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Abstract

Stochastic optimization is an umbrella term that includes over a dozen fragmented communities, using a
patchwork of often overlapping notational systems with algorithmic strategies that are suited to specific
classes of problems. This paper reviews the canonical models of these communities, and proposes a
universal modeling framework that encompasses all of these competing approaches. At the heart is
an objective function that optimizes over policies which is standard in some approaches, but foreign
to others. We then identify four meta-classes of policies that encompasses all of the approaches that
we have identified in the research literature or industry practice. In the process, we observe that any
adaptive learning algorithm, whether it is derivative-based or derivative-free, is a form of policy that
can be tuned to optimize either the cumulative reward (similar to multi-armed bandit problems) or
final reward (as is used in ranking and selection or stochastic search). We argue that the principles of
bandit problems, long a niche community, should become a core dimension of mainstream stochastic
optimization.
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1. Introduction

There are many communities that contribute to the problem of making decisions in the presence
of different forms of uncertainty, motivated by a vast range of applications spanning business, science,
engineering, economics and finance, health and transportation. Decisions may be binary, discrete, con-
tinuous or categorical, and may be scalar or vector. Even richer are the different ways that uncertainty
arises. The combination of the two creates a virtually unlimited range of problems.

A byproduct of this diversity has been the evolution of different mathematical modeling styles and
solution approaches. In some cases communities developed a new notational system followed by an
evolution of solution strategies. In other cases, a community might adopt existing notation, and then
adapt a modeling framework to a new problem setting, producing new algorithms and new research
questions.

Our point of departure from deterministic optimization, where the goal is to find the best decision,
is to address the problem of finding the best policy, which is a function for making decisions given what
we know (sometimes called a “decision rule”). Throughout, we capture what we know at time t by
a state variable St (we may sometimes write this as Sn to capture what we know after n iterations).
We always assume that the state St has all the information we need to know at time t from history
to model our system from time t onward, even if we know some parameters probabilistically (more on
this later).

We will then define a function Xπ(St) to represent our policy that returns a decision xt = Xπ(St)
given our state of knowledge St about our system. Stated compactly, a policy is a mapping (any
mapping) from state to a feasible action. We let Ct(St, xt,Wt+1) be our performance metric (e.g. a
cost or contribution) that tells us how the decision performs (this metric may or may not depend on
St or Wt+1). Once we make our decision xt, we then observe new information Wt+1 that takes us to a
new state St+1 using a transition function

St+1 = SM (St, xt,Wt+1). (1)

Our optimization challenge is to solve the problem

max
π

E

{
T∑
t=0

Ct(St, X
π
t (St),Wt+1)|S0

}
, (2)

where St evolves according to equation (1), and where we have to specify an exogenous information
process that consists of the sequence

(S0,W1,W2, . . . ,WT ). (3)

Given the already broad scope of this article, we will restrict our attention to problems that maxi-
mize or minimize expected performance, but we could substitute a nonlinear risk metric (introducing
substantial computational complexity). The objective in (2) expresses the goal of maximizing the
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cumulative reward (summing rewards over time), but there are many problems where we are only
interested in the final reward, which we can express by letting Ct(. . .) = 0 for t = 0, . . . , T − 1.

This article will argue that (1)-(3) forms the basis for a universal model that can be used to
represent virtually every expectation-based stochastic optimization problem. At this same time, this
framework disguises the richness of stochastic optimization problems. This framework introduces two
types of challenges:

• Modeling - Modeling sequential decision problems is often the most difficult task, and requires a
strong understanding of state variables, the different types of decisions and information, and the
dynamics of how the system evolves over time (which may not be known).

• Designing policies - Given a model, we have to design a policy that maximizes (or minimizes)
our objective in (2).

Different communities in stochastic optimization differ in both how they approach modeling, and most
approach the problem of searching over policies by working within one or two classes of policies.

This review extends the thinking of two previous tutorial articles. Powell (2014) was our first
effort at articulating four classes of policies which we first hinted at in Powell (2011)[Chapter 6].
Powell (2016) extended this thinking, recognizing for the first time that these four classes fell into two
important categories: policy search (a term used in computer science), which requires searching over
a class of (typically parametric) functions, and policies based on lookahead approximations, where we
approximate in different ways the downstream value of a decision made now. Each category can be
further divided into two classes, producing what we refer to as the four (meta)classes of policies. While
different communities have embraced each of these four classes of policies, we have shown (Powell &
Meisel (2016a)) that each of the four classes may work best depending on the data, although choices
are often guided by the characteristics of the problem.

The process of developing a single framework that bridges between all the different communities is
already identifying opportunities for cross-fertilization. This review makes the following observations
which the reader might keep in mind while progressing through the article:

• The stochastic optimization communities have treated optimization of the final reward (often
under terms such as “ranking and selection” or stochastic search) as distinctly different from
optimization of the cumulative reward (commonly done in dynamic programming and multiarmed
bandit problems), but these are just different objective functions. While the choice of the best
policy will depend on the objective, the process of finding the best policy does not.

• The multiarmed bandit problem can be viewed as a derivative-free stochastic search problem
using a cumulative reward objective function. Maximizing cumulative rewards is often over-
looked in stochastic optimization, while some communities (notably dynamic programming) use
a cumulative reward objective when the real interest is in the final reward. While the process
of optimizing over policies may be the same, it is still important to use the correct formulation
(later in the article we argue that the newsvendor is an example of a misformulated problem).
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• This article identifies (for the first time) two important problem classes:

State-independent problems - In this class, the state variable captures only our belief about
an unknown function, but where the problem itself does not depend on the state variable.

State-dependent problems - Here, the contributions, constraints, and/or transition function
depends on dynamically varying information.

Both of these problems can be modeled as dynamic programs, but are classically treated using
different approaches. We argue that both can be approached using the same framework (1) - (3),
and solved using the same four classes of policies.

• Classical algorithms such as stochastic gradients methods can be viewed as dynamic programs,
opening the door to addressing the challenge of designing optimal algorithms.

• Most communities in stochastic optimization focus on a particular approach for designing a
policy. We claim that all four classes of policies should at least be considered. In particular, the
approach using policy search and the approach based on lookahead approximations each offer
unique strengths and weaknesses that should be considered when designing practical solution
strategies.

We also demonstrate that our framework will open up new questions by taking the perspective of
one problem class into a new problem domain.

2. The communities of stochastic optimization

Deterministic optimization can be organized along two major lines of investigation: math pro-
gramming (linear, nonlinear, integer), and deterministic optimal control. Each of these fields has
well-defined notational systems that are widely used around the world.

Stochastic optimization, on the other hand, covers a much wider class of problems, and as a result
has evolved along much more diverse lines of investigation. Complicating the organization of these
contributions is the observation that over time, research communities which started with an original,
core problem and modeling framework have evolved to address new challenges which require new
algorithmic strategies. This has resulted in different communities doing research on similar problems
with similar strategies, but with different notation, and asking different research questions.

Below we provide a summary of the most important communities, using the notation most familiar
to each community. Later, we are going to introduce a single notational system which strikes a balance
between using notation that is most familiar and which provides the greatest transparency. All of these
fields are quite mature, so we try to highlight some of the early papers as well as recent contributions
in addition to some of the major books and review articles that do a better job of summarizing the
literature than we can, given the scope of our treatment. However, since our focus is integrating across
fields, we simply cannot do justice to the depth of the research taking place within each field.

3



Readers may wish to just skim this section on a first pass so they can a quick sense of the diverse
modeling frameworks, but then move to the rest of the paper. However, if you choose to give it a
careful read, please pay attention not just to the differences in notation, but the different ways each
community approaches the process of modeling. Some key modeling characteristics are

• Problem statement - Deterministic math programs are represented as objective functions subject
to constraints. Stochastic optimization problems might similarly be represented as optimizing
an objective (although they vary in terms of how they state what they are optimizing over), but
other communities will state an optimality condition (Bellman’s equation) or a policy (such as
the lookahead policies in stochastic programming). Differences in how problems are stated easily
introduces the greatest confusion.

• State variables - In operations research, many equate “state” with physical state such as inventory
or the location of a vehicle. In engineering controls, “state” might be estimates of parameters.
In stochastic search, the “state” might capture the state of an algorithm (for derivative-based
algorithms) or the belief about a function (for derivative-free algorithms). For bandit problems,
“state” is the belief (in the form of a statistical model) about an unknown function.

• Decisions under uncertainty - A decision xt (or action at or control ut) has to be made with
the information available at that time. This is represented as an action at a node (in a tree),
a “measurable function” (common in optimal stopping and control theory), “nonanticipativ-
ity constraints” (in stochastic programming), an action chosen by solving Bellman’s optimality
equation, or a policy π(St) that depends on a state St (which is the most general).

• Representing uncertainty - Stochastic programming will represent future events as scenarios,
Markov decision processes bury uncertainty in a one-step transition function, robust optimization
models uncertainty in terms of uncertainty sets, reinforcement learning (and many papers in
optimal control for engineering) use a data-driven approach by assuming that uncertainty can be
observed but not modeled.

• Modeling system dynamics - Stochastic programming will capture dynamics in systems of lin-
ear equations, Markov decision problems use a one-step transition matrix, optimal control uses
a transition function (“state equation”), while several communities (engineering controls, rein-
forcement learning) will often assume that transitions can only be observed.

• Objective functions - We may wish to minimize costs, regret, losses, errors, risk, volatility, or we
may maximize rewards, profits, gains, utility, strength, conductivity, diffusivity and effectiveness.
Often, we want to optimize over multiple objectives, although we assume that these can be rolled
into a utility function.

These differences are subtle, and may be difficult to identify on a first read.
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Figure 1: Illustration of a simple decision tree for an asset selling problem.

2.1. Decision trees

Arguably the simplest stochastic optimization problem is a decision tree, illustrated in figure 1,
where squares represent decision nodes (from which we choose an action), and circles represent outcome
nodes (from which a random event occurs). Decision trees are typically presented without mathematics
and therefore are very easy to communicate. However, they explode in size with the decision horizon,
and are not at all useful for vector-valued decisions.

Decision trees have proven useful in a variety of problems complex decision problems in health,
business and policy (Skinner, 1999). There are literally dozens of survey articles addressing the use of
decision trees in different application areas.

2.2. Stochastic search

Derivative-based stochastic optimization began with the seminal paper of Robbins & Monro (1951)
which launched an entire field. The canonical stochastic search problem is written

max
x

EF (x,W ), (4)

where W is a random variable, while x is a continuous scalar or vector (in the earliest work). We
assume that we can compute gradients (or subgradients) ∇xF (x,W ) for a sample W . The classical
stochastic gradient algorithm of Robbins & Monro (1951) is given by

xn+1 = xn + αn∇xF (xn,Wn+1), (5)
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where αn is a stepsize that has to satisfy

αn > 0, (6)
∞∑
n=0

αn = ∞, (7)

∞∑
n=0

α2
n < ∞. (8)

Stepsizes may be deterministic, such as αn = 1/n or αn = θ/(θ + n), where θ is a tunable parameter.
Also popular are stochastic stepsizes that adapt to the behavior of the algorithm (see Powell & George
(2006) for a review of stepsize rules). Easily the biggest challenge of these rules is the need to tune
parameters. Important recent developments which address this problem to varying degrees include
AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2015) and PiSTOL (Orabona, 2014).

Stochastic gradient algorithms are used almost universally in Monte Carlo-based learning algo-
rithms. A small sample of papers includes the early work on unconstrained stochastic search including
Wolfowitz (1952) (using numerical derivatives), Blum (1954) (extending to multidimensional prob-
lems), and Dvoretzky (1956). A separate line of research focused on constrained problems under the
umbrella of “stochastic quasi-gradient” methods, with seminal contributions from Ermoliev (1968),
Shor (1979), Pflug (1988b), Kushner & Clark (1978), Shapiro & Wardi (1996), and Kushner & Yin
(2003). As with other fields, this field broadened over the years. The best recent review of the field
(under this name) is Spall (2003). Bartlett et al. (2007) approaches this topic from the perspective
of online algorithms, which refers to stochastic gradient methods where samples are provided by an
exogenous source. Broadie et al. (2011) revisits the stepsize conditions (6)-(8).

We note that there is a different line of research on deterministic problems using randomized
algorithms that is sometimes called “stochastic search” which is outside the scope of this article.

2.3. Optimal stopping

Optimal stopping is a niche problem that has attracted significant attention in part because of its
simple elegance, but largely because of its wide range of applications in the study of financial options
(Karatzas (1988), Longstaff & Schwartz (2001), Tsitsiklis & Van Roy (2001)), equipment replacement
(Sherif & Smith, 1981) and change detection (Poor & Hadjiliadis, 2009).

Let W1,W2, . . . ,Wt, . . . represent a stochastic process that might describe stock prices, the state of
a machine or the blood sugar of a patient. For simplicity, assume that f(Wt) is the reward we receive
if we stop at time t (e.g. selling the asset at price Wt). Let ω refer to a particular sample path of
W1, . . . ,WT (assume we are working with finite horizon problems). Now let

Xt(ω) =

{
1 if we stop at time t,
0 otherwise.

Let τ(ω) be the first time that Xt = 1 on sample path ω. The problem here is that ω specifies the
entire sample path, so writing τ(ω) makes it seem as if we can decide when to stop based on the entire
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sample path. This notation is hardly unique to the optimal stopping literature as we see below when
we introduce stochastic programming.

We can fix this by constructing the function Xt so that it only depends on the history W1, . . . ,Wt.
When this is done, τ is called a stopping time. In this case, we call Xt an admissible policy, or we
would say that “Xt is Ft-measurable” or nonanticipative (these terms are all equivalent). We would
then write our optimization problem as

max
τ

EXτf(Wτ ), (9)

where we require τ to be a stopping time, or we would require the function Xτ to be Ft-measurable
or an admissible policy.

There are different ways to construct admissible policies. The simplest is to define a state variable
St which only depends on the history W1, . . . ,Wt. For example, define a physical state Rt = 1 if we
are still holding our asset (that is, we have not stopped). Further assume that the Wt process is a set
of prices p1, . . . , pt, and define a smoothed price process p̄t using

p̄t = (1− α)p̄t−1 + αpt.

At time t, our state variable is St = (Rt, p̄t, pt). A policy for stopping might be written

Xπ(St|θ) =

{
1 if p̄t > θmax or p̄t < θmin and Rt = 1,
0 otherwise.

Finding the best policy means finding the best θ = (θmin, θmax) by solving

max
θ

E
T∑
t=0

ptX
π(St|θ). (10)

So, now our search over admissible stopping times τ becomes a search over the parameters θ of a policy
Xπ(St|θ) that only depend on the state. This transition hints at the style that we are going to use in
this paper.

Optimal stopping is an old and classic topic. An elegant presentation is given in Cinlar (1975)
with a more recent discussion in Cinlar (2011) where it is used to illustrate filtrations. DeGroot (1970)
provides a nice summary of the early literature. One of the earliest books dedicated to the topic is
Shiryaev (1978) (originally in Russian). Moustakides (1986) describes an application to identifying
when a stochastic process has changed, such as the increase of incidence in a disease or a drop in
quality on a production line. Feng & Gallego (1995) uses optimal stopping to determine when to
start end-of-season sales on seasonal items. There are numerous uses of optimal stopping in finance
(Azevedo & Paxson, 2014), energy (Boomsma et al., 2012) and technology adoption (Hagspiel et al.,
2015), to name just a few.

7



2.4. Optimal control

The canonical stochastic control problem is typically written

min
u0,...,uT

E

{
T−1∑
t=0

Lt(xt, ut) + LT (xT )

}
, (11)

where Lt(xt, ut) is a loss function with terminal loss LT (xT ), and where the state xt evolves according
to

xt+1 = f(xt, ut) + wt, (12)

where f(xt, ut) is variously known as the transition function, system model, plant model (as in chemical
or power plant), plant equation, and transition law. Here, wt represents a random variable representing
exogenous noise, such as wind blowing an aircraft off course. A more general formulation is to use
xt+1 = f(xt, ut, wt), which allows wt to affect the dynamics in a nonlinear way.

It is typically the case in engineering control problems that (12) is linear in the state xt and control
ut. In addition, it is common to assume that the true state x̂t (for example, the location and speed of
an aircraft) can only be observed up to an additive noise, as in xt = x̂t + εt.

The engineering controls community primarily focuses on deterministic problems where wt = 0,
in which case we are optimizing over deterministic controls u0, . . . , uT . For the stochastic version,
we follow a sample path w0(ω), w1(ω), . . . , wT (ω), with a corresponding set of controls ut(ω) for t =
0, . . . , T . Here, ω represents an entire sample path, so writing ut(ω) makes it seem as if ut gets to
“see” the entire trajectory. As with the optimal stopping problem, we can fix this by insisting that ut
is “Ft-measurable,” or by saying that ut is an “admissible policy” which recognizes that ut is actually
a function rather than a decision variable. Alternatively, we can handle this by writing ut = πt(xt)
where πt(xt) is a policy that determines ut given the state xt, which by construction is a function of
information available up to time t. The challenge then is to find a good policy that only depends on
the state xt.

For the control problem in (11), it is typically the case in engineering applications that the objective
function will have the quadratic form

Lt(xt, ut) = (xt)
TQtxt + (ut)

TRtut.

When the transition function (12) (typically referred to as the “state equations”) is linear in the state
xt and control ut, and the control ut is unconstrained, the problem is referred to as “linear quadratic
regulation” (LQR).

This problem is typically solved using the Hamilton-Jacobi equation, given by

Jt(xt) = min
ut

(
L(xt, ut) +

∫
w
Jt+1(f(xt, ut, w))gW (w)dw

)
, (13)
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where gW (w) is the density of the random variable wt and where Jt(xt) is known as the “cost to go.”
When we exploit the linear structure of the transition function and the quadratic structure of the loss
function, it is possible to find the cost-to-go function Jt(xt) analytically, which allows us to show that
the optimal policy has the form

πt(xt) = Ktxt,

where Kt is a complex matrix that depends on Qt and Rt. This is a rare instance of a problem where
we can actually compute an optimal policy.

There is a long history in the development of optimal control, summarized by many books includ-
ing Kirk (2004), Stengel (1986), Sontag (1998), Sethi & Thompson (2000), and Lewis et al. (2012).
The canonical control problem is continuous, low-dimensional and unconstrained, which leads to an
analytical solution. Of course, applications evolved past this canonical problem, leading to the use
of numerical methods. Deterministic optimal control is widely used in engineering, whereas stochas-
tic optimal control has tended to involve much more sophisticated mathematics. Some of the most
prominent books include Astrom (1970), Kushner & Kleinman (1971), Bertsekas & Shreve (1978),
Yong & Zhou (1999), Nisio (2014) (note that some of the books on deterministic controls touch on the
stochastic case).

As a general problem, stochastic control covers any sequential decision problem, so the separation
between stochastic control and other forms of sequential stochastic optimization tends to be more
one of vocabulary and notation (Bertsekas (2011) is a good example of a book that bridges these
vocabularies). Control-theoretic thinking has been widely adopted in inventory theory and supply
chain management (e.g. Ivanov & Sokolov (2013) and Protopappa-Sieke & Seifert (2010)), finance (Yu
et al., 2010), and health services (Ramirez-Nafarrate et al., 2014), to name a few.

2.5. Markov decision processes

Richard Bellman initiated the study of sequential, stochastic, decision problems in the setting of
discrete states and actions. We assume that there is a set of discrete states S, where we have to choose
an action a ∈ As when we are in state s ∈ S after which we receive a reward r(s, a). The challenge is
to choose actions (or more precisely, a policy for choosing actions), that maximizes expected rewards
over time.

The most famous equation in this work (known as “Bellman’s optimality equation”) writes the
value of being in a discrete state s as

Vt(s) = max
a∈As

(
r(s, a) +

∑
s′∈S

P (s′|s, a)Vt+1(s′)

)
. (14)

where the matrix P (s′|s, a) is the one-step transition matrix defined by

P (s′|s, a) = The probability that state St+1 = s′ given that we are in state St = s and take
action a.
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This community often treats the one-step transition matrix as data, but it can be notoriously hard to
compute. In fact, buried in the one-step transition matrix is an expectation which can be written

P (s′|s, a) = EW {1{s′=SM (s,a,W )}} (15)

where s′ = SM (s, a,W ) is the transition function with random input W . Note that any of s, a and/or
W may be vector-valued, highlighting what are known as the three curses of dimensionality in dynamic
programming.

Equation (14) is the discrete analog of the Hamilton-Jacobi equations used in the optimal control
literature (given in equation (13)), leading many authors to refer to these as Hamilton-Jacobi-Bellman
equations (or HJB for short). This work was initially reported in his classic reference (Bellman, 1957)
(see also (Bellman, 1954) and (Bellman et al., 1955)), but this work was continued by a long stream
of books including Howard (1960) (another classic), Nemhauser (1966), Denardo (1982), Heyman &
Sobel (1984), leading up to Puterman (2005) (this first appeared in 1994). Puterman’s book represents
the last but best in a long series of books on Markov decision processes, and now represents the major
reference in the field.

If we could compute equation (14) for all states s ∈ S, stochastic optimization would not exist
as a field. This highlights the consistent message that the central issue of stochastic optimization is
computation.

2.6. Approximate/adaptive/neuro-dynamic programming

Bellman’s equation (14) requires enumerating all states (assumed to be discrete), which is problem-
atic if the state variable is a vector, a condition known widely as the curse of dimensionality. Actually,
there are three curses of dimensionality which all arise when computing the one-step transition matrix
p(s′|s, a): the state variable s, the action a (which can be a vector), and the random information,
which is hidden in the calculation of the probability (see equation (15)).

Bellman recognized this and began experimenting with approximation methods (see Bellman &
Dreyfus (1959) and Bellman et al. (1963)), but the operations research community then seemed to
drop any further research in approximation methods until the 1980’s. As computers improved, re-
searchers began tackling Bellman’s equation using numerical approximation methods, with the most
comprehensive presentation in Judd (1998) which summarized almost a decade of research (see also
Chen et al. (1999)).

A completely separate line of research in approximations evolved in the control theory community
with the work of Paul Werbos (Werbos (1974)) who recognized that the “cost-to-go function” (the
same as the value function in dynamic programming, written as Jt(xt) in equation (13)) could be
approximated using various techniques. Werbos helped develop this area through a series of papers
(examples include Werbos (1989), Werbos (1990), Werbos (1992) and Werbos (1994)). Important
references are the edited volumes (White & Sofge, 1992) and (Si et al., 2004) which highlighted what
had already become a popular approach using neural networks to approximate both policies (“actor
nets”) and value functions (“critic nets”).
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Building on work developing in computer science under the umbrella of “reinforcement learning”
(reviewed below), Tsitsiklis (1994) and Jaakkola et al. (1994) were the first to recognize that the
basic algorithms being developed under the umbrella of reinforcement learning represented generaliza-
tions of the early stochastic gradient algorithms of Robbins & Monro (1951). Bertsekas & Tsitsiklis
(1996) laid the foundation for adaptive learning algorithms in dynamic programming, using the name
“neuro-dynamic programming.” Werbos, (e.g. Werbos (1992)), had been using the term “approxi-
mate dynamic programming,” which became the title of Powell (2007) (with a major update in Powell
(2011)), a book that also merged math programming and value function approximations to solve
high-dimensional, convex stochastic optimization problems (but, see the developments under stochas-
tic programming below). Later, the engineering controls community reverted to “adaptive dynamic
programming” as the operations research community adopted “approximate dynamic programming.”

There are many variations of approximate dynamic programming, but one of the simplest involves
using some policy π(St) to simulate from a starting state S0 until an ending period T . Assume we
do this repeatedly, and let Snt be the state we visit at time t during iteration n. Assume our policy
returns action ant = π(Snt ), and let Sa,nt be the state immediately after we implement action ant , known
as the post-decision state (an example of the post-decision state is the outcome node in a decision

tree). Finally let V
a,n−1
t (Sat ) be an approximation of the value of being in post-decision state based

on information from the first n− 1 iterations. We can compute a sampled estimate of the value v̂nt of
being in pre-decision state Snt using

v̂nt = C(Snt , a
n
t ) + V

a,n−1
t (Sa,nt ). (16)

Now update the value function approximation using

V
a,n

(Sa,nt−1) = (1− αn−1)V
a,n−1

(Sa,nt−1) + αn−1v̂
n
t , (17)

where Sa,nt−1 is the post-decision state we visited before arriving to the next pre-decision state Snt . We
then compute Sa,nt from Snt and ant , after which we simulate our way to Snt+1 and repeat the process.

Using equations (16)-(17) requires a policy to guide the choice of action. One we might use is a
greedy policy where (16) is replaced with

v̂nt = max
a

(C(Snt , a
n
t ) + V

a,n−1
t (Sa,nt )).

While a pure exploitation policy can work quite poorly, there are special cases where it can produce
an optimal policy.

Equations (16)-(17) are best described as “forward approximate dynamic programming” since they
involve stepping forward through states. This is attractive because it works for very high dimensional
applications. In fact, the idea has been applied to optimizing major trucking companies and rail-
roads (Simao et al. (2009), Bouzaiene-Ayari et al. (2016)), but these applications exploit linearity and
convexity. More recently researchers have applied the idea of approximating value functions from a
sampled set of states in a method described as “backward approximate dynamic programming” (Senn
et al. (2014), Cheng et al. (2017), Durante et al. (2017)).
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2.7. Reinforcement learning

Independently from the work in operations research (with Bellman) or control theory (the work
of Werbos), computer scientists Andy Barto and his student Rich Sutton were working on describing
the behavior of mice moving through a maze in the early 1980’s. They developed a basic algorithmic
strategy called Q-learning, which iteratively estimates the value of being in a state s and taking an
action a, given by Q(s, a) (the “Q factors”). These estimates are computing using

q̂n(sn, an) = r(sn, an) + γmax
a′

Qn−1(sn+1, a′), (18)

Qn(sn, an) = (1− αn−1)Qn−1(sn, an) + αn−1q̂
n(sn, an), (19)

where q̂n(sn, an) is a sampled estimate of the value of being in state s = sn and taking action a = an, and
where γ is a discount factor. The sampled estimates “bootstrap” the downstream value Qn−1(s′, a′).
The parameter αn is a “stepsize” or “learning rate” which has to satisfy (6)-(8). The state sn+1 is
a sampled version of the next state we would visit given that we are in state sn and take action
an. This is sometimes written as being sampled from the one-step transition matrix P (s′|sn, an) (if
this is available), although it is more natural to write sn+1 = f(sn, an, wn) where f(sn, an, wn) is the
transition function and wn is a sample of exogenous noise.

The reinforcement learning community traditionally estimates Q-factors that depend on state and
action, whereas Bellman’s equation (and approximate dynamic programming) focus on developing
estimates of the value of being in a state. These are related using

V (s) = max
a

Q(s, a).

We emphasize that equations (16)-(17) are computed given a policy π(s), which means that the action
is implicit when we specify the policy.

These basic equations became widely adopted for solving a number of problems. The field of
reinforcement learning took off with the appearance of their now widely cited book (Sutton & Barto,
1998), although by this time the field was quite active (see the review Kaelbling et al. (1996)). Research
under the umbrella of “reinforcement learning” has evolved to include other algorithmic strategies under
names such as policy search and Monte Carlo tree search. Other references from the reinforcement
learning community include Busoniu et al. (2010) and Szepesvári (2010) (a second edition of Sutton
& Barto (1998) is in preparation).

2.8. Online algorithms

Online algorithms technically refer to methods that respond to day sequentially without any knowl-
edge of the future. Technically, this would refer to any policy that depends on a properly formulated
state variable which could include a forecast of the future, possibly in the form of a value function. In
practice, the field of online algorithms refer to procedures that do not even attempt to approximate
the future, which means they are some form of myopic policy (see Borodin & El-Yanniv (1998) for a
nice introduction and Albers (2003) for a survey).
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Online algorithms were originally motivated by the need to make decisions in a computationally
constrained setting such as a robot or device in the field with limited communication or energy sources.
This motivated models that made no assumptions about what might happen in the future, producing
myopic policies. This in turn produced a body of research known as competitive analysis that develops
bounds on the performance compared to a perfectly clairvoyant policy.

Online algorithms have attracted considerable attention in complex scheduling problems such as
those that arise in transportation (Jaillet & Wagner (2006), Berbeglia et al. (2010), Pillac et al. (2013))
and machine scheduling (Ma et al. (2010), Slotnick (2011)).

2.9. Model predictive control

This is a subfield of optimal control, but it became so popular that it evolved into a field of its
own, with popular books such as Camacho & Bordons (2003) and hundreds of articles (see Lee (2011)
for a 30-year review). MPC is a method where a decision is made at time t by solving a typically
approximate model over a horizon (t, t+H). The need for a model, even if approximate, is the basis
of the name “model predictive control”; there are many settings in engineering where a model is not
available. MPC is typically used to solve a problem that is modeled as deterministic, but it can be
applied to stochastic settings by using a deterministic approximation of the future to make a decision
now, after which we experience a stochastic outcome. MPC can also use a stochastic model of the
future, although these are typically quite hard to solve.

Model predictive control is better known as a rolling horizon procedure in operations research, or a
receding horizon procedure in computer science. Most often it is associated with deterministic models
of the future, but this is primarily because most of the optimal control literature in engineering is
deterministic. MPC could use a stochastic model of the future which might be a Markov decision
process (often simplified) which is solved (at each time period) using backward dynamic programming.
Alternatively, it may use a sampled approximation of the future, which is the standard strategy of
stochastic programming which some authors will refer to as model predictive control (Schildbach &
Morari, 2016).

2.10. Stochastic programming

The field of stochastic programming evolved from deterministic linear programming, with the in-
troduction of random variables. The first paper in stochastic programming was Dantzig (1955), which
introduced what came to be called the “two-stage stochastic programming problem” which is written
as

min
x0

(
c0x0 +

∑
ω∈Ω

p(ω) min
x1(ω)∈X1(ω)

c1(ω)x1(ω)

)
. (20)

Here, x0 is the first-stage decision (imagine allocating inventory to warehouses), which is subject to
first stage constraints

A0x0 ≤ b0, (21)

x0 ≥ 0. (22)
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Then, the demands D1 are revealed. These are random, with a set of possible realizations D1(ω) for
ω ∈ Ω (these are often referred to as “scenarios”). For each scenario ω, we have to obey the following
constraints in the second stage for all ω ∈ Ω:

A1(ω)x1(ω) ≤ x0, (23)

B1(ω)x1(ω) ≤ D1(ω). (24)

There are two-stage stochastic programming problems, but in most applications it is used as an ap-
proximation of a fully sequential (“multistage”) problem. In these settings, the first-stage decision x0

is really a decision xt at time t, while the second stage can represent decisions xt+1(ω), . . . , xt+H(ω)
which are solved for a sample realization of all random variables over the horizon (t, t + H). In this
context, two-stage stochastic programming is a stochastic form of model predictive control.

Stochastic programs are often computationally quite difficult, since they are basically deterministic
optimization problems that are |Ω| times larger than the deterministic problem. Rockafellar & Wets
(1991) present a powerful decomposition procedure called progressive hedging that decomposes (20)-
(24) into a series of problems, one per scenario, that are coordinated through Lagrangian relaxation.

Whether it is for a two-stage problem, or an approximation in a rolling horizon environment, two-
stage stochastic programming has evolved into a mature field within the math programming community.
A number of books have been written on stochastic programming (two stage, and its much harder
extension, multistage), including Pflug (1988a), Kall & Wallace (2009), Birge & Louveaux (2011) and
Shapiro et al. (2014).

Since stochastic programs can become quite large, a community has evolved that focuses on how
to generate the set of scenarios Ω. Initial efforts focused on ensuring that scenarios were not too
close to each other (Dupacova et al. (2003), Heitsch & Romisch (2009), Löhndorf (2016)); more recent
research focuses on identifying scenarios that actually impact decisions (Bayraksan & Love, 2015).
Of considerable interest is work on sampling that directly addresses solution quality and decisions
(Bayraksan & Morton, 2009).

A parallel literature has evolved for the study of stochastic linear programs that exploits the natural
convexity of the problem. The objective function (20) is often written

min
x0

(c0x0 + EQ(x0,W1)) , (25)

subject to (21)-(22). The function Q(x0,W1) is known as the recourse function where W1 captures all
sources of randomness. For example, we might write W1 = (A1, B1, c1, D1), with sample realization
W1(ω). The recourse function is given by

Q(x0,W1(ω)) = min
x1(ω)∈Xt(ω)

c1(ω)x1(ω) (26)

where the feasible region Xt(ω) is defined by equations (23) - (24).
There is an extensive literature exploiting the natural convexity of Q(x0,W1) in x0, starting with

Van Slyke & Wets (1969), followed by the seminal papers on stochastic decomposition (Higle & Sen,
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1991) and the stochastic dual decomposition procedure (SDDP) (Pereira & Pinto, 1991). A substantial
literature has unfolded around this work, including Shapiro (2011) who provides a careful analysis of
SDDP, and its extension to handle risk measures (Shapiro et al. (2013), Philpott et al. (2013)). A
number of papers have been written on convergence proofs for Benders-based solution methods, but
the best is Girardeau et al. (2014). A modern overview of the field is given by Shapiro et al. (2014).

2.11. Robust optimization

Robust optimization first emerged in engineering problems, where the goal was to find the best
design x that worked for the worst possible outcome of an uncertain parameter w ∈ W (the robust
optimization community uses u ∈ U , but this conflicts with control theory notation). The robust
optimization problem is formulated as

min
x∈X

max
w∈W

F (x,w). (27)

Here, the set W is known as the uncertainty set, which may be a box where each dimension of w is
limited to minimum and maximum values. The problem with using a box is that it might allow, for
example, each dimension wi of w to be equal to its minimum or maximum, which is unlikely to occur
in practice. For this reason, W is sometimes represented as an ellipse, although this is more complex
to create and solve.

Equation (27) is the robust analog of our original stochastic search problem in equation (4). Robust
optimization was originally motivated by the need in engineering to design for a “worst-case” scenario
(defined by the uncertainty set W). It then evolved as a method for doing stochastic optimization
without having to specify the underlying probability distribution. However, this has been replaced by
the need to create an uncertainty set.

A thorough review of the field of robust optimization is contained in Ben-Tal et al. (2009) and
Bertsimas et al. (2011), with a more recent review given in Gabrel et al. (2014). Bertsimas & Sim (2004)
studies the price of robustness and describes a number of important properties. Robust optimization
is attracting interest in a variety of application areas including supply chain management (Bertsimas
& Thiele (2006), Keyvanshokooh et al. (2016)), energy (Zugno & Conejo, 2015). and finance (Fliege
& Werner, 2014).

2.12. Ranking and selection

Assume we are trying to find the best choice x in a set X = {x1, . . . , xM}, where x might be
the choice a diabetes treatment, the price of a product, the color for a website, or the path through
a network. Let µx be the true performance of x, which could be the reduction of blood sugar, the
revenue from the product, the hits on a website, or the time to traverse the network.

We do not know µx, but we run experiments to create estimates µ̄nx. Let Sn capture what we have
learned after n experiments (the estimates µ̄nx, along with statistics capturing the precision of this
estimate), and let Xπ(Sn) be our rule (policy) for deciding the experiment xn = Xπ(Sn) that we will
run next, after which we observe Wn+1

xn = µxn + εn+1.
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Let µ̄Nx be our estimates after we exhaust our budget of N , and let

xπ,N = arg max
x∈X

µ̄Nx

be the best choice given what we know after we have finished our experiments. The final design xπ,N

is a random variable, in part because the true µ is random (if we are using a Bayesian model), and
also because of the noise in the observations W 1, . . . ,WN .

We can express the value of our policy for a set of observations based on our estimates µ̄Nx using

F π = µ̄Nxπ,N .

This value depends on the true values µx for all x, and on the results of the experiments Wn which
themselves depend on µ. We can state the optimization problem as

max
π

EµEW 1,...,WN |µ µ̄xπ,N . (28)

With the exception of optimal stopping (equation (10)), this is the first time we have explicitly written
our optimization problem in terms of searching over policies.

Ranking and selection enjoys a long history dating back to the 1950’s, with an excellent treatment
of this early research given by the classic DeGroot (1970), with a more up to date review in Kim
& Nelson (2007). Recent research has focused on parallel computing (Luo et al. (2015), Ni et al.
(2016)) and handling unknown correlation structures (Qu et al., 2012). However, ranking and selection
is just another name for derivative-free stochastic search, and has been widely studied under this
umbrella (Spall, 2003). The field has attracted considerable attention from the simulation-optimization
community, reviewed next.

2.13. Simulation optimization

The field known as “simulation optimization” evolved from within the community that focused on
problems such as simulating the performance of the layout of a manufacturing system. The simulation-
optimization community adopted the modeling framework of ranking and selection, typically using a
frequentist belief model that requires doing an initial test of each design. The problem is then how to
allocate computing resources over the designs given initial estimates.

Perhaps the best known method that evolved specifically for this problem class is known as optimal
computing budget allocation, or OCBA, developed by Chun-Hung Chen in Chen (1995), followed by
a series of articles (Chen (1996), Chen et al. (1997), Chen et al. (1998), Chen et al. (2003), Chen et al.
(2008)), leading up to the book Chen & Lee (2011) that provides a thorough overview of this field. The
field has focused primarily on discrete alternatives (e.g. different designs of a manufacturing system),
but has also included work on continuous alternatives (e.g. Hong & Nelson (2006)). An important
recent result by Ryzhov (2016) shows the asymptotic equivalence of OCBA and expected improvement
policies which maximize the value of information. When the number of alternatives is much larger
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(say, 10,000), techniques such as simulated annealing, genetic algorithms and tabu search (adapted for
stochastic environments) have been brought to bear. Swisher et al. (2000) contains a nice review of
this literature. Other reviews include Andradóttir (1998a), Andradóttir (1998b), Azadivar (1999), Fu
(2002), and Kim & Nelson (2007). The recent review Chau et al. (2014) focuses on gradient-based
methods.

The simulation-optimization community has steadily broadened into the full range of (primarily
offline) stochastic optimization problems reviewed above, just as occurred with the older stochastic
search community, as summarized in Spall (2003). This evolution became complete with Fu (2014),
an edited volume that covers a very similar range of topics as Spall (2003), including derivative-based
stochastic search, derivative-free stochastic search, and full dynamic programs.

2.14. Multiarmed bandit problems

The multiarmed bandit problem enjoys a rich history, centered on a simple illustration. Imagine
that we have M slot machines, each with expected (but unknown) winnings µx, x ∈ X = {1, . . . ,M}.
Let S0 represent our prior distribution of belief about each µx, where we might assume that our beliefs
are normally distributed with mean µ̄0

x and precision β0
x = 1/σ̄2,0

x for each x. Further let Sn be our
beliefs about each x after n plays, and let xn = Xπ(Sn) be the choice of the next arm to play given
Sn, producing winnings Wn+1

xn . The goal is to find the best policy to maximize the total winnings over
our horizon.

For a finite time problem, this problem is almost identical to the ranking and selection problem,
with the only difference that we want to maximize the cumulative rewards, rather than the final reward.
Thus, the objective function would be written (assuming a Bayesian prior) as

max
π

EµEW 1,...,WN |µ

N−1∑
n=0

Wn+1
Xπ(Sn). (29)

The multiarmed bandit problem has enjoyed a rich history. Research started in the 1950’s with the
much easier two-armed problem. DeGroot (1970) was the first to show that an optimal policy for the
multiarmed bandit problem could be formulated (if not solved) using Bellman’s equation (this is true
of any learning problem, regardless of whether we are maximizing final or cumulative rewards). The
first real breakthrough occurred in Gittins & Jones (1974) (the first and most famous paper), followed
by Gittins (1979). This line of research introduced what became known as “Gittins indices,” or more
broadly, “index policies” which involve computing an index νnx given by

νnx = µ̄nx + Γ(µ̄nx, σ̄
n
x , σW , γ)σW,

where σW is the (assumed known) standard deviation of W , and Γ(µ̄nx, σ̄
n
x , σW , γ) is the Gittins index,

computed by solving a particular dynamic program. The Gittins index policy is then of the form

XGI(Sn) = arg max
x

νnx . (30)
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While computing Gittins indices is possible, it is not easy, sparking the creation of an analytical
approximation reported in Chick & Gans (2009).

The theory of Gittins indices was described thoroughly in his first book (Gittins, 1989), but the
“second edition” (Gittins et al., 2011), which was a complete rewrite of the first edition, represents the
best introduction to the field of Gittins indices, which now features hundreds of papers. However, the
field is mathematically demanding, with index policies that are difficult to compute.

A parallel line of research started in the computer science community with the work of Lai &
Robbins (1985) who showed that a simple policy known as upper confidence bounding possessed the
property that the number of times we test the wrong arm can be bounded (although it continues to
grow with n). The ease of computation, combined with these theoretical properties, made this line
of research extremely attractive, and has produced an explosion of research. While no books on this
topic have appeared as yet, an excellent monograph is Bubeck & Cesa-Bianchi (2012). A sample of a
UCB policy (designed for normally distributed rewards) is

XUCB1(Sn) = arg max
x

(
µ̄nx + 4σW

√
log n

Nn
x

)
, (31)

where Nn
x is the number of times we have tried alternative x. The square root term can shrink to zero

if we test x often enough, or it can grow large enough to virtually guarantee that x will be sampled.
UCB policies are typically used in practice with a tunable parameter, with the form

XUCB1(Sn|θUCB) = arg max
x

(
µ̄nx + θUCB

√
log n

Nn
x

)
. (32)

We need to tune θUCB to find the value that works best. We do this by replacing the search over
policies π in equation (29) with a search over values for θUCB. In fact, once we open the door to using
tuned policies, we can use any number of policies such as interval estimation

XIE(Sn|θIE) = arg max
x

(
µ̄nx + θIE σ̄nx

)
, (33)

where σ̄nx is the standard deviation of µ̄nx, which tends toward zero if we observe x often enough. Again,
the policy would have to be tuned using equation (29).

These same ideas have been applied to bandit problems using a terminal reward objective using
the label the “best arm” bandit problem (see Audibert & Bubeck (2010), Kaufmann et al. (2016),
Gabillon et al. (2012)). It should be apparent that any policy that can be tuned using equation (29)
can be tuned using equation (28) for terminal rewards.

2.15. Partially observable Markov decision processes

An extension of the multiarmed bandit problem and generalization of the standard Markov decision
process model is one where we assume that the discrete states s ∈ S are not directly observable. For
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example, imagine that s captures the status of a tumor in a patient, or the inventory of units of blood
in a hospital with a poor inventory control system. In both cases, the state s cannot be observed
directly. Let bn(s) be the belief about s after n transitions, which is to say, the probability that we are
in state s, where

∑
s∈S b

n(s) = 1.
Assume that we take an action an and then make some observation Wn+1 (some authors denote

this as On+1 for “observation”, but the notation is not standard). The observation Wn+1 could be
a noisy observation of the state sn (for example, Wn+1 = sn + εn+1), or an indirect measurement
from which we can make inferences about our system (e.g. the existence of marker molecules in the
blood that might indicate the presence of tumors). Assume that we know the conditional distribution
of Wn+1 given by PW [Wn+1 = s|sn, an], which would be derived from the relationship between the
observation Wn+1 and the true state sn (e.g. if the patient actually has cancer) and action an (which
could be a particular type of medical test).

Such a problem is termed a partially observable Markov decision process, or POMDP, where “s” is
the unobservable state (sometimes called the environment), while b is the vector of probabilities that
we are in s, also known as the belief state. We can write the belief space as B = {b|

∑
s∈S b(s) = 1}.

The set S can be quite large in many settings. If we have three continuous state variables that we
discretize into 100 elements, then we have a million states, which means that b is a million-dimensional
vector.

As with our Markov decision process, let P (s′|s, a) be our one-step transition matrix for the unob-
servable states, which we assume is known. The belief state evolves according to (see, e.g. Shani et al.
(2013))

bn+1(s′) = P [Sn+1 = s′|bn, an,Wn+1]

=
P [bn, Sn+1 = s′, an,Wn+1]

P [bn, an,Wn+1]

=
PW [Wn+1|bn, Sn+1 = s′, an]P [Sn+1 = s′|bn, an]P [bn, an]

P [Wn+1|bn, an]P [bn, an]

=
PW [Wn+1|bn, Sn+1 = s′, an]

∑
s∈S P [Sn+1 = s′|bn, Sn = s, an]P [Sn = s|bn, an]

P [Wn+1|bn, an]

=
PW [Wn+1|bn, Sn+1 = s′, an]

∑
s∈S P [Sn+1 = s′|bn, Sn = s, an]bn(s)

P [Wn+1|bn, an]
(34)

where we used bn(s) = P [Sn = s] = P [s|bn, an], and where

PW [Wn+1|bn, an] =
∑
s∈S

bn(s)
∑
s′∈S

P [Sn+1 = s′|bn, Sn = s, an]PW [Wn+1|bn, Sn+1 = s′, an].

POMDPs are characterized by the property that the entire history

hn = (b0, a0,W 1, b1, a1,W 2, . . . ..., an−1,Wn, bn)
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is fully summarized by the latest belief bn. POMDPs are characterized by two transition matrices:
the one-step transition matrix for the system state P [Sn+1 = s′|Sn = s, an], and the conditional
observation distribution PW [Wn+1 = w|Sn = s, bn, an]. Both of these can be derived in principle from
the physics of the problem, although computing them is another matter.

POMDPs are notoriously hard to solve, and as a result the computational side has attracted
considerable attention (see Lovejoy (1991) and Aberdeen (2003) for early surveys). One of the earliest
breakthroughs was the dissertation (Sondik, 1971) that found that the value function can be represented
as a series of cuts (see Sondik (1978) and Smallwood et al. (1973)). However, the strategy that has
attracted the most attention is based on the idea of “point-based” solvers (see Pineau et al. (2003) and
Smith & Simmons (2005) for examples, and Shani et al. (2013) for a survey of point-based solvers).

POMDPs can be modeled as conventional Markov decision processes where the state is just the
belief state (which is generally continuous), and where equation (34) is the transition function (Sondik,
1971). This is sometimes referred to as the “belief MDP” (see, for example, Cassandra et al. (1994),
Oliehoek et al. (2008), Ross et al. (2008b), Ross et al. (2008a)). Further complicating the situation is
that there are many settings where the state variable consists of a mixture of observable parameters
and belief states. For example, the multiarmed bandit problem is an example of a problem where the
only state variables are belief states, which reflect unobservable and uncontrollable parameters that
either do not change over time, or which change but not due to any decisions.

2.16. Discussion

Each of the topics above represents a distinct community, most with entire books dedicated to the
topic. We note that some of these communities focus on problems (stochastic search, optimal stopping,
optimal control, Markov decision processes, robust optimization, ranking and selection, multiarmed
bandits), while others focus on methods (approximate dynamic programming, reinforcement learning,
model predictive control, stochastic programming), although some of these could be described as
methods for particular problem classes.

In the remainder of our presentation, we are going to present a single modeling framework that
covers all of these problems. We begin by noting that there are problems that can be solved exactly, or
approximately by using a sampled version of the different forms of uncertainty. However, most of the
time we end up using some kind of adaptive search procedure which uses either Monte Carlo sampling
or direct, online observations (an approach that is often called data driven).

We are then going to argue that any adaptive search strategy can be represented as a policy for
solving an appropriately defined dynamic program. Solving any dynamic program involves searching
over policies, which is the same as searching for the best algorithm. We then show that there are two
fundamental strategies for designing policies, leading to four meta-classes of policies which cover all of
the approaches used by the different communities of stochastic optimization.

3. Solution strategies

There are three core strategies for solving stochastic optimization problems:
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Deterministic/special structure - These are problems that exhibit special structure that make it
possible to find optimal solutions. Examples include: linear programs where costs are actually
expectations of random variables; the newsvendor problem with known demand where we can
use the structure to find the optimal order quantity; and Markov decision processes with a known
one-step transition matrix, which represents the expectation of the event that we transition to a
downstream state.

Sampled models - There are many problems where the expectation in maxx EF (x,W ) cannot be
computed, but where we can replace the original set of outcomes Ω (which may be multidi-
mensional and/or continuous) with a sample Ω̂. We can then replace our original stochastic
optimization problem with

max
x

∑
ω̂∈Ω̂

p̂(ω̂)F (x, ω̂). (35)

This strategy has been pursued under different names in different communities. This is what is
done in statistics when a batch dataset is used to fit a statistical model. It is used in stochastic
programming (see section 2.10) when we use scenarios to approximate the future. It is also known
as the sample average approximation, introduced in Kleywegt et al. (2002) with a nice summary
in Shapiro et al. (2014). There is a growing literature focusing on strategies for creating effective
samples so that the set Ω̂ does not have to be too large (Dupacova et al. (2003), Heitsch &
Romisch (2009), Bayraksan & Morton (2011)). An excellent recent survey is given in Bayraksan
& Love (2015).

Adaptive algorithms - While solving sampled models is a powerful strategy, by far the most widely
used approaches depend on adaptive algorithms which work by sequentially sampling random
information, either using Monte Carlo sampling from a stochastic model, or from field observa-
tions.

The remainder of this article focuses on adaptive algorithms, which come in derivative-based forms
(e.g. the stochastic gradient algorithm in (5)) and derivative-free (such as policies for multiarmed
bandit problems including upper confidence bounding in (32) and interval estimation in (33)). We
note that all of these algorithms represent sequential decision problems, which means that they are all
a form of dynamic program.

In the next section, we propose a canonical modeling framework that allows us to model all adaptive
learning problems in a common framework.

4. A universal canonical model

We now provide a modeling framework with which we can create a single canonical model that
describes all of the problems described in section 2. We note that in designing our notation, we had
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to navigate the various notational systems that have evolved across these communities. For example,
the math programming community uses x for a decision, while the controls community uses xt for
the state and ut for their control. We have chosen St for the state variable (widely used in dynamic
programming and reinforcement learning), and xt for the decision variable (universally used in math
programming, but also used by the bandit community). We have worked to use the most common
notational conventions, resolving conflicts as necessary.

There are five fundamental elements to any sequential decision problem: state variables, decision
variables, exogenous information, the transition function, and the objective function. A brief summary
of each of these elements is as follows:

State variables - The state St of the system at time t is a function of history which, combined with
a policy and exogenous information, contains all the information that is necessary and sufficient
to model our system from time t onward. This means it has to capture the information needed
to compute costs, constraints, and (in model-based formulations) how this information evolves
over time (which is the transition function).

We distinguish between the initial state S0 and the dynamic state St for t > 0. The initial
state contains all deterministic parameters, initial values of dynamic parameters, and initial
probabilistic beliefs about unknown parameters. The dynamic state St contains information that
is evolving over time.

There are three types of information in St:

• The physical state, Rt, which in most (but not all) applications is the state variables that
are being controlled. Rt may be a scalar, or a vector with element Rti where i could be a
type of resource (e.g. a blood type) or the amount of inventory at location i.

• Other information, It, which is any information that is known deterministically not included
in Rt. The information state often evolves exogenously, but may be controlled or at least
influenced by decisions (e.g. selling a large number of shares may depress prices).

• The belief state Bt, which contains distributional information about unknown parameters,
where we can use frequentist or Bayesian belief models. These may come in the following
styles:

– Lookup tables - Here we have a belief µ̄nx which is our estimate of µx = EF (x,W ) after
n observations for each discrete x. With a Bayesian model, we treat µx as a random
variable that is normally distributed with µx ∼ N(µ̄nx, σ̄

2,n
x ).

– Parametric belief models - We might assume that EF (x,W ) = f(x|θ) where the function
f(x|θ) is known but where θ is unknown. We would then describe θ by a probability
distribution.

– Nonparametric belief models - These approximate a function at x by smoothing local
information near x.
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We emphasize that the belief state carries the parameters of a distribution describing an
unobservable parameter of the model. Bt might be the mean and variance of a normal
distribution or the parameters of a log-normal distribution, while the distribution itself (e.g.
the normal distribution) is specified in S0.

The state St is sometimes referred to as the pre-decision state because it is the state just before
we make a decision. We often find it useful to define a post-decision state Sxt which is the state
immediately after we make a decision, before any new information has arrived, which means that
Sxt is a deterministic function of St and xt. For example, in a basic inventory problem where
Rt+1 = max{0, Rt + xt − D̂t+1}, the post-decision state would be Sxt = Rxt = Rt + xt. Post-
decision states are often simpler, because there may be information in St that is only needed to
make the decision xt, but there are situations where xt becomes a part of the state.

Decision variables - Decisions are typically represented as at for discrete actions, ut for continuous
(typically vector-valued) controls, and xt for general continuous or discrete vectors. We use xt
as our default, but find it useful to use at when decisions are categorical.

Decisions may be binary (e.g. for a stopping problem), discrete (e.g. an element of a finite set),
continuous (scalar or vector), integer vectors, and categorical (e.g. the attributes of a patient).
We note that entire fields of research are sometimes distinguished by the nature of the decision
variable.

We assume that decisions are made with a policy, which we might denote Xπ(St) (if we use xt
as our decision), Aπ(St) (if we use at), or Uπ(St) (if we use ut). We assume that a decision
xt = Xπ(St) is feasible at time t. We let “π” carry the information about the type of function
f ∈ F (for example, a linear model with specific explanatory variables, or a particular nonlinear
model), and any tunable parameters θ ∈ Θf . We use xt as our default notation for decisions.

Exogenous information - We let Wt be any new information that first becomes known at time t
(that is, between t − 1 and t). When modeling specific variables, we use “hats” to indicate
exogenous information. Thus, D̂t could be the demand that arose between t − 1 and t, or we
could let p̂t be the change in the price between t− 1 and t.

The exogenous information process may be stationary or nonstationary, purely exogenous or
state (and possibly action) dependent. We let ω represent a sample path W1, . . . ,WT , where
ω ∈ Ω, and where F is the sigma-algebra on Ω. We also let Ft = σ(W1, . . . ,Wt) be the sigma-
algebra generated by W1, . . . ,Wt. We adopt the style throughout that any variable indexed by
t is Ft-measurable, something we guarantee by how decisions are made and information evolves
(in fact, we do not even need this vocabulary).

Transition function - We denote the transition function by

St+1 = SM (St, xt,Wt+1), (36)
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where SM (·) is also known by names such as system model, plant model, plant equation and
transfer function. Equation (36) is the classical form of a transition function which gives the
equations from the pre-decision state St to pre-decision state St+1. We can also break down
these equations into two steps: pre-decision to post-decision Sxt , and then the post-decision Sxt to
the next pre-decision St+1. The transition function may be a known set of equations, or unknown,
such as when we describe human behavior or the evolution of CO2 in the atmosphere. When the
equations are unknown the problem is often described as “model free” or “data driven.”

Transition functions may be linear, continuous nonlinear or step functions. When the state St
includes a belief state Bt, then the transition function has to include the frequentist or Bayesian
updating equations.

Given a policy Xπ(St), an exogenous process Wt and a transition function, we can write our
sequence of states, decisions, and information as

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 ,W2, . . . , xT−1, S

x
T−1,WT , ST ).

Below we continue to use t as our iteration counter, but we could use n if appropriate, in which
case we would write states, decisions and information as Sn, xn and Wn+1.

Objective functions - We assume that we have a metric that we are maximizing (our default) or
minimizing, which we can write in state-independent or state-dependent forms:

State-independent We write this as F (x,W ), where we assume we have to fix xt or xn and
then observe Wt+1 or Wn+1. In an adaptive learning algorithm, the state St (or Sn) captures
what we know about EF (x,W ), but the function itself depends only on x and W , and not
on the state S.

State-dependent These can be written in several ways:

• C(St, xt) - This is the most popular form, where C(St, xt) can be a contribution (for
maximization) or cost (for minimization). This is written in many different ways by
different communities, such as r(s, a) (the reward for being in state s and taking action
a), g(x, u) (the gain from being in state x and using control u), or L(x, u) (the loss from
being in state x and using control u).

• C(St, xt,Wt+1) - We might use this form when our contribution depends on the infor-
mation Wt+1 (such as the revenue from serving the demand between t and t+ 1).

• C(St, xt, St+1) - This form is used in model-free settings where we do not have a tran-
sition function or an ability to observe Wt+1, but rather just observe the downstream
state St+1.

Of these, C(St, xt,Wt+1) is the most general, as it can be used to represent F (x,W ), C(St, xt),
or (by setting Wt+1 = St+1), C(St, xt, St+1). We can also make the contribution time-dependent,
by writing Ct(St, xt,Wt+1), allowing us to capture problems where the cost function depends on
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time. This is useful, for example, when the contribution in the final time period is different from
all the others.

Assuming we are trying to maximize the expected sum of contributions, we may write the ob-
jective function as

max
π

E

{
T∑
t=0

Ct(St, X
π
t (St),Wt+1)|S0

}
, (37)

where

St+1 = SM (St, X
π
t (St),Wt+1). (38)

We refer to equation (37) along with the state transition function (38) as the base model.

Equations (37)-(38) may be implemented in a simulator (offline), or by testing in an online field
setting. Care has to be taken in the design of the objective function to reflect which setting is
being used.

We urge the reader to be careful when interpreting the expectation operator E in equation (37),
which is typically a set of nested expectations that may be over a Bayesian prior (if appropriate),
the results of an experiment while learning a policy, and the events that may happen while testing
a policy.

We note that the term “base model” is not standard, although the concept is widely used in
many, but not all, communities in stochastic optimization.

There is growing interest in replacing the expectation in our base model in (37) with a risk measure
ρ. The risk measure may act on the total contribution (for example, penalizing contributions that fall
below some target), but the most general version operates on the entire sequence of contributions,
which we can write as

max
π

ρ(C0(S0, X
π(S0),W1), . . . , CT (ST , X

π(ST ))). (39)

The policy Xπ(St) might even be a robust policy such as that given in equation (27), where we might
introduce tunable parameters in the uncertainty set Wt. For example, we might let Wt(θ) be the
uncertainty set where θ captures the confidence that the noise (jointly or independently) falls within
the uncertainty set. We can then use (37) as the basis for simulating our robust policy. This is basically
the approach used in Ben-Tal et al. (2005), which compared a robust policy to a deterministic lookahead
(without tuning the robust policy) by averaging the performance over many iterations in a simulator
(in effect, approximating the expectation in equation (37)).

This opens up connections with a growing literature in stochastic optimization that addresses
risk measures (see Shapiro et al. (2014) and Ruszczyński (2014) for nice introductions to dynamic
risk measures in stochastic optimization). This work builds on the seminal work in Ruszczyński &
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Shapiro (2006), which in turn builds on what is now an extensive literature on risk measures in finance
(Rockafellar & Uryasev (2000), Rockafellar & Uryasev (2002), Kupper & Schachermayer (2009) for
some key articles), with a general discussion in Rockafellar & Uryasev (2013). There is active ongoing
research addressing risk measures in stochastic optimization (Collado et al. (2011), Shapiro (2012),
Shapiro et al. (2013), Kozmı́k & Morton (2014), Jiang & Powell (2016a)). This work has started to enter
engineering practice, especially in the popular area (for stochastic programming) of the management of
hydroelectric reservoirs (Philpott & de Matos (2012), Shapiro et al. (2013)) as well as other applications
in energy (e.g. Jiang & Powell (2016b)).

We refer to the base model in equation (37) (or the risk-based version in (39)), along with the
transition function in equation (38), as our universal formulation, since it spans all the problems
presented in section 2 (but, see the discussion in section 9). With this universal formulation, we have
bridged offline (terminal reward) and online (cumulative reward) stochastic optimization, as well as
state-independent and state-dependent functions.

With our general definition of a state, we can handle pure learning problems (the state variable
consists purely of the distribution of belief about parameters), classical dynamic programs (where the
“state” often consists purely of a physical state such as inventory), partially observable Markov decision
processes, problems with simple or complex interperiod dependencies of the information state, and any
mixture of these. In section 9, we are going to revisit this formulation and offer some additional
insights.

Central to this formulation is the idea of optimizing over policies, which is perhaps the single most
significant point of departure from most of the formulations presented in section 2. In fact, our finding
is that many of the fields of stochastic optimization are actually pursuing a particular class of policies.
In the next section, we provide a general methodology for searching over policies.

5. Designing policies

We begin by defining a policy as

Definition 5.1. A policy is a rule (or function) that determines a feasible decision given the available
information in state St (or Sn).

We emphasize that a policy is any function that returns a (feasible) decision given the information in
the state variable. A common mistake is to assume that a policy is some analytical function such as a
rule (which is a form of lookup table) or perhaps a parametric function. In fact, it is often a carefully
formulated optimization problem.

There are two fundamental strategies for creating policies:

Policy search - Here we use an objective function such as (37) to search within a family of functions
to find a function that works best.

Lookahead approximations - Alternatively, we can construct policies by approximating the impact
of a decision now on the future.
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Either of these approaches can yield optimal policies, although this is rare. Below we show that each of
these approaches are the basis of the two strategies for designing policies, producing four meta-classes
that cover all of the approaches that have ever been used in the literature. These are described in more
detail below.

5.1. Policy search

Policy search involves tuning and comparing policies using the objective function such as (37) or
(39) so that they behave well over time, under whatever sources of uncertainty that we choose to model
in our simulator (which can also be the real world). Imagine that we have a class of functions F , where
for each function f ∈ F , there is a parameter vector θ ∈ Θf that controls its behavior. Let Xf (St|θ)
be a function in class f ∈ F parameterized by θ ∈ Θf . Policy search involves finding the best policy
using

max
f∈F ,θ∈Θf

E

{
T∑
t=0

Ct(St, X
f (St|θ),Wt+1)|S0

}
. (40)

If F includes the optimal policy architecture, and Θf includes the optimal θ for this function, then
solving equation (40) would produce the optimal policy. There are special cases where this is true (such
as (s, S) inventory policies). We might also envision the ultimate function class that can approximate
any function such as deep neural networks or support vector machines, although these are unlikely to
ever solve high dimensional problems that arise in logistics.

Since we can rarely find optimal policies using (40), we have identified two meta-classes:

Policy function approximations (PFAs) - Policy function approximations can be lookup tables,
parametric or nonparametric functions, but the most common are parametric functions. This
could be a linear function such as

Xπ(St|θ) = θ0 + θ1φ1(St) + θ2φ2(St) + . . . ,

or a nonlinear function such as an order-up-to inventory policy, a logistics curve, or a neural
network. Typically there is no guarantee that a PFA is in the optimal class of policies. Instead,
we search for the best performance within a class.

Cost function approximations (CFAs) - A CFA is

Xπ(St|θ) = arg max
x∈Xπt (θ)

C̄πt (St, x|θ),

where C̄πt (St, x|θ) is a parametrically modified cost function, subject to a parametrically modified
set of constraints. CFAs are widely used for solving large scale problems such as scheduling an
airline or planning a supply chain. For example, we might introduce slack into a scheduling
problem, or buffer stocks for an inventory problem. Below we show that popular policies for
learning problems such as multiarmed bandits use CFAs.
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Policy search is best suited when the policy has clear structure, such as inserting slack in an airline
schedule, or selling a stock when the price goes over some limit. We may believe policies are smooth,
such as the relationship between the release rate from a reservoir and the level of the reservoir, but
often they are discontinuous such as an order-up-to policy for inventories.

5.2. Lookahead approximations

Just as we can, in theory, find an optimal policy using policy search, we can also find an optimal
policy by modeling the downstream impact of a decision made now on the future. This can be written

X∗t (St) = arg max
xt

(
C(St, xt) + E

{
max
π

E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣St+1

}∣∣∣∣∣St, xt
})

. (41)

Equation (41) is daunting, but can be parsed in the context of a decision tree with discrete actions
and discrete random outcomes (see figure 1). The states St′ correspond to nodes in the decision tree.
The state St is the initial node, and the actions xt are the initial actions. The first expectation is over
the first set of random outcomes Wt+1 (out of the outcome nodes resulting from each decision xt).

After this, the policy π represents the action xt′ that would be taken from every downstream node
St′ for t′ > t. Thus, a policy π could be a table specifying which action is taken from each potential
downstream node, over the rest of the horizon. Then, the second expectation is over all the outcomes
Wt′ , t

′ = t+2, . . . , T . Solving the maximization over all policies in (41) simply moves the policy search
problem one time period later.

Not surprisingly, just as we can rarely find the optimal policy by solving the policy search objective
function in (40), we can only rarely solve (41) (a decision tree is one example where we can). For
this reason, a wide range of approximation strategies have evolved for addressing these two problems.
These can be divided (again) into two meta-classes:

Value function approximations (VFAs) - Our first approach is to replace the entire term captur-
ing the future in (41) with an approximation known widely as a value function approximation.
We can do this in two ways. The first is to replace the function starting at St+1 with a value
function Vt+1(St+1) giving us

XV FA
t (St) = arg max

xt
(C(St, xt) + E {Vt+1(St+1)|St}) (42)

where St+1 = SM (St, xt,Wt+1), and where the expectation is over Wt+1 conditioned on St (some
write the conditioning as dependent on St and xt). Since we generally cannot compute Vt+1(St+1),
we can use various strategies to replace it with some sort of approximation V t+1(St+1), known
as a value function approximation.

The second way is to approximate the function around the post-decision state Sxt , which elimi-
nates the expectation (42), giving us

XV FA
t (St) = arg max

xt
(C(St, xt) + V x

t (St)) . (43)
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The post-decision formulation is popular for problems where xt is a vector, and V x
t (Sxt ) is a

convex function of Sxt .

Direct lookahead (DLAs) There are many problems where it is just not possible to compute suf-
ficiently accurate VFAs (dynamic problems with forecasts is a broad problem class where this
happens). When all else fails, we have to resort to a direct lookahead, where we replace the
lookahead expectation and optimization in (41) with an approximate model. The most widely
used strategy is to use a deterministic lookahead, but the field of stochastic programming will
use a sampled future to create a more tractable version.

5.3. Notes

The four meta-classes of policies (PFAs, CFAs, VFAs, and DLAs) cover every policy considered in
all the communities covered in section 2, with the possible exception of problems that can be solved
exactly or using a sampled belief model (these are actually special cases of policies). We note that as
of this writing, the “cost function approximation” has been viewed as more of an industry heuristic
than a formal policy, but we believe that this is an important class of policy that has been overlooked
by the research community (see Perkins & Powell (2017) for an initial paper on this topic).

It is natural to ask, why do we need four approximation strategies when we already have two
approaches for finding optimal policies (equations (40) and (41)), either of which can produce an
optimal policy? The reasons are purely computational. Equations (40) and (41) can rarely be solved
to optimality. PFAs as an approximation strategy are effective when we have an idea of the structure of
a policy, and these are typically for low-dimensional problems. CFAs similarly serve a role of allowing
us to solve simplified optimization problems that can be tuned to provide good results. VFAs only
work when we can design a value function approximation that reasonably approximates the value of
being in a state. DLAs are a brute force approach where we typically resort to solving a simplified
model of the future.

Below, we revisit the four classes of policies by first addressing learning problems, which are prob-
lems where the function being optimized does not depend on the state variable, and then in the
much richer class of state-dependent functions. However, we are first going to touch on the important
challenge of modeling uncertainty.

6. Modeling uncertainty

The community of stochastic optimization has typically focused on making good (or robust) deci-
sions in the presence of some form of uncertainty. However, we tend to put a lot more attention into
making a good decision than in the modeling of uncertainty.

The first step is to identify the sources of randomness. This can include observational errors,
forecasting errors, model uncertainty, control uncertainty and even goal uncertainty (different decision-
makers may have different expectations).
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There is a field known as “uncertainty quantification” that emerged from within science and engi-
neering in the 1960’s (Smith (2014) and Sullivan (2015) are two recent books summarizing this area).
This work complements the extensive work that has been done in the Monte Carlo simulation commu-
nity which is summarized in a number of excellent books (good introductions are Banks et al. (1996),
Ross (2002), Rubinstein & Kroese (2017)). Asmussen & Glynn (2007) provides a strong theoretical
treatment.

It is important to recognize that if we want to find an optimal policy that solves (37), then we have
to use care in how we model the uncertainties. There are different ways to representing an uncertain
future, including

• Stochastic modeling - By far the most attention has been given to developing an explicit stochastic
model of the future, which requires capturing:

– Properties of probability distributions, which may be described by an exponential fam-
ily (e.g. normal or exponential) and their discrete counterparts (Poisson, geometric), and
heavy-tailed distributions. We can also use compound distributions such as Poisson distri-
butions with random means, or mixtures such as jump diffusion models. It is often necessary
to use nonparametric distributions derived from history.

– Behavior over time - There are many ways to capture temporal behavior, including autocor-
relation, crossing times (the length of time the actual is above or below a benchmark such
as a forecast), regime switching, spikes, bursts and rare events.

– Other relationships, such as spatial patterns, behaviors at different levels of aggregation.

• Distributionally robust modeling - There is growing attention given to the idea of using other
methods to represent the future that do not require specific knowledge of a distribution (see
Bayraksan & Love (2015) and Gabrel et al. (2014) for good reviews). Robust optimization uses
uncertainty sets which is shown in (Xu et al., 2012) to be equivalent to a distributionally robust
optimization problem. We note that while uncertainty sets offers a different way of approaching
uncertainty, it introduces its own computational challenges (Goh & Sim (2010),Wiesemann et al.
(2014)).

• No model - There are many applications where we simply are not able to model the underlying
dynamics. These can be complex systems such as climate change, production plants, or the
behavior of a human. Different communities use terms such as model-free dynamic programming,
data-driven stochastic optimization, or online control.

This is a very brief summary of a rich and complex dimension of stochastic optimization, but we
feel it is important to recognize that modeling uncertainty is fundamental to the process of finding
optimal policies. Stochastic optimization problems can be exceptionally challenging, and as a result
we feel that most of the literature has focused on designing good policies. However, a policy will not
be effective unless it has been designed in the context of a proper model, which means accurately
capturing uncertainty.
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7. Policies for state-independent problems

An important class of problems is where the function being maximized does not depend on any
dynamic information that would be in the state variable. We can write these optimization problems
as

max
x∈X

EF (x,W ). (44)

An example is the newsvendor problem

max
x

EF (x,W ) = max
x

E(pmin{x,W} − cx), (45)

where we order a quantity x at a unit cost c, then observe demand W and sell the minimum of these
two at a price p. We assume we cannot compute EF (x,W ) (perhaps the distribution of W is not
known), so we will iteratively develop estimates F

n
(x). We might let Sn = F

n
(x) be our belief about

EF (x,W ). If we make a decision xn and observe Fn+1 = F (xn,Wn+1), we can use this information
to update our belief about EF (x,W ). Thus, our state Sn only captures our belief about the function.

An example of a state-dependent problem would be one where the quantity x is constrained by
x ≤ Rn where Rn is the available resources at iteration n, or where the price is pn which is revealed
before we make the decision x. In this case, our state variable might consist of Sn = (Rn, pn, F

n
(x)).

In this section, we assume that the state variable consists only of the belief about the function.
Below we describe adaptive algorithms where the state Sn at iteration n captures what we need

to know to make a decision (that is, to calculate our policy), but which does not affect the function
itself. However, we might be solving a time-dependent problem where the price pt is revealed before
we make a decision xt at time t. In this case, pt would enter our state variable, and we would have a
state-dependent function.

We are going to design a sequential search procedure, which we can still model as a stochastic,
dynamic system, but now the state Sn (after n iterations) captures the information we need to make
a decision using some policy Xπ(Sn). We refer to this problem class as learning problems, and make
the distinction between derivative-based and derivative-free problems.

7.1. Derivative-based

Assume we can compute a gradient ∇xF (x,W ) at a point x = xn and W = Wn+1, allowing us to
implement a stochastic gradient algorithm of the form

xn+1 = xn + αn∇xF (xn,Wn+1), (46)

where αn is a stepsize that may adapt to conditions as they unfold. There are many choices of stepsize
rules as reviewed in Powell & George (2006), with new and powerful rules given in Duchi et al. (2011)
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(AdaGrad), Kingma & Ba (2015) (Adam), and Orabona (2014) (PiSTOL). To illustrate the core idea,
imagine we use Kesten’s stepsize rule given by

αn =
θ

θ +Nn
, (47)

where we might let Nn be the number of times that the gradient ∇xF (xn,Wn+1) changes direction.
We now have a dynamic system (the stochastic gradient algorithm) that is characterized by a

gradient and a “policy” for choosing the stepsize (47). The state of our system is given by Sn =
(xn, Nn), and is parameterized by θ along with the choice of how the gradient is calculated, and the
choice of the stepsize policy (e.g. Kesten’s rule). Our policy, then, is a rule for choosing a stepsize αn.
Given αn (and the stochastic gradient ∇xF (xn,Wn+1)), we sample Wn+1 and then compute xn+1.
Thus, the updating equation (46), along with the updating of Nn, constitutes our transition function.

This simple illustration shows that a derivative-based stochastic gradient algorithm can be viewed
as a stochastic, dynamic system (see Kushner & Yin (2003) for an in-depth treatment of this idea).
Optimizing over policies means optimizing over the choice of stepsize rule (such as Kesten’s rule
(Kesten (1958)), BAKF (Powell & George (2006)), AdaGrad (Duchi et al. (2011)), Adam (Kingma &
Ba (2015)), PiSTOL (Orabona (2014))) and the parameters that characterize the rule (such as θ in
Kesten’s rule above).

7.2. Derivative-free

We make the simplifying assumption that the feasible region X in the optimization problem (44) is
a discrete set of choices X = {x1, . . . , xM}, which puts us in the arena of ranking and selection (if we
wish to maximize the terminal reward), or multiarmed bandit problems (if we wish to maximize the
cumulative reward). The discrete set might represent a set of drugs, people, technologies, paths over a
network, or colors, or it could be a discretized representation of a continuous region. Not surprisingly,
this is a tremendously broad problem class. Although it has attracted attention since the 1950’s (and
earlier), the first major reference on the topic is DeGroot (1970), who also characterized the optimal
policy using Bellman’s equation, although this could not be computed. Since this time, numerous
authors have worked to identify effective policies for solving the optimization problem in (28).

Central to derivative-free stochastic search is the design of a belief model. Let F
n
(x) ≈ EF (x,W )

be our approximation of EF (x,W ) after n experiments. We can represent F
n
(x) using any of the

following architectures.

Lookup tables Let µx = EF (x,W ) be the true value of the function at x ∈ X . A lookup table belief
model would consist of estimates µ̄nx for each x ∈ X . If we are using a Bayesian belief model, we
can represent the beliefs in two ways:

Independent beliefs We assume that µx is a random variable where a common assumption is
µx ∼ N(µ̄nx, σ̄

2,n
x ), where σ̄2,n

x is the variance in our belief about µx.

Correlated beliefs Here we assume we have a matrix Σn with element Σn
xx′ = Covn(µx, µx′),

where Covn(µx, µx′) is our estimate of the covariance after n observations.
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Parametric models The simplest parametric model is linear with the form

f(x|θ) = θ0 + θ1φ1(x) + θ2φ2(x) + . . .

where φf (x), f ∈ F is a set of features drawn from the decision x (and possibly other exogenous
information). We might let θ̄n be our time n estimate of θ, and we might even have a covariance
matrix Σθ,n that is updated as new information comes in. Parametric models might be nonlinear
in the parameters (such as a logistic regression), or a basic (low dimensional) neural network.

Nonparametric models These include nearest neighborhood and kernel regression (basically smoothed
estimates of observations close to x), support vector machines, and deep (high dimensional) neu-
ral networks.

If we let Sn be our belief state (such as point estimates and covariance matrix for our correlated
belief model), we need a policy Xπ(Sn) to return the choice xn of experiment to run, after which we
make a noisy observation of our unknown function Ef(x,W ). We represent this noisy experiment by
Wn+1, which we may view as returning a sampled observation F (xn,Wn+1), or a noisy observation
Wn+1 = f(xn) + εn+1 where f(x) is our true function. This leaves us with the problem of identifying
good policies Xπ(S).

A number of policies have been proposed in the literature. We can organize these into our four
classes of policies, although the most popular are cost function approximations (CFAs) and single-
period, direct lookaheads (DLAs). However, we use this setting to illustrate all four classes:

Policy function approximations - For learning problems, assume we have some policy for making
a decision. Imagine that the decision is continuous, such as a price, amount to order, or the forces
applied to a robot or autonomous vehicle. This policy could be a linear rule (that is, an “affine
policy”), or a neural network which we denote by Y π(S). Assume that after making the decision,
we use the resulting performance to update the rule. For this reason, it helps to introduce some
exploration by introducing some randomization which we might do using

Xπ(S) = Y π(S) + ε.

The introduction of the noise ε ∼ N(0, σ2
ε) is referred to in the controls literature as “excitation.”

The variance σ2
ε is a tunable parameter.

Cost function approximations - This is the most popular class of policies, developed primarily
in the setting of online (cumulative reward) problems known as multiarmed bandit problems.
Examples include:

Pure exploitation - These policies simply choose what appears to be best, such as

XXplt(Sn) = arg max
x

µ̄nx. (48)

33



We might instead have a parametric model f(x|θ) with unknown parameters. A pure
exploitation policy (also known as “simple greedy”) would be

XXplt(Sn) = arg max
x

f(x, θ̄n),

= arg max
x

f(x,E(θ|Sn)).

This policy includes any method that involves optimizing an approximation of the function
such as linear models, often referred to as response surface methods (Ginebra & Clayton
(1995)).

Bayes greedy - This is basically a pure exploitation policy where the expectation is taken
outside the function. For example, assume that our true function is a parametric function
f(x|θ) with an unknown parameter vector θ. The Bayes greedy policy would be

XBG(Sn) = arg max
x

E{f(x, θ)|Sn}. (49)

Interval estimation - This is given by

XIE(Sn|θIE) = arg max
x

(µ̄nx + θIE σ̄nx). (50)

where σ̄nx is the standard deviation of the estimate µ̄nx.

Upper confidence bounding - There is a wide range of UCB policies that evolved in the
computer science literature, but they all have the generic form

XUCB(Sn|θUCB) = arg max
x

(
µ̄nx + θUCB

√
log n

Nn
x

)
, (51)

where Nn
x is the number of times we have tried alternative x. We first introduced UCB

policies in equation (32) where we used 4σW instead of the tunable parameter θUCB. UCB
policies are very popular in the research literature (see, for example, Bubeck & Cesa-Bianchi
(2012)) where it is possible to prove bounds for specific forms, but in practice it is quite
common to introduce tunable parameters such as θUCB.

Value functions - It is possible in principle to solve learning problems using value functions, but
these are rare and seem to be very specialized. This would involve a policy of the form

XV FA(Sn) = arg max
x

(
µ̄nx + E{V n+1(Sn+1)|Sn, x}

)
, (52)

where Sn (as before) is our state of knowledge. There are special cases where Sn is discrete, but if
Sn is, for example, a set of point estimates µ̄nx and variances σ̄2,n

x , then Sn = (µ̄nx, σ̄
2,n
x )x∈X which

is high-dimensional and continuous. Value functions are the foundation of Gittins indices (see
section 2.14), which are calculated by decomposing multi-armed bandit problems into a series of
single-arm problems which allows the value functions to be computed.
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Direct lookahead policies - It is important to distinguish between single-period lookahead policies
(which are quite popular), and multi-period lookahead policies:

Single period lookahead - Examples include

Knowledge gradient - This estimates the value of information from a single experiment.
Assume we are using a parametric belief model where θ̄n is our current estimate, and
θ̄n+1(x) is our updated estimate if we run experiment xn = x. Keeping in mind that
θ̄n+1(x) is a random variable at time n when we choose to run the experiment, the value
of the experiment, measured in terms of how much better we can find the best decision,
is given by

νKG,n(x) = EθEW |θ{max
x′

f(x′|θ̄n+1(x))|Sn} −max
x′

f(x′|θ̄n).

The knowledge gradient was first studied in depth in Frazier et al. (2008) for indepen-
dent beliefs, and has been extended to correlated beliefs (Frazier et al., 2009), linear
beliefs (Negoescu et al., 2010), nonlinear parametric belief models (Chen et al., 2015),
nonparametric beliefs (Barut & Powell (2014), Cheng et al. (2014)), and hierarchical
beliefs (Mes et al., 2011). These papers all assume that the variance of measurements
is known, an assumption that is relaxed in Chick et al. (2010). The knowledge gradi-
ent seems to be best suited for settings where experiments are expensive, but care has
to be taken when experiments are noisy, since the value of information may become
non-concave. This is addressed in Frazier & Powell (2010).

Expected improvement - Known as EI in the literature, expected improvement is a close
relative of the knowledge gradient, given by the formula

νEI,nx = E
[

max

{
0, µx −max

x′
µ̄nx′

}∣∣∣∣Sn, xn = x

]
. (53)

Expected improvement maximizes the degree to which the current belief about the
function at x might exceed the current estimate of the maximum. Like the knowledge
gradient, is a form of value-of-information policy (see e.g. Chick et al. (2010)), with
the difference that EI captures the improvement in the function at a point x, while the
knowledge gradient captures the improvement due to a change in the decision resulting
from improved estimates.

Sequential kriging - This is a methodology developed in the geosciences to guide the
investigation of geological conditions, which are inherently continuous where x may
have two or three dimensions (see Cressie (1990) for the history of this approach).
Although the method is popular and relatively simple, for reasons of space, we refer
readers to Stein (1999) and Powell & Ryzhov (2012) for introductions. This work is
related to efficient global optimization (EGO) (Jones et al., 1998), and has been applied
to the area of optimizing simulations (see Ankenman et al. (2010) and the survey in
Kleijnen (2014)).
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Thompson sampling - First introduced in Thompson (1933), Thompson sampling works
by sampling from the current belief about µx ∼ N(µnx, σ̄

2,n
x ), which can be viewed as

the prior distribution for experiment n + 1. Let µ̂nx be this sample. The Thompson
sampling policy is then

XTS(Sn) = arg max
x

µ̂nx.

Thompson sampling can be viewed as a form of randomized interval estimation, without
the tunable parameter (we could introduce a tunable parameter by sampling from µx ∼
N(µnx, θ

TS σ̄2,n
x )). Thompson sampling has attracted considerable recent interest from

the research community (Agrawal & Goyal, 2012) and has sparked further research in
posterior sampling (Russo & Van Roy, 2014).

Multiperiod lookahead - Examples include

Decision tree - Some sequential decision problems (for example, with binary outcomes)
can be computed exactly for small budgets (say, up to seven experiments). Decision
trees can directly model the belief state. Larger problems can be approximated using
techniques such as Monte Carlo tree search.

The KG(*) - policy There are many settings where the value of information is noncon-
cave, such as when experiments are very noisy (experiments with Bernoulli outcomes
fall in this category). For this setting, Frazier & Powell (2010) proposes to act as if
alternative x is going to be tested nx times, and then find nx to maximize the average
value of information.

7.3. Discussion

We note in closing that we did not provide a similar list of policies for derivative-based problems. A
stochastic gradient algorithm would be classified as a policy function approximation. Wu et al. (2017)
appears to be the first to consider using gradient information in a knowledge gradient policy.

8. Policies for state-dependent problems

While state-independent learning problems are an important problem class, they pale in comparison
to the vast range of state-dependent functions, which includes the entire range of problems known
generally as “resource allocation.” Since it helps to illustrate ideas in the context of an example, we
are going to use a relatively simple energy storage problem, where energy is stored in the battery for a
system which can get energy from a wind farm (where the price is free), the grid (which has unlimited
capacity but highly stochastic prices) to serve a predictable, time-varying load.

This example is described in more detail in Powell & Meisel (2016b) which shows for this problem
setting that each of the four classes may work best depending on the characteristics of the system.
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8.1. Policy function approximations

A basic policy for buying energy from and selling energy to the grid from a storage device is to buy
when the price pt falls below a buy price θbuy, and to sell when it goes above a sell price θsell.

Xπ(St|θ) =


−1 If pt < θbuy,
0 If θbuy ≤ pt ≤ θsell,
1 If pt > θsell.

This is a policy that is nonlinear in θ. A popular PFA is one that is linear in θ, often referred to as an
“affine policy” or a “linear decision rule,” which might be written as

Xπ(St|θ) = θ0φ0(St) + θ1φ1(St) + θ2φ2(St). (54)

Recently, there is growing interest in tapping the power of deep neural networks to represent a
policy. In this context, the policy π would capture the structure of the neural network (the number
of layers and dimensionality of each layer), while θ would represent the weights, which can be tuned
using a gradient search algorithm.

These are examples of stationary policies, which is to say that while the function depends on a
dynamically varying state St, the function itself does not depend on time. While some authors will
simply add time to the state variable as a feature, in most applications (such as energy storage), the
policy will not be monotone in time. It is possible to make θ = (θbuy, θsell) time dependent, in which
case we would write it as θt, but now we have dramatically increased the number of tunable parameters
(Moazeni et al. (2017) uses splines to simplify this process).

8.2. Cost function approximations

A cost function approximation is a policy that solves a modified optimization problem, where either
the objective function or the constraints can be modified parametrically. A general way of writing this
is

XCFA(St|θ) = arg max
x∈Xπ(θ)

C̄π(St, x|θ). (55)

A simple CFA uses a linear modification of the objective function which we can write as

XCFA
t (St|θ) = arg max

x∈Xt

C(St, x) +
∑
f∈F

θfφf (St, x)

 , (56)

where the term added to C(St, x) is a “cost function correction term,” which requires designing basis
functions (φf (St, x)), f ∈ F , and tuning the coefficients θ.

A common strategy is to introduce modifications to the constraints. For example, a grid operator
planning energy generation for tomorrow will introduce extra reserve by scaling up the forecast. Air-
lines will optimize the scheduling of aircraft, handling uncertainty in travel times due to weather by
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introducing schedule slack. Both of these represent modified constraints, where the extra generation
reserve or schedule slack represent tunable parameters, which may be written

XCFA
t (St|θ) = arg max

x∈Xπt (θ)
C(St, x), (57)

where X πt (θ) might be the modified linear constraints

Atx = bt +Dtθ, (58)

x ≥ 0.

Here, θ is a vector of tunable parameters and D is an appropriate scaling matrix. Using the creative
modeling for which the linear programming community has mastered, equation (58) can be used to
introduce schedule slack into an airline schedule, spinning reserve into the plan for energy generation,
and even buffer stocks for managing a supply chain.

8.3. Value function approximations

We begin by recalling the optimal policy based on calculating the impact of a decision now on the
future (originally given in equation (41)),

X∗t (St) = arg max
xt

(
C(St, xt) + E

{
max
π

E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣St+1

}∣∣∣∣∣St, xt
})

. (59)

We let Vt+1(St+1) be the expected optimal value of being in state St+1, allowing us to write equation
(59) as

X∗t (St) = arg max
xt

(C(St, xt) + E {Vt+1(St+1)|St, xt} ). (60)

The problem with equation (60) is that we typically cannot compute the value function Vt+1(St+1).
Section 2.6 provided a brief introduction of how to replace the exact value function with an approxi-
mation V t+1(St+1) which would give us the policy

XV FA
t (St) = arg max

xt
(C(St, xt) + E

{
V t+1(St+1)|St, xt

}
).

There are many problems where we cannot compute the expectation, so we might instead compute the
value function around the post-decision state Sxt , giving us

XV FA
t (St) = arg max

xt
(C(St, xt) + EV t(S

x
t )).

A substantial field has grown up around approximating value functions, typically under the umbrella
of approximate dynamic programming (Powell, 2011), or reinforcement learning (Sutton & Barto, 1998)
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(see also Szepesvári (2010)). Beyond the brief introduction we provided in section 2.6, we refer the
reader to these references as a starting point.

There is an entire literature that focuses on settings where xt is a vector, and the contribution
function C(St, xt) = ctxt, where the constraints Xt are a set of linear equations. These problems are
most often modeled where the only source of randomness is in exogenous supplies and demands. In
this case, the state St consists of just the resource state Rt, and we can also show that the post-decision
value function V

x
t (Rt) is concave (if maximizing). These problems arise often in the management of

resources to meet random demands.
Such problems have been solved for many years by representing the value function as a series

of multidimensional cuts based on Benders decomposition, building on ideas first presented in (Van
Slyke & Wets, 1969) (which required enumerating all the cuts) and (Higle & Sen, 1991) (which used
a sample-based procedure). Building on these ideas, Pereira & Pinto (1991) proposed stochastic dual
dynamic programming, or SDDP, as a way of solving sequential problems (motivated by the challenge
of optimizing water reservoirs in Brazil).

This strategy has spawned an entire body of research (Infanger & Morton (1996), Shapiro et
al. (2013), Sen & Zhou (2014), Girardeau et al. (2014)) which is reviewed in Shapiro et al. (2014).
It is now recognized that SDDP is a form of approximate dynamic programming in the context of
convex, stochastic linear programming problems (see e.g. Powell (2007)). Related to SDDP is the
use of separable, piecewise linear value function approximations that have proven useful in large scale
logistics applications (Powell et al. (2004), Topaloglu & Powell (2006), Bouzaiene-Ayari et al. (2014),
Salas & Powell (2015)).

8.4. Direct lookahead approximations

Each of the policies described above (PFAs, CFAs, and VFAs) require approximating some function,
drawing on the tools of machine learning. These functions may be the policy Xπ(St), an approximation
of EF (x,W ), a modified cost function or constraints (for CFAs), or the value of being in a state Vt(St).
These methods work when these functions can be approximated reasonably well.

Not surprisingly, this is not always possible, typically because we lack recognizable structure. When
all else fails (which is quite often), we have to turn to direct lookaheads, where we need to approximate
the lookahead policy in equation (41). Since this function is rarely computable, we approach it by
replacing the model of the future with an approximation which we refer to as the lookahead model. A
lookahead model is generated at a time t when we have to make decision xt. There are five types of
approximations that are typically made when we create a lookahead model:

• Limiting the horizon - We may reduce the horizon from (t, T ) to (t, t+H), where H is a horizon
that is just long enough to produce a good decision at time t.

• Stage aggregation - A stage is a sequence of seeing new information followed by making a decision.
A popular strategy is to replace the full multistage formulation with a two-stage formulation,
consisting of making a decision xt now, then seeing all the information over the remainder of
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the horizon, represented by Wt+1, . . . ,Wt+H , and then making all the decisions over the horizon
xt+1, . . . , xt+H . This means that xt+1 is allowed to “see” the entire future.

• Approximating the stochastic process - We may replace the full probability model with a sampled
set of outcomes, often referred to as scenarios. We may also replace a state-dependent stochastic
process with one that is state-independent.

• Discretization - Time, states, and decisions may all be discretized in a way that makes the
resulting model more computationally tractable. The resulting stochastic model may even be
solvable using backward dynamic programming.

• Dimensionality reduction - It is very common to ignore one or more variables in the lookahead
model. For example, it is virtually always the case that a forecast will be held fixed in a lookahead
model, while it would be expected to evolve over time in a real application (and hence in the base
model). Alternatively, a base model with a belief state, capturing imperfect knowledge about a
parameter, might be replaced with an assumption that the parameter is known perfectly.

As a result of all these approximations, we have to create notation for what is basically an entirely
new model, although there should be close parallels with the base model. For this reason, we use the
same notation as the base model, but all variables are labeled with a tilde, and are indexed by both t
(which labels the time at which the lookahead model is created), and t′, which is the time within the
lookahead model. Thus, a lookahead policy would be written

XLA
t (St|θLA) = arg max

xt

(
C(St, xt) + Ẽ

{
max
π̃∈Π̃

Ẽπ
{

t+H∑
t′=t+1

C(S̃tt′ , X̃
π̃
tt′(S̃tt′))|S̃t,t+1

}
|St, xt

})
. (61)

Here, the parameter vector θLA is assumed to capture all the choices made when creating the approxi-
mate lookahead model. We note that in lookahead models, the tunable parameters (horizons, number
of stages, samples) are all of the form “bigger is better,” so tuning is primarily a tradeoff between
accuracy and computational complexity.

Below we describe three popular strategies. The first is a deterministic lookahead model, which
can be used for problems with discrete actions (such as a shortest path problem) or continuous vectors
(such as a multiperiod inventory problem). The second is a stochastic lookahead procedure developed
in computer science that can only be used for problems with discrete actions. The third is a strategy
developed by the stochastic programming community for stochastic lookahead models with vector-
valued decisions.

Deterministic lookaheads

Easily the most popular lookahead model uses a deterministic approximation of the future, which
we might write
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Figure 2: Illustration of simulating a direct lookahead policy, using a deterministic model of the future.

XLA−Det
t (St|θLA) = arg max

xt

(
C(St, xt) + max

x̃t,t+1,...,x̃t,t+H

t+H∑
t′=t+1

C(S̃tt′ , x̃tt′)

)
, (62)

where the optimization problem is solved subject to any constraints that would have been built into
the policy.

The problem being modeled in (62) could be a shortest path problem, in which case we would likely
solve it as a deterministic dynamic program. If xt is a continuous vector (for example, optimizing cash
flows or a supply chain problem), then (62) would be a multiperiod linear program.

Figure 2 illustrates the process of solving a lookahead model which yields a decision xt which is
implemented in the base model. The horizontal axis describes time moving forward in the base model,
while the slanted lines represent the lookahead model projecting into the future. At each point in time
(we represent t, t + 1 and t + 2) we solve the lookahead model, which consists of state variables S̃tt′

and decision variables x̃tt′ (for the lookahead model solved at time t), which returns a decision xt that
is implemented in the base model. We then use the base transition function St+1 = SM (St, xt,Wt+1)
where Wt+1 is sampled from the stochastic (base) model, or observed from a physical system. At time
t+ 1, we repeat the process.

We note that the strategy of using a deterministic lookahead is often referred to as model predictive
control (or MPC), which is to say that we use a model of the problem (more precisely an approximate
model) to decide what to do now. The association of MPC with a deterministic lookahead reflects
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the history of MPC coming from the engineering controls community that predominantly focuses on
deterministic problems. The term “model predictive control” actually refers to any lookahead model,
whether it is deterministic or stochastic. However, stochastic lookahead models that match the base
model are rarely solvable, so we are usually using most if not all of the five types of approximations
listed above. For good reviews of model predictive control, see Morari et al. (2002), Camacho &
Bordons (2003), Bertsekas (2005), and Lee (2011).

Rollout policies

A powerful and popular strategy is to interpret the search over a restricted set of policies in the
future, represented as π̃ ∈ Π̃ in equation (61). The design of these policies is highly problem-dependent
and is best illustrated using examples:

• The time t problem could be the simultaneous assignment of drivers to riders at time t, where
an assignment might take a driver at location i to location j. We might then estimate the value
of the driver at j by myopically assigning this driver to simulated loads in the future (ignoring
all other drivers).

• To solve a time-dependent inventory problem (such as planning inventories before Christmas),
imagine testing different ordering decisions now (imagine we have to play orders four weeks in
advance). Each decision is evaluated by simulating a simple replenishment rule in the future, to
help us evaluate our ordering decision now.

The approximate rollout policy may be a parameterized policy X̃ π̃(S̃tt′ |θ̃) is typically fixed in advance
(see Bertsekas & Castanon (1999) for a careful early analysis of this idea), but the choice of rollout
policy can (and should) be optimized as part of the search over policies in our base model (37). In
fact, the best choice of the parameter vector θ̃ depends on the initial post-decision state Sxt , which
means we could even tune the parameter to find θ̃(Sxt ) on the fly (unlikely this would ever be done in
practice). Thus, the search over π̃ in (61) could be a search for the best θ̃(Sxt ).

Monte Carlo tree search for discrete decisions

Imagine that we have discrete actions at ∈ As when we are in state s = St, after which we observe
a realization of Wt+1. Such problems can be modeled in theory as classical decision trees, but these
explode very quickly with the number of time periods.

Monte Carlo tree search is a strategy that evolved within computer science to explore a tree without
enumerating the entire tree. This is done in four steps as illustrated in figure 3. These steps include
a) selecting an action out of a decision node (which represents a state S̃tt′), b) expanding the tree, if

the resulting observation of W̃ t,t′+1 results in a node that was not already in the tree, c) the rollout
policy, which is how we evaluate the value of the node that we just reached out to, and d) backup,
where we run backward through the tree, updating the value of being in at each node (this is what we
did in equation (17)).

42



Rollout
policy

Selection Expansion Simulation Backpropagation

Tree policy

Action selection

Sampling

(a)            (b)                              (c)                              (d)

Figure 3: Sketch of Monte Carlo tree search, illustrating (left to right): selection, expansion, simulation and backpropa-
gation.

Central to the success of MCTS is having an effective rollout policy to get an initial approximation
of the value of being in a leaf node. Rollout policies were originally introduced and analyzed in
Bertsekas & Castanon (1999). A review of Monte Carlo tree search is given in Browne et al. (2012),
although this is primarily for deterministic problems. Other recent reviews include Auger et al. (2013)
and Munos (2014). Jiang et al. (2017) presents an asymptotic proof of convergence of MCTS if the
lookahead policy uses the principle of information relaxation, which is done by taking a sample of
the future and then solving the resulting deterministic problem assuming we are able to look into the
future.

Monte Carlo tree search represents a relatively young algorithmic technology which has proven
successful in a few applications. It is basically a brute force solution to the problem of designing
policies, which depends heavily on the ability to design effective, but easy-to-compute, rollout policies.

Two-stage stochastic programming for vector-valued decisions

Monte Carlo tree search requires the ability to enumerate all of the actions out of a decision node.
This limits MCTS to problems with at most a few dozen actions per state, and completely eliminates
considering problems with vector-valued decisions.

A popular strategy (at least in the research literature) for solving sequential, stochastic linear pro-
grams is to simplify the lookahead model into three steps: 1) making the decision xt to be implemented

at time t, 2) sampling all future information W̃ t,t+1(ω), . . . , W̃ t,t+H(ω), where the sample paths ω are

drawn from a sampled set Ω̃t of sample paths of possible values of W̃ t,t+1, . . . , W̃ t,t+H , and 3) making
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all remaining decisions x̃t,t+1(ω), . . . , x̃t,t+H(ω). This produces the lookahead policy

X2stage
t (St) = arg max

xt,(x̃tt′ (ω))t+H
t′=t+1

,ω∈Ω̃t

ctxt +
∑
ωt∈Ω̃t

p̃t(ω)
t+H∑
t′=t+1

c̃tt′(ω)x̃tt′(ω), (63)

subject to first stage constraints

Atxt = bt, (64)

xt ≥ 0 , (65)

and the second stage constraints for ω ∈ Ω̃t,

Ãt,t+1(ω)x̃t,t+1(ω) + B̃t,t′−1(ω)xt(ω) = b̃t,t+1(ω), (66)

Ãtt′(ω)x̃tt′(ω) + B̃t,t′−1(ω)x̃t,t′−1(ω) = b̃tt′(ω), t′ = t+ 2, . . . , t+H, (67)

x̃tt′(ω) ≥ 0 , t′ = t+ 1, . . . , t+H. (68)

We again emphasize that ω determines the entire sequence W̃ t,t+1, . . . , W̃ t,t+H , which is how each
decision x̃tt′(ω) in the lookahead model is allowed to see the entire future. However, the here-and-now
decision xt is not allowed to see this information, which is viewed as an acceptable approximation in
the research literature, although there has been virtually no analysis of the errors introduced by this
assumption.

Since xt is a vector, even deterministic versions of (63) (that is, where there is only a single ω)
may be reasonably large. As a result, the full problem (63) - (68) when the set Ω̃t contains tens
to potentially hundreds of outcomes may be quite large. This has motivated the development of
decomposition algorithms such as the progressive hedging algorithm of Rockafellar & Wets (1991),
which replaces xt with xt(ω), which means that now even xt is allowed to see the future, and then
introduces the constraint

xt(ω) = x̄t, ∀ω ∈ Ω̃t. (69)

Equation (69) is widely known as a “non-anticipativity constraint” since it requires that xt cannot
be different for different outcomes ω. However, progressive hedging relaxes this constraint, producing
series of much smaller optimization problems, one for each ω ∈ Ω̃t, which are progressively modified
until (69) is satisfied.

The literature on stochastic programming (as this field is known) dates to the 1950’s with the
original work of Dantzig (1955) and Dantzig & Ferguson (1956). This work has been followed by
decades of research which is summarized in a series of books (Birge & Louveaux (2011), King & Wallace
(2012), Shapiro et al. (2014)). As with all of our other policies, our two-stage stochastic programming
policy X2stage(St) should be evaluated using our base model in equation (37), although this is often
overlooked, primarily because computing X2stage(St), which requires solving the optimization problem
(63) - (68), can be quite difficult. As a result, the problem of carefully choosing the set Ω̂t has attracted
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considerable attention, beginning with the seminal work of Dupacova et al. (2003) and Heitsch &
Romisch (2009), with more recent work on uncertainty modeling (see the tutorial in Bayraksan & Love
(2015)).

Given the challenges of solving practical two-stage stochastic programming problems, full multistage
lookahead models have attracted relatively little attention (Defourny et al. (2013) is a sample). We
note that Monte Carlo tree search, by contrast, is a full “multistage” stochastic lookahead model, but
this fully exploits the relative simplicity of small action spaces.

Robust optimization

Robust optimization has been extended to multiperiod problems, just as the two-stage stochastic
programming model has been extended to multiperiod problems as an approximate way of solving
(robustly) sequential decision problems. Assume we are trying to find xt by optimizing over a horizon
(t, t+H). Formulated as a robust optimization problem means solving

XRO
t (St|θ) = arg min

xt,...,xt+H∈Xt
max

(wt,...,wt+H)∈Wt(θ)

t+H∑
t′=t

ct(wt)xt, (70)

possibly subject to constraints that depend on (wt, . . . , wt+H). Note that we are using wt′ rather than
ω or Wt′(ω), since wt′ is now a decision variable.

This strategy was proposed in Ben-Tal et al. (2005) to solve a supply chain problem. While not
modeled explicitly, the policy was then tested in an expectation-based simulator (what we call our base
model).

8.5. Hybrid policies

There are two reasons to articulate the four meta-classes of policies. First, all four classes have
problems for which they are well suited. If you only learn one class (as many students of stochastic
optimization do), you are going to be limited to working on problems that are suited to that class.
In fact, the best policy, even within the context of a single problem domain, can depend on the
characteristics of the data. This property is illustrated in Powell & Meisel (2016b) for an energy
storage problem, where each of the four classes of policies (plus a fifth hybrid) is shown to work best
on a particular version of the problem.

The second reason is that it is often the case that the best policy is a hybrid of two, or even three,
of the four classes. Below are some examples of hybrid policies we have encountered.

• Lookahead and VFA policies - Tree search can be a powerful strategy, but it explodes expo-
nentially with the number of stages. Value functions avoid this, but requires that we develop
accurate approximations of the value of being in a state, which can be hard in many applications.
Consider now a partial tree search over a short horizon, terminating with a value function. Now
the value function does not have to be quite as accurate, and yet we still get an approximation
that extends over a potentially much longer horizon.
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• Deterministic lookaheads (DLA) with tunable parameters (CFA) - A common industry practice
is to solve a deterministic lookahead model, but to introduce tunable parameters to handle
uncertainty. For example, airlines might introduce schedule slack to handle the uncertainty of
weather delays, while a grid operator will schedule extra generation capacity to handle unexpected
generator failures. These tunable parameters are optimized in the base model in equation (37),
where the transition function (38) might be a simulator, or the real world.

• Any optimization-based policy (CFA, VFA or DLA) guided by historical patterns (a form of PFA)
- Cost-based optimization models easily handle very high-dimensional data (e.g. optimizing a
fleet of trucks or planes), but it can be hard to capture some issues in a cost function (we like to
put drivers that work in teams on longer loads, but this is not a hard constraint).

The choice of the best policy, or hybrid, always depends on comparisons using the base model (37)-(38).

Discussion

There is widespread confusion in the research literature regarding the distinction between stochastic
lookahead policies (primarily), and stochastic base models. While all policies should be tested in a
base model (which can be the real world), tuning in a base model is essential when using PFAs and
CFAs, but not with lookahead policies. As a result, many authors will present a stochastic lookahead
model without making the distinction of whether this is a lookahead model, or a base model.

In some cases it is clear that a stochastic model is a lookahead model, such as a two-stage stochas-
tic programming approximation of a multiperiod (and multistage) stochastic optimization problem.
However, it is possible to solve a stochastic lookahead model as a dynamic program, in which case it
may not be clear. We might look for approximations that are typical in lookahead models, but base
models use approximations too.

9. A classification of problems

Having organized policies into four classes, we need to address the problem of evaluating policies.
For this purpose, we have to recognize that there are different problem classes that introduces different
issues for policy evaluation. We first make the distinction between problems where we only care about
the final design (as would occur if we are experimenting in a lab) versus problems where we learn by
doing in the field, in which case we have to maximize the cumulative rewards. The first objective is
offline since we are working in a lab or simulated environment, while the second is online since we are
adapting in a field setting.

It turns out that the machine learning community also uses these terms, but with different meanings.
In machine learning, “offline” refers to batch learning, where we have to fit a model using a dataset that
has already been generated. By contrast, “online” refers to sequential, since this is what would happen
if we were learning in the field. The problem is that there are many uses of sequential algorithms
in offline settings. For this reason, we use terminal reward to refer to problems where we are only
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Offline

Terminal reward

Online

Cumulative reward

State

independent

problems

maxπ E{F (xπ,N ,W )|S0}
Stochastic search

(1)

maxπ E{
∑N−1
n=0 F (Xπ(Sn),Wn+1)|S0}

Multiarmed bandit problem

(2)

State

dependent

problems

maxπlrn E{C(S,Xπimp

(S|θimp),W )|S0}
Offline dynamic programming

(4)

maxπ E{
∑T
t=0 C(St, X

π(St),Wt+1)|S0}
Online dynamic programming

(3)

Table 1: Comparison of formulations for state-independent (learning) vs. state-dependent problems, and offline (terminal
reward) and online (cumulative reward).

interested in the performance of the final design, and cumulative reward when we need to maximize
performance as we are progressing.

We begin by identifying two key dimensions for characterizing any adaptive optimization problem:
First, whether the objective function is offline (terminal reward) or online (cumulative reward), and
second, whether the objective function is state-independent (learning problems) or state-dependent
(traditional dynamic programs). This produces four problem classes which are depicted in table 1.
Moving clockwise around the table, starting from the upper left-hand corner:

Class 1) State-independent, terminal reward - This is our classic stochastic search problem evaluated
using a finite budget (as it should be), where the problem is to find the best policy (which could
be a stochastic gradient algorithm) for finding the design xπ,N produced by the policy π within
the experimental budget N . This might be called the finite-time version of the newsvendor
problem, where the expectation can be written in nested form as

max
π

E{F (Xπ,N , Ŵ )|S0} = ES0EW 1,...,WN |S0EŴ |S0F (Xπ,N , Ŵ ), (71)

where W 1, . . . ,WN are the observations of W while learning the function, and Ŵ is the random
variable used for testing the final design xπ,N . The initial state S0 may be deterministic, but
might include a Bayesian prior of an unknown parameter (such as the response of demand to
price), which means we have to take an expectation over this distribution.

Class 2) State-independent, cumulative reward - Here we want a policy that learns while it optimizes,
where we have to live with the performance of the decisions we make while we are learning the
function. This would be our classic multiarmed bandit problem if the decisions x were discrete and
we did not have access to derivatives (but we are not insisting on these limitations). Expanding
the expectation gives us

max
π

E

{
N−1∑
n=0

F (Xπ(Sn),Wn+1)|S0

}
= ES0EW 1,...,WN |S0

N−1∑
n=0

F (Xπ(Sn),Wn+1). (72)
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Class 3) State-dependent, cumulative reward - At first glance this looks like a classical dynamic
program (when expressed in terms of optimizing over policies), yet we see that it closely parallels
the multiarmed bandit problem. This problem may include a belief state, but not necessarily.
When we expand the expectation we obtain

max
π

E

{
T−1∑
t=0

C(St, X
π(St),Wt+1)|S0

}
= ES0EW1,...,WT |S0

{
T−1∑
t=0

C(St, X
π(St),Wt+1)|S0

}
.

(73)

In contrast with problem classes (1) and (2), we model the performance of the policy over time
t, rather than iterations n as we did in (72) (which could have been written either way).

Class 4) State-dependent, terminal reward - Here we are looking for the best policy to learn a policy
that will then be implemented. Our implementation policy Xπimp(St|θimp) parallels the imple-

mentation decision xπ,N in (71), where θimp = Θπlrn(S|θlrn) is a parameter that is learned by the

learning policy Θπlrn(S|θlrn). The learning policy could be algorithms for learning value func-
tions such as Q-learning, approximate value iteration or SDDP, or it could be a search algorithm
for learning a PFA or CFA. The parameters θimp are parameters that determine the behavior
of the implementation policy such as an approximate Q-factor Q̄(s, a), a Benders’ cut, or the
tunable parameter in a UCB policy.

When we have a state-dependent function, we have to take an additional expectation over the
state variable when evaluating the policy. Keeping in mind that the implementation parameters
θimp are a function of the learning policy πlrn, we can write this as

max
πlrn

E{C(S,Xπimp(S|θimp), Ŵ )|S0} =

ES0Eπ
lrn

W 1,...,WN |S0Eπ
imp

S|S0Eπ
imp

Ŵ |S0C(S,Xπimp(S|θimp), Ŵ ). (74)

where W 1, . . . ,WN represents the observations made while using our budget of N experiments
to learn a policy, and Ŵ is the random variable observed when evaluating the policy at the end.

Computing the expectation EπimpS|S0 over the states is typically intractable because it depends on

the implementation policy (which of course depends on the learning policy). Instead, we can run
a simulation over a horizon t = 0, . . . , T − 1 and then divide by T to get an average contribution
per unit time. We can think of Wn as the set of realizations over a simulation, which we can
write as Wn = (Wn

1 , . . . ,W
n
T ). We can then write our learning problem as

max
πlrn

ES0Eπ
imp

(Wn
t )Tt=1,n=1,...,N |S0

(
Eπ

imp

(Ŵt)Tt=1|S0

1

T

T−1∑
t=0

C(St, X
πimp(St|θimp), Ŵt+1)

)
. (75)

Here, we are searching over learning policies, where the simulation over time replaces F (x,W ) in
the state-independent formulation. The sequence (Wn

t )Tt=1, n = 1, . . . , N replaces the sequence
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W 1, . . . ,WN for the state-independent case, where we start at state S0 = S0. We then do our
final evaluation by taking an expectation over (Ŵt)

T
t=1, where we again assume we start our

simulations at S0 = S0.

This organization brings out relationships that have not been highlighted in the past. For example,
while ranking and selection/stochastic search has been viewed as a fundamentally different problem
class from multiarmed bandits, we see that they are really the same problem with different objectives
(final reward versus cumulative reward). We also see that state-independent problems (learning prob-
lems) are closely related to state-dependent problems, which is the problem class typically associated
with dynamic programming (although all of these problems are dynamic programs).

We have noted that most adaptive learning algorithms for dynamic programming (Q-learning,
approximate dynamic programming, SDDP) fall under the category of state-dependent, final-reward
in table 1, which suggests that the cumulative-reward, state-dependent case is a relatively overlooked
problem class (excluding contextual bandits, which is a special case). Algorithms in this setting have
to balance learning while making good decisions (the classic exploration-exploitation tradeoff). Some
contributions to this problem class include the work of Duff (Duff et al. (1996) and Duff (2002)) which
tried to adapt the theory of Gittins indices to Q-learning algorithms, and Ryzhov (Ryzhov & Powell
(2010) and Ryzhov et al. (2017)) who developed both offline (final reward) and online (cumulative
reward) adaptations of the knowledge gradient algorithm for state-dependent problems.

There is a substantial literature that makes the distinction between problems in classes (1) and
(2), primarily because optimal policies and their behavior (and hence, theoretical properties) are quite
different. By contrast, while there are communities doing (state dependent) dynamic programming in
both offline and online settings, the algorithms (policies) used for each setting are fundamentally the
same. Why is this? We believe it is because classes (1) and (2) are relatively simple, and lend themselves
to finding theoretical results characterizing the behavior of policies, where the slight differences between
(1) and (2) are important. By contrast, if you are focusing on designing algorithms to find optimal
policies, the distinction between the final reward and cumulative reward objective functions is simply
not that important. Imagine solving linear programs for deterministic versions of (3) and (4); the
simplex algorithm will solve both of these.

We note in passing that the problem of finding an optimal policy for solving all four problem classes
can be written as a sequential decision problem, which is to say a dynamic program. In theory this
means that we can characterize an optimal policy using Bellman’s equation, recognizing that we have
to use a proper definition of a state variable. The problem is that we generally cannot solve Bellman’s
equation, which is the reason for the four classes of policies described in section 5.

10. Learning challenges

Of the four classes of policies, only direct lookaheads do not involve any form of statistical learning.
Of the remaining, there are four types of statistical learning problems:
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• Learning an approximation F (x) ≈ EWF (x,W ). This is the easiest problem because we typically
assume we have access to unbiased observations of F (x,W ). The goal is to minimize some
measure of error between F (x) and F (x,W ).

• Learning policies Xπ(s). Here we are learning a function that maximizes a contribution or
minimizes a cost, typically in the base model in equation (37).

• Learning a cost function approximation, which means a parametrically modified cost function
or set of constraints. This is similar to learning F (x), except that we are learning a function
embedded within a max or min operator.

• Learning a value function approximation V t(St) ≈ Vt(St).

These learning challenges draw heavily on the fields of statistics and machine learning. Section 7.2
gave a very brief overview of general statistical methodologies and some references. There are several
twists that make statistical learning in stochastic optimization a little different, including

• Recursive learning - Almost all of the statistical challenges listed above (approximate policy
iteration being an exception) involve recursive learning. This means that we need methods that
evolve from low to higher dimensional representations as we acquire more data.

• Active learning - We get to choose x (or the policy), which means we have control over what
experiments to run. This means we usually are balancing the classic exploration-exploitation
tradeoff.

• We may be optimizing a physical process or numerical simulation rather than a mathematical
model. In these settings, observations of the function may be quite expensive, which means we
do not have access to the large datasets that have become so familiar in a “big data” world.

• Learning value functions is one of the most difficult challenges from a statistical perspective,
because we typically have to learn V t(St) from observations v̂nt that are generally biased estimates
of Vt(St) (or its derivatives). The bias arises because we learn these values using suboptimal
policies, but then we have to use our approximations.

• Policies are often discontinuous, as with buy low, sell high policies, or order-up-to inventory
policies.

There is an extensive literature on learning. Hastie et al. (2009) is an excellent introduction to the
broad field of statistical learning, but there are many good books. Jones (2001) and Montgomery (2000)
describe provide thorough reviews of response surface methods. Kleijnen (2017) reviews regression and
kriging metamodels for simulation models, which is the foundation of most stochastic optimization.
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11. Research challenges

The framework presented here brings a variety of perspectives from the different communities of
stochastic optimization, which creates new opportunities for research. These include:

• Given the complexity of solving a stochastic lookahead model, most authors are happy just to
get a solution. As a result, almost no attention has been devoted to analyzing the quality of a
stochastic lookahead model. We need more research to understand the impact of the different
types of errors that are introduced by the approximations discussed in section 5.2 when creating
lookahead models.

• There has been a long tradition of solving problems with belief states as “partially observable
Markov decision processes.” At the same time, theoreticians have known for decades that dy-
namic programs with belief states can be modeled simply as part of the state variable (as we
have done), which means that POMDPs are really just dynamic programs which can be solved
with any of the four classes of policies. In fact, we have described policies designed for problems
where the state variable is purely a belief state. We need to explore the four classes of policies for
problems with mixed state variables (physical, informational, and belief), rather than assuming
that we have to always solve Bellman’s equation.

• The quality of a policy depends on the quality of a model; the stochastic optimization literature
puts relatively little attention into the model of uncertainty, although some attention has been
given to the identification of suitable scenarios in a sampled model, and the design of distribu-
tionally robust models. There is, of course, an extensive literature on stochastic modeling and
uncertainty quantification; we need considerably more research at the intersection of these fields
and stochastic optimization.

• Design of algorithms for online (cumulative reward) settings. The vast majority of adaptive
search algorithms (stochastic gradient methods, Benders decomposition, Q-learning, approximate
dynamic programming) are implemented in an offline context where the goal is to produce a
solution that “works well.” There are many settings where learning has to be performed online,
which means we have to do well as we are learning, which is the standard framework of multiarmed
bandit problems. We can bring this thinking into classical stochastic search problems.

• All of the communities described in section 2 focus on expectation-based objectives, yet risk
is almost always an issue in stochastic problems. There is a growing literature on the use of
risk measures, but we feel that the current literature is only scratching the surface in terms of
addressing computational and modeling issues in the context of specific applications.

• Parametric cost function approximations, particularly in the form of modified deterministic mod-
els, are widely used in engineering practice (think of scheduling an airline with schedule slack to
handle uncertainty). This strategy represents a powerful alternative to stochastic programming
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for handling multistage stochastic math programs. We envision that this research will consist of
computational research to develop and test search algorithms for optimizing parametric CFAs,
along with the theoretical analysis of structural results to guide the design of these policies.

• With rare exceptions, authors will pursue one of the four classes of policies we have described
above, but it is not always obvious which is best, and it can depend on the characteristics of
the data. We need a robust methodology that searches across classes of policies, and performs
self-tuning, in an efficient way. Of course, we will always be searching for the ultimate function
that replaces all four classes, but we are not optimistic that this will be possible in practice.

• Multiple objectives - Stochastic dynamic problems tend to be richer and more complex, and one
byproduct of this is that these problems are often multi-objective. At a minimum, we have to
handle risk and reward, but in real applications, there tend to be several important metrics that
are being managed.

• Multiple agents - A rich direction to extend this modeling framework is to include multiple agents.
This raises issues of communication, coordination and adversarial behavior.

Each of these topics are deep and rich, and could represent entire fields of research.
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