Warren Powell
Princeton University

http://www.castlelab.princeton.edu

© 2018 W.B. Powell

Week 4

Chapter 7: Derivative-free stochastic
search

© 2019 Warren Powell Slide 2

Derivative-free stochastic search
]

® Notes:

» The material for this week and next will all be drawn
from chapter 7.

» Chapter 7 1s 60 pages, and desperately in need of a
rewrite. I don’t have time to do this, but the lectures
will follow a new (and improved) outline.

» Derivative-free stochastic optimization 1s an extremely
rich problem class. We will use this to 1llustrate four
fundamental classes of policies, which can be organized

along two core strategies:
 Policy search — Here we will search within a class of policies
to 1dentify which work best over time/iterations.
» Lookahead policies — These are policies that are constructed to
optimize the value of an experiment plus the value of the

downstream state.
© 2019 Warren Powell

Derivative-free stochastic search
]

® Week 4 (this week): We will cover:

» Introduction to derivative-free stochastic optimization

» Introduction to two strategies for developing policies:
 Policy search class
* Lookahead class

» Then we will focus on the “policy search” class, which

can be divided into two classes:
« Policy function approximations (PFAs)
 Cost function approximations (CFAs)

» We will do the more difficult lookahead classes next
week.

© 2019 Warren Powell

Introduction to derivative-free stochastic
search

© 2019 Warren Powell Slide 5

Sports

® Finding the best
player
» We have a set of

players from which to
choose a team

» The effectiveness of a
certain team 1S best
revealed by playing a
game

» We maximize the
total number of games
won 1n the season

© 2019 Warren Powell

Optimal learning 1n diabetes
N

® How do we find the best treatment
for diabetes?

» The standard treatment is a
medication called metformin,
which works for about 70 percent
of patients. HMimm . Fin

Apvisor: WARrReN B. PoweLL

OrTIMAL DOSING APPLIED TO
GrLyYceMIC CONTROL FOR TYPE 2 DIABETES

» What do we do when metformin
does not work for a patient?

» There are about 20 other
treatments, and it is a process of
trial and error. Doctors need to
get through this process as quickly
as possible.

© 2019 Warren Powell

Drug discovery

® Biomedical research

» How do we find the
best drug to cure
cancer?

» There are millions of
combinations, with
laboratory budgets
that cannot test
everything.

» We need a method
for sequencing
experiments.

© 2019 Warren Powell Slide 8 8

Drug discovery
N

@ Designing molecules

H Br CH,

- X N.

Cl CH,
Br

. Y x HCI
Me

» X and Y are sites where we can hang substituents to change the
behavior of the molecule. We approximate the performance using
a linear belief model: S

Y=6,+> > 60X,

sites i substituents j

-
T

» How to sequence experiments to
learn the best molecule as quickly
as possible?

Performance under best possible

© 2019 Warren Powell

N [T F I. I l Member Sign In

SUPERNATURAL

WORKAHOLICS

SAV I NG ;
GRACE

Designing menus

® What should you offer?
» No-one will like - Pl S

Toquitos Chicken or Beef F o n Chil
(With Buocamele, Sour Crecm & Cheese) ';ﬂl o-:ml - T “ﬂa) Fish/Shrimp Burrito

Quesadille Cheese Eecn & Clicese (Vegeterian)
. R (With Sour Creom & Guacomole) s Vi torion Burrito
e ‘ 7 l I | Quesadille Carne Al Pastor
sl (Bee!, Chickien, Carnitas or Asoda) (With Sour Cream, { [Grilled Steck) (Merinated Pork)
° i R " rour {
3% Guacamole_ Lettuce, Tonato 4 Oniens) Vv N

S Bt
(Beans, Cheese. Rice, Carne Asoda & Chile
Coleredo Sauce) |

(Beet Chonks & Red Chule) Shredded Beef
(with Cheese 4 Guscarale) with Beans

Chips (with Cheese) Chicken with Beans
| Chips (aith Checse & Bears) DO O OCZONE | WG E0 QR N
T Served with Rice Beans & Corn or Flour Tortillas

» The trick 1s to find i S I et e g,

(Grilled Steak) Sp\l'{ddﬂl Beaf)

! Carne Asoda (Grilled Steck) Chile Verde Plate)
1 ” ” & Verde (Pork Chunks & Green Chile) (Perk Churks & Greon Chile) cnu.u or S. ef)
choices that will satis | ST o o
B Beans (Pork Chnks & Red Chile) Taco & Chlle Rallans
i Taoos | (Twe Chease, Cricken oo Beaf Enchilades) Chile Relleno & Enchilada
| EEECTYTTEE T FishSheinp Tocos
eo e . Carnitas (Pork) | Fajitas : (Seft Omiy)
3 Carne Asoda (Grilied Steck) [S¥esk, Chicken or Cambo) Aseda & la T

| Shrimp or Combe Fajitas Bistec Ranch

Taco end Enchiloda
(Cheese, chochen or beef)

" Chicken
Shredded Beef (Crup Only)
= Al Pastor (seft Oniy)
Fish/Shrimp Tacos (Seft Orty)

Cri Potato
- - DG roulkfast oo OGS

Burrito Bowl
(Viegetarion, Chicken, Carme Asadecr Cormitas)

it Carnitas (“ork) Huevos Rancheros Mochaca Burrito
| Carme Aseda (Grilled Steck) (with Rice & Baans) Chorizo Burrito
You will probably need to || &&= e mm
Al by X ith rce ord
» You will probably need to | e

Al Majo de Alo Chile Verde Omelette Fag vt
- | [Pork chunks & Green chile with

observe the response to a ' ::.j:“: S et
particular menu over a

period of time. 2 .‘ \ . i

Y 1]
gt WES oS a..)u; <AV

» S0, observations are i en rowel

Derivative tree stochastic search
]

® Settings

in problems where a function evaluation is relatively expensive. Examples of different
costs of function evaluations are:

e An analytical function, such as). ¢;x;, which may take fractions of a second.

e Complex analytical functions, which require large sums or numerical integration,
which may take seconds to minutes.

e Computer simulations (of physical or business processes) which take minutes to
hours to days or more.

e Laboratory experiments - Testing a new chemical compound or material can take
hours to days (or more).

e Field experiments - Evaluating the price of a product, testing a new drug or business
process, can take days to weeks to months.

In addition, there are settings (especially with field experiments) where it makes sense to

evaluate performance based on the cumulative rewards (equation (7.3)) as opposed to just
considering the final design (equation (7.2).

© 2019 Warren Powell

The multiarmed bandit problem

Slide 13

Multiarmed bandit problems
|

@ Bandit problems and objective functions

» The classical bandit problem is cumulative reward:

»

»

max _ Ef F(X7(S™),W™

where "

W ™' ="winnings" New information
S" = State of knowledge What we know about each slot machine
X" =X"(S") Choose next “arm” to play

The essential characteristic of bandit problems is the exploration
vs. exploitation tradeoff. Do you try something that does not look
as good, potentially incurrent a lower reward, so you can learn and
make better decisions in the future.

Then the bandit community discovered that the same tradeoff
exists in final reward. These problems became known as “best
arm” bandit problems in the bandit vocabulary.

© 2019 Warren Powell

Multiarmed bandit problems

B Arms:

(A

’ Gy i Y
S

b

Multiarmed bandit problems

B Bandits:

Multiarmed bandit problems

Bandit problem

Description

Multiarmed bandits

Basic problem with discrete alternatives, online (cumulative

regret) learning, lookup table belief model with independent
beliefs

Restless bandits

Truth evolves exogenously over time

Adversarial bandits

Distributions from which rewards are being sampled can be
set by arbitrarily by an adversary

Continuum-armed bandits

Arms are continuous

X-armed bandits

Arms are a general topological space

Contextual bandits

Exogenous state is revealed which affects the distribution of
rewards

Dueling bandaits

The agent gets a relative feedback of the arms as opposed to
absolute feedback

Arm-acquiring bandits

New machines arrive over time

Intermittent bandits

Arms are not always available

Response surface bandits

Belief model 1s a response surface (typically a linear model)

Multiarmed bandit problems

Bandit problem

Description

Linear bandits

Belief 1s a linear model

Dependent bandits

A éﬁpm of correlated beliefs

Finite horizon bandits

Finite-horizon form of the classical infinite horizon multi-
armed bandit problem

Parametric bandits

Beliefs about arms are described by a parametric belief model

Nonparametric bandits

Bandits with nonparametric belief models

Graph-structured bandits

Feedback from neighbors on graph instead of single arm

Extreme bandits

Optimize the maximum of recieved rewards

Quantile-based bandits

The arms are evaluated in terms of a specified quantile

Preference-based bandits

Find the correct ordering of arms

Best-arm bandits

Identify the optimal arm with the largest confidence given a
fixed budget

Multiarmed bandit problems

e ——
® Dimensions of a “bandit” problem:

» The “arms” (decisions) may be
* Binary (A/B testing, stopping problems)
« Discrete alternatives (drug, catalyst, ...)
« Continuous choices (price)
* Vector-valued (basketball team, products, movies, ...)
« Multiattribute (attributes of a movie, song, person)
 Static vs. dynamic choice sets
* Sequential vs. batch

» Information (what we observe)
» Success-failure/discrete outcome
» Exponential family (e.g. Gaussian, exponential, ...)
« Heavy-tailed (e.g. Cauchy)
 Data-driven (distribution unknown)
 Stationary vs. nonstationary processes
« Lagged responses?
* Adversarial?

Multiarmed bandit problems

e ——
® Dimensions of a “bandit” problem:

» Belief models
« Lookup tables (these are most common)
— Independent or correlated beliefs
« Parametric models
— Linear or nonlinear in the parameters
* Nonparametric models
— Locally linear
— Deep neural networks/SVM
« Bayesian vs. frequentist

» Objective function
» Expected performance (e.g. regret)
 Offline (final reward) vs. online (cumulative reward)
— Just interested 1n final design?
— Or optimizing while learning?
 Risk metrics

Multiarmed bandit problems

N
® What is a “bandit problem™?

» The literature seems to characterize a “bandit problem” as any problem
where a policy has to balance exploration vs. exploitation.

» But this means that a bandit “problem” is defined by how it is solved.
E.g., if you use a pure exploration policy, is it a bandit problem?

® My definition:

» Any sequential learning problem:
* Maximizing cumulative rewards (finite or infinite horizon)
* Maximizing the terminal reward with a finite budget.

» Fundamental elements of a “bandit” problem:
* A belief model that describes what we know about the function
« The ability to learn sequentially about the function.

» I prefer to distinguish three problem classes:

« Active learning — These problems arise when our decisions affect the
information that arrives. This opens the door to making decisions that balance
current performance against learning to improve future performance.

» Passive learning — Here we may learn as we go, but we do not directly
influence the learning process through our decisions.

* No learning — This would be for problems where there is no element of
learning.

An energy storage problem

® Transition function

Electricityprices
G | ‘ | 0 =
. ' ¢ -

E. =E +E_

Pei _etopt +9t1pt 1+9t2pt) T
D, = = fP

tt+1 t+1

Rbattery _ Rtbattery + Xt

t+1

Wind speed
E m

t+1

Demgnd

An energy storage problem
N

® Types of learning:

» No learning (6's are known)

pt+1_‘9pt+‘9pt1+9 Py + t+1

» Passive learning (learn 8s from price data)

pt+1_ tOp +9’[1pt1+9t2pt2 t+1

We have no control over the evolution of prices.

If we have to learn the parameters, then we have to introduce
this learning process into the dynamics.

Learning in stochastic optimization
N

® Learning the pricing model:

» Let ps,1 be the new price and let

Fpme(pt |9) (‘9) [_6’topt +0, 11 Py 1+0t2pt 2

» We update our estimate Ht using our recursive least
squares equations:

_ 1
O i =6, B, Piers
Vi
con = R0 16,)— P
1 o
B, =B _—(Bt P, (P,)T B,)
Vi

Y1 :1+(Et)T Bt [

An energy storage problem
N

® Types of learning:

» No learning (6's are known)

pt+1_‘9pt+‘9pt1+9 Py + t+1

» Passive learning (learn 8s from price data)

pt+1_ tOp +9’[1pt1+9t2pt2 t+1

» Active learning (“bandit problems™) Buy/sell decisions

p
pt+1_ tOp +9’[1pt1+9t2pt2+9t3 t+1

Our decisions influence the prices we observe, which helps
with learning.

Classes of problems

© 2019 Warren Powell Slide 27

Major problem classes
N

@ Special structure

» There are special cases where we can solve
max, BF(X,W) Deterministic!

exactly. But not very many.

@ Sampled problems (SAA, scenario trees)

» If the only problem is that we cannot compute the expectation, we
might solve a sampled approximation

. 1 &)
max BF (x,W) = WZ F(x,W") Also deterministic!
n=I

@® Adaptive learning algoriihms

» This 1s what we have to turn to for most problems, and is the focus
of this tutorial.

Major problem classes
N

® State independent problems
» The problem does not depend on the state of the system.

max EF(z,IW)=E {p min(x, W) — cx}

» The only state variable 1s what we know (or believe) about
the unknown function EF'(z, W), called the belief state By,
SO St —_ Bt‘
® State dependent problems
» Now the problem may depend on what we know at time t:

maXOS C(S,z,IW) = Ein(x, W) - cx}

» Now the state is S; = (R, ¢, By)

Major problem classes

® Offline (final reward)

» We can iteratively search for the best solution, but only
care about the final answer.

» Asymptotic formulation:

“ranking and selection”
F(z,W) 8
or
» Finite 1zon formulation: “stochastic search”

ma@)F(x”’N,W)

® Online (cumulative reward)

m

» We have to learn as we go

ma@]\[z:l F(Xz(Sn),WnJrl)

Major problem classes
N

® There are entire fields of stochastic optimization
built around “final reward” and “cumulative
reward” objections:

» Final reward
 Stochastic search (e.g. derivative-based stochastic optimization)
« Ranking and selection (finding the best out of a set of choices)

» Cumulative reward
e Multiarmed bandit problems
 (Classical dynamic programming, optimal control, stochastic
programming, ...

» Our presentation will not care whether we are optimizing
final or cumulative reward — it 1s just an objective
function.

© 2019 Warren Powell

Major problem classes

e
® “Offline” vs. “online” learning

» My view (or perhaps the view of stochastic optimization):
« “offline learning” is learning in the computer. We do not care
about making mistakes as long as we get a good answer in the
end.
* “online learning” would be learning in the field, where you have
to live with your mistakes.

» The machine learning community uses these terms
differently:

« “offline learning” means batch — you have a batch dataset from
which you fit a model.

« “online learning” 1s sequential, as would happen if data is arriving
in the field over time.

* The problem is that there are many sequential algorithms that are
used in “offline” (e.g. laboratory) settings, and the machine
learning community calls these “online.”

© 2019 Warren Powell

Major problem classes
N

® Notes:

» For chapter 7, we will focus on the top row, “state
independent problems.”

» These are pure learning problems, where we are trying
to learn a deterministic decision or policy.

© 2019 Warren Powell

Modeling

© 2019 Warren Powell Slide 34

Modeling

N
@ Any learning problem can be written

(SO, x0, wt st xt,w?, ..

where:
» S = (i, B)xex, X EX ={xq, ..., %y}
= Belief about the value of wu,.
» SY = Initial belief
» x" = Decision made using information from first n experiments.
» xY = Initial decision based on information in S”O0.

» W™ =Qbservation from nth experiment, n = 1,2, ..., N

@ Decisions are made using a policy:

x™ = XT(S™)

Modeling

N
@ All sequential decision problems can be described using:

» States
» Belief states — what do we know about EF (x, W), or any other function
we are learning (transition functions, value functions, policies)
» Physical and informational states (we will get to these later).

» Decisions — What are our choices?
e Pure information collection decisions (e.g. run an MRI, purchase a credit
report)
« Implementation decisions, but which may also affect what we learn.

» Exogenous information
* Initial belief/prior
 What we learn from an experiment

» Transition function
» Updating beliefs (statistical estimation)
» Possibly updating physical state.

» Objective function
* Performance metrics
* Finding the best policy
© 2019 Warren Powell

Modeling

B
® State variables

» For derivative-free, we often just have a belief state,

capturing what we know about our function:
* Lookup tables
« Parametric models
* Nonparametric models

» Physical state
* What node we are at in a network
 How much inventory do we have
« We will get to this in the second half of the course

» Information state
« Weather forecast, current price
 Information state at time t may be independent of the state at t-1.
» State at time t depends on state at t-1:
— Information evolves exogenously

— Our decisions influence the state (e.g. selling stock)
© 2019 Warren Powell

Modeling

]
® Decisions

» We have a finite set of choices:
e x €EX ={xq1,%x5, ..., Xy}

» Examples:
« Experimenting with different drugs to kill cancer in mice.
* Running simulations to plan operations (e.g. for Amazon)
« Evaluating different players for baseball during spring training.
» Testing different materials to maximize the energy density of a
battery.
« Test marketing new products in specific regions.

» We only care about the performance at the end of a set
of N experiments. We do not care about how well we
do along the way.

Modeling

e ——
@ Types of decisions

» Binary
Xe X = {0,1}
» Finite
Xe X ={1,2,..., I\/I}
» Continuous scalar
Xe X = [a,b]
» Continuous vector
X=(X,..., X), X, €R
» Discrete vector
X=(X,.er X)» X, €Z
» Categorical
X=(a,...,a,), a 1sa category (e.g. red/green/blue)

There are entire fields dedicated to particular classes of decisions.

Modeling

e —
® Exogenous information

» Simplest: let W% * be the performance of alternative

x™.

» If we are using a lookup table representation with a
Bayesian belief model, we would assume:
Wi = pyn + g™t
» If we are using a parametric representation, we would

write
W;ln+1 — f(xnlg) + €n+1

© 2019 Warren Powell

Modeling

B
® Transition function:

» Now use W;Ln+1 to update our belief model:
* Frequentist?

—n+1 1— n1 ﬁ)? + n1 Wan Ifxn =X
[, = N, +1 N, +1
|y Otherwise
* Bayesian?
[an—n Wyp /7 n+1
W
. Bxux:rﬁwx Ifx" = x
oo =1 B +0
[0y Otherwise

» Use any of the recursive learning methods from chapter
3.

© 2019 Warren Powell

Modeling

B
® Objective functions for
» State independent and state dependent problems.

» Final reward and cumulative reward

Offline Online
Terminal reward Cumulative reward
State max, E{F(z™N ,W)|So} max; E{S V! F(X™(S™),Wn+1)[Sy}
independent Stochastic search Multiarmed bandit problem
problems (1) (2)
State max_irn E{C(S,X™ "7 (S|0"™P),W)|So} maxr E{S_, C(St,X™(St), Wi+1)|So}

dependent Offline dynamic programming Online dynamic programming
problems (4) (3)

Modeling

® Simulating objective functions

» It 1s important to know how to simulate objective
functions. We will get to this in chapter 9.

Offline
Terminal reward

Online
Cumulative reward

State max, E{F(z™N ,W)|S} max, E{3N_1 P(X™(S™), Wn+1)|S,)
independent Stochastic search Multiarmed bandit problem
problems (1) (2)
~—tmpl . -) e r O . ~
State max_;-n E{C(S,X™ """ (S|9'™P),W)|S max~ E{3{_, C(St, X" (St), Wi+1)|So}
dependent Offline dynaml¢ programming Online dynamic programming
problems (4 (3)

mp

max E go E(T‘

—lrn
m

T-1
mimp 1
'n\T T Q0 L= T . —
‘{)t:“.nzl N |b |.”t),:”‘.5”T

C(St, X™ ™ (Si|6™7), Wisy))

Modeling

e ——
® Objective functions

Offline Online
Terminal reward Cumulative reward
State max,; E{F(z™N ,W)|So} max; E{3N_1 F(X™(S™), Wn+1)|S,)
independent Stochastic search Multiarmed bandit problem
problems (1) (2)

impl

State ma m {C(S, XT (S|0'™P) W)|Sp} | maxs E{ZzT:u C(St, X™(St), Wi+1)|So}
dependent Dffline dynamic programming Online dynamic programming

(4) (3)
Learning policies:
Approximate dynamic programming
Q-learning
SDDP

problems

We will focus on these in the second half
of the course.

Modeling

® Objective functions

Offline Online
Terminal reward Cumulative reward
State max, E{F(z™~ ,W)|Sp} 111;—1:(:}3{2';::_“1 F(X™(S™),wn+l)|S,)
independent Stochastic search Multiarmed bandit problem

problems (1) (2)

State max_rn E{C(S, X™ "7 (86"™P), W)|So} | maxs E{S]_, C(St, X™(St), Wt+1)|So}
dependent Offline dynamic programming Online dynamic programming
problems (4) (3)

“Online” (cumulative reward) dynamic programming is recognized as the
“dynamic programming problem,” but the entire literature on solving
dynamic programs describes class (4) problems. Class (3) appears to be an

open problem class.

Belief models

© 2019 Warren Powell Slide 46

Belief models
L

® Notes:

» With derivative-based search, we had gradients.

» With derivative-free, we have to form a belief model

about EF (x,W). Classes of belief models are

* Lookup table
— Independent beliefs
— Correlated beliefs
« Parametric models
— Linear
— Nonlinear
» Logistic regression
» Step functions (sell if price 1s over some number)
» Neural network

© 2019 Warren Powell

Approximation strategies

® Approximation strategies

» Lookup tables
* Independent beliefs
* Correlated beliefs

-
S AN
B 3 o

» Linear parametric models
» Linear models
» Sparse-linear
» Tree regression

» Nonlinear parametric models
» Logistic regression
* Neural networks

NXTX N

XA XA
7

Ay AN O
QU \0(" V’(;‘/."‘
SR 08 L0 A0,

:1';"}}"/' A SN AN
WAV AWAN

» Nonparametric models
» Gaussian process regression
» Kernel regression
» Support vector machines
» Deep neural networks

© 2019 Warren Powell

Approximating strategies
N

® Lookup tables

» Independent beliefs
ty *EF(X\W) X e{X,... Xy |

1
» Correlated beliefs |
* A few dozen observations can |
teach us about thousands of
points.
;

» Hierarchical models

 Create beliefs at different levels of .
aggregation and then use weighted
combinations

© 2019 Warren Powell

Approximating strategies
N

A

® Parametric models

» Linear models

F(X|‘9):Z‘9f¢f(x) >

feF

e Might include sparse-additive,
where many parameters are zero.

» Nonlinear models

e%+@@(@+m
F(X|9):1+e

Oy +0,¢ (X)+...

+1 if p, < @
X ﬂ(st |0) —J 0 lf Hcharge < pt < edischarge
_1 lf pt > echarge

 (Shallow) Neural networks

© 2019 Warren Powell

Approximating strategies

® Nonparametric models

» Kernel regression
* Weighted average of neighboring
points
e Limited to low dimensional
problems

» Locally linear methods
 Dirichlet process mixtures
« Radial basis functions

» Splines
» Support vector machines

» Deep neural networks

© 2019 Warren Powell

. (o te ¢ 4
' Vi U L) I b1 AT ’ '
" ' o LI Wt !
0 AT LAETH LR
I | | "] V

0 100 200 300 400 500 600 . 7.00 800 900

\\“ = P —

B~ ATATAY
%‘%‘3’5 .‘\,"l&,. “v’v" o ‘\!4‘.
\\»0»’\ /(‘}\.A{}&./{:\

HEX W SN

Belief models

® Lookup table

» We can organize potential catalysts into groups

» Scientists using domain knowledge can estimate

correlations in experiments between similar catalysts.

1.4 nm Fe

1 nm Fe

2nm Fe

10nm ALD Al203+1.2 nm IBS Fe
2 nim Mi

MNi 0.6 nm

10nm ALD Al203+1 nm Ni

1

0.7
0.6
0.4
0.4
0.2

© 2019 Warren Powell

0.7
0.7

1
0.6
0.4
0.4
0.2

&
,::-.
,.bé“
:;?ﬁ".
ﬁp“-';
w
o
.;::%
L "
Vv &
0.6 0.4
0.6 0.4
0.6 0.4
1 1
1 1
0.3 0.7
0 0.6

0.4
0.4
0.4
0.3
0.7

0.6

0.2
0.2
0.2

0.6
0.6

Belief models

N\

=

® We start with a belief about each material (lookup table)

53

Slide 53

© 2019 Warren Powell

Belief models

@® Testing one material teaches us about other materials

J

\)

54

Slide 54

© 2019 Warren Powell

Belief models
L

® We express our belief using a linear, additive QSAR model

? XM = (Xi;“)_j = Indicator variable for molecule m.

TY=6+Y, Y 6X

sites i substituents j

Hugo Kubinyi, www .kubinyi.de
[UEERE R R B g i
meta para log 1/iC meta- para- log 1iC
(X) () obs. F CI Br | Me F CI Br | Me -cale
H H 748 7.82 i
H F 8.18 1 8.16 Matrix for
H Cl 868 1 8.59 :
H Br §.89 1 8.84 Free W_Ilson
H 1 925 1 9.26 Analysis
H Me 9.30 1 9.08
F H 752 1 7.52
Cl H 818 1 8.03
Br H 830 1 8.26 Br CH,
| H .40 1 8.40 X N.
Me H 3848 1 8.28 CH,
¢l F 819 1 1 8.37
Br F 857 1 1 ss0 Y x HCI
Me F 882 1 1 8.62
¢l cl 889 1 1 8.80
Br cl §.92 1 1 9.02
Me CI 8.9% 1 1 9.04
Cl Br 9.00 1 1 9.08
Br Br 9.35 1 1 9.28
Me Br 9.22 1 1 9.30
Me Me 9.30 1 1 9.53
Br Me 9.52 1 1 9.5

© 2019 Warren Powell

Belief models
L

® A sampled belief model

- e_‘9i1(X—‘9i2)
N R(X|‘9i):9i0 14+ o G062
; 6
z . eu :(9i099i199i2) 1
S 2
=y
g 92
15 93

94

o0 o001 02 03 04 05 06 Oy OB 0% 1 11 12 13 14 15 16 17 18 1% 2

Concentration/temperature

Thickness proportional to p;

© 2019 Warren Powell

Belief models
L

® Parametric belief models

» Value of information (the
KG) behaves 1n an
unexpected way

» Graph to right shows the
value of information while
learning a quadratic
approximation.

» We are using these insights
to develop simple rules for
where to run experiments
that avoid the complexity of
KG calculations.

0 | 2‘0 4‘0 E;O 8‘0 1 60 120
Experiment X

© 2019 Warren Powell

Belief models

® Truckload brokerages:

» Now we have a logistic curve for Shipper
each origin-destination pair (1,))

Carrier

68 72 76 8 84 88 92 96 10

05 +0; p+05a

P'(p,a|0) =

+6; p+6;a

a0
l1+e™

» Number of offers for each (1)) pair
1s relatively small.

» Need tO generalize the leaming 0 04081216 2 242832 35 4 44 48 5.2-5.6 6 64 6.
across “traffic lanes.” Offered price

© 2019 Warren Powell

Belief models
L

® Hotel revenue management

» Locally linear curves

OA
%‘3 —
%Q \\
S \\
éi’; IS

100 120 140 160 180 200 220
Price $/night

© 2019 Warren Powell

Belief models

® Hotel revenue management

» Guessing the right logistics curve

15 20 25 30

Reservations/day

1.0

100 120 140 160 180 200 220
Price $/night

© 2019 Warren Powell

Designing policies

© 2019 Warren Powell Slide 61

Designing policies
N

® We have to start by describing what we mean by a
policy.

» Definition:

A policy Is a mapping from a state to an action.
... any mapping.

® How do we search over an arbitrary space of
policies?

Designing policies
N

® Two fundamental strategies:

1) Policy search — Search over a class of functions for
making decisions to optimize some metric.

)
max__ oo oo E{tz(;C(St, X7 (S, |9)) | SO}

2) Lookahead approximations — Approximate the impact
of a decision now on the future.

.
Xt*(st) = arg max, (C(St, X,)+ E{maxﬂen {E Z C(S,, X[(S,))] St+1} S, Xt}]

t'=t+1

Designing policies
N

@ Policy search:

1a) Policy function approximations (PFAs) x, = X"™(S, | 6)

* Lookup tables
— “when 1n this state, take this action™

« Parametric functions
— Order-up-to policies: if inventory 1s less than s, order up to S.
— Affine policies - X, =X"7(S,]0) = Z 09, (S,)
— Neural networks ek

* Locally/semi/non parametric
— Requires optimizing over local regions

1b) Cost function approximations (CFASs)

* Optimizing a deterministic model modified to handle uncertainty
(buffer stocks, schedule slack)

X CFA(St | 9) — arg mathe)_(t”(H) Cﬁ(stﬁ Xt | 6)

Designing policies

@ Lookahead approximations — Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

T
X, (S,) = arg max, (c:(st,xt)m{maxmn {E > (S X7 (SIS,) st,xt}]

t'=t+1

2a) Approximating the value of being in a downstream state using
machine learning (“value function approximatigns”)

(e (5.8, x))

X!™(8,) = argmax, (C(S,,%)+E{V,,(S,,))[S %})
=argmax, (C(S,,%)+V*(5)))

X, (S,)=arg max, (C(St , %)+ E

Designing policies

@ Lookahead approximations — Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

T
X, (S,) = arg max, (c:(st,xt)m{maxmn {E > (S X7 (SIS,) st,xt}]

t'=t+1

2a) Approximating the value of being in a dovvnstream state using
machine learning (“value function approximatipns”

X[(S,) =argmax, (C(S;,)+ BE{V,,(S.)1S.%})
X™(S,) = argmax (C(St,)q)+E S,)q})

= arg max,, (C(St , %) +\7tx(stx))

—

Designing policies
|
@ Lookahead approximations — Approximate the impact of a
decision now on the future:

» An optimal policy (based on looking ahead):

T
X;(S,) = argmax, (qst, X.) @{E > C(S,, X (S| sm} S, X,
t'=t+1

2a) Approximating the value of being in a downsffeam state using
machine learning (“value function approximationg”)

X{(S,) =argmax, (C(S,,x)+BE{V (S.)]S,x})

X™(8,) = argmax, (C(S,,%)+E{N.(S) 1S %})

= argmax, (C(St , %)

Designing policies

® The ultimate lookahead policy 1s optimal

X (S,) C(Sp %) @%@ C(st.,x;f(st'))li@}j

N/

Designing policies

® The ultimate lookahead policy 1s optimal

T
X, (S,) —argmax, (cxst,xt) B3 C(S., X{(50) S} | St,xt}j
t'=t+1

Maximization that we
cannot compute

v v

Expectations that we
cannot compute

Designing policies
N

® The ultimate lookahead policy 1s optimal

Xt*(st) = argmax, (C(SD Xt)+E{maX7zeH {E i C(St RS (S)] St+1} | St’ Xt}j

t'=t+1

» 2b) Instead, we have to solve an approximation called
the lookahead model:

t+H
Xt*(st) = argmax, (C(Sta Xt) T E{maxﬁeﬁ {E Z C(Stt At (Stt)| St t+1} | Sta Xt}]

t'=t+1

» A lookahead policy works by approximating the
lookahead model.

Designing policies
N

@ Types of lookahead approximations

» One-step lookahead — Widely used 1n pure learning
policies:
« Bayes greedy/naive Bayes
* Expected improvement
« Value of information (knowledge gradient)

» Multi-step lookahead

» Deterministic lookahead, also known as model predictive
control, rolling horizon procedure
 Stochastic lookahead:
— Two-stage (widely used in stochastic linear programming)
— Multistage
» Monte carlo tree search (MCTS) for discrete action
spaces
» Multistage scenario trees (stochastic linear
programming) — typically not tractable.

Four (meta)classes of policies

Policy search

Lookahead approximations

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions
2) Cost function approximation (CFAs)
CFA T
» X " (St | 9) — argmaxxé)?jf(g) C (1?2 t | 9)

3) Policies based on value function approximations (VFAS)

» X]7(S,) =argmax, (C(S,.x)+ 7" (S7(S,.x,)))
4) Direct lookahead policies (DLAS)
» Deterministic lookahead 'mllz’ng horizon proc..model piﬂedictlve control

XLA D(S) arg maX C(it 2 ﬁ)—l_ ZC(n's tt

f """ ff+H l'. t+l
» Chance constrained programming

PlAx, < f(W)|<1-0
» Stochastic lookahead 'stochastic prog Monte (.'Targp lree search

XH2(S) = argmaxf(X,)+ Z p(0) Z C(S, (@), %, (D))

xrr’xrr+l’ >N+l wel), t'=1+1
» “Robust optimization

XLA RO(S) arg max min C(” ﬁ)+ZC((w),x,.(w))

Xyt 5oy sy WEW, (O) foe

Four (meta)classes of policies

Function approx.

1) Policy function approximations (PKAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFASs)
» XS |0) = argmax .., C™(S,,x,|6)

3) Policies based on value function approximations (VFAS)
» X™(S,) =argmax, (C(S,x) +7(S7(S,.x)))

4) Direct lookahead p011c1es (DLAS)
» Deterministic lookahead/rolling horizon proc./model predictive control

XLA D(S)= arg max C(Sttaxtt)+ Z C(Stt X))

""" X t'=t+1

» Chance constralned programmmg

P[AX < FW)]<1-6

» Stochastic lookahead /stochastic prog/Monte Carp tree search

X A7(S,) = argmax C(S, %) + D P(@) D, C(Sy(@), % (D))
_ X_tt’xt_,t+1"“’xt,t+T el t'=t+1
» ““Robust optimization™

i
XS =arg max min C(Sy, %)+ Y C(Sy (W), X (W)

Xit » t t+H W (9) t'=t+1

Four (meta)classes of policies

Imbedded optimization

1) Policy function approximations (PFAs)

» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFKAs)
CFA T
» XS |0) = argmax _. . C™(S,,x |6)
3) Policies based on value function approximations (VFAS)
» X™(S,) =argmax (C(S,,x)+7," (87(S,.x,)))
4) Direct lookahead policies (DLAS)
» Deterministic lookahead 'mlllng horizon proc. model predictlve control

XLA D(S) arg maX C(it > [[)+ ZC(mn'e I‘t

""" rreH 1'=t+1
» Chance oml‘mmed pl ogramming

PlAx < fW)]<1-6

» Stochastic lookahead 'stochastic prog Monte Car lo lree search

XH5(8,) =argmax C(S,, %,) + Zp(anZ C(S, (@), %, (D))

xrr’xrr+l’ ’xrr+T Q) 1'=r+1
» “Robust optimization”

X 7(S)y=arg max min (S s ﬂ)+ZC((w),x,.(w))

X1 5esXy pypr WEW, (0) foe

Optimal policies

Online vs. offline learning

Slide 75

Optimal policies
N

® Earlier we expressed an optimal policy using
Bellman’s equation:

» Recall that we used a graph:

(@D

an __ i L~ e ——
O — 2 y 'l_,?;'“ 5 -h-l__'::_"_‘.
R =g N
O R
.—*"f ‘\"‘H) .\\‘
- =5 \ RG
-
1 "‘.fé_ . r e
\\ - N . P S

V(S) = max (C(S,z) + V(SM (S, 2))).

» Dollmain equation (StatC — nodac)

Optimal policies

@ Bellman’s equation for a learning problem:
» A belief state

7

x

AN\

N

///////

A

1 2 3 4 5
T =5
V(S) = max (C(S, z) + EwV (SM(S,z,W))). (3.7)
X*(S) = argmax (C(S,z) + EwV(SM(S, 2, W))). (3.8)

-

» Can only solve this in very special cases (and not with normally
distributed beliefs). 5 alternatives -> 10-dimensional continuous state.

Optimal policies
N

® Online (cumulative reward) vs. offline (final
reward)

» Bellman’s equation for online (cumulative reward)
learning:

Vish) = mj?x(C(S”, x™) + E{v*ti(snth)|sm}

» Bellman’s equation for offline (final reward) learning:

ViH(sh) = m;ax(0 +E{y*+i(snt)|sm}

» If we only care about the final reward, we do not care

Policy function approximation

© 2019 Warren Powell Slide 79

Policy function approximation
N

® Examples:

» Optimizing buying-selling energy from the grid

» Finding the best selling price for my book on Amazon.

© 2019 Warren Powell

Policy function approximations
N

@ Battery arbitrage — When to charge, when to
discharge, given volatile LMPs

ERCOT (Texas) price data

g
B

g
H

g
&

g
8

Dollars per megawatt-hour

Average price ~ $50/megawatt-hour |

T e

Policy function approximations
N

® Grid operators require that batteries bid charge and
discharge prices, an hour in advance.

140.00

120.00

100.00

80.00

ischarge 0009 ’A
A s '\V‘“\ ? 7
QCharge _H /

20.00

L o e o o o e e e L o o B o e o e B LI B o o o o B o e e I NI e e o o o o o
1 357 9111315171921 23252729 313335373941 43454749 51 53555759 616365676971

® We have to search for the best values for the policy
parameters 6" and 6"

Policy function approximations
N

® Our policy function might be the parametric
model (this 1s nonlinear in the parameters):

+1 if p, < @
XS, 10)=10 1f gehares < p, < gaiseharee
\—1 it p, > geharee
:ﬁ Pﬂﬁﬁgmsﬁo@&eﬁ n_[u'l alild jﬁ_ﬂdf u - ‘| — [
=—i—| Price of electricity: —¢ | |
(an ﬁ Fly | W mm\Wnﬂnﬂ f‘a\ . 1
Ve WA i AV VAN A
IJ i . i '

Policy function approximations
N

® Finding the best policy
» We need to maximize

4
max, F(0) =B y'C(S,, X[(S, 10))
t=0

» We cannot compute the expectation, so we run simulations:

HDischarge

Policy function approximation

® Optimal pricing

Optimal
Learning

Warren B, Powell
flya O, Ryzhov

See larger image

Publisher: learn how customers can search inside this

book.

Tell the Publisher!
I'd like to read this book on Kindle

Don't have a Kindle? Get your Kindle
here, or download a FREE Kindle

Reading App.

Optimal Learning (Wiley Series in Probability and Statistics)

[Hardcover]
Warren B. Powell [+ {Author), Ilva 0. Ryzhov {Author)

[] Like | (0)

List Price: $145.00

price: $101.16 & this item ships for FREE with Super Saver Shipping.
Details
You Save: $13.84 (12%)
Pre-order Price Guarantee. Learn more.
This title has not yet been released.

You may pre-order it now and we will deliver it to vou when it arnves,
Ships from and sold by Amazon.com. Gift-wrap available.

6 FREE Two-Day Shipping for students on millions of items. Learn more

Policy function approximation
N

® Dynamic pricing
» After n sales, our estimate of the
demand function 1s

» D(p‘én) = 9_61 — H_f‘p
» Revenue 1s
R(p|6™) = pD(p|6™)

: Prior belief about demand func
D' (p) =G +&'p

tion

= 0gp — 07'p*
» The optimal price given our
estimates would be:

n _ 63
))p _ﬁ

Revenue management
L

@ Earning vs. learning

_ Pmnor belief about demand function
“H\L\DE Lp} — EE:I + &-ﬂp

H'\\.

» You earn the most

with prices near the
middle.

» You learn the most
with extreme prices. D)

» Challenge is to strike

a balance. p P
(a) (b)

Figure 8.6 Estimating the demand function using (a) observations near the middle and (b)
observations near the endpoints.

Policy function approximation
N

® Designing a policy:
» Just doing what appears to be best will encourage prices
too close to the middle.
» We can try an excitation policy by adding noise:

p" = P"(§"|p) = 2 4
201
where € ~ N(0, p?), where p is a tunable parameter.
» After charging price p™, we observe revenue:

Rn+1 — pn(go _ 9119” 1+ gdemand,n+1)

where gdemandntl N (0, aW'2) is the noise when
observing demand.

© 2019 Warren Powell

Policy function approximation

® Designing a policy:

» p 1s a tunable parameter that needs to solve:

(N

maxEglE 1 2 pN|g)
p) IR}

\=

N
R(PT(S™p))IS®
1

~N"

Y,

» The best value of p should strike a balance between
doing a better job of exploration, without overdoing it.

© 2019 Warren Powell

Policy function approximation

® Other examples of PFAs:

» A basic linear decision rule

XT(S™p) =) pyoby(S™

fEF

» Where the features ¢((S) for f € F have to be
designed by hand.

© 2019 Warren Powell

Cost function approximation

Materials science example

© 2019 Warren Powell Slide 91

Materials science application

@ Heuristic measurement policies

» Boltzmann exploration
» Explore choice X with probability " x

. P] 0) = argmax{z|P.(0) <U}. [J ~ [07 1]
» Upper confidence bounding

XUCB(Sn |9UCB) = arg max, (ﬁ; 4 gucs I(I)\Ign)

» Thompson sampling

X" (8")=argmax, 4" where 2] ~ N(z, ")

» Interval estimation (or upper confidence bounding)
* Choose X which maximizes

— IE n IE —n IE —n
/ 7 5" X=(S"|0F)=argmax, u, +0"0,
L

— —

0

H 92

Materials science application
N

® Notes:

» Each one of these policies has an imbedded “max™ (or
“min’’) operator.

» But each one still has a tunable parameter — this 1s the
distinguishing feature of “policy search” policies.

» For these policies, the max involves a simple search
over a set of discrete choices, so this 1s not too difficult.

» Another example is solving a shortest path into New
York. The tunable parameter might be how much time
you add to the trip to deal with traffic.

» The max/min could also be a large optimization
problem, such as what 1s solved to plan energy
generation for tomorrow.

© 2019 Warren Powell

Materials science application
N

® Lookup table

» We can organize potential catalysts into groups

» Scientists using domain knowledge can estimate

correlations in experiments between similar catalysts.

1.4 nm Fe

1 nm Fe

2nm Fe

10nm ALD Al203+1.2 nm IBS Fe
2 nim Mi

MNi 0.6 nm

10nm ALD Al203+1 nm Ni

1

0.7
0.7

0.6
0.4
0.4
0.2

&
,::-.
,.bé“
:;?ﬁ".
ﬁp“-';
w
o
.;::%
L "
Vv &
0.6 0.4
0.6 0.4
0.6 0.4
1 1
1 1
0.3 0.7
0 0.6

0.4
0.4
0.4
0.3
0.7

0.6

0.2
0.2
0.2

0.6
0.6

Materials science application

J

N

® Correlated beliefs: Testing one material teaches us about other
materials

95

Materials science application

@ Heuristic measurement policies

» Boltzmann exploration
» Explore choice X with probability " x

o« XPUE(8m0) = argmax{z|P}(6) <U}. U ~[0,1]
» Upper confidence bounding

XUCB(Sn |9UCB) = arg max, (/7; 4 gucs I(I)\Ign)

» Thompson sampling

X" (8")=argmax, 4" where 2] ~ N(z, ")

» Interval estimation
 Choose X which maximizes

— IE n IE —n IE —n
/ 7 5" X=(S"|0F)=argmax, u, +0"0,
N

0

H 96

Materials science application
N

® Notes:

» Upper confidence bounding and Thompson sampling
are very popular in the computer science community.

» These have been shown to have provable regret bounds,
which the CS community then uses to claim that they
must be very good.

» My own experimental work has not supported this
claim, but we have found that a properly tuned version
of interval estimation tends to work surprisingly well.

» ... The problem 1s the tuning.

© 2019 Warren Powell

Materials science application

® Picking 8'% = 0 means we are evaluating each choice
at the mean.

ERN
.y

k//////////////////////////ﬂ

\

.MMM

/s

98

Materials science application

® Picking 8'% = 2 means we are evaluating each choice
at the 95 percentile.

»////////////////////A

99

Materials science application
N

@ Optimizing the policy

» We optimize 8’ to maximize:
max . F(0")=EF (x"",W)

where
X"=X"(S"|0") =argmax, (1] +0°5;) S"=(1.5})

"

@ Notes: |
» This can handle any belief model, 5l
including correlated beliefs, nonlinear
belief models. &)
A

» All we require 1s that we be able to
simulate a policy.

0 0 .I5 1I 1 .l5 é 2.I5 3I 3.I5 4
IE
IE parameter &

Materials science application
N

® Other applications

» Airlines optimizing schedules with schedule slack to
handle weather uncertainty.

» Manufacturers using buffer stocks to hedge against
production delays and quality problems.

» @Grid operators scheduling extra generation capacity in
case of outages.

» Adding time to a trip planned by Google maps to
account for uncertain congestion.

Materials science application
N

® Notes:

» CFA policies are exceptionally popular in internet
applications:

» Choosing ads, news articles, products, ... that
maximize ad-clicks.

» The ease of computation of the policies is very
attractive.

» Representative from google once noted: “We can use
any policy that can be computed 1n under 50
milliseconds.”

© 2019 Warren Powell

Cost function approximation

Fleet management example

© 2019 Warren Powell Slide 103

Schneider National

Y

ey ——
== ¥ =
=1 e
et
o L
i __#-\.'?.
<l o o
e
= :
- £

[dr 29812 Svs

[10 ldr 29137 Sys:

f |

= |
(10 [dr 29901 Sys B | 1.0 |0360918
(10 |gr 29985 Sys 6 810 [o3z0349
(1.0 |dr 30156 Sys Fiki10 0824671
1.0 |dr 30197 Sys 6 b1 (0522613
(1.0 [dr 30293 Sys 6 Hi4010 0102029
1.0 |dr 27387 Syz 6B Vi1 0 [o6z4671
i k0.0 [oso0451
Tdr 27917 Sy= B U0 [nsn4ars
{dr 27970 Sy= B W10 [o102029
 ldr 75466 Sys B | 0 [0303311
[dr 28535 Sys B I o (030331
10 dr 2887 QU1 .0 (0523526
29130 Svs B 10 |0523526
[1.0 ldr 29220 Sy B R 0 [nd4z432
10 dr_29383_Sys 6 L 1.0 [o02029
(1.0 |dr 34741 Sy 7 | 1.0 |0622613

[10 ldr 34843 Sy= 7

(10 [dr 34598 Sys 7

© 2018 Warren B. Powell

Fleet management application

Drivers [\ Demalﬁ

© 2018 Warren B. Powell

Fleet management application

The assignment of drivers to loads evolves over time, with new loads

being called in, along with updates to the status of a driver.
© 2018 Warren B. Powell

Fleet management application

® A purely myopic policy would solve this problem
using

min, Z Z Ciat Xial
d |

where

|1 If we assign driver d to load |
= 0 Otherwise

C = Cost of assigning driver d to load | at time t

What 1f a load it not assigned to any driver, and has been
delayed for a while? This model 1ignores the fact that we
eventually have to assign someone to the load.

© 2018 Warren B. Powell

Fleet management application

® We can minimize delayed loads by solving a
modified objective function:

min, ZZ(CtdI _HTtI)XtdI
d |

where

7, = How long load | has been delayed by time t

@ = Bonus for moving a delayed load

We refer to our modified objective function as a cost
function approximation.

© 2018 Warren B. Powell

Fleet management application

® We now have to tune our policy, which we define
as:

X"(S5;|0) = argmin, ZZ(CtdI —0r,) Xial
d

_J/

h'd

C™ (S, % |0)
We can now optimize @, another form of policy search,
by solving

;
min, F7 (@) =B C(S,, X[(S,]6))
t=0

© 2018 Warren B. Powell

Cost function approximation

Logistics example

© 2019 Warren Powell Slide 111

Logistics application

@ Inventory management

» How much product
should I order to
anticipate future
demands?

» Need to accommodate
different sources of

uncertainty.
* Market behavior
 Transit times
* Supplier uncertainty
* Product quality

© 2018 Warren BRI

Logistics application
N

® Imagine that we want to purchase parts from
different suppliers. Let X, be the amount of
product we purchase at time t from supplier p to
meet forecasted demand D,. We would solve

X (§,) = argmax, Z C, X,

peP

subject to
2 % 2D
peP
Xp SU >Xt
X =0)
» This assumes our demand forecast D, 1s accurate.

© 2018 Warren B. Powell

Logistics applicati

on

® Imagine that we want to purchase parts from
different suppliers. Let X, be the amount of

product we purchase

at time t from supplier p to

meet forecasted demand D,. We would solve

X' (S, |0)=arg max ... Z:Cp)(IIO

subject to
Reserve
Sn, 2
peP

Xip = Up

peP

__— Reserve

¥ A7 (0)

> buffey

—— Buffer stock

» This 1s a “parametric cost function approximation™

© 201

& Warren B. Powell

Logistics application

® An even more general CFA model:

» Define our policy:

X/ (0) = argmax

subject to

Parametrically
modified costs

AX = Parametrically
modified constraints

» We tune ¢ by optimizing:
T
min, F7(6) =B C(S,, X{7(0))
t=0

© 2018 Warren B. Powell

Cost function approximation

Energy storage example

© 2019 Warren Powell Slide 116

Parametric cost function approximation
N

® Notes:

» In this set of slides, we are going to illustrate the use of
a parametrically modified lookahead policy.

» This 1s designed to handle a nonstationary problem with
rolling forecasts. This 1s just what you do when you
plan your path with google maps.

» The lookahead policy is modified with a set of
parameters that factor the forecasts. These parameters
have to be tuned using the basic methods of policy
search.

© 2018 W.B. Powell

Parametric cost function approximation

® An energy storage problem: gy 7o

200 .‘ ’ l'; [f':;) ._ "' 'J".',A i
I ,. ., . .- I. rr’ \ g *J‘ : [
Wind speed m SR PN |

Electricityprices

The state of the system can be represented by
r'l

Demand

St — (Rt._ Er. Pt. Dt. Gt)

where

Units (MWV)

@ R: € [0, Rmax] is the level of energy in storage at time t
@ E; is the amount of energy available from wind

P; is the spot price of electricity

°
@ D, is the power demand
°

G; is the energy available from the grid 2 4 6 8 0 2w e ® 2 2z

Hour of Day

Parametric cost function approximation

® Forecasts evolve over time as new information arrives:

- m
Rolling forecasts, /J’,A \
Egﬁited each | // | ,
A
|| IFncigenchit; fnade at l{l/l,/
P /// \ Actual

N

Hours starting at noon on 13/07/09

Parametric cost function approximation
N

® Benchmark policy — Deterministic lookahead

XtD-LA(Sr) — argmin C(Se,xt) +
¥ V=t L H)

Reo + 0% + %3 < A
N G
X + % <Ry
Xl + %% <R™ R,
KR < 6
Rer % <y
5 <y

Lookahead policies

The lookahead model

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model

t+1 t+2 t+3

The real process

© 2018 W.B. Powell

Lookahead policies

The lookahead model

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model

t+1 t+2 t+3

The real process

© 2018 W.B. Powell

Lookahead policies

The lookahead model

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model
D

Lo

-~ Kk
o
e CKS x

T .f‘
it

X
ARG

t+1 t+2 t+3

The real process

© 2018 W.B. Powell

Lookahead policies
|

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model

. A
_g g {
O)\’i;’
: s
3 B
S (&
= | ,@5\
av) ‘ﬁ%
— : \‘//
o K
2 P &
- | e
| |

=

t t+1 t+2 t+3

The real process

© 2018 W.B. Powell

~

~ ,\\"-
a7
" ,'L;\' C‘\S ‘

p
Lpre?

Parametric cost function approximation
N

® Benchmark policy — Deterministic lookahead

XDLA(S,) = argmin C(Se, xt) +
¥ V=t L H)

Reo + 0% + %3 < A
N G
X + % <Ry
Xl + %% <R™ R,
KR <A
Rer % <y
5 <y

Parametric cost function approximation

® Parametric cost function approximations
. wr wd
» Replace the constraint Ly ’,\\xtt'

i Ild i
~1H ~1u:,=' E 1| (StorageR ¢-----=-=-= i —W
T X S = =
"\\‘& -7 _gd
with:
1t1.

» Lookup table modified forecasts (one adjustment term for
each time 7 = ¢'- ¢ 1n the future):

wr wd E
<
Ly T Ly _t'

» We can simulate the performance of a parameterized policy

ZC((S,(@) | 0))

» The challenge 1s to optimize the parameters:

min, EZO(St,Xt”(St 16))
t=0

Parametric cost function approximation
N

® One-dimensional contour plots — perfect forecast

» 6; for 1=1,..., 8 hours 1nto the future.

F{&) over changing ¢ compenetwise with lookup table for perfect forecast

1280

* --"‘rj
6. =1 for perfect forecasts. ~
1270 - :
5 ’
1260 L, —————————
-

F(i)

1250 =

]

i
1240

[FY

— [

&

)
1230 - -
2]
)

o th

]

o]

1220
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Parametric cost function approximation
N

® One-dimensional contour plots-uncertain forecast

» 6; for1=9,..., 15 hours 1nto the future

F(#) over changidg ¢ compenetwise with lookup table for o=40

e i . I
- /
EZED n
255'—/ —
250 ::
=
gan : ! — '
00 02 04 06 08 10 12 14 1.6 18 20 22 24

Parametric cost function approximation
N

F(6) for o=40

2.0

1.8

1.6

1.4

12 [

(91 1.0

0.8 |

0.6 |
0.4 24
02 |
.. I T,

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Parametric cost function approximation
N

20 ¢

1.8

1.6

14 |

1.2 |

1.0

0.8

0.6

04 |

02

0.¢

F(#) for o=40
T

00 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Parametric cost function approximation
N

20 ¢
1.8 |

1.6 |

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.¢

F(6) for o=40
|

00 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

- 240

220

210

Parametric cost function approximation
N

20 [
1.8 |
1.6 |

1.4 |

1.2

1.0

0.8

0.6

0.4

0.2

0.¢

F(6) for o=40
I

270

- 230

200

| | | |
0.0 02 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Numerical derivatives
]

® Simultaneous perturbation stochastic approximation
» Let:

e x" be ap — dimensional vector.

e §™ be a scalar perturbation

e 7™ be a p —dimensional vector, with each element drawn from a normal (0,1)
distribution.

» We can obtain a sampled estimate of the gradient V,.F (x™, W™t1)
using two function evaluations: F(x™ + 6™Z™) and F(x™ + 6™"Z")
F(X"+68"Z")— F(X"+46"Z")
260"Z]
F(X"+6"Z")—F(x"+6"Z")
V F(x",W") = 26"Z)

F(X"+6"Z") — F(x" +6"Z")
26"Z"

Numerical derivatives
]

® Finite differences
» We use finite differences in MOLTE-DB:

* We wish to optimize the decision of when to charge or

discharge a battery
(+1 if p, < g
X ﬂ(St | 9) —J O lf gcharge < pt < gdischarge
_1 lf pt > gcharge

Battery Lovwel and LAAP

o F\ Ene _gy_ui St_0|r|a_,ge

amzas

WalNa |.-_| r

|| I

Price of electricity:

©.2019 Warren Powell

Numerical derivatives
B 1

® Finding the best policy
» We need to maximize

4
max, F(0)=EY y'C(S,, X[(S, 10))
t=0

» We cannot compute the expectation, so we run simulations:

HDischarge

© 2019 Warren Powell Slide 135

Cost function approximation

Stochastic shortest path

© 2019 Warren Powell Slide 136

Stochastic shortest path problem

@ A stochastic network, costs revealed as we arrive to a
node:

© 2018 W.B. Powell

Stochastic shortest path problem

e ——
® Modeling:

» State variable (iteration n, time t)
e R[' = current node = i}* during pass n
e [{' = information = (Eﬁ j) = estimates of costs at time't
during pass n
* St = (R ID)

» Decisions

t,i?,]:l if we traverse, (if*,J) at time t.

« We want a policy X[(S;) = (xfigl:ij) for all links i, j.
T

i

X

» Costs
e (;jj =Actual realization of costs at time t to traverse (i, j)

© 2018 W.B. Powell

Stochastic shortest path problem

N
® Modeling:

» Objective function
 Cost per period

C(Se, XY (Sp)) = (XF (St))Tét

— n A - »
= § Xein j Ctij
ij
=(Costs incurred at time t.

e Total costs:
minE Y.7_, C(Se, XF(Sp))
VIA

» This 1s the base model.

© 2018 W.B. Powell

Stochastic shortest path problem

@ A policy based on a lookahead model

»

»

»

At each time t we are going to optimize over an estimate of the
network that we are going to call the lookahead model.

Notation: all variables in the lookahead model have tilde’s, and
two time indices.
 First time index, t, 1s the time at which we are making a decision.
This determines the information content of all parameters (e.g. costs)
and decisions.
« A second time index, t’, is the time within the lookahead model.

Decisions
e X;;j = 1if we plan on traversing link (i, j) in the lookahead model.
e (;jj = Estimated cost at time t of traversing link (i, j) in the
lookahead model.

© 2018 W.B. Powell

Stochastic shortest path problem

Kingston
o

i % s
T | 44
27 ; Hartford
Pnughléeeps:e
Waterbury i
Newburgh 3 Middletown
2 P Danbury
(52 (] Ne

& 3h21 min |
169 miles

f fa - Long Island

Stochastic shortest path problem

I{ingnﬁmn
A & S
57, (a4)
. Hartford
F‘nughl;eeps&e

Wategbury i
Newburgh 54 ddletown
84 Danbury
84 @ ik New
¢ o o S,
b= 3 h 26 min |

178 miles

Stochastic shortest path problem

[—
@ A static, deterministic network

© 2018 W.B. Powell

Stochastic shortest path problem

@ A time-dependent, deterministic network

© 2018 W.B. Powell

Stochastic shortest path problem

@ A time-dependent, deterministic lookahead network

/7

t+4 /

t'

@ A

S fots3
8 4

D {'=t+2

o

<

t'=t+1 i

—+
I
—+

—+

+1 t+2 t+3

The base model

© 2018 W.B. Powell

Stochastic shortest path problem

@ A time-dependent, deterministic lookahead network

A
© t':t+4¢ /
©
S t'=t+3
® 4
Qt'=t+2
S t'=t+] i
2
= t'=t

t t+2 t+3

The base model

© 2018 W.B. Powell

Stochastic shortest path problem

@ A time-dependent, deterministic lookahead network

—~—
Il

tr=t43 /’

t'=t+2

t'=t+1 ,

The lookahead model

—+
I
—+
—

t+1 t+2 t+3

The base model

© 2018 W.B. Powell

t+4 /

Stochastic shortest path problem

e —
® Imagine that the lookahead 1s just a black box:

» Solve the optimization problem

X[(S)=arg minz Z Ci X

IEN jeN;"

» subject to

Z)?in = 1 Flow out of current node where we are located
i

Z X. =1 Flow into destination node r

i,r
i

Z X i —Z X;, = 0 for all other nodes.

i k

» This 1s a deterministic shortest path problem that we
could solve using Bellman’s equation, but for now we

will just view it as a black box optimization problem.
© 2018 W.B. Powell

Stochastic shortest path problem

® Simulating a lookahead policy

We would like to compute

]
F* = EZ Z Xeii (S)C

t=0 i,j
but this 1s intractable.

Let w be a sample realization of costs
ét,t',ij (w), ét+1,t',ij (w), ét—i—Z,t',ij (W),...

Now simulate the policy

T i
F T (wn) — Z Z X;)Tij (St (wn))ét’ij (wl’l) Talk through how this

e works.

Finally, get the average performance
N
F T __ i Z F T (wn)
N =

© 2018 W.B. Powell

Stochastic shortest path problem

B]
® Notes:

» The deterministic lookahead is still a policy for a
stochastic problem.

» Can we make 1t better?

® Idea:

» Instead of using the expected cost, what about using a
percentile.

» Use pdf of ¢;; to find 6 percentile (e.g. 6 = .8). Let
5?9_ (6) =The 8 —percentile of ¢;;

» Which means Prob [cl j <G (6)] = 0.

© 2018 W.B. Powell

Stochastic shortest path problem

N
® The 6 —percentile policy.
» Solve the linear program (shortest path problem):
X[(S'|0)=arg minz Z Ci (X (Vector with x; = 1 if decision is to take (i, j))
iEN jeN;*

» subject to

Z)~(t o= 1 Flow out of current node where we are located

j

Z X, =1 Flow into destination node r
i

Z X —Z X4 = 0 for all other nodes.
i k

» This 1s a deterministic shortest path problem that we
could solve using Bellman’s equation, but for now we

will just view it as a black box optimization problem.
© 2018 W.B. Powell

Stochastic shortest path problem

e ——
® Simulating a lookahead policy

Let w be a sample realization of costs
c,:\'[,t',ij (CU), é’[—l—l,t',ij (w)a ét—|—2,t',ij (UJ),

Now simulate the policy

ﬁw(wn) — Zzét,t',ij (W)X (S (w") [0)

t=0 i,j

Finally, get the average performance

ﬁ”(@):ﬁz F™(w")

© 2018 W.B. Powell

Stochastic shortest path problem

e
® Policy tuning

» Cost vs. lateness (risk)

Comparison of theta”cost - origin 0, destination 24, dist 6 - deadline 780.0 and number of iterations 100

Average Cost Probability of being late (Risk)
am 0.14 1
695 -
0.12
690 1
0.10
685 -
0.08 4
680 - &
0.06 -
675 -
0.04 -
670 -
0.02 -
665
0.0 0.2 0.4 0.6 0.B 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Percentile Percentile

© 2018 W.B. Powell

Notes on cost function approximations

© 2019 Warren Powell Slide 154

Cost function approximations
N

® Notes:

» CFAs are the dirty secret of real-world stochastic
optimization. They are easy to understand, easier to
solve, and make 1t possible to incorporate problem
structure.

» The first challenge 1s to identify an effective
parameterization. This requires having insights into the
problem.

» The second challenge 1s to optimize over the
parameters.

» There are close parallels between policy search and
machine learning.

© 2019 Warren Powell

Cost function approximations
N

® Tuning the parameters
» Let
X™(S™|6) =Tunable policy

» The simulated performance of the policy 1s given by
e Final reward:

- Let x™N(8) be the solution produced by following
policy m parameterized by 8. The performance of the
policy is given by

F™(0,W) = F(x™N(8),W)

e Cumulative reward

T
FT(0,W) =) C(S:, X™(S™10))
t=0

© 2019 Warren Powell

Cost function approximations

® Tuning the parameters

» We can write any parameter tuning problem as

max Ey F(6,W)

» This 1s a basic stochastic learning problem. We can
approach 1t using:
 Derivative-based stochastic search — Will probably need to use
numerical derivatives.
« Derivative-free stochastic search — We might represent the set

of possible values of 8 € {04, ..., O} and then search over this
finite set.

© 2019 Warren Powell

Learning and tuning policies

Slide 158

Learning policies
N

@ Simulating a policy

» Regardless of our belief model (frequentist or Bayesian), a learning
process looks like

0 O\l ol yl \ps2 N-1 N-1\p/N N
(S ,X ,WXO?S ,X ?leﬂ"'ﬂs ?X ,WXN—I?S)

» Our observations might come from
W;’Ln+1 = l,n + €n+1
or perhaps
Fn = F(xn’ Wn+1)
There are different ways to interpret our “W” variable.

» Imagine that we have three policies 74, w5, and #¢. LetI1 = (74,

8,).
» In offline learning, we only care about our final answer which we
call:
N —N
X"" =max, [,

Learning policies
N

@ Learning the best policy

» Imagine that we have three policies m4, w5, and #¢. Let Il = (74,
B _C
T,).
» In offline (final reward) learning, we will optimize the final reward

=N
max IEH[EW1,___,WN|Mux

or
. T,N Y1,
max E Byt wn) Ew,F & W)

» In online (cumulative reward) learning, we optimize the

cumulative rewards:
N—1

mﬂax [EH[Ewl,...,WNluIEWlM z F(Xn(Snle); Wn+1)

n=0

» X

Learning policies
N

@ Finding a policy
» Imagine that we have three classes of policies 74, w5, and T¢. Let
M= (x4, nB, n).
» For each class of policy, we might have a set of parameters 6 € 04
(for example) that have to be tuned.

» In offline learning, we only care about our final answer which we
call:

T,N

x™N = max g
X

Note that the policy 7 is implicit in the estimate Y. We make it
explicit when we write the final design x™V.

» Now we wish to solve the optimization problem that finds the best
policy (best class, and best within the class).

Learning policies
N

@ Notes

» Buried in the estimate of ¥ is:

e The truth u,

* The set of observations:

1 2 N
Wl W2, ..., Wh_,

X

» ...where the choices x%, x1, ..., x¥~1 are determined by our

learning policy x™ = X™(S™). This is the reason we label

N —N
X" = max, [,

with the policy 7.

Learning policies
N

@ Evaluating a policy

» The final design x™" is a random variable since it depends on:
* The true u, (in our Bayesian model, we treat this as a random

variable)
e The observations W1, W?2, ... WN

» We can evaluate a policy X™(S) using
F'=Bu., = Eﬁ;,N (these are equivalent - more on this later).
» Finally, we write our optimization problem as
max__ E,E;'TN
» It 1s useful to express what the expectations are over, so we write

max [K

—N
w2 N e

Learning policies
N

@ Simulating a policy

»

»

»

»

»

We cannot compute expectations, so we have to learn how to
simulate:

—N
max EMEW tw?.., WNme”’N

Let u(y) be a sampled truth, and let Wl(w), ..., WN(w) be a
sample path of function observations.

Assume we have truths lp{), £ =1, ..., L, and sample paths

wl ..., ¥,

Let ,LI;CT’N (Y*, w™) be the estimate of u,, when the truth is ? and
the sample path of realizations is w*, while following experimental
policy .

Now evaluate the policy using

= my?XLE 2 2

“Contextual” learning

Slide 165

Contextual learning
N

® What if we are given information before making a
decision?
» We see the attributes of a patient before prescribing treatment.

» We are given a weather report before having to decide how many
newspapers to put in our kiosk.

» Let’s call this an “environmental state” variable (this 1s not
standard, but there 1s not a standard name for this).

® Example:

» Newsvendor problem with a dynamic state variable (the price):

max__ EC(S,2,IW)=E {pt min(z, W) — cx}
» Further assume that p; 1s independent of any previous prices, and

that 1t 1s revealed before we make our decision x.

@® The price p; 1s known as a “context.” This would be called a
“contextual learning problem™ or a “contextual bandit problem.”

© 2019 Warren Powell

Contextual learning
N

® Why 1s this special?

»

»

»

»

Without the dynamic information, we would be
searching for the best x.

With the contextual information, we are now looking
for x(p) where p is the revealed price. This means that
instead of looking for a deterministic variable (or
vector), we are now looking for a function.

When we are looking for a decision as a function of a
state variable (even part of a state variable), then this is
what we call a policy.

The learning literature makes a big deal about
“contextual bandit problems.” For us, there 1s nothing
different about this than any state-dependent problem.

© 2019 Warren Powell

