Introduction to derivative-free stochastic
search

© 2019 Warren Powell Slide 5

Sports

Finding the best
player
» We have a set of

players from which to
choose a team

» The effectiveness of a
certain team is best
revealed by playing a
game

» We maximize the
total number of games
won in the season

© 2019 Warren Powell Slide 6

Optimal learning in diabetes
How do we find the best treatment
for diabetes?

» The standard treatment is a
medication called metformin,
which works for about 70 percent
of patients.

» What do we do when metformin
does not work for a patient?

» There are about 20 other
treatments, and it is a process of
trial and error. Doctors need to
get through this process as quickly
as possible.

© 2019 Warren Powell

8

Drug discovery

Biomedical research
» How do we find the

best drug to cure
cancer?

» There are millions of
combinations, with
laboratory budgets
that cannot test
everything.

» We need a method
for sequencing
experiments.

© 2019 Warren Powell Slide 8

Drug discovery

Designing molecules

» X and Y are sites where we can hang substituents to change the
behavior of the molecule. We approximate the performance using
a linear belief model:

0

ij ij
sites i substituents j

Y X    

» How to sequence experiments to
learn the best molecule as quickly
as possible?

© 2019 Warren Powell

© 2019 Warren Powell Slide 10

Designing menus

What should you offer?
» No-one will like

everything on a menu.

» The trick is to find
choices that will satisfy
people.

» You will probably need to
observe the response to a
particular menu over a
period of time.

» So, observations are time © 2019 Warren Powell

Derivative free stochastic search

Settings

© 2019 Warren Powell

The multiarmed bandit problem

Slide 13

Multiarmed bandit problems
Bandit problems and objective functions
» The classical bandit problem is cumulative reward:

where

» The essential characteristic of bandit problems is the exploration
vs. exploitation tradeoff. Do you try something that does not look
as good, potentially incurrent a lower reward, so you can learn and
make better decisions in the future.

» Then the bandit community discovered that the same tradeoff
exists in final reward. These problems became known as “best
arm” bandit problems in the bandit vocabulary.

© 2019 Warren Powell

1
1

0

max ((),)
N

n n

n

F X S W








1 "winnings"
State of knowledge

()

 





n

n

n n

W
S
x X S Choose next “arm” to play

New information

What we know about each slot machine

Multiarmed bandit problems
 Arms:

 Bandits:

Multiarmed bandit problems

Multiarmed bandit problems

Multiarmed bandit problems

Multiarmed bandit problems

Dimensions of a “bandit” problem:
» The “arms” (decisions) may be

• Binary (A/B testing, stopping problems)
• Discrete alternatives (drug, catalyst, …)
• Continuous choices (price)
• Vector-valued (basketball team, products, movies, …)
• Multiattribute (attributes of a movie, song, person)
• Static vs. dynamic choice sets
• Sequential vs. batch

» Information (what we observe)
• Success-failure/discrete outcome
• Exponential family (e.g. Gaussian, exponential, …)
• Heavy-tailed (e.g. Cauchy)
• Data-driven (distribution unknown)
• Stationary vs. nonstationary processes
• Lagged responses?
• Adversarial?

Multiarmed bandit problems

Dimensions of a “bandit” problem:
» Belief models

• Lookup tables (these are most common)
– Independent or correlated beliefs

• Parametric models
– Linear or nonlinear in the parameters

• Nonparametric models
– Locally linear
– Deep neural networks/SVM

• Bayesian vs. frequentist

» Objective function
• Expected performance (e.g. regret)
• Offline (final reward) vs. online (cumulative reward)

– Just interested in final design?
– Or optimizing while learning?

• Risk metrics

Multiarmed bandit problems
What is a “bandit problem”?

» The literature seems to characterize a “bandit problem” as any problem
where a policy has to balance exploration vs. exploitation.

» But this means that a bandit “problem” is defined by how it is solved.
E.g., if you use a pure exploration policy, is it a bandit problem?

My definition:
» Any sequential learning problem:

• Maximizing cumulative rewards (finite or infinite horizon)
• Maximizing the terminal reward with a finite budget.

» Fundamental elements of a “bandit” problem:
• A belief model that describes what we know about the function
• The ability to learn sequentially about the function.

» I prefer to distinguish three problem classes:
• Active learning – These problems arise when our decisions affect the

information that arrives. This opens the door to making decisions that balance
current performance against learning to improve future performance.

• Passive learning – Here we may learn as we go, but we do not directly
influence the learning process through our decisions.

• No learning – This would be for problems where there is no element of
learning.

An energy storage problem

Transition function

E

G

B

L

1 1

1 0 1 1 2 2 1

1 , 1 1

1

ˆ
t t t

p
t t t t t t t t

D D
t t t t

battery battery
t t t

E E E

p p p p

D f

R R x

   



 

   

  



 

   

 

 

An energy storage problem

Types of learning:
» No learning (ᇱ are known)

» Passive learning (learn from price data)

We have no control over the evolution of prices.

» Active learning (“bandit problems”)

1 0 1 1 2 2 1
p

t t t t tp p p p         

1 0 1 1 2 2 1
p

t t t t t t t tp p p p         

1 0 1 1 2 2 3 1
GB p

t t t t t t t t t tp p p p x           If we have to learn the parameters, then we have to introduce
this learning process into the dynamics.

Learning in stochastic optimization

Learning the pricing model:
» Let ௧ାଵ be the new price and let

» We update our estimate ௧ using our recursive least
squares equations:

1 1
1

1
t t t t t

t

B pq q e
g+ +

+

= -

()
1 1

1
1

1

(|) ,
1 ()

1 ()

price
t t t t t

T
t t t t t t

t

T
t t t t

F p p

B B B p p B

p B p

e q

g

g

+ +

+
+

+

= -

= -

= +

0 1 1 2 2(|) ()price T
t t t t t t t t t t tF p p p p p        

An energy storage problem

Types of learning:
» No learning (ᇱ are known)

» Passive learning (learn from price data)

» Active learning (“bandit problems”)

1 0 1 1 2 2 1
p

t t t t tp p p p         

1 0 1 1 2 2 1
p

t t t t t t t tp p p p         

1 0 1 1 2 2 3 1
GB p

t t t t t t t t t tp p p p x           

Buy/sell decisions

Our decisions influence the prices we observe, which helps
with learning.

Classes of problems

© 2019 Warren Powell Slide 27

Major problem classes
Special structure
» There are special cases where we can solve

exactly. But not very many.

Sampled problems (SAA, scenario trees)
» If the only problem is that we cannot compute the expectation, we

might solve a sampled approximation

Adaptive learning algorithms
» This is what we have to turn to for most problems, and is the focus

of this tutorial.

max (,)x F x W

1

1ˆmax (,) (,)
N

n
x

n

F x W F x W
N 

 

Deterministic!

Also deterministic!

Major problem classes

State independent problems
» The problem does not depend on the state of the system.

» The only state variable is what we know (or believe) about
the unknown function , called the belief state ௧,
so ௧ ௧.

State dependent problems
» Now the problem may depend on what we know at time t:

» Now the state is ௧ ௧ ௧ ௧

 max (,) min(,)
x
F x W p x W cx  

(,)F x W

 0
max (, ,) min(,)

tx R t
C S x W p x W cx    

Major problem classes

Offline (final reward)
» We can iteratively search for the best solution, but only

care about the final answer.
» Asymptotic formulation:

» Finite horizon formulation:

Online (cumulative reward)
» We have to learn as we go

max (,)
x
F x W

,max (,)NF x W
 

1
1

0

max ((),)
N

n n

n

F X S W








üïïïïïýïïïïïþ

“ranking and selection”
or

“stochastic search”

Major problem classes

There are entire fields of stochastic optimization
built around “final reward” and “cumulative
reward” objections:
» Final reward

• Stochastic search (e.g. derivative-based stochastic optimization)
• Ranking and selection (finding the best out of a set of choices)

» Cumulative reward
• Multiarmed bandit problems
• Classical dynamic programming, optimal control, stochastic

programming, …

» Our presentation will not care whether we are optimizing
final or cumulative reward – it is just an objective
function.

© 2019 Warren Powell

Major problem classes

“Offline” vs. “online” learning
» My view (or perhaps the view of stochastic optimization):

• “offline learning” is learning in the computer. We do not care
about making mistakes as long as we get a good answer in the
end.

• “online learning” would be learning in the field, where you have
to live with your mistakes.

» The machine learning community uses these terms
differently:

• “offline learning” means batch – you have a batch dataset from
which you fit a model.

• “online learning” is sequential, as would happen if data is arriving
in the field over time.

• The problem is that there are many sequential algorithms that are
used in “offline” (e.g. laboratory) settings, and the machine
learning community calls these “online.”

© 2019 Warren Powell

Major problem classes

Notes:
» For chapter 7, we will focus on the top row, “state

independent problems.”
» These are pure learning problems, where we are trying

to learn a deterministic decision or policy.

© 2019 Warren Powell

Modeling

© 2019 Warren Powell Slide 34

Modeling
Any learning problem can be written

଴ ଴ ଵ ଵ ଵ ଶ

where:
» 𝑆௡ ൌ 𝜇௫

௡, 𝛽௫
௡

௫∈௑, 𝑥 ∈ 𝑋 ൌ ሼ𝑥ଵ, … , 𝑥ெሽ
= Belief about the value of 𝜇௫.

» 𝑆଴ ൌ Initial belief
» 𝑥௡ ൌ Decision made using information from first 𝑛 experiments.
» 𝑥଴ ൌ Initial decision based on information in 𝑆^0.
» 𝑊௡ ൌObservation from 𝑛𝑡ℎ experiment, 𝑛 ൌ 1,2, … , 𝑁

Decisions are made using a policy:
𝑥௡ ൌ 𝑋గሺ𝑆௡ሻ

Modeling
All sequential decision problems can be described using:
» States

• Belief states – what do we know about 𝔼𝐹ሺ𝑥, 𝑊ሻ, or any other function
we are learning (transition functions, value functions, policies)

• Physical and informational states (we will get to these later).
» Decisions – What are our choices?

• Pure information collection decisions (e.g. run an MRI, purchase a credit
report)

• Implementation decisions, but which may also affect what we learn.
» Exogenous information

• Initial belief/prior
• What we learn from an experiment

» Transition function
• Updating beliefs (statistical estimation)
• Possibly updating physical state.

» Objective function
• Performance metrics
• Finding the best policy

© 2019 Warren Powell

Modeling

State variables
» For derivative-free, we often just have a belief state,

capturing what we know about our function:
• Lookup tables
• Parametric models
• Nonparametric models

» Physical state
• What node we are at in a network
• How much inventory do we have
• We will get to this in the second half of the course

» Information state
• Weather forecast, current price
• Information state at time t may be independent of the state at t-1.
• State at time t depends on state at t-1:

– Information evolves exogenously
– Our decisions influence the state (e.g. selling stock)

© 2019 Warren Powell

Modeling

Decisions
» We have a finite set of choices:

• 𝑥 ∈ 𝑋 ൌ ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ெሽ

» Examples:
• Experimenting with different drugs to kill cancer in mice.
• Running simulations to plan operations (e.g. for Amazon)
• Evaluating different players for baseball during spring training.
• Testing different materials to maximize the energy density of a

battery.
• Test marketing new products in specific regions.

» We only care about the performance at the end of a set
of N experiments. We do not care about how well we
do along the way.

Modeling

Types of decisions
» Binary

» Finite

» Continuous scalar

» Continuous vector

» Discrete vector

» Categorical

 0,1x X 

 1,2,...,x X M 

 ,x X a b 

1(,...,), K kx x x x 

1(,...,), K kx x x x 

1(,...,), is a category (e.g. red/green/blue)I ix a a a

There are entire fields dedicated to particular classes of decisions.

Modeling

Exogenous information
» Simplest: let ௫೙

௡ାଵ be the performance of alternative
௡.

» If we are using a lookup table representation with a
Bayesian belief model, we would assume:

௫೙
௡ାଵ

௫೙ ௡ାଵ

» If we are using a parametric representation, we would
write

௫೙
௡ାଵ ௡ ௡ାଵ

© 2019 Warren Powell

Modeling

Transition function:
» Now use ௫೙

௡ାଵ to update our belief model:
• Frequentist?

• Bayesian?

» Use any of the recursive learning methods from chapter
3.

© 2019 Warren Powell

1
1

1 11 If
 1 1

 Otherwise

n n n
x xn n n

x x x
n
x

W x x
N N

m
m

m

+
+

ìæ öï ÷ïç ÷- + =ïç ÷ïç ÷ç= + +è øíïïïïî

1

1 If

 Otherwise

n n W n
nx x x

n n W
x x

n
x

W x xb m b
m b b

m

+

+

ìï +ï =ïï= +íïïïïî

Modeling

Objective functions for
» State independent and state dependent problems.
» Final reward and cumulative reward

Modeling

Simulating objective functions
» It is important to know how to simulate objective

functions. We will get to this in chapter 9.

Modeling

Learning policies:
Approximate dynamic programming
Q-learning
SDDP
…

Objective functions

We will focus on these in the second half
of the course.

Modeling

“Online” (cumulative reward) dynamic programming is recognized as the
“dynamic programming problem,” but the entire literature on solving
dynamic programs describes class (4) problems. Class (3) appears to be an
open problem class.

Objective functions

Belief models

© 2019 Warren Powell Slide 46

Belief models

Notes:
» With derivative-based search, we had gradients.
» With derivative-free, we have to form a belief model

about . Classes of belief models are
• Lookup table

– Independent beliefs
– Correlated beliefs

• Parametric models
– Linear
– Nonlinear

» Logistic regression
» Step functions (sell if price is over some number)
» Neural network

(,)F x W

© 2019 Warren Powell

Approximation strategies

Approximation strategies
» Lookup tables

• Independent beliefs
• Correlated beliefs

» Linear parametric models
• Linear models
• Sparse-linear
• Tree regression

» Nonlinear parametric models
• Logistic regression
• Neural networks

» Nonparametric models
• Gaussian process regression
• Kernel regression
• Support vector machines
• Deep neural networks

© 2019 Warren Powell

Approximating strategies

Lookup tables

» Independent beliefs

» Correlated beliefs
• A few dozen observations can

teach us about thousands of
points.

» Hierarchical models
• Create beliefs at different levels of

aggregation and then use weighted
combinations

 1(,) ,...,n
x MF x W x x x  

© 2019 Warren Powell

Approximating strategies

Parametric models
» Linear models

• Might include sparse-additive,
where many parameters are zero.

» Nonlinear models

• (Shallow) Neural networks

 | ()f f
f F

F x x  


 

 
0 1 1

0 1 1

() ...

() ...|
1

x

x

eF x
e

  

  
 

 


charge

charge discharge

charge

1 if
(|) 0 if

1 if

t

t t

t

p
X S p

p




  



 
  
 

tS
tx

© 2019 Warren Powell

Approximating strategies

Nonparametric models
» Kernel regression

• Weighted average of neighboring
points

• Limited to low dimensional
problems

» Locally linear methods
• Dirichlet process mixtures
• Radial basis functions

» Splines
» Support vector machines
» Deep neural networks

© 2019 Warren Powell

Belief models

Lookup table
» We can organize potential catalysts into groups
» Scientists using domain knowledge can estimate

correlations in experiments between similar catalysts.

© 2019 Warren Powell

53

Belief models

We start with a belief about each material (lookup table)

1 2 3 4 4 5

© 2019 Warren Powell Slide 53

54

Belief models

Testing one material teaches us about other materials

1 2 3 4 4 5

© 2019 Warren Powell Slide 54

Belief models

We express our belief using a linear, additive QSAR model
»
»

0

ij ij
sites i substituents j

Y X    
  Indicator variable for molecule .m m

ij ij
X X m 

© 2019 Warren Powell

Belief models

A sampled belief model

1

2

3

4

R
es

po
ns

e

1 2

1 2

()

0 ()(|)
1

i i

i

x

i i x

eR x
e

 

  
 

 


 0 1 2, ,i i i i   

Thickness proportional to n
kp

Concentration/temperature

© 2019 Warren Powell

Belief models
Parametric belief models
» Value of information (the

KG) behaves in an
unexpected way

» Graph to right shows the
value of information while
learning a quadratic
approximation.

» We are using these insights
to develop simple rules for
where to run experiments
that avoid the complexity of
KG calculations.

2
1 2Y x x  

Experiment x
0 20 40 60 80 100 120

0

0.5

1

1.5

2

2.5

3

3.5

4

© 2019 Warren Powell

Belief models

Truckload brokerages:
» Now we have a logistic curve for

each origin-destination pair (i,j)

» Number of offers for each (i,j) pair
is relatively small.

» Need to generalize the learning
across “traffic lanes.”

0

0(, |)
1

  

  


 

 




a
ij ij ij

a
ij ij ij

p a
Y

p a

eP p a
e

Shipper Carrier

Offered price

© 2019 Warren Powell

Belief models

Hotel revenue management
» Locally linear curves

Price $/night
100 120 140 160 180 200 220

Re
se

rv
at

io
ns

/d
ay

.5

 1

.0

 1

.5

 2

.0

 2

.5

 3

.0

© 2019 Warren Powell

Belief models

Hotel revenue management
» Guessing the right logistics curve

Price $/night
100 120 140 160 180 200 220

Re
se

rv
at

io
ns

/d
ay

.5

 1

.0

 1

.5

 2

.0

 2

.5

 3

.0

© 2019 Warren Powell

Designing policies

© 2019 Warren Powell Slide 61

Designing policies

We have to start by describing what we mean by a
policy.
» Definition:

A policy is a mapping from a state to an action.
… any mapping.

How do we search over an arbitrary space of
policies?

Designing policies

Two fundamental strategies:

1) Policy search – Search over a class of functions for
making decisions to optimize some metric.

2) Lookahead approximations – Approximate the impact
of a decision now on the future.

  0(,)
0

max , (|) |f f

T

t t tf F
t

E C S X S S
 


  



 
 
 


*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies
Policy search:
1a) Policy function approximations (PFAs)

• Lookup tables
– “when in this state, take this action”

• Parametric functions
– Order-up-to policies: if inventory is less than s, order up to S.
– Affine policies -
– Neural networks

• Locally/semi/non parametric
– Requires optimizing over local regions

1b) Cost function approximations (CFAs)
• Optimizing a deterministic model modified to handle uncertainty

(buffer stocks, schedule slack)

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

(|)PFA
t tx X S 

(|) ()PFA
t t f f t

f F
x X S S  



  

Designing policies
Lookahead approximations – Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies
Lookahead approximations – Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies
Lookahead approximations – Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

The ultimate lookahead policy is optimal
*

' ' ' 1
' 1

() arg max (,) max (, ()) | | ,
 

 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies

*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies

The ultimate lookahead policy is optimal

Expectations that we
cannot compute

Maximization that we
cannot compute

Designing policies

The ultimate lookahead policy is optimal

» 2b) Instead, we have to solve an approximation called
the lookahead model:

» A lookahead policy works by approximating the
lookahead model.

*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

*
' ' ' , 1

' 1
() arg max (,) max (, ()) | | ,

t

t H

t t x t t tt tt tt t t t t
t t

X S C S x C S X S S S x





 

            


     

Designing policies
Types of lookahead approximations
» One-step lookahead – Widely used in pure learning

policies:
• Bayes greedy/naïve Bayes
• Expected improvement
• Value of information (knowledge gradient)

» Multi-step lookahead
• Deterministic lookahead, also known as model predictive

control, rolling horizon procedure
• Stochastic lookahead:

– Two-stage (widely used in stochastic linear programming)
– Multistage

» Monte carlo tree search (MCTS) for discrete action
spaces

» Multistage scenario trees (stochastic linear
programming) – typically not tractable.

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Po
lic

y
se

ar
ch

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

Lo
ok

ah
ea

d
ap

pr
ox

im
at

io
ns

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Fu
nc

tio
n

ap
pr

ox
.

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Im
be

dd
ed

 o
pt

im
iz

at
io

n

Optimal policies

Online vs. offline learning

Slide 75

Optimal policies

Earlier we expressed an optimal policy using
Bellman’s equation:
» Recall that we used a graph:

» Bellman equation (state = node)

Optimal policies
Bellman’s equation for a learning problem:
» A belief state

» Bellman equation (state = node)

» Can only solve this in very special cases (and not with normally
distributed beliefs). 5 alternatives -> 10-dimensional continuous state.

Optimal policies

Online (cumulative reward) vs. offline (final
reward)

» Bellman’s equation for online (cumulative reward)
learning:

௡ ௡
௫

௡ ௡ ௡ାଵ ௡ାଵ ௡

» Bellman’s equation for offline (final reward) learning:

௡ ௡
௫

௡ାଵ ௡ାଵ ௡

» If we only care about the final reward, we do not care
h h k l h

Policy function approximation

© 2019 Warren Powell Slide 79

Policy function approximation

Examples:

» Optimizing buying-selling energy from the grid

» Finding the best selling price for my book on Amazon.

© 2019 Warren Powell

Policy function approximations

Battery arbitrage – When to charge, when to
discharge, given volatile LMPs

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Grid operators require that batteries bid charge and
discharge prices, an hour in advance.

We have to search for the best values for the policy
parameters

Discharge
Charge

Charge Dischargeand . 

Policy function approximations

Policy function approximations

Our policy function might be the parametric
model (this is nonlinear in the parameters):

charge

charge discharge

charge

1 if
(|) 0 if

1 if

t

t t

t

p
X S p

p




  



 
  
 

Energy in storage:

Price of electricity:

Policy function approximations

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max () , (|)
T

t
t t t

t
F C S X S

   


 

Policy function approximation

Optimal pricing

Policy function approximation

Dynamic pricing
» After n sales, our estimate of the

demand function is
௡

଴
௡

ଵ
௡

» Revenue is
௡ ௡

଴
௡

ଵ
௡ ଶ

» The optimal price given our
estimates would be:

௡ ఏഥబ
೙

ଶఏഥభ
೙

Revenue management
Earning vs. learning

» You earn the most
with prices near the
middle.

» You learn the most
with extreme prices.

» Challenge is to strike
a balance.

Policy function approximation

Designing a policy:
» Just doing what appears to be best will encourage prices

too close to the middle.
» We can try an excitation policy by adding noise:

௡ గ ௡ ଴
௡

ଵ
௡

where ଶ , where is a tunable parameter.
» After charging price ௡, we observe revenue:

௡ାଵ ௡
଴ ଵ

௡ ௗ௘௠௔௡ௗ,௡ାଵ

where ௗ௘௠௔௡ௗ,௡ାଵ ௐ,ଶ is the noise when
observing demand.

© 2019 Warren Powell

Policy function approximation

Designing a policy:
is a tunable parameter that needs to solve:

ఘ ఏ ஽భ,஽మ,…,஽ಿ|ఏ

ே

௡ୀଵ

గ ௡ ଴

» The best value of should strike a balance between
doing a better job of exploration, without overdoing it.

© 2019 Warren Powell

Policy function approximation

Other examples of PFAs:
» A basic linear decision rule

గ ௡
௙ ௙

௡

௙∈ி

» Where the features ௙ for have to be
designed by hand.

© 2019 Warren Powell

Cost function approximation

© 2019 Warren Powell Slide 91

Materials science example

92 92

Materials science application

Heuristic measurement policies
» Boltzmann exploration

• Explore choice x with probability

•
» Upper confidence bounding

» Thompson sampling

» Interval estimation (or upper confidence bounding)
• Choose x which maximizes

'

'

()



 



n
x

n
x

n
x

x

eP
e

(|) arg max    IE n IE n IE n
x x xX S

0

n
xz

log(|) arg max  
 

   
 

UCB n UCB n UCB
x x n

x

nX S
N

1ˆ ˆ() arg max where (,)    TS n n n n n
x x x x xX S N

[0,1]U 

Materials science application

Notes:
» Each one of these policies has an imbedded “max” (or

“min”) operator.
» But each one still has a tunable parameter – this is the

distinguishing feature of “policy search” policies.
» For these policies, the max involves a simple search

over a set of discrete choices, so this is not too difficult.
» Another example is solving a shortest path into New

York. The tunable parameter might be how much time
you add to the trip to deal with traffic.

» The max/min could also be a large optimization
problem, such as what is solved to plan energy
generation for tomorrow.

© 2019 Warren Powell

Materials science application

Lookup table
» We can organize potential catalysts into groups
» Scientists using domain knowledge can estimate

correlations in experiments between similar catalysts.

95

Materials science application

Correlated beliefs: Testing one material teaches us about other
materials

1 2 3 4 4 5

96 96

Materials science application

Heuristic measurement policies
» Boltzmann exploration

• Explore choice x with probability

•
» Upper confidence bounding

» Thompson sampling

» Interval estimation
• Choose x which maximizes

'

'

()



 



n
x

n
x

n
x

x

eP
e

(|) arg max    IE n IE n IE n
x x xX S

0

n
xz

log(|) arg max  
 

   
 

UCB n UCB n UCB
x x n

x

nX S
N

1ˆ ˆ() arg max where (,)    TS n n n n n
x x x x xX S N

[0,1]U 

Materials science application

Notes:
» Upper confidence bounding and Thompson sampling

are very popular in the computer science community.
» These have been shown to have provable regret bounds,

which the CS community then uses to claim that they
must be very good.

» My own experimental work has not supported this
claim, but we have found that a properly tuned version
of interval estimation tends to work surprisingly well.

» … The problem is the tuning.

© 2019 Warren Powell

98

Materials science application

Picking ூா means we are evaluating each choice
at the mean.

1 2 3 4 4 5

99

Materials science application

Picking ூா means we are evaluating each choice
at the 95th percentile.

1 2 3 4 4 5

Materials science application
Optimizing the policy
» We optimize 𝜃ூா to maximize:

where

Notes:
» This can handle any belief model,

including correlated beliefs, nonlinear
belief models.

» All we require is that we be able to
simulate a policy.

 (|) arg max (,)n IE n IE n IE n n n n
x x x x xx X S S        

 ,max () ,IE
IE NF F x W


  

R
eg

re
t

Materials science application

Other applications

» Airlines optimizing schedules with schedule slack to
handle weather uncertainty.

» Manufacturers using buffer stocks to hedge against
production delays and quality problems.

» Grid operators scheduling extra generation capacity in
case of outages.

» Adding time to a trip planned by Google maps to
account for uncertain congestion.

Materials science application

Notes:
» CFA policies are exceptionally popular in internet

applications:
» Choosing ads, news articles, products, … that

maximize ad-clicks.
» The ease of computation of the policies is very

attractive.
» Representative from google once noted: “We can use

any policy that can be computed in under 50
milliseconds.”

© 2019 Warren Powell

Cost function approximation

© 2019 Warren Powell Slide 103

Fleet management example

Schneider National

© 2018 Warren B. Powell

Slide 105© 2018 Warren B. Powell

Fleet management application

DemandsDrivers

© 2018 Warren B. Powell

Fleet management application

t t+1 t+2

The assignment of drivers to loads evolves over time, with new loads
being called in, along with updates to the status of a driver.

© 2018 Warren B. Powell

Fleet management application

A purely myopic policy would solve this problem
using

where

What if a load it not assigned to any driver, and has been
delayed for a while? This model ignores the fact that we
eventually have to assign someone to the load.

1 If we assign driver to load
0 Otherwise

Cost of assigning driver to load at time

tdl

tdl

d l
x

c d l t


 




min x tdl tdl
d l

c x

© 2018 Warren B. Powell

Fleet management application

We can minimize delayed loads by solving a
modified objective function:

where

We refer to our modified objective function as a cost
function approximation.

How long load has been delayed by time
Bonus for moving a delayed load

tl l t




 min x tdl tl tdl
d l

c x

© 2018 Warren B. Powell

Fleet management application

We now have to tune our policy, which we define
as:

We can now optimize , another form of policy search,
by solving

 (|) arg mint x tdl tl tdl
d l

X S c x   

0
min () (, (|))

T

t t t
t

F C S X S 
  



 




(, |)t tC S x 

© 2018 Warren B. Powell

Cost function approximation

© 2019 Warren Powell Slide 111

Logistics example

Logistics application

Inventory management

» How much product
should I order to
anticipate future
demands?

» Need to accommodate
different sources of
uncertainty.

• Market behavior
• Transit times
• Supplier uncertainty
• Product quality

© 2018 Warren B. Powell

Logistics application

Imagine that we want to purchase parts from
different suppliers. Let be the amount of
product we purchase at time t from supplier p to
meet forecasted demand . We would solve

» This assumes our demand forecast is accurate.

tD

tpx

tD

 () arg max
tt t x p tp

p P
X S c x



 
subject to

 0

tp t
p P

tp p

tp

x D

x u

x











t









© 2018 Warren B. Powell

Imagine that we want to purchase parts from
different suppliers. Let be the amount of
product we purchase at time t from supplier p to
meet forecasted demand . We would solve

» This is a “parametric cost function approximation”

()

Reserve

buffer

 (|) arg max

subject to

t
t t p tpx

p P

tp t
p P

tp p

tp

X S c x

x D

x u

x

 

























()t

 








Logistics application

tD

tpx

Reserve

Buffer stock

© 2018 Warren B. Powell

An even more general CFA model:
» Define our policy:

subject to

» We tune by optimizing:

Logistics application

() arg max (, |)t x t tX C S x  



0

min () (, ())
T

t t
t

F C S X 
  



 

()Ax b  

Parametrically
modified costs

Parametrically
modified constraints

© 2018 Warren B. Powell

Cost function approximation

© 2019 Warren Powell Slide 116

Energy storage example

Parametric cost function approximation

Notes:
» In this set of slides, we are going to illustrate the use of

a parametrically modified lookahead policy.
» This is designed to handle a nonstationary problem with

rolling forecasts. This is just what you do when you
plan your path with google maps.

» The lookahead policy is modified with a set of
parameters that factor the forecasts. These parameters
have to be tuned using the basic methods of policy
search.

© 2018 W.B. Powell

Parametric cost function approximation

An energy storage problem:

Parametric cost function approximation
Forecasts evolve over time as new information arrives:

Actual

Rolling forecasts,
updated each
hour.







Forecast made at
midnight:

Parametric cost function approximation

Benchmark policy – Deterministic lookahead

' ' ' '

' ' '

' ' '

max
' ' '

' ' '
arg

' '
arg

' '

wd rd gd D
tt tt tt tt

gd gr G
tt tt tt

rd rg
tt tt tt

wr gr
tt tt tt
wr wd E
tt tt tt
wr gr ch e
tt tt
rd rg disch e
tt tt

x x x f

x x f

x x R

x x R R

x x f

x x

x x

b

g

g

+ + £

+ £

+ £

+ £ -

+ £

+ £

+ £

  

 
 

 

 

 

 

Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

. . . .

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

© 2018 W.B. Powell

Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

. . . .

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

© 2018 W.B. Powell

Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

. . . .

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

© 2018 W.B. Powell

Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

. . . .

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

© 2018 W.B. Powell

Parametric cost function approximation

Benchmark policy – Deterministic lookahead

' ' ' '

' ' '

' ' '

max
' ' '

' ' '
arg

' '
arg

' '

wd rd gd D
tt tt tt tt

gd gr G
tt tt tt

rd rg
tt tt tt

wr gr
tt tt tt
wr wd E
tt tt tt
wr gr ch e
tt tt
rd rg disch e
tt tt

x x x f

x x f

x x R

x x R R

x x f

x x

x x

b

g

g

+ + £

+ £

+ £

+ £ -

+ £

+ £

+ £

  

 
 

 

 

 

 

Parametric cost function approximation

Parametric cost function approximations
» Replace the constraint

with:
» Lookup table modified forecasts (one adjustment term for

each time in the future):

» We can simulate the performance of a parameterized policy

» The challenge is to optimize the parameters:

't t  

' ' ' '
wr wd E
tt tt t t tt
x x f  

'
wr
tt
x '

wd
tt
x

 
0

(,) (), (() |)
T

t t t
t

F C S X S    


 

 
0

min , (|)
T

t t t
t

C S X S
 




Parametric cost function approximation

One-dimensional contour plots – perfect forecast
௜ for i=1,…, 8 hours into the future.

q
0.0 0.2 0.4 0.6 0.8 1.0 1.2

* 1 for perfect forecasts.iq =

Parametric cost function approximation

One-dimensional contour plots-uncertain forecast
௜ for i=9,…, 15 hours into the future

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

q

Parametric cost function approximation

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1q

10q
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Parametric cost function approximation

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1q

2q
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Parametric cost function approximation

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

2q

3q
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Parametric cost function approximation

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

3q

5q
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Numerical derivatives

Simultaneous perturbation stochastic approximation
» Let:

• 𝑥௡ be a p െ dimensional vector.
• 𝛿௡ be a scalar perturbation
• 𝑍௡ be a p െdimensional vector, with each element drawn from a normal (0,1)

distribution.

» We can obtain a sampled estimate of the gradient 𝛻௫𝐹ሺ𝑥௡, 𝑊௡ାଵሻ
using two function evaluations: 𝐹 𝑥௡ ൅ 𝛿௡𝑍௡ and 𝐹 𝑥௡ ൅ 𝛿௡𝑍௡

1

1
2

() ()
2

() ()
2(,)

() ()
2

n n n n n n

n n

n n n n n n

n nn n
x

n n n n n n

n n
p

F x Z F x Z
Z

F x Z F x Z
ZF x W

F x Z F x Z
Z

d d
d

d d
d

d d
d

+

é ù+ - +ê ú
ê ú
ê ú
ê ú+ - +ê ú
ê ú = ê ú
ê ú
ê ú
ê ú
ê ú+ - +
ê ú
ê úë û



Numerical derivatives

Finite differences
» We use finite differences in MOLTE-DB:

• We wish to optimize the decision of when to charge or
discharge a battery

charge

charge discharge

charge

1 if
(|) 0 if

1 if

t

t t

t

p
X S p

p




  



 
  
 

© 2019 Warren Powell

Numerical derivatives

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max () , (|)
T

t
t t t

t
F C S X S

   


 

© 2019 Warren Powell Slide 135

Cost function approximation

© 2019 Warren Powell Slide 136

Stochastic shortest path

Stochastic shortest path problem
A stochastic network, costs revealed as we arrive to a
node:

1

2

3

4

5

6

7

8

9

10

11

3.6

8.1

13.5

8.9

12.7
12.6

8.4

9.2

15.9

© 2018 W.B. Powell

Stochastic shortest path problem

Modeling:
» State variable (iteration n, time t)

• 𝑅௧
௡ ൌ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 ൌ 𝑖௧

௡ during pass 𝑛
• 𝐼௧

௡ ൌ 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 ൌ 𝑐௧̅௜௝
௡ ൌ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 𝑜𝑓 𝑐𝑜𝑠𝑡𝑠 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

during pass 𝑛
• 𝑆௧

௡ ൌ ሺ𝑅௧
௡, 𝐼௧

௡)

» Decisions

௧,௜೟
೙,௝=1 if we traverse ௧

௡ at time
• We want a policy 𝑋௧

గ 𝑆௧ ൌ 𝑥௧,௜೟
೙ୀ௜,௝

గ
௜௝

for all links 𝑖, 𝑗.

» Costs
• 𝑐௧௜௝ ൌActual realization of costs at time 𝑡 to traverse ሺ𝑖, 𝑗ሻ

© 2018 W.B. Powell

Stochastic shortest path problem
Modeling:
» Objective function

• Cost per period
CሺS୲, X୲

గ 𝑆௧ ሻ ൌ ሺ𝑋௧
గ 𝑆௧ ሻ்𝑐௧

ൌ ෍ 𝑥௧,௜೟
೙,௝

గ

௜,௝

𝑐௧௜௝

ൌCosts incurred at time t.
• Total costs:

min
గ

𝔼 ∑ CሺS୲, X୲
గ 𝑆௧ ሻ்

௧ୀ଴

» This is the base model.

© 2018 W.B. Powell

Stochastic shortest path problem
A policy based on a lookahead model
» At each time 𝑡 we are going to optimize over an estimate of the

network that we are going to call the lookahead model.
» Notation: all variables in the lookahead model have tilde’s, and

two time indices.
• First time index, 𝑡, is the time at which we are making a decision.

This determines the information content of all parameters (e.g. costs)
and decisions.

• A second time index, 𝑡′, is the time within the lookahead model.
» Decisions

• 𝑥෤௧௜௝ ൌ 1 if we plan on traversing link 𝑖, 𝑗 in the lookahead model.
• 𝑐௧௜௝ ൌ Estimated cost at time 𝑡 of traversing link ሺ𝑖, 𝑗ሻ in the

lookahead model.

© 2018 W.B. Powell

Stochastic shortest path problem

© 2018 W.B. Powell

Stochastic shortest path problem

© 2018 W.B. Powell

Stochastic shortest path problem
A static, deterministic network

1

2

3

4

5

6

7

8

9

10

11

12.6

8.4

9.2 3.6

8.1

17.4

15.9

16.5 20.2

13.5

8.9
12.7

15.9

2.34.5

7.3

9.6
5.7

© 2018 W.B. Powell

Stochastic shortest path problem

t

t + 1

t + 2

t + 3

© 2018 W.B. Powell

A time-dependent, deterministic network

The base model

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

. . . .

Stochastic shortest path problem

© 2018 W.B. Powell

A time-dependent, deterministic lookahead network

't t

' 1t t 

' 2t t 

' 3t t 

' 4t t 

The base model

t 1t  2t  3t 

. . . .

Stochastic shortest path problem

© 2018 W.B. Powell

A time-dependent, deterministic lookahead network

Th
e

lo
ok

ah
ea

d
m

od
el

't t

' 1t t 

' 2t t 

' 3t t 

' 4t t 

The base model

t 1t  2t  3t 

. . . .

Stochastic shortest path problem

© 2018 W.B. Powell

A time-dependent, deterministic lookahead network

Th
e

lo
ok

ah
ea

d
m

od
el

't t

' 1t t 

' 2t t 

' 3t t 

' 4t t 

Stochastic shortest path problem

Imagine that the lookahead is just a black box:
» Solve the optimization problem

» subject to

» This is a deterministic shortest path problem that we
could solve using Bellman’s equation, but for now we
will just view it as a black box optimization problem.

() arg min
i

n n
t t tij tij

i N j N

X S c xp

+Î Î

= åå  

,

,

, ,

1 Flow out of current node where we are located

1 Flow into destination node

 0 for all other nodes.

n
ti j

j

i r
i

i j j k
i k

x

x r

x x

=

=

- =

å

å

å å





 

© 2018 W.B. Powell

Stochastic shortest path problem

Simulating a lookahead policy

, ,
0 ,

, ', 1, ', 2, ',

We would like to compute

ˆ ()

but this is intractable.
Let be a sample realization of costs

ˆ ˆ ˆ (), (), (),...

Now simulate the policy

T

t ij t t ij
t i j

t t ij t t ij t t ij

F X S c

c c c

p p

w
w w w

=

+ +

= åå

, ,
0 ,

1

ˆ ˆ() (()) ()

Finally, get the average performance
1 ˆ ()

T
n n n

t ij t t ij
t i j

N
n

n

F X S c

F F
N

p p

p p

w w w

w

=

=

=

=

åå

å

Talk through how this
works.

© 2018 W.B. Powell

Stochastic shortest path problem

Notes:
» The deterministic lookahead is still a policy for a

stochastic problem.
» Can we make it better?

Idea:
» Instead of using the expected cost, what about using a

percentile.
» Use pdf of ௜௝ to find percentile (e.g.). Let

௜௝
௣ The percentile of ௜௝

» Which means ௜௝ ௜௝
௣

© 2018 W.B. Powell

Stochastic shortest path problem

The percentile policy.
» Solve the linear program (shortest path problem):

» subject to

» This is a deterministic shortest path problem that we
could solve using Bellman’s equation, but for now we
will just view it as a black box optimization problem.

(|) arg min () (Vector with 1 if decision is to take (,))
i

n p
t t tij tij tij

i N j N

X S c x x i jp q q
+Î Î

= =åå  

, ,
1 Flow out of current node where we are located

1 Flow into destination node

 0 for all other nodes.

n
tt i j

j

tir
i

tij tjk
i k

x

x r

x x

=

=

- =

å

å

å å





 

© 2018 W.B. Powell

Stochastic shortest path problem

Simulating a lookahead policy

, ', 1, ', 2, ',

, ',
0 ,

Let be a sample realization of costs
ˆ ˆ ˆ(), (), (),...

Now simulate the policy

ˆ ˆ() () (() |)

Finally, get the average performance
1 ˆ() (

t t ij t t ij t t ij

T
n n

t t ij t t
t i j

n

c c c

F c X S

F F
N

p p

p p

w
w w w

w w w q

q w

+ +

=

=

=

åå

1

)
N

n=
å

© 2018 W.B. Powell

Stochastic shortest path problem

Policy tuning
» Cost vs. lateness (risk)

© 2018 W.B. Powell

Notes on cost function approximations

© 2019 Warren Powell Slide 154

Cost function approximations

Notes:
» CFAs are the dirty secret of real-world stochastic

optimization. They are easy to understand, easier to
solve, and make it possible to incorporate problem
structure.

» The first challenge is to identify an effective
parameterization. This requires having insights into the
problem.

» The second challenge is to optimize over the
parameters.

» There are close parallels between policy search and
machine learning.

© 2019 Warren Powell

Cost function approximations

Tuning the parameters
» Let

గ ௡ Tunable policy
» The simulated performance of the policy is given by

• Final reward:
– Let 𝑥గ,ேሺ𝜃ሻ be the solution produced by following

policy 𝜋 parameterized by 𝜃. The performance of the
policy is given by

గ గ,ே

• Cumulative reward

𝐹గ 𝜃, 𝑊 ൌ ෍ 𝐶ሺ𝑆௧

்

௧ୀ଴

, 𝑋గ 𝑆௡ 𝜃 ሻ

© 2019 Warren Powell

Cost function approximations

Tuning the parameters
» We can write any parameter tuning problem as

ఏ ௐ

» This is a basic stochastic learning problem. We can
approach it using:

• Derivative-based stochastic search – Will probably need to use
numerical derivatives.

• Derivative-free stochastic search – We might represent the set
of possible values of 𝜃 ∈ ሼ𝜃ଵ, … , 𝜃௄ሽ and then search over this
finite set.

© 2019 Warren Powell

Learning and tuning policies

Slide 158

Learning policies
Simulating a policy
» Regardless of our belief model (frequentist or Bayesian), a learning

process looks like

» Our observations might come from
𝑊௫೙

௡ାଵ ൌ 𝜇௫೙ ൅ 𝜀௡ାଵ

or perhaps
𝐹෠௡ ൌ 𝐹ሺ𝑥௡, 𝑊௡ାଵሻ

There are different ways to interpret our “W” variable.
» Imagine that we have three policies 𝜋஺, 𝜋஻, and 𝜋஼. Let Π ൌ ሺ𝜋஺,

𝜋஻, 𝜋஼).
» In offline learning, we only care about our final answer which we

call:

0 1 1
0 0 1 1 1 2 1 1(, , , , , ,..., , , ,)N

N N N N
x x x

S x W S x W S x W S-
- -

, maxN N
x xxp m=

Learning policies
Learning the best policy
» Imagine that we have three policies 𝜋஺, 𝜋஻, and 𝜋஼. Let Π ൌ ሺ𝜋஺,

𝜋஻, 𝜋஼).
» In offline (final reward) learning, we will optimize the final reward

max
గ

𝔼ఓ𝔼ௐభ,…,ௐಿ|ఓ𝜇௫
ே

or
max

గ
𝔼ఓ𝔼ௐభ,…,ௐಿ|ఓ𝔼ௐ෡ |ఓ𝐹ሺ𝑥గ,ே, 𝑊෡ ሻ

» In online (cumulative reward) learning, we optimize the
cumulative rewards:

max
గ

𝔼ఓ𝔼ௐభ,…,ௐಿ|ఓ𝔼ௐ෡ |ఓ ෍ 𝐹ሺ𝑋గ 𝑆௡ 𝜃 , 𝑊௡ାଵሻ
ேିଵ

௡ୀ଴

» x

Learning policies
Finding a policy
» Imagine that we have three classes of policies 𝜋஺, 𝜋஻, and 𝜋஼. Let

Π ൌ ሺ𝜋஺, 𝜋஻, 𝜋஼).
» For each class of policy, we might have a set of parameters 𝜃 ∈ Θ஺

(for example) that have to be tuned.
» In offline learning, we only care about our final answer which we

call:
𝑥గ,ே ൌ max

௫
𝜇௫

ே

Note that the policy 𝜋 is implicit in the estimate 𝜇௫
ே. We make it

explicit when we write the final design 𝑥గ,ே.
» Now we wish to solve the optimization problem that finds the best

policy (best class, and best within the class).

Learning policies
Notes
» Buried in the estimate of 𝜇௫

ே is:

• The truth 𝜇௫

• The set of observations:

𝑊௫బ
ଵ , 𝑊௫భ

ଶ , …, 𝑊௫ಿషభ
ே

» …where the choices 𝑥଴, 𝑥ଵ, … , 𝑥ேିଵ are determined by our
learning policy 𝑥௡ ൌ 𝑋గሺ𝑆௡ሻ. This is the reason we label

with the policy 𝜋.

, maxN N
x xxp m=

Learning policies
Evaluating a policy
» The final design 𝑥గ,ே is a random variable since it depends on:

• The true 𝜇௫ (in our Bayesian model, we treat this as a random
variable)

• The observations 𝑊ଵ, 𝑊ଶ, … , 𝑊ே

» We can evaluate a policy 𝑋గሺ𝑆ሻ using

» Finally, we write our optimization problem as

» It is useful to express what the expectations are over, so we write

, , (these are equivalent - more on this later).N N
N

x x
F p p

p m m= = 

,max N
N
xpp m

1 2 ,, ,..., |
max N N

N
W W W xpp m m

m 

Learning policies
Simulating a policy
» We cannot compute expectations, so we have to learn how to

simulate:

» Let 𝜇ሺ𝜓ሻ be a sampled truth, and let 𝑊ଵ 𝜔 , … , 𝑊ேሺ𝜔ሻ be a
sample path of function observations.

» Assume we have truths 𝜓ℓ, ℓ ൌ 1, … , 𝐿, and sample paths
𝜔ଵ, … , 𝜔௄.

» Let 𝜇௫
గ,ேሺ𝜓ℓ, 𝜔௞ሻ be the estimate of 𝜇௫ when the truth is 𝜓ℓ and

the sample path of realizations is 𝜔௞, while following experimental
policy 𝜋.

» Now evaluate the policy using

𝐹തగ ൌ max
గ

1
𝐿 ෍

1
𝐾 ෍ 𝜇௫

గ,ேሺ𝜓ℓ, 𝜔௞ሻ
௄

௞ୀଵ

௅

ℓୀଵ

1 2 ,, ,..., |
max N N

N
W W W xpp m m

m 

“Contextual” learning

Slide 165

Contextual learning
What if we are given information before making a
decision?
» We see the attributes of a patient before prescribing treatment.
» We are given a weather report before having to decide how many

newspapers to put in our kiosk.
» Let’s call this an “environmental state” variable (this is not

standard, but there is not a standard name for this).

Example:
» Newsvendor problem with a dynamic state variable (the price):

» Further assume that 𝑝௧ is independent of any previous prices, and
that it is revealed before we make our decision 𝑥.

The price 𝑝௧ is known as a “context.” This would be called a
“contextual learning problem” or a “contextual bandit problem.”

© 2019 Warren Powell

 0
max (, ,) min(,)

x t
C S x W p x W cx   

Contextual learning

Why is this special?
» Without the dynamic information, we would be

searching for the best
» With the contextual information, we are now looking

for where is the revealed price. This means that
instead of looking for a deterministic variable (or
vector), we are now looking for a function.

» When we are looking for a decision as a function of a
state variable (even part of a state variable), then this is
what we call a policy.

» The learning literature makes a big deal about
“contextual bandit problems.” For us, there is nothing
different about this than any state-dependent problem.

© 2019 Warren Powell

