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 
Abstract—Operations planning in smart grids is likely to 

become a more complex and demanding task in the next decades. 
In this paper we show how to formulate the problem of planning 
short-term load curtailment in a dense urban area, in the 
presence of uncertainty in electricity demand and in the state of 
the distribution grid, as a stochastic mixed-integer optimization 
problem. We propose three rolling-horizon look-ahead policies to 
approximately solve the optimization problem: a deterministic 
one and two based on approximate dynamic programming (ADP) 
techniques. We demonstrate through numerical experiments that 
the ADP-based policies yield curtailment plans that are more 
robust on average than the deterministic policy, but at the 
expense of the additional computational burden needed to 
calibrate the ADP-based policies. We also show how the worst 
case performance of the three approximation policies compares 
with a baseline policy where all curtailable loads are curtailed to 
the maximum amount possible. 

 
Index Terms— Computer simulation, load management, 

power distribution, power system management, power system 
modeling, smart grids, demand response, optimization methods, 
mathematical programming, approximate dynamic 
programming. 

I.  NOMENCLATURE 

Sets 
B  Set of all customer loads b  in the network 

M  Set of all nodes in the network (i.e., cable 
junctions, transformers, substations) 

iM   
Set of all nodes j  in the network that are 

connected to node i  through a single, direct cable 
section i j  such that j i   

iM  
Set of all nodes j  in the network that are 

connected to node i  through a single, direct cable 
section i j  such that j i   

N  Set of all transformers in the network ( N M ) 
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bL  Set of all possible curtailment levels for load b ; 
if load is not curtailable, {0}bL   

 
Parameters 

bl  A possible curtailment level for load b  

( l
b
L

b
;0  l

b
1) 

T  Length of the planning horizon (in number of 
discrete time steps) 

  “Revenue” multiplier in the net revenue 
component of the objective function 

  “Cost” multiplier in the net revenue 
component of the objective function 

max
,i jf

 
Rating of cable section i j , i M  ,

ij M    

1   
Multiplier for tier-1 of the cable over-rating 

penalty in the objective function 

2  
Multiplier for tier-2 of the cable over-rating 

penalty in the objective function 

  
Cable rating factor that serves as a threshold 

between tier-1 and tier-2 penalties 

max
kf Rating of transformer k N   

1  
Multiplier for tier-1 of the transformer over-

rating penalty in the objective function 

2  
Multiplier for tier-2 of the transformer over-

rating penalty in the objective function 

  
Transformer rating factor that serves as a 

threshold between the tier-1 and tier-2 penalties 

b  
Minimum curtailment notification time (in 

number of steps) required by customer load b  

, bb l
 

Minimum time (in number of steps) load b

needs to remain at curtailment level bl  

,i jX
 

Reactance on cable i  j , i M  , 

j M
i

 

,i jR
 

Resistance on cable i  j , i M  , 

ij M  
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Loss  

Linear factor for approximating power losses 
in a cable section 

PF
i  

Power factor (i.e., real power divided by 
apparent power) at node (bus) iM   

, , , ˆ( )t t i j q 

 

  conversion factor in the power flow 
equation of cable i j , i M  , ij M    

during [ , 1)t t   , when planning at time t t , if 

, , ,ˆ 1t t i jq   ; 

= 0, if q̂
t , t ,i , j

 0  

A
t , t ,i,b

(q̂)

 

  fraction of demanded power to be supplied 
by node (bus) i  to load b  during [ , 1)t t   , 

when planning at time t t , if , , ,ˆ 1t t i iq   ; 

= 0, if , , ,ˆ 0t t i iq    

 
Exogenous Information 

, ,
ˆ

t t bD   
Apparent power (i.e., the absolute value of 

complex power) demanded at load b  during 
[ , 1)t t   , when planning at time t t  

, , ,ˆt t i jq 

  

1 , if cable i j , i M  , ij M    is 

active during [ , 1)t t   , when planning at time 

t t ; 
0 , if it is out of service 

, , ,ˆt t k kq 

  

1 , if node k  is active during [ , 1)t t   , when 

planning at time t t ;  
0 , if it is out of service 

W
t    D̂

t , t ,q̂
t , t 

t t
  

 
Decision Variables 

, , , bt t b ly 

 

1  if load b  should curtail to level bl  during 

[ , 1)t t   , when planning at time t t ; 

= 0, otherwise 

, , , bt t b lz 

 

Time (in number of steps) load b  will have 
been at curtailment level bl by the end of [ , 1)t t   , 

when planning at time t t  

, ,t t ip   
Real power injected at node (bus) i  during 

[ , 1)t t   , when planning at time t t  

, , ,t t i jf 

 

Real power flowing through cable i j , 

i M   ij M    during [ , 1)t t   , when 

planning at time t t  

, , ,t t k kf 

 

Real power flowing through transformer k  
during [ , 1)t t   , when planning at time t t  

, ,t t i   
Phase angle at node i  during [ , 1)t t   , when 

planning at time t t  

u
t    yt , t , zt , t , pt , t , ft , t , t , t 

t t
  

 
General Notation Convention 

r
t , t   r

t , t ,i, j 
i,j

 

II.  INTRODUCTION 

Several recent and ongoing developments are likely to 
transform the electricity distribution grid in the next decades. 
These developments include: (i) the widespread installation of 
smart meters, remote network monitoring equipment, and 
intelligent grid control systems; (ii) the incorporation of smart 
energy management technologies in buildings; (iii) the 
growing integration of time-intermittent renewable sources 
(like solar); (iv) the easier access to distributed power 
generation and storage devices; (v) the penetration of plug-in 
electric vehicles; and last but not least, (vi) the proliferation of 
various forms of demand response, load curtailment, and 
pricing programs. The presence of one or more of these 
features simultaneously in a distribution grid, combined with 
the uncertainty in demand and in the state of the electrical 
components in the network will create a more complex and 
challenging system, whose dispatch and control will require 
new procedures and computational tools. 

We envision a short-term planning tool to be used by a 
utility dispatcher, particularly when a contingency in the 
distribution grid has already happened and/or one or more 
additional contingencies are likely to happen (contingency 
being defined here as the shutting down, or failure, of a whole 
section of the distribution grid). This system can be referred to 
as a load and source optimization controller (LSOC).  

The main contributions of this paper are as follows.  First, 
we propose a detailed, dynamic model of the load curtailment 
problem, with careful and accurate modeling of lagged 
information processes.  Second, we propose and test two novel 
robust policies for making load curtailment recommendations 
based on the modeling and algorithmic framework of 
approximate dynamic programming.  These policies are 
practical and computable, and can be used in a dynamic 
setting to provide guidance to human dispatchers to help 
prioritize curtailment decisions. 

Distribution systems have been built with redundancy, 
particularly in large, dense urban areas. Branches can be 
disconnected in response to contingencies, at the cost of 
loading other lines and transformers. However, overloading 
remaining components increases risks of cascading failures.  

We are proposing a different mode of operation under 
contingencies for the future, where the risk of having too 
many contingencies is mitigated by localized, preemptive 
actions at the load side, made on a voluntary basis in response 
to prior notification from the utility. We call this mode 
proactive. Since users such as building operators require 
advance notification of curtailments, we face the challenge of 
designing policies which carefully anticipate the possibility of 
not being able to meet demand, while minimizing unnecessary 
disruptions to daily activities. 
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To illustrate the application of the proposed methodology, 

we picked one particular action: the curtailment of loads. But 
this is just one of the many decisions that could be modeled 
within this framework. Other decisions involve when and how 
much charge to put in the batteries of electric vehicles, how 
much energy to take from solar panels, when and where to 
plug-in mobile generators in the grid, and so on. 

We describe a stochastic optimization model comprised of a 
sequence of time-indexed sub-problems, solved successively 
in a rolling horizon fashion over a planning horizon. Each sub-
problem is modeled as a mixed-integer programming problem 
solved over a shorter planning horizon. In order to deal with 
the short horizon of the sub-problems and the uncertainty in 
the problem, we implement and test two types of approximate 
dynamic programming approaches: a cost function 
approximation and a value function approximation (Chapter 6 
in [1]), where the first is expected to be computationally easier 
to calibrate, but the second is expected to produce better 
results. 

As already mentioned, in the application of the proposed 
modeling framework we focused on one particular feature: 
load curtailment in the presence of contingencies in the grid. 
The load curtailment problem involves determining a robust 
set of customer loads to curtail, and by how much, over the 
planning horizon, so as to maximize the expected value of a 
utility function. Here, we are using “robustness” to mean 
“works well on average over many outcomes,” (see Mulvey et 
al. [30]) as opposed to “works well over all outcomes” 
(Bertsimas and Sim [31]). Equivalently, we seek to find a 
compromise between maximizing the amount of actual power 
provided to the customers and minimizing the likelihood of 
critically overloading the grid. As failures in sections of the 
grid (contingencies) do happen, or as their likelihood 
increases, it becomes increasingly likely that customers 
participating in the curtailment programs will be asked to pre-
emptively curtail their loads within the next few hours. The 
current version of LSOC was designed to help with such 
short-term planning. 

The optimization model presented in this paper can be seen 
as a type of unit commitment problem, where the control of 
load curtailment through binary variables resembles the 
control of generators [2]. Whereas the classic unit 
commitment problem focuses on planning generation (creating 
energy), our problem focuses on reducing load.  Both result in 
integer programming problems planned on a rolling horizon 
basis. Saber and Venayagamoorthy [3] discuss the unit 
commitment problem in the presence of vehicle-to-grid (V2G) 
capabilities. 

For an approach to control of (smart) grids using distributed 
devices or agents, see papers in [4] and [5]. Divan [6] and 
Divan and Johal [7] discuss a massively distributed control 
approach. Several authors have proposed the use of 
approximate dynamic programming methods to gain 
intelligence for the smart grid [8], [9], [10]. The use of 
stochastic programming to manage electric vehicle charging, 
V2G facilities and renewable sources in the context of 
distribution network congestion is discussed in [11] and [12]. 

Demand response programs have become increasingly 
important and popular in the power industry and research. A 
2006 report published by the U.S. Department of Energy 

describes the benefits of demand response in electricity 
markets and provides several recommendations for achieving 
them [13]. Later, Spees et al. [14], the Federal Energy 
Regulatory Commission [15], and Goldman et al. [16] 
published assessment papers on demand response and energy 
efficiency.  

One of the prerequisites of demand response is the 
capability to forecast short-term electrical load [17]. Several 
approaches of load and energy demand forecasting have been 
proposed since the early 1990s, including time series models 
such as ARMA (auto-regressive moving average) [18] and 
ARIMA (autoregressive integrated moving average) [19], 
neural networks [20], and support vector machines [21], [22]. 
In this paper, we use a deseasonalized exponential smoothing 
model, adapted from a demand forecasting model named 
damped trend multi-calendar (DTMC) exponential smoothing, 
first developed by Godfrey and Powell [23].  

Another key factor in demand response is the reliability of 
the power grid, particularly with respect to failures of 
electrical components. Gross et al. have applied machine 
learning-based susceptibility analysis to electrical feeder 
failures [24]. Rudin et al. [25] have performed a 
comprehensive study on the application of machine learning 
techniques in the preventive maintenance of the power grid.  

Among the approximate policies described in this paper, the 
rolling horizon look-ahead related policies were inspired by 
prior work on approximate dynamic programming done by 
some of the authors [1]. 

The remainder of the paper is organized as follows. Section 
III contains the description, the model and the solution 
approach to the load curtailment problem. Numerical 
experiments designed to show the robustness of the generated 
curtailment plans are described and presented in section IV. 
Conclusions are summarized in section V. 

III.  THE LOAD CURTAILMENT PROBLEM 

We first describe the general setting of the problem. We 
then formulate it as a stochastic, sequential decision 
optimization problem. And finally, we present approximate 
policies to solve it. 

A.  Problem Description 

The power distribution network used in our study is 
composed of (mostly) radial distribution feeders (27kV) – the 
primary network – connecting the substations to distribution 
transformers, which are in turn connected to a network (in the 
form of a mesh) of secondary low voltage lines (120V) – also 
known as the secondary network. Customers are by and large 
connected to the secondary network, but some (in general 
large load customers) may be connected directly to 
transformers in the primary feeders or to spot networks1. 

A contingency in this network is defined as the failure of a 
whole feeder. The shutting down of a feeder may also happen 
as a result of a planned outage. A subset of the customers in 
the grid has signed up to load curtailment programs and will 
thus be called curtailable loads. We assume that each customer 
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customers to a few transformers. 
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may have a different curtailment contract, which specifies the 
discrete levels at which power can be curtailed (between 0 – 
no curtailment – and a maximum amount), and the minimum 
required curtailment notification time (if any). We assume also 
that customers will always comply when asked to curtail their 
loads. 

The load curtailment problem can thus be stated summarily 
as follows. Given: (1) the distribution grid network and its 
known state at the initial time; (2) the set of customers served 
by the network, including the curtailable ones and their 
respective curtailment contracts; (3) a set of forecasts of the 
customer loads over the desired planning horizon; and (4) a set 
of estimates of the probabilities of failure of the primary 
feeders over the same horizon; the goal is to determine the set 
of loads to be curtailed, if any, and by how much, so as to 
maximize the expected value of a utility function that includes 
bonuses for the total amount of power withdrawn from the 
network and penalties for the amount of power flow above the 
ratings of the components in the distribution grid. 

B.  The Optimization Problem 

We solve the load curtailment problem over a planning 
horizon of, say, the next 15 to 24 hours, by formulating it as a 
mixed-integer programming (MIP) problem, embedded in a 
sequential decision framework. We discretize time (typically 
we use hourly time steps). Integer variables are used to decide 
on the level of curtailment for each customer and to control 
how long a customer has been at a given level of curtailment. 
Continuous variables are used to describe the power flow 
through the links and the phase angles in the nodes of the 
distribution grid network. Linear constraints enforce that only 
one level of curtailment is active for each customer at each 
time and that customers stay at a level of curtailment for a 
minimum amount of time. The objective function to be 
maximized is a utility function that was designed to balance 
multiple goals: to serve as much demand with as little power 
injected and as little power above the ratings in the primary 
grid as possible. 

The power flow in the network embedded in this 
optimization problem is solved through the DC optimal power 
flow approximation, with the addition of empirically estimated 
loss factors. There are several reasons why we chose the DC 
OPF approximation. As Stott et al [26] point out, its solution 
does not require iterations, the optimization problem remains 
linear and therefore computationally less complex (which is 
imperative, particularly when modeling uncertainty), and its 
data requirements are rather manageable. The DC OPF 
approach has been widely used in optimization models for 
transmission systems [27], and in many of those cases it has 
been shown to be reasonably accurate [28]. In distribution 
systems, however, due to the lower voltage levels and the 
higher resistance-to-reactance ratio of the branches, it is less 
accurate, and as a result should be recognized as a limitation 
of the model, as errors in the DC approximation could produce 
infeasibilities in a more accurate AC model. We envision our 
model as  a tool embedded in a broader decision making 
process, involving an AC power flow model being run to 

evaluate the actions recommended by LSOC, precisely to 
verify and adjust for inaccuracies in the power flow 
estimation. 

Another related model feature worth mentioning is the use 
of soft penalties to enforce transformer and branch capacities. 
We use a two-tier set of linear penalties that was designed to 
allow for some violation of capacity, under a penalty, but to 
curb excessive violations (more than, say, 5% above the rating 
of a component). We believe that this is an effective way of 
modeling capacity constraints in an optimization system where 
the output decisions have the explicit goal of reducing any 
overloading of the grid components. Soft constraints allow the 
integer programming solver (used in the ADP algorithm) to 
search over solutions that might be infeasible (even if they do 
not appear in the optimal solution).  Soft constraints also 
recognize the presence of errors in the representation of the 
network which may underrepresent capacity, as well as errors 
due to the DC approximation. 

Ideally we would solve the problem as a single giant 
stochastic MIP over the whole planning horizon. Since this is 
impractical, we use a rolling horizon look-ahead procedure, 
where we decompose the planning horizon in shorter decision 
horizons (of, say, 4 hours), which overlap with each other, 
except for the first (hourly) time step of each sub-problem. We 
implemented and tested a deterministic rolling horizon look-
ahead procedure and two types of approximate dynamic 
programming (ADP) procedures: (i) a rolling horizon look-
ahead procedure with cost function approximation (CFA), and 
(ii) a rolling horizon look-ahead procedure with value function 
approximation (VFA). 

In order to calibrate the ADP procedures, we run several 
iterations of the load curtailment problem. Each iteration 
consists of performing a rolling horizon look-ahead run over 
the planning horizon, with random events sampled after the 
solution of each sub-problem, before the clock advances to the 
next time step. For the CFA procedure, we simply accumulate 
a tally of the customers and the load amounts that were 
curtailed over the iterations, where we make decisions after 
learning of the failures. We use these posterior decisions to 
construct a lookup table of which customers to curtail.  At the 
end, we round the final average curtailment fraction of a 
customer to the nearest acceptable level of curtailment, and 
this level becomes the curtailment policy for that customer. 
For the VFA procedure, as we solve each sub-problem  at 
each iteration, we estimate the marginal value of the level of 
curtailment of that customer at time  and we smooth this 
value into an average over all iterations. These smoothed 
marginal values are then added to the objective function, 
similar to how value function approximations are used in 
approximate dynamic programming. 

A few relevant observations are in order with respect to the 
calibration of the ADP procedures (CFA and VFA). First, 
these calibrations can be done in two modes. One is called a 
cold start case, in which the calibration starts from a set of 
null policies/values. This case in general requires a larger 
number of iterations until the policies/values converge. The 
second mode is called a warm start case and it starts from an 
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existing set of policies/values. The latter usually requires just a 
few iterations before convergence. In a typical setting, cold 
start calibrations are performed only when the underlying 
characteristics of the problem suffer significant changes. 
Otherwise, warm start calibrations are performed repeatedly, 
as new exogenous information arrives (namely, updated 
demand forecasts and/or updated estimates of the probability 
of failure of components). In any case, however, calibrations 
are always done off-line, in the background, while the main 
system runs live in the foreground. 

The second relevant observation is that there will be one set 
of calibrated policies/values for each contingency case. So, for 
instance, in a network with, say, 24 primary feeders, we would 
have 24 cases of N-1 contingencies, 276 cases of N-2 
contingencies, and so on. In practice, though, the total number 
of contingencies for which policies/values need to be 
calibrated will be limited by the likelihood that a particular 
higher order contingency may ever occur. 

In the remainder of this section we present the 
mathematical formulation of the optimization problem 
(subsection C) and the approximate policies used to solve it 
(subsection D). 

C.  The Optimization Model 

Let tS  describe the state of the system at the discrete points 

in time {0,1,...}t , that is, the state of the distribution grid 

and all customer loads, and let tu  be the vector of all the 

decision variables (controls). Further let tW  be the vector of 

realizations of the exogenous information process ( tW  is 

deterministic at time t ), and assume we have a system model 

 1 1, ,M
t t t tS S S u W  .  The challenge is designing a policy 

 t t tu U S  that provides robust performance and solves  

,  
where  ,t tC S u  expresses the net contribution from the 

policy at time t . 
Note that with the exception of time (and the integer 

variables, that are discrete by nature) no other variables need 
to be discretized, and neither do the policies, since nowhere in 
this optimization model do we need to enumerate states. Note 
also that the presence of the expectation in the objective 
function signals that the solution to this problem is expected to 
perform well, on average, over the whole state space, and thus 
its robustness. 

We start with a simple, deterministic look-ahead policy 
(model predictive control). Note that throughout this paper we 
will be using the convention of a double indexing of time 
( , )t t   in order to emphasize the distinction between the time 

at which the information to make a decision is available ( )t  

and the time at which the information becomes active 

 [ , 1),  t t t t    . This distinction is crucial for the proper 

representation of rolling horizon look-ahead formulations. 

The objective function  t tF S  for the look-ahead model at 

planning time t  is expressed by maximizing the value of a 
utility function summed over all discrete decision time steps in 

the planning horizon  ,..., 1t t T  : 

 F
t

S
t   max

ut

R
t , t y

t , t , p
t , t   P

t , t f
t , t  

t t

tT1

  .   (1) 

The utility function in (1) has two components: a net 

revenue term and an over-rating penalty term.  , ,, ,tt t t t tyR p    

is a proxy estimate of the net revenue of serving all customer 
loads b B , given by 

 

Rt , t yt , t , pt , t  
              D̂

t , t ,b
1 l

b  y
t , t ,b,lb

lb












bB
  p

t , t ,i
iM
  .

  (2) 

 , ,tt tt fP   is a penalty term designed to minimize the 

amount of power flow over the ratings of the primary 
distribution grid components (cable sections i j  and 

transformers k ), given by 

 

P
t , t f

t , t  

             1

f
t , t ,i, j

f
i, j
max

1
















  2

f
t , t ,i, j

 f
i, j
max

1




























jMi


iM


                
1

f
t , t ,k ,k

f
k
max

1














 
2

f
t , t ,k ,k

 f
k
max

1


























kN

  ,

  (3) 

where a 
  max a,0  . 

The constraints of the optimization model are related to 
customer load satisfaction and the power flow in the primary 
distribution grid. 

For every customer load b and every decision time step 
' { ,..., 1}bt t t T    , the following constraints apply: 

 y
t ,t ',b,lb

lbLb

  1  (4) 

 z
t ,t ',b,l

b


z

t ,t '1,b,l
b

1   if y
t ,t '1,b,l

b

 1

0                  i f y
t ,t '1,b,l

b

 0






  (5) 

 y
t ,t ',b,l

b

 1

0 or 1
    





if 1 z
t ,t ',b,l

b

 
b,lb

otherwise  
 .  (6) 

 Constraint (4) specifies that at a given time t   there 
should be only one level of curtailment bl  active for customer 

load b.  Constraints (5) and (6) guarantee that once a customer 
load b enters a curtailment level bl  (including level 0, that is, 

no curtailment), it will stay at that level for the minimum 
required amount of time. 

For every cable section   ( , )ii j i M j M       in the 

primary network and every time step ' { ,..., 1}t t t T    we 

have: 
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 ft , t ,i, j  t , t ,i  t , t , j t , t ,i, j (q̂) Xi, j  .  (7) 

Constraint (7) relates the flow of real power on a cable 
section to the state of the cable at time t  (whether it is active 
or not) and to the phase angles at the adjoining nodes (through 
the DC optimal power flow approximation). Note that 

, , , ˆ( )t t i j q  , if nonzero, will take on the appropriate voltage-

based value. 
For every node i M  in the primary network and every 

time step ' { ,..., 1}t t t T    the flow conservation constraint 

for real power is given by: 

 pt , t ,i  ft , t , j ,i 
Loss Rj ,i 

jMi

  ft , t ,i, j
jMi{i}
  ,   (8) 

where the left-hand term represents flow into the node (after 
subtracting for losses in the cables) and the right-hand term 
represents flow out of the node (the sign of the flows being 
relative to the conventional direction). Note that a transformer 
is actually represented in the network by a node with two 
“sides:” the high voltage side and the low voltage side. 
Constraint (8) applies to the high voltage side of a transformer 
node. 

The flow conservation constraint at the low voltage side of 
transformer node i N , at time step ' { ,..., 1}t t t T    is 

given by: 

 f
t , t ,i,i


i
PF A

t , t ,i,b
(q̂)D̂

t , t ,b
bB
 l

b
y

t , t ,b,lb
lbLb

  ,   (9) 

where customer load b  is connected to the primary network 
through node i  at time t   if , , , ˆ( ) 0t t i bA q   ; otherwise, it is 

not. Note that in this model all customer loads are being 
connected directly to the transformers, rather than to the 
secondary network (where most would have been actually 
connected to). This modeling approximation is being used 
because incorporating the secondary network in this 
optimization model would significantly increase the 
computational burden. 

Finally we have: 
 , ', , , ', , , ,{0,1};  0,  integer;  0 .

b bt t b l t t b l t t iy z p      (10) 

D.  Optimization Policies 

Assume for now that we can sequentially solve the 
optimization sub-problems described by (1), (4)-(10) for every 

{0,1,...}t , in a rolling horizon mode; we then take the 

partial solution , , ,{ }
b bt t b ly   of each sub-problem ,t  and 

concatenate them into an approximate solution to the original 
stochastic problem over the desired planning horizon. 

It turns out, however, that solving each MIP sub-problem 
described in (1), (4)-(10) over a typical planning horizon 
( 15 hours)T   is still impractical. As a result we propose 

three strategies to circumvent this issue. 
The first strategy is obtained by simply reducing the length 

of the planning horizon over which (1) is defined. Let 
H T  be the length of a much shorter decision horizon 
over which we will solve each sub-problem. Note that it is 
advisable that max b

b B
H 


  ( b  is the minimum curtailment 

notification time of load b ), so that every curtailable load may 

have a chance to be curtailed in the solution of every sub-
problem. The optimization sub-problem at time t  now 
becomes: 

 F
t
RH S

t   max
ut

R
t , t y

t , t , p
t , t   P

t , t f
t , t  

t t

tH1








   (11) 

along with constraints (4)-(10), where every occurrence of T  
is replaced by H . We solve this reduced-size sub-problem for 
every {0,..., 1}t T  . This means that in practice this strategy 

spans the time interval {0,..., 2}T H  . 

The optimization sub-problems described by (11), (4)-(10), 
with T  replaced by H , when solved sequentially for every 

{0,..., 1}t T   constitute the first of our three approximate 

policies to solve the load curtailment problem over the desired 
planning horizon. This policy is called a deterministic rolling-
horizon look-ahead procedure, henceforth referred to as “RH” 
policy. Rolling horizon policies such as the one described 
above are popular in the engineering community, but they 
assume a single, deterministic future. 

Our main interest, however, is to propose approximate 
policies that yield robust solutions to the original problem, that 
is, curtailment plans that will work well, on average, over an 
as large as possible set of realizations of demand and feeder 
failures in the future. In order to attain that, we take the 
reduced-size optimization formulation (11), (4)-(10), with T  
replaced by H , and embed it in a Monte Carlo simulation to 
adaptively learn policies that allow us to guard against 
possible failures and uncertainty in the demand. We do this by 
running several iterations of the simulation over the horizon 

 0,..., 1T  , each with a different set of random realizations, 

in order to calibrate the approximate policies. Once these are 
calibrated, we can then use them to produce robust solutions to 
the underlying stochastic problem. The research question that 
arises is how robust these solutions are when compared to the 
solution produced by RH, vis-à-vis the additional 
computational burden imposed by their calibration through 
iterative simulation. Before we address this question in section 
IV, though, let us formally present the two ADP-based 
policies. 

The first ADP procedure, known as a cost function 
approximation, is based on rounding the fractions of customer 
loads that were effectively curtailed over the calibration 
iterations. For each customer b  we record the curtailment 
level observed at each time  t  in each simulation iteration. 
Assume that the average curtailment level computed at the end 

of the calibration procedure is . Let 

l
t ,b

 be the closest 

curtailment level to  in the finite set bL . The optimization 

policy at sub-problem t  is to curtail every customer load for 

which 

lt b ,b  0. Modifying (11) to incorporate this policy 

yields: 

 



F
t
PFA S

t   max
ut

 R
t ,t '

y
t ,t '

, p
t ,t '   P

t ,t '
f

t ,t '  
t 't

tH1

   

                                         y
t ,t b ,b,ltb ,b

 1,b : l
t b ,b

 0] .

  (12) 

Equations (12), (4)-(10), with T  replaced by H , for 
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{0,..., 1}t T   constitute a rolling horizon look-ahead 

procedure with cost function approximation (referred to as a 
“CFA” policy). 

The second proposed ADP procedure is based on the use of 
value function approximations. We approximate the value of 
curtailing a customer load b  at a given time t  by a linear 
function of the curtailment level. We estimate the coefficient 


t ,b

 of the linear function, by smoothing in observations of the 

marginal value ̂
t ,b

 of curtailing load b  at time t , computed 

at each iteration of the calibration procedure. These marginal 
values are computed through numerical derivatives, which 
involve modifying the observed level of curtailment of a load 
up or down (whichever produces the largest change) and then 
resolving the sub-problem. Let ,t bl  be the imposed change in 

the level of curtailment of load b  at time t and , ,t t be  be the 

corresponding change in ,t ty . Then, ̂
t ,b

 is given by: 

 ̂
t ,b
 [F

t
RH S

t
| y

t ,t
 e

t ,t ,b   F
t
RH S

t ] l
b
max l

t ,b
 ,   (13) 

where  RH
, , ,|t t t t t t bF S y e  represents the solution of the 

modified sub-problem and max
bl  is the maximum possible 

curtailment for load b . After n  iterations of the calibration 

process, 
t ,b
n  is given by: 

 
t ,b
n  1

n  t ,b
n1 

n
̂

t ,b
n  ,   (14) 

where n  is determined by a suitably chosen stepsize rule. 

The value function approximations are incorporated into 
(11) resulting in the following formulation: 

 
Ft

VFA St   max
ut

(Rt ,t ' yt ,t ' , pt ,t '   Pt ,t ' ft ,t ' 
t 't

tH1



                                                  vt ',b lb yt ,t ',b,lb
)

lbLb


bB
  .

  (15) 

Equations (15), (4)-(10), with T  replaced by H , for 
{0,..., 1}t T   constitute a rolling horizon look-ahead 

procedure with value function approximation, also known as a 
“VFA” policy. 

IV.  NUMERICAL EXPERIMENTS 

Several experiments were designed to test the robustness of 
the solution to the load curtailment problem produced by the 
three approximate policies. We will report on two types of 
experiments, both involving uncertainty in the state of the 
components of the primary distribution grid, but not in the 
demand (we used point forecasts). The first set of experiments 
involved assuming that a known feeder had already failed 
before the starting time of the planning horizon (0) and that 
there would be at least one additional, unknown feeder surely 
failing at the first time step of the planning horizon. The 
second type of experiment involved assuming a known feeder 
failure before the starting time and a given likelihood of 
another known feeder failing at any time during the planning 
horizon ( {0,..., 1}t T  ). In each experiment, we compared 

the solution produced by the deterministic rolling-horizon 
look-ahead procedure (RH) to those produced by the ADP-

based procedures (CFA and VFA) to that produced by a 
baseline solution (obtained by curtailing the loads of all 
curtailable customers to the maximum possible amount). The 
comparisons for each experiment were made by simulating the 
power flow for each solution over the set of most likely feeder 
failure scenarios in that experiment and computing a number 
of performance statistics for each scenario. Unlike the 
optimization problems which involved only the primary 
distribution network, these power flow simulations included 
the secondary network too. For each experiment, we report on 
the worst-case results and average results over all scenarios. 
The statistics include: (i) the value of the objective function 
(the overall utility function); (ii) the percentage of load 
curtailment; and (iii) the percentages of primary grid 
components (transformers and cable sections) whose flows 
exceed the ratings. 

A.  Experimental Setting 

The distribution network used in the experiments reported 
in this paper was derived by combining actual and synthetic 
data for the distribution network of a section of a large city in 
the United States. The primary network is composed of 24 
substations (and respective feeders), 725 transformers and 
3562 cable sections, running at the 27kV voltage level. The 
secondary mesh, originally composed of 11496 nodes and 
13245 links, was simplified to a reduced network with 3681 
nodes and 4878 links. It runs predominantly at the 120V level. 
The primary and secondary networks are connected through 
the transformers. 

The customer loads in the section of the city were 
aggregated by the areas in the neighborhood of each 
transformer (essentially because that was the level at which 
historical load data was available). This resulted in a pool of 
688 aggregate loads, each associated to basically one primary 
transformer, but a few of them to more than one. One hundred 
of these aggregate loads were randomly selected to be 
curtailable. We used historical aggregate load data collected 
for the summer of 2010 and an adapted damped trend multi-
calendar exponential smoothing model [29] to forecast hourly 
aggregate loads during the desired planning horizon. In this set 
of experiments we used point forecasts for the loads, thus 
eliminating uncertainty in the demand. We scaled up the 
forecasts by 35%, so that the power flow on the distribution 
grid became near capacity. 

Three levels of curtailment ( )b bl L  were associated to 

each curtailable customer: 0% (no curtailment), 50% and 
100% (total curtailment). Each customer was assumed to 
require a minimum curtailment notification time ( )b  of 2 

hours, and each load was expected to remain in a given state 
(curtailed or not) for at least 4 hours ,( )

bb l . 

Since the optimization models included only the primary 
distribution network (substations, transformers and cable 
sections), the aggregate loads were connected directly to the 
respective primary transformers. For the loads that are in 
reality connected to the network through the secondary grid 
(that is, the majority), we developed an approximate algorithm 
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to re-aggregate a load to nearby transformers when one or 
more of its primary transformers goes out of service because a 
feeder is out (this corresponds to the computation of the 
parameters , , , ˆ( )t t i bA q  in (8)). This algorithm uses empirical 

data from AC power flow simulations of 1-contingencies in 
the primary network. The algorithm was embedded in the 
generation of the optimization models, within the simulation. 
The load re-aggregation algorithm is not necessary when the 
secondary network is added to the model, since in this case 
most of the loads connect to the distribution network through 
the secondary mesh. This is the case, for instance, when we 
are evaluating the robustness of a given curtailment plan 
through the simulation of the power flow for different 
scenarios of primary feeder failures. This evaluation is 
performed on a distribution network that includes both the 
primary and the secondary grids. 

We assumed the time between failures in a feeder to have a 
Weibull distribution with given expected value and standard 
deviation, modified by an empirically computed factor 
reflecting the proximity of other failed feeders. In other words, 
feeders in the vicinity of a failed feeder are more likely to fail 
than feeders farther away. We used an expected time between 
failures equal to 80 days and a standard deviation equal to one 
third of the expected value. In the experiments in which we 
wanted to simulate a higher likelihood of a given feeder 
failing, we modified the expected time between failures for 
that feeder to achieve the desired failure rate. We further 
assume that once a feeder fails, it remains out for the 
remainder of the planning horizon. 

We chose the length of the planning horizon (T ) to be 15 
hours, with a decision time step of 1 hour. In the rolling 
horizon decomposition, the decision horizon of each sub-
problem ( H ) was set at 4 hours, and thus greater than the 
minimum curtailment notification time of any customer. 

Both the CFA and VFA policies require the estimation of 
parameters before they can be used to generate a curtailment 
plan at a given time t , for the planning horizon T . This 
estimation is performed through several iterations of a Monte 
Carlo simulation, each with a different set of realizations of 
feeder failures. We run 100 iterations to calibrate each CFA 
policy, and 50 iterations to calibrate each VFA policy (these 
values were chosen based on empirical observations of the 
convergence rates of the calibration of different policies).  

Finally, the parameters in the objective function terms (2) 
and (3) were set at the following values: 

 
1 2

1 2

1.1;   1.0;   140;   420;   1.05;

140;   420;   1.05 .




    

  

    

  
  (16) 

These values were chosen based on some limited 
experimentation. We recognize that a more formal sensitivity 
analysis would be recommended, but, given that the primary 
goal of this paper is to introduce a new methodology, we 
believe that such an analysis is beyond the scope of the paper. 

The parameters Loss  in (8) and PF
i  in (9) were 

empirically computed from AC power flow simulations of the 
primary network. 

 The MIP problems were solved using IBM CPLEX v.12. 
The maximum number of threads available to CPLEX was 
limited to 8 (with “deterministic” parallel mode). The 
tolerance for the integer gap was set at 410  and the integer 
precision tolerance was set at 610 . 

B.  Experimental Design 

The goal of these experiments was to assess the robustness 
of the curtailment plans produced by three rolling horizon 
approximate policies: RH, CFA and VFA. Given that we 
cannot find the optimal solution to the underlying stochastic 
optimization problem, we propose a most robust policy, in 
terms of worst case performance, obtained by curtailing all 
curtailable customers by the maximum amount possible, as a 
benchmark to compare the plans obtained through the three 
approximation policies. We call this benchmark policy a 
baseline plan and henceforth refer to it as the “Base” policy. 

We designed five experiments under two broad categories. 
In both categories we begin with an initial state (at time 0) of 
the distribution network in which it is known that a given 
primary feeder has failed (and will remain out throughout the 
planning horizon). In experiments #’s 1, 2 and 3, we assume 
further that at least one more feeder will fail at the very 
beginning of the planning horizon (time 1), but we have no 
indication of which feeder that might be. Experiments 1, 2 and 
3 differ from each other in the feeder that is known to have 
failed beforehand. These feeders will be generically referred to 
as A, B and C, respectively, and they were chosen so as to 
cover different areas of the distribution network. Fig. 1 shows 
the basic layout of the optimization network, with feeders A, 
B and C highlighted. 

 

 
 
Fig. 1.  The optimization network: primary feeders depicted by the solid 

lines, and aggregate customer loads represented by the dots. Prominent 
feeders in the numerical experiments: A (bottom-right, in blue), B (top-left, in 
purple) and C (center, in green). 

 
In experiments #’s 4 and 5, we still have a known feeder 

failure at time 0 (feeder A), but now, instead of having the 
information that an unknown feeder will fail at time 1, we are 
given the information that feeder B has a higher than usual 
likelihood of failing at some time {1,..., 1}t T   and we can 
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estimate this likelihood (in experiment 4 it is around 50% and 
in 5, around 100%). 

In each one of the experiments, the curtailment plan 
corresponding to the approximate policies needs to be 
computed, before it can be evaluated for robustness against the 
baseline plan. For the RH policy, computing the plan is trivial 
and involves running a single iteration of the deterministic 
rolling-horizon simulation. The CFA and VFA policies require 
calibration first, through Monte Carlo simulation (though 
these calibrations can be performed offline). Once calibrated, 
the CFA and the VFA curtailment plans can be computed with 
a single deterministic iteration too. 

In order to evaluate and compare the four curtailment plans 
for each experiment, we designed a simulation-based 
evaluation procedure. It consists of generating the most likely 
scenarios (realizations) of feeder failures over the planning 
horizon for each experimental setting, and then running a 
power flow simulation of each curtailment plan for each 
scenario. For each power flow simulation, we estimate the 
overall objective function value [F(S)], compute the total 
curtailed (or dropped out) power (as a percentage of the total 
demand) [% CURT], and compute the percentages of primary 
grid components (transformers and cable sections) for which 
the power flow exceeds the ratings (note that the latter is not 
an estimate of the amount of power in MW above the ratings, 
but an estimate of the number of components above the 
ratings) [% TRANSF and % CABLE OVER]. We then report 
both the worst case and the average performance for each of 
these statistics and for each of the approximate policies, over 
all the scenarios in each experiment. We generate the 50 most 
likely scenarios in each experimental setting by simulating 
feeder failures over the planning horizon. 

C.  Experimental Results 

Table I shows the worst case performance results, while 
Table II shows the average case performance results for 
experiment #1, where feeder A is assumed to have failed 
before the start of the planning horizon, and at least one other 
unknown feeder will fail shortly after. The objective function 
values were normalized so that the Base results are equal to 
100. As expected, the Base policy yields the most robust plan 
(highest objective function value and lowest percentage of 
transformers above the ratings) in terms of worst case 
performance, but the percentage of total demand that has been 
curtailed is also significantly higher. 

It is also interesting to compare the approximate policies 
among themselves. VFA yields the overall most robust 
solution among the three, in the worst case performance, by 
striking a balance between the percentage of power curtailed 
and the percentage of transformers with power above the 
ratings. CFA curtails less, but has more transformers violating 
ratings in a way that makes it less “optimal.” And finally RH 
underperforms both. 

TABLE I 
EXPERIMENT #1 – WORST CASE PERFORMANCE 

POL F(S) % CURT % TRANSF 

OVER 
% CABLE 

OVER 

VFA 97.6 3.0 21.5 0.9 
CFA 95.5 2.1 22.1 0.9 
RH 94.7 2.0 22.1 0.9 

BASE 100 12.5 18.1 0.9 

 
In the average case performance (Table II), VFA, CFA and 

RH all outperform Base. This is consistent with the fact that 
those three policies are approximations of an optimization 
policy that maximizes the expected value of the objective 
function (that is, they are supposed to maximize average 
performance). 

 
 

TABLE II 
EXPERIMENT #1 – AVERAGE CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 109.9 1.7 13.1 0.2 
CFA 108.9 0.7 14.0 0.2 
RH 108.6 0.7 14.2 0.2 

BASE 100 11.2 11.9 0.1 

 
Note that the percentage of curtailed power also includes 

the loads that have been dropped out of service because they 
belong to the (small) group of loads that are exclusively 
connected to primary feeders or to spot networks, and not to 
the secondary network. Therefore, when the primary feeder(s) 
to which they are connected fail(s), they cannot be served. 
Given that worst case performances generally correspond to 
scenarios with more feeder failures, it is thus expected that, for 
any given policy, the percentage of curtailed power will be 
greater for the worst case performance than for the average 
one. 

Tables III and IV present similar results for experiment #2 
where feeder B is assumed to have failed before the start of 
the planning horizon. 

TABLE III 
EXPERIMENT #2 – WORST CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 94.3 2.8 24.0 1.0 
CFA 91.5 2.3 24.3 1.0 
RH 91.4 2.3 24.3 1.0 

BASE 100 12.5 20.1 0.9 

 

TABLE IV 
EXPERIMENT #2 – AVERAGE CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 110.1 1.4 15.7 0.2 
CFA 109.9 1.0 16.0 0.2 
RH 109.7 1.0 16.0 0.2 

BASE 100.0 11.1 14.2 0.1 

 
Tables V and VI depict the worst case and the average case 

results for experiment #3, where feeder C is assumed to fail at 
the start of the planning horizon. Note that the worst case 
performance of the VFA policy is markedly better than those 
of the CFA and RH policies (Table V), but not on the average 
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case (Table VI). 

The results of experiments #’s 1, 2 and 3 indicate that the 
VFA policy outperforms the CFA policy by a slight margin, 
and the latter outperforms the RH policy also by a slight 
margin, both in the worst and the average performance cases. 
In terms of the computational effort involved, the RH policy 
does not require any calibration, whereas both VFA and CFA 
do. Moreover, in the current implementation, the calibration of 
the VFA policy takes over ten times longer than that of the 
CFA policy, though, as indicated before, both calibrations can 
be performed offline. 

 
TABLE V 

EXPERIMENT #3 – WORST CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 84.2 4.6 23.2 1.1 
CFA 72.6 3.6 24.3 1.2 
RH 71.9 3.5 24.3 1.2 

BASE 100.0 13.1 19.9 0.9 
 

TABLE VI 
EXPERIMENT #3 – AVERAGE CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 108.3 2.9 15.2 0.2 
CFA 108.3 1.9 15.8 0.3 
RH 108.1 1.8 16.0 0.3 

BASE 100.0 11.4 13.9 0.1 

 
Experiment #4 is reported in Tables VII and VIII, whereas 

experiment #5 is reported in Tables IX and X. In both 
experiments feeder A is assumed to have failed before the start 
of the planning horizon, and the likelihood of feeder B failing 
at some time during the planning horizon is higher than usual 
(about 50% in experiment #4 and about 100% in experiment 
#5). 

TABLE VII 
EXPERIMENT #4 – WORST CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 85.2 1.9 19.9 0.9 
CFA 83.6 1.6 20.5 0.9 
RH 83.2 1.6 20.5 0.9 

BASE 100 12.1 17.5 0.5 
 

TABLE VIII 
EXPERIMENT #4 – AVERAGE CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 109.7 0.9 14.1 0.1 
CFA 109.5 0.6 14.7 0.1 
RH 109.4 0.6 14.7 0.1 

BASE 100 11.1 12.4 0.0 

 
One particularly noteworthy aspect is the poorer results of 

the three approximation policies in the worst case performance 
of experiment #5 (Table IX). In terms of the overall objective 
function, they are more than 30% below the Base results. This 

is the case where feeder B will almost surely fail (in addition 
to A) at some time during the planning horizon (these two 
feeders are in opposite sections of the distribution area). This 
observation may indicate that the tuning of the values in (16), 
used for the parameters in the objective function terms, may 
be dependent on the topology of the failing feeders. 
Equivalently, the observed performance may have been 
expected because the underlying stochastic optimization uses 
an unconditional expectation, whereas these experiments have 
been made using an expectation conditional on the events that 
one or more specific feeders will fail with certainty. 

Overall, the results for experiments #’s 4 and 5 are 
consistent with the results from the previous experiments. 
Thus the observations drawn from those experiments about the 
relative performance of the three approximate policies still 
hold, including the issue of the trade-off between the increased 
robustness of the curtailment plans and the computational 
burden of calibrating the VFA and the CFA policies that 
produce them. 

TABLE IX 
EXPERIMENT #5 – WORST CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 68.0 2.2 20.7 1.0 
CFA 66.7 1.8 21.2 1.0 
RH 62.4 1.6 21.5 1.0 

BASE 100 12.1 18.2 0.8 
 

TABLE X 
EXPERIMENT #5 – AVERAGE CASE PERFORMANCE 

POL F(S)  % CURT % TRANSF 

OVER 
% CABLE 

OVER 
VFA 111.6 1.1 14.0 0.1 
CFA 111.1 0.7 14.7 0.1 
RH 109.8 0.5 15.0 0.1 

BASE 100 11.0 12.8 0.0 

 

V.  CONCLUSION 

We showed in this paper how to formulate the problem of 
planning short-term load curtailment in a densely populated 
urban area, in the presence of uncertainty in demand and in the 
state of the distribution grid, as a stochastic mixed-integer 
optimization problem. We proposed three rolling-horizon 
look-ahead policies to approximately solve the optimization 
problem, one of which is deterministic and two of which are 
based on approximate dynamic programming techniques. 
Finally, we demonstrated through numerical experiments 
(involving uncertainty in the grid only) that the ADP-based 
policies yield curtailment plans that are more robust on 
average than the deterministic policy, but at the expense of the 
additional computational burden needed to calibrate the ADP-
based policies. The VFA policy outperforms the CFA policy 
by a small margin, but requires a significantly longer 
calibration effort. We also showed how the worst case 
performance of the three approximation policies compares 
with a baseline policy where all curtailable loads are curtailed 
to the maximum amount possible. 
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