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a b s t r a c t 

Stochastic optimization is an umbrella term that includes over a dozen fragmented communities, using 

a patchwork of sometimes overlapping notational systems with algorithmic strategies that are suited to 

specific classes of problems. This paper reviews the canonical models of these communities, and proposes 

a universal modeling framework that encompasses all of these competing approaches. At the heart is 

an objective function that optimizes over policies that is standard in some approaches, but foreign to 

others. We then identify four meta-classes of policies that encompasses all of the approaches that we 

have identified in the research literature or industry practice. In the process, we observe that any adaptive 

learning algorithm, whether it is derivative-based or derivative-free, is a form of policy that can be tuned 

to optimize either the cumulative reward (similar to multi-armed bandit problems) or final reward (as is 

used in ranking and selection or stochastic search). We argue that the principles of bandit problems, long 

a niche community, should become a core dimension of mainstream stochastic optimization. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

There are many communities that contribute to the problem of

making decisions in the presence of different forms of uncertainty,

motivated by a vast range of applications spanning business, sci-

ence, engineering, economics and finance, health and transporta-

tion. Decisions may be binary, discrete, continuous or categorical,

and may be scalar or vector. Even richer are the different ways that

uncertainty arises. The combination of the two creates a virtually

unlimited range of problems. 

A byproduct of this diversity has been the evolution of dif-

ferent mathematical modeling styles and solution approaches. In

some cases communities developed a new notational system fol-

lowed by an evolution of solution strategies. In other cases, a com-

munity might adopt existing notation, and then adapt a modeling

framework to a new problem setting, producing new algorithms

and new research questions. 

Our point of departure from deterministic optimization, where

the goal is to find the best decision, is to address the problem

of finding the best policy , which is a function for making deci-

sions given what we know (sometimes called a “decision rule”).

Throughout, we capture what we know at time t by a state vari-

able S t (we may sometimes write this as S n to capture what we

know after n iterations). We always assume that the state S t has all

the information we need to know at time t from history to model

our system from time t onward, even if we know some parameters

probabilistically (more on this later). 

We will then define a function X 

π ( S t ) to represent our policy

that returns a decision x t = X π (S t ) given our state of knowledge

S t about our system. Stated compactly, a policy is a mapping ( any

mapping ) from state to a feasible action. We let C t (S t , x t , W t+1 ) be

our performance metric (e.g. a cost or contribution) that tells us

how the decision performs (this metric may or may not depend

on S t or W t+1 ). Once we make our decision x t , we then observe

new information W t+1 that takes us to a new state S t+1 using a

transition function 

S t+1 = S M (S t , x t , W t+1 ) . (1)
Please cite this article as: W.B. Powell, A unified framework for stochas

https://doi.org/10.1016/j.ejor.2018.07.014 
Our optimization challenge is to solve the problem 

ax 
π

E 

{ 

T ∑ 

t=0 

C t (S t , X 

π
t (S t ) , W t+1 ) | S 0 

} 

, (2)

here S t evolves according to Eq. (1) and where we have to specify

n exogenous information process that consists of the sequence 

(S 0 , W 1 , W 2 , . . . , W T ) . (3)

q. (2) is an instance of maximizing the cumulative reward ; in

any applications, we are only interested in the final reward ,

hich we might write as 

ax 
π

E 

{
C T (x πT , ̂

 W ) | S 0 
}
, (4)

here x π
T 

is a final decision (or design) that we learn following

olicy X πt (S t ) while observing W 1 , . . . , W T (the training observa-

ion) and then evaluate over the random variable ̂ W (for testing).

ote that we can reduce the objective in (4) to the one in (2) by

etting C t (·) = 0 for t = 0 , . . . , T − 1 , and letting ̂ W = W T +1 . 

Given the already broad scope of this article, we will restrict

ur attention to problems that maximize or minimize expected

erformance, but we could substitute a nonlinear risk metric (in-

roducing substantial computational complexity). 

This article will argue that (1) –(3) forms the basis for a

niversal model that can be used to represent virtually every

xpectation-based stochastic optimization problem. At this same

ime, this framework disguises the richness of stochastic optimiza-

ion problems. This framework introduces two types of challenges:

• Modeling - Modeling sequential decision problems is often the

most difficult task, and requires a strong understanding of state

variables, the different types of decisions and information, and

the dynamics of how the system evolves over time (which may

not be known). 
• Designing policies - Given a model, we have to design a policy

that maximizes (or minimizes) our objective in (2) . 

Different communities in stochastic optimization differ in both

ow they approach modeling, and most approach the problem of
tic optimization, European Journal of Operational Research (2018), 

https://doi.org/10.1016/j.ejor.2018.07.014


W.B. Powell / European Journal of Operational Research 0 0 0 (2018) 1–27 3 

ARTICLE IN PRESS 

JID: EOR [m5G; August 14, 2018;23:35 ] 

s  

p

 

c  

o  

P  

t  

s  

o  

o  

w  

g  

r  

m  

h  

m  

g

 

t  

t  

s  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q  

n

2

 

l  

g  

w  

w

 

w  

m  

t  

s  

a  

t  

f  

i  

s

 

n  

w  

a  

w  

g  

i  

l

 

o  

s  

o  

t  

s  

w

 

t  

b  

t  

f  

p  

t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

earching over policies by working within one or two classes of

olicies. 

This review extends the thinking of two previous tutorial arti-

les. Powell (2014) was our first effort at articulating four classes

f policies which we first hinted at in Powell (2011) [Chapter 6].

owell (2016) extended this thinking, recognizing for the first time

hat these four classes fell into two important categories: policy

earch (a term used in computer science), which requires searching

ver a class of (typically parametric) functions, and policies based

n lookahead approximations, where we approximate in different

ays the downstream value of a decision made now. Each cate-

ory can be further divided into two classes, producing what we

efer to as the four (meta)classes of policies. While different com-

unities have embraced each of these four classes of policies, we

ave shown ( Powell & Meisel, 2016a ) that each of the four classes

ay work best depending on the data, although choices are often

uided by the characteristics of the problem. 

The process of developing a single framework that bridges be-

ween all the different communities is already identifying oppor-

unities for cross-fertilization. This review makes the following ob-

ervations which the reader might keep in mind while progressing

hrough the article: 

• The stochastic optimization communities have treated opti-

mization of the final reward (often under terms such as “rank-

ing and selection” or stochastic search) as distinctly different

from optimization of the cumulative reward (commonly done in

dynamic programming and multiarmed bandit problems), but

these are just different objective functions. While the choice

of the best policy will depend on the objective, the process of

finding the best policy does not. 
• The multiarmed bandit problem can be viewed as a derivative-

free stochastic search problem using a cumulative reward ob-

jective function. Maximizing cumulative rewards is often over-

looked in stochastic optimization, while some communities

(notably dynamic programming) use a cumulative reward ob-

jective when the real interest is in the final reward. While the

process of optimizing over policies may be the same, it is still

important to use the correct formulation (later in the article we

argue that the newsvendor is an example of a misformulated

problem). 
• This article identifies (for the first time) two important problem

classes: 

State-independent problems - In this class, the state variable

captures only our belief about an unknown function, but

where the problem itself does not depend on the state vari-

able. 

State-dependent problems - Here, the contributions, con-

straints, and/or transition function depend on dynamically

varying information. 

Both of these problems can be modeled as dynamic programs,

but are classically treated using different approaches. We argue

that both can be approached using the same framework (1) –(3) ,

and solved using the same four classes of policies. 
• Classical algorithms such as stochastic gradient methods can be

viewed as dynamic programs, opening the door to addressing

the challenge of designing optimal algorithms . 
• Most communities in stochastic optimization focus on a par-

ticular approach for designing a policy. We claim that all four

classes of policies should at least be considered. In particu-

lar, the approach using policy search and the approach based

on lookahead approximations each offer unique strengths and

weaknesses that should be considered when designing practi-
cal solution strategies. 

Please cite this article as: W.B. Powell, A unified framework for stochast
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We also demonstrate that our framework will open up new

uestions by taking the perspective of one problem class into a

ew problem domain. 

. The communities of stochastic optimization 

Deterministic optimization can be organized along two major

ines of investigation: math programming (linear, nonlinear, inte-

er), and deterministic optimal control. Each of these fields has

ell-defined notational systems that are widely used around the

orld. 

Stochastic optimization, on the other hand, covers a much

ider class of problems, and as a result has evolved along much

ore diverse lines of investigation. Complicating the organiza-

ion of these contributions is the observation that over time, re-

earch communities that started with an original, core problem

nd modeling framework have evolved to address new challenges

hat require new algorithmic strategies. This has resulted in dif-

erent communities doing research on similar problems with sim-

lar strategies, but with different notation, and asking different re-

earch questions. 

Below we provide a summary of the most important commu-

ities, using the notation most familiar to each community. Later,

e are going to introduce a single notational system that strikes

 balance between competing notation systems. For example, x t is

idely used around the world as a decision vector in math pro-

ramming/operations research, while it is used with equal popular-

ty around the world as the state at time t by the optimal control

iterature, which spans most fields of engineering and economics. 

All of these fields are quite mature, so we try to highlight some

f the early papers as well as recent contributions in addition to

ome of the major books and review articles that do a better job

f summarizing the literature than we can, given the scope of our

reatment. However, since our focus is integrating across fields, we

imply cannot do justice to the depth of the research taking place

ithin each field. 

Readers may wish to just skim this section on a first pass so

hey can have a quick sense of the diverse modeling frameworks,

ut then move to the rest of the paper. However, if you choose

o give it a careful read, please pay attention not just to the dif-

erences in notation, but the different ways each community ap-

roaches the process of modeling. Some key modeling characteris-

ics are 

• Problem statement - Deterministic math programs are repre-

sented as objective functions subject to constraints. Stochastic

optimization problems might similarly be represented as opti-

mizing an objective (although they vary in terms of how they

state what they are optimizing over), but other communities

will state an optimality condition (Bellman’s equation) or a pol-

icy (such as the lookahead policies in stochastic programming).

Differences in how problems are stated easily introduces the

greatest confusion. 
• State variables - In operations research, many equate “state”

with physical state such as inventory or the location of a vehi-

cle. In engineering controls, “state” might be estimates of pa-

rameters. In stochastic search, the “state” might capture the

state of an algorithm (for derivative-based algorithms) or the

belief about a function (for derivative-free algorithms). For ban-

dit problems, “state” is the belief (in the form of a statistical

model) about an unknown function. 
• Decisions under uncertainty - A decision x t (or action a t or con-

trol u t ) has to be made with the information available at that

time. This is represented as an action at a node (in a tree),

a “measurable function” (common in optimal stopping and

control theory), “nonanticipativity constraints” (in stochastic 
ic optimization, European Journal of Operational Research (2018), 

https://doi.org/10.1016/j.ejor.2018.07.014
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Fig. 1. Illustration of a simple decision tree for an asset selling problem. 
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programming), an action chosen by solving Bellman’s optimal-

ity equation, or a policy X 

π ( S t ) that chooses an action x t that

depends on a state S t (which is the most general). 
• Representing uncertainty - Stochastic programming will repre-

sent future events as scenarios, Markov decision processes bury

uncertainty in a one-step transition matrix, robust optimization

models uncertainty in terms of uncertainty sets, reinforcement

learning (and many papers in optimal control for engineering)

use a data-driven approach by assuming that uncertainty can

be observed but not modeled. 
• Modeling system dynamics - Stochastic programming will cap-

ture dynamics in systems of linear equations, Markov decision

problems use a one-step transition matrix, optimal control uses

a transition function (“state equation”), while several commu-

nities (engineering controls, reinforcement learning) will often

assume that transitions can only be observed. 
• Objective functions - We may wish to minimize costs, regret,

losses, errors, risk, volatility, or we may maximize rewards,

profits, gains, utility, strength, conductivity, diffusivity and ef-

fectiveness. Often, we want to optimize over multiple objec-

tives, although we assume that these can be rolled into a utility

function. 

These differences are subtle, and may be difficult to identify on

a first read. 

2.1. Decision trees 

Arguably the simplest stochastic optimization problem is a de-

cision tree, illustrated in Fig. (1 ), where squares represent deci-

sion nodes (from which we choose an action), and circles repre-

sent outcome nodes (from which a random event occurs). Decision

trees are typically presented without mathematics and therefore

are very easy to communicate. However, they explode in size with

the decision horizon, and are not at all useful for vector-valued de-

cisions. 

Decision trees have proven useful in a variety of complex deci-

sion problems in health, business and policy ( Skinner, 1999 ). There

are literally dozens of survey articles addressing the use of decision

trees in different application areas. 
Please cite this article as: W.B. Powell, A unified framework for stochas
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.2. Stochastic search 

Derivative-based stochastic optimization began with the semi-

al paper of Robbins and Monro (1951) which launched an entire

eld. The canonical stochastic search problem is written 

ax 
x 

E F (x, W ) , (5)

here W is a random variable, while x is a continuous scalar or

ector (in the earliest work). We assume that we can compute gra-

ients (or subgradients) ∇ x F ( x , W ) for a sample W . The classical

tochastic gradient algorithm of Robbins and Monro (1951) is given

y 

 

n +1 = x n + αn ∇ x F (x n , W 

n +1 ) , (6)

here αn is a stepsize that has to satisfy 

n > 0 , (7)

∞ 

 

n =0 

αn = ∞ , (8)

∞ 

 

n =0 

α2 
n < ∞ . (9)

tepsizes may be deterministic, such as αn = 1 /n or αn = θ/ (θ +
 ) , where θ is a tunable parameter. Also popular are stochastic

tepsizes that adapt to the behavior of the algorithm (see Powell

 George, 2006 for a review of stepsize rules). Easily the biggest

hallenge of these rules is the need to tune parameters. Impor-

ant recent developments which address this problem to varying

egrees include AdaGrad ( Duchi, Hazan, & Singer, 2011 ), Adam

 Kingma & Ba, 2015 ) and PiSTOL ( Orabona, 2014 ). 

Stochastic gradient algorithms are used almost universally in

onte Carlo-based learning algorithms. A small sample of pa-

ers includes the early work on unconstrained stochastic search

ncluding ( Wolfowitz, 1952 ) (using numerical derivatives), Blum

1954) (extending to multidimensional problems), and Dvoretzky

1956) . A separate line of research focused on constrained prob-

ems under the umbrella of “stochastic quasi-gradient” methods,

ith seminal contributions from Ermoliev (1983) , Shor (1979) ,

flug (1988b) , Kushner and Clark (1978) , Shapiro and Wardi (1996) ,

nd Kushner and Yin (2003) . As with other fields, this field

roadened over the years. The best recent review of the field

under this name) is Spall (2003) . Bartlett, Hazan, and Rakhlin

2008) approaches this topic from the perspective of online algo-

ithms, which refers to stochastic gradient methods where samples

re provided by an exogenous source. Broadie, Cicek, and Zeevi

2011) revisits the stepsize conditions (7) –(9) . 

We note that there is a different line of research on determinis-

ic problems using randomized algorithms that is sometimes called

stochastic search” which is outside the scope of this article. 

.3. Optimal stopping 

Optimal stopping is a niche problem that has attracted signifi-

ant attention in part because of its simple elegance, but largely

ecause of its wide range of applications in the study of finan-

ial options ( Karatzas, 1988; Longstaff & Schwartz, 2001; Tsitsiklis

 Van Roy, 2001 ), equipment replacement ( Sherif & Smith, 1981 )

nd change detection ( Poor & Hadjiliadis, 2009 ). 

Let W 1 , W 2 , . . . , W t , . . . represent a stochastic process that might

escribe stock prices, the state of a machine or the blood sugar of a

atient. For simplicity, assume that f ( W t ) is the reward we receive

f we stop at time t (e.g. selling the asset at price W t ). Let ω refer
tic optimization, European Journal of Operational Research (2018), 
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o a particular sample path of W 1 , . . . , W T (assume we are working

ith finite horizon problems). Now let 

 t (ω) = 

{
1 if we stop at time t, 
0 otherwise. 

et τ ( ω) be the first time that X t = 1 on sample path ω. The prob-

em here is that ω specifies the entire sample path, so writing τ ( ω)

akes it seem as if we can decide when to stop based on the entire

ample path. This notation is hardly unique to the optimal stopping

iterature as we see below when we introduce stochastic program-

ing. 

We can fix this by constructing the function X t so that it only

epends on the history W 1 , . . . , W t . When this is done, τ is called

 stopping time . In this case, we call X t an admissible policy , or

e would say that “X t is F t -measurable” or nonanticipative (these

erms are all equivalent). We would then write our optimization

roblem as 

ax 
τ

E X τ f (W τ ) , (10) 

here we require τ to be a stopping time, or we would require

he function X τ to be F t -measurable or an admissible policy. 

There are different ways to construct admissible policies. The

implest is to define a state variable S t which only depends on the

istory W 1 , . . . , W t . For example, define a physical state R t = 1 if we

re still holding our asset (that is, we have not stopped). Further

ssume that the W t process is a set of prices p 1 , . . . , p t , and define

 smoothed price process p̄ t using 

p̄ t = (1 − α) ̄p t−1 + αp t . 

t time t , our state variable is S t = (R t , p̄ t , p t ) . A policy for stopping

ight be written 

 

π (S t | θ ) = 

{
1 if p̄ t > θmax or p̄ t < θmin and R t = 1 , 

0 otherwise. 

inding the best policy means finding the best θ = (θmin , θmax ) by

olving 

ax 
θ

E 

T ∑ 

t=0 

p t X 

π (S t | θ ) . (11) 

o, now our search over admissible stopping times τ becomes a

earch over the parameters θ of a policy X 

π ( S t | θ ) that only depend

n the state. This transition hints at the style that we are going to

se in this paper. 

Optimal stopping is an old and classic topic. An elegant pre-

entation is given in Cinlar (1975) with a more recent discussion

n Cinlar (2011) where it is used to illustrate filtrations. DeGroot

1970) provides a nice summary of the early literature. One of the

arliest books dedicated to the topic is Shiryaev (1978) (originally

n Russian). Moustakides (1986) describes an application to identi-

ying when a stochastic process has changed, such as the increase

f incidence in a disease or a drop in quality on a production line.

eng and Gallego (1995) uses optimal stopping to determine when

o start end-of-season sales on seasonal items. There are numerous

ses of optimal stopping in finance ( Azevedo & Paxson, 2014 ), en-

rgy ( Boomsma, Meade, & Fleten, 2012 ) and technology adoption

 Hagspiel, Huisman, & Nunes, 2015 ), to name just a few. 

.4. Optimal control 

The canonical stochastic control problem is typically written 

min 

 0 , ... ,u T 
E 

{ 

T −1 ∑ 

t=0 

L t (x t , u t ) + L T (x T ) 

} 

, (12) 
Please cite this article as: W.B. Powell, A unified framework for stochast
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here L t ( x t , u t ) is a loss function with terminal loss L T ( x T ), and

here the state x t evolves according to 

 t+1 = f (x t , u t ) + w t , (13) 

here f ( x t , u t ) is variously known as the transition function, system

odel, plant model (as in chemical or power plant), plant equa-

ion, and transition law. Here, w t is a random variable, represent-

ng exogenous noise, such as wind blowing an aircraft off course.

 more general formulation is to use x t+1 = f (x t , u t , w t ) , which al-

ows w t to affect the dynamics in a nonlinear way. It is important

o note that the controls community uses the convention that w t 

s random at time t . 

It is typically the case in engineering control problems that

13) is linear in the state x t and control u t . In addition, it is com-

on to assume that the true state ˆ x t (for example, the location and

peed of an aircraft) can only be observed up to an additive noise,

s in x t = ˆ x t + εt . 

The engineering controls community primarily focuses on de-

erministic problems where w t = 0 , in which case we are optimiz-

ng over deterministic controls u 0 , . . . , u T . For the stochastic ver-

ion, we follow a sample path w 0 (ω) , w 1 (ω) , . . . , w T (ω) , with a

orresponding set of controls u t ( ω) for t = 0 , . . . , T . Here, ω repre-

ents an entire sample path, so writing u t ( ω) makes it seem as if

 t gets to “see” the entire trajectory. As with the optimal stopping

roblem, we can fix this by insisting that u t is “F t -measurable,” or

y saying that u t is an “admissible policy” which recognizes that u t 
s actually a function rather than a decision variable. Alternatively,

e can handle this by writing u t = πt (x t ) where π t ( x t ) is a policy

hat determines u t given the state x t , which by construction is a

unction of information available up to time t . The challenge then

s to find a good policy that only depends on the state x t . 

For the control problem in (12) , it is typically the case in en-

ineering applications that the objective function will have the

uadratic form 

 t (x t , u t ) = (x t ) 
T Q t x t + (u t ) 

T R t u t . 

hen the transition function (13) (typically referred to as the

state equations”) is linear in the state x t and control u t , and the

ontrol u t is unconstrained, the problem is referred to as “linear

uadratic regulation” (LQR). 

This problem is typically solved using the Hamilton-Jacobi

quation, given by 

 t (x t ) = min 

u t 

(
L (x t , u t ) + 

∫ 
w 

J t+1 ( f (x t , u t , w )) g W (w ) dw 

)
, (14) 

here g W (w ) is the density of the random variable w t and where

 t ( x t ) is known as the “cost to go.” When we exploit the linear

tructure of the transition function and the quadratic structure of

he loss function, it is possible to find the cost-to-go function J t ( x t )

nalytically, which allows us to show that the optimal policy has

he form 

t (x t ) = K t x t , 

here K t is a complex matrix that depends on Q t and R t . This is

 rare instance of a problem where we can actually compute an

ptimal policy. 

There is a long history in the development of optimal con-

rol, summarized by many books including ( Kirk, 2004; Sethi

 Thompson, 20 0 0; Sontag, 1998; Stengel, 1986 ), and Lewis

nd Vrabie (2012) . The canonical control problem is continuous,

ow-dimensional and unconstrained, which leads to an analyti-

al solution. Of course, applications evolved past this canonical

roblem, leading to the use of numerical methods. Deterministic

ptimal control is widely used in engineering, whereas stochastic

ptimal control has tended to involve much more sophisticated

athematics. Some of the most prominent books include ( Astrom,
ic optimization, European Journal of Operational Research (2018), 
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1970; Bertsekas & Shreve, 1978; Kushner, 1971; Nisio, 2014; Yong

& Zhou, 1999 ) (note that some of the books on deterministic

controls touch on the stochastic case). 

As a general problem, stochastic control covers any sequential

decision problem, so the separation between stochastic control and

other forms of sequential stochastic optimization tends to be more

one of vocabulary and notation ( Bertsekas (2011) is a good exam-

ple of a book that bridges these vocabularies). Control-theoretic

thinking has been widely adopted in inventory theory and supply

chain management (e.g. Ivanov & Sokolov, 2013 and Protopappa-

Sieke & Seifert, 2010 ), finance ( Yu, Takahashi, Inoue, & Wang, 2010 ),

and health services ( Ramirez-Nafarrate, Baykal Hafizoglu, Gel, &

Fowler, 2014 ), to name a few. 

2.5. Markov decision processes 

Richard Bellman initiated the study of sequential, stochastic, de-

cision problems in the setting of discrete states and actions. We

assume that there is a set of discrete states S, where we have to

choose an action a ∈ A s when we are in state s ∈ S after which we

receive a reward r ( s , a ). The challenge is to choose actions (or more

precisely, a policy for choosing actions), that maximizes expected

rewards over time. 

The most famous equation in this work (known as “Bellman’s

optimality equation”) writes the value of being in a discrete state

s as 

 t (s ) = max 
a ∈A s 

( 

r(s, a ) + 

∑ 

s ′ ∈S 
P (s ′ | s, a ) V t+1 (s ′ ) 

) 

. (15)

where the matrix P ( s ′ | s , a ) is the one-step transition matrix defined

by 

P (s ′ | s, a ) = The probability that state S t+1 

= s ′ given that we are in state S t = s and take action a

This community often treats the one-step transition matrix as data,

but it can be notoriously hard to compute. In fact, buried in the

one-step transition matrix is an expectation that can be written 

P (s ′ | s, a ) = E W 

{ 1 { s ′ = S M (s,a,W ) } } (16)

where s ′ = S M (s, a, W ) is the transition function with random in-

put W . Note that any of s , a and/or W may be vector-valued, high-

lighting what are known as the three curses of dimensionality in

dynamic programming. 

Eq. (15) is the discrete analog of the Hamilton-Jacobi equa-

tions used in the optimal control literature (given in Eq. (14) ),

leading many authors to refer to these as Hamilton-Jacobi-Bellman

equations (or HJB for short). This work was initially reported in

his classic reference ( Bellman, 1957 ) (see also Bellman, 1954 and

Bellman, Glicksberg, & Gross, 1955 ), but this work was contin-

ued by a long stream of books including ( Howard, 1960 ) (another

classic), Denardo (1982) ; Heyman and Sobel (1984) ; Nemhauser

(1966) , leading up to Puterman (2005) (this first appeared in 1994).

Puterman’s book represents the last but best in a long series of

books on Markov decision processes, and now represents the ma-

jor reference in the field. 

If we could compute Eq. (15) for all states s ∈ S, stochastic op-

timization would not exist as a field. This highlights the consistent

message that the central issue of stochastic optimization is com-

putation. 

2.6. Approximate/adaptive/neuro-dynamic programming 

Bellman’s Eq. (15) requires enumerating all states (assumed to

be discrete), which is problematic if the state variable is a vector,

a condition known widely as the curse of dimensionality. Actually,
Please cite this article as: W.B. Powell, A unified framework for stochas
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here are three curses of dimensionality that all arise when com-

uting the one-step transition matrix p ( s ′ | s , a ): the state variable s ,

he action a (which can be a vector), and the random information,

hich is hidden in the calculation of the probability (see Eq. (16) ).

Bellman recognized this and began experimenting with meth-

ds for approximating value functions (see Bellman & Dreyfus,

959 and Bellman, Kalaba, & Kotkin, 1963 ), but the operations re-

earch community then seemed to drop any further research in

pproximation methods until the 1980’s. As computers improved,

esearchers began tackling Bellman’s equation using numerical ap-

roximation methods, with the most comprehensive presentation

n Judd (1998) which summarized almost a decade of research (see

lso Chen, Ruppert, & Shoemaker, 1999 ). 

A completely separate line of research in approximations

volved in the control theory community with the work of Paul

erbos ( Werbos, 1974 ) who recognized that the “cost-to-go func-

ion” (the same as the value function in dynamic programming,

ritten as J t ( x t ) in Eq. (14) ) could be approximated using vari-

us techniques. Werbos helped develop this area through a series

f papers (examples include Werbos, 1989; Werbos, 1990; Wer-

os, 1992 and Werbos, 1994 ). Important references are the edited

olumes ( White & Sofge, 1992 ) and ( Si, Barto, Powell, & Wunsch,

004 ) which highlighted what had already become a popular ap-

roach using neural networks to approximate both policies (“actor

ets”) and value functions (“critic nets”). 

Building on work developing in computer science under the

mbrella of “reinforcement learning” (reviewed below), Tsitsiklis

1994) and Jaakkola, Jordan, and Singh (1994) were the first to

ecognize that the basic algorithms being developed under the

mbrella of reinforcement learning represented generalizations of

he early stochastic gradient algorithms of Robbins and Monro

1951) . Bertsekas and Tsitsiklis (1996) laid the foundation for adap-

ive learning algorithms in dynamic programming, using the name

neuro-dynamic programming.” Werbos, (e.g. Werbos, 1992 ), had

een using the term “approximate dynamic programming,” which

ecame the title of Powell (2007) (with a major update in Powell,

011 ), a book that also merged math programming and value func-

ion approximations to solve high-dimensional, convex stochastic

ptimization problems (but, see the developments under stochastic

rogramming below). Later, the engineering controls community

everted to “adaptive dynamic programming” as the operations re-

earch community adopted “approximate dynamic programming.”

There are many variations of approximate dynamic program-

ing, but one of the simplest involves using some policy π ( S t ) to

imulate from a starting state S 0 until an ending period T . Assume

e do this repeatedly, and let S n t be the state we visit at time t dur-

ng iteration n . Assume our policy returns action a n t = π(S n t ) , and

et S a,n 
t be the state immediately after we implement action a n t ,

nown as the post-decision state (an example of the post-decision

tate is the outcome node in a decision tree). Finally let V 
a,n −1 

t (S a t )

e an approximation of the value of being in post-decision state

ased on information from the first n − 1 iterations. We can com-

ute a sampled estimate of the value ˆ v n t of being in pre-decision

tate S n t using 

ˆ 
 

n 
t = C(S n t , a 

n 
t ) + V 

a,n −1 

t (S a,n 
t ) . (17)

ow update the value function approximation using 

 

a,n 
(S a,n 

t−1 
) = (1 − αn −1 ) V 

a,n −1 
(S a,n 

t−1 
) + αn −1 ̂  v n t , (18)

here S a,n 
t−1 

is the post-decision state we visited before arriving to

he next pre-decision state S n t . We then compute S a,n 
t from S n t and

 

n 
t , after which we simulate our way to S n 

t+1 
and repeat the pro-

ess. 

Using Eqs. (17) and (18) requires a policy to guide the choice of

ction. One we might use is a greedy policy where (17) is replaced
tic optimization, European Journal of Operational Research (2018), 
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ith 

ˆ 
 

n 
t = max 

a 

(
C(S n t , a 

n 
t ) + V 

a,n −1 

t (S a,n 
t ) 

)
. 

hile a pure exploitation policy can work quite poorly, there are

pecial cases where it can produce an optimal policy. 

Eqs. (17) and (18) are best described as “forward approxi-

ate dynamic programming” since they involve stepping forward

hrough states. This is attractive because it works for very high

imensional applications. In fact, the idea has been applied to

ptimizing major trucking companies and railroads ( Bouzaiene-

yari, Cheng, Das, Fiorillo, & Powell, 2016; Simao et al., 2009 ), but

hese applications exploit linearity and convexity. More recently

esearchers have applied the idea of approximating value func-

ions from a sampled set of states in a method described as “back-

ard approximate dynamic programming” ( Cheng, Asamov, & Pow-

ll, 2017; Durante, Nascimento, & Powell, 2017; Senn, Link, Pollak,

 Lee, 2014 ). 

.7. Reinforcement learning 

Independently from the work in operations research (with Bell-

an) or control theory (the work of Werbos), computer scien-

ists Andy Barto and his student Rich Sutton were working on

escribing the behavior of mice moving through a maze in the

arly 1980’s. They developed a basic algorithmic strategy called Q -

earning which iteratively estimates the value of being in a state

 and taking an action a , given by Q ( s , a ) (the “Q factors”). These

stimates are computing using 

ˆ 
 

n (s n , a n ) = r(s n , a n ) + γ max 
a ′ 

Q 

n −1 (s n +1 , a ′ ) , (19) 

 

n (s n , a n ) = (1 − αn −1 ) Q 

n −1 (s n , a n ) + αn −1 ̂  q n (s n , a n ) , (20) 

here ˆ q n (s n , a n ) is a sampled estimate of the value of being in

tate s = s n and taking action a = a n , and where γ is a discount

actor. The sampled estimates “bootstrap” the downstream value

 

n −1 (s ′ , a ′ ) . The parameter αn is a “stepsize” or “learning rate”

hich has to satisfy the stepsize conditions in Eqs. (7) –(9) . The

tate s n +1 is a sampled version of the next state we would visit

iven that we are in state s n and take action a n . This is some-

imes written as being sampled from the one-step transition ma-

rix P ( s ′ | s n , a n ) (if this is available), although it is more natural

o write s n +1 = f (s n , a n , w 

n ) where f (s n , a n , w 

n ) is the transition

unction and w 

n is a sample of exogenous noise. 

The reinforcement learning community traditionally estimates

 -factors that depend on state and action, whereas Bellman’s equa-

ion (and approximate dynamic programming) focus on developing

stimates of the value of being in a state. These are related using 

 (s ) = max 
a 

Q(s, a ) . 

e emphasize that Eqs (17) and (18) are computed given a policy

( s ), which means that the action is implicit when we specify the

olicy. 

These basic equations became widely adopted for solving a

umber of problems. The field of reinforcement learning took off

ith the appearance of their now widely cited book ( Sutton &

arto, 1998 ), although by this time the field was quite active (see

he review Kaelbling, Littman, & Moore, 1996 ). Research under

he umbrella of “reinforcement learning” has evolved to include

ther algorithmic strategies under names such as policy search

nd Monte Carlo tree search. Other references from the reinforce-

ent learning community include ( Busoniu, Babuska, De Schutter,

 Ernst, 2010 ) and ( Szepesvári, 2010 ) (as of this writing, a second

dition of Sutton and Barto (1998) is about to appear). 
Please cite this article as: W.B. Powell, A unified framework for stochast

https://doi.org/10.1016/j.ejor.2018.07.014 
.8. Online algorithms 

Online algorithms technically refer to methods that respond to

ata sequentially without any knowledge of the future. Technically,

his would refer to any policy that depends on a properly formu-

ated state variable which could include a forecast of the future,

ossibly in the form of a value function. In practice, the field of

nline algorithms refers to procedures that do not even attempt to

pproximate the future, which means they are some form of my-

pic policy (see Borodin & El-Yanniv, 1998 for a nice introduction

nd ( Albers, 2003 ) for a survey). 

Online algorithms were originally motivated by the need to

ake decisions in a computationally constrained setting such as a

obot or device in the field with limited communication or energy

ources. This motivated models that made no assumptions about

hat might happen in the future, producing myopic policies. This

n turn produced a body of research known as competitive analysis

hat develops bounds on the performance compared to a perfectly

lairvoyant policy. 

Online algorithms have attracted considerable attention in com-

lex scheduling problems such as those that arise in transportation

 Berbeglia, Cordeau, & Laporte, 2010; Jaillet & Wagner, 2006; Pillac,

endreau, Guéret, & Medaglia, 2013 ) and machine scheduling ( Ma,

hu, & Zuo, 2010; Slotnick, 2011 ). 

.9. Model predictive control 

This is a subfield of optimal control, but it became so popular

hat it evolved into a field of its own, with popular books such

s Camacho and Bordons (2003) and hundreds of articles (see Lee,

011 for a 30-year review). MPC is a method where a decision is

ade at time t by solving a typically approximate model over a

orizon (t, t + H) . The need for a model, even if approximate, is

he basis of the name “model predictive control”; there are many

ettings in engineering where a model is not available. MPC is typ-

cally used to solve a problem that is modeled as deterministic,

ut it can be applied to stochastic settings by using a deterministic

pproximation of the future to make a decision now, after which

e experience a stochastic outcome. MPC can also use a stochas-

ic model of the future, although these are typically quite hard to

olve. 

Model predictive control is better known as a rolling horizon

rocedure in operations research, or a receding horizon procedure

n computer science. Most often it is associated with deterministic

odels of the future, but this is primarily because most of the op-

imal control literature in engineering is deterministic. MPC could

se a stochastic model of the future that might be a Markov de-

ision process (often simplified) which is solved (at each time pe-

iod) using backward dynamic programming. Alternatively, it may

se a sampled approximation of the future, which is the standard

trategy of stochastic programming that some authors will refer to

s model predictive control ( Schildbach & Morari, 2016 ). 

.10. Stochastic programming 

The field of stochastic programming evolved from determinis-

ic linear programming, with the introduction of random variables.

he first paper in stochastic programming was ( Dantzig, 1955 ),

hich introduced what came to be called the “two-stage stochastic

rogramming problem” which is written as 

in 

x 0 

( 

c 0 x 0 + 

∑ 

ω∈ 	
p(ω) min 

x 1 (ω) ∈X 1 (ω) 
c 1 (ω) x 1 (ω) 

) 

. (21) 
ic optimization, European Journal of Operational Research (2018), 
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Here, x 0 is the first-stage decision (imagine allocating inventory to

warehouses), which is subject to first stage constraints 

A 0 x 0 ≤ b 0 , (22)

x 0 ≥ 0 . (23)

Then, the demands D 1 are revealed. These are random, with a set

of possible realizations D 1 ( ω) for ω ∈ 	 (these are often referred to

as “scenarios”). For each scenario ω, we have to obey the following

constraints in the second stage for all ω ∈ 	: 

A 1 (ω) x 1 (ω) ≤ x 0 , (24)

B 1 (ω) x 1 (ω) ≤ D 1 (ω) . (25)

There are two-stage stochastic programming problems , but in most

applications it is used as an approximation of a fully sequential

(“multistage”) problem. In these settings, the first-stage decision x 0 
is really a decision x t at time t , while the second stage can repre-

sent decisions x t+1 (ω) , . . . , x t+ H (ω) which are solved for a sample

realization of all random variables over the horizon (t, t + H) . In

this context, two-stage stochastic programming is a stochastic form

of model predictive control. 

Stochastic programs are often computationally quite difficult,

since they are basically deterministic optimization problems that

are | 	| times larger than the deterministic problem. Rockafellar

and Wets (1991) present a powerful decomposition procedure

called progressive hedging that decomposes (21) –(25) into a series

of problems, one per scenario, that are coordinated through La-

grangian relaxation. 

Whether it is for a two-stage problem, or an approximation in

a rolling horizon environment, two-stage stochastic programming

has evolved into a mature field within the math programming

community. A number of books have been written on stochastic

programming (two stage, and its much harder extension, multi-

stage), including ( Pflug, 1988a ), Kall and Wallace (2009) , Birge and

Louveaux (2011) and Shapiro, Dentcheva, and Ruszczy ́nski (2014) . 

Since stochastic programs can become quite large, a community

has evolved that focuses on how to generate the set of scenarios 	.

Initial effort s f ocused on ensuring that scenarios were not too close

to each other ( Dupacova, Growe-Kuska, & Romisch, 2003; Heitsch

& Romisch, 2009; Löhndorf, 2016 ); more recent research focuses

on identifying scenarios that actually impact decisions ( Bayraksan

& Love, 2015 ). Of considerable interest is work on sampling that di-

rectly addresses solution quality and decisions ( Bayraksan & Mor-

ton, 2009 ). 

A parallel literature has evolved for the study of stochastic lin-

ear programs that exploits the natural convexity of the problem.

The objective function (21) is often written 

min 

x 0 
( c 0 x 0 + E Q(x 0 , W 1 ) ) , (26)

subject to (22) and (23) . The function Q ( x 0 , W 1 ) is known as the re-

course function where W 1 captures all sources of randomness. For

example, we might write W 1 = (A 1 , B 1 , c 1 , D 1 ) , with sample real-

ization W 1 ( ω). The recourse function is given by 

Q(x 0 , W 1 (ω)) = min 

x 1 (ω) ∈X t (ω) 
c 1 (ω) x 1 (ω) (27)

where the feasible region X t (ω) is defined by Eqs. (24) and (25) . 

There is an extensive literature exploiting the natural convex-

ity of Q ( x 0 , W 1 ) in x 0 , starting with ( Van Slyke & Wets, 1969 ), fol-

lowed by the seminal papers on stochastic decomposition ( Higle &

Sen, 1991 ) and the stochastic dual dynamic programming (SDDP)

Pereira and Pinto (1991) . A substantial literature has unfolded

around this work, including ( Shapiro, 2011 ) who provides a care-

ful analysis of SDDP, and its extension to handle risk measures
Please cite this article as: W.B. Powell, A unified framework for stochas
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 Philpott, De Matos, & Finardi, 2013; Shapiro, Tekaya, Da Costa, &

oares, 2013 ). A number of papers have been written on conver-

ence proofs for Benders-based solution methods, but the best is

irardeau, Leclere, and Philpott (2014) . A modern overview of the

eld is given by Shapiro et al. (2014) . 

.11. Robust optimization 

Robust optimization first emerged in engineering problems,

here the goal was to find the best design x that worked for the

orst possible outcome of an uncertain parameter w ∈ W (the ro-

ust optimization community uses u ∈ U , but this conflicts with

ontrol theory notation). The robust optimization problem is for-

ulated as 

in 

x ∈X 
max 
w ∈W 

F (x, w ) . (28)

ere, the set W is known as the uncertainty set, which may be a

ox where each dimension of w is limited to minimum and maxi-

um values. The problem with using a box is that it might allow,

or example, each dimension w i of w to be equal to its minimum or

aximum, which is unlikely to occur in practice. For this reason,

is sometimes represented as an ellipse, although this is more

omplex to create and solve. 

Eq. (28) is the robust analog of our original stochastic search

roblem in Eq. (5) . Robust optimization was originally motivated

y the need in engineering to design for a “worst-case” scenario

defined by the uncertainty set W). It then evolved as a method for

oing stochastic optimization without having to specify the under-

ying probability distribution. However, this has been replaced by

he need to create an uncertainty set. 

A thorough review of the field of robust optimization is con-

ained in Ben-Tal, El Ghaoui, and Nemirovski (2009) and Bertsimas,

ancu, and Parrilo (2011) , with a more recent review given in

abrel, Murat, and Thiele (2014) . Bertsimas and Sim (2004) stud-

es the price of robustness and describes a number of important

roperties. Robust optimization is attracting interest in a variety of

pplication areas including supply chain management ( Bertsimas &

hiele, 2006; Keyvanshokooh, Ryan, & Kabir, 2016 ), energy Zugno

nd Conejo (2015) . and finance ( Fliege & Werner, 2014 ). 

.12. Ranking and selection 

Assume we are trying to find the best choice x in a set X =
 x 1 , . . . , x M 

} , where x might be the choice of a diabetes treatment,

he price of a product, the color for a website, or the path through

 network. Let μx be the true performance of x , which could be

he reduction of blood sugar, the revenue from the product, the

its on a website, or the time to traverse the network. 

We do not know μx , but we run experiments to create esti-

ates μ̄n 
x . Let S n capture what we have learned after n experi-

ents (the estimates μ̄n 
x , along with statistics capturing the preci-

ion of this estimate), and let X 

π ( S n ) be our rule (policy) for decid-

ng the experiment x n = X π (S n ) that we will run next, after which

e observe W 

n +1 
x n 

= μx n + ε n +1 . 

Let μ̄N 
x be our estimates after we exhaust our budget of N , and

et 

 

π,N = arg max 
x ∈X 

μ̄N 
x 

e the best choice given what we know after we have finished our

xperiments. The final design x π , N is a random variable, in part

ecause the true μ is random (if we are using a Bayesian model),

nd also because of the noise in the observations W 

1 , . . . , W 

N . 

We can express the value of our policy for a set of observations

ased on our estimates μ̄N 
x using 

 

π = μ̄N 
π,N . 
x 

tic optimization, European Journal of Operational Research (2018), 
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his value depends on the true values μx for all x , and on the re-

ults of the experiments W 

n which themselves depend on μ. We

an state the optimization problem as 

ax 
π

E μE W 

1 , ... ,W 

N | μ μ̄x π,N . (29) 

ith the exception of optimal stopping ( Eq. (11) ), this is the first

ime we have explicitly written our optimization problem in terms

f searching over policies. 

Ranking and selection enjoys a long history dating back to the

950’s, with an excellent treatment of this early research given

y the classic ( DeGroot, 1970 ), with a more up to date review in

im and Nelson (2007) . Recent research has focused on parallel

omputing ( Luo, Hong, Nelson, and Wu (2015) ; Ni, Henderson, and

unter (2016) ) and handling unknown correlation structures ( Qu,

yzhov, & Fu, 2012 ). However, ranking and selection is just another

ame for derivative-free stochastic search, and has been widely

tudied under this umbrella ( Spall, 2003 ). The field has attracted

onsiderable attention from the simulation-optimization commu- 

ity, reviewed next. 

.13. Simulation optimization 

The field known as “simulation optimization” evolved from

ithin the community that focused on problems such as simulat-

ng the performance of the layout of a manufacturing system. The

imulation-optimization community adopted the modeling frame-

ork of ranking and selection, typically using a frequentist belief

odel that requires doing an initial test of each design. The prob-

em is then how to allocate computing resources over the designs

iven initial estimates. 

Perhaps the best known method that evolved specifically for

his problem class is known as optimal computing budget alloca-

ion, or OCBA, developed by Chen (1995) , followed by a series of

rticles ( Chen, 1996; Chen, Donohue, Yücesan, & Lin, 2003; Chen,

e, Fu, & Lee, 2008; Chen, Yuan, Chen, Yücesan, & Dai, 1998; Chen,

hen, Dai, & Yucesan, 1997 ), leading up to the book ( Chen & Lee,

011 ) that provides a thorough overview of this field. The field

as focused primarily on discrete alternatives (e.g. different de-

igns of a manufacturing system), but has also included work on

ontinuous alternatives (e.g. Hong & Nelson, 2006 ). An important

ecent result by Ryzhov (2016) shows the asymptotic equivalence

f OCBA and expected improvement policies that maximize the

alue of information. When the number of alternatives is much

arger (say, 10,0 0 0), techniques such as simulated annealing, ge-

etic algorithms and tabu search (adapted for stochastic environ-

ents) have been brought to bear. Swisher, Hyden, and Schruben

20 0 0) contains a nice review of this literature. Other reviews in-

lude ( Andradóttir, 1998a; 1998b; Azadivar, 1999 ), Fu (2002) , and

im and Nelson (2007) . The recent review ( Chau, Fu, Qu, & Ryzhov,

014 ) focuses on gradient-based methods. 

The simulation-optimization community has steadily broadened

nto the full range of (primarily offline) stochastic optimization

roblems reviewed above, just as occurred with the older stochas-

ic search community, as summarized in Spall (2003) . This evo-

ution became complete with ( Fu, 2014 ), an edited volume that

overs a very similar range of topics as Spall (2003) , including

erivative-based stochastic search, derivative-free stochastic search,

nd full dynamic programs. 

.14. Multiarmed bandit problems 

The multiarmed bandit problem enjoys a rich history, cen-

ered on a simple illustration. Imagine that we have M slot ma-

hines, each with expected (but unknown) winnings μx , x ∈ X =
 1 , . . . , M} . Let S 0 represent our prior distribution of belief about

ach μx , where we might assume that our beliefs are normally
Please cite this article as: W.B. Powell, A unified framework for stochast
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istributed with mean μ̄0 
x and precision β0 

x = 1 / ̄σ 2 , 0 
x for each x .

urther let S n be our beliefs about each x after n plays, and let

 

n = X π (S n ) be the choice of the next arm to play given S n , pro-

ucing winnings W 

n +1 
x n 

. The goal is to find the best policy to max-

mize the total winnings over our horizon. 

For a finite time problem, this problem is almost identical to

he ranking and selection problem, with the only difference that

e want to maximize the cumulative rewards, rather than the final

eward. Thus, the objective function would be written (assuming a

ayesian prior) as 

ax 
π

E μE W 

1 , ... ,W 

N | μ
N−1 ∑ 

n =0 

W 

n +1 
X π (S n ) 

. (30) 

Research started in the 1950’s with the much easier two-armed

roblem. DeGroot (1970) was the first to show that an optimal

olicy for the multiarmed bandit problem could be formulated (if

ot solved) using Bellman’s equation (this is true of any learning

roblem, regardless of whether we are maximizing final or cumu-

ative rewards). The first real breakthrough occurred in Gittins and

ones (1974) (the first and most famous paper), followed by Gittins

1979) . This line of research introduced what became known as

Gittins indices,” or more broadly, “index policies” which involve

omputing an index νn 
x given by 

n 
x = μ̄n 

x + �( ̄μn 
x , σ̄

n 
x , σW 

, γ ) σW , 

here σ W is the (assumed known) standard deviation of W , and

( ̄μn 
x , σ̄

n 
x , σW 

, γ ) is the Gittins index, computed by solving a par-

icular dynamic program. The Gittins index policy is then of the

orm 

 

GI (S n ) = arg max 
x 

νn 
x . (31) 

hile computing Gittins indices is possible, it is not easy, since it

till requires numerically solving an infinite horizon dynamic pro-

ram with typically continuous state variables (such as the mean

nd variance). This has to be done repeatedly while looking for a

arameter that satisfies an equilibrium condition (think of this as

he Lagrange multiplier used to decouple the system into a series

f dynamic programs for each alternative x ). This complexity moti-

ated the creation of an analytical approximation reported in Chick

nd Gans (2009) . 

The theory of Gittins indices was described thoroughly in his

rst book ( Gittins, 1989 ), but the “second edition” Gittins, Glaze-

rook, and Weber (2011) , which was a complete rewrite of the first

dition, represents the best introduction to the field of Gittins in-

ices, which now features hundreds of papers. However, the field

s mathematically demanding, with index policies that are difficult

o compute. 

A parallel line of research started in the computer science com-

unity with the work of Lai and Robbins (1985) who showed that

 simple policy known as upper confidence bounding possessed the

roperty that the number of times we test the wrong arm can be

ounded (although it continues to grow with n ). The ease of com-

utation, combined with these theoretical properties, made this

ine of research extremely attractive, and has produced an explo-

ion of research. While no books on this topic have appeared as

et, an excellent monograph is Bubeck and Cesa-Bianchi (2012) . A

ample of a UCB policy (designed for normally distributed rewards)

s 

 

UCB 1 (S n ) = arg max 
x 

( 

μ̄n 
x + 4 σW 

√ 

log n 

N 

n 
x 

) 

, (32) 

here N 

n 
x is the number of times we have tried alternative x . The

quare root term can shrink to zero if we test x often enough, or

t can grow large enough to virtually guarantee that x will be sam-

led. 
ic optimization, European Journal of Operational Research (2018), 
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UCB policies are typically used in practice with a tunable pa-

rameter, with the form 

X 

UCB 1 (S n | θUCB ) = arg max 
x 

( 

μ̄n 
x + θUCB 

√ 

log n 

N 

n 
x 

) 

. (33)

We need to tune θUCB to find the value that works best. We do this

by replacing the search over policies π in Eq. (30) with a search

over values for θUCB . In fact, once we open the door to using tuned

policies, we can use any number of policies such as interval esti-

mation 

X 

IE (S n | θ IE ) = arg max 
x 

(
μ̄n 

x + θ IE σ̄ n 
x 

)
, (34)

where σ̄ n 
x is the standard deviation of μ̄n 

x , which tends toward zero

if we observe x often enough. Again, the policy would have to be

tuned using Eq. (30) . 

These same ideas have been applied to bandit problems using

a terminal reward objective using the label the “best arm” ban-

dit problem (see Audibert & Bubeck, 2010; Gabillon, Ghavamzadeh,

& Lazaric, 2012; Kaufmann, Cappé, & Garivier, 2016 ). It should be

apparent that any policy that can be tuned using Eq. (30) can be

tuned using Eq. (29) for terminal rewards. 

2.15. Partially observable Markov decision processes 

An extension of the multiarmed bandit problem and generaliza-

tion of the standard Markov decision process model is one where

we assume that the discrete states s ∈ S are not directly observ-

able. For example, imagine that s captures the status of a tumor

in a patient, or the inventory of units of blood in a hospital with

a poor inventory control system. In both cases, the state s cannot

be observed directly. Let b n ( s ) be the belief about s after n transi-

tions, which is to say, the probability that we are in state s , where∑ 

s ∈S b n (s ) = 1 . 

Assume that we take an action a n and then make some obser-

vation W 

n +1 (some authors denote this as O 

n +1 for “observation”,

but the notation is not standard). The observation W 

n +1 could be a

noisy observation of the state s n (for example, W 

n +1 = s n + ε n +1 ),

or an indirect measurement from which we can make inferences

about our system (e.g. the existence of marker molecules in the

blood that might indicate the presence of tumors). Assume that

we know the conditional distribution of W 

n +1 given by P W [ W 

n +1 =
s | s n , a n ] , which would be derived from the relationship between

the observation W 

n +1 and the true state s n (e.g. if the patient ac-

tually has cancer) and action a n (which could be a particular type

of medical test). 

Such a problem is termed a partially observable Markov decision

process , or POMDP, where “s ” is the unobservable state (sometimes

called the environment), while b is the vector of probabilities that

we are in s , also known as the belief state. We can write the be-

lief space as B = { b| ∑ 

s ∈S b(s ) = 1 } . The set S can be quite large in

many settings. If we have three continuous state variables that we

discretize into 100 elements, then we have a million states, which

means that b is a million-dimensional vector. 

As with our Markov decision process, let P ( s ′ | s , a ) be our one-

step transition matrix for the unobservable states, which we as-

sume is known. The belief state evolves according to (see, e.g.

Shani, Pineau, & Kaplow, 2013 ) 

b n +1 (s ′ ) = P[ S n +1 = s ′ | b n , a n , W 

n +1 ] 

= 

P[ b n , S n +1 = s ′ , a n , W 

n +1 ] 

P[ b n , a n , W 

n +1 ] 

= 

P W [ W 

n +1 | b n , S n +1 = s ′ , a n ] P[ S n +1 = s ′ | b n , a n ] P[ b n , a n ] 

P [ W 

n +1 | b n , a n ] P [ b n , a n ] 
= 

P W [ W 

n +1 | b n , S n +1 = s ′ , a n ] ∑ 

s ∈S P[ S n +1 = s ′ | b n , S n = s, a n ] P[ S n = s | b n , a n ] 
P[ W 

n +1 | b n , a n ] 

Please cite this article as: W.B. Powell, A unified framework for stochas
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= 

P W [ W 

n +1 | b n , S n +1 = s ′ , a n ] ∑ 

s ∈S P[ S n +1 = s ′ | b n , S n = s, a n ] b n (s ) 

P[ W 

n +1 | b n , a n ] (35)

here we used b n (s ) = P[ S n = s ] = P[ s | b n , a n ] , and where 

 

W [ W 

n +1 | b n , a n ] = 

∑ 

s ∈S 
b n (s ) 

∑ 

s ′ ∈S 
P[ S n +1 = s ′ | b n , 

S n = s, a n ] P W [ W 

n +1 | b n , S n +1 = s ′ , a n ] . 

OMDPs are characterized by the property that the entire history 

 

n = (b 0 , a 0 , W 

1 , b 1 , a 1 , W 

2 , . . . ..., a n −1 , W 

n , b n ) 

s fully summarized by the latest belief b n . POMDPs are character-

zed by two transition matrices: the one-step transition matrix for

he system state P[ S n +1 = s ′ | S n = s, a n ] , and the conditional observa-

ion distribution P W [ W 

n +1 = w | S n = s, b n , a n ] . Both of these can be de-

ived in principle from the physics of the problem, although com-

uting them is another matter. 

POMDPs are notoriously hard to solve, and as a result the com-

utational side has attracted considerable attention (see Lovejoy,

991 and Aberdeen, 2003 for early surveys). One of the earliest

reakthroughs was the dissertation ( Sondik, 1971 ) that found that

he value function can be represented as a series of cuts (see

ondik, 1978 and Smallwood, Sondik, & Oct, 1973 ). However, the

trategy that has attracted the most attention is based on the idea

f “point-based” solvers (see Pineau, Gordon, & Thrun, 2003 and

mith & Simmons, 2005 for examples, and Shani et al., 2013 for a

urvey of point-based solvers). 

POMDPs can be modeled as conventional Markov decision pro-

esses where the state is just the belief state (which is generally

ontinuous), and where Eq. (35) is the transition function ( Sondik,

971 ). This is sometimes referred to as the “belief MDP” (see, for

xample, Cassandra, Kaelbling, & Littman, 1994; Oliehoek, Spaan,

 Vlassis, 2008; Ross, Pineau, & Chaib-Draa, 2008a; Ross, Pineau,

aquet, & Chaib-draa, 2008b ). Further complicating the situation is

hat there are many settings where the state variable consists of

 mixture of observable parameters and belief states. For example,

he multiarmed bandit problem is an example of a problem where

he only state variables are belief states, which reflect unobserv-

ble and uncontrollable parameters that either do not change over

ime, or which change but not due to any decisions. 

.16. Discussion 

Each of the topics above represents a distinct community, most

ith entire books dedicated to the topic. We note that some of

hese communities focus on problems (stochastic search, optimal

topping, optimal control, Markov decision processes, robust opti-

ization, ranking and selection, multiarmed bandits), while others

ocus on methods (approximate dynamic programming, reinforce-

ent learning, model predictive control, stochastic programming),

lthough some of these could be described as methods for partic-

lar problem classes. 

In the remainder of our presentation, we are going to present a

ingle modeling framework that covers all of these problems. We

egin by noting that there are problems that can be solved ex-

ctly, or approximately by using a sampled version of the different

orms of uncertainty. However, most of the time we end up us-

ng some kind of adaptive search procedure that uses either Monte

arlo sampling or direct, online observations (an approach that is

ften called data driven ). 

We are then going to argue that any adaptive search strategy

an be represented as a policy for solving an appropriately defined

ynamic program. Solving any dynamic program involves search-

ng over policies, which is the same as searching for the best al-

orithm. We then show that there are two fundamental strategies

or designing policies, leading to four meta-classes of policies that
tic optimization, European Journal of Operational Research (2018), 
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over all of the approaches used by the different communities of

tochastic optimization. 

. Solution strategies 

There are three core strategies for solving stochastic optimiza-

ion problems: 

Deterministic/special structure - These are problems that ex-

hibit special structure that make it possible to find optimal

solutions. Examples include: linear programs where costs

are actually expectations of random variables; the newsven-

dor problem with known demand where we can use the

structure to find the optimal order quantity; and Markov de-

cision processes with a known one-step transition matrix,

which represents the expectation of the event that we tran-

sition to a downstream state. 

Sampled models - There are many problems where the expec-

tation in max x E F (x, W ) cannot be computed, but where we

can replace the original set of outcomes 	 (which may be

multidimensional and/or continuous) with a sample ˆ 	. We

can then replace our original stochastic optimization prob-

lem with 

max 
x 

∑ 

ˆ ω ∈ ̂ 	

ˆ p ( ̂  ω ) F (x, ˆ ω ) . (36) 

This strategy has been pursued under different names in dif-

ferent communities. This is what is done in statistics when

a batch dataset is used to fit a statistical model. It is used

in stochastic programming (see Section 2.10 ) when we use

scenarios to approximate the future. It is also known as

the sample average approximation, introduced in Kleywegt,

Shapiro, and Homem-de Mello (2002) with a nice summary

in Shapiro et al. (2014) . There is a growing literature fo-

cusing on strategies for creating effective sam ples so that

the set ˆ 	 does not have to be too large ( Bayraksan & Mor-

ton, 2011; Dupacova et al., 2003; Heitsch & Romisch, 2009 ).

An excellent recent survey is given in Bayraksan and Love

(2015) . 

Adaptive algorithms - While solving sampled models is a pow-

erful strategy, by far the most widely used approaches de-

pend on adaptive algorithms that work by sequentially sam-

pling random information, either using Monte Carlo sam-

pling from a stochastic model, or from field observations. 

The remainder of this article focuses on adaptive algorithms,

hich come in derivative-based forms (e.g. the stochastic gradi-

nt algorithm in Eq. (6) ) and derivative-free (such as policies for

ultiarmed bandit problems including upper confidence bounding

n Eq. (33) and interval estimation in Eq. (34) ). We note that all

f these algorithms represent sequential decision problems, which

eans that they are all a form of dynamic program. 

In the next section, we propose a canonical modeling frame-

ork that allows us to model all adaptive learning problems in a

ommon framework. 

. A universal canonical model 

We now provide a modeling framework with which we can cre-

te a single canonical model that describes all of the problems de-

cribed in Section 2 . We note that in designing our notation, we

ad to navigate the various notational systems that have evolved

cross these communities. For example, the math programming

ommunity uses x for a decision, while the controls community

ses x t for the state and u t for their control. We have chosen S t for

he state variable (widely used in dynamic programming and re-

nforcement learning), and x t for the decision variable (universally
Please cite this article as: W.B. Powell, A unified framework for stochast
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sed in math programming, but also used by the bandit commu-

ity). We have worked to use the most common notational con-

entions, resolving conflicts as necessary. 

There are five fundamental elements to any sequential decision

roblem: state variables, decision variables, exogenous information,

he transition function, and the objective function. A brief sum-

ary of each of these elements is as follows: 

State variables - The state S t of the system at time t is a func-

tion of history which, combined with a policy and exoge-

nous information, contains all the information that is nec-

essary and sufficient to model our system from time t on-

ward. This means it has to capture the information needed

to compute costs, constraints, and (in model-based formula-

tions) how this information evolves over time (which is the

transition function). 

We distinguish between the initial state S 0 and the dynamic

state S t for t > 0. The initial state contains all deterministic

parameters, initial values of dynamic parameters, and ini-

tial probabilistic beliefs about unknown parameters. The dy-

namic state S t contains information that is evolving over

time. 

There are three types of information in S t : 

• The physical state, R t , which in most (but not all) appli-

cations is the state variables that are being controlled.

R t may be a scalar, or a vector with element R ti where

i could be a type of resource (e.g. a blood type) or the

amount of inventory at location i . 
• Other information, I t , which is any information that is

known deterministically not included in R t . The informa-

tion state often evolves exogenously, but may be con-

trolled or at least influenced by decisions (e.g. selling a

large number of shares may depress prices). 
• The belief state B t , which contains distributional informa-

tion about unknown parameters, where we can use fre-

quentist or Bayesian belief models. These may come in

the following styles: 

– Lookup tables - Here we have a belief μ̄n 
x which is

our estimate of μx = E F (x, W ) after n observations

for each discrete x ∈ X = { x 1 , . . . , x M 

} . With a Bayesian

model, we treat μx as a random variable that is nor-

mally distributed with μx ∼ N( ̄μn 
x , σ̄

2 ,n 
x ) . 

– Parametric belief models - We might assume that

E F (x, W ) = f (x | θ ) where the function f ( x | θ ) is known

but where θ is unknown. We would then describe θ
by a probability distribution. 

– Nonparametric belief models - These approximate a

function at x by smoothing local information near x . 

We emphasize that the belief state carries the parame-

ters of a distribution describing an unobservable param-

eter of the model. B t might be the mean and variance of

a normal distribution or the parameters of a log-normal

distribution, while the distribution itself (e.g. the normal

distribution) is specified in S 0 . 

The state S t is sometimes referred to as the pre-decision state

because it is the state just before we make a decision. We

often find it useful to define a post-decision state S x t which

is the state immediately after we make a decision, before

any new information has arrived, which means that S x t is a

deterministic function of S t and x t . For example, in a basic

inventory problem where R t+1 = max { 0 , R t + x t − ˆ D t+1 } , the

post-decision state would be S x t = R x t = R t + x t . Post-decision

states are often simpler, because there may be information

in S t that is only needed to make the decision x t , but there

are situations where x t becomes a part of the state. 
ic optimization, European Journal of Operational Research (2018), 
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Decision variables - Decisions are typically represented as a t for

discrete actions, u t for continuous (typically vector-valued)

controls, and x t for general continuous or discrete vectors.

We use x t as our default, but find it useful to use a t when

decisions are categorical. 

Decisions may be binary (e.g. for a stopping problem), dis-

crete (e.g. an element of a finite set), continuous (scalar or

vector), integer vectors, and categorical (e.g. the attributes of

a patient). We note that entire fields of research are some-

times distinguished by the nature of the decision variable. 

We assume that decisions are made with a policy, which we

might denote X 

π ( S t ) (if we use x t as our decision), A 

π ( S t ) (if

we use a t ), or U 

π ( S t ) (if we use u t ). We assume that a de-

cision x t = X π (S t ) is feasible at time t . We let “π” carry the

information about the type of function f ∈ F (for example, a

linear model with specific explanatory variables, or a partic-

ular nonlinear model), and any tunable parameters θ ∈ �f . 

Exogenous information - We let W t be any new information

that first becomes known at time t (that is, between t − 1

and t ). When modeling specific variables, we use “hats” to

indicate exogenous information. Thus, ˆ D t could be the de-

mand that arose between t − 1 and t , or we could let ˆ p t be

the change in the price between t − 1 and t . 

The exogenous information process may be stationary or

nonstationary, purely exogenous or state (and possibly

action) dependent. We let ω represent a sample path

W 1 , . . . , W T , where ω ∈ 	, and where F is the sigma-algebra

on 	. We also let F t = σ (W 1 , . . . , W t ) be the sigma-algebra

generated by W 1 , . . . , W t . We adopt the style throughout

that any variable indexed by t is F t -measurable, something

we guarantee by how decisions are made and information

evolves (in fact, we do not even need this vocabulary). 

Transition function - We denote the transition function by 

S t+1 = S M (S t , x t , W t+1 ) , (37)

where S M ( · ) is also known by names such as system model,

state equation, plant model, plant equation and transfer

function. Eq. (37) is the classical form of a transition func-

tion that gives the equations from the pre-decision state S t 
to pre-decision state S t+1 . We can also break down these

equations into two steps: pre-decision to post-decision S x t ,

and then the post-decision S x t to the next pre-decision S t+1 .

The transition function may be a known set of equations, or

unknown, such as when we describe human behavior or the

evolution of CO2 in the atmosphere. When the equations are

unknown the problem is often described as “model free” or

“data driven.”

Transition functions may be linear, continuous nonlinear or

step functions. When the state S t includes a belief state B t ,

then the transition function has to include the frequentist or

Bayesian updating equations. 

Given a policy X 

π ( S t ), an exogenous process W t and a transi-

tion function, we can write our sequence of states, decisions,

and information as 

(S 0 , x 0 , S 
x 
0 , W 1 , S 1 , x 1 , S 

x 
1 , W 2 , . . . , x T −1 , S 

x 
T −1 , W T , S T ) . 

Below we continue to use t as our iteration counter, but we

could use n if appropriate, in which case we would write

states, decisions and information as S n , x n and W 

n +1 . In

some cases we iteratively simulate a system, in which case

we might use S n t as the value of the state at time t during

the nth simulation of our system. 

Objective functions - We assume that we have a metric that we

are maximizing (our default) or minimizing, which we can

write in state-independent or state-dependent forms: 
Please cite this article as: W.B. Powell, A unified framework for stochas
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State-independent: We write this as F ( x , W ), where we as-

sume we have to fix x t or x n and then observe W t+1 or

W 

n +1 . In an adaptive learning algorithm, the state S t (or

S n ) captures what we know about E F (x, W ) , but the func-

tion itself depends only on x and W , and not on the state

S . 

State-dependent: These can be written in several ways: 

• C ( S t , x t ) - This is the most popular form, where C ( S t , x t )

can be a contribution (for maximization) or cost (for

minimization). This is written in many different ways

by different communities, such as r ( s , a ) (the reward

for being in state s and taking action a ), g ( x , u ) (the

gain from being in state x and using control u ), or L ( x ,

u ) (the loss from being in state x and using control u ).
• C(S t , x t , W t+1 ) - We might use this form when our

contribution depends on the information W t+1 (such

as the revenue from serving the demand between t

and t + 1 ). 
• C(S t , x t , S t+1 ) - This form is used in model-free set-

tings where we do not have a transition function or

an ability to observe W t+1 , but rather just observe the

downstream state S t+1 . 

Of these, C(S t , x t , W t+1 ) is the most general, as it can be used

to represent F ( x , W ), C ( S t , x t ), or (by setting W t+1 = S t+1 ),

C(S t , x t , S t+1 ) . We can also make the contribution time-

dependent, by writing C t (S t , x t , W t+1 ) , allowing us to capture

problems where the cost function depends on time. This is

useful, for example, when the contribution in the final time

period is different from all the others. 

Assuming we are trying to maximize the expected sum of

contributions, we may write the objective function as 

max 
π

E S 0 E W 1 , ... ,W T | S 0 

{ 

T ∑ 

t=0 

C t (S t , X 

π
t (S t ) , W t+1 ) | S 0 

} 

, (38)

where 

S t+1 = S M (S t , X 

π
t (S t ) , W t+1 ) . (39)

We refer to Eq. (38) along with the state transition function

(39) as the base model . 

We will sometimes refer to the objective function in Eq.

(38) as the cumulative reward formulation, because we are

maximizing the sum of the contributions (or rewards).

When S t includes belief variables (as in the multiarmed ban-

dit problem), we require a policy to learns quickly over time.

An alternative formulation is when we have a budget of N

experiments, where we need a policy π to find a design that

we call x π , N . If we have a state-independent problem, we

would want to solve 

max 
π

E S 0 E W 1 , ... ,W T | S 0 E ̂ W | S 0 F (x πT , ̂
 W ) , (40)

where x π , N depends on S 0 and the experiments W 1 , . . . , W T ,

and where ̂ W represents the process of testing the design

x π , N . We refer to Eq. (40) as the final reward objective. How-

ever, we note that (40) can be written as (38) by letting

C t (·) = 0 for t = 0 , . . . , T − 1 , and letting x π
T 

= X π (S T ) and̂ W T +1 . 

Eqs. (38) and (39) (or (40) may be implemented in a simula-

tor (offline), or by testing in an online field setting. Care has

to be taken in the design of the objective function to reflect

which setting is being used. 

We note that the term “base model” is not standard, al-

though the concept is widely used in many, but not all, com-

munities in stochastic optimization. 
tic optimization, European Journal of Operational Research (2018), 
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here is growing interest in replacing the expectation in our base

odel in (38) with a risk measure ρ . The risk measure may act on

he total contribution (for example, penalizing contributions that

all below some target), but the most general version operates on

he entire sequence of contributions, which we can write as 

ax 
π

ρ(C 0 (S 0 , X 

π (S 0 ) , W 1 ) , . . . , C T (S T , X 

π (S T ))) . (41) 

he policy X 

π ( S t ) might even be a robust policy such as that given

n Eq. (28) , where we might introduce tunable parameters in the

ncertainty set W t . For example, we might let W t (θ ) be the uncer-

ainty set where θ captures the confidence that the noise (jointly

r independently) falls within the uncertainty set. We can then

se (38) as the basis for simulating our robust policy. This is ba-

ically the approach used in Ben-Tal, Golany, Nemirovski, and Vial

2005) , which compared a robust policy to a deterministic looka-

ead (without tuning the robust policy) by averaging the perfor-

ance over many iterations in a simulator (in effect, approximat-

ng the expectation in Eq. (38) ). 

This opens up connections with a growing literature in stochas-

ic optimization that addresses risk measures (see Shapiro et al.,

014 and Ruszczy ́nski, 2014 for nice introductions to dynamic

isk measures in stochastic optimization). This work builds on the

eminal work in Ruszczy ́nski and Shapiro (2006) , which in turn

uilds on what is now an extensive literature on risk measures

n finance ( Rockafellar & Uryasev, 20 0 0; Kupper & Schachermayer,

0 09; Rockafellar & Uryasev, 20 02 for some key articles), with a

eneral discussion in Rockafellar and Uryasev (2013) . There is ac-

ive ongoing research addressing risk measures in stochastic op-

imization ( Collado, Papp, & Ruszczy ́nski, 2011; 2017; Kozmík &

orton, 2014; Shapiro, 2012; Shapiro et al., 2013 ). This work has

tarted to enter engineering practice, especially in the popular area

for stochastic programming) of the management of hydroelectric

eservoirs ( Philpott & de Matos, 2012; Shapiro et al., 2013 ) as well

s other applications in energy (e.g. Jiang & Powell, 2018 ). 

We refer to the base model in Eq. (38) (or the risk-based ver-

ion in (41) ), along with the transition function in Eq. (39) , as our

niversal formulation , since it spans all the problems presented in

ection 2 (but, see the discussion in Section 10 ). With this univer-

al formulation, we have bridged offline (terminal reward) and on-

ine (cumulative reward) stochastic optimization, as well as state-

ndependent and state-dependent functions. 

With our general definition of a state, we can handle pure

earning problems (the state variable consists purely of the dis-

ribution of belief about parameters), classical dynamic programs

where the “state” often consists purely of a physical state such as

nventory), partially observable Markov decision processes, prob-

ems with simple or complex interperiod dependencies of the in-

ormation state, and any mixture of these. In Section 10 , we are

oing to revisit this formulation and offer some additional insights.

Central to this formulation is the idea of optimizing over poli-

ies, which is perhaps the single most significant point of depar-

ure from most of the formulations presented in Section 2 . In fact,

ur finding is that many of the fields of stochastic optimization are

ctually pursuing a particular class of policies. In the next section,

e provide a general methodology for searching over policies. 

. Designing policies 

We begin by defining a policy as 

efinition 5.1. A policy is a rule (or function) that determines a

easible decision given the available information in state S t (or S n ).

We emphasize that a policy is any function that returns a (feasi-

le) decision given the information in the state variable. A common

istake is to assume that a policy is some analytical function such
Please cite this article as: W.B. Powell, A unified framework for stochast
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s a rule (which is a form of lookup table) or perhaps a paramet-

ic function. In fact, it is often a carefully formulated optimization

roblem. 

There are two fundamental strategies for creating policies: 

Policy search - Here we use an objective function such as

(38) or (40) to search within a family of functions to find

a function that works best. 

Lookahead approximations - Alternatively, we can construct

policies by approximating the impact of a decision now on

the future. 

Either of these approaches can yield optimal policies, although

his is rare. Below we show that each of these approaches are the

asis of the two strategies for designing policies, producing four

eta-classes that cover all of the approaches that have ever been

sed in the literature. These are described in more detail below. 

.1. Policy search 

Policy search involves tuning and comparing policies using the

bjective function such as (38) or (41) so that they behave well

ver time, under whatever sources of uncertainty that we choose

o model in our simulator (which can also be the real world).

magine that we have a class of functions F , where for each func-

ion f ∈ F , there is a parameter vector θ ∈ �f that controls its be-

avior. Let X 

f ( S t | θ ) be a function in class f ∈ F parameterized by

∈ �f . Policy search involves finding the best policy using 

max 
f∈F,θ∈ � f 

E 

{ 

T ∑ 

t=0 

C t (S t , X 

f (S t | θ ) , W t+1 ) | S 0 
} 

. (42) 

f F includes the optimal policy architecture, and �f includes the

ptimal θ for this function, then solving Eq. (42) would produce

he optimal policy. There are special cases where this is true (such

s ( s , S ) inventory policies). We might also envision the ultimate

unction class that can approximate any function such as deep neu-

al networks or support vector machines, although these are un-

ikely to ever solve high dimensional problems that arise in logis-

ics. 

Since we can rarely find optimal policies using (42) , we have

dentified two meta-classes: 

Policy function approximations (PFAs) - Policy function

approximations can be lookup tables, parametric or

nonparametric functions, but the most common are para-

metric functions. This could be a linear function such

as 

X 

π (S t | θ ) = θ0 + θ1 φ1 (S t ) + θ2 φ2 (S t ) + . . . , 

or a nonlinear function such as an order-up-to inventory

policy, a logistics curve, or a neural network. Typically there

is no guarantee that a PFA is in the optimal class of policies.

Instead, we search for the best performance within a class. 

Cost function approximations (CFAs) - A CFA is 

X 

π (S t | θ ) = arg max 
x ∈X πt (θ ) 

C̄ πt (S t , x | θ ) , 

where C̄ πt (S t , x | θ ) is a parametrically modified cost function,

subject to a parametrically modified set of constraints. CFAs

are widely used for solving large scale problems such as

scheduling an airline or planning a supply chain. For exam-

ple, we might introduce slack into a scheduling problem, or

buffer stocks for an inventory problem. Below we show that

popular policies for learning problems such as multiarmed

bandits use CFAs. 
ic optimization, European Journal of Operational Research (2018), 
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Policy search is best suited when the policy has clear structure,

such as inserting slack in an airline schedule, or selling a stock

when the price goes over some limit. We may believe policies are

smooth, such as the relationship between the release rate from a

reservoir and the level of the reservoir, but often they are discon-

tinuous such as an order-up-to policy for inventories. 

5.2. Lookahead approximations 

Just as we can, in theory, find an optimal policy using policy

search, we can also find an optimal policy by modeling the down-

stream impact of a decision made now on the future. This can be

written 

X ∗t (S t ) 

= arg max 
x t 

( 

C(S t , x t ) + E 

{ 

max 
π

E 

{ 

T ∑ 

t ′ = t+1 

C(S t ′ , X πt ′ (S t ′ )) 

∣∣∣∣∣S t+1 

} 

∣∣∣∣∣S t , x t 
} ) 

. (43)

Eq. (43) is daunting, but can be parsed in the context of a deci-

sion tree with discrete actions and discrete random outcomes (see

Fig. 1 ). The states S t ′ correspond to nodes in the decision tree. The

state S t is the initial node, and the actions x t are the initial actions.

The first expectation is over the first set of random outcomes W t+1 

(out of the outcome nodes resulting from each decision x t ). 

After this, the policy π represents the action x t ′ that would be

taken from every downstream node S t ′ for t ′ > t . Thus, a policy π
could be a table specifying which action is taken from each po-

tential downstream node, over the rest of the horizon. Then, the

second expectation is over all the outcomes W t ′ , t ′ = t + 2 , . . . , T .

Solving the maximization over all policies in (43) simply moves the

policy search problem one time period later. 

Not surprisingly, just as we can rarely find the optimal pol-

icy by solving the policy search objective function in (42) , we can

only rarely solve (43) (a decision tree is one example where we

can). For this reason, a wide range of approximation strategies have

evolved for addressing these two problems. These can be divided

(again) into two meta-classes: 

Value function approximations (VFAs) - Our first approach is

to replace the entire term capturing the future in (43) with

an approximation known widely as a value function approx-

imation. We can do this in two ways. The first is to replace

the function starting at S t+1 with a value function V t+1 (S t+1 )

giving us 

X 

V F A 
t (S t ) = arg max 

x t 
( C(S t , x t ) + E { V t+1 (S t+1 ) | S t } ) (44)

where S t+1 = S M (S t , x t , W t+1 ) , and where the expectation is

over W t+1 conditioned on S t (some write the conditioning as

dependent on S t and x t ). Since we generally cannot compute

V t+1 (S t+1 ) , we can use various strategies to replace it with

some sort of approximation V t+1 (S t+1 ) , known as a value

function approximation. 

The second way is to approximate the function around

the post-decision state S x t , which eliminates the expectation

(44) , giving us 

X 

V F A 
t (S t ) = arg max 

x t 
( C(S t , x t ) + V 

x 
t (S t ) ) . (45)

The post-decision formulation is popular for problems where

x t is a vector, and V x t (S x t ) is a convex function of S x t . 

Direct lookahead (DLAs) - There are many problems where it

is just not possible to compute sufficiently accurate VFAs

(dynamic problems with forecasts is a broad problem class

where this happens). When all else fails, we have to re-

sort to a direct lookahead, where we replace the lookahead

expectation and optimization in (43) with an approximate
Please cite this article as: W.B. Powell, A unified framework for stochas
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model . The most widely used strategy is to use a determin-

istic lookahead, but the field of stochastic programming will

use a sampled future to create a more tractable version. 

.3. Notes 

The four meta-classes of policies (PFAs, CFAs, VFAs, and DLAs)

over every policy considered in all the communities covered in

ection 2 , with the possible exception of problems that can be

olved exactly or using a sampled belief model (these are actually

pecial cases of policies). We note that as of this writing, the “cost

unction approximation” has been viewed as more of an industry

euristic than a formal policy, but we believe that this is an im-

ortant class of policy that has been overlooked by the research

ommunity (see Perkins & Powell, 2017 for an initial paper on this

opic). 

It is natural to ask, why do we need four approximation strate-

ies when we already have two approaches for finding optimal

olicies ( Eqs. (42) and (43) ), either of which can produce an op-

imal policy? The reasons are purely computational. Eqs. (42) and

43) can rarely be solved to optimality. PFAs as an approximation

trategy are effective when we have an idea of the structure of a

olicy, and these are typically for low-dimensional problems. CFAs

imilarly serve a role of allowing us to solve simplified optimiza-

ion problems that can be tuned to provide good results. VFAs only

ork when we can design a value function approximation that rea-

onably approximates the value of being in a state. DLAs are a

rute force approach where we typically resort to solving a sim-

lified model of the future. 

Below, we revisit the four classes of policies by first addressing

earning problems, which are problems where the function being

ptimized does not depend on the state variable, and then in the

uch richer class of state-dependent functions. However, we are

rst going to touch on the important challenge of modeling uncer-

ainty. 

. Learning challenges 

Of the four classes of policies, only direct lookaheads do not

nvolve any form of statistical learning. Of the remaining, there are

ve types of statistical learning problems: 

• Learning an approximation F̄ (x ) ≈ E W 

F (x, W ) . This is the eas-

iest problem because we typically assume we have access to

unbiased observations of F ( x , W ). The goal is to minimize some

measure of error between F̄ (x ) and F ( x , W ). 
• Learning policies X 

π ( s ). Here we are learning a function that

maximizes a contribution or minimizes a cost, typically in the

base model in Eq. (38) . 
• Learning a cost function approximation, which means a para-

metrically modified cost function or set of constraints. This is

similar to learning F̄ (x ) , except that we are learning a function

embedded within a max or min operator. 
• Learning a value function approximation V t (S t ) ≈ V t (S t ) 
• Learning the state transition function - There are many prob-

lems where the transition function S M (S t , x t , W t+1 ) is not

known (it might reflect human behavior, or a complex process

such as climate change). We can use observations (S t , x t , S t+1 )

to fit a statistical model S̄ M (S t , x t | θ ) to this data. 

These learning challenges draw heavily on the fields of statistics

nd machine learning. There are several twists that make statistical

earning in stochastic optimization a little different, including 

• Recursive learning - Almost all of the statistical challenges

listed above (approximate policy iteration being an exception)

involve recursive learning. This means that we need methods
tic optimization, European Journal of Operational Research (2018), 
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that evolve from low to higher dimensional representations as

we acquire more data. 
• Active learning - We get to choose x (or the policy), which

means we have control over what experiments to run. This

means we usually are balancing the classic exploration-

exploitation tradeoff. 
• We may be optimizing a physical process or numerical simu-

lation rather than a mathematical model. In these settings, ob-

servations of the function may be quite expensive, which means

we do not have access to the large datasets that have become

so familiar in a “big data” world. 
• Learning value functions is one of the most difficult challenges

from a statistical perspective, because we typically have to learn

V t (S t ) from observations ˆ v n t that are generally biased estimates

of V t ( S t ) (or its derivatives). The bias arises because we learn

these values using suboptimal policies, but then we have to use

our approximations. 
• Policies are often discontinuous, as with buy low, sell high poli-

cies, or order-up-to inventory policies. 

There is an extensive literature on learning. Hastie, Tibshirani,

nd Friedman (2009) is an excellent introduction to the broad

eld of statistical learning, but there are many good books. Jones

2001) and Montgomery (2000) provide thorough reviews of re-

ponse surface methods. Kleijnen (2017) reviews regression and

riging metamodels for simulation models, which is the founda-

ion of most stochastic optimization. 

. Modeling uncertainty 

The community of stochastic optimization has typically focused

n making good (or robust) decisions in the presence of some form

f uncertainty. However, we tend to put a lot more attention into

aking a good decision than in the modeling of uncertainty. 

The first step is to identify the sources of randomness. This can

nclude observational errors, forecasting errors, model uncertainty,

ontrol uncertainty and even goal uncertainty (different decision-

akers may have different expectations). 

There is a field known as “uncertainty quantification” that

merged from within science and engineering in the 1960’s ( Smith,

014 and Sullivan, 2015 are two recent books summarizing this

rea). This work complements the extensive work that has been

one in the Monte Carlo simulation community which is sum-

arized in a number of excellent books (good introductions are

anks, Nelson, & J. S. Carson, 1996; Ross, 2002; Rubinstein &

roese, 2017 ). Asmussen and Glynn (2007) provides a strong theo-

etical treatment. 

It is important to recognize that if we want to find an optimal

olicy that solves (38) , then we have to use care in how we model

he uncertainties. There are different ways to representing an un-

ertain future, including 

• Stochastic modeling - By far the most attention has been given

to developing an explicit stochastic model of the future, which

requires capturing: 

– Properties of probability distributions, which may be

described by an exponential family (e.g. normal or expo-

nential) and their discrete counterparts (Poisson, geometric),

and heavy-tailed distributions. We can also use compound

distributions such as Poisson distributions with random

means, or mixtures such as jump diffusion models. It is

often necessary to use nonparametric distributions derived

from history. 

– Behavior over time - There are many ways to capture tem-

poral behavior, including autocorrelation, crossing times (the

length of time the actual is above or below a benchmark
Please cite this article as: W.B. Powell, A unified framework for stochast
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such as a forecast), regime switching, spikes, bursts and rare

events. 

– Other relationships, such as spatial patterns, behaviors at

different levels of aggregation. 
• Distributionally robust modeling - There is growing attention

given to the idea of using other methods to represent the fu-

ture that do not require specific knowledge of a distribution

(see Bayraksan & Love, 2015 and Gabrel et al., 2014 for good

reviews). Robust optimization uses uncertainty sets which is

shown in Xu, Caramanis, Mannor, and Caramanis (2012) to be

equivalent to a distributionally robust optimization problem.

We note that while uncertainty sets offers a different way of

approaching uncertainty, it introduces its own computational

challenges ( Goh & Sim, 2010; Wiesemann, Kuhn, & Sim, 2014 ). 
• No model - There are many applications where we simply are

not able to model the underlying dynamics. These can be com-

plex systems such as climate change, production plants, or the

behavior of a human. Different communities use terms such as

model-free dynamic programming, data-driven stochastic opti- 

mization, or online control. 

This is a very brief summary of a rich and complex dimension

f stochastic optimization, but we feel it is important to recognize

hat modeling uncertainty is fundamental to the process of finding

ptimal policies. Stochastic optimization problems can be excep-

ionally challenging, and as a result we feel that most of the lit-

rature has focused on designing good policies. However, a policy

ill not be effective unless it has been designed in the context of

 proper model, which means accurately capturing uncertainty. 

. Policies for state-independent problems 

An important class of problems is where the function being

aximized does not depend on any dynamic information that

ould be in the state variable. We can write these optimization

roblems as 

ax 
x ∈X 

E F (x, W ) . (46) 

n example is the newsvendor problem 

ax 
x 

E F (x, W ) = max 
x 

E 

(
p min { x, W } − cx 

)
, (47) 

here we order a quantity x at a unit cost c , then observe demand

 and sell the minimum of these two at a price p . We assume

e cannot compute E F (x, W ) (perhaps the distribution of W is not

nown), so we will iteratively develop estimates F̄ n (x ) . We might

et S n = F̄ n (x ) be our belief about E F (x, W ) . If we make a decision

 

n and observe F n +1 = F (x n , W 

n +1 ) , we can use this information to

pdate our belief about E F (x, W ) . Thus, our state S n only captures

ur belief about the function. 

An example of a state-dependent problem would be one where

he quantity x is constrained by x ≤ R n where R n is the available

esources at iteration n , or where the price is p n which is revealed

efore we make the decision x . In this case, our state variable

ight consist of S n = (R n , p n , F̄ n (x )) . In this section, we assume

hat the state variable consists only of the belief about the func-

ion. 

Below we describe adaptive algorithms where the state S n at it-

ration n captures what we need to know to make a decision (that

s, to calculate our policy), but which does not affect the function

tself. However, we might be solving a time-dependent problem

here the price p t is revealed before we make a decision x t at time

 . In this case, p t would enter our state variable, and we would

ave a state-dependent function. 

We are going to design a sequential search procedure, which we

an still model as a stochastic, dynamic system, but now the state

 

n (after n iterations) captures the information we need to make a
ic optimization, European Journal of Operational Research (2018), 
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decision using some policy X 

π ( S n ). We refer to this problem class

as learning problems , and make the distinction between derivative-

based and derivative-free problems. 

8.1. Derivative-based 

Assume we can compute a gradient ∇ x F ( x , W ) at a point x =
x n and W = W 

n +1 , allowing us to implement a stochastic gradient

algorithm of the form 

x n +1 = x n + αn ∇ x F (x n , W 

n +1 ) , (48)

where αn is a stepsize that may adapt to conditions as they unfold.

There are many choices of stepsize rules as reviewed in Powell and

George (2006) , with new and powerful rules given in Duchi et al.

(2011) (AdaGrad), Kingma and Ba (2015) (Adam), and Orabona

(2014) (PiSTOL). To illustrate the core idea, imagine we use Kesten’s

stepsize rule given by 

αn = 

θ

θ + N 

n 
, (49)

where we might let N 

n be the number of times that the gradient

∇ x F (x n , W 

n +1 ) changes direction. 

We now have a dynamic system (the stochastic gradient al-

gorithm) that is characterized by a gradient and a “policy” for

choosing the stepsize (49) . The state of our system is given by

S n = (x n , N 

n ) . The decision is the stepsize αn which is determined

by a stepsize policy such as Kesten’s rule, which is parameterized

by θ . Given αn and the observation of W 

n +1 , we compute x n +1 

using the Algorithm 48 which is the transition function. Finally,

the objective function is typically written using the final reward

formulation in Eq. (40) , which states the problem of finding the

best policy, which we might limit to tuning θ for Kesten’s rule, or

searching over a broader class of stepsize policies. 

This simple illustration shows that a derivative-based stochas-

tic gradient algorithm can be viewed as a stochastic, dynamic sys-

tem (see Kushner & Yin, 2003 for an in-depth treatment of this

idea). Optimizing over policies means optimizing over the choice

of stepsize rule (such as Kesten’s rule ( Kesten, 1958 ), BAKF ( Powell

& George, 2006 ), AdaGrad ( Duchi et al., 2011 ), Adam ( Kingma & Ba,

2015 ), PiSTOL ( Orabona, 2014 ) and the parameters that character-

ize the rule (such as θ in Kesten’s rule above). 

8.2. Derivative-free 

We make the simplifying assumption that the feasible region

X in the optimization problem (46) is a discrete set of choices

X = { x 1 , . . . , x M 

} , which puts us in the arena of ranking and selec-

tion (if we wish to maximize the terminal reward), or multiarmed

bandit problems (if we wish to maximize the cumulative reward).

The discrete set might represent a set of drugs, people, technolo-

gies, paths over a network, or colors, or it could be a discretized

representation of a continuous region. 

Not surprisingly, this is a tremendously broad problem class. Al-

though it has attracted attention since the 1950’s (and earlier), the

first major reference on the topic is DeGroot (1970) , who also char-

acterized the optimal policy using Bellman’s equation, although

this could not be computed. Since this time, numerous authors

have worked to identify effective policies for solving the optimiza-

tion problem in (29) . 

Central to derivative-free stochastic search is the design of a be-

lief model. Let F̄ n (x ) ≈ E F (x, W ) be our approximation of E F (x, W )

after n experiments. We can represent F̄ n (x ) using any of the fol-

lowing architectures. 

Lookup tables Let μx = E F (x, W ) be the true value of the func-

tion at x ∈ X . A lookup table belief model would consist of
Please cite this article as: W.B. Powell, A unified framework for stochas
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estimates μ̄n 
x for each x ∈ X . If we are using a Bayesian be-

lief model, we can represent the beliefs in two ways: 

Independent beliefs We assume that μx is a random vari-

able where a common assumption is μx ∼ N( ̄μn 
x , σ̄

2 ,n 
x ) ,

where σ̄ 2 ,n 
x is the variance in our belief about μx . 

Correlated beliefs Here we assume we have a matrix �n 

with element �n 
xx ′ = Cov n (μx , μx ′ ) , where Cov n (μx , μx ′ )

is our estimate of the covariance after n observations. 

Parametric models The simplest parametric model is linear

with the form 

f (x | θ ) = θ0 + θ1 φ1 (x ) + θ2 φ2 (x ) + . . . 

where φ f (x ) , f ∈ F is a set of features drawn from the

decision x (and possibly other exogenous information). We

might let θ̄n be our time n estimate of θ , and we might even

have a covariance matrix �θ , n that is updated as new infor-

mation comes in. Parametric models might be nonlinear in

the parameters (such as a logistic regression), or a basic (low

dimensional) neural network. 

Nonparametric models These include nearest neighborhood

and kernel regression (basically smoothed estimates of ob-

servations close to x ), support vector machines, and deep

(high dimensional) neural networks. 

f we let S n be our belief state (such as point estimates and co-

ariance matrix for our correlated belief model), we need a policy

 

π ( S n ) to return the choice x n of experiment to run, after which

e make a noisy observation of our unknown function E f (x, W ) .

e represent this noisy experiment by W 

n +1 , which we may view

s returning a sampled observation F (x n , W 

n +1 ) , or a noisy obser-

ation W 

n +1 = f (x n ) + ε n +1 where f ( x ) is our true function. This

eaves us with the problem of identifying good policies X 

π ( S ). 

A number of policies have been proposed in the literature. We

an organize these into our four classes of policies, although the

ost popular are cost function approximations (CFAs) and single-

eriod, direct lookaheads (DLAs). However, we use this setting to

llustrate all four classes: 

Policy function approximations - For learning problems, as-

sume we have some policy for making a decision. Imagine

that the decision is continuous, such as a price, amount to

order, or the forces applied to a robot or autonomous ve-

hicle. This policy could be a linear rule (that is, an “affine

policy”), or a neural network which we denote by Y π ( S ). As-

sume that after making the decision, we use the resulting

performance to update the rule. For this reason, it helps to

introduce some exploration by introducing some randomiza-

tion which we might do using 

X 

π (S) = Y π (S) + ε. 

The introduction of the noise ε ∼ N(0 , σ 2 
ε ) is referred to in

the controls literature as “excitation.” The variance σ 2 
ε is a

tunable parameter. 

Cost function approximations - This is the most popular class

of policies, developed primarily in the setting of online (cu-

mulative reward) problems known as multiarmed bandit

problems. Examples include: 

Pure exploitation - These policies simply choose what ap-

pears to be best, such as 

X 

X plt (S n ) = arg max 
x 

μ̄n 
x . (50)

We might instead have a parametric model f ( x | θ ) with

unknown parameters. A pure exploitation policy (also

known as “simple greedy”) would be 

X 

X plt (S n ) = arg max 
x 

f (x, θ̄n ) , 
tic optimization, European Journal of Operational Research (2018), 
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= arg max 
x 

f (x, E (θ | S n )) . 
This policy includes any method that involves optimizing

an approximation of the function such as linear models,

often referred to as response surface methods ( Ginebra &

Clayton, 1995 ). 

Bayes greedy - This is basically a pure exploitation policy

where the expectation is taken outside the function. For

example, assume that our true function is a parametric

function f ( x | θ ) with an unknown parameter vector θ . The

Bayes greedy policy would be 

X 

BG (S n ) = arg max 
x 

E { f (x, θ ) | S n } . (51) 

Interval estimation - This is given by 

X 

IE (S n | θ IE ) = arg max 
x 

(
μ̄n 

x + θ IE σ̄ n 
x 

)
. (52) 

where σ̄ n 
x is the standard deviation of the estimate μ̄n 

x . 

Upper confidence bounding - There is a wide range of UCB

policies that evolved in the computer science literature,

but they all have the generic form 

X 

UCB (S n | θUCB ) = arg max 
x 

( 

μ̄n 
x + θUCB 

√ 

log n 

N 

n 
x 

) 

, (53) 

where N 

n 
x is the number of times we have tried alterna-

tive x . We first introduced UCB policies in Eq. (33) where

we used 4 σ W instead of the tunable parameter θUCB . UCB

policies are very popular in the research literature (see,

for example, Bubeck & Cesa-Bianchi, 2012 ) where it is

possible to prove bounds for specific forms, but in prac-

tice it is quite common to introduce tunable parameters

such as θUCB . 

Value functions - It is possible to solve learning problems us-

ing value functions which capture the downstream value of

being in a particular belief state; this is the basis of Gittins

indices which we introduced earlier. This would involve a

policy of the form 

X 

V F A (S n ) = arg max 
x 

(
μ̄n 

x + E { V 

n +1 (S n +1 ) | S n , x } ), (54) 

where S n (as before) is our belief state. There are special

cases where S n is discrete, but if S n is, for example, estimates

of the means μ̄n 
x and variances σ̄ 2 ,n 

x , then S n = ( ̄μn 
x , σ̄

2 ,n 
x ) x ∈X 

which is high-dimensional and continuous. Value functions

are the foundation of Gittins indices (see Section 2.14 ),

which are calculated by decomposing multi-armed bandit

problems into a series of single-arm problems which allows

the value functions to be computed, although the process is

not simple compared to other classes of policies. 

Direct lookahead policies - It is important to distinguish be-

tween single-period lookahead policies (which are quite

popular), and multi-period lookahead policies: 

Single period lookahead - Examples include 

Knowledge gradient - This estimates the value of infor-

mation from a single experiment. Assume we are using

a parametric belief model where θ̄n is our current es-

timate, and θ̄n +1 (x ) is our updated estimate if we run

experiment x n = x . Keeping in mind that θ̄n +1 (x ) is a

random variable at time n when we choose to run the

experiment, the value of the experiment, measured in

terms of how much better we can find the best deci-

sion, is given by 

νKG,n (x ) = E θ E W | θ { max 
x ′ 

f (x ′ | ̄θn +1 (x )) | S n } − max 
x ′ 

f (x ′ | θ

Please cite this article as: W.B. Powell, A unified framework for stochast
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The knowledge gradient was first studied in depth

in Frazier, Powell, and Dayanik (2008) for indepen-

dent beliefs, and has been extended to correlated be-

liefs ( Frazier, Powell, & Dayanik, 2009 ), linear beliefs

( Negoescu, Frazier, & Powell, 2010 ), nonlinear paramet-

ric belief models ( Chen, Reyes, Gupta, Mcalpine, & Pow-

ell, 2015 ), nonparametric beliefs ( Barut & Powell, 2014;

Cheng, Jamshidi, & Powell, 2015 ), and hierarchical be-

liefs ( Mes, Powell, & Frazier, 2011 ). These papers all

assume that the variance of measurements is known,

an assumption that is relaxed in Chick, Branke, and

Schmidt (2010) . The knowledge gradient seems to be

best suited for settings where experiments are expen-

sive, but care has to be taken when experiments are

noisy, since the value of information may become non-

concave. This is addressed in Frazier and Powell (2010) .

Expected improvement - Known as EI in the literature,

expected improvement is a close relative of the knowl-

edge gradient, given by the formula 

νEI,n 
x = E 

[ 
max 

{ 

0 , μx − max 
x ′ 

μ̄n 
x ′ 

} 

∣∣∣S n , x n = x 

] 
. (55) 

Expected improvement maximizes the degree to which

the current belief about the function at x might exceed

the current estimate of the maximum. Like the knowl-

edge gradient, is a form of value-of-information policy

(see e.g. Chick et al., 2010 ), with the difference that EI

captures the improvement in the function at a point

x , while the knowledge gradient captures the improve-

ment due to a change in the decision resulting from

improved estimates. 

Sequential kriging - This is a methodology developed in

the geosciences to guide the investigation of geologi-

cal conditions, which are inherently continuous where

x may have two or three dimensions (see Cressie,

1990 for the history of this approach). Although the

method is popular and relatively simple, for reasons of

space, we refer readers to Stein (1999) and Powell and

Ryzhov (2012) for introductions. This work is related to

efficient global optimization (EGO) Jones, Schonlau, and

Welch (1998) , and has been applied to the area of op-

timizing simulations (see Ankenman, Nelson, & Staum,

2010 and the survey in Kleijnen, 2014 ). 

Thompson sampling - First introduced in Thompson

(1933) , Thompson sampling works by sampling from

the current belief about μx ∼ N(μn 
x , σ̄

2 ,n 
x ) , which can

be viewed as the prior distribution for experiment n +
1 . Let ˆ μn 

x be this sample. The Thompson sampling pol-

icy is then 

X 

T S (S n ) = arg max 
x 

ˆ μn 
x . 

Thompson sampling can be viewed as a form of ran-

domized interval estimation, without the tunable pa-

rameter (we could introduce a tunable parameter by

sampling from μx ∼ N(μn 
x , θ

T S σ̄ 2 ,n 
x ) ). Thompson sam-

pling has attracted considerable recent interest from

the research community ( Agrawal & Goyal, 2012 ) and

has sparked further research in posterior sampling

( Russo & Van Roy, 2014 ). 

Multiperiod lookahead - Examples include 

Decision tree - Some sequential decision problems (for

example, with binary outcomes) can be computed ex-

actly for small budgets (say, up to seven experiments).

Decision trees can directly model the belief state.

Larger problems can be approximated using techniques

such as Monte Carlo tree search. 
ic optimization, European Journal of Operational Research (2018), 
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The KG( ∗) policy - There are many settings where the

value of information is nonconcave, such as when ex-

periments are very noisy (experiments with Bernoulli

outcomes fall in this category). For this setting, Frazier

and Powell (2010) proposes to act as if alternative x is

going to be tested n x times, and then find n x to maxi-

mize the average value of information. 

8.3. Discussion 

We note in closing that we did not provide a similar list of

policies for derivative-based problems. A stochastic gradient algo-

rithm would be classified as a policy function approximation. Wu,

Poloczek, Wilson, and Frazier (2017) appears to be the first to con-

sider using gradient information in a knowledge gradient policy. 

9. Policies for state-dependent problems 

While state-independent learning problems are an important

problem class, they pale in comparison to the vast range of state-

dependent functions, which includes the entire range of problems

known generally as “resource allocation.” Since it helps to illustrate

ideas in the context of an example, we are going to use a relatively

simple energy storage problem, where energy is stored in the bat-

tery for a system which can get energy from a wind farm (where

the price is free), the grid (which has unlimited capacity but highly

stochastic prices) to serve a predictable, time-varying load. 

This example is described in more detail in Powell and Meisel

(2016b) which shows for this problem setting that each of the four

classes may work best depending on the characteristics of the sys-

tem. 

9.1. Policy function approximations 

A basic policy for buying energy from and selling energy to the

grid from a storage device is to buy when the price p t falls below

a buy price θbuy , and to sell when it goes above a sell price θ sell . 

X 

π (S t | θ ) = 

{ −1 If p t < θ buy , 

0 If θ buy ≤ p t ≤ θ sell , 

1 If p t > θ sell . 

This is a policy that is nonlinear in θ . A popular PFA is one that

is linear in θ , often referred to as an “affine policy” or a “linear

decision rule,” which might be written as 

X 

π (S t | θ ) = θ0 φ0 (S t ) + θ1 φ1 (S t ) + θ2 φ2 (S t ) . (56)

Recently, there is growing interest in tapping the power of deep

neural networks to represent a policy. In this context, the policy π
would capture the structure of the neural network (the number of

layers and dimensionality of each layer), while θ would represent

the weights, which can be tuned using a gradient search algorithm.

These are examples of stationary policies, which is to say that

while the function depends on a dynamically varying state S t , the

function itself does not depend on time. While some authors will

simply add time to the state variable as a feature, in most appli-

cations (such as energy storage), the policy will not be monotone

in time. It is possible to make θ = (θbuy , θ sell ) time dependent, in

which case we would write it as θ t , but now we have dramati-

cally increased the number of tunable parameters ( Moazeni, Pow-

ell, Defourny, and Bouzaiene-ayari (2017) uses splines to simplify

this process). 

9.2. Cost function approximations 

A cost function approximation is a policy that solves a modi-

fied optimization problem, where either the objective function or
Please cite this article as: W.B. Powell, A unified framework for stochas
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he constraints can be modified parametrically. A general way of

riting this is 

 

CF A (S t | θ ) = arg max 
x ∈X π (θ ) 

C̄ π (S t , x | θ ) . (57)

 simple CFA uses a linear modification of the objective function

hich we can write as 

 

CF A 
t (S t | θ ) = arg max 

x ∈X t 

( 

C(S t , x ) + 

∑ 

f∈F 
θ f φ f (S t , x ) 

) 

, (58)

here the term added to C ( S t , x ) is a “cost function correction

erm,” which requires designing basis functions (φ f (S t , x )) , f ∈ F ,

nd tuning the coefficients θ . 

A common strategy is to introduce modifications to the con-

traints. For example, a grid operator planning energy generation

or tomorrow will introduce extra reserve by scaling up the fore-

ast. Airlines will optimize the scheduling of aircraft, handling un-

ertainty in travel times due to weather by introducing schedule

lack. Both of these represent modified constraints, where the ex-

ra generation reserve or schedule slack represent tunable param-

ters, which may be written 

 

CF A 
t (S t | θ ) = arg max 

x ∈X πt (θ ) 
C(S t , x ) , (59)

here X 

π
t (θ ) might be the modified linear constraints 

 t x = b t + D t θ, (60)

x ≥ 0 . 

ere, θ is a vector of tunable parameters and D is an appropri-

te scaling matrix. Using the creative modeling for which the lin-

ar programming community has mastered, Eq. (60) can be used

o introduce schedule slack into an airline schedule, spinning re-

erve into the plan for energy generation, and even buffer stocks

or managing a supply chain. 

.3. Value function approximations 

We begin by recalling the optimal policy based on calculating

he impact of a decision now on the future (originally given in Eq.

43) ), 

X ∗t (S t ) 

= arg max 
x t 

( 

C(S t , x t ) + E 

{ 

max 
π

E 

{ 

T ∑ 

t ′ = t+1 

C(S t ′ , X πt ′ (S t ′ )) 

∣∣∣∣∣S t+1 

} 

∣∣∣∣∣S t , x t 
} ) 

. (61)

e let V t+1 (S t+1 ) be the expected optimal value of being in state

 t+1 , allowing us to write Eq. (61) as 

 

∗
t (S t ) = arg max 

x t 

(
C(S t , x t ) + E { V t+1 (S t+1 ) | S t , x t } 

)
. (62)

The problem with Eq. (62) is that we typically cannot compute

he value function V t+1 (S t+1 ) . Section 2.6 provided a brief introduc-

ion of how to replace the exact value function with an approxima-

ion V t+1 (S t+1 ) which would give us the policy 

 

V F A 
t (S t ) = arg max 

x t 

(
C(S t , x t ) + E 

{
V t+1 (S t+1 ) | S t , x t 

})
. 

here are many problems where we cannot compute the expecta-

ion, so we might instead compute the value function around the

ost-decision state S x t , giving us 

 

V F A 
t (S t ) = arg max 

x t 

(
C(S t , x t ) + V t (S x t ) 

)
. 

A substantial field has grown up around approximating value

unctions, typically under the umbrella of approximate dynamic

rogramming ( Powell, 2011 ), or reinforcement learning ( Sutton &
tic optimization, European Journal of Operational Research (2018), 

https://doi.org/10.1016/j.ejor.2018.07.014
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arto, 1998 ) (see also Szepesvári, 2010 ). Beyond the brief introduc-

ion we provided in Section 2.6 , we refer the reader to these refer-

nces as a starting point. 

There is an entire literature that focuses on settings where x t is

 vector, and the contribution function C(S t , x t ) = c t x t , where the

onstraints X t are a set of linear equations. These problems are

ost often modeled where the only source of randomness is in

xogenous supplies and demands. In this case, the state S t consists

f just the resource state R t , and we can also show that the post-

ecision value function V 
x 

t (R t ) is concave (if maximizing). These

roblems arise often in the management of resources to meet ran-

om demands. 

Such problems have been solved for many years by represent-

ng the value function as a series of multidimensional cuts based

n Benders decomposition, building on ideas first presented in Van

lyke and Wets (1969) (which required enumerating all the cuts)

nd ( Higle & Sen, 1991 ) (which used a sample-based procedure).

uilding on these ideas, Pereira and Pinto (1991) proposed stochas-

ic dual dynamic programming, or SDDP, as a way of solving se-

uential problems, motivated by the challenge of optimizing water

eservoirs in Brazil. 

This strategy has spawned an entire body of research ( Girardeau

t al., 2014; Infanger & Morton, 1996; Sen & Zhou, 2014; Shapiro

t al., 2013 ) which is reviewed in Shapiro et al. (2014) . It is now

ecognized that SDDP is a form of approximate dynamic pro-

ramming in the context of convex, stochastic linear program-

ing problems (see e.g. Powell, 2007 ). Related to SDDP is the use

f separable, piecewise linear value function approximations that

ave proven useful in large scale logistics applications ( Bouzaiene-

yari, Cheng, Das, Fiorillo, & Powell, 2016; Powell, Ruszczy ́nski, &

opaloglu, 2004; Salas & Powell, 2013; Topaloglu & Powell, 2006 ). 

.4. Direct lookahead approximations 

Each of the policies described above (PFAs, CFAs, and VFAs) re-

uire approximating some function, drawing on the tools of ma-

hine learning. These functions may be the policy X 

π ( S t ), an ap-

roximation of E F (x, W ) , a modified cost function or constraints

for CFAs), or the value of being in a state V t ( S t ). These methods

ork when these functions can be approximated reasonably well. 

Not surprisingly, this is not always possible, typically because

e lack recognizable structure. When all else fails (which is quite

ften), we have to turn to direct lookaheads, where we need to

pproximate the lookahead policy in Eq. (43) . Since this function

s rarely computable, we approach it by replacing the model of the

uture with an approximation which we refer to as the lookahead

odel . A lookahead model is generated at a time t when we have

o make decision x t . There are five types of approximations that

re typically made when we create a lookahead model: 

• Limiting the horizon - We may reduce the horizon from ( t , T )

to (t, t + H) , where H is a horizon that is just long enough to

produce a good decision at time t . 
• Stage aggregation - A stage is a sequence of seeing new infor-

mation followed by making a decision. A popular strategy is to

replace the full multistage formulation with a two-stage formu-

lation, consisting of making a decision x t now, then seeing all

the information over the remainder of the horizon, represented

by W t+1 , . . . , W t+ H , and then making all the decisions over the

horizon x t+1 , . . . , x t+ H . This means that x t+1 is allowed to “see”

the entire future. 
• Approximating the stochastic process - We may replace the full

probability model with a sampled set of outcomes, often re-

ferred to as scenarios. We may also replace a state-dependent

stochastic process with one that is state-independent. 
Please cite this article as: W.B. Powell, A unified framework for stochast
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• Discretization - Time, states, and decisions may all be dis-

cretized in a way that makes the resulting model more com-

putationally tractable. The resulting stochastic model may even

be solvable using backward dynamic programming. 
• Dimensionality reduction - It is very common to ignore one or

more variables in the lookahead model. For example, it is vir-

tually always the case that a forecast will be held fixed in a

lookahead model, while it would be expected to evolve over

time in a real application (and hence in the base model). Alter-

natively, a base model with a belief state, capturing imperfect

knowledge about a parameter, might be replaced with an as-

sumption that the parameter is known perfectly. 

As a result of all these approximations, we have to create no-

ation for what is basically an entirely new model, although there

hould be close parallels with the base model. For this reason, we

se the same notation as the base model, but all variables are la-

eled with a tilde, and are indexed by both t (which labels the

ime at which the lookahead model is created), and t ′ , which is the

ime within the lookahead model. Thus, a lookahead policy would

e written 

X LA 
t (S t | θ LA ) 

= arg max 
x t 

( 

C(S t , x t ) + ̃

 E 

{ 

max 
˜ π∈ ̃ �

˜ E ˜ π

{ 

t+ H ∑ 

t ′ = t+1 

C( ̃ S t t ′ , ̃  X ˜ π
t t ′ ( ̃ S t t ′ )) | ̃ S t ,t +1 

} 

| S t , x t 
} ) 

. 

(63) 

ere, the parameter vector θ LA is assumed to capture all the

hoices made when creating the approximate lookahead model.

e note that in lookahead models, the tunable parameters (hori-

ons, number of stages, samples) are all of the form “bigger is bet-

er,” so tuning is primarily a tradeoff between accuracy and com-

utational complexity. 

Below we describe three popular strategies. The first is a deter-

inistic lookahead model, which can be used for problems with

iscrete actions (such as a shortest path problem) or continuous

ectors (such as a multiperiod inventory problem). The second is

 stochastic lookahead procedure developed in computer science

hat can only be used for problems with discrete actions. The third

s a strategy developed by the stochastic programming community

or stochastic lookahead models with vector-valued decisions. 

eterministic lookaheads 

Easily the most popular lookahead model uses a deterministic

pproximation of the future, which we might write 

 

LA −Det 
t (S t | θ LA ) = arg max 

x t 

( 

C(S t , x t ) + max 
˜ x t ,t +1 , ... , ̃ x t ,t + H 

t+ H ∑ 

t ′ = t+1 

C( ̃  S t t ′ , ̃  x t t ′ ) 

) 

, 

(64)

here the optimization problem is solved subject to any con-

traints that would have been built into the policy. 

The problem being modeled in (64) could be a shortest path

roblem, in which case we would likely solve it as a deterministic

ynamic program. If x t is a continuous vector (for example, opti-

izing cash flows or a supply chain problem), then (64) would be

 multiperiod linear program. Fig. 2 illustrates the process of solv-

ng a lookahead model which yields a decision x t which is im-

lemented in the base model. The horizontal axis describes time

oving forward in the base model, while the slanted lines repre-

ent the lookahead model projecting into the future. At each point

n time (we represent t , t + 1 and t + 2 ) we solve the lookahead

odel, which consists of state variables ˜ S t t ′ and decision variables

˜  t t ′ (for the lookahead model solved at time t ), which returns a de-

ision x t that is implemented in the base model. We then use the
ic optimization, European Journal of Operational Research (2018), 
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Fig. 2. Illustration of simulating a direct lookahead policy, using a deterministic 

model of the future. 
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base transition function S t+1 = S M (S t , x t , W t+1 ) where W t+1 is sam-

pled from the stochastic (base) model, or observed from a physical

system. At time t + 1 , we repeat the process. 

We note that the strategy of using a deterministic lookahead is

often referred to as model predictive control (or MPC), which is to

say that we use a model of the problem (more precisely an approx-

imate model) to decide what to do now. The association of MPC

with a deterministic lookahead reflects the history of MPC coming

from the engineering controls community that predominantly fo-

cuses on deterministic problems. The term “model predictive con-

trol” actually refers to any lookahead model, whether it is deter-

ministic or stochastic. However, stochastic lookahead models that

match the base model are rarely solvable, so we are usually us-

ing most if not all of the five types of approximations listed above.

For good reviews of model predictive control, see ( Bertsekas, 2005;

Camacho & Bordons, 2003; Morari, Lee, & Garc, 2002 ), and ( Lee,

2011 ). 

Rollout policies 

A powerful and popular strategy is to interpret the search over

a restricted set of policies in the future, represented as ˜ π ∈ 

˜ � in

Eq. (63) . The design of these policies is highly problem-dependent

and is best illustrated using examples: 

• The time t problem could be the simultaneous assignment of

drivers to riders at time t , where an assignment might take a

driver at location i to location j . We might then estimate the

value of the driver at j by myopically assigning this driver to

simulated loads in the future (ignoring all other drivers). 
• To solve a time-dependent inventory problem (such as planning

inventories before Christmas), imagine testing different order-

ing decisions now (imagine we have to play orders four weeks

in advance). Each decision is evaluated by simulating a simple

replenishment rule in the future, to help us evaluate our order-

ing decision now. 

The approximate rollout policy may be a parameterized pol-

icy ˜ X ̃  π ( ̃  S t t ′ | ̃  θ ) that is typically fixed in advance (see Bertsekas &

Castanon, 1999 for a careful early analysis of this idea), but the

choice of rollout policy can (and should) be optimized as part

of the search over policies in our base model (38) . In fact, the

best choice of the parameter vector ˜ θ depends on the initial post-

decision state S x t , which means we could even tune the parameter

to find 

˜ θ (S x t ) on the fly (unlikely this would ever be done in prac-

tice). Thus, the search over ˜ π in (63) could be a search for the best
˜ θ (S x t ) . 

Monte Carlo tree search for discrete decisions 

Imagine that we have discrete actions a t ∈ A s when we are in

state s = S t , after which we observe a realization of W t+1 . Such
Please cite this article as: W.B. Powell, A unified framework for stochas
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roblems can be modeled in theory as classical decision trees, but

hese explode very quickly with the number of time periods. 

Monte Carlo tree search is a strategy that evolved within com-

uter science to explore a tree without enumerating the entire

ree. This is done in four steps as illustrated in Fig. 3 . These steps

nclude (a) selecting an action out of a decision node (which repre-

ents a state ˜ S t t ′ ), (b) expanding the tree, if the resulting observa-

ion of ˜ W t ,t ′ +1 results in a node that was not already in the tree, (c)

he rollout policy, which is how we evaluate the value of the node

hat we just reached out to, and (d) backup, where we run back-

ard through the tree, updating the value of being at each node

this is what we did in Eq. (18) ). 

Central to the success of MCTS is having an effective rollout

olicy to get an initial approximation of the value of being in

 leaf node. Rollout policies were originally introduced and ana-

yzed in Bertsekas and Castanon (1999) . A review of Monte Carlo

ree search is given in Browne et al. (2012) , although this is pri-

arily for deterministic problems. Other recent reviews include

 Auger, Couëtoux, & Teytaud, 2013 ) and ( Munos, 2014 ). Jiang, Al-

anj, and Powell (2017) presents an asymptotic proof of conver-

ence of MCTS if the lookahead policy uses the principle of infor-

ation relaxation, which is done by taking a sample of the future

nd then solving the resulting deterministic problem assuming we

re able to look into the future. 

Monte Carlo tree search represents a relatively young algorith-

ic technology which has proven successful in a few applications.

t is basically a brute force solution to the problem of designing

olicies, which depends heavily on the ability to design effective,

ut easy-to-compute, rollout policies. 

wo-stage stochastic programming for vector-valued decisions 

Monte Carlo tree search requires the ability to enumerate all of

he actions out of a decision node. This limits MCTS to problems

ith at most a few dozen actions per state, and completely elimi-

ates problems with vector-valued decisions. 

A popular strategy (at least in the research literature) for

olving sequential, stochastic linear programs is to simplify the

ookahead model into three steps: 1) making the decision x t 
o be implemented at time t , 2) sampling all future informa-

ion 

˜ W t ,t +1 (ω) , . . . , ˜ W t ,t + H ( ω) , where the sample paths ω are

rawn from a sampled set ˜ 	t of sample paths of possible val-

es of ˜ W t ,t +1 , . . . , ˜ W t ,t + H , and 3) making all remaining decisions

˜  t ,t +1 (ω) , . . . , ̃  x t ,t + H ( ω) . This produces the lookahead policy 

 

2 stage 
t (S t ) = arg max 

x t , ( ̃ x t t ′ (ω )) t+ H t ′ = t+1 
,ω ∈ ̃ 	t 

c t x t 

+ 

∑ 

ω t ∈ ̃ 	t 

˜ p t (ω) 
t+ H ∑ 

t ′ = t+1 

˜ c t t ′ ( ω) ̃  x t t ′ ( ω) , (65)

ubject to first stage constraints 

 t x t = b t , (66)

 t ≥ 0 , (67)

nd the second stage constraints for ω ∈ 

˜ 	t , 

˜ 
 t ,t +1 (ω) ̃  x t ,t +1 ( ω) + 

˜ B t ,t ′ −1 (ω) x t (ω) = 

˜ b t ,t +1 (ω) , (68)

˜ A t t ′ (ω) ̃  x t t ′ ( ω) + 

˜ B t ,t ′ −1 (ω) ̃  x t ,t ′ −1 ( ω) = 

˜ b t t ′ (ω) , 

t ′ = t + 2 , . . . , t + H, (69)

˜ 
 t t ′ (ω) ≥ 0 , t ′ = t + 1 , . . . , t + H. (70)
tic optimization, European Journal of Operational Research (2018), 
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Rollout
policy

Selection Expansion Simulation Backpropagation

Tree policy

Action selection

Sampling

(a)            (b)                              (c)                              (d)
Fig. 3. Sketch of Monte Carlo tree search, illustrating (left to right): selection, expansion, simulation and backpropagation. 
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e again emphasize that ω determines the entire sequence
˜ 
 t ,t +1 , . . . , ˜ W t ,t + H , which is how each decision ˜ x t t ′ (ω) in the looka-

ead model is allowed to see the entire future. However, the here-

nd-now decision x t is not allowed to see this information, which

s viewed as an acceptable approximation in the research litera-

ure, although there has been virtually no analysis of the errors

ntroduced by this assumption. 

Since x t is a vector, even deterministic versions of (65) (that is,

here there is only a single ω) may be reasonably large. As a re-

ult, the full problem (65) - (70) when the set ˜ 	t contains tens

o potentially hundreds of outcomes may be quite large. This has

otivated the development of decomposition algorithms such as

he progressive hedging algorithm of Rockafellar and Wets (1991) ,

hich replaces x t with x t ( ω), which means that now even x t is al-

owed to see the future, and then introduces the constraint 

 t (ω) = x̄ t , ∀ ω ∈ 

˜ 	t . (71) 

q. (71) is widely known as a “non-anticipativity constraint” since

t requires that x t cannot be different for different outcomes ω.

owever, progressive hedging relaxes this constraint, producing se-

ies of much smaller optimization problems, one for each ω ∈ 

˜ 	t ,

hich are progressively modified until (71) is satisfied. 

The literature on stochastic programming (as this field is

nown) dates to the 1950’s with the original work of Dantzig

1955) and ( Dantzig & Ferguson, 1956 ). This work has been fol-

owed by decades of research which is summarized in a series

f books ( Birge & Louveaux, 2011; King & Wallace, 2012; Shapiro

t al., 2014 ). As with all of our other policies, our two-stage

tochastic programming policy X 

2 stage ( S t ) should be evaluated us-

ng our base model in Eq. (38) , although this is often overlooked,

rimarily because computing X 

2 stage ( S t ), which requires solving the

ptimization problem (65) –(70) , can be quite difficult. As a result,

he problem of carefully choosing the set ˆ 	t has attracted con-

iderable attention, beginning with the seminal work of Dupacova

t al. (2003) and ( Heitsch & Romisch, 2009 ), with more recent

ork on uncertainty modeling (see the tutorial in Bayraksan &

ove, 2015 ). 

Given the challenges of solving practical two-stage stochas-

ic programming problems, full multistage lookahead models have

ttracted relatively little attention ( Defourny, Ernst, & Wehenkel,

013 is a sample). We note that Monte Carlo tree search, by con-
Please cite this article as: W.B. Powell, A unified framework for stochast
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rast, is a full “multistage” stochastic lookahead model, but it fully

xploits the relative simplicity of small action spaces. 

obust optimization 

Robust optimization has been extended to multiperiod prob-

ems, just as the two-stage stochastic programming model has

een extended to multiperiod problems as an approximate way

f solving (robustly) sequential decision problems. Assume we are

rying to find x t by optimizing over a horizon (t, t + H) . Formulated

s a robust optimization problem means solving 

 

RO 
t (S t | θ ) = arg min 

x t , ... ,x t+ H ∈X t 
max 

(w t , ... ,w t+ H ) ∈W t (θ ) 

t+ H ∑ 

t ′ = t 
c t (w t ) x t , (72) 

ossibly subject to constraints that depend on (w t , . . . , w t+ H ) . Note

hat we are using w t ′ rather than ω or W t ′ (ω) , since w t ′ is now a

ecision variable. 

This strategy was proposed in Ben-Tal et al. (2005) to solve a

upply chain problem. While not modeled explicitly, the policy was

hen tested in an expectation-based simulator (what we call our

ase model). 

.5. Hybrid policies 

There are two reasons to articulate the four meta-classes of

olicies. First, all four classes have problems for which they are

ell suited. If you only learn one class (as many students of

tochastic optimization do), you are going to be limited to work-

ng on problems that are suited to that class. In fact, the best pol-

cy, even within the context of a single problem domain, can de-

end on the characteristics of the data. This property is illustrated

n Powell and Meisel (2016b) for an energy storage problem, where

ach of the four classes of policies (plus a fifth hybrid) is shown to

ork best on a particular version of the problem. 

The second reason is that it is often the case that the best pol-

cy is a hybrid of two, or even three, of the four classes. Below are

ome examples of hybrid policies we have encountered. 

• Lookahead and VFA policies - Tree search can be a power-

ful strategy, but it explodes exponentially with the number of

stages. Value functions avoid this, but requires that we develop
ic optimization, European Journal of Operational Research (2018), 
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accurate approximations of the value of being in a state, which

can be hard in many applications. Consider now a partial tree

search over a short horizon, terminating with a value function.

Now the value function does not have to be quite as accurate,

and yet we still get an approximation that extends over a po-

tentially much longer horizon. 
• Deterministic lookaheads (DLA) with tunable parameters (CFA)

- A common industry practice is to solve a deterministic looka-

head model, but to introduce tunable parameters to handle

uncertainty. For example, airlines might introduce schedule

slack to handle the uncertainty of weather delays, while a

grid operator will schedule extra generation capacity to han-

dle unexpected generator failures. These tunable parameters are

optimized in the base model in Eq. (38) , where the transition

function (39) might be a simulator, or the real world. 
• Any optimization-based policy (CFA, VFA or DLA) guided by his-

torical patterns (a form of PFA) - Cost-based optimization mod-

els easily handle very high-dimensional data (e.g. optimizing a

fleet of trucks or planes), but it can be hard to capture some

issues in a cost function (we like to put drivers that work in

teams on longer loads, but this is not a hard constraint). 

The choice of the best policy, or hybrid, always depends on

comparisons using the base model (38) and (39) . 

Discussion 

There is widespread confusion in the research literature regard-

ing the distinction between stochastic lookahead policies (primar-

ily), and stochastic base models. While all policies should be tested

in a base model (which can be the real world), tuning in a base

model is essential when using PFAs and CFAs, but not with looka-

head policies. As a result, many authors will present a stochastic

lookahead model without making the distinction of whether this

is a lookahead model, or a base model. 

In some cases it is clear that a stochastic model is a lookahead

model, such as a two-stage stochastic programming approximation

of a multiperiod (and multistage) stochastic optimization problem.

However, it is possible to solve a stochastic lookahead model as

a dynamic program, in which case it may not be clear. We might

look for approximations that are typical in lookahead models, but

base models use approximations too. 

10. A classification of problems 

Having organized policies into four classes, we need to address

the problem of evaluating policies. For this purpose, we have to

recognize that there are different problem classes that introduces

different issues for policy evaluation. We first make the distinc-

tion between problems where we only care about the final design

(as would occur if we are experimenting in a lab) versus problems

where we learn by doing in the field, in which case we have to

maximize the cumulative rewards. The first objective is offline since

we are working in a lab or simulated environment, while the sec-

ond is online since we are adapting in a field setting. 

It turns out that the machine learning community also uses

these terms, but with different meanings. In machine learning, “of-

fline” refers to batch learning, where we have to fit a model using

a dataset that has already been generated. By contrast, “online”

refers to sequential, since this is what would happen if we were

learning in the field. The problem is that there are many uses of

sequential algorithms in offline settings. For this reason, we use

terminal reward to refer to problems where we are only interested

in the performance of the final design, and cumulative reward when

we need to maximize performance as we are progressing. 

We begin by identifying two key dimensions for characterizing

any adaptive optimization problem: First, whether the objective
Please cite this article as: W.B. Powell, A unified framework for stochas

https://doi.org/10.1016/j.ejor.2018.07.014 
unction is offline (terminal reward) or online (cumulative reward),

nd second, whether the objective function is state-independent

learning problems) or state-dependent (traditional dynamic pro-

rams). This produces four problem classes which are depicted in

able 1 . Moving clockwise around the table, starting from the up-

er left-hand corner: 

Class 1) State-independent, terminal reward - This is our classic

stochastic search problem evaluated using a finite budget (as

it should be), where the problem is to find the best policy

(which could be a stochastic gradient algorithm) for finding

the design x π , N produced by the policy π within the exper-

imental budget N . This might be called the finite-time ver-

sion of the newsvendor problem, where the expectation can

be written in nested form as 

max 
π

E { F (X 

π,N , ̂  W ) | S 0 } = E S 0 E W 

1 , ... ,W 

N | S 0 E ̂ W | S 0 F (X 

π,N , ̂  W ) , 

(73)

where W 

1 , . . . , W 

N are the observations of W while learning

the function, and 

̂ W is the random variable used for testing

the final design x π , N . The initial state S 0 may be determin-

istic, but might include a Bayesian prior of an unknown pa-

rameter (such as the response of demand to price), which

means we have to take an expectation over this distribution.

Class 2) State-independent, cumulative reward - Here we want

a policy that learns while it optimizes, where we have to

live with the performance of the decisions we make while

we are learning the function. This would be our classic mul-

tiarmed bandit problem if the decisions x were discrete and

we did not have access to derivatives (but we are not insist-

ing on these limitations). Expanding the expectation gives

us 

max 
π

E 

{ 

N−1 ∑ 

n =0 

F (X 

π (S n ) , W 

n +1 ) | S 0 
} 

= E S 0 E W 

1 , ... ,W 

N | S 0 
N−1 ∑ 

n =0 

F (X 

π (S n ) , W 

n +1 ) . (74)

Class 3) State-dependent, cumulative reward - At first glance

this looks like a classical dynamic program (when expressed

in terms of optimizing over policies), yet we see that it

closely parallels the multiarmed bandit problem. This prob-

lem may include a belief state, but not necessarily. When we

expand the expectation we obtain 

max 
π

E 

{ 

T −1 ∑ 

t=0 

C(S t , X 

π (S t ) , W t+1 ) | S 0 
} 

= E S 0 E W 1 , ... ,W T | S 0 

{ 

T −1 ∑ 

t=0 

C(S t , X 

π (S t ) , W t+1 ) | S 0 
} 

. (75)

In contrast with problem classes (1) and (2), we model the

performance of the policy over time t , rather than iterations

n as we did in (74) (which could have been written either

way). 

Class 4) State-dependent, terminal reward - Here we are look-

ing for the best policy to learn a policy that will then be im-

plemented. Our implementation policy X π
imp 

(S t | θ imp ) paral-

lels the implementation decision x π , N in (73) , where θ imp =
�π lrn 

(S| θ lrn ) is a parameter that is learned by the learning

policy �π lrn 
(S| θ lrn ) . The learning policy could be algorithms

for learning value functions such as Q -learning, approximate

value iteration or SDDP, or it could be a search algorithm

for learning a PFA or CFA. The parameters θ imp are parame-
tic optimization, European Journal of Operational Research (2018), 
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Table 1 

Comparison of formulations for state-independent (learning) vs. state-dependent problems, and offline (terminal reward) and online (cumulative reward). 

Offline 

Terminal reward 

Online 

Cumulative reward 

State 

independent 

problems 

max π E { F (x π,N , W ) | S 0 } 
Stochastic search 

(1) 

max π E { ∑ N−1 
n =0 F (X π (S n ) , W 

n +1 ) | S 0 } 
Multiarmed bandit problem 

(2) 

State 

dependent 

problems 

max π lrn E { C(S, X π
imp 

(S| θ imp ) , W ) | S 0 } 
Offline dynamic programming 

(4) 

max π E { ∑ T 
t=0 C(S t , X 

π (S t ) , W t+1 ) | S 0 } 
Online dynamic programming 

(3) 
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ters that determine the behavior of the implementation pol-

icy such as an approximate Q -factor Q̄ (s, a ) , a Benders’ cut,

or the tunable parameter in a UCB policy. 

When we have a state-dependent function, we have to take

an additional expectation over the state variable when eval-

uating the policy. Keeping in mind that the implementation

parameters θ imp are a function of the learning policy π lrn ,

we can write this as 

max 
π lrn 

E { C(S, X 

π imp 

(S| θ imp ) , ̂  W ) | S 0 } 
= E S 0 E 

π lrn 

W 

1 , ... ,W 

N | S 0 E 

π imp 

S| S 0 E 

π imp ̂ W | S 0 C(S, X 

π imp 

(S| θ imp ) , ̂  W ) . (76) 

where W 

1 , . . . , W 

N represents the observations made while

using our budget of N experiments to learn a policy, and 

̂ W 

is the random variable observed when evaluating the policy

at the end. 

Computing the expectation E 

π imp 

S| S 0 over the states is typically

intractable because it depends on the implementation policy

(which of course depends on the learning policy). Instead,

we can run a simulation over a horizon t = 0 , . . . , T − 1 and

then divide by T to get an average contribution per unit

time. We can think of W 

n as the set of realizations over a

simulation, which we can write as W 

n = (W 

n 
1 

, . . . , W 

n 
T 
) . We

can then write our learning problem as 

max 
π lrn 

E 
S 0 
E 

π imp 

(W 

n 
t 

) T 
t=1 

,n =1 , ... ,N| S 0 

( 

E 
π imp 

( ̂ W t ) 
T 
t=1 

| S 0 
1 

T 

T−1 ∑ 

t=0 

C(S t , X 
π imp 

(S t | θ imp ) , ̂  W t+1 ) 

)
(77)

Here, we are searching over learning policies, where

the simulation over time replaces F ( x , W ) in the state-

independent formulation. The sequence (W 

n 
t ) 

T 
t=1 , n = 1 , . . . , N

replaces the sequence W 

1 , . . . , W 

N for the state-independent

case, where we start at state S 0 = S 0 . We then do our final

evaluation by taking an expectation over ( ̂  W t ) 
T 
t=1 , where we

again assume we start our simulations at S 0 = S 0 . 

This organization brings out relationships that have not been

ighlighted in the past. For example, while ranking and selec-

ion/stochastic search has been viewed as a fundamentally differ-

nt problem class from multiarmed bandits, we see that they are

eally the same problem with different objectives (final reward ver-

us cumulative reward). We also see that state-independent prob-

ems (learning problems) are closely related to state-dependent

roblems, which is the problem class typically associated with dy-

amic programming (although all of these problems are dynamic

rograms). 

We have noted that most adaptive learning algorithms for dy-

amic programming ( Q -learning, approximate dynamic program-

ing, SDDP) fall under the category of state-dependent, final-

eward in Table 1 , which suggests that the cumulative-reward,

tate-dependent case is a relatively overlooked problem class (ex-

luding contextual bandits, which is a special case). Algorithms in

his setting have to balance learning while making good decisions

the classic exploration-exploitation tradeoff). Some contributions
Please cite this article as: W.B. Powell, A unified framework for stochast
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o this problem class include the work of Duff ( Duff, Barto, & Du,

996 and Duff, 2002 ) which tried to adapt the theory of Gittins

ndices to Q -learning algorithms, and Ryzhov ( Ryzhov, Frazier, &

owell, 2010 and Ryzhov, Mes, Powell, & van den Berg, 2017 ) who

eveloped both offline (final reward) and online (cumulative re-

ard) adaptations of the knowledge gradient algorithm for state-

ependent problems. 

There is a substantial literature that makes the distinction be-

ween problems in classes (1) and (2), primarily because optimal

olicies and their behavior (and hence, theoretical properties) are

uite different. By contrast, while there are communities doing

state dependent) dynamic programming in both offline and online

ettings, the algorithms (policies) used for each setting are funda-

entally the same. Why is this? We believe it is because classes

1) and (2) are relatively simple, and lend themselves to finding

heoretical results characterizing the behavior of policies, where

he slight differences between (1) and (2) are important. By con-

rast, if you are focusing on designing algorithms to find optimal

olicies, the distinction between the final reward and cumulative

eward objective functions is simply not that important. Imagine

olving linear programs for deterministic versions of (3) and (4);

he simplex algorithm will solve both of these. 

1. Research challenges 

The framework presented here brings a variety of perspectives

rom the different communities of stochastic optimization, which

reates new opportunities for research. These include: 

• Given the complexity of solving a stochastic lookahead model,

most authors are happy just to get a solution. As a result, al-

most no attention has been devoted to analyzing the quality of

a stochastic lookahead model. We need more research to un-

derstand the impact of the different types of errors that are in-

troduced by the approximations discussed in Section 5.2 when

creating lookahead models. 
• There has been a long tradition of solving problems with be-

lief states as “partially observable Markov decision processes.”

At the same time, theoreticians have known for decades that

dynamic programs with belief states can be modeled simply as

part of the state variable (as we have done), which means that

POMDPs are really just dynamic programs which can be solved

with any of the four classes of policies. In fact, we have de-

scribed policies designed for problems where the state variable

is purely a belief state. We need to explore the four classes of

policies for problems with mixed state variables (physical, in-

formational, and belief), rather than assuming that we have to

always solve Bellman’s equation. 
• The quality of a policy depends on the quality of a model;

the stochastic optimization literature puts relatively little atten-

tion into the model of uncertainty, although some attention has

been given to the identification of suitable scenarios in a sam-

pled model, and the design of distributionally robust models.

There is, of course, an extensive literature on stochastic model-

ing and uncertainty quantification; we need considerably more
ic optimization, European Journal of Operational Research (2018), 

https://doi.org/10.1016/j.ejor.2018.07.014


24 W.B. Powell / European Journal of Operational Research 0 0 0 (2018) 1–27 

ARTICLE IN PRESS 

JID: EOR [m5G; August 14, 2018;23:35 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

 

A  

A  

A  

A  

 

A  

 

A  

 

B  

B  

 

 

B  

B  

 

B  

B  

B  

B  

B  

B  

 

B  

B  

 

B  

 

B  

B  

B  

B  

B  

B  

 

 

B  

 

B  

B  

 

B  

B  

 

 

B  

 

research at the intersection of these fields and stochastic opti-

mization. 
• Design of algorithms for online (cumulative reward) settings.

The vast majority of adaptive search algorithms (stochastic

gradient methods, Benders decomposition, Q -learning, approx-

imate dynamic programming) are implemented in an offline

context where the goal is to produce a solution that “works

well.” There are many settings where learning has to be per-

formed online, which means we have to do well as we are

learning, which is the standard framework of multiarmed ban-

dit problems. We can bring this thinking into classical stochas-

tic search problems. 
• All of the communities described in Section 2 focus on

expectation-based objectives, yet risk is almost always an is-

sue in stochastic problems. There is a growing literature on the

use of risk measures, but we feel that the current literature

is only scratching the surface in terms of addressing compu-

tational and modeling issues in the context of specific applica-

tions. 
• Parametric cost function approximations, particularly in the

form of modified deterministic models, are widely used in en-

gineering practice (think of scheduling an airline with schedule

slack to handle uncertainty). This strategy represents a pow-

erful alternative to stochastic programming for handling mul-

tistage stochastic math programs. We envision that this re-

search will consist of computational research to develop and

test search algorithms for optimizing parametric CFAs, along

with the theoretical analysis of structural results to guide the

design of these policies. 
• With rare exceptions, authors will pursue one of the four

classes of policies we have described above, but it is not always

obvious which is best, and it can depend on the characteristics

of the data. We need a robust methodology that searches across

classes of policies, and performs self-tuning, in an efficient way.

Of course, we will always be searching for the ultimate function

that replaces all four classes, but we are not optimistic that this

will be possible in practice. 
• Multiple objectives - Stochastic dynamic problems tend to be

richer and more complex, and one byproduct of this is that

these problems are often multi-objective. At a minimum, we

have to handle risk and reward, but in real applications, there

tend to be several important metrics that are being managed. 
• Multiple agents - A rich direction to extend this modeling

framework is to include multiple agents. This raises issues of

communication, coordination and adversarial behavior. 

Each of these topics are deep and rich, and could represent en-

tire fields of research. 
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