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Preface

0.1. What Is This Book About?

This book is about stochastic-process limits, i.e., limits in which a se-
quence of stochastic processes converges to another stochastic process. Since
the converging stochastic processes are constructed from initial stochastic
processes by appropriately scaling time and space, the stochastic-process
limits provide a macroscopic view of uncertainty. The stochastic-process
limits are interesting and important because they generate simple approxi-
mations for complicated stochastic processes and because they help explain
the statistical regularity associated with a macroscopic view of uncertainty.

This book emphasizes the continuous-mapping approach to obtain new
stochastic-process limits from previously established stochastic-process lim-
its. The continuous-mapping approach is applied to obtain stochastic-process
limits for queues, i.e., probability models of service systems or waiting lines.
These limits for queues are called heavy-traffic limits, because they involve a
sequence of models in which the offered loads are allowed to increase towards
the critical value for stability. These heavy-traffic limits generate simple ap-
proximations for complicated queueing processes under normal loading and
reveal the impact of variability upon queueing performance. By focusing on
the application of stochastic-process limits to queues, this book also provides
an introduction to heavy-traffic stochastic-process limits for queues.

0.2. In More Detail

More generally, this is a book about probability theory — a subject which
has applications to every branch of science and engineering. Probability the-
ory can help manage a portfolio and it can help engineer a communication

iii



iv PREFACE

network. As it should, probability theory tells us how to compute probabili-
ties, but probability theory also has a more majestic goal: Probability theory
aims to explain the statistical regularity associated with a macroscopic view
of uncertainty.

In probability theory, there are many important ideas. But one idea
might fairly lay claim to being the central idea: That idea is conveyed by
the central limit theorem, which explains the ubiquitous bell-shaped curve:
Following the giants — De Moivre, Laplace and Gauss — we have come to
realize that, under regularity conditions, a sum of random variables will be
approximately normally distributed if the number of terms is sufficiently
large.

In the last half century, through the work of Erdés and Kac (1946, 1947),
Doob (1949), Donsker (1951, 1952), Prohorov (1956), Skorohod (1956) and
others, a broader view of the central limit theorem has emerged. We have
discovered that there is not only statistical regularity in the n'® sum as n
gets large, but there also is statistical regularity in the first » sums. That
statistical regularity is expressed via a stochastic-process limit, i.e., a limit
in which a sequence of stochastic processes converges to another stochas-
tic process: A sequence of continuous-time stochastic processes generated
from the first n sums converges in distribution to Brownian motion as n
increases. That generalization of the basic central limit theorem (CLT) is
known as Donsker’s theorem. It is also called a functional central limit
theorem (FCLT), because it implies convergence in distribution for many
functionals of interest, such as the maximum of the first n sums. The ordi-
nary CLT becomes a simple consequence of Donsker’s FCLT, obtained by
applying a projection onto one coordinate, making the ordinary CLT look
like a view from Abbott’s (1952) Flatland.

As an extension of the CLT, Donsker’s FCLT is important because it
has many significant applications, beyond what we would imagine know-
ing the CLT alone. For example, there are many applications in Statistics:
Donsker’s FCLT enables us to determine asymptotically-exact approximate
distributions for many test statistics. The classic example is the Kolmogorov-
Smirnov statistic, which is used to test whether data from an unknown
source can be regarded as an independent sample from a candidate distribu-
tion. The stochastic-process limit identifies a relatively simple approximate
distribution for the test statistic, for any continuous candidate cumulative
distribution function, that can be used when the sample size is large. In-
deed, early work on the Kolmogorov-Smirnov statistic by Doob (1949) and
Donsker (1952) provided a major impetus for the development of the gen-
eral theory of stochastic-process limits. The evolution of that story can be
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seen in the books by Billingsley (1968, 1999), Csérgé and Horvath (1993),
Pollard (1984), Shorack and Wellner (1986) and van der Waart and Wellner
(1996).

Donsker’s FCLT also has applications in other very different directions.
The application that motivated this book is the application to queues:
Donsker’s FCLT can be applied to establish heavy-traffic stochastic-process
limits for queues. A heavy-traffic limit for an open queueing model (with
input from outside that eventually departs) is obtained by considering a
sequence of queueing models, where the input load is allowed to increase
toward the critical level for stability (where the input rate equals the maxi-
mum potential output rate). In such a heavy-traffic limit, the steady-state
performance descriptions, such as the steady-state queue length, typically
grow without bound. Nevertheless, with appropriate scaling of both time
and space, there may be a nondegenerate stochastic-process limit for the
entire queue-length process, which can yield useful approximations and can
provide insight into system performance. The approximations can be useful
even if the actual queueing systems do not experience heavy traffic. The
stochastic-process limits strip away unessential details and reveal key fea-
tures determining performance.

We are especially interested in the scaling of time and space that occurs
in these heavy-traffic stochastic-process limits. It is customary to focus
attention on the limit process, which serves as the approximation, but the
scaling of time and space also provides important insights. For example,
the scaling may reveal a separation of time scales, with different phenomena
occurring at different time scales. In heavy-traffic limits for queues, the
separation of time scales leads to unifying ideas, such as the heavy-traffic
averaging principle (Section 2.4.2) and the heavy-traffic snapshot principle
(Remark 5.9.1).

We obtain these many consequences of Donsker’s FCLT by applying
the continuous-mapping approach: Various continuous-mapping theorems
imply that convergence in distribution is preserved under appropriate func-
tions, with the simple case being a single function that is continuous. The
continuous-mapping approach is much more effective with the FCLT than
the CLT because many more random quantities of interest can be repre-
sented as functions of the first n partial sums than can be represented as
functions of only the n'® partial sum. Since many heavy-traffic stochastic-
process limits for queues follow from Donsker’s FCLT and the continuous-
mapping approach, we see that the statistical regularity revealed by the
heavy-traffic limits for queues can be regarded as a consequence of the cen-
tral limit theorem.
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In this book we tell the story about the expanded view of the central limit
theorem in more detail. We focus on stochastic-process limits, Donsker’s the-
orem and the continuous-mapping approach. We also put life into the gen-
eral theory by providing a detailed discussion of one application — queues.
We give an introductory account that should be widely accessible. To help
visualize the statistical regularity associated with stochastic-process limits,
we perform simulations and plot stochastic-process sample paths.

However, we hasten to point out that there already is a substantial lit-
erature on stochastic-process limits, Donsker’s FCLT and the continuous-
mapping approach, including two editions of the masterful book by Billings-
ley (1968, 1999). What distinguishes the present book from previous books
on this topic is our focus on stochastic-process limits with nonstandard scal-
ing and nonstandard limit processes.

An important source of motivation for establishing such stochastic-process
limits for queueing stochastic processes comes from evolving communica-
tion networks: Beginning with the seminal work of Leland, Taqqu, Will-
inger and Wilson (1994), extensive traffic measurements have shown that
the network traffic is remarkably bursty, exhibiting complex features such
as heavy-tailed probability distributions, strong (or long-range) dependence
and self-similarity. These features present difficult engineering challenges
for network design and control; e.g., see Park and Willinger (2000) and Kr-
ishnamurthy and Rexford (2001). Accordingly, a goal in our work is to gain
a better understanding of these complex features and the way they affect
the performance of queueing models.

To a large extent, the complex features — the heavy-tailed probability
distributions, strong dependence and self-similarity — can be defined through
their impact on stochastic-process limits. Thus, a study of stochastic-process
limits, in a sufficiently broad context, is directly a study of the complex
features observed in network traffic. From that perspective, it should be
clear that this book is intended as a response (but not nearly a solution) to
the engineering challenge posed by the traffic measurements.

We are interested in the way complex traffic affects network performance.
Since a major component of network performance is congestion (queueing
effects), we abstract network performance and focus on the way the complex
traffic affects the performance of queues. The heavy-traffic limits show that
the complex traffic can have a dramatic impact on queueing performance!
We show that there are again heavy-traffic limits with these complex fea-
tures, but both the scaling and the limit process may change. As in the
standard case, the stochastic-process limits reveal key features determining
performance.
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The heavy-tailed distributions and strong dependence can lead to stochastic-
process limits with jumps in the limit process, i.e., stochastic-process lim-
its in which the limit process has discontinuous sample paths. The jumps
have engineering significance, because they reveal sudden big changes, when
viewed in a long time scale.

Much of the more technical material in the book is devoted to estab-
lishing stochastic-process limits with jumps in the limit process, but there
already are books discussing stochastic-process limits with jumps in the limit
process. Indeed, Jacod and Shiryaev (1987) establish many such stochastic-
process limits. To be more precise, from the technical standpoint, what
distinguishes this book from previous books on this topic is our focus on
stochastic-process limits with unmatched jumps in the limit process; i.e.,
stochastic process limits in which the limit process has jumps unmatched in
the converging processes.

For example, we may have a sequence of stochastic processes with con-
tinuous sample paths converging to a stochastic process with discontinuous
sample paths. Alternatively, before scaling, we may have stochastic pro-
cesses, such as queue-length stochastic processes, that move up and down
by unit steps. Then, after introducing space scaling, the discontinuities are
asymptotically negligible. Nevertheless, the sequence of scaled stochastic
processes can converge in distribution to a limiting stochastic process with
discontinuous sample paths.

Jumps are not part of Donsker’s FCLT, because Brownian motion has
continuous sample paths. But the classical CLT and Donsker’s FCLT do not
capture all possible forms of statistical regularity that can prevail. Other
forms of statistical regularity emerge when the assumptions of the classical
CLT no longer hold. For example, if the random variables being summed
have heavy-tailed probability distributions (which here means having infinite
variance), then the classical CLT for partial sums breaks down. Neverthe-
less, there still may be statistical regularity, but it assumes a new form.
Then there is a different FCLT in which the limit process has jumps!

But the jumps in this new FCLT are matched jumps; each jump cor-
responds to an exceptionally large summand in the sums. At first glance,
it is not so obvious that unmatched jumps can arise. Thus, we might re-
gard stochastic-process limits with unmatched jumps in the limit process as
pathological, and thus not worth serious attention. Part of the interest here
lies in the fact that such limits, not only can occur, but routinely do oc-
cur in interesting applications. In particular, unmatched jumps in the limit
process frequently occur in heavy-traffic limits for queues in the presence of
heavy-tailed probability distributions. For example, in a single-server queue,
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the queue-length process usually moves up and down by unit steps. Hence,
when space scaling is introduced, the jumps in the scaled queue-length pro-
cess are asymptotically negligible. Nevertheless, occasional exceptionally
long service times can cause a rapid buildup of customers, causing the se-
quence of scaled queue-length processes to converge to a limit process with
discontinuous sample paths. We give several examples of stochastic-process
limits with unmatched jumps in the limit process in Chapter 6.

Stochastic-process limits with unmatched jumps in the limit process
present technical challenges: Stochastic-process limits are customarily es-
tablished by exploiting the function space D of all right-continuous RF-
valued functions with left limits, endowed with the Skorohod (1956) J;
topology (notion of convergence), which is often called “the Skorohod topol-
ogy.” However, that topology does not permit stochastic-process limits with
unmatched jumps in the limit process.

As a consequence, to establish stochastic-process limits with unmatched
jumps in the limit process, we need to use a nonstandard topology on the un-
derlying space D of stochastic-process sample paths. Instead of the standard
J1 topology on D, we use the M; topology on D, which also was introduced
by Skorohod (1956). Even though the M; topology was introduced a long
time ago, it has not received much attention. Thus, a major goal here is
to provide a systematic development of the function space D with the M,
topology and associated stochastic-process limits.

It turns out the standard J; topology is stronger (or finer) than the M
topology, so that previous stochastic-process limits established using the
J1 topology also hold with the M; topology. Thus, while the J; topology
sometimes cannot be used, the M; topology can almost always be used.
Moreover, the extra strength of the J; topology is rarely exploited. Thus,
we would be so bold as to suggest that, if only one topology on the function
space D is to be considered, then it should be the My topology.

Even though our motivation comes from queueing models and their ap-
plication to describe the performance of evolving communication networks,
there are many other possible applications of stochastic-process limits with
jumps in the limit process. Indeed, stochastic-process limits with jumps in
the limit process can arise whenever there are abrupt changes. There are nat-
ural applications to insurance, because insurance claim distributions often
have heavy tails. There also are natural applications to finance, especially
in the area of risk management; e.g., related to electricity derivatives. See
Embrechts, Kliippelberg and Mikosch (1997), Adler, Feldman and Taqqu
(1998) and Asmussen (2000).

In some cases, the fluctuations in a stochastic process are so strong
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that no stochastic-process limit is possible with a limiting stochastic pro-
cess having sample paths in the function space D. In order to establish
stochastic-process limits involving such dramatic fluctuations, we introduce
larger function spaces than D, which we call £ and F. The names are cho-
sen to suggest a natural progression starting from the space C' of continuous
functions and going beyond D. We define topologies on the spaces E and
F' analogous to the My and M; topologies on D. Thus we exploit our study
of the M topologies on D in this later work.

Even though the special focus here is on heavy-traffic stochastic-process
limits for queues allowing unmatched jumps in the limit process, many
heavy-traffic stochastic-process limits for queues have no jumps in the limit
process. That is the case whenever we can directly apply the continuous-
mapping approach with Donsker’s FCLT. Then we deduce that reflected
Brownian motion can serve as an asymptotically-exact approximation for
several queueing processes in a heavy-traffic limit. In the queueing chapters
we show how those classic heavy-traffic limits can be established and ap-
plied. Indeed, the book is also intended to serve as a general introduction
to heavy-traffic stochastic-process limits for queues.

0.3. Organization of the Book

The book has fifteen chapters, which can be roughly grouped into four
parts, ordered according to increasing difficulty. The level of difficulty is
far from uniform: The first part is intended to be accessible with less back-
ground. It would be helpful (necessary?) to know something about proba-
bility and queues.

The first part, containing the first five chapters, provides an informal
introduction to stochastic-process limits and their application to queues.
The first part provides a broad overview, mostly without proofs, intending
to complement and supplement other books, such as Billingsley (1968, 1999).

Chapter 1 uses simulation to help the reader directly experience the sta-
tistical regularity associated with stochastic-process limits. Chapter 2 dis-
cusses applications of the random walks simulated in Chapter 1. Chapter 3
introduces the mathematical framework for stochastic-process limits. Chap-
ter 4 provides an overview of stochastic-process limits, presenting Donsker’s
theorem and some of its generalizations. Chapter 5 provides an introduction
to heavy-traffic stochastic-process limits for queues.

The second part, containing Chapters 6 — 10, shows how the unmatched
jumps can arise and expands the treatment of queueing models. The first
chapter, Chapter 6 uses simulation to demonstrate that there should indeed
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be unmatched jumps in the limit process in several examples. Chapter 7
continues the overview of stochastic-process limits begun in Chapter 4. The
remaining chapters in the second part apply the stochastic-process limits,
with the continuous-mapping approach, to obtain more heavy-traffic limits
for queues.

The third part, containing Chapters 11 — 14, is devoted to the technical
foundations needed to establish stochastic-process limits with unmatched
jumps in the limit process. The earlier queueing chapters draw on the third
part to a large extent. The queueing chapters are presented first to provide
motivation for the technical foundations.

The third part begins with Chapter 11, which provides more details on
the mathematical framework for stochastic-process limits, expanding upon
the brief introduction in Chapter 3. Chapter 12 focuses on the function
space D of right-continuous R¥-valued functions with left limits, endowed
with one of the nonstandard Skorohod (1956) M topologies (M; or My).
As a basis for applying the continuous-mapping approach to establish new
stochastic-process limits in this context, Chapter 13 shows that commonly
used functions from D or D x D to D preserve convergence with the M
topologies. The third part concludes with Chapter 14, which establishes
heavy-traffic limits for networks of queues.

The fourth part, containing Chapter 15, is more exploratory. It initi-
ates new directions for research. Chapter 15 introduces the new spaces
larger than D that can be used to express stochastic-process limits for scaled
stochastic processes with even greater fluctuations.

The organization of the book is described in more detail at the end of
Chapter 3, in Section 3.6.

Additional material is contained in an Internet Supplement. The Inter-
net Supplement has three purposes: First, it is intended to maintain a list of
corrections for errors found after the book has been published. Second, it is
intended to provide supporting details, such as omitted proofs, for material
in the book. Third, it is intended to provide supplementary material related
to the subject of the book. Pointers to the Internet Supplement will be pro-
vided throughout the book. The initial contents of the Internet Supplement
appear at the end of the book in Appendix B. The Internet Supplement is
available online:

http://www.research.att.com/~ wow/supplement.html
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0.4. What is Missing?

Even though this book is long, it only provides introductions to stochastic-
process limits and heavy-traffic stochastic-process limits for queues.

There are several different kinds of limits that can be considered for
probability distributions and stochastic processes. Here we only consider
central limit theorems and natural generalizations to the functions space
D. We omit other kinds of limits such as large deviation principles. For
large deviation principles, the continuous-mapping approach can be applied
using contraction principles. Large deviations principles can be very useful
for queues; see Shwartz and Weiss (1995). For a sample of other interesting
probability limits (related to the Poisson clumping heuristic), see Aldous
(1989).

Even though much of the book is devoted to queues, we only discuss
heavy-traffic stochastic-process limits for queues. There is a large literature
on queues. Nice general introductions to queues, at varying mathematical
levels, are contained in the books by Asmussen (1987), Cooper (1982), Hall
(1991), Kleinrock (1975, 1976) and Wolff (1989).

Queueing theory is intended to aid in the performance analysis of com-
plex systems, such as computer, communication and manufacturing systems.
We discuss performance implications of the heavy-traffic limits, but we do
not discuss performance analysis in detail. Jain (1991) and Gunther (1998)
discuss the performance analysis of computer systems; Bertsekas and Gal-
lager (1987) discuss the performance analysis of communication networks;
and Buzacott and Shanthikumar (1993) and Hopp and Spearman (1996)
discuss the performance analysis of manufacturing systems.

Since we are motivated by evolving communication networks, we discuss
queueing models that arise in that context, but we do not discuss the context
itself. For background on evolving communication networks, see Keshav
(1997), Kurose and Ross (2000) and Krishnamurthy and Rexford (2001).
For research on communication network performance, see Park and Willinger
(2000) and recent proceedings of IEEE INFOCOM and ACM SIGCOMM:

http://www.ieee-infocom.org/2000/

http://www.acm.orqg/pubs/contents/proceedings/series/comm/

Even within the relatively narrow domain of heavy-traffic stochastic-
process limits for queues, we only provide an introduction. Harrison (1985)
provided a previous introduction, focusing on Brownian motion and Brow-
nian queues, the heavy-traffic limit processes rather than the heavy-traffic
limits themselves. Harrison shows how martingales and the Ito stochastic
calculus can be applied to calculate quantities of interest and solve control
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problems. Newell (1982) provides useful perspective as well with his focus
on deterministic and diffusion approximations. Harrison and Newell show
that the limit processes can be used directly as approximations without con-
sidering stochastic-process limits. In contrast, we emphasize insights that
can be gained from the stochastic-process limits, e.g., from the scaling.

The subject of heavy-traffic stochastic-process limits remains a very ac-
tive research topic. Most of the recent interest focuses on networks of queues
with multiple classes of customers. A principal goal is to determine good po-
lices for scheduling and routing. That focus places heavy-traffic stochastic-
process limits in the mainstream of operations research.

Multi-class queueing networks are challenging because the obvious sta-
bility criterion — having the traffic intensity be less than one at each queue
— can in fact fail to be sufficient for stability; see Bramson (1994a, b). Thus,
for general multi-class queueing networks, the very definition of heavy traffic
is in question. For some of the recent heavy-traffic stochastic-process limits,
new methods beyond the continuous-mapping approach have been required;
see Bramson (1998) and Williams (1998a,b).

Discussion of the heavy-traffic approach to multi-class queueing net-
works, including optimization issues, can be found in the recent books
by Chen and Yao (2001) and Kushner (2001), in the collections of papers
edited by Yao (1994), Kelly and Williams (1995), Kelly, Zachary and Ziedins
(1996), Dai (1998), McDonald and Turner (2000) and Park and Willinger
(2000), and in recent papers such as Bell and Williams (2001), Harrison
(2000, 2001a,b) and Kumar (2000). Hopefully, this book will help prepare
readers to appreciate that important work and extend it in new directions.
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Chapter 1

Experiencing
Statistical Regularity

1.1. A Simple Game of Chance

A good way to experience statistical regularity is to repeatedly play
a game of chance. So let us consider a simple game of chance using a
spinner. To attract attention, it helps to have interesting outcomes, such as
falling into an alligator pit or winning a dash for cash (e.g., you receive the
opportunity to run into a bank vault and drag out as many money bags as
you can within thirty seconds). However, to focus on statistical regularity,
rather than fear or greed, we consider repeated plays with a simple outcome.

In our game, the payoff in each of several repeated plays is determined
by spinning the spinner. We pay a fee for each play of the game and then
receive the payoff indicated by the spinner. Let the payoff on the spinner
be uniformly distributed around the circle; i.e., if the angle after the spin is
0, then we receive 0/2m dollars. Thus our payoff on one play is U dollars,
where U is a uniform random number taking values in the interval [0, 1].

We have yet to specify the fee to play the game, but first let us simulate
the game to see what cumulative payoffs we might receive, not counting the
fees, if we play the game repeatedly. We perform the simulation using our
favorite random number generator, by generating n uniform random num-
bers Uy, ..., U,, each taking values in the interval [0, 1], and then forming

1
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associated partial sums by setting
SkEU1+"'+Uk, 1§k§n,

and Sy = 0, where = denotes equality by definition. The n'" partial sum
Sy, is the total payoff after n plays of the game (not counting the fees to
play the game). The successive partial sums form a random walk, with U,
being the n'" step and S, being the position after n steps.

1.1.1. Plotting Random Walks

Now, using our favorite plotting routine, let us plot the random walk,
i.e., the n 4+ 1 partial sums Si, 0 < k < n, for a range of n values, e.g., for
n = 107 for several values of j. This simulation experiment is very easy to
perform. For example, it can be performed almost instantaneously with the
statistical package S (or S-Plus), see Becker, Chambers and Wilks (1988) or
Venables and Ripley (1994), using the function

walk <- function(y) {

uniforms <- runif(107) # generate random numbers
firstsums <- cumsum(uniforms) # form the partial sums
sums <- ¢(0, firstsums) # include a 0" sum
index <- order(sums) -1 # adjust the index
plot(index, sums) } # do the plotting
Plots of the random walk with n = 10/ for 5 = 1,...,4 are shown in

Figure 1.1. For small n, e.g., for n = 10, we see irregularly spaced (verti-
cally) points increasing to the right, but as n increases, the spacing between
the points becomes blurred and regularity emerges: The plots approach a
straight line with slope equal to 1/2, the mean of a single step Uy. If we
look at the pictures in successive plots, ignoring the units on the axes, we
see that the plots become independent of n as n increases. Looking at the
plot for large n produces a macroscopic view of uncertainty.

The plotter automatically plots the random walk {S; : 0 < k < n} in
the available space. Ignoring the units on the axes is equivalent to regarding
the plot as a display in the unit square. By “unit square” we do not mean
that the rectangle containing the plot is necessarily a square, but that new
units can range from 0 to 1 on both axes, independent of the original units.
The plotter automatically plots the random walk in the available space by
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Figure 1.1: Possible realizations of the first 10/ steps of the random walk
{Sk : k > 0} with steps uniformly distributed in the interval [0, 1] for j =
1,...,4.
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scaling time and space (the horizontal and vertical dimensions). Time is
scaled by placing the n + 1 points 1/n apart horizontally. Space is scaled
by subtracting the minimum and dividing by the range (assuming that the
range is not zero); i.e., we interpret the plot as

plot({Sk : 0 < k < n}) = plot({(Sk — min)/range: 0 <k <n}),

where
min = min({Sk : 0 <k <n})

and
range = mazx({Sk : 0 <k <n}) —min({Sk:0< k <n}).

Combining these two forms of scaling, the plotter displays the ordered
pairs (k/n, (S, —min)/range) for 0 < k < n. With that scaling, the ordered
pairs do indeed fall in the unit square. Also note that (Sy — min)/range
must assume (approximately) the values 0 and 1 for at least one argument.
That occurs because, without the rescaling, the plotting makes the units on
the ordinate (y axis) range from the minimum value to the maximum value
(approximately).

To confirm the regularity we see in Figure 1.1, we should repeat the
experiment. When we repeat the experiment with different random number
seeds (new uniform random numbers), the outcome for small n changes
somewhat from experiment to experiment, but we always see essentially the
same picture for large n. Thus the plots show regularity associated with
both large n and repeated experiments.

1.1.2. When the Game is Fair

Now let us see what happens when the game is fair. Since the expected
payoff is 1/2 dollar each play of the game, the game is fair if the fee to
play is 1/2 dollar. To examine the consequences of making the game fair,
we consider a minor modification of the simulation experiment above: We
repeat the experiment after subtracting the mean 1/2 from each step of
the random walk; i.e., we plot the centered random walk (i.e., the centered
partial sums Sy — k/2 for 0 < k < n ) for the same values of n as before.

If we consider the case n = 10%, it is natural to expect to see a horizontal
line instead of the line with slope 1/2 in Figure 1.1. However, what we see
is very different! Instead of a horizontal line, for n = 10* we see an irregular
path, as shown in Figure 1.2.
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Figure 1.2: Possible realizations of the first 107 steps of the centered random
walk {S;—k/2 : k > 0} with steps uniformly distributed in the interval [0, 1]
forj=1,...,4.
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We do not see the horizontal line because the data have been automat-
scally rescaled by the plotter. The centering has let the plotter blow up the
picture to show extra detail not apparent from Figure 1.1.

After centering, the range of values (the maximum minus the minimum)
for the partial sums decreases dramatically. The first 10* uncentered partial
sums assume values approximately in the interval [0, 5000], whereas the first
10* centered partial sums all fall in the interval [—60,5]. Thus, the range
has decreased from 5,000 to less than 100.

At first glance, it may not be evident that there is any regularity for large
n in Figure 1.2. We would hope to be able to predict what we will see if we
repeat the experiment with new uniform random numbers. However, when
we repeat the simulation experiment with different random number seeds,
we obtain different irregular paths. To illustrate, six independent plots for
n = 10* are shown in Figure 1.3. The six path samples look somewhat
similar, but each is different from the others.

In Figure 1.3, just as in Figures 1.1 and 1.2, we let the plotter automat-
ically do the scaling. Thus, the units on vertical axis change from plot to
plot. We plot in this manner throughout this chapter, by design. We will
show that these “automatic plots” reveal statistical regularity if we ignore
the units and think of the plot as being on the unit square. But essentially
the same conclusion can be drawn if we fix the units on the vertical axis.
From Figure 1.3, after the fact, we can conclude that we could have fixed the
units on the vertical axis, letting the values fall in the interval [—100, 100].
In either case, we are faced with the problem of understanding what we see.

We have arrived at a critical point, which may require us to adjust our
thinking. To understand what we are seeing, we need to recognize that
the irregular paths we see should be regarded as random paths. We then
can understand that there actually is regularity underlying the six displayed
paths in Figure 1.3, but it is statistical reqularity.

We want to be able to predict what we will see when we increase n
or perform additional experiments. For the uncentered random walks in
Figure 1.1, we predict that the plot of {Sx : 0 < k£ < n} will look like
the diagonal line in the unit square for all n sufficiently large. However,
for the centered random walks, the plots do not approach such a simple
limit. What we should hope to predict when we repeat the experiment
for the centered random walk (again ignoring the units on the axes) is the
probability distribution of the random path. We should anticipate that the
successive paths in repeated experiments will change from experiment to
experiment, but we should look for a common probability distribution on
the space of possible paths.
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Figure 1.3: Six independent realizations of the first 10* steps of the centered
random walk {S; —k/2 : k > 0} associated with steps uniformly distributed
in the interval [0, 1].
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The simulation experiments suggest that, for all n sufficiently large, there
tends to be a common probability distribution for the plotted random walk
paths, where as before we ignore the units on the two axes or, equivalently,
we regard the plot as being in the unit square. We can see part of the story
when we generate new random walk paths for different values of n. For
example, when we generate six centered random walk paths for n = 10° or
n = 108, the plots look just like the plots in Figure 1.3. To make that clear,
we plot six independent plots for the case n = 10° in Figure 1.4. As before,
the units on the vertical axes change from plot to plot, but if we ignore the
units on both axes, the plots in Figure 1.4 look just like the plots in Figure
1.3.

Looking at Figures 1.3 and 1.4, we should be confident about what we
will see when n = 10% or n = 10'°. From Figure 1.4 and other similar
plots, we see that, for n sufficiently large, the plots tend to be independent
of n, provided that we ignore the units on the axes, and regard the plot as
being in the unit square. Of course, as n increases, the units change on the
two axes. And each new plot is a random path selected from the common
probability distribution on the space of possible sample paths in the unit
square.

As a consequence, we also see that the fluctuations in a smaller time scale
are asymptotically negligible compared to the fluctuations in a larger time
scale. Thus, for 5 > 5, the plots for 10/ are visually unchanged if we only
keep the values at about 10* equally spaced indices. Indeed, such pruning
of the data (reducing a data set of 10 partial sums for j > 5 to 10* values)
is useful to efficiently print the plots for large n.

The fact that the plots are independent of n for all n sufficiently large
means that the plots tend to exhibit self-similarity. By self-similarity we
mean that rescaled versions of the plot associated with increasing n tend to
look like the original plot. More specifically, the probability distribution on
the space of sample paths in the unit square tends to be unaffected by the
scaling. Self-similarity will be a persistent theme; e.g., see Section 4.2.

When we consider rescaling, we can also decrease n. For instance, sup-
pose that we consider the plot for n = 107 and select 10% of it from a
subinterval of the plot. If we make a full plot of that 10% portion, then we
obtain a plot for n = 105, which looks just like a random version of the orig-
inal plot for n = 107. (By a “random version of the original plot” we mean
that the probability distributions on the space of possible sample paths in
the unit square tend to be the same.) Similarly, if we continue and select
10% of the new plot for n = 10° from any subinterval and plot it, then we
obtain a plot for n = 10°, which again looks like a random version of the
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Figure 1.4: Six independent realizations of the first 10% steps of the centered
random walk {S; —k/2 : k > 0} associated with steps uniformly distributed
in the interval [0, 1].
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original plot for 107. Of course, Figure 1.2 shows that the self-similarity for
the random walks associated with decreasing n breaks down when n is too
small. It is interesting to contemplate a limiting continuous-time random
path that permits self-similarity without end!

1.1.3. The Final Position

It is difficult to actually see the probability distribution of the entire
random path, because the path is multidimensional, but we can easily look
at any one position of the random walk. For instance, suppose that we focus
on the final position of the centered random walk, i.e., the single centered
partial sum S,, —n/2 for one fixed (large) value of n.

It is evident that the final position of the centered random walk, S,,—n/2,
changes from experiment to experiment. We find statistical regularity when
we perform many independent replications of the experiment and look at
the distribution of the final positions. So, let us do that.

Remark 1.1.1. The final position and the relative final position. For sim-
plicity, we now want to look at the final position of the centered random walk,
Sy —n/2, independent of the rest of the random walk. If instead we looked
at the final position in the unit square, ignoring the original units, we would
be looking at the relative final position, which must assume a value between
0 and 1. Letting M,, = max;<y<p{Sk—Fk/2} and m,, = min; <4<, {Sx—k/2},
the relative final position is

Sp—n/2 —my

R, =
mn Mn—mn bl

n>1. (1.1)
It turns out that there is statistical regularity associated with the relative
final position, just as there is statistical regularity associated with the en-
tire plot, but the relative final position is more complicated than the final
position. Hence, now we focus on the final position. We discuss the relative
final position in Remark 1.2.2 at the end of Section 1.2.4. =

Suppose that we consider the final position of the centered random walk
with uniform random steps for n = 1000, and suppose that we perform 1000
replications of the experiment. We thus obtain 1000 independent samples of
the centered sum S99 —500. We can estimate the probability density of this
distribution using the nonparametric probability density estimator density
from S (with the default parameter settings). The estimated probability
density of the final position S1g99 — 500 is plotted in Figure 1.5.
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Figure 1.5: An estimate of the probability density of the final position of
the random walk, obtained from 1000 independent samples of the centered
partial sum Sygpg — 500, where the steps Uy are uniformly distributed in the
interval [0, 1].
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Figure 1.5 shows that nonparametric density estimation does not achieve
high resolution with only a modest amount of data, but it suggests that the
final position of the random walk after 1000 steps is approximately normally
distributed with zero mean. That conclusion is more strongly supported by
the QQ plot in Figure 1.6. The QQ plot compares the empirical distribution
of the data to the normal distribution; e.g., see p. 122 of Venables and Ripley
(1994). Specifically, the QQ plot compares the sorted data to the quantiles
of the normal distribution. If there are n data points, then we consider the
n — 1 normal quantiles z;, where

P(N(0,1) <z,) =k/n, 1<k<n-1,

with N(m,o?) denoting a random variable with a normal (or Gaussian)
distribution having mean m and variance o2. When n = 1,000, the normal
quantiles range from —3.1 to +3.1, with there being more quantiles near 0
than at the extremes. (Since we focus on the shape of the QQ plot, the
QQ plot compares the distributions independent of location and scale; e.g.,
the shape of the QQ plot is independent of the mean and variance of the
reference normal distribution.)

The near-linear plot in Figure 1.6 is approximately the same as the QQ
plot for 1000 independent samples from a normal distribution. To make that
clear, a QQ plot of a sample of 1000 observations from a normal distribution
(with the same mean and variance) is also shown in Figure 1.6. Again the
units are different in the two plots, because the range of values differs from
sample to sample. The linearity that holds except for the tails strongly
indicates that the final positions are indeed normally distributed.

But, in order to fairly draw that conclusion, we need more experience
with QQ plots. We become more confident of the conclusion when we repeat
these experiments a number of times; then we can observe the statistical
variability in the QQ plots. We also gain confidence when we make QQ plots
of various non-normal distributions; then we can see how departures from
normality are reflected in the plots. When you think hard about the figures,
they become invitations to perform additional experiments. Our main point
here is that analysis with the QQ plots indicates that the final position of
the centered random walk is indeed approximately normally distributed.

That conclusion is also supported by density estimates based on more
data. To illustrate how the density estimates perform as a function of sample
size, we display the estimates of the probability density of the same final
position S1gpo—500 based on 107 samples for j = 2, ..., 5 in Figure 1.7 (again
using the nonparametric density estimator density from S with the default
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Figure 1.7: Estimates of the probability density of the final position of
the random walk, obtained from 107 independent samples of the centered
partial sum Siggp — 500 for 7 = 2,...,5, for the case in which the steps Uy
are uniformly distributed in the interval [0, 1], based on the nonparametric
density estimator density from S.

parameter settings). Essentially the same plots are obtained for independent
samples from normal distributions. From Figure 1.7, it is evident that the
density estimates converge to a normal pdf as n — oco. For more on density
estimation, see Devroye (1987).

It is not our purpose to delve deeply into statistical issues, but it is worth
remarking that we obtain new interesting plots, like the random walk plots,
when we do. Our brief examination of the distribution of the final position
of the random walk suggests looking for a more precise statistical test to
determine whether or not the final position of the random walk is indeed
approximately normally distributed. To evaluate whether some data can be
regarded as an independent sample any specified probability distribution, it
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is natural to carefully investigate how the empirical distribution of a sam-
ple from that probability distribution tends to differ from the underlying
probability distribution itself.

Recall that the cumulative distribution function (cdf) F of a random
variable X is the function

Ft)=P(X <t) for teR.

Similarly, the empirical cdf of a data set of size n is the proportion F,,(t) of
the n data points that are less than or equal to ¢, as a function of .

The idea, then, is to look at the difference between a cdf and the empirical
cdf obtained from an independent sample from that cdf. Moreover, it is
natural to consider how that difference behaves as the sample size increases.
Once we have made such a study, we can use the established behavior of
samples from the specified probability distribution to test whether or not
data from an unknown source can reasonably be regarded as a sample from
the candidate probability distribution.

Example 1.1.1. The empirical cdf of uniform random numbers. To illus-
trate, we now consider the difference between the empirical cdf associated
with n uniform random numbers on the interval [0, 1] and the uniform cdf
itself. Since the uniform cdf is F(t) = t,0 < ¢t < 1, we now want to plot
F,(t) —t versus t for 0 < ¢ < 1. Since the function Fj,(t) —¢,0 <t <1, is
a function of a continuous variable, the plotting is less routine than for the
random walk. However, the empirical cdf F,, has special structure, making
it possible to do the plotting quite easily. In particular, to do the plotting,

let U,gn), 1 <k < n, be the order statistics associated with the uniform ran-

dom numbers Uy, ...,U,, i.e., U,gn) is the k" smallest of the uniform random
numbers. Note that

FU™) =k/n and F(U™M-)=(k—1)/n,

F,(0) =0 and F,(1) = 1, where F,,(t—) is the left limit of the function F},
at t. Thus we can plot F,,(t) —t versus ¢ by plotting the points (0,0), (1,0),
(U,gn), (k—1)/n— U,En)) and (U,En), k/n — U,gn)), 1 < k < n, and connecting
the points by lines (i.e., performing linear interpolation).

Plots for n = 10V for j = 1,...,4 are shown in Figure 1.8. The plots
in Figure 1.8 look much like the plots of the uncentered random walks, but
there is a subtle difference that can be confirmed by further replications of
the experiment. Unlike before, here the final position is 0 just like the initial
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Figure 1.8: The difference between the empirical cdf and the actual cdf for
samples of size 10/ from the uniform distribution over the interval [0, 1] for
j=1,...,4

position. That makes sense as well, because both the empirical cdf and the
actual cdf must assume the common value 1 at the right endpoint.

It turns out that there is statistical regularity in the empirical cdf’s just
like there is in the random walks. As before, the plots look the same for
all sufficiently large n. Moreover, except for having the final position be 0,
the plots look just like the random-walk plots. More generally, this example
illustrates that statistical analysis is an important source of motivation for
stochastic-process limits. We discuss this example further in Section 2.2.
There we show how to develop a statistical test applicable to any continuous
cdf, including the normal cdf that is of interest for the final position of the
random walk.
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1.1.4. Making an Interesting Game

We have digressed from our original game of chance to consider the
statistical regularity observed in the plots, which of course really is our
main interest. But now let us return for a moment to the game of chance.

A gambling house cannot afford to make the game fair. The gambling
house needs to charge a fee greater than the expected payoff in order to
make a profit. What would be a good fee for the gambling house to charge?

From the perspective of the gambling house, one might think the larger
the fee the better, but the players presumably have the choice of whether or
not to play. If the gambling house charges too much, few players will want
to play. The fee should be large enough for the gambling house to make
money, but small enough so that potential players will want to play. We
take that to mean that the individual players should have a good chance of
winning.

One might think that those objectives are inconsistent, but they are
not. The key to achieving those objectives is the realization that the player
and the gambling house experience the game in different time scales. An
individual player might contemplate playing the game 100 times on a single
day, while the gambling house might offer the game to hundreds or thousands
of players on each of many consecutive days.

Thus, the player might evaluate his experience by the possible outcomes
from about 100 plays of the game, while the gambling house might evaluate
its experience by the possible outcomes from something like 10* — 10° plays
of the game. What we need, then, is a fee close enough to $0.50 that the
player has a good chance of winning in 100 plays, while the gambling house
receives a good reliable return over 10* — 10% games.

A reasonable fee might be $0.51, giving the gambling house a 1 cent or
2% advantage on each play. (Gambling houses actually tend to take more,
which shows the appeal of gambling despite the odds.) To see how the
$0.51 fee works, let us consider the possible experiences of the player and
the gambling house. In Figure 1.9 we plot six independent realizations of a
player’s position during 100 plays of the game when there is a fee of $0.51
for each play. The game looks pretty interesting for the player from Figure
1.9. The player has a reasonable chance of winning. Indeed, the player wins
in plots 3 and 5, and finishes about even in plot 2. How do things look for
the gambling house?

To see how the gambling house fares, we should look at the net payoffs
over a much larger number of games. Hence, in Figures 1.10 and 1.11 we plot
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Figure 1.10: Possible realizations of the first 10* net payoffs (steps of the
random walk {S; — 0.51%k : k& > 0} with steps Uy uniformly distributed in
the interval [0, 1].

six independent realizations of a player’s position during 10* and 10° plays
of the game. As before, we let the plotter automatically do the scaling, so
that the units on the vertical axes change from plot to plot. But that does
not alter the conclusions. In these larger time scales, we see that the player
consistently loses money, so that a profit for the gambling house becomes
essentially a sure thing. When we increase the number of plays to 10°, there
is little randomness left. That is shown in Figure 1.11. Further repetitions
of the experiment confirm these observations. We again see the regularity
associated with a macroscopic view of uncertainty.

Above we picked a candidate fee out of the air. We could instead be
more systematic. For example, we might seek the largest fee such that the
player satisfies some criteria indicating a good experience. Letting the fee
for each game be f, we might want to constrain the probability p that a
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player wins at least a certain amount w, i.e., by requiring that
P(S100 — f(100) > w) > p .

Given such a formulation, we can determine the optimal fee f, i.e., the
maximum fee f such that the constraint is satisfied, which is attained when
the probability just equals p.

As noted at the outset, when we consider making the game interesting,
we might well conclude that a uniform payoff distribution for each play is
boring. We might want to have the possibility of much larger positive and/or
negative payoffs on one play. It is easy to devise more interesting games with
different payoff distributions, but the statistical regularity associated with
large numbers observed above tends to be the same. Readers are invited to
make their own games and look at the net payoffs for 107 plays for various
values of j.

An extreme case that is often attractive is to have, like a lottery, some
small chance of a very large payoff. However, with independent trials, as
determined by successive spins of the spinner, the gambling house faces the
danger of having to make too many large payoffs. Such large losses are
avoided in lotteries by not letting the game be based on independent tri-
als. In a lottery only a few prizes are awarded (and possibly shared) so
that the people running the lottery are guaranteed a positive return. How-
ever, an insurance company cannot control the outcomes so tightly, so that
careful analysis of the possible outcomes is necessary; e.g., see Embrechts,
Kliippelberg and Mikosch (1997). We too will be interested in the possibility
of exceptionally large values in random events.

1.2. Stochastic-Process Limits

The plots we have looked at indicate that there is statistical regularity
associated with large n, i.e., with large sample sizes. We now want to
understand why we see what we see, and what we will see in other related
situations. For that purpose, we turn to probability theory; see Ross (1993)
and Feller (1968) for introductions.

1.2.1. A Probability Model

We can use probability theory to explain what we have seen in the ran-
dom walk plots. The first step is to introduce an appropriate mathematical
model: Assuming that our random number generator is working properly
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(an important issue, which we will not address, e.g., see p. 123 of Venables
and Ripley (1994), L’Ecuyer(1998a,b) and references cited there), the ob-
served values Uy, 1 < k < n, should be distributed approximately as the
first n values from a sequence of independent and identically distributed (IID)
random variables uniformly distributed on [0, 1] (defined on an underlying
probability space). Indeed, the model fit is usually so good that there is a
tendency to identify the mathematical model with the physical experiment
(a mistake), but since the model fit is so good, we need not doubt that the
mathematical conclusions are applicable.

Remark 1.2.1. Mathematics and the physical world. It is important to
realize that a physical phenomenon, a mathematical model of that physical
phenomenon and a simulation of that mathematical model are three different
things. But, if the mathematical model is well chosen, the three may be
closely related. In particular, a mathematical model, whether simulated or
analyzed, may provide useful desciptions of the physical phenomenon.

We are interested in mathematical queueing models because of their
ability to explain queueing phenomena, but we should not expect a perfect
match. For example, mathematical models often succeed by exploiting the
infinite, even though the physical phenomenon is finite. Random numbers
generated on a computer are inherently finite, and yet simulations based on
random numbers can be well described by mathematical models exploiting
the infinite.

Here, we perform stochastic simulations to reveal statistical regularity,
and we introduce and analyze mathematical models to explain that statis-
tical regularity. We expect to capture key features, but we do not expect a
perfect fit. We want the the mathematics to explain key features observed
in the simulations, and we want the simulations to confirm key features
predicted by the mathematics. =

With that attitude, let us consider the probability model consisting of
a sequence of IID uniform random numbers. Within the context of that
probability model, we want to formulate stochastic-process limits suggested
by the plots. First, we see that as n increases the plotted random walk
ceases to look discrete. For all sufficiently large n, the plotted random
walk looks like a function of a continuous variable. Thus it is natural to
seek a continuous-time representation of the original discrete-time random
walk. We can do that by considering the associated continuous-time process
{S|4) : t > 0}, where | - | is the floor function, i.e., [t| denotes the greatest
integer less than or equal to £. If we also want to introduce centering,
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then we do the centering first, and instead consider the centered process
{S|y) —m|t] : t > 0} for appropriate centering constant m, which here is
1/2. Thus the continuous-time representation of the random walk is a step
function, which coincides with the random walk at integer arguments.

However, the step function is not the only possible continuous-time rep-
resentation of the random walk. We could instead form a process with con-
tinuous sample paths by connecting the points by lines, i.e., by performing
a linear interpolation. Then, instead of S|;|, we consider

S(t)=(t—[£))Sy e + (1 +[t] —)Sy forall £>0, (2.1)

and similarly if we do centering. (With centering, we do the centering be-
fore doing the linear interpolation.) Possible initial segments of the two
continuous-time processes associated with the discrete-time (uncentered)
random walk for the case n = 10 are shown in Figure 1.12. (The verti-
cal lines in the plot are not really part of the step function.) Even though
the 10 random walk steps are the same for both continuous-time repre-
sentations, the two initial segments of the continuous-time stochastic pro-
cesses look very different in Figure 1.12. However, for large n, plots of the
two continuous-time representations of the discrete-time random walk look
virtually identical. To make that important point clear, we plot the two
continuous-time representations of the same discrete-time centered random
walk (same sample paths) for n = 107 for j = 1,...,4 in Figure 1.13. Figure
1.13 shows that the two alternative representations indeed look the same
for all n sufficiently large. Thus, when we focus on the random-walk plots
for large n, we regard the two alternatives as equivalent. For our remaining
discussion here, though, we will only discuss the step functions.

We now want to scale time and space (the horizontal and vertical di-
mensions in the plots). Note that the plotter scales time by putting the
n+ 1 random walk values in a region of fixed width. Thus, if we let 1 be the
available width of the plot, then the n + 1 random walk values are spaced
1/n apart. Equivalently, time is scaled automatically by the plotting routine
by multiplying time ¢ by n, i.e., by replacing ¢t with nt. Then, for each n, we
only look at the process for ¢ in the closed interval [0, 1]. The final position
of the random walk for any n corresponds to ¢ = 1.

We can also consider the space scaling in the same way. We can let 1 be
the available height of the plot. Then the plotter automatically scales space
by subtracting the minimum value and dividing by the range of the plotted
values. Unfortunately, however, the range is random. Moreover, there is a
complicated dependence between the path and its range. In formulating a
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processes constructed from one realization of an uncentered random walk
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the right.
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stochastic-process limit, it is natural to try to perform the space scaling, like
the time scaling, with a deterministic function of n. With such deterministic
space scaling, we hope to achieve a nondegenerate limit as n — oo, but one
for which the range is allowed to remain random. In the limit as n — oo, we
will achieve essentially the same thing as the plots if the normalized range
converges to a nondegenerate random limit.

What we do, then, is scale space by dividing by ¢,, where {c, : n > 1}
is a sequence of (deterministic) real numbers with ¢, — oo as n — oo. That
is, for each n, we form the stochastic process

Sn(t) = ¢, (S —m(|nt]), 0<t<1. (2.2)

We then want to find an appropriate sequence {c, : n > 1} so that

{Sn(t):0<t<1} = {S(t):0<t<1} as n— o0, (2.3)

where S = {S(¢) : 0 < ¢ < 1} is an appropriate limit process with ¢ ranging
over the interval [0, 1] and — in (2.3) is an appropriate mode of convergence.
When we have a limit as in (2.3), we have a stochastic-process limit.

1.2.2. Classical Probability Limits

Classical probability limits help explain the statistical regularity we have
seen. First, referring to the asymptotically linear plots in Figures 1.1 and
1.11, the strong law of large numbers (SLLN) implies that the scaled partial
sums n~ 1S, approach the mean m as n — oo with probability 1 (w.p.1); e.g.,
see Chapter X of Feller (1968), Chapter VII of Feller (1971) and Chapter 5
of Chung (1974). (In Figure 1.1 the mean is 1/2; in Figure 1.11 the mean is
—0.01.)
As an easy consequence of the SLLN, we can also conclude that

nilstntJ%mt w.p.l as n— o0

for each ¢ > 0. Moreover, the pointwise convergence can actually be ex-
tended to uniform convergence over bounded intervals:

{n_ISLmJ 0<t<1}—>{mt:0<t<1} wpl as n— oo,
uniformly in ¢ for ¢ in the interval [0,1]. In other words,

sup{|n715'LmJ —mt|:0<t<1} =0 wpl as n—>o0.
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Thus, in the setting of Figure 1.1, the limit (2.3) holds without centering
(with m = 0) for ¢, = n with the limit process S being the line with slope
1/2 (the one-step mean) defined over the interval [0,1]. In this case, the
mode of convergence in (2.3) is convergence w.p.1 on a space of functions
with the uniform distance

l|z1 — z2|| = sup {|z1(t) — z2(t)| : 0 <t < 1} .

In this case, the stochastic-process limit is called a functional strong law
of large numbers (FSLLN). Interestingly, the SLLN and the FSLLN are
actually equivalent; see Theorem 3.2.1 in the Internet Supplement.

Next, turning to the plots of the centered random walks, with centering
by the mean, in Figures 1.2, 1.3 and 1.4, we can appeal to the central limit
theorem (CLT). The CLT implies that

(6®n)~1%(S, —nm) = N(0,1) as n — oo, (2.4)

where m = EUj, = 1/2 is the mean and 02 = Var Uy, = 1/12 is the variance
of the uniform summand Uy, = denotes convergence in distribution and the
standard normal random variable N (0, 1) has cdf

T
®(t) = P(N(0,1) < z) E/ (2m) "2 /2 gy (2.5)
—00
e.g., see Section VIII.4 of Feller (1971) and Chapter 7 of Chung (1974).
It is useful to review what the limit (2.4) means: The convergence in
distribution means that the cdf’s converge, i.e.,

P(n~'%(S, —mn) < z) » P(N(0,0%) <z) as n— oo (2.6)

for all z. More generally, given real-valued random variables Z,, n > 1, and
Z, there is convergence in distribution, by the standard definition, denoted
by Z, = Z, if the associated cdf’s converge, i.e., if

F.(z)=P(Z,<z)—>P(Z<z)=F(z) as n— (2.7)

for all z that are continuity points of the limiting cdf F', i.e., for which
P(Z=1z)=0.

Since the normal distribution has a continuous cdf, the restriction to
continuity points of the limiting cdf in (2.7) does not arise in (2.6). We need
to allow non-convergence at discontinuity points in (2.7), because we want
to say that we have convergence Z,, = Z in situations such as the special
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case in which P(Z = z) = 1 and P(Z, = z,) = 1 for all n and z, — z as
n — oo. If z, — z with 2z, > z for all n, then F,(2) = P(Z, < z) =0 for
all n, while F(z) = P(Z < z) = 1. Since F,(x) — F(z) for all = except
x = z, we obtain the desired convergence Z,, = Z if we require pointwise
convergence of the cdf’s everywhere except at discontinuity points of the
limiting cdf F.

There also are other convenient equivalent characterizations of conver-
gence in distribution. In particular, (2.7) holds if and only if

E[MZ,)] - E[MZ)] as n— oo (2.8)

for every continuous bounded real-valued function h on R, where FE is the
expectation operator. Moreover, (2.7) and (2.8) hold if and only if

9(Zn) = g(Z) as n— oo (2.9)

for every continuous function g on R. The alternative characterizations
(2.8) and (2.9) are useful because they generalize to random elements of
more general spaces.

The CLT in (2.4) explains the statistical regularity associated with the
final positions of the centered random walks: In agreement with Figures 1.5
— 1.7, the CLT tells us that the centered partial sums S, — mn should be
approximately normally distributed with mean 0 for all n sufficiently large.

We can also apply the CLT to obtain a corresponding limit for the scaled
random walk S,, in (2.2) at an arbitrary time ¢ in the interval [0,1]. More
generally, we can consider an arbitrary ¢ > 0. To do so, we set ¢, = y/n and
m = 1/2. In particular, it is an easy consequence of (2.4) that we must have

n*I/Q(SLntJ—antJ):>UN(0,t) in R as n— o0 (2.10)

for each ¢t > 0, where m = 1/2 and o2 = 1/12.

From (2.10) we clearly see that the space-scaling constants ¢, in (2.2)
must be asymptotically equivalent to ¢y/n for some constant ¢ as n — oc.
Moreover, the space scaling by y/n is consistent with the units on the axes
in Figures 1.2-1.4. Indeed, if we instead scale by ¢, = n? for p > 1/2, then
the values converge to 0 as n — oo. Similarly, if we scale by ¢, = n? for
p < 1/2, then the values diverge as n — oco. (The absolute values diverge to
infinity.) This property can be confirmed by further analysis of simulations,
but we do not pursue it.

We now want to convert (2.10) into a stochastic-process limit of the form
(2.3). Note that the left side of (2.10) coincides with S, (¢), but the right
side of (2.10) is not a stochastic process evaluated at time ¢. What we need
to do is identify the appropriate limit process S in (2.3).
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1.2.3. Identifying the Limit Process

We should recognize that we have arrived at another critical point. An-
other important intellectual step is needed here. We not only must identify
the limit process; we need to realize that there indeed should be a limit pro-
cess.

The appropriate limit process turns out to be a Brownian motion (BM).
Brownian motion stochastic processes can be characterized as the real-valued
stochastic processes with stationary and independent increments having con-
tinuous sample paths. Brownian motion evaluated at time ¢ turns out to be
normally distributed with mean mt and variance %t for some constants m
and o2

The special Brownian motion with parameters m = 0 and 02 = 1 is
called standard Brownian motion; we shall refer to it by B = {B(t) : t > 0}.
It has marginal distributions

B(t) <

N(0,t), t>0, (2.11)
where £ denotes equality in distribution.

An increment of Brownian motion is B(u)—B(t) for u > t. By stationary
and independent increments, we mean that the k-dimensional random vector

(B(uy + h) — B(t; +h), ..., B(ug + h) — B(ty + h))

has a distribution independent of h for all k£, and that the k component
random variables are independent, providing that 0 <t} <wy <ty <--- <
Uk -

Combining (2.10) and (2.11), we see that we can also express the limit
(2.10) in terms of Brownian motion. In particular, after letting ¢, = y/n in
(2.2), we see that (2.10) is equivalent to

Sn(t) = oB(t) in R as n—oo forall ¢>0, (2.12)
where B is a standard Brownian motion,
Sy(t) = n V2(Spy — m(|nt]), t>0, (2.13)

and 0? = 1/12 because the steps in the random walk are uniformly dis-
tributed over [0, 1]. In equations (2.11), (2.12) and (2.13) we have let ¢ range
over the semi-infinite interval [0, c0), but we could also have restricted ¢ to
the closed interval [0, 1] to be consistent with the plots.
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We can apply the limit in (2.12) to generate approximations for the terms
of the original random walk. To generate approximations, we replace the
convergence in distribution by approximate equality in distribution. From
(2.12), we obtain the approximation

Sint) & m|nt| +n'/?oB(t) (2.14)

or
Si ~ mk +n'?0B(k/n) , (2.15)

where k is understood to be of order n and =~ means approximately equal
to in distribution. Note that the quality of the approximation for large n
tends to depend more on the time scaling by n and the space scaling by /n
than the limit process 0B.

The limit in (2.12) (with ¢ ranging over the unit interval [0,1]) can be
regarded as the explanation for what we have seen in the random-walk plots.
The limit in (2.12) is a stochastic-process limit, because it establishes conver-
gence of the sequence of stochastic processes {{S,(t) : 0 <t <1}:n>1}in
(2.13) to the limiting stochastic process {cB(¢) : 0 <t < 1}. However, we
want to go beyond the limit as expressed via (2.12). We want to strengthen
the form of convergence in order to be able to deduce convergence of re-
lated quantities of interest; in particular, we want to show that plots of the
centered random walk converge to plots of standard Brownian motion as
n — oo.

The probability law or distribution of a stochastic process is usually spec-
ified by the family of its finite-dimensional distributions (f.d.d.’s). Hence,
a natural first step is to go beyond convergence of the one-dimensional
marginal distributions, which is provided by (2.12), to convergence of the
f.d.d.’s, i.e., the k-dimensional marginal distributions for all k. From the
assumed independence among the random walk steps, it is not difficult to
see that (2.12) can be extended to obtain

(Sp(t1),...,Sn(ty)) = (6B(t1),...,0B(t;)) in R (2.16)

as n — oo for all positive integers k and all k£ time points ¢1,...,t; with
0 <t <--- <t <1, where convergence in distribution of random elements
of R¥ is defined by the natural generalization of (2.7), (2.8) or (2.9). Because
of the independence among the random walk steps in this example, there is
little difference between (2.12) and (2.16), but in general (2.16) is a much
stronger conclusion.

However, we want to go even further. We want to go beyond convergence
of the f.d.d.’s in (2.16) to convergence of the plots. We want to establish
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limits for more general functions of the stochastic processes. To do so, we
regard S, and B as random elements of a function space containing all
possible sample paths. (A function space is a space of functions.)

For B, we could consider the space C' = C([0,1],R) of all continuous
real-valued functions on the unit interval [0, 1], but to include S,,, we need
discontinuous functions. (We could work with the space C' if we used linearly
interpolated random walks, as in (2.1), but we are considering the step
functions.) We could consider a space containing all continuous functions
and the special step functions that capture the structure of S,,, but with
other applications in mind, we consider a larger set of functions. We let the
function space be the set D = D([0, 1], R) of all real-valued functions on [0, 1]
that are right-continuous at all ¢ in [0, 1) and have left limits everywhere in
(0,1], endowed with an appropriate topology (notion of convergence, see
Chapter 3).

The desired generalization of (2.12) and (2.16) follows from Donsker’s
theorem. Donsker’s theorem is a functional central limit theorem (FCLT),
which implies here that

S,=0¢B in D, (2.17)

where again S, is the scaled random walk in (2.13), B is standard Brownian
motion and the function space D is endowed with an appropriate topology.
We discuss the topology on D and the precise meaning of (2.17) in Section
3.3.

Even though Brownian motion has a relatively simple characterization,
it is a special stochastic process. For example, it has the self-similarity
property observed in the plots (without limit). In particular, for all ¢ > 0,
the stochastic process {¢™"/?B(ct) : 0 < ¢t < 1} has the same probability
law on D; equivalently, it has the same finite-dimensional distributions, i.e.,
the random vector (¢~'/2B(ct),...,c¢ "/?B(cty)) has a distribution in RF
that is independent of ¢ for any positive integer k and any k time points
ti, 1 <i<k, withO<t; <---<tp<L1.

Indeed, the self-similarity is a direct consequence of the stochastic-process
limit in (2.17): First observe from (2.13) that, for any ¢ > 0,

Sen(t) = ¢ /28, (ct), t>0. (2.18)
By taking limits on both sides of (2.18), we obtain
(B(t):0<t<1} L {c2B(ct):0<t <1} . (2.19)

For further discussion, see Section 4.2.
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Even though we are postponing a detailed discussion of the meaning of
the convergence in (2.17), we can state a convenient characterization, which
explains the applied value of (2.17) compared to (2.12) and (2.16). Just as
in (2.8), the limit (2.17) means that

E[M(S,)] — E[h(eB)] as n — oo (2.20)

for every continuous bounded real-valued function h on D. The topology on
D enters in by determining which functions h are continuous. Just as with
(2.9), (2.20) holds if and only if

g(Sp) = g¢g(¢eB) in R (2.21)

for every continuous real-valued function g on D. (It is easy to see that (2.20)
implies (2.21) because the composition function hog is a bounded continuous
real-valued function whenever g is continuous and A is a bounded continuous
real-valued function.) Interestingly, (2.21) is the way that Donsker (1951)
originally expressed his FCLT. The convergence of the functionals (real-
valued functions) in (2.21) explains why the limit in (2.17) is called a FCLT.

It turns out that we also obtain (2.21) for every continuous function g,
regardless of the range. For example, the function ¢ could map D into D.
Then we can obtain new stochastic-process limits from any given one. That
is an example of the continuous-mapping approach for obtaining stochastic-
process limits; see Section 3.4. The representation (2.21) is appealing be-
cause it exposes the applied value of (2.17) as an extension of (2.12) and
(2.16). We obtain many associated limits from (2.21).

1.2.4. Limits for the Plots

We illustrate the continuous-mapping approach by establishing a limit
for the plotted random walks, where as before we regard the plot as being
in the unit square [0, 1] x [0, 1].

To establish limits for the plotted random walks, we use the functions
sup: D — R inf: D — R, range : D — R and plot : D — D, defined for
any ¢ € D by

sup(z) = Sup (t),

inf(a) = inf o(t),

range(z) = sup(x) —inf(x)
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and
plot(z) = (z —inf(x))/range(z) .

Note that plot(x) is an element of D for each 2 € D such that range(z) # 0.
Moreover, the function plot is scale invariant, i.e., for each positive scalar ¢
and x € D with range(z) # 0,

plot(cx) = plot(x) .

Fortunately, these functions turn out to preserve convergence in the
topologies we consider. (The first three functions are continuous, while
the final plot function is continuous at all z for which range(z) # 0, which
turns out to be sufficient.) Hence we obtain the initial limits

n~Y? max {8}, — mk} = sup(S,) = sup(cB) = sup {oB(t)} ,
1<k<n 0<t<1

_1/2 . _ — . — .
n 1I§I}c1£n{8k mk} =inf(S,) = inf(ocB) = ogé{aB(t)} ,

n~2range({Sy — mk : 0 < k < n}) = range(S,) = range(cB)

in R and the final desired limit
plot(S,) = plot(cB) = plot(B) in D,
where
plot({Sk—mk : 0 <k <n}) = plot({c," (Sy—mk) : 0 <k < n}) = plot(S,)

from Donsker’s theorem ((2.17) and (2.21)).

The limit plot(S,) = plot(B) states that the plot of the scaled random
walk converges to the plot of standard Brownian motion. Note that we use
plot, not only as a function mapping D into D, but as a function mapping
R**1 into D taking the random walk segment into its plot.) Hence Donsker’s
theorem implies that the random walk plots can indeed be regarded as ap-
proximate plots of Brownian motion for all sufficiently large n. By using
the FCLT refinement, we see that the stochastic-process limits do indeed
explain the statistical regularity observed in the plots.

To highlight this important result, we state it formally as a theorem.
Later chapters will provide a proof; specifically, we can apply Sections 3.4,
12.7 and 13.4.
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Theorem 1.2.1. (convergence of plots to the plot of standard Brownian
motion) Consider an arbitrary stochastic sequence {Sg : k > 0}. Suppose
that the limit in (2.3) holds in the space D with one of the Skorohod non-
uniform topologies, where ¢, = \/n and S = oB for some positive constant
o, with B being standard Brownian motion, as occurs in Donsker’s theorem.
Then

plot({Sy —mk : 0 <k <n}) = plot(B) .

But an even more general result holds: We have convergence of the plots
for any space-scaling constants and almost any limit process. We have the
following more general theorem (proved in the same way as Theorem 1.2.1).

Theorem 1.2.2. (convergence of plots associated with any stochastic-process
limit) Consider an arbitrary stochastic sequence {Sk : k > 0}. Suppose that
the limit in (2.3) holds in the space D with one of the Skorohod non-uniform
topologies, where ¢, and S are arbitrary. If

P(range(S) =0) =0,

then
plot({Sy —mk : 0 <k <n}) = plot(S) .

Note that the functions sup, inf, range and plot depend on more than
one value z(t) of the function z; they depend on the function over an initial
segment. Thus, we exploit the strength of the limit in D in (2.17) as opposed
to the limit in R in (2.12) or even the limit in R¥ in (2.16). For the random
walk we have considered (with IID uniform random steps), the three forms
of convergence in (2.12), (2.16) and (2.17) all hold, but in general (2.16) is
strictly stronger than (2.12) and (2.17) is strictly stronger than (2.16). For-
mulating the stochastic-process limits in D means that we can obtain many
more limits for related quantities of interest, because many more quantiti-
ties of interest can be represented as images of continuous functions on the
space of stochastic-process sample paths.

Remark 1.2.2. Limits for the relative final position. As noted in Remark
1.1.1, if we look at the final position of the centered random walk in the plots,
ignoring the units on the axes, then we actually see the relative final position
of the centered random walk, as defined in (1.1). Statistical regularity for
the relative final position also follows directly from Theorems 1.2.1 and 1.2.2,
because the relative final position is just the plot evaluated at time 1, i.e.,
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plot(z)(1). Provided that 1 is almost surely a continuity point of the limit
process S, under the conditions of Theorem 1.2.2 we have

R, = plot(S)(1) in R as n— oo,

as a consequence of the continuous-mapping approach, using the projection
map that maps € D into z(1). =

To summarize, the random-walk plots reveal remarkable statistical reg-
ularity associated with large n because the plotter automatically does the
required scaling. In turn, the stochastic-process limits ezplain the statisti-
cal regularity observed in the plots. In particular, Donsker’s FCLT implies
that the random-walk plots converge in distribution to the plots of standard
Brownian motion as n — oo.

1.3. Invariance Principles

The random walks we have considered so far are very special: the steps
are IID with a uniform distribution in the interval [0, 1]. However, the great
power of the SLLN, FSLLN, CLT and FCLT is that they hold much more
generally. Essentially the same limits hold in many situations in which the
step distribution is changed or the IID condition is relaxed, or both. More-
over, the limits each depend on only a single parameter of the random walk.
The limits in the SLLN and the FSLLN only involve the single parameter
m, which is the mean step size in the IID case. Similarly, after centering
is done, the limits in the CLT and FCLT only involve the single parameter
o2, which is the variance of the step size in the IID case. Thus these limit
theorems are invariance principles.

Moreover, the plots have an even stronger invariance property, because
the limiting plots have no parameters at alll (We are thinking of the plot
being in the unit square [0, 1] x [0, 1] in every case, ignoring the units on the
axes.) Assuming only that the mean is positive, the plots of the uncentered
random walk (with arbitrary step-size distribution) approach the identity
function e = e(t) = ¢, 0 < ¢ < 1. If instead the mean is negative, then
the limiting plot is —e over the interval [0,1]. Similarly, the plots of the
centered random walks approach the plot of standard Brownian motion over
[0,1]; i.e., the limiting plot does not depend on the variance o2. Thus, the
random-walk plots reveal remarkable statistical regularity!

The power of the invariance principles is phenomenal. We will give some
indication by giving a few examples and by indicating how they can be
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applied. We recommend further experimentation to become a true believer.
For example, the plots of the partial sums — centered and uncentered — should
be contrasted with corresponding plots for the random-walk steps. Even for
large n, plots of uniform random numbers and exponential (exponentially
distributed) random numbers look very different, whereas the plots of the
corresponding partial sums look the same (for all n sufficiently large).

1.3.1. The Range of Brownian Motion

We can apply the invariance property to help determine limiting prob-
ability distributions. For example, we can apply the invariance property to
help determine the distribution of the limiting random variables sup(B) and
range(B).

We first consider the supremum sup(B). We can use combinatorial meth-
ods to calculate the distribution of maxi<y<,{Sy —km} for any given n for
the special case of the simple random walk, with P(X; = +1) = P(X; =
—1) = 1/2, as shown in Chapter III of Feller (1968) or Section 11 of Billings-
ley (1968). In that way, we obtain

P(sup(B) > z) =2P(N(0,1) > z) = 20%(x) , (3.1)
where ®°(t) = 1 — ®(t) for ® in (2.5). Since sup(B) <| N(0,1) |,
Elsup(B)] = \/2/m ~ 0.8 (3.2)

and
E[sup(B)?] = E[N(0,1)*| = 1.

These calculations are not entirely elementary; for details see 26.2.3, 26.2.41
and 26.2.46 in Abramowitz and Stegun (1972).

The limit range(ocB) is more complicated, but it too can be character-
ized; see Section 11 of Billingsley (1968) and Borodin and Salminen (1996).
There the combinatorial methods for the simple random walk are used again
to determine the joint distribution of inf(B) and sup(B), yielding

k=+o00
P(a <inf(B) < sup(B) <b) = Y (=1)F[®(b+k(b—a))—P(a+k(b—a))],

k=—00

where @ is again the standard normal cdf. From (3.2), we see that the mean
of the range is

Elrange(B)] = E[sup(B)] — Elinf(B)] = 2E[sup(B)] = 2,/2/7 ~ 1.6.
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We can perform multiple replications of random-walk simulations to es-
timate the distribution of range(B) and associated summary characteris-
tics such as the variance. We show the estimate of the probability density
function of range(B) based on 10,000 samples of the random walk with
10,000 steps, each uniformly distributed on [0, 1], in Figure 1.14 (again ob-
tained using the nonparametric density estimator density from S). The
range of the centered random walk should be approximately o\/n times
the range range(B), so we divide the observed ranges in this experiment by
/n/12 = 28.8675. The estimated mean and standard deviation of range(B)
were 1.58 and 0.474, respectively. The estimated 0.1, 0.25, 0.5, 0.75 and 0.9
quantiles were 1.05, 1.24, 1.50, 1.85 and 2.23, respectively. This characteri-
zation of the distribution of range(B) helps us interpret what we see in the
random-walk plots.

From the analysis above, we know approximately what the mean and
standard deviation of the range should be in the random-walk plots. Since
Elrange(B)] ~ 1.6, the mean of the random walk range should be about
1.60y/n =~ 0.46y/n. Similarly, since the standard deviation of range(B)
is approximately 0.47, the standard deviation of the range in the random-
walk plot should be approximately 0.470y/n ~ 0.14y/n. Hence the (mean,
standard deviation) pairs in Figures 1.3 and 1.4 with n = 10* and n = 10°
are, respectively, (46, 14) and (460, 140). Note that the six observed values
in each case are consistent with these pairs.

Historically, the development of the limiting behavior of sup(S,,) played
a key role in the development of the general theory; e.g. see the papers
by Erdos and Kac (1946), Donsker (1951), Prohorov (1956) and Skorohod
(1956). =

Remark 1.3.1. Fized space scaling. In our plots, we have let the plot-
ter automatically determine the units on the vertical axis. Theorems 1.2.1
and 1.2.2 show that there is striking statistical regularity associated with
automatic plotting. However, for comparison, it is often desirable to have
common units. Interestingly, Donsker’s FCLT and the analysis of the range
above shows how to determine appropriate units for the vertical axis for the
centered random walk, before the simulations are run.

First, the CLT and FCLT tell us the range of values for the centered
random walk should be of order \/n as the sample size n grows. The invari-
ance principle tells us that, for suitably large n the scaling should depend
on the random-walk-step distribution only through its variance o2.

The limit for the supremum sup(S,) = n~!/2 maxi<p<p{Sk — mk} tells
us more precisely what fixed space scaling should be appropriate for the
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Figure 1.14: An estimate of the probability density of the range of Brownian
motion over [0, 1], obtained from 10,000 independent samples of random
walks with 10, 000 steps, each step being uniformly distributed in the interval
[0,1].
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plots. Since 2 P(N(0,1) > 4) may be judged suitably small, from (3.1)
we conclude that it should usually be appropriate to let the values on the
vertical axis for a centered random walk fall in the interval [—40+/n, 40/n]
as a function of n and o2. For example, we could use this space scaling to
replot the six random-walk plots in Figure 1.4. Since n = 10% and 0? = 1/12
there, we would let the values on the vertical axies in Figure 1.4 fall in the
interval [—1155,1155]. Notice that the values for the six plots all fall in the

interval [—700,450], so that this fixed space scaling would work in Figure
14. =

To gain a better appreciation of the invariance property, we perform
some more simulations. First, we want to see that the IID conditions are
not necessary.

1.3.2. Relaxing the IID Conditions

To illustrate how the IID conditions can be relaxed, we consider ezpo-
nential smoothing.

Example 1.3.1. Ezxponential smoothing. We now consider a simple exam-
ple of a random walk in which the steps are neither independent nor identi-
cally distributed. We let the steps be constructed by exponential smoothing.
Equivalently, the steps are an autoregressive moving-average (ARMA) pro-
cess of order (1,0); see Section 4.6.

In particular, suppose that we generate uniform random numbers U on
the interval [0, 1], k£ > 1, as before, but we now let the k" step of the random
walk be defined recursively by

Xip=(1—7)Xp1 +9Uk, k>1, (3.3)

where Xy = Uy, where Uy is another uniform random number on [0, 1] and
0 < v < 1. Clearly, the new random variables X are neither independent
nor identically distributed. Moreover, the distribution of Xj is no longer
uniform. It is not difficult to see, though, that as k increases the distribu-
tion of X} approaches a nondegenerate limit. More generally, the sequence
{Xntk : k > 0} is asymptotically stationary as n — oo, but successive
random variables remain dependent.

We now regard the random variables X}, as steps of a random walk; i.e.,
we let the successive positions of the random walk be

Sp=Xi+--+Xg, kE>1, (3.4)
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Figure 1.15: Possible realizations of the first 10/ steps of the uncentered
random walk {Sj : k£ > 0} with steps constructed by exponential smoothing,
asin (3.3), for j =1,...,4.

where Sy = 0. Next we repeat the experiments done before. We display
plots of the uncentered and centered random walks with v = 0.2 for n = 107
with 7 = 1,...,4 in Figures 1.15 and 1.16. To determine the appropriate
centering constant (the steady-state mean of X}), we solve the equation

E[X] = (1 - v)E[X] +~E[U]

to obtain m = E[X] = E[U] = 1/2. Even though the distribution of Xj
changes with k, the mean remains unchanged because of our choice of the
initial condition.

Figures 1.15 and 1.16 look much like Figures 1.1 and 1.2 for the IID
case. However, there is some significant difference for small n because the
successive steps are positively correlated, causing the initial steps to be
alike. However, the plots look like the previous plots for larger n. For the
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Figure 1.16: Possible realizations of the first 107 steps of the centered random
walk {Sy — k/2 : k > 0} with steps constructed by exponential smoothing,
as in (3.3), for j =1,...,4.
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centered random walks in Figure 1.16 with n = 10*, what we see is again
approximately a plot of Brownian motion. =

We can easily construct many other examples of random walks with
dependent steps. For instance, we could consider a random walk in a random
environment. A simple example has a two-state Markov-chain environment
process with transition probabilities Pijo = 1 - P;; = pand P; = 1 —
P,y =qgfor 0 <p < 1land 0 < g < 1. We then let the Eth step X,
have one distribution if the Markov chain is in state 1 at the k' step, and
another distribution if the Markov chain is in state 2 then. We first run the
Markov chain. Then, conditional on the realized states of the Markov chain,
the random variables X; are mutually independent with the appropriate
distributions (depending upon the state of the Markov chain). If we consider
a stationary version of the Markov chain, then the sequence {Xj : k > 1}
is stationary. Regardless of the initial conditions, we again see the same
statistical regularity in the associated partial sums when n is sufficiently
large. We invite the reader to consider such examples.

1.3.3. Different Step Distributions

Now let us return to random walks with IID steps and consider different
possible step distributions. We now repeat the experiments above with
various functions of the uniform random numbers, i.e., for X; = f(Uy),
1 < k < n, for different real-valued functions f. In particular, consider the
following three cases:

(i) Xx = —mlog(l—-Ug) for m=1,10
(i) Xy = UP for p=1/2,3/2
(i) X, = U_'" for p=1/2,3/2. (3.5)

As before, we form partial sums associated with the new summands Xy, just
as in (3.4).

Before actually considering the plots, we observe that what we are doing
covers the general IID case. Given the sequence of IID random variables
{Ug : k > 1}, by the method above we can create an associated sequence
of IID random variables {X} : & > 1} where X} has an arbitrary cdf F.
Letting the left-continuous inverse of F' be

FT()=inf{s: F(s) >t}, 0<t<1,
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we can obtain the desired random variables X with cdf F' by letting
Xy =F(Uy), k>1. (3.6)

Since
FT(s) <t ifandonlyif F(t)>s, (3.7)

we obtain

P(F=(U) <t) = P(U < F(t)) = F(t) ,

where U is a random variable uniformly distributed on [0, 1], which implies
that F<(U) has cdf F for any cdf F when U is uniformly distributed on
[0,1]. For example, we see that X} has an exponential distribution with
mean m in case (i) of (3.5): If F(t) = e /™, then F* (t) = —mlog(1l — t)
and

P(X}, > t) = P(—mlog(1 —Ug) > t) = P(1 —Up < e /™) = ¢ t/m |

Incidentally, we could also work with the right-continuous inverse of F,
defined by

F7't)=inf{s: F(s) >t} = F“(t+), 0<t<]1,
where F< (t+) is the right limit at ¢, because
P(FTH(U) =F(U)) =1,

since F*~ and F~! differ at, at most, countably many points.

Moreover, F* (Ug), k > 1, are IID when Uy, k > 1, are IID. Of course,
there also are other ways to generate IID random variables with specified
distributions, but what we are doing is often a natural way.

So let us plot the uncentered and centered random walks with the step
sizes in (3.5). When we do so for cases (i) and (i7), we see essentially the
same pictures as before. For example, plots of the first 10* steps of the
centered random walks in the four cases in (7) and (4¢) of (3.5) are shown in
Figure 1.17.

Again the plots look like plots of Brownian motion, indistinguishable
from the plots for the uniform steps in Figure 1.3. Note that the units on
the y axis change from plot to plot, but the plots themselves tend to have a
common distribution.
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Figure 1.17: Possible realizations of the first 10* steps of the random walk
{Sr —mk : k > 0} with steps distributed as X}, in cases (i) and (ii) of (3.5).
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Figure 1.18: Possible realizations of the first 10/ steps of the uncentered
random walk {Sy : & > 0} with steps distributed as U, Y7 in case (iii) of
(3.5) forp=3/2and j =1,...,4.

1.4. The Exception Makes the Rule

Just when boredom has begun to set in, after seeing the same thing in
cases (i) and (ii) in (3.5), we should be ready to appreciate the startlingly
different large-n pictures in case (iii). Plots of the uncentered random walks
are plotted in Figures 1.18 and 1.19.

In the case p = 3/2 in Figure 1.18, the plot of the uncentered random
walk is again approaching a line as n — oo, but not as rapidly as before.
(Again we ignore the units on the axes when we look at the plots.) However,
in the case p = 1/2 in Figure 1.19 we something radically different: For large
n, the plots have jumps!
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Figure 1.19: Possible realizations of the first 10/ steps of the uncentered
random walk {Sy : k > 0} with steps distributed as U, YP in case (iii) of
(3.5) forp=1/2and j =1,...,4.
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1.4.1. Explaining the Irregularity

Fortunately, probability theory again provides an explanation for the
irreqularity that we now see: The SLLN states, under the prevailing TID
assumptions, that scaled partial sums n~'S, will approach the mean EX;
w.p.1 as n — 00, regardless of other properties of the probability distribution
of X1, provided that a finite mean exists. Knowing the SLLN, we should
expect to see lines when n = 10* in all experiments except possibly in case
(iii).

We might initially be fooled in case (iii), but we should anticipate occa-
sional large steps because U~ /7 involves dividing by very small values when
U is small. Upon more careful examination, we see that U~'/? has a Pareto
distribution with parameter p, which we refer to as Pareto(p), when U is
uniformly distributed on [0, 1], i.e.,

PU Y >t =PU<tP)=t"P t>1, (4.1)
with mean

E(U—l/P):/ P(U_l/p>t)dt:1+/ t7Pdt (4.2)
0 1

which is finite, and equal to 1 + (p — 1), if and only if p > 1; see Chapter
19 of Johnson and Kotz (1970) for background on the Pareto distribution
and Lemma 1 on p. 150 of Feller (1971) for the integral representation of
the mean.

Thus the SLLN tells us not to expect the same behavior observed in the
previous experiments in case (iii) when p < 1. Thus, unlike all previous
random walks considered, the conditions of the SLLN are not satisfied in
case (iii) with p = 1/2.

Now let us consider the random walk with Pareto(p) steps for p = 3/2
in (3.5) (iii). Consistent with the SLLN, Figure 1.18 shows that the plots
are approaching a straight line as n — oo in this case. But what happens
when we center?

1.4.2. The Centered Random Walk with p = 3/2

So now let us consider the centered random walk in case (iii) with p =
3/2. (Since the mean is infinite when p = 1/2, we cannot center when
p =1/2. We will return to the case p = 1/2 later.) We center by subtracting
the mean, which in the case p = 3/2is 1+(p—1) ! = 3. Plots of the centered
random walk with p = 3/2 for n = 10/ with j = 1,2, 3,4 are shown in Figure
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Figure 1.20: Possible realizations of the first 10/ steps of the centered random
walk {S; — 3k : k > 0} associated with the Pareto steps U,;l/p for p = 3/2,
having mean 3 and infinite variance, for the cases j =1,...,4.

1.20. As before, the centering causes the plotter to automatically blow up
the picture. However, now the slight departures from linearity for large n
in Figure 1.18 are magnified. Now, just as in Figure 1.19, we see jumps in
the plot!

Once again, probability theory offers an explanation. Just as the SLLN
ceases to apply when the IID summands have infinite mean, so does the
(classical) CLT cease to apply when the IID summands have finite mean
but infinite variance. Such a case occurs with the Pareto(p) summands in
case (iii) in (3.5) when 1 < p < 2. Thus, consistent with what we see
in Figure 1.18, the SLLN holds, but the CLT does not, for the Pareto(p)
random variable U~ /7 in case (iii) when p = 3/2.

We have arrived at another critical point, where an important intellectual
step is needed. We need to recognize that, even though the sample paths are



1.4. THE EXCEPTION MAKES THE RULE 49

very different from the previous random-walk plots, which are approaching
plots of Brownian motion, there may still be important statistical reqularity
in the new plots with jumps.

To see the statistical regularity, we need to repeat the experiment and
consider larger values of n. Even though the plots look quite different from
the previous random-walk plots, we can see statistical regularity in the plots
(again ignoring the units on the axes). To confirm that observation, six
possible realizations for p = 3/2 in the cases n = 10* and n = 10° are shown
in Figures 1.21 and 1.22. Figures 1.21 and 1.22 show more irregular paths,
but with their own distinct character, much like handwriting. (We might
contemplate the probability of the path writing a word. With a suitable font
for the script, we might see “Null” but not “Set”.) Again, Figures 1.21 and
1.22 show that there is statistical regularity associated with the irregularity
we see. The plots are independent of n for all n sufficiently large. Again we
see self-similarity in the plots.

Even though the irregular paths in Figures 1.19 — 1.22 have jumps, as
before we can look for statistical regularity through the distribution of these
random paths. Again, to be able to see something, we can focus on the final
positions. Focusing first on the case with p = 3/2, we plot the estimated
density of the centered sums S,, — 3n for n = 1,000. Once again, we obtain
the density estimate by performing independent replications of the experi-
ment. To have more data this time, we use 10,000 independent replications.
We display the resulting density estimate in Figure 1.23.

When we look at the estimated density of the final position, we see that
it is radically different from the previous density plots in Figures 1.5 and
1.7. Clearly, the final position is no longer normally distributed!

Nevertheless, there is statistical regularity. As before, when we repeat
the experiment with different random number seeds, we obtain essentially
the same result for all sufficiently large n. Examination shows that there is
statistical regularity, just as before, but the approximating distribution of
the final position is now different. In Figure 1.23, the peak of the density
looks like a spike because the range of values is now much greater. In turn,
the range of values is greater because the distribution of S, —3n has a heavy
tail.

The heavier tails are more clearly revealed when we plot the tail of the
empirical cdf of the observed values. (By the tail of a cdf F', we mean the
complementary cdf or ccdf, defined by F¢(t) =1 — F(t).)

To focus on the tail of the cdf F', we plot the tail of the empirical cdf
in log — log scale in Figure 1.18; i.e., we plot log F°(t) versus log t. To use
log — log scale, we consider only those values greater than 1, of which there
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Figure 1.21: Six independent realizations of the first 10% steps of the centered

random walk {Sy — 3k : £ > 0} associated with the Pareto steps U,;l/p for
p = 3/2, having mean 3 and infinite variance.
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Figure 1.22: Six independent realizations of the first 10° steps of the centered
random walk {Sy — 3k : £ > 0} associated with the Pareto steps U,;l/p for
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52 CHAPTER 1. EXPERIENCING STATISTICAL REGULARITY

density estimate

0.00015
L

0.00010
L

density

0.00005
L

T T
0 50000 100000 150000

values

Figure 1.23: The density estimate obtained from 10,000 independent sam-
ples of the final position of the centered random walk (i.e., the centered

partial sum S19p9 —3000) associated with the Pareto steps U,;l/p for p = 3/2.
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Figure 1.24: The tail of the empirical distribution function in log — log
scale obtained from 10,000 independent samples of the final position of the
centered random walk (i.e., the partial sum Sjgp0 — 3000) associated with
the Pareto steps U, P for p = 3/2 corresponding to the density in Figure
1.23. The results are based on the 3,121 values greater than 1.

were 3,121 when n = 10%.
From Figure 1.24, we see that for larger values of the argument ¢, the

empirical ccdf has a linear slope in log — log scale. That indicates a power
tail. Indeed, if the ccdf is of the form

F(t)=at™ for t>t5>1, (4.3)

then
log F°(t) = —flogt + log « (4.4)

for ¢t > to. Then the paremeters o and (3 in (4.3) can be seen as the intercept
and slope in the log — log plot.
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Again there is supporting theory: A generalization of the CLT implies,
under the ITD assumptions and other regularity conditions (satisfied here),
that properly scaled versions of the centered partial sums of Pareto(p)
random steps converge in distribution, as in (2.7). In particular, when
1<p<2,

n~ P8, —mn) =L in R, (4.5)

where m = 1+ (p — 1) ! is the mean and the limiting random variable L
has a non-Gaussian stable law (depending upon p); e.g., see Chapter XVII
of /Feller (1971). In our specific case of p = 3/2, we have space scaling by
n?/3,

Unlike the Pareto distribution, the limiting stable law is not a pure
power, but it has a power tail; i.e., it is asymptotically equivalent to a
power: for 1 < p < 2,

P(L>t)~ct™? as t— o (4.6)

for some positive constant ¢, where f(t) ~ g(t) as t — oo means that f
is asymptotically equivalent to g, i.e., f(t)/g(t) =1 as t — oo. Thus the
tail of the limiting stable law has the same asymptotic decay rate as the
Pareto distribution of a single step.

Unlike the standard CLT in (2.4), the space scaling in (4.5) involves
cn = nt/? for 1 < p < 2 instead of ¢, = n'/2. Nevertheless, the generalized
CLT shows that there is again remarkable statistical regularity in the cen-
tered partial sums when the mean is finite and the variance is infinite. We
again obtain essentially the same probability distribution for all n. We also
obtain essentially the same probability distribution for other nonnegative
step distributions, provided that they are centered by subtracting the finite
mean, and that the step-size ccdf F¢(t) has the same asymptotic tail; i.e.,
we require that

Fe(t) ~ct™ as t— o0 (4.7)

for some positive constant c.

As before, there is also an associated stochastic-process limit. A gen-
eralization of Donsker’s theorem (the FCLT) implies that the sequence of
scaled random walks with Pareto(p) steps having 1 < p < 2 converges in
distribution to a stable Lévy motion as n — oo in D. Now

S,=S in D, (4.8)

where

Su(t) =n VP(S|y —mlnt]), 0<t<1, (4.9)
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for n > 1, m is the mean and S is a stable Lévy motion. That is, the
stochastic-process limit (2.3) holds for S, in (2.2), but now with ¢, = n!/?
and the limit process S being stable Lévy motion instead of Brownian mo-
tion. Moreover, a variant of the previous invariance property holds here as
well. For nonnegative random variables (the step sizes) satisfying (4.7), the
limit process depends on its distribution only through the decay rate p and
the single parameter ¢ appearing in (4.7). We discuss this FCLT further in
Chapter 4.

Since the random walk steps are IID, it is evident that the limiting
stable Lévy motion must have stationary and independent increments, just
like Brownian motion. However, the marginal distributions in R or R¥ are
non-normal stable laws instead of the normal laws. Moreover, the stable
Lévy motion has the self-similarity property, just like Brownian motion, but
now with a different scaling. Now, for any ¢ > 0, the stochastic process
{c/PS(ct) : 0 < t < 1} has a probability law on D, and thus finite-
dimensional distributions, that are independent of c¢. Indeed, the proof is
just like the proof for Brownian motion in (2.18).

It is significant that the space scaling to achieve statistical regularity is
different now. In (4.9) above, we divide by n!'/? for 1 < p < 2 instead of by
n'/2. Similarly, in the self-similarity of the stable Lévy motion, we multiply
by ¢ /7 instead of ¢ /2. The new scaling can be confirmed by looking at
the values on the y-axis in the plots of Figures 1.20-1.22.

Figures 1.20-1.22 show that, unlike Brownian motion, stable Lévy mo-
tion must have discontinuous sample paths. Hence, we have a stochastic-
process limit in which the limit process has jumps. The desire to consider
such stochastic-process limits is a primary reason for this book.

1.4.3. Back to the Uncentered Random Walk with p = 1/2

Now let us return to the first Pareto(p) example with p = 1/2. The plots
in Figure 1.19 are so irregular that we might not suspect that there is any
statistical regularity there. However, after seeing the statistical regularity in
the case p = 3/2, we might well think about reconsidering the case p = 1/2.

As before, we investigate by making some more plots. We have noted
that we cannot center because the mean is ininite. So let us make more
plots of the uncentered random walk with p = 1/2. Thus, in Figure 1.25
we plot six independent realizations of the uncentered random walk with
10* Pareto(0.5) steps. Now, even though these plots are highly irregular,
with a single jump sometimes dominating the entire plot, we see remarkable
statistical regularity.
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Figure 1.25: Six independent possible realizations of the first 10* steps of
the uncentered random walk {Sj : & > 0} with steps distributed as U, L
in case (iii) of (3.5) for p = 1/2.
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Figure 1.26: Six independent possible realizations of the first 10° steps of
the uncentered random walk {Sy : & > 0} with steps distributed as U, Y
in case (iii) of (3.5) for p = 1/2.

Paralleling Figures 1.4 and 1.22, we confirm what we see in Figure 1.25
by plotting six independent samples of the uncentered random walk in case
(iii) with p = 1/2 for n = 10° in Figure 1.26. Even though the plots of
the uncentered random walks with Pareto(0.5) steps in Figures 1.19 — 1.26
are radically different from the previous plots of centered and uncentered
random walks, we see remarkable statistical regularity in the new plots. As
before, the plots tend to be independent of n for all n sufficiently large,
provided we ignore the units on the axes. Thus we see self-similarity, just
as in the plots of the centered random walks before. From the random-walk
plots, we see that statistical reqularity can occur in many different forms.

Given what we have just done, it is natural to again look for statistical
regularity in the final positions. Thus we consider the final positions S,
(without centering) for n = 1000 and perform 10,000 independent replica-
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Figure 1.27: A density estimate obtained from 10,000 independent samples
of the final position of the uncentered random walk (i.e., the partial sum

S1000) associated with the Pareto steps U,;l/p in the case p = 1/2.

tions. Paralleling Figures 1.23 and 1.24 above, an estimate of the probability
density and the tail of the empirical cdf are plotted in Figures 1.27 and 1.28
below.

Figures 1.27 and 1.28 are quite similar to Figures 1.23 and 1.24, but now
the distribution has an even heavier tail. Again there is supporting theory:
A generalization of the CLT states, under the IID assumptions and other
regularity conditions (satisfied here), that for 0 < p < 1 there is convergence
in distribution of the uncentered partial sums to a non-Gaussian stable law
if the partial sums are scaled appropriately, which requires that ¢, = nl/p.
In particular, now with p = 1/2,

n PSS, =L in R, (4.10)

where the limiting random variable again has a a non-Gaussian stable law,
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Figure 1.28: The tail of the empirical cumulative distribution function in
log—log scale obtained from 10, 000 independent samples of the final position

of the uncentered random walk (i.e., the partial sum Sjgg9) associated with

the Pareto steps U, P for p = 1/2 corresponding to the density in Figure

1.27.
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which has an asymptotic power tail, i.e.,
P(L>t)~ct? as t— o0 (4.11)

for p = 1/2 and some positive constant ¢; again see Chapter XVII of Feller
(1971). As before, the tail of the stable law has the same asymptotic decay
rate as a single step of the random walk.

Moreover, there again is an associated stochastic-process limit. Another
generalization of Donsker’s FCLT implies that there is the stochastic-process
limit (4.8), where

Su(t) =n"'PS ., 0<t<1, (4.12)

for n > 1, with the limit process S being another stable Lévy motion de-
pending upon p.

Again there is an invariance property: Paralleling (4.7), we require that
the random-walk step ccdf F¢ satisfy

Fe(t)~ct™? as t— oo, (4.13)

where p = 1/2 and c is some positive constant. Any random walk with
nonnegative (IID) steps having a ccdf satisfying (4.13) will satisfy the same
FCLT, with the limit process depending on the step-size distribution only
through the decay rate p = 1/2 and the constant ¢ in (4.13).

As before, the plotter automatically does the proper scaling. However,
the space scaling is different from both the previous two cases, now requiring
division by n!/? for p = 1 /2. Again, we can verify that the space scaling
by n'/? is appropriate by looking at the values in the plots in Figures 1.19—
1.26. Just as before, the stochastic-process limit in D implies that the limit
process must be self-similar. Now, for any ¢ > 0, the stochastic processes
{c /P8 (ct) : 0 <t < 1} have probability laws in D that are independent of
c.

Figures 1.19 and 1.25 show that the limiting stable Lévy motion for the
case p = 1/2 must also have discontinuous sample paths. So we have yet
another stochastic-process limit in which the limit process has jumps.

1.5. Summary

To summarize, in this chapter we have seen that there is remarkable
statistical regularity associated with random walks as the number n of steps
increases. That statistical regularity is directly revealed when we plot the
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random walks. In great generality, as a consequence of Donsker’s theorem,
properly scaled versions of the centered random walks converge in distribu-
tion to Brownian motion as n increases. As a consequence, the random-walk
plots converge to plots of standard Brownian motion.

The great generality of that result may make us forget that there are con-
ditions for convergence to Brownian motion to hold. Through the exponential-
smoothing example, we have seen that the conclusions of the classical limit
theorems often still hold when the IID conditions are relaxed, but again
there are limitations on the amount of dependence that can be allowed.
That is easy to see by considering the extreme case in which all the steps
are identicall Clearly, then the SLLN and the CLT break down. The clas-
sical limit theorems tend to remain valid when independence is replaced by
weak dependence, but it is difficult to characterize the boundary exactly. We
discuss FCLT's for weakly dependent sequences further in Chapter 4.

We also have seen for the case of IID steps that there are important
situations in which the conditions of the FSLLN and Donsker’s FCLT do
not hold. We have seen that these fundamental theorems are not valid in
the IID case when the step-size distribution has infinite mean (the FSLLN)
or variance (the FCLT). Nevertheless, there often is remarkable statistical
regularity associated with these heavy-tailed cases, but the limit process
in the stochastic-process limit becomes a stable Lévy motion, which has
jumps, i.e., it has discontinuous sample paths. We have thus seen examples
of stochastic-process limits in which the limit process has jumps. We discuss
such FCLTs further in Chapter 4.

If we allow greater dependence, which may well be appropriate in ap-
plications, then many more limit processes are possible, some of which will
again have discontinuous sample paths. Again, see Chapter 4.
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Chapter 2

Random Walks
in Applications

The random walks we have considered in Chapter 1 are easy to think
about, because they have a relatively simple structure. However, the random
walks are abstract, so that they may seem disconnected from reality. But
that is not so!

Even though the random walks are abstract, they play a fundamental
role in many applications. Many stochastic processes in applied probability
models are very closely related to random walks. Indeed, we are able to
obtain many stochastic-process limits for stochastic processes of interest in
applied probability models directly from established probability limits for
random walks, using the continuous-mapping approach.

To elaborate on this important point, we now give three examples of
stochastic processes closely related to random walks. The examples involve
stock prices, the Kolmogorov-Smirnov test statistic and a queueing model
for a buffer in a switch. In the final section we discuss the engineering
significance of the queueing model and the (heavy-traffic) stochastic-process
limits.

2.1. Stock Prices

In some applications, random walks apply very directly. A good example is
finance, which often can be regarded as yet another game of chance; see A
Random Walk Down Wall Street by Malkiel (1996).

Indeed, we might model the price of a stock over time as a random walk;
i.e., the position S;, can be the price in time period n. However, it is common

63
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to consider a refinement of the direct random-walk model, because the mag-
nitude of any change is usually considered to be approximately proportional
to the price.

A popular alternative model that captures that property is obtained by
letting the price in period n be the product of the price in period n — 1 and
a random multiplier Y,; i.e., if Z, is the price in period n, then we have

i = Zip_1Yn, n>1. (1.1)
That in turn implies that
Zn=2y(Y1 x---xY,), n>1. (1.2)

Just as for random walks, for tractability we often assume that the suc-
cessive random multipliers Y;, : n > 1, are IID. Hence, if we take logarithms,
then we obtain

log(Zy) = log(Zy) + Sp, n >0,

where {S, : n > 0} is a random walk, defined as in (3.4), with steps
X, =1log(Yy), n > 1 that are [ID. With this multiplicative framework, the
logarithms of successive prices constitute an initial position plus a random
walk. Approximations for random walks thus produce direct approximations
for the logarithms of the prices.

It is natural to consider limits for the stock prices, in which the duration
of the discrete time periods decreases in the limit, so that we can obtain
convergence of the sequence of discrete-time price processes to a continuous-
time limit, representing the evolution of the stock price in continuous time.
To do so, we need to change the random multipliers as we change n. We
thus define a sequence of price models indexed by n. We let Z! and Y}
denote the price and multiplier, respectively, in period k in model n. For
each n, we assume that the sequence of multipliers {Y,* : k& > 1} is IID.
Since the periods are shrinking as n — oo, we want ¥, — 1 as n — oo.
The general idea is to have

Ellog(Y;")] = m/n and Varllog(Y")] = o?/n .

We let the initial price be independent of n; i.e., we let Z] = Z; for all n.
Thus, we incorporate the scaling within the partial sums for each n. We
make further assumptions so that

Sn(t) = S,y = oB(t) +mt as n— o0 (1.3)
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for each t > 0, where B is standard Brownian motion. Given (1.3), we
obtain

l0g(Zn(t)) = log(Z[},y) = log(Zo) + S|,y = log(Zo) + oB(t) +mt ,

so that
Zy(t) = Zfyy = L(t) = Zoeaxp(oB(t) + mt) ; (1.4)

i.e., the price process converges in distribution as n — oo to the stochastic
process {Z(t) : t > 0}, which is called geometric Brownian motion.

Geometric Brownian motion tends to inherit the tractability of Brownian
motion. Since the moment generating function of a standard normal random
variable is

() = Elezp(6N(0,1))] = eap(6?/2) ,

the k" moment of geometric Brownian motion for any k& can be expressed
explicitly as

E[Z(t)*] = E[(Zy)F|exp(kmt + k*t262)2) . (1.5)

See Section 10.4 of Ross (1993) for an introduction to the application of
geometric Brownian motion to finance, including a derivation of the Black-
Scholes option pricing formula.

The analysis so far is based on the assumption that the random-walk
steps X' = log(Y}") are IID with finite mean and variance. However, even
though the steps must be finite, the volatility of the stock market has led
people to consider alternative models. If we drop the finite-mean or finite-
variance assumption, then we can still obtain a suitable continuous-time ap-
proximation, but it is likely to be a geometric stable Lévy motion (obtained
by replacing the Brownian motion by a stable Lévy motion in the exponen-
tial representation in (1.4)). Even other limits are possible when the steps
come from a double sequence {{X} : £ > 1} : n > 1}. When we con-
sider models for volatile prices, we should be ready to see stochastic-process
limits with jumps. For further discussion, see Embrechts, Kliippelberg and
Mikosch (1997), especially Section 7.6.

In addition to illustrating how random walks can be applied, this example
illustrates that we sometimes need to consider double sequences of random
variables, such as {{X}’ : £ > 1} : n > 1}, in order to obtain the stochastic-
process limit we want.
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2.2. The Kolmogorov-Smirnov Statistic

For our second random-walk application, let us return to the empirical
cdf’s considered in Example 1.1.1 in Section 1.1.3. What we want to see
now is a stochastic-process limit for the difference between the empirical cdf
and the underlying cdf, explaining the statistical regularity we saw in Figure
1.8. The appropriate limit process is the Brownian bridge By, which is just
Brownian motion B over the interval [0, 1] conditioned to be 0 at the right
endpoint ¢ = 1.

Recall that the applied goal is to develop a statistical test to determine
whether or not data from an unknown source can be regarded as an inde-
pendent sample from a candidate cdf F'. The idea is to base the test on
the “difference” between the candidate cdf and the empirical cdf. We de-
termine whether or not the observed difference is significantly greater than
the difference for an independent sample from the candidate cdf F' is likely
to be. The problem, then, is to characterize the probability distribution of
the difference between a cdf and the associated empirical cdf obtained from
an independent sample. Interestingly, even here, random walks can play an
important role.

Hence, let F' be an arbitrary continuous candidate cdf and let Fj, be the
associated empirical cdf based on an independent sample of size n from F.
A convenient test statistic, called the Kolmogorov-Smirnov statistic, can be
based on the limit

DnE\/ﬁilelﬂlgﬂFn(t)_F(t”}:>3“p(|B0 ) as n—o0, (2.1)

where By is the Brownian bridge, which can be represented as

Bo(t) = B(t) — tB(l), 0<t<1, (2.2)

sup(| Bo |) = sup {| Bo(t) [}
0<it<1

and -
P(sup(| By |) > ) =23 (-1 e " 550, (2.3)

k=1
Notice that the limit in (2.1) is independent of the cdf F' (assuming only
that the cdf F' is continuous). The candidate cdf F' could be the uniform cdf

in Example 1.1.1, a normal cdf, a Pareto cdf or a stable cdf. In particular,
the limit process here is unaffected by the cdf F’ having a heavy tail.
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In practice, we would compute the Kolmogorov-Smirnov statistic D,, in
(2.1) for the empirical cdf associated with the data from the unknown source
and the candidate cdf F. We then compute, using (2.3), the approximate
probability of observing a value as large or larger than the observed value of
the Kolmogorov-Smirnov statistic, under the assumption that the empirical
cdf does in fact come from an independent sample from F'. If that probability
is very small, then we would reject the hypothesis that the data come from
an independent sample from F.

As usual, good judgement is needed in the interpretation of the statistical
analysis. When the sample size n is not large, we might be unable to reject
the hypothesis that the data is an independent sample from a cdf F for
more than one candidate cdf . On the other hand, with genuine data (not
a simulation directly from the cdf F'), for any candidate cdf F', we are likely
to be able to reject the hypothesis that the data is an independent sample
from F' for all n sufficiently large. Our concern here, though, is to justify
the limit (2.1).

So, how do random walks enter in? Random walks appear in two ways.
First, the empirical cdf F),(¢) as a function of n itself is a minor modification
of a random walk. In particular,

nFn(t) =Y I_ooy(Xk)
k=1

where I4(z) is the indicator function of the set A, with I4(z) =1ifz € A
and I4(xz) = 0 otherwise. Thus, for each t, nF,(¢) is the sum of the n IID
Bernoulli random variables [(_, j(Xk), 1 < k < n, and is thus a random
walk.

Note that the Bernoulli random variable I(_, 4(X}) has mean F(t) and
variance F'(t)F¢(t). Hence we can apply the SLLN and the CLT to deduce
that

F,(t) = F(t) w.pl as n— oo

and
Vn(E,(t) — F(t)) = N(0,F(t)F°(t)) in R as n— oo (2.4)

for each ¢ € R. Note that we have to multiply the difference by /n in
(2.4) in order to get a nondegenerate limit. That explains the multiplicative
factor /n in (2.1).

Paralleling the way we obtained stochastic-process limits for random
walks in Section 1.2, we can go from the limit in (2.4) to the limit in (2.1)
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by extending the limit in (2.4) to a stochastic-process limit in the function
space D. We can establish the desired stochastic-process limit in D in two
steps: first, by reducing the case of a general continuous cdf F' to the case
of the uniform cdf (i.e., the cdf of the uniform distribution on [0,1]) and,
second, by treating the case of the uniform cdf. Random walks can play a
key role in the second step.

To carry out the first step, we show that the distribution of D,, in (2.1) is
independent of the continuous cdf F'. For that purpose, let Uy, 1 < k < n, be
uniform random variables (on [0, 1]) and let G;, be the associated empirical
cdf. Recall from equation (3.7) in Section 1.3.3 that

FT(Uy) <t ifandonlyif Uy < F(t),
so that F*< (Uy) 4 Xk, 1 <k <n,and

(Go(F(t) : teRY L (F,(t) : t € R} .

Hence,
Dy, = vasup{|F,(t) — F()[} £ vsup{|Gu(F (1) — F(t)]} .
teR teR

Moreover, since F' is a continuous cdf, F' maps R into the interval (0, 1)
plus possibly {0} and {1}. Since P(U =0) = P(U = 1) = 0 for a uniform
random variable U, we have

D, £ /i sup {|Ga(t) — 1]}, (2.5)
0<t<1

which of course is the special case for a uniform cdf.

Now we turn to the second step, carrying out the analysis for the special
case of a uniform cdf, i.e., starting from (2.5). To make a connection to
random walks, we exploit a well known property of Poisson processes. We
start by focusing on the uniform order statistics: Let U,gn) be the k™ order
statistic associated with n IID uniform random variables; i.e., U,En) is the k"
smallest of the uniform random numbers. It is not difficult to see that the
supremum in the expression for D,, in (2.5) must occur at one of the jumps
in G,, (either the left or right limit) and these jumps occur at the random

times U,En). Since each jump of Dy, in (2.5) has magnitude 1/y/n,

| Do = Vaax {| U = K/n D) | < 1/v (2.6)
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Now we can make the desired connection to random walks: It turns out
that .
@™, UMY L (S1/Sni1, -, Sn/Sns1) s (2.7)

where
SkEXl—l----—i-Xk, ISkS’I’L-l-l,

with X, 1 <k <n+1, being IID exponential random variables with mean 1.
To justify relation (2.7), consider a Poisson process and let the £ point be
located at Sy (Which makes the intervals between points IID exponential
random variables). It is well known, and easy to verify, that the first n
points of the Poisson process are distributed in the interval (0, S, +1) as the
n uniform order statistics over the interval (0, S,11); e.g., see p. 223 of Ross
(1993). When we divide by S,,+1 we obtain the uniform order statistics over
the interval (0,1), just as in the left side of (2.7).

With the connection to random walks established, we can apply Donsker’s
FCLT for the random walk { S : £ > 0} to establish the limit (2.1). In rough
outline, here is the argument:

Dy 2 v/ max {1 (S1/Su1) = (k/n) [}
~ (/1) max {| (S = )V = (6/n)(Swr =)V} (28)

Since n/Sp+1 — 1 as n — oo and (Sp+1 — Sp)/v/n — 0 as n — oo,
we have

Dy sup {] (Siu) — [nt)/v/m - (Int)/n)(Su —m)/Va [} . (29)

0<t<1
To make the rough argument rigorous, and obtain (2.9), we repeatedly apply
an important tool — the convergence-together theorem — which states that
X, = X whenever Y,, = X and d(X,,Y,) = 0, where d is an appropriate

distance on the function space D; see Theorem 11.4.7.
Since the functions ¢, : D — D and 12 : D — R, defined by

P (z)(t) = z(t) —ta(l), 0<t<1, (2.10)
and
Pa(z) = Oiggl{lx(t)l} (2.11)

are continuous, from (2.9) we obtain the desired limit

D, = sup {|B(t) — tB(1)]} . (2.12)
0<t<1
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Finally, it is possible to show that relations (2.2) and (2.3) hold.

The argument here follows Breiman (1968, pp. 283-290). Details can be
found there, in Karlin and Taylor (1980, p. 343) or in Billingsley (1968, pp.
64, 83, 103, 141). See Pollard (1984) and Shorack and Wellner (1986) for
further development. See Borodin and Salminen (1996) for more properties
of Brownian motion.

Historically, the derivation of the limit in (2.1) is important because
it provided a major impetus for the development of the general theory of
stochastic-process limits; see the papers by Doob (1949) and Donsker (1951,
1952), and subsequent books such as Billingsley (1968).

2.3. A Queueing Model for a Buffer in a Switch

Another important application of random walks is to queueing models. We
will be exploiting the connection between random walks and queueing mod-
els throughout the queueing chapters. We only try to convey the main idea
now.

To illustrate the connection between random walks and queues, we con-
sider a discrete-time queueing model of data in a buffer of a switch or router
in a packet communication network.

Let Wy represent the workload (or buffer content, which may be mea-
sured in bits) at the end of period k. During period k there is a random
input V; and a deterministic constant output p (corresponding to the avail-
able bandwidth) provided that there is content to process or transmit. We
assume that the successive inputs Vi are IID, although that is not strictly
necessary to obtain the stochastic-process limits.

More formally, we assume that the successive workloads can be defined
recursively by

Wi = min{ K, max{0, W1+ Vy, —p}}, k>1, (3.1)

where the initial workload is Wy and the buffer capacity is K. The mazimum
appears in (3.1) because the workload is never allowed to become negative;
the output (up to u) occurs only when there is content to emit. The min-
imum appears in (3.1) because the workload is not allowed to exceed the
capacity K at the end of any period; we assume that input that would make
the workload exceed K at the end of the period is lost.

The workload process {Wy : k > 1} specified by the recursion (3.1) is
quite elementary. Since the inputs Vj are assumed to be 11D, the stochastic
process {W;} is a discrete-time Markov process. If, in addition, we assume
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that the inputs Vj, take values in a discrete set {ck : k > 0} for some constant
¢ (which is not a practical restriction), we can regard the stochastic process
{Wy} as a discrete-time Markov chain (DTMC). Since the state space of the
DTMC {W} is one-dimensional, the finite state space will usually not be
prohibitively large. Thus, it is straightforward to exploit numerical methods
for DTMC’s, as in Kemeny and Snell (1960) and Stewart (1994), to describe
the behavior of the workload process.

Nevertheless, we are interested in establishing stochastic-process limits
for the workload process. In the present context, we are interested in seeing
how the distribution of the inputs Vj affects the workload process. We
can use heavy-traffic stochastic-process limit to produce simple formulas
describing the performance. (We start giving the details in Chapter 5.)
Those simple formulas provide insight that can be gained only with difficulty
from a numerical algorithm for Markov chains.

We also are interested in the heavy-traffic stochastic-process limits to
illustrate what can be done more generally. The heavy-traffic stochastic-
process limits can be established for more complicated models, for which
exact performance analysis is difficult, if not impossible. Since the heavy-
traffic stochastic-process limits strip away unessential details, they reveal
the key features determining the performance of the queueing system.

Now we want to see the statistical regularity associated with the work-
load process for large n. We could just plot the workload process for various
candidate input processes {Vj : k > 1} and parameters K and u. However,
the situation here is more complicated than for the the random walks we
considered previously. We can simply plot the workload process and let the
plotter automatically do the scaling for us, but it is not possible to auto-
matically see the desired statistical regularity. For the queueing model, we
need to do some analysis to determine how to do the proper scaling in order
to achieve the desired statistical regularity. (That is worth verifying.)

2.3.1. Deriving the Proper Scaling

It turns out that stochastic-process limits for the workload process are
intimately related to stochastic-process limits for the random walk {Sj : k >
0} with steps

Xp=Ve—n,
but notice that in general this random walk is not centered. The random

walk is only centered in the special case in which the input rate E[V] ex-
actly matches the potential output rate ;. However, to have a well-behaved
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system, we want the long-run potential output rate to exceed the long-run
input rate.

In queueing applications we often characterize the system load by the
traffic intensity, which is the rate in divided by the potential rate out. Here
the traffic intensity is

p=EVi/p.

With an infinite-capacity buffer, we need p < 1 in order for the system to
be stable (not blow up in the limit as t — 00).

We are able to obtain stochastic-process limits for the workload process
by applying the continuous-mapping approach, starting from stochastic-
process limits for the centered version of the random walk {S; : k& > 0}.
However, to do so when E X}, # 0, we need to consider a sequence of models
indexed by n to achieve the appropriate scaling. In the n'" model, we let
Xp k. be the random-walk step Xj, and we let EX,, , — 0 as n. — oo.

There is considerable freedom in the construction of a sequence of mod-
els, but from an applied perspective, it suffices to do something simple: We
can keep a fixed input process {Vj : k& > 1}, but we need to make the out-
put rate 4 and the buffer capacity K depend upon n. Let W)' denote the
workload at the end of period £k in model n. Following this plan, for model
n the recursion (3.1) becomes

Wi = min{K,, maz{0, W' { + Vi —pun}}, k>1, (3.2)

where K, and pu, are the buffer capacity and constant potential one-period
output in model n, respectively.

The problem now is to choose the sequences {K, : n > 1} and {p, : n >
1} so that we obtain a nondegenerate limit for an appropriately scaled ver-
sion of the workload processes {W}' : k > 0}. If we choose these sequence of
constants appropriately, then the plotter can do the scaling of the workload
processes automatically.

Let Sy =Vi+---+ Vi for k > 1 with §§ = 0. The starting point is a
FCLT for the random walk {S} : k£ > 0}. Suppose that the mean E[V}] is
finite, and let it equal m,. Then the natural FCLT takes the form

Sy =S8 in D as n—oo, (3.3)

where
Sn(t) =n~"(S),, —mlnt]), 0<t<1, (3.4)

the exponent H in the space scaling is a constant satisfying 0 < H < 1 and
S is the limit process. The common case has H = 1/2 and SV = 0B, where



2.3. A QUEUEING MODEL FOR A BUFFER IN A SWITCH 73

B is standard Brownian motion. However, as seen for the random walks, if
Vi has infinite variance, then we have 1/2 < H < 1 and the limit process
SY is a stable Lévy motion (which has discontinuous sample paths). We
elaborate on the case with 1/2 < H < 1 in Section 4.5.

It turns out that a scaled version of the workload process {W}' : k > 0}
can be represented directly as the image of a two-sided reflection map applied
to a scaled version of the uncentered random walk {S}! : & > 1} with steps
Vi — pin- In particular,

W, = ¢x(S,) forall n>1, (3.5)
where

Wa(t) =n "W, 0<t<1, (3.6)

Su(t) =n~"ST,,, 0<t<1, (3.7)

and ¢x : D — D is the two-sided reflection map.

In fact, it is a challenge to even define the two-sided reflection map,
which we may think of as serving as the continuous-time analog of (3.1)
or (3.2); that is done in Sections 5.2 and 14.8; alternatively, see p. 22 of
Harrison (1985). Consistent with intuition, it turns out that the two-sided
reflection map ¢x is continuous on the function space D with appropriate
definitions, so that we can apply the continuous-mapping approach with a
limit for S,, in (3.7) to establish the desired limit for W,,. But now we just
want to determine how to do the plotting.

The next step is to relate the assumed limit for S} to the required limit
for S,,. For that purpose, note from (3.4) and (3.7) that

Sn(t) = Sp(t) —n ™ (uy —my)[nt] .
Hence we have the stochastic-process limit
S, =S as n— oo, (3.8)

where

S(t)=S"(t) —mt, 0<t<1, (3.9)

if and only if

n " (pn —my)|nt] > mt as n— oo

for each t > 0 or, equivalently,

1

(pon —my)nt - m as n— 0. (3.10)
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In addition, because of the space scaling by n'’ in S,,, we need to let
K,=n""K . (3.11)
Given the scaling in both (3.10) and (3.11), we are able to obtain the FCLT
W, =W = ¢g(S) , (3.12)

where W, is given in (3.6), S is given in (3.9) and ¢k is the two-sided
reflection map.

The upshot is that we obtain the desired stochastic-process limit for
the workload process, and the plotter can automatically do the appropriate
scaling, if we let

U = My + m/nl_H and K,=n"K (3.13)

for any fixed m with 0 < m < oo and K with 0 < K < oo, where H with
0 < H < 1 is the scaling exponent appearing in (3.4).

At this point, it is appropriate to pause and reflect upon the significance
of the scaling in (3.13). First note that time scaling by n (replacing ¢ by
nt) and space scaling by nl (dividing by nf!) is determined by the FCLT
in (3.3). Then the output rate and buffer size should satisfy (3.13). Note
that the actual buffer capacity K, in system n must increase, indeed go to
infinity, as n increases. Also note that the output rate u, approaches m,,
as n increases, so that the traffic intensity p, approaches 1 as n increases.

Specifically,
_EW] _ My _ —(1—H) —(1—H)
Pn = PRz =1—(m/my)n +o(n )

as nm — oo.

The obvious application of the stochastic-process limit in (3.12) is to
generate approximations. The direct application of (3.12) is

{nil/aw&” it > 0} ~ {W(t) it > 0} , (3.14)

where here = means approzimately equal to in distribution. Equivalently, by
unscaling, we obtain the associated approximation (in distribution)

WPk >0}~ {n'/*W(k/n) : k >0} . (3.15)

Approximations such as (3.15), which are obtained directly from stochastic-
process limits, may afterwards be refined by making modifications to meet
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other criteria, e.g., to match exact expressions known in special cases. In-
deed, it is often possible to make refinements that remain asymptotically
correct in the heavy-traffic limit, e.g., by including the traffic intensity p,
which converges to 1 in the limit.

Often the initial goal in support of engineering applications is to develop
a suitable approximation. Then heuristic approaches are perfectly accept-
able, with convenience and accuracy being the criteria to judge the worth of
alternative candidates. Even with such a pragmatic engineering approach,
the stochastic-process limits are useful, because they generate initial can-
didate approximations, often capturing essential features, because the limit
often is able to strip away unessential details. Moreover, the limits establish
important theoretical reference points, demonstrating asymptotic correct-
ness in certain limiting regimes.

2.3.2. Simulation Examples

Let us now look at two examples.

Example 2.3.1. Workloads with exponential inputs.

First let {Vi : kK > 1} be a sequence of IID exponential random variables
with mean 1. Then the FCLT in (3.3) holds with H = 1/2 and S being
standard Brownian motion B. Thus, from (3.13), the appropriate scaling
here is

pn=1+m/y/n and K,=+/nK . (3.16)

To illustrate, we again perform simulations. Due to the recursive defi-
nition in (3.2), we can construct and plot the successive workloads just as
easily as we constructed and plotted the random walks before. Paralleling
our previous plots of random walks, we now plot the first n workloads, using
the scaling in (3.16). In Figure 2.1 we plot the first n workloads for the case
H=1/2, m=1and K =0.5 for n = 10 for j = 1,...,4. To supplement
Figure 2.1, we show six independent replications for the case n = 10% in
Figure 2.2.

What we see, as n becomes sufficiently large, is standard Brownian mo-
tion with drift —m = —1 modified by reflecting barriers at 0 and 0.5. Of
course, just as for the random-walk plots before, the units on the axes are for
the original queueing model. For example, for n = 10, the buffer capacity
is K, = 0.5y/n = 50, so that the actual buffer content ranges from 0 to 50,
even though the reflected Brownian motion ranges from 0 to 0.5. Similarly,
for n = 10%, the traffic intensity is p, = (1 4+n"2)"1 = (1.01)~! ~ 0.9901
even though the Brownian motion has drift —1.
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Unlike in the previous random-walk plots, the units on the vertical axes
in Figure 2.2 are the same for all six plots. That happens because, in all six
cases, the workload process takes values ranging from 0 to 50. The upper
limit is 50 because for n = 10* the upper barrier in the queue is 0.5y/n = 50.
The clipping at the upper barrier occurs because of overflows.

The traffic intensity 0.99 in Figure 2.2 is admittedly quite high. If we
focus instead upon n = 100 or n = 25, then the traffic intensity is not
so extreme, in particular, then p, = (1 +n Y/2)"1 = (1.1)"! =~ 0.91 or
(1.2)~1 ~ 0.83.

In Figures 2.1 and 2.2 we see statistical regularity, just as in the early
random-walk plots. Just as in the pairs of figures, (Figures 1.3 and 1.4) and
(Figures 1.21 and 1.22), the plots for n = 10° look just like the plots for
n = 10* when we ignore the units on the axes. The plots show that there
should be a stochastic-process limit as n — oo. The plots demonstrate
that a reflected Brownian motion approximation is appropriate with these
parameters.

Moreover, our analysis of the stochastic processes to determine the ap-
propriate scaling shows how we can obtain the stochastic-process limits.
Indeed, we obtain the supporting stochastic-process limits for the workload
process directly from the established stochastic-process limits for the ran-
dom walks. In order to make the connection between the random walk and
the workload process, we are constrained to use the scaling in (3.16). With
that scaling, the plotter directly reveals the statistical regularity. =

Example 2.3.2. Workloads with Pareto(3/2) inputs.
For our second example, we assume that the inputs Vi have a Pareto(p)
distribution with finite mean but infinite variance. In particular, we let

Vi = Uk_l/p for p=3/2, (3.17)

just as in case (7i¢) of (3.5) in Section 1.3.3, which makes the distribution
Pareto(p) for p = 3/2. Since H = p~! for p = 3/2, we need to use different
scaling than we did in Example 2.3.1. In particular, instead of (3.16), we
now use

fn =1+m/n'? and K, =n?*K , (3.18)

with m =1 and K = 0.5 just as before.

Since the scaling in (3.18) is different from the scaling in (3.16), for any
given triple (m, K, n), the buffer size K, is now larger, while the output rate
differs more from the input rate. Assuming that m > 0, the traffic intensity
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Figure 2.1: Possible realizations of the first n steps of the workload process
{W}» : k£ > 0} with IID exponential inputs having mean 1 for n = 10/ with
j=1,...,4. The scaling is as in (3.16) with m =1 and K = 0.5.
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Figure 2.2: Six possible realizations of the first n steps of the workload
process {W} : k > 0} with IID exponential inputs for n = 10%. The scaling
is as in (3.16) with m =1 and K = 0.5.
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Figure 2.3: Possible realizations of the first n steps of the workload process
{W}p : k > 0} with IID Pareto(p) inputs having p = 3/2 , mean 3 and
infinite variance for n = 10/ with j = 1,...,4. The scaling is as in (3.18)
with m =1 and K = 0.5.

in model n is now lower. That suggests that as H increases the heavy-traffic
approximations may perform better at lower traffic intensities.

We plot the first n workloads, using the scaling in (3.18), for n = 10/ for
j=1,...,4 in Figure 2.3 for the case m = 1 and K = 0.5. What we see,
as n becomes sufficiently large, is a stable Lévy motion with drift —m = —1
modified by reflecting barriers at 0 and 0.5. To supplement Figure 2.3, we
show six independent replications for the case n = 10* in Figure 2.4. As
before, the plots for n = 108 look just like the plots for n = 10* if we ignore
the units on the axes. Just as in Figures 1.20-1.22 for the corresponding
random walk, the plots here have jumps. =

In summary, the workload process {WW;} in the queueing model is in-
timately related to the random walk {Sj} with steps being the net inputs
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Figure 2.4: Six possible realizations of the first n steps of the workload
process {W}' : k > 0} with IID Pareto(p) inputs having p = 3/2, mean 3
and infinite variance for n = 10*. The scaling is as in (3.18) with m = 1
and K = 0.5.
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Vi — 1 each period. With appropriate scaling, as in (3.13), which includes
the queue being in heavy traffic, stochastic-process limits for a sequence
of appropriately scaled workload processes can be obtained directly from
associated stochastic-process limits for the underlying random walk.

Moreover, the limit process for the workload process is just the limit pro-
cess for the random walk modified by having two reflecting barriers. Thus,
the workload process in the queue exhibits the same statistical regularity
for large sample sizes that we saw for the random walk. Indeed, the random
walk is the source of that statistical regularity.

Just as for the random walks, the form of the statistical regularity may
lead to the limit process for the workload process having discontinuous sam-
ple paths.

2.4. Engineering Significance

In the previous section, we saw that queueing models are closely related
to random walks. With the proper (heavy-traffic) scaling, the same forms of
statistical regularity that hold for random walks also hold for the workload
process in the queueing model. But does it matter? Are there important
engineering consequences?

To support an affirmative answer, in this final section we discuss the
engineering significance of heavy-traffic stochastic-process limits for queues.
First, in Section 2.4.1, we discuss buffer sizing in a switch or router in
a communication network. Then, in Section 2.4.2, we discuss scheduling
service with multiple sources, as occurs in manufacturing when scheduling
production of multiple products on a single machine with setup costs or
setup times for switching.

2.4.1. Buffer Sizing

The buffer (waiting space) in a network switch or router tends to be
expensive to provide, so that economy dictates it be as small as possible.
On the other hand, we want very few lost packets due to buffer overflow.

Queueing models are ideally suited to determine an appropriate buffer
size. Let L(K) be the long-run proportion of packets lost as a function of
the buffer size K. We might specify a maximum allowable proportion of lost
packets, €. Given the function L, we then choose the buffer size K to satisfy
the buffer-sizing equation

L(K)=¢. (4.1)
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Classical queueing analysis, using standard models such as in Example
2.3.1, shows that L(K) decays exponentially in K; specifically, L tends to
have an ezponential tail, satisfying

LK) ~ae ™™ as K — oo (4.2)

for asymptotic constants « and 7 depending upon the model details. (As
in (4.6), ~ means asymptotic equivalence. See Remark 5.4.1 for further
discussion about asymptotics.)

It is natural to exploit the exponential tail asymptotics for L in (4.2) to
generate the approximation

L(K) ~ ce™™® (4.3)

for all K not too small. We then choose K to satisfy the exponential buffer-
sizing equation
ae E = ¢ (4.4)

from which we deduce that the target buffer size K* should be
K* =n"tlog(a/e) . (4.5)

This analysis shows that the target buffer size should be directly propor-
tional to n~! and log«, and inversely proportional to loge. It remains to
determine appropriate values for the three constants 7, o and €, but the gen-
eral relationships are clear. For example, if e = 1077, then K* is proportional
to the exponent j, which means that the cost of improving performance (as
measured by the increase in buffer size K* required to make e significantly
smaller) tends to be small.

So far, we have yet to exploit heavy-traffic limits. Heavy-traffic limits can
play an important role because it actually is difficult to establish the expo-
nential tail asymptotics in (4.2) directly for realistic models. As a first step
toward analytic tractability, we may approximate the loss function L(K) by
the tail probability P(W(oc0) > K), where W (o0) is the steady-state work-
load in the corresponding queue with unlimited waiting space. Experience
indicates that the asymptotic form for L(K) tends to be the same as the
asymptotic form for the tail probability P(W (c0) > K) (sometimes with
different asymptotic constants). From an applied point of view, we are not
too concerned about great accuracy in this step, because the queueing model
is crude (e.g., it ignores congestion controls) and the loss proportion L(K)
itself is only a rough performance indicator.
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As a second step, we approximate W (oo) in the tail probability P(W (c0) >
K) by the steady-state limit of the approximating process obtained from
the heavy-traffic stochastic-process limit. For standard models, the approx-
imating process is reflected Brownian motion, as in Example 2.3.1. Since the
steady-state distribution of reflected Brownian motion with one-sided reflec-
tion is exponential (see Section 5.7), the heavy-traffic limit provides strong
support for the approximations in (4.3)—(4.5) and helps identify approximate
values for the asymptotic constants n and a. (The heavy-traffic limits also
can generate approximations directly for the loss proportion L(K); e.g., see
Section 5.7.) The robustness of heavy-traffic limits (discussed in Chapters 4
and 5) suggests that the analysis should be insensitive to fine system details.

However, the story is not over! Traffic measurements from communi-
cation networks present a very different view of the world: These traffic
measurements have shown that the traffic carried on these networks is re-
markably bursty and complex, exhibiting features such as heavy-tailed prob-
ability distributions, strong positive dependence and self-similarity; e.g., see
Leland et al. (1994), Garrett and Willinger (1994), Paxson and Floyd (1995),
Willinger et al. (1995, 1997), Crovella and Bestavros (1996), Resnick (1997),
Adler, Feldman and Taqqu (1998), Barford and Crovella (1998), Crovella,
Bestavros and Taqqu (1998), Willinger and Paxson (1998), Park and Will-
inger (2000), Krishnamurthy and Rexford (2001) and references therein.
These traffic studies suggest that different queueing models may be needed.

In particular, the presence of such traffic burstiness can significantly alter
the behavior of the queue: Alternative queueing analysis suggests alternative
asymptotic forms for the function L. Heavy-tailed probability distributions
as in Example 2.3.2 lead to a different asymptotic form: When the inputs
have power tails, like the Pareto inputs in Example 2.3.2, the function L
tends to have a power tail as well: Instead of (4.2), we may have

LK) ~aK™ as K — oo, (4.6)

where again o and n are positive asymptotic constants; see Remark 5.4.1.

The change from the exponential tail in (4.2) to the power tail in (4.6)
are contrary to the conclusions made above about the robustness of heavy-
traffic approximations. Even though the standard heavy-traffic limits are
remarkably robust, there is a limit to the robustness! The traffic burstiness
can cause the robustness of the standard heavy-traffic limits to break down.
Just as we saw in Example 2.3.2, the burstiness can have a major impact
on the workload process.

However, we can still apply heavy-traffic limits: Just as before, we can
approximate L(K) by P(W(oo) > K), where W(oo) is the steady-state
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workload in the corresponding queue with unlimited waiting space. Then
we can approximate W (oo) by the steady-state limit of the approximating
process obtained from a heavy-traffic limit. However, when we properly
take account of the traffic burstiness, the heavy-traffic limit process is no
longer reflected Brownian motion. Instead, as in Example 2.3.2, it may
be a reflected stable Lévy motion, for which P(W(c0) > K) ~ aK . (For
further discussion about the power tails, see Sections 4.5, 6.4 and 8.5.) Thus,
different heavy-traffic limits support the power-tail asymptotics in (4.6) and
yield approximations for the asymptotic constants.

Paralleling (4.3), we can use the approximation

L(K) ~ aK™" (4.7)

for K not too small. Paralleling (4.4), we use the target equation (4.1) and
(4.7) to obtain the power buffer-sizing equation

K =¢ (4.8)

from which we deduce that the logarithm of the target buffer size K* should
be
log K* =1 !log (a/e) . (4.9)

In this power-tail setting, we see that the required buffer size K* is much
more responsive to the parameters 7, a and e: Now the logarithm log K* is
related to the parameters 1, o and € the way K* was before. For example,
if e = 1077, then the logarithm of the target buffer size K* is proportional
to j, which means that the cost of improving performance (as measured by
the increase in buffer size K* required to make € significantly smaller) tends
to be large.

And that is not the end! The story is still not over. There are other pos-
sibilities: There are different forms of traffic burstiness. In Example 2.3.2 we
focused on heavy-tailed distributions for IID inputs, but the traffic measure-
ments also reveal strong dependence. The strong dependence observed in
traffic measurements leads to considering fractional-Brownian-motion mod-
els of the input, which produce another asymptotic form for the function L;
see Sections 4.6, 7.2 and 8.7. Unlike both the exponential tail in (4.2) and
the power tail in (4.5), we may have a Weibull tail

LK) ~ae™ ™" as K — oo (4.10)

for positive constants «, n and 7, where 0 < v < 1; see (8.10) in Section 8.8.
The available asymptotic results actually show that

P(W(c0) > K) ~aK Pe ™" as K - oo



2.4. ENGINEERING SIGNIFICANCE 85

for asymptotic constants 7, « and [, where W (oo) is the steady-state of
reflected fractional Brownian motion. Thus, the asymptotic results do not
directly establish the asymptotic relation in (4.10), but they suggest the
rough approximation

L(K) ~ ae™"%” (4.11)

for all K not too small and the associated Weibull buffer-sizing equation
ae BT = ¢ (4.12)

from which we deduce that the y*® power of the target buffer size K* should
be

K*' =n7 log (a/e) . (4.13)

In (4.13) the v*® power of K* is related to the parameters a, 1 and e the
way K* was in (4.5) and log K* was in (4.9). Thus, consistent with the in-
termediate asymptotics in (4.10), since 0 < v < 1, we have the intermediate
buffer requirements in (4.13).

Unfortunately, it is not yet clear which models are most appropriate.
Evidence indicates that it depends on the context; e.g., see Heyman and
Lakshman (1996, 2000), Ryu and Elwalid (1996), Grossglauser and Bolot
(1999), Park and Willinger (2000), Guerin et al. (2000) and Mikosch et al.
(2001). Consistent with observations by Sriram and Whitt (1986), long-
term variability has relatively little impact on queueing performance when
the buffers are small, but can be dramatic when the buffers are large.

Direct traffic measurements are difficult to interpret because they de-
scribe the carried traffic, not the offered traffic, and may be strongly in-
fluenced by congestion controls such as the Transmission Control Protocol
(TCP); see Section 5.2 of Krishnamurthy and Rexford (2001) and Arvidsson
and Karlsson (1999). Moreover, the networks and the dominant applications
keep changing. For models of TCP, see Padhye et al. (2000), Bu and Towsley
(2001), and references therein.

From an engineering perspective, it may be appropriate to ignore con-
gestion controls when developing models for capacity planning. We may
wish to provide sufficient capacity so that we usually meet the offered load
(the original customer demand). When the system is heavily loaded, the
controls slow down the stream of packets. From a careful analysis of traffic
measurements, we may be able to reconstruct the intended flow. (For further
discussion about offered-load models, see Remark 10.3.1.) However, heavy-
traffic limits can also describe the performance with congestion-controlled
sources, as shown by Das and Srikant (2000).
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Our goal in this discussion, and more generally in the book, is not to
draw engineering conclusions, but to describe an approach to engineering
problems: Heavy-traffic limits yield simple approximations that can be used
in engineering applications involving queues. Moreover, nonstandard heavy-
traffic limits can capture the nonstandard features observed in network traf-
fic. The simple analysis above shows that the consequences of the model
choice can be dramatic, making order-of-magnitude differences in the pre-
dicted buffer requirements.

When the analysis indicates that very large buffers are required, instead
of actually providing very large buffers, we may conclude that buffers are
relatively ineffective for improving performance. Instead of providing very
large buffers, we may choose to increase the available bandwidth (process-
ing rate), introduce scheduling to reduce the impact of heavy users upon
others, or regulate the source inputs (see Example 9.8.1). Indeed, all of
these approaches are commonly used in practice. It is common to share the
bandwidth among sources using a “fair queueing” discipline. Fair queue-
ing disciplines are variants of the head-of-line processor-sharing discipline,
which gives each of several active sources a guaranteed share of the avail-
able bandwidth. See Demers, Keshav and Shenker (1989), Greenberg and
Madras (1992), Parekh and Gallager (1993, 1994), Anantharam (1999) and
Borst, Boxma and Jelenkovié (2000).

Many other issues remain to be considered: First, given any particular
asymptotic form, it remains to estimate the asymptotic constants. Second,
it remains to determine how the queueing system scales with increasing
load. Third, it may be more appropriate to consider the transient or time-
dependent performance measures instead of the customary steady-state per-
formance measures. Fourth, it may be necessary to consider more than a
single queue in order to capture network effects. Finally, it may be necessary
to create appropriate controls, e.g., for scheduling and routing. Fortunately,
for all these problems, and others, heavy-traffic stochastic-process limits can
come to our aid.

2.4.2. Scheduling Service for Multiple Sources

In this final subsection we discuss the engineering significance of the
time-and-space scaling that occurs in heavy-traffic limits for queues. The
heavy-traffic scaling was already discussed in Section 2.3; now we want to
point out its importance for system control.

We start by extending the queueing model in Section 2.3: Now we assume
that there are inputs each time period from m separate sources. We let each
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source have its own infinite-capacity buffer, and assume that the work in
each buffer is served in order of arrival, but otherwise we leave open the
order of service provided to the different sources. As before, we can think
of there being a single server, but now the server has to switch from queue
to queue in order to perform the service, with there being a setup cost or a
setup time to do the switching.

We initially assume that the server can switch from queue to queue in-
stantaneously (within each discrete time period), but we assume that there
are switchover costs for switching. To provide motivation for switching, we
also assume that there are source-dependent holding costs for the workloads.
To specify a concrete optimization problem, let W,i denote the source-i work-
load in its buffer at the end of period k and let S’,i’j be the number of switches
from queue 7 to queue j in the first £ periods. Let the total cost incurred
in the first k periods be the sum of the total holding cost and the total
switching cost, i.e.,

Ck = Hk + Sk y
where
m k )
=3y hw,
i=1 j=1
and

m m o
5e=3-3 sl
i=1 j=1
where h; is the source-i holding cost per period and ¢; ; is the switching cost

per switch from source ¢ to source j. Our goal then may be to choose a
switching policy that minimizes the long-run average expected cost

C = lim k'E[Cy] .
k— 00

This is a difficult control problem, even under the regularity condition
that the inputs come from m independent sequences of IID random variables
with finite means m’. Under that regularity condition, the problem can
be formulated as a Markov sequential decision process; e.g., see Puterman
(1994): The state at the beginning of period k + 1 is the workload vector
(W}, ...,W/™) and the location of the server at the end of period k. An
action is a specification of the sequence of queues visited and the allocation
of the available processing per period, p, during those visits. Both the state
and action spaces are uncountably infinite, but we could make reasonable
simplifying assumptions to make them finite.
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To learn how we might approach the optimization problem, it is helpful
to consider a simple scheduling policy: A polling policy serves the queues to
exhaustion in a fixed cyclic order, with the server starting each period where
it stopped the period before. We assume that the server keeps working until
either its per-period capacity u is exhausted or all the queues are empty.

There is a large literature on polling models; see Takagi (1986) and
Boxma and Takagi (1992). For classical polling models, there are ana-
lytic solutions, which can be solved numerically. For those models, numer-
ical transform inversion is remarkably effective; see Choudhury and Whitt
(1996). However, analytical tractability is soon lost as model complexity
increases, so there is a need for approximations.

The polling policy is said to be a work-conserving service policy, because
the server continues serving as long as there is work in the system yet to be
done (and service capacity yet to provide). An elementary, but important,
observation is that the total workload process for any work-conserving policy
is identical to the workload process with a single shared infinite-capacity
buffer. Consequently, the heavy-traffic limit described in Section 2.3 in the
special case of an infinite buffer (K = oo) also holds for the total-workload
process with polling; i.e., with the FCLT for the cumulative inputs in (3.3)
and the heavy-traffic scaling in (3.10), we have the heavy-traffic limit for the
scaled total-workload processes in (3.12), with the two-sided reflection map
¢ K replaced by the one-sided reflection map. Given the space scaling by nf!
and the time scaling by n, where 0 < H < 1, the unscaled total workload
at any time in the n'® system is of order nfl and changes significantly over
time intervals having length of order n.

The key observation is that the time scales are wvery different for the
individual workloads at the source buffers. First, the individual workloads
are bounded above by the total workload. Hence the unscaled individual
workloads are also of order n'. Clearly, the mean inputs must satisfy the
relation

My = My,1 +-+Mym -

Assuming that 0 < m,; < m, for all 7, we see that each source by itself is
not in heavy traffic when the server is dedicated to it: With the heavy-traffic
scaling in (3.10), the total traffic intensity approaches 1, i.e.,

Pn=my/un T1 as n— oo,

but the instantaneous traffic intensity for source ¢ when the server is devoted
to it converges to a limit less than 1, i.e.,

Pni = mv,i/ﬂ’n ) mv,i/mv = P: <l1.



2.4. ENGINEERING SIGNIFICANCE 89

Since each source alone is not in heavy-traffic when the server is working
on that source, the net output is at a constant positive rate when service
is being provided, even in the heavy-traffic limit. Thus the server processes
the order nf unscaled work there in order nff time, by the law of large
numbers (see Section 5.3).

The upshot is that the unscaled individual workloads change significantly
in order nf time whenever the server is devoted to them, and the server
cycles through the m queues in order n'! time, whereas the unscaled total
workload changes significantly in order n time. Since H < 1, in the heavy-
traffic limit the individual workloads change on a faster time scale. Thus,
in the heavy-traffic limit we obtain a separation of time scales: When we
consider the evolution of the individual workload processes in a short time
scale, we can act as if the total workload is fixed.

Remark 2.4.1. The classic setting: NCD Markov chains. The separation
of time scales in the polling model is somewhat surprising, because it occurs
in the heavy-traffic limit. In other settings, a separation of time scales is
more evident. With computers and communication networks, the relevant
time scale for users is typically seconds, while the relevant time scale for
system transactions is typically milliseconds. For those systems, engineers
know that time scales are important.

There is a long tradition of treating different time scales in stochastic
models using nearly-completely-decomposable (NCD) Markov chains; see
Courtois (1977). With a NCD Markov chain, the state space can be decom-
posed into subsets such that most of the transitions occur between states
in the same subset, and only rarely does the chain move from one subset to
another. In a long time scale, the chain tends to move from one local steady-
state regime to another, so that the long-run steady-state distribution is an
appropriate average of the local steady-state distributions.

However, different behavior can occur if the chain does not approach
steady-state locally within a subset. For example, that occurs in an infinite-
capacity queue in a slowly changing environment when the queue is unstable
in some environment states. Heavy-traffic limits for such queues were es-
tablished by Choudhury, Mandelbaum, Reiman and Whitt (1997). Even
though the queue content may ultimately approach a unique steady-state
distribution, the local instability may cause significant fluctuations in an
intermediate time scale. The transient behavior of the heavy-traffic limit
process captures this behavior over the intermediate time scale. =

For the polling model, the separation of time scales suggests that in
the heavy-traffic limit, given the fixed scaled total workload W, (¢) = w,
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in the neighborhood of time ¢ the vector of scaled individual workloads
(WL(t),...,W™(t)) rapidly traverses a deterministic piecewise-linear tra-
jectory through points (w',...,w™) in the hyperplane in R™ with w' +
- 4+ w™ = w. For example, with three identical sources served in numer-
ical cyclic order, the path is piecewise-linear, passing through the vertices
(2w/3,w/3,0), (0,2w/3,w/3) and (w/3,0,2w/3), corresponding to the in-
stants the server is about to start service on sources 1, 2 and 3, respectively.
In general, identifying the vertices is somewhat complicated, but the expe-
rience of each source is clear: it builds up to its peak workload at constant
rate and then returns to emptiness at constant rate. And it does this many
times before the total workload changes significantly. Hence at any given
time its level can be regarded as uniformly distributed over its range.

As a consequence, we anticipate a heavy-traffic averaging principle: We
should have a limit for the average of functions of the scaled individual
workloads; i.e., for any s, h > 0 and any continuous real-valued function f,

po! / W )t = ! / " /0 FlauW (#)duydt ,  (4.14)

where q; is a constant satisfying 0 < a; < 1 for 1 <4 < m. In words, the
time-average of the scaled individual-source workload process over the time
interval [s,s + h] approaches the corresponding time-average of a propor-
tional space-average of the limit W for the scaled total workload process.
(For other instances of the averaging principle, see Anisimov (1993) and
Freidlin and Wentzell (1993).)

This heavy-traffic averaging principle was rigorously established for the
case of two queues by Coffman, Puhalskii and Reiman (1995) for a slightly
different model in the Brownian case, with H = 1/2 and W reflected Brow-
nian motion. They also determined the space-scaling constants a; appearing
in (4.14) for m sources: They showed that

*(1 — p*
a; = pz( 107,)* -, (415)
Zl§j<k§m P;Py

where p! is the limiting source-i traffic intensity, i.e., p} = m, ;/m, for our
model. The upper limits a; depend only on the means m, ;, 1 < j < m. For
m = 2, a; = 1; for m identical sources, a; = 2/m. The variability affects
the limit in (4.14) only through the scaling and the one-dimensional limit
process W.

Coffman, Puhalskii and Reiman (1998) also considered the two-queue
polling model with unscaled switchover times. Even though the switchover
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times are asymptotically negligible in the heavy-traffic scaling, they have a
significant impact because the relative amount of switching increases as the
total workload decreases. Coffman, Puhalskii and Reiman (1998) show that
the heavy-traffic averaging principle is still valid with switchover times, with
the scaled total workload processes converging to a Bessel diffusion process,
which has state-dependent drift of the form —a + b/x for positive constants
a and b. (For additional heavy-traffic limits for polling models, see van der
Mei and Levy (1997) and van der Mei (2000).)

Even though the polling models have yet to be analyzed for nonstan-
dard scaling, with H # 1/2 and W not a diffusion process, it is evident
that the heavy-traffic averaging principle still applies. We can anticipate
that the other forms of variability (associated with heavy tails and strong
dependence) affect the heavy-traffic limit only through the limit process W.

The separation of time scales provides a way to attack complicated ser-
vice control problems such as the one formulated at the beginning of this
subsection. Even if all the desired supporting mathematics cannot be estab-
lished, the heavy-traffic limits provide a useful perspective for approximately
solving these problems. The heavy-traffic averaging principle reduces the
dimension of the state-space in the control problem. It provides a form of
state-space collapse; see Reiman (1984b), Harrison and van Mieghem (1997),
Bramson (1998) and Williams (1998b). It lets us focus on the single process
that is the heavy-traffic limit for the scaled total-workload process. For nat-
ural classes of service policies, we can express the local cost rate associated
with a fixed total workload and then determine an expression for the long-
run average total cost as a function of the controls that produces a tractable
optimization problem. In the more challenging cases it may be necessary to
apply numerical methods to solve the optimization problem, as in Kushner
and Dupuis (2000).

By now, there has been substantial work on this heavy-traffic approach
to scheduling, yielding excellent results. We do not try to tell the story here;
instead we refer to Reiman and Wein (1998), Markowitz, Reiman and Wein
(2000), Markowitz and Wein (2001) and Kushner (2001).

For these more complicated control problems, there are many open tech-
nical problems: It remains to establish the heavy-traffic averaging principle
in more complicated settings and it remains to show that the derived policies
are indeed asymptotically optimal in the heavy-traffic limit. Markowitz et
al. (2000, 2001) restrict attention to dynamic cyclic policies in which each
source is served once per cycle in the same fixed order. It is easy to con-
struct examples in which larger classes of policies are needed: With three
sources, it may be necessary to serve one source more frequently; e.g., the
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cycle (1,2,1,3) may be much better than either (1,2,3) or (1,3,2).

Nevertheless, the practical value of the heavy-traffic approach is well es-
tablished: Numerical comparisons have shown that the policies generated
from the heuristic heavy-traffic analysis perform well for systems under nor-
mal loading. Moreover, the heavy-traffic analysis produces important in-
sight about the control problem, as illustrated by concluding remarks on p.
268 of Markowitz and Wein (2001) about the way model features — setups,
due dates and product mix — affect the structure of policies. And there is
opportunity for further work along these lines.

Heavy-traffic analysis has also been applied to other queueing control
problems. We have discussed the scheduling of service for multiple sources
by a single server. We may instead have to schedule and route input from
multiple sources to several possible servers; see Bell and Williams (2001),
Harrison and Lopez (1999) and references therein. More generally, we may
have multiclass processing networks; see Harrison (1988, 2000, 2001a,b),
Kumar (2000) and references therein.

In conclusion, the successful application of heavy-traffic analysis to these
classic operations-research stochastic scheduling problems provides ample
evidence that heavy-traffic stochastic-process limits for queues have engi-
neering significance.



Chapter 3

The Framework for
Stochastic-Process Limits

3.1. Introduction

In Chapters 1 and 2 we saw that plots of stochastic-process sample paths
can suggest stochastic-process limits. Now we want to define precisely what
we mean by those stochastic-process limits.

The main idea is to think of a stochastic process as a random function.
With that mindset, convergence of a sequence of stochastic processes natu-
rally becomes convergence of a sequence of probability measures on a func-
tion space (space of functions). There then remain three problems: First,
what should we mean by the convergence of a sequence of probability mea-
sures on an abstract space? Second, what should be the underlying function
space containing the sample paths of the stochastic processes? And, third,
what should be the topology (notion of convergence) in the underlying func-
tion space?

We start in Section 3.2 by defining the standard notion of convergence
for a sequence of probability measures on a metric space. We also define
the Prohorov metric on the space of all probability measures on the metric
space, which induces that convergence.

In Section 3.3 we discuss the function space D that we will use to rep-
resent the space of possible sample paths of the stochastic processes. We
define two different metrics on the functions space D: One is the standard
J1 metric, which induces the Skorohod (1956) J; topology. The other is the
M, metric, which induces the Skorohod (1956) M; topology. The commonly
used J; topology is often referred to as “the Skorohod topology.” We use
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the M; topology in order to be able to establish stochastic-process limits
with unmatched jumps in the limit process.

In Section 3.4 we state three versions of the continuous-mapping theorem
that support the continuous-mapping approach for obtaining new stochastic-
process limits from established stochastic-process limits. In Section 3.5 we
introduce useful functions mapping D or the product space D x D into D that
preserve convergence and thus facilitate the continuous-mapping approach.
We conclude in Section 3.6 by describing the organization of the book.

This chapter is intended to be brief, providing background for the intro-
ductory chapters. We elaborate in Chapter 11 and refer to Billingsley (1968,
1999) for more details.

3.2. The Space P

Our goal is to precisely define what we mean by a stochastic-process limit,
i.e., the convergence of a sequence of stochastic processes. We use metrics
for that purpose. We define a metric on a space of stochastic processes in
two steps: First, we define a metric on the space of probability measures
on a general metric space and, second, we define a metric on the underlying
function space containing the sample paths of the stochastic processes.

A metric is a distance function satisfying certain axioms. In particular,
a metric m on a set S is a nonnegative real-valued function on the product
space S X S = {(s1,52) : 51 € 5,52 € S} such that m(z,y) = 0 if and only
if x = y, satisfying the symmetry property

m(xz,y) =m(y,z) forall z,yeS
and the triangle inequality
m(z,z) <m(z,y) +m(y,z) forall z,y,2€S .

A sequence in a set S is a function mapping the positive integers into
S. A sequence {z, : n > 1} in a metric space (S, m) converges to a limit x
in S if, for all € > 0, there exists an integer ng such that m(z,,z) < € for
all n > ng. If we use the metric only to specify which sequences converge,
then we characterize the topology induced by the metric: In a metric space,
the topology is a specification of which sequences converge. Topology is
the more general concept, because different metrics can induce the same
topology. For further discussion about topologies, see Section 11.2.

As a regularity condition, we assume that the metric space (S,m) is
separable, which means that there is a countable dense subset; i.e., there is
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a countably infinite (or finite) subset Sy of S such that, for all z € S and all
e > 0, there exists y € Sy such that m(z,y) <e.

We first consider probability measures on a general separable metric
space (S,m). In our applications, the underlying metric space S will be
the function space D, but now S can be any nonempty set. To consider
probability measures on (S, m), we make S a measurable space by endowing
it with a o-field of measurable sets (discussed further in Section 11.3). For
the separable metric space (S,m), we always use the Borel o-field B(S),
which is the smallest o-field containing the open balls

Bp(z,r) ={y €S :m(z,y) <r}.

The elements of B(S) are called measurable sets. We mention measurability
and o-fields because, in general, it is not possible to define a probability
measure (satisfying the axioms of a probability measure) on all subsets; see
p. 233 of Billingsley (1968).

We say that a sequence of probability measures {P, : n > 1} on (S, m)
converges weakly or just converges to a probability measure P on (S,m),
and we write P, = P, if

lim [ fdP, = / fdpP (2.1)
for all functions f in C(S), the space of all continuous bounded real-valued
functions on S. The metric m enters in by determining which functions f
on S are continuous. It remains to show that this is a good definition; we
discuss that point further in Section 11.3.

We now define the Prohorov metric on the space P = P(S) of all proba-
bility measures on the metric space (S,m); the metric was orginally defined

by Prohorov (1956); see Dudley (1968) and Billingsley (1999). Let A€ be
the open e-neighborhood of A, i.e.,

A*={ye S:m(z,y) <e forsome z¢€ A}.
For P, P, € P(S), the Prohorov metric is defined by
w(P1,Py) =inf{e > 0: Pi(A) < P,(A)+e forall AeB(S)} . (2.2)

At first glance, it may appear that 7 in (2.2) lacks the symmetry prop-
erty, but it holds. We prove the following theorem in Section 1.2 of the
Internet Supplement.
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Theorem 3.2.1. (the Prohorov metric on P) For any separable metric
space (S,m), the function m on P(S) in (2.2) is a separable metric. There
is convergence m(P,, P) — 0 in P(S) if and only if P, = P, as defined in
(2.1).

We primarily want to specify when weak convergence P, = P holds,
thus we are primarily interested in the topology induced by the Prohorov
metric. Indeed, there are other metrics inducing this topology; e.g., see
Dudley (1968).

Instead of directly referring to probability measures, we often use ran-
dom elements. A random element X of (S,B(S)) is a (measurable; see
Section 11.3) mapping from some underlying probability space (2, F, P) to
(S,B(S)). (In the underlying probability space, Q is a set, F is a o-field
and P is a probability measure.) The probability law of X or the probability
distribution of X is the image probability measure PX ! induced by X on
(S,B(9)); ie.,

PX 1(A) P(X 1A)=P{we: X(w) € A})
P(XeA) for AeB(S5),

where P is the probability measure in the underlying probability space
(Q,F,P). We often use random elements, but when we do, we usually
are primarily interested in their probability laws. Hence the underlying
probability space (2, F, P) is often left unspecified.

We say that a sequence of random elements {X,, : n > 1} of a metric
space (S, m) converges in distribution or converges weakly to a random ele-
ment X of (S,m), and we write X,, = X, if the image probability measures
converge weakly, i.e., if

P.X, ' =PXx ' on (Sm),

using the definition in (2.1), where P, and P are the underlying probability
measures associated with X, and X, respectively. It follows from (2.1) that
X, = X if and only if

lim Ef(X,)=Ef(X) forall feC(S). (2.3)
n—0o0
Thus convergence in distribution of random elements is just another way to
talk about weak convergence of probability measures. When S is a function
space, such as D, a random element of S becomes a random function, which
we also call a stochastic process.



3.3. THE SPACE D 97

We can use the Skorohod representation theorem, also from Skorohod
(1956), to help understand the topology of weak convergence in P(S). As

d . . . .
before, = means equal in distribution.

Theorem 3.2.2. (Skorohod representation theorem) If X,, = X in a sepa-
rable metric space (S,m), then there exist other random elements of (S, m),
X,,n>1, and X, defined on a common underlying probability space, such

that
d

S

X, = Xp,n > 1, X

and
P(lim X, = X) =

n—o0

[a—y

The Skorohod representation theorem is useful because it lets us relate
the structure of the space of probability measures (P, ) to the structure
of the underlying metric space (S,m). It also serves as a basis for the
continuous-mapping approach; see Section 3.4 below. We prove the Sko-
rohod representation theorem in Section 1.3 of the Internet Supplement.

3.3. The Space D

We now consider the underlying function space of possible sample paths
for the stochastic processes. Since we want to consider stochastic processes
with discontinuous, but not too irregular, sample paths, we consider the
space D of all right-continuous R¥-valued functions with left limits defined
on a subinterval I of the real line, usually either [0,1] or Ry = [0,00);
see Section 12.2 for additional details. We refer to the space as D(I,RF),
D([0,1],R¥) or D([0,00), R¥), depending upon the function domain, or just
D when the function domain and range are clear from the context. The space
D is also known as the space of cadlag or cadlag functions — an acronym for
the French continu a droite, limites a gauche.

The space D includes all continuous functions and the discontinuous
functions of interest, but has useful regularity properties facilitating the de-
velopment of a satisfactory theory. Let C(I,R¥), C([0,1], R*) and C(]0, 00), R¥),
or just C, denote the corresponding subsets of continuous functions.

We start by considering D([0, 1], R), i.e., by assuming that the domain is
the unit interval [0, 1] and the range is R. Recall that the space D([0,1], R)
was appropriate for the stochastic-process limits suggested by the plots in
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Chapter 1. The reference metric is the uniform metric ||x; — z2||, defined in
terms of the uniform norm

|zl = sup {|z(¥)[} . (3.1)
0<t<1

On the subspace C' the uniform metric works well, but it does not on D:
When functions have discontinuities, we do not want to insist that corre-
sponding jumps occur exactly at the same times in order for the functions to
be close. Appropriate topologies were introduced by Skorohod (1956). For
a celebration of Skorohod’s impressive contributions to probability theory,
see Korolyuk, Portenko and Syta (2000).

To define the first metric on D, let A be the set of strictly increasing
functions A mapping the domain [0, 1] onto itself, such that both A and its
inverse A\~! are continuous. Let e be the identity map on [0,1], i.e., e(t) = t,
0 <t < 1. Then the standard J; metric on D = D([0,1],R) is

d, (21,22) = jf {flz1 0 A — 22| V[A —ell}, (3.2)

where a V b = maz{a, b}.

The general idea in going from the uniform metric || || to the J; metric
dj, is to say functions are close if they are uniformly close over [0, 1] after
allowing small perturbations of time (the function argument). For example,
dj, (zn,x) — 0 as n — oo, while ||z,, — z|| > 1 for all n, in D([0,1],R) when
r = 1[2—1’1} and z, = (1 + n_l)I[Q—l_i_n—l,l], n > 3.

In the example above, the limit function has a single jump of magnitude
1 at time 27'. The converging functions have jumps of size 1 + n~! at
time 27! +n~'; both the magnitudes and locations of the single jump in ,
converge to those of the limit function . That is a characteristic property of
the J; topology. Indeed, from definition (3.2) it follows that, if dj, (zn,z) —
0 in D([0,1],R), then for any ¢ with 0 < ¢ < 1 there necessarily exists a
sequence {t, : n > 1} such that t, — ¢, z,(t,) — z(t), z,(tn—) — z(t—)
and

Tp(tn) — xn(tn—) = z(t) —z(t—) as n — o0 ;

i.e., the jumps converge. (It suffices to let t,, = A\, (), where || A, — e ||— 0
and || , o Ay, — z || 0.) Thus, if z has a jump at ¢, i.e., if z(t) # z(t—),
and if x, — z, then for all n sufficiently large 2, must have a “matching
jump” at some time t,,. That is, for any € > 0, we can find ng such that, for
all n > ng, there is ¢, with |¢t, — | < € and

|(@n () = 2n(tn=)) = (2(t) —z(t=))| <e.
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We need a different topology on D if we want the jump in a limit function
to be unmatched in the converging functions. For example, we want to allow
continuous functions to be arbitrarily close to a discontinuous function; e.g.,
we want to have d(zn,z) — 0 when 2 = Ij;-1 ;) and

xTn =n(t — 271 4 ’I’Lil)I[Q—l_n—l’Q—l) + 1[2—1,1] ,

as shown in Figure 3.1. (We include dips in the axes because the points
271 —n~!and 27! are not in scale. And similarly in later figures.) Notice

zn(t)

..ﬂ ‘

0 21 _p-t 21 1 t

Figure 3.1: The continuous functions z, that we want converging to the
indicator function z = Ijp-1 ;) in D.

that both ||z, —z|| = 1 and d, (x,,x) = 1 for all n, so that both the uniform
metric and the J; metric on D are too strong.

Another example has discontinuous converging functions, but converging
functions in which a limiting jump is approached in more than one jump.
With the same limit z above, let

Iy = 2_11[2—1771—1,2—1) + 1[2—1,1] )

as depicted in Figure 3.2. Again, ||z, — z|| /4 0 and dj, (zp,z) /4 0 in D as
n — 00.

In order to establish limits with unmatched jumps in the limit function,
we use the M; metric. We define the M; metric using the completed graphs
of the functions. For z € D([0, 1], R), the completed graph of z is the set

I'y = {(z,t) e Rx][0,1]:
z=az(t—)+ (1l —a)z(t) forsome o«, 0<a<1} (3.3)
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l‘n(t)

Figure 3.2: The two-jump discontinuous functions z,, that we want converg-
ing to the indicator function x = Ijp-1 y;.

where :(t—) is the left limit of 2 at . The completed graph is a con-
nected subset of the plane R? containing the line segment joining (z(t),t)
and (z(t—),t) for all discontinuity points ¢. To illustrate, a function and its
completed graph are displayed in Figure 3.3.

_ - .

Figure 3.3: A function in D([0,1],R) and its completed graph.

We define the M; metric using the uniform metric defined on parametric
representations of the completed graphs of the functions. To define the
parametric representations, we need an order on the completed graphs. We
define an order on the graph T'; by saying that (z1,t1) < (29,t2) if either
(i) t1 < tg or (ii) t; =t and |z(t;—) — 21| < |z(t2—) — 22|. Thus the order
is a total order, starting from the “left end” of the completed graph and
concluding on the “right end”.
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A parametric representation of the completed graph I'; (or of the func-
tion z) is a continuous nondecreasing function (u,r) mapping [0,1] onto
'y, with u being the spatial component and r being the time component.
The parametric representation (u,r) is nondecreasing using the order just
defined on the completed graph I';.

Let II(x) be the set in D = D([0,1],R). For any zi, zo € D, the M;
metric is

dur, (21, 22) = inf  {||lug —we|| V|ri —ra}, (3.4)
(uj,r;)E(z})
i=1,2
where again a V b = mazx{a,b}. It turns out that dp, in (3.4) is a bonafide
metric on D. (The triangle inequality is not entirely obvious; see Theorem
12.3.1.)

It is easy to see that, if = is continuous, then dyy, (z,, ) — 0 if and only
if |z, — z|| — 0. It is also easy to see that dps, (zn,z) — 0 as n — oo
for the examples in Figures 3.1 and 3.2. To illustrate, we display in Figure
3.4 specific parametric representations (u,r) and (uy,r,) of the completed
graphs of x and x, for the functions in Figure 3.1 that yield the distance
dar, (Zn, ) = n~ L. The spatial components v and u,, are identical. The time
components satisfy || r, —r ||=n""

For applications, it is significant that previous limits for stochastic pro-
cesses with the familiar J; topology on D will also hold when we use the
M, topology instead, because the J; topology is stronger (or finer) than the
M, topology; see Theorem 12.3.2.

We now want to modify the space D([0,1],R) in two ways: We want to
extend the range of the functions from R to R¥ and we want to allow the
domain of the functions be the semi-infinite interval [0,00) instead of the
unit interval [0,1]. First, the .J; and M; metrics extend directly to D* =
D([0,1],R¥) when the norm |- | on R in (3.1) is replaced by a corresponding
norm on R* such as the maximum norm

lall = max |a’] ,
1<i<k
for a = (a',...,a*) € R¥. With the maximum norm on R¥, we obtain the

standard or strong .J; and M; metrics on D*. We call the topology induced
by these metrics the standard or strong topology, and denote it by SJ; and
S M, respectively.

We also use the product topology on D¥, regarding D* as the product

space D X --- x D, which has z, — = as n — oo for z,, = (z),...,z¥) and
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rTn

Figure 3.4: Plots of parametric representations (u,r) of Ty and (up,r,) of
I, yielding dyy, (,,,7) = n~! for the functions in Figure 3.1. The points a
and b are arbitrary, satisfying 0 < a < b < 1.

= (z',...,2%) in D¥ if 2/, — 2’ as n — oo in D for each 7. The product

topology on D* is induced by the metric

k

dy(a,y) = S d(a', ) (3.5)

=1

where d is the metric on D'. Since convergence in the strong topology im-
plies convergence in the product topology, we also call the product topology
the weak topology, and we denote it by WJ; and W M.

The definitions for D([0, 1], R*) extend directly to D([0,],R¥) for any
t > 0. It is natural to characterize convergence of a sequence {z, : n > 1}
in D([0,00), R¥) in terms of associated convergence of the restrictions of z,,
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to the subintervals [0,#] in the space D([0,],R¥) for all ¢ > 0. However,
note that we encounter difficulties in D([0,¢], R¥) if the right endpoint ¢
is a discontinuity point of a prospective limit function x. For example, if
tn — t as n — oo, but ¢, >t for all n, then the restrictions of Iy, ) to
the subinterval [0,#] are the zero function, while Ij; . is not, so we cannot
get the desired convergence Ijy, ) — I[1oc) we want. Thus we say that
the sequence {z, : n > 1} converges to x as n — oo in D([0,00),R¥) if
the restrictions of z, to [0,¢] converge to the restriction of z to [0,¢] in
D([0,t],R*) for all t > 0 that are continuity points of .

The mode of convergence just defined can be achieved with metrics.
Given a metric d; on D([0,¢],R) applied to the restrictions of the functions
to [0,t], we define a metric dy, on D([0, 00),R) by letting

doo(21,22) = / e 'dy(z1,z2) A1]dt
0

where a A b = min{a, b} and d;(x1,x2) is understood to mean the distance
d; (either J; or M) applied to the restrictions of z; and z2 to [0, ¢].

The function space D with the J; or M; topology is somewhat outside
the mainstream of traditional functional analysis, because addition is not a
continuous map from the product space D x D with the product topology
to D.

Example 3.3.1. Addition is not continuous.
A simple example has x = —y = Ijp-1 1) with

Ip = 1[2_1771,_1,1} and Yn = _I[Z_l+n_l,1} .
Then (z +y)(t) =0 for all ¢, while

Tp +Ynp = I[2—lin—172—l+n—l] .

With the non-uniform Skorohod topologies, x, — « and y, — y as n — oo,
but z, +y, A rx+yasn—00. =

Thus, even though D is a vector space (we can talk about the linear
combinations ax + by for functions x and y in D and numbers a and b in
R), D is not a topological vector space (and thus not a Banach space) with
the J; and M topologies (because those structures require addition to be
continuous).

Nevertheless, in applications of the continuous-mapping approach to es-
tablish stochastic-process limits, we will often want to add or subtract two
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functions. Thus it is very important that addition can be made to preserve
convergence. It turns out that addition on D x D is measurable and it is
continuous at limits in a large subset of D x D. For any of the non-uniform
Skorohod topologies, it suffices to assume that the two limit functions z and
y have no common discontinuity points. With the M; topology (but not the
Jp topology), it suffices to assume that the two limit functions x and y have
no common discontinuity points with jumps of opposite sign. (For instance,
in Example 3.3.1, 2, — y, — 2 —y in (D, M;).) In many applications, we
are able to show that the two-dimensional limiting stochastic process has
sample paths in one of those subsets of pairs (z,y) w.p.l. Then we can
apply the continuous-mapping theorem with addition.

3.4. The Continuous-Mapping Approach

The continuous-mapping approach to stochastic-process limits exploits
previously established stochastic-process limits and the continuous-mapping
theorem to obtain new stochastic-process limits of interest. Alternative ap-
proaches are the compactness approach described in Section 11.6 and vari-
ous stochastic approaches (which usually exploit the compactness approach),
which exploit special stochastic structure, such as Markov and martingale
structure; e.g., see Billingsley (1968, 1999), Ethier and Kurtz (1986), Jacod
and Shiryaev (1987) and Kushner (2001).

Here is a simple form of the continuous-mapping theorem:

Theorem 3.4.1. (simple continuous-mapping theorem). If X,, = X in
(S,m) and g : (S,m) — (S',m') is continuous, then

9(Xn) = g(X) in (§',m).

Proof. Since g is continuous, f o g is a continuous bounded real-valued
function on (S, m) for each continuous bounded real-valued function f on
(S’,m’). Hence, under the conditions,

E[f 0 g(Xn)] = E[f o g(X)]

for each continuous bounded real-valued function f on (S’,m’), which im-
plies the desired conclusion by (2.3). =

Paralleling the simple continuous-mapping theorem above, we can use a
Lipschitz-mapping theorem to show that distances, and thus rates of conver-
gence with the Prohorov metric, are preserved under Lipschitz mappings: A
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function ¢ mapping a metric space (S, m) into another metric space (S’, m')
is said to be Lipschitz continuous, or just Lipschitz, if there exists a constant
K such that

m/(g(z),g(y)) < Km(z,y) forall z,yeS. (4.1)

The infimum of all constants K for which (4.1) holds is called the Lipschitz
constant. As before, let a Vb = maxz{a,b}. The following Lipschitz mapping
theorem, taken from Whitt (1974a), is proved in Section 1.5 of the Internet
Supplement. Applications to establish rates of convergence in stochastic-
process limits are discussed in Section 2.2 of the Internet Supplement. We
write w(X,Y") for the distance between the probability laws of the random
elements X and Y.

Theorem 3.4.2. (Lipschitz mapping theorem) Suppose that g : (S,m) —
(S',m') is Lipschitz as in (4.1) on a subset B of S. Then

m(9(X),9(Y)) < (K vV 1)7(X,Y)
for any random elements X and Y of (S, m) for which P(Y € B) = 1.

We often need to go beyond the simple continuous-mapping theorem in
Theorem 3.4.1. We often need to consider measurable functions that are
only continuous almost everywhere or a sequence of such functions. Fortu-
nately, the continuous-mapping theorem extends to such settings. We can
work with a sequence of Borel measurable functions {g, : n > 1} all map-
ping one separable metric space (S, m) into another separable metric space
(8", m'). Tt suffices to have g,(2,) — g(2) as n — co whenever z, — z as
n — oo for a subset £ of limits z in S such that P(X € E) = 1. This gener-
alization follows easily from the Skorohod representation theorem, Theorem
3.2.2: Starting with the convergence in distribution X,, = X, we apply the
Skorohod representation theorem to obtain the special random elements X,
and X with the same distributions as X,, and X such that X,, — X w.p.1.
Since X £ X and P(X € E) = 0, we also have P(X € E) = 0. We then
apply the deterministic convergence preservation assumed for the functions
gn to get the limit

9(Xp) - g(X) as m—oo in (S,m) w.p.l.

Since convergence w.p.l implies convergence in distribution, as a conse-
quence we obtain . .
9(Xa) = g(X) in (S',m).
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Finally, since X,, and X are respectively equal in distribution to X,, and X,
also g, (X,) and g(X) are respectively equal in distribution to g,(X,) and
g(X). Thus, we obtain the desired generalization of the continuous-mapping
theorem:

gn(Xn) = g(X) in (S',m').

It is also possible to establish such extensions of the simple continuous-
mapping theorem in Theorem 3.4.1 directly, without resorting to the Skoro-
hod representation theorem. We can use the continuous-mapping theorem
or the generalized continuous-mapping theorem, proved in Section 1.5 of the
Internet Supplement.

For g : (S,m) — (S',m'), let Disc(g) be the set of discontinuity points
of g; i.e., Disc(g) is the subset of z in S such that there exists a sequence
{zp :n > 1} in S with m(z,,z) — 0 and m/(g(z,), g(x)) 4 0.

Theorem 3.4.3. (continuous-mapping theorem) If X,, = X in (S,m) and
g:(S,m) — (S',m’') is measurable with P(X € Disc(g)) =0, then g(X,) =
9(X).

Theorem 3.4.4. (generalized continuous-mapping theorem) Let g and g,
n > 1, be measurable functions mapping (S,m) into (S’,m'). Let the range
(S',m') be separable. Let E be the set of z in S such that g,(z,) — g(z)
fails for some sequence {x, : n > 1} with z, — x in S. If X,, = X in
(S,m) and P(X € E) =0, then g,(X,) = g(X) in (S",m').

Note that E = Disc(g) if g, = g for all n, so that Theorem 3.4.4 contains
both Theorems 3.4.1 and 3.4.3 as special cases.

3.5. Useful Functions

In order to apply the continuous-mapping approach to establish stochastic-
process limits, we need initial stochastic-process limits in D, the product
space D¥ = D x --- x D or some other space, and we need functions map-
ping D, D* or the other space into D that preserve convergence. The initial
limit is often Donsker’s theorem or a generalization of it; see Chapters 4 and
7.

Since we are interested in obtaining stochastic-process limits, the func-
tions preserving convergence must be D-valued rather than R-valued or RF-
valued. In this section we identify five basic functions from D or D x D to D
that can be used to establish new stochastic-process limits from given ones:
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addition, composition, supremum, reflection and inverse. These functions
will be carefully examined in Chapters 12 and 13.
The addition map takes (z,y) € D x D into x + y, where

(x+y)(t) =z(t) +y(t), t>0. (5.1)
The composition map takes (z,y) € D x D into x o y, where

(zoy)(t) ==z(yt)), t=0. (5.2)
The supremum map takes z € D into 2!, where

z'(t) = sup z(s), t>0. (5.3)
0<s<t

The (one-sided, one-dimensional) reflection map index
takes z € D into ¢(z), where

pz)=x+(—zvO), t>0, (5.4)
with (z V 0)(t) = z(t) V 0. The inverse map takes z into 2!, where
z(t) =inf{s >0:x(s) >}, t>0. (5.5)

Regularity conditions are required in order for the composition z oy in (5.2)
and the inverse =1 in (5.5) to belong to D; those conditions will be specified
in Chapter 13. We will also specify the domain for the functions in D; the
common case is Ry = [0, 00).

The general idea is that, by some means, we have already established
convergence in distribution

X,=X in D,
and we wish to deduce that
Y(Xp) = ¢(X) in D

for one of the functions 1 above. By virtue of the continuous-mapping
theorem or the Skorohod representation theorem, it suffices to show that
1 : D — D is measurable and continuous at all z € A, where P(X € A) = 1.
Equivalently, in addition to the measurability, it suffices to show that
preserves convergence in D; i.e., that ¥ (x,) — ¥ (x) whenever z,, — x for
xz € A, where P(X € A) = 1.
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There tends to be relatively little difficulty if A is a subset of continuous
functions, but we are primarily interested in the case in which the limit
has discontinuities. As illustrated by Example 3.3.1 for addition, when z ¢
C, the basic functions often are not continuous in general. We must then
identify an appropriate subset A in D, and work harder to demonstrate that
convergence is indeed preserved.

Many applications of interest actually do not involve convergence preser-
vation in such a simple direct form as above. Instead, the limits involve
centering. In the deterministic framework (obtained after invoking the Sko-
rohod representation theorem), we often start with

cn(typ —2) =y in D, (5.6)
where ¢, — oo, from which we can deduce that
Tp —x in D. (5.7)
From (5.7) we can directly deduce that

P(xy) = Y(x) in D

provided that v preserves convergence. However, we want more. We want
to deduce that

Cn((zn) —(z)) =2z in D (58)

and identify the limit z. We will want to show that (5.6) implies (5.8).
The common case is for z in (5.6)-(5.8) to be linear, i.e., for

z =be, wherebe Randee€ D withe(t)=t forall ¢.

We call that the case of linear centering. We will consider both linear and
nonlinear centering.
The stochastic applications with centering are less straightforward. We
might start with
X,=U in D, (5.9)

where
X, = b, (X, (nt) — Ant), t>0,

for some stochastic processes {X,(t) : ¢ > 0}. Given (5.9), we wish to
deduce that
Y,=V in D (5.10)
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and identify the limit process V for
Y, = b, (¢(X,)(nt) — pnt), t>0. (5.11)
To apply the convergence-preservation results with centering, we can let
(1) = (nA) 1 X, (nt), z(t)=e(t)=t, cn=n\/b,

and assume that |c,| — oo. The w.p.l representation of the weak conver-
gence in (5.9) yields

cn(tp —2) > u wop.l in D,

where u is distributed as U. The convergence-preservation result ((5.6)
implies (5.8)) then yields

cnl(zn) —(x)] v wpl in D. (5.12)

We thus need to relate the established w.p.1 convergence in (5.12) to the
desired convergence in distribution in (5.10). This last step depends upon
the function . To illustrate, suppose, as is the case for the supremum and
reflection maps in (5.3) and (5.4), that 1(e) = e and 9 is homogeneous, i.e.,
that

P(ar) =ap(r) for z€D and a>0.

Then

caltp(zn) — p(e)] = by [Y(Xn) (nt) — Ant].
Thus, under those conditions on 1, we can deduce that (5.10) holds for Y,
in (5.11) with 4 = A and V distributed as v in (5.12).

In applications, our primary goal often is to obtain convergence in dis-
tribution for a sequence of real-valued random variables, for which we only
need to consider the continuous mapping theorem with real-valued func-
tions. However, it is often convenient to carry out the program in two steps:
We start with a FCLT in D for a sequence of basic stochastic processes such
as random walks. We then apply the continuous-mapping theorem with the
kind of functions considered here to obtain new FCLT’s for the basic stochas-
tic processes in applied probability models, such as queue-length stochastic
processes in a queueing model. Afterwards, we obtain desired limits for as-
sociated random variables of interest by applying the continuous-mapping
theorem again with real-valued functions of interest. The final map may be
the simple one-dimensional projection map m; mapping = € D into z(t) € RF
when R is the range of the functions in D, the average ¢! f(fx(s)ds or
something more complicated.
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3.6. Organization of the Book

We now expand upon the description of the organization of the book
given at the end of the preface. As indicated there, the book has fifteen
chapters, which can be roughly grouped into four parts, ordered according
to increasing difficulty. The first part, containing the first five chapters,
provides an informal introduction to stochastic-process limits and their ap-
plication to queues.

Chapter 1 exposes the statistical regularity associated with a macro-
scopic view of uncertainty, with appropriate scaling, via plots of random
walks, obtained from elementary stochastic simulations. Remarkably, the
plotter automatically does the proper scaling when we plot the first n steps
of the random walk for various values of n. The plots tend to look the same
for all n sufficiently large, showing that there must be a stochastic-process
limit. For random walks with IID steps having infinite variance, the plots
show that the limit process must have jumps, i.e., discontinuous sample
paths.

Chapter 2 shows that the abstract random walks considered in Chapter
1 have useful applications. Chapter 2 discusses applications to stock prices,
the Kolmogorov-Smirnov statistic and queueing models. Chapter 2 also
discusses the engineering significance of the queueing models and the heavy-
traffic limits. The engineering significance is illustrated by applications to
buffer sizing in network switches and service scheduling for multiple sources.

The present chapter, Chapter 3, introduces the mathematical framework
for stochastic-process limits, involving the concept of weak convergence of a
sequence of probability measures on a separable metric space and the func-
tion space D containing stochastic-process sample paths. Metrics inducing
the Skorohod J; and M; topologies on D are defined. An overview of the
continuous-mapping approach to establish stochastic-process limits is also
given.

Chapter 4 provides an overview of established stochastic-process lim-
its. These stochastic-process limits are of interest in their own right, but
they also serve as starting points in the continuous-mapping approach to
establish new stochastic-process limits. The fundamental stochastic-process
limit is provided by Donsker’s theorem, which was discussed in Chapter 1.
The other stochastic-process limits are generalizations of Donsker’s theo-
rem. Of particular interest for the limits with jumps, is the generalization
of Donsker’s theorem in which the random-walk steps are IID with infinite
variance. When the random-walk steps have such heavy-tailed distributions,
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the limit process is a stable Lévy motion in the case of a single sequence
or a general Lévy process in the case of a triangular array or double se-
quence. When these limit processes are not Brownian motion, they have
discontinuous sample paths. The stochastic-process limits with jumps in
the limit process explain some of the jumps observed in the simulation plots
in Chapter 1.

Lévy processes are very special because they have independent incre-
ments. Chapter 4 also discusses stochastic-process limits in which the limit
process has dependent increments. The principal stochastic-process limits
of this kind involve convergence to fractional Brownian motion and linear
fractional stable motion. These limit processes with dependent increments
arise when there is strong dependence in the converging stochastic processes.
These particular limit processes have continuous sample paths, so the topol-
ogy on D is not critical. Nevertheless, like heavy tails, strong dependence
has a dramatic impact on the stochastic-process limit, changing both the
scaling and the limit process.

Chapter 5 provides an introduction to heavy-traffic limits for queues.
This first queueing chapter focuses on a general fluid queue model that
captures the essence of many more-detailed queueing models. This fluid
queue model is especially easy to analyze because the continuous-mapping
approach with the reflection map can be applied directly. Section 5.5 de-
rives scaling functions, expressed as functions of the traffic intensity in the
queue, which provide insight into queueing performance. Proofs are pro-
vided in Chapter 5, but the emphasis is on the statement and applied value
of the heavy-traffic limits rather than the technical details. This first queue-
ing chapter emphasizes the classical Brownian approximation (involving a
reflected Brownian motion limit process). The value of the Brownian ap-
proximation is illustrated in the Section 5.8, which discusses its application
to plan queueing simulations: The heavy-traffic scaling produces a simple
approximation for the simulation run length required to achieve desired sta-
tistical precision, as a function of model parameters.

The second part, containing Chapters 6 — 10, show how unmatched jumps
can arise and expands the treatment of queueing models. Chapter 6 gives
several examples of stochastic-process limits with unmatched jumps in the
limit process. In all the examples it is obvious that either there are no
jumps in the sample paths of the converging processes or the jumps in the
converging processes are asymptotically negligible. What is not so obvious
is that the limit process actually can have discontinuous sample paths. As
in Chapter 1, simulations are used to provide convincing evidence.

Chapter 7 continues the overview of stochastic-process limits begun in
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Chapter 4. It first discusses process CLT’s, which are central limit theorems
for appropriately scaled sums of random elements of D. Process CLT’s
play an important role in heavy-traffic stochastic-process limits for queues
with superposition arrival processes, when the number of component arrival
processes increases in the heavy-traffic limit.

Then Chapter 7 discusses CLT’s and FCLT’s for counting processes.
They are shown to be equivalent to corresponding limits for partial sums.
Chapter 7 concludes by applying the continuous-mapping approach with the
composition and inverse maps, together with established stochastic-process
limits in Chapter 4, to establish stochastic-process limits for renewal-reward
stochastic processes. The M; topology plays an important role in Chapter
7.

The remaining chapters in the second part apply the stochastic-process
limits, with the continuous-mapping approach, to obtain more heavy-traffic
limits for queues. As in Chapter 5, Chapters 8 — 10 emphasize the applied
value of the stochastic-process limits, but now more attention is given to
technical details. Chapter 8 considers a more-detailed multi-source on-off
fluid-queue model that has been proposed to evaluate the performance of
communication networks. That model illustrates how heavy-traffic limits
can expose the essential features of complex models. This second queueing
chapter also discusses non-classical approximations involving reflected sta-
ble Lévy motion and reflected fractional Brownian motion, stemming from
heavy-tailed probability distributions and strong dependence.

Chapter 9 focuses on standard single-server queues, while Chapter 10
focuses on standard multi-server queues. In addition to the standard heavy-
traffic limits, we consider heavy-traffic limits in which the number of com-
ponent arrival processes in a superposition arrival process or the number of
servers in a multi-server queue increases in the heavy-traffic limit. Those
limits tend to capture the behavior of systems with large numbers of sources
or servers.

The third part, containing Chapters 11 — 14, is devoted to the technical
foundations needed to establish stochastic-process limits with unmatched
jumps in the limit process. The third part begins with Chapter 11, which
provides more details on the mathematical framework for stochastic-process
limits, expanding upon the brief introduction in Chapter 3.

Chapter 12 presents the basic theory for the function space D. Four
topologies are considered on D: strong and weak versions of the M; topol-
ogy and strong and weak versions of the M, topology. The strong and
weak topologies differ when the functions have range R¥ for k& > 1. The
strong topologies agree with the standard topologies defined by Skorohod
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(1956), while the weak topologies agree with the product topology, regard-
ing D([0,T],R*) as the k-fold product of the space D([0,T],R) with itself.
The M topologies are defined and characterized in Chapter 12. The main
ideas go back to Skorohod (1956), but more details are provided here. For
example, several useful alternative characterizations of these topologies are
given; e.g., see Theorem 12.5.1.

Chapter 13 focuses on the useful functions from D or D x D to D intro-
duced in Section 3.5, which preserve convergence with the Skorohod topolo-
gies, and thus facilitate the continuous-mapping approach to establish new
stochastic-process limits. As illustrated in the queueing chapters, the func-
tions in Chapter 13 can be combined with the FCLT’s in Chapter 4 to obtain
many new stochastic-process limits.

The third part concludes with a final chapter on queues: Chapter 14
establishes heavy-traffic limits for networks of queues. The extension to
networks of queues in Chapter 14 is more complicated because, unlike the
one-dimensional reflection map used for single queues, the multidimensional
reflection map is not simply continuous in the M; topology. However, it is
continuous, using the product M; topology, at all limit functions without
simultaneous jumps of opposite sign in its coordinate functions.

The fourth part, containing only the final chapter, Chapter 15, intro-
duces new function spaces larger than D. These spaces, called £ and F', are
intended to express limits for sequences of stochastic processes with oscilla-
tions in their sample paths so great that there is no limit in D. The names
are chosen because of the ordering

CcCDCECEF.

Example 3.6.1. Motivation for the spaces E and F. Suppose that the
n'™ function in a sequence of continuous functions takes the value 4 in the
interval [0,27! — n~!, the value 5 in the interval [2=' + n~! 1] and has
oscillations in the subinterval 27! —n "1 271 4+n =] for all n > 3. Specifically,
within the subinterval 27! — n=! 271 + n=1], let this n'" function first
increase from the value 4 at the left endpoint 27" —n~! to 7, then decrease
to 1, and then increase again to 5 at the right endpoint 271 4+n~1, as shown
in Figure 3.5.

That sequence of continuous functions converges pointwise to the limit
function x = 41jg o-1) + 5I[p-1 ;) everywhere except possibly at ¢ = 1/2, but
it does not converge in D with any of the Skorohod topologies. Nevertheless,
we might want to say that convergence does in fact occur, with the limit
somehow revealing the oscillations of the functions in the neighborhood of
t = 1/2. The spaces E and F' allow for such limits
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Figure 3.5: The n'' function in C[0, 1] in a sequence of functions that con-
verges to a proper limit in the space £ but not in the space D.

In E, the limit corresponds to the set-valued function that is the one-
point set {4} for ¢ € [0,27!), the one-point set {5} for ¢ € (271,1]) and is
the interval [1,7] at ¢t = 1/2.

In F, the limit fails to capture the order in which the points are visited
in the neighborhood of ¢ = 1/2. The space F exploits parametric represen-
tations to also capture the order in which the points are visited. The larger
spaces E and F' are given topologies similar to the My and M; topologies on
D. Thus Chapter 15 draws heavily upon the development of the M topolo-
gies in Chapter 12. However, Chapter 15 only begins to develop the theory
of F¥ and F'. Further development is a topic for future research. =

At the end of the book there are two appendices. Appendix A gives
basic facts about regularly varying functions, while Appendix B gives the
intial contents of the Internet Supplement.



Chapter 4

A Panorama of
Stochastic-Process Limits

4.1. Introduction

In this chapter and Chapter 7 we give an overview of established stochastic-
process limits. These stochastic-process limits are of interest in their own
right, but they also can serve as initial stochastic-process limits in the
continuous-mapping approach to establish new stochastic-process limits. In-
deed, they all can be used to establish stochastic-process limits for queue-
ing models. In fact, a queueing example was already given in Section 2.3.
The FCLT's here, when applied to appropriate “cumulative-input” processes,
translate into corresponding FCLT's for the workload process in that queue-
ing model when we apply the continuous-mapping approach with the two-
sided reflection map.

The fundamental stochastic-process limit is the convergence of a se-
quence of scaled random walks to Brownian motion in the function space
D, provided by Donsker’s (1951) theorem, which we already have discussed
in Chapter 1. The other established stochastic-process limits mostly come
from extensions of Donsker’s theorem. In many cases, the limit process has
continuous sample paths, in which case the topology on D can be the stan-
dard Skorohod .J; topology. (The topologies on D are introduced in Section
3.3.) Even when the limit process has discontinuous sample paths, we often
are able to use the standard J; topology, but there are cases in which the
M, topology is needed. Even when the M; topology is not needed, it can
be used. Thus, the M; topology can be used for all the stochastic-process
limits here.

115
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In this overview chapter we state results formally as theorems and give
references, but we omit most proofs. We occasionally indicate how a sec-
ondary result follows from a primary result.

4.2. Self-Similar Processes

We start by looking at the lay of the land: In this section we consider
the general form that functional central limit theorems can take, without
imposing any stochastic assumptions such as independence, stationarity or
the Markov property.

4.2.1. General CLT’s and FCLT’s

Consider a sequence {X,, : n > 1} of RF-valued random vectors and form
the associated partial sums

Sp=Xi+ - +Xn, n>1,

with Sp = (0,...,0). We say that {X,,} or {S,} obeys a central limit theorem
(CLT) if there exist a sequence of constants {c, : n > 1}, a vector m and
a proper random vector S such that there is convergence in distribution (as
n — 00)

(S —mn)=S in RF.

We call m the translation scaling vector (or constant if R¥ = R) and {c,} the
space-scaling sequence. (We might instead allow a sequence of translation
vectors {m, : n > 1}, but that is not the usual case and we do not consider
that case here.)

Now form an associated sequence of normalized partial-sum processes in
D = D([0,00),R*) by letting

Sn(t) = c,_Ll(SLmJ —mnt), t>0, (2.1)

where [¢] is the greatest integer less than or equal to ¢t. We say that {X,},
{Sn} or {S,,} obeys a functional central limit theorem (FCLT) if there exists
a proper stochastic process S = {S(¢) : ¢ > 0} with sample paths in D such
that

S, =S in D, (2.2)

for S,, in (2.1) and some (unspecified here) topology on D.
The classical setting for the CLT and the FCLT occurs when the basic se-
quence {X,, : n > 1} is a sequence of independent and identically distributed
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(IID) random vectors with finite second moments. However, we have not
yet made those assumptions. Note that any sequence of RF-valued random
vectors {S,, : n > 1} can be viewed as a sequence of partial sums; just let

XnESn—Snfl, nZl,

with Sy = 0. The partial sums of these new variables X,, obviously coincide
with the given partial sums.

We also say a FCLT holds for a continuous-time R¥-valued process Y =
{Y'(t) : t > 0} if (2.2) holds for S,, redefined as

S,(t) = ¢, (Y(nt) —mnt), t>0. (2.3)

Here {Y'(¢) : ¢ > 0} is the continuous-time analog of the partial-sum sequence
{Sn :n > 1} used in (2.1). Note that the discrete-time process {S,} is a
special case, obtained by letting Y (¢) = S|;j, t > 0.

More generally, we can consider limits for continuous-time R¥-valued
stochastic processes indexed by a real variable s where s — co. We then
have

S,(t) = c(s) (Y (st) —mst), t>0, (2.4)

for s > syp. We say that a FCLT holds for S; as s -+ o0 if Sy = S in D as
s — oo for some (unspecified here) topology on D.

4.2.2. Self-Similarity

Before imposing any stochastic assumptions, it is natural to consider
what can be said about the possible translation vectors and space-scaling
functions ¢(s) in (2.4) and the possible limit processes S. Lamperti (1962)
showed that convergence of all finite-dimensional distributions has strong
structural implications. The possible limit processes are the self-similar pro-
cesses, which were called semi-stable processes by Lamperti (1962) and then
self-similar processes by Mandelbrot (1977); see Chapter 7 of Samorodnitsky
and Taqqu (1994).

We say that an RF-valued stochastic process {Z(t) : t > 0} is self-similar
with index H > 0 if, for all a > 0,

(Z(at) 1t >0} L {a" Z(t) : t >0}, (2.5)
where £ denotes equality in distribution; i.e., if the stochastic process

{Z(at) : t > 0} has the same finite-dimensional distributions as the stochas-
tic process {a’ Z(t) : t > 0} for all a > 0. Necessarily Z(0) = 0 w.p.1. The
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classic example is Brownian motion, which is H-self-similar with H = 1/2.
The scaling exponent H is often called the Hurst parameter in recognition
of the early work by Hurst (1951, 1955).

Indeed, we have already encountered self-similarity in Chapter 1. Self-
similarity is the natural consequence of the plots looking identical for all
sufficently large n. The limit process has identical plots for all time scalings.
In the plots the appropriate space scaling is produced automatically.

The class of self-similar processes is very large; e.g., if {Y () : —o0 <t <
oo} is any stationary process, then

Z(t) = t?Y (logt), t>0,
is H-self-similar. Conversely, if {Z(t) : t > 0} is H-self-similar, then
Y(t)=e M Z(e), —oo<t< oo,

is stationary; see p. 64 of Lamperti (1962) and p. 312 of Samorodnitsky
and Taqqu (1994). In general, the sample paths of self-similar stochastic-
processes can be very complicated, see Vervaat (1985), but Lamperti showed
that self-similar processes must be continuous in probability, i.e.,

|Z(t+h)—Z#)| =0 in R as h—0

for all £ > 0. That does not imply that the stochastic process Z necessarily
has a version with sample paths in D, however.

Convergence of the finite-dimensional distributions also implies that the
space-scaling function has a special form. The space-scaling function ¢(s) in
(2.4) must be regularly varying with index H; see Appendix A. A regularly
varying function is a generalization of a simple power; the canonical case is
the simple power, i.e., c(s) = cs for some constant c.

Theorem 4.2.1. (Lamperti’s theorem) If, for some k > 1,
(Ss(t1),--.,Ss(t)) = (S(t1),...,S(t;)) in R as s— o0

for all positive integers | and all [-tuples (t1,...,t;) with 0 < t; < --- <1,
where Sy is the scaled process in (2.4), then the limit process S is self-similar
with index H for some H > 0 and continuous in probability. Then the space
scaling function c¢(s) must be reqularly varying with the same index H.

Remark 4.2.1. Self-similarity in network traffic. Ever since the seminal
work on network traffic measurements by Leland et al. (1994), there has
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been interest and controversy about the reported self-similarity observed
in network traffic. From Lamperti’s theorem, we see that some form of
self-similarity tends to be an inevitable consequence of any macroscopic
view of uncertainty. Since network traffic data sets are very large, they
naturally lead to a macroscopic view. The engineering significance of the
reported self-similarity lies in the self-similarity index H. With centering
about a finite mean, the observed index H with H > 1/2 indicates that
there is extra variability beyond what is captured by the standard central
limit theorem. As we saw in Section 2.3, and as we will show in later
chapters, that extra traffic burstiness affects the performance in a queue to
which it is offered. From the performance-analysis perspective, these are
important new ideas, but the various forms of variability have been studied
for a long time, as can be seen from Mandelbrot (1977, 1982), Taqqu (1986),
Beran (1994), Samorodnitsky and Taqqu (1994) and Willinger, Taqqu and
Erramilli (1996). =

From the point of view of generating simple parsimonious approxima-
tions, we are primarily interested in the special case in which the scaling
function takes the relatively simple form c(s) = csf for some constant c.
(We will usually be considering the discrete case in which ¢, = cn'’.) Then
the approximation provided by the stochastic-process limit is characterized
by the parameter triple (m, H,c) in addition to any parameters of the limit
process. The parameter m is the centering constant, which usually is the
mean; the parameter H is the self-similarity index and the space-scaling
exponent; and the parameter ¢ is the scale parameter, which appears as a
constant multiplier in the space-scaling function. For example, there are no
extra parameters beyond the triple (m, H,c) in the case of convergence to
standard Brownian motion.

In most applications the underlying sequence {X,,} of summands in the
partial sums is stationary or asymptotically stationary, so that the limit
process S in (2.2) must also have stationary increments, i.e.,

{S(t+u) —S(u) : t >0} < {S(t) —S(0) : t >0}

for all 4 > 0. Thus, the prospective limit processes of primary interest are
the H -self-similar processes with stationary increments, which we denote by
H-sssi.

By far, the most frequently occurring H-sssi process is Brownian motion.
Brownian motion also has independent increments, continuous sample paths
and H = 1/2. Indeed, we saw plenty of Brownian motion sample paths in
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Chapter 1. The classical FCLT is covered by Donsker’s theorem, which we
review in Section 4.3. Then the basic sequence { X, } is IID with finite second
moments. In Section 4.4 here and Section 2.3 of the Internet Supplement
we show that essentially the same limit also occurs when the independence
is replaced with weak dependence. The set of processes for which scaled
versions converge to Brownian motion is very large. Thus these FCLTs
describe remarkably persistent statistical regularity.

After Brownian motion, the most prominent H-sssi processes are the
stable Lévy motion processes. The stable Lévy motion processes are the
H-sssi processes with independent increments. The marginal probability
distributions of stable Lévy motions are the stable laws. The Gaussian
distribution is a special case of a stable law and Brownian motion is a special
stable Lévy motion. The non-Gaussian stable Lévy motion processes are
the possible limit processes in (2.2) when {X,,} is a sequence of IID random
variables with infinite variance, as we will see in Section 4.5. For stable
Lévy motions, the self-similarity index H can assume any value greater
than or equal to 1/2. Brownian motion is the special case of a stable Lévy
motion with H = 1/2. For H > 1/2, the stable marginal distributions
have power tails and infinite variance. Non-Gaussian stable Lévy motions
have discontinuous sample paths, so jumps enter the picture, as we saw in
Chapter 1.

4.2.3. The Noah and Joseph Effects

It is possible to have stochastic-process limits with self-similarity index
H assuming any positive value. Values of H greater than 1/2 tend to occur
because of either exceptionally large values — the Noah effect — or exception-
ally strong positive dependence — the Joseph effect. The Noah effect refers
to the biblical figure Noah who experienced an extreme flood; the Joseph
effect refers to the biblical figure Joseph who experienced long periods of
plenty followed by long periods of famine; Genesis 41, 29-30: Seven years of
great abundance are coming throughout the land of Egypt, but seven years of
famine will follow them; see Mandelbrot and Wallis (1968) and Mandelbrot
(1977, 1982).

The Joseph effect occurs when there is strong positive dependence. With
the Joseph effect, but without heavy heavy tails, the canonical limit pro-
cess is fractional Brownian motion (FBM). Like Brownian motion, FBM
has normal marginal distributions and continuous sample paths. However,
unlike Brownian motion, FBM has dependent increments. FBM is a natu-
ral H-sssi process exhibiting the Joseph effect, but unlike the stable Lévy
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motions arising with the Noah effect, FBM is by no means the only H-sssi
limit process that can arise with strong dependence and finite second mo-
ments; see Vervaat (1985), O’Brien and Vervaat (1985) and Chapter 7 of
Samorodnitsky and Taqqu (1994).

We will present FCLTs capturing the Noah effect in Sections 4.5 and
4.7, and the Joseph effect in Section 4.6. It is also possible to have FCLTs
exhibiting both the Noah and Joseph effects, but unfortunately the theory
is not yet so well developed in that area. However, many H-sssi stochastic
processes exhibiting both the Noah and Joseph effects have been identified.
A prominent example is the linear fractional stable motion (LFSM). Like
FBM, but unlike stable Lévy motion, LFSM’s with positive dependence
have continuous sample paths.

The Noah and Joseph effects can be roughly quantified for the H-sssi
processes that are also stable processes. A stochastic process {Z(¢) : ¢ > 0}
is said to be a stable process if all its finite-dimensional distributions are
stable laws, all of which have a stable index «, 0 < a < 2; see Section 4.5
below and Chapters 1-3 of Samorodnitsky and Taqqu (1994). The normal
or Gaussian distribution is the stable law with stable index o = 2. A real-
valued random variables X with a stable law with index a, 0 < a < 2, has
a distribution with a power tail with exponent —«, satisfying

P(|X|>t)~Ct™™ as t— o0,

so that X necessarily has infinite variance. Thus, all the one-dimensional
marginal distributions of a non-Gaussian stable process necessarily have
infinite variance. The class of H-sssi stable processes includes all the specific
H-sssi processes mentioned so far: Brownian motion, stable Lévy motion,
fractional Brownian motion and linear fractional stable motion.

For H-sssi stable processes with independent increments, H = a~'. We
are thus led to say that we have only the Noah effect when H = a~" > 271,
and we quantify it by the difference o' — 27!, Similarly, we say that we
have only the Joseph effect when H > 1/a = 1/2, and we quantify it by
the difference H — a~'. We say that we have both the Noah and Joseph
effects when H > o' > 27!, and quantify the Noah and Joseph effects,
respectively, by the differences o' —27! and H —a ™!, as before. Of course,
we have neither the Noah effect nor the Joseph effect when H = o~ ! = 27L.

It is natural to ask which effect is more powerful. From the perspective
of the indices, we see that the Noah effect can be more dramatic: The Noah
effect o' — 27! can assume any positive value, whereas the Joseph effect
H — a~! can be at most 1/2.
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Obviously there should be no Joseph effect when the H-sssi stable process
has independent increments. However, it is possible to have 0 Joseph effect
without having independent increments; that occurs with the log-fractional
stable motion in Section 7.6 of Samorodnitsky and Taqqu (1994). It is also
possible to have convergence to non-stable H-sssi limit processes.

It is important to recognize that, even for H-sssi stable processes, we
are not constrained to have H > o~! > 27!; the full range of possibilities
is much greater. In this chapter we emphasize positive dependence, which
makes the self-similarity index H larger than it would be with indepen-
dent increments, but in general the possible forms of dependence are more
complicated. For example, fractional Brownian motion can have any self-
similarity index H with 0 < H < 1; we need not have H > 1/2. The FBMs
with H < 1/2 represent negative dependence instead of positive dependence.
Such negative independence often arises when there is conscious human ef-
fort to smooth a stochastic process. For example, an arrival process to a
queue may be smoothed by scheduling arrivals, as at a doctor’s office. Then
the actual arrival process may correspond to some random perturbation of
the scheduled arrivals. Then the long-run variability tends to be substan-
tially less than might be guessed from considering only the distribution of
the interarrival times between successive customers.

In fact, for H-sssi stable processes with o < 1 it is only possible to have
negative dependence, because it is possible to have any H with0 < H < a1,
but not any H with H > a~'; see p. 316 of Samorodnitsky and Taqqu
(1994). However, it is possible to have 1 < @ < 2 and ! < H < 1.
Properties of H-sssi a-stable processes are described in Samorodnitsky and
Taqqu (1994).

4.3. Donsker’s Theorem

In this section we consider the classical case in which { X} is a sequence
of IID random variables with finite second moments. The FCLT is Donsker’s
theorem, which we now describe, expanding upon the discussion in Chapter
1.

4.3.1. The Basic Theorems

Since Donsker’s theorem is a generalization of the classical CLT, we
start by reviewing the classical CLT. For that purpose, let N(m,o?) denote
a random variable with a normal or Gaussian distribution with mean m and
variance o2. We call the special case of the normal distribution with m = 0
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and 02 = 1 the standard normal distribution. Let ® be the cumulative
distribution function (cdf) and n the probability density function (pdf) of
the standard normal distribution, i.e.,
x
| ntway
— 00

KA
&
Il

P(N(0,1) < z)

where

Recall that
N(m,0%) £ m+oN(0,1)

for each m € R and 02 € R,.

Theorem 4.3.1. (classical central limit theorem) Suppose that {X, : n >
1} is a sequence of IID random variables with mean m = EX; and finite
variance 0®> = Var X;. Let S, =X, +---+ X,,, n > 1. Then (as n — o0)

nY2(8, —mn) = oN(0,1) in R.

Donsker’s theorem is a FCLT generalizing the CLT above. It is a limit
for the entire sequence of partial sums, instead of just the n*® partial sum.
We express it via the normalized partial-sum process

Su(t) =n"2(S|py —mnt), >0, (3.1)
in D = D([0,0),R), i.e., as in (2.1) with ¢, = /n.

Theorem 4.3.2. (Donsker’s FCLT) Under the conditions of the CLT in
Theorem 4.3.1,
S,=0B in (D,J1),

where Sy, is the normalized partial-sum process in (3.1) and B = {B(t) : t >
0} is standard Brownian motion.

The limiting Brownian motion in Donsker’s FCLT is a Lévy process with
continuous sample paths; a Lévy process is a stochastic process with station-
ary and independent increments; see Theorem 19.1 of Billingsley (1968).
Those properties imply that an increment B(s +t¢) — B(s) of Brownian mo-
tion {B(t) : ¢ > 0} is normally distributed with mean mt and variance
ot for some constants m and o?. Standard Brownian motion is Brownian
motion with parameters m = 0 and 02 = 1.
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The most important property of standard Brownian motion is that it
exists. Existence is a consequence of Donsker’s theorem; i.e., Brownian
motion can be defined as the limit process once the limit for the normalized
partial sums has been shown to exist.

In applications we often make use of the self-similarity scaling property

(B(ct): >0} L {V/cB(t):t >0} forany ¢>0.

We can obtain Brownian motion with drift m, diffusion (or variance) coef-
ficient o2 and initial position z for any m, z € R and 0% € R, , denoted by
{B(t;m,0?,z) : t > 0}, by simply scaling standard Brownian motion:

B(t;m,0?, ) =x +mt+0oB(t), t>0.

We have seen Donsker’s theorem in action in Chapter 1. Plots of random
walks with IID steps converging to Brownian motion are shown in Figures
1.2, 1.3, 1.4 and 1.17.

Donsker’s FCLT is an invariance principle because the limit depends
upon the distribution of X; only through its first two moments. By apply-
ing the continuous mapping theorem with various measurable real-valued
functions on D that are continuous almost surely with respect to Brownian
motion, we obtain many useful corollaries. For example, two useful functions
are

fi(z) = sup x(?) (3.2)
0<t<1
and
fo(z) = A({t € [0,1] : z(¢) > 0}) (3.3)

where A is Lebesgue measure on [0, 1]; see Section 11 of Billingsley (1968).
The supremum function f; in (3.2) was discussed in Section 1.2 while es-
tablishing limits for the random-walk plots. The function f; in (3.3) is not
continuous at all z, as can be seen by considering the constant functions
Tn(t) = n L 0<t<1,n>1,but f2 is measurable and continuous almost
surely with respect to Brownian motion. By applying the function fo in
(3.3), we obtain the arc sine law. For general probability distributions, this
result was first obtained directly by Erdés and Kac (1947). The distribution
of f2(B) was found by Lévy (1939).

Corollary 4.3.1. (arc sine law) Under the assumptions of the CLT in The-
orem 4.3.1,
n'Z,= fo(B) in R,
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where Zy, is the number of the first n partial sums Sy, ..., Sy, that are positive,
B is standard Brownian motion and

)=+ [ = Zarcsinya), 0<w<1
T) = — —— = —arc sin(/1), x .
mJo Vyll—y) 7
As indicated in Chapter 1, Donsker’s FCLT can be used to derive the
limiting distributions in Corollary 4.3.1. Since the limit depends on the
distribution of X; only through its first two moments, we can work with the
special case of a simple random walk in which

P(f2(B) <

P(X,=1)=P(X,=-1)=1/2.

Combinatorial arguments can be used to calculate the limits for simple ran-
dom walks; e.g., see Chapter 3 of Feller (1968).

It is interesting that the probability density function f(y) = 7 !(y(1 —
y))~'/2 of f5(B) is U-shaped, having a minimum at 1/2. For large n, having
99% of the partial sums positive is about 5 times more likely than having
50% of the partial sums positive.

4.3.2. Multidimensional Versions

It is significant that Theorems 4.3.1 and 4.3.2 extend easily to k¥ dimen-
sions. A key for establishing this extension is the Cramér-Wold device; see
p. 49 of Billingsley (1968).

Theorem 4.3.3. (Cramér-Wold device) For arbitrary random vectors (X, 1, . ..

in R¥, there is convergence in distribution
(Xnts-os Xng) = (X1,..., Xg) in RF

if and only if
k

k
Zaan,iizaiXi m R
=1

=1

for all (ay,...,a;) € RE.

The multivariate (k-dimensional) CLT involves convergence of normal-
ized partial sums of random vectors to the multivariate normal distribution.
We first describe the multivariate normal distribution. A pdf in R¥ of the
form

k k
f(zy,...,z5) =7 Lexp _(1/2)ZZ$iinjxj , (3.4)

i=1 j=1

) Xn,k:)
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where Q = (Q;;) is a symmetric kX k matrix (necessarily with positive diag-
onal elements) and +y is a positive constant, is a nondegenerate k-dimensional
normal or Gaussian pdf centered at the origin; see Section II11.6 of Feller
(1971). The pdf f(z1 — m1,...,xx — my) for f in (3.4) is a nondegener-
ate k-dimensional normal pdf centered at (mq,...,mg). A random vector
(X1,...,Xx) with a nondegenerate k-dimensional normal pdf centered at
(mq,...,my) has means EX; = m;, 1 <i < k. Let the covariance matriz of
a random vector (X1,..., X;) in R¥ with means (mq,...,my) be ¥ = (02-2,3-),
where
O’Zj = E(XZ — mz)(X] — mj) .
For a nondegenerate normal pdf, the matrices ) and ¥ are nonsingular and
related by
Q = 2_1 )
and the constant + in (3.4) satisfies
v =(2n)* 3,

where |3 is the determinant of ¥. Let N(m,Y) denote a random (row)
vector with a nondegenerate normal pdf in R centered at m = (my,...,my)
and covariance matrix ¥. Note that

N(m,%) £ m+N(0,%) .

If 32 is the k£ x k covariance matrix of a nondegenerate k-dimensional normal
pdf, then there exists a nonsingular £ x k matrix C, which is not unique,
such that
N(0,%) £ N(0, T)C

where [ is the identity matrix.

We can also allow degenerate k-dimensional normal distributions. We
say that a 1 X k row vector Y has a k-dimensional normal distribution with
mean vector m = (myq,...,my) and k X k covariance matrix ¥ if

ng—i—XC,

where X is a 1 X 5 random vector for some j < k with a nondegenerate
j-dimensional normal pdf centered at the origin with covariance matrix I
and C is a j X k matrix with

c'c=x% (3.5)

where C? is the transpose of C.
The following generalization of the CLT in Theorem 4.3.1 is obtained by
applying the Cramér-Wold device in Theorem 4.3.3.
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Theorem 4.3.4. (k-dimensional CLT) Suppose that {X,, :n > 1} = {(Xp1,..., Xpk) ¢
n > 1} is a sequence of IID random wvectors in RF with EX12Z < oo for
1 <i<k. Let m = (mq,...,my) be the mean vector with m; = EX,; and
Y= (Uzj) the covariance matriz with

o7 ; = B(X1 —mg)(X1,; —mj) (3.6)
foralli,5 with1 <i<kand1<j<k. Then
n~12(8, —mn) = N(0,%) in RF
where S, = X1+ -+ Xy, n > 1.

A standard k-dimensional Brownian motion is a vector-valued stochastic
process

B=(Bi,...,B;) = {B(t): t >0} = {(Bi(t),...,By(t)) : t > 0} ,

where By, ...,Bj are k IID standard one-dimensional BMs. A general k-
dimensional Brownian motion with drift vector m = (my,...,mg), k X k co-
variance vector ¥ and initial vector x = (x1, ..., zx), denoted by {B(t;m, X, z) :
t > 0} can be constructed by letting

B(t;m,%,z) =z +mt+B(t)C (3.7)

where B is a standard j-dimensional Brownian motion and C' is a 7 X k
matrix satisfying (3.5). In (3.7) we understand that

{B(t) : t >0} £ {B(0,1,0) : t > 0},

where I is the j x j identity matrix and 0 is the j-dimensional zero vector.
We now state the k-dimensional version of Donsker’s theorem. The limit
holds in the space D¥ = D([0,00), R¥) with the S.J; topology.

Theorem 4.3.5. (k-dimensional Donsker FCLT) Under the conditions of
the k-dimensional CLT in Theorem 4.3.4,

S,=BC in (D?SJ),

where Sy, is the normalized partial-sum process in (3.1), B is a standard j-
dimensional Brownian motion and C is a j X k matriz such that (3.5) holds,
i.e.,

BC £ {B(t;0,%) :t >0} in DF,

where ¥ = (O'iZ’j) is the covariance matriz of (X1,1,...,X1 %) in (3.6).
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Proof. The one-dimensional marginals converge by Donsker’s theorem,
Theorem 4.3.2. That convergence implies that the marginal processes are
tight by Prohorov’s theorem, Theorem 11.6.1. Tightness of the marginal
processes implies tightness of the overall processes by Theorem 11.6.7. Con-
vergence of all the finite-dimensional distributions follows from the CLT in
Theorem 4.3.4 and the Cramér-Wold device in Theorem 4.3.3. Finally, tight-
ness plus convergence of the finite-dimensional distributions implies weak
convergence in D by Corollary 11.6.1. =

It follows from either the k-dimensional Donsker FCLT or the one-
dimensional Donsker FCLT that linear functions of the coordinate of the
partial-sum process converge to a one-dimensional Brownian motion.

Corollary 4.3.2. Under the conditions of Theorem 4.3.5,
k
ZaiSn,i =oB in D
=1

where Sy, = (Sp1,...,Sn%) s the normalized partial-sum process in (3.1),
B is a standard one-dimensional Brownian motion and

k k
o = g g az-ajazz,j.

i=1 j=1

Donsker’s FCLT was stated (as it was originally established) in the
framework of a single sequence {X,, : n > 1}. There are extensions of
Donsker’s FCLT in the framework of a double sequence {X,  : n > 1,k >
1}, paralleling the extensions of the CLT. Indeed, a natural one is a special
case of a martingale FCLT, Theorem 2.3.9 in the Internet Supplement.

It can be useful to go beyond the CLT and FCLT to establish bounds
on the rate of convergence; see Section 2.2 of the Internet Supplement. For
the FCLT, strong approximations can be exploited to produce bounds on
the Prohorov distance.

4.4. Brownian Limits with Weak Dependence

For applications, it is significant that there are many generalizations of
Donsker’s theorem in which the IID assumption is relaxed. Many FCLTs
establishing convergence to Brownian motion have been proved with inde-
pendence replaced by weak dependence. In these theorems, only the space-
scaling constant o in Donsker’s theorem needs to be changed. Consequences
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of Donsker’s theorem such as Corollary 4.3.1 thus still hold in these more
general settings.

Suppose that we have a sequence of real-valued random variables {X, :
n > 1} Let S, = Xy +--- + X, be the n'™ partial sum and let S,, be the
normalized partial-sum process

Sy (t) =n 2(Sy —mnt), t>0. (4.1)

in D, just as in (3.1). We want to conclude that there is convergence in
distribution
S,=oB in (D,J), (4.2)

where B is standard Brownian motion and identify the scaling parameters m
and o, without assuming that {X,,} is necessarily a sequence of IID random
variables.

In this section and in Section 2.3 of the Internet Supplement we review
some of the sufficient conditions for (4.2) to hold with the IID condition
relaxed. We give only a brief account, referring to Billingsley (1968, 1999),
Jacod and Shiryaev (1987) and Philipp and Stout (1975) for more. First,
assume that {X,, : —oo < n < oo} is a two-sided stationary sequence, i.e.,
that {Xj1, : —00 <n < oo} has a distribution (on R*>) that is independent
of k. (It is always possible to construct a two-sided stationary sequence
starting from a one-sided stationary sequence {X, : n > 1}, where the
two sequences with positive indices have the same distribution; e.g., see p.
105 of Breiman (1968).) Moreover, assume that EX2 < oco. The obvious
parameter values now are

m=FEX, and o°= lim Var(Sn) ; (4.3)

n—00 n

i.e., m should be the mean and o should be the asymptotic variance, where

o0
o> =Var X, +2) _ Cov(X1, X144) - (4.4)
k=1

Roughly speaking, we should anticipate that (4.2) holds with m and o?
in (4.3) whenever o2 in (4.4) is finite. However, additional conditions are
actually required in the theorems. From a practical perspective, however,
in applications it 4s usually reasonable to act as if the FCLT is valid if
02 in (4.4) is finite, and the main challenge is to find effective ways to
calculate or estimate the asymptotic variance 0. There is a large literature
on estimating the asymptotic variance o2 in (4.3), because the asymptotic
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variance is used to determine confidence intervals around the sample mean
for estimates of the steady-state mean; for the sample mean X,, = n~'9,,

Var X, =n"*Var Sn, n>1.

Even for a mathematical model, statistical estimation is a viable way to
compute the asymptotic variance. We can either estimate o2 from data
collected from a system being modelled or from output of a computer sim-
ulation of the model. For more information, see Section 3.3 of Bratley, Fox
and Schrage (1987), Damerdji (1994, 1995) and references therein.

In order for the FCLT in (4.2) to hold, the degree of dependence in the
sequence {X,} needs to be controlled. One way to do this is via uniform
mizing conditions. Here we follow Chapter 4 of Billingsley (1999); also see
the papers in Section 2 of Eberlein and Taqqu (1986). To define uniform
mixing conditions, let F,, = o[Xy : k < n] be the o-field generated by
{Xk : k < n} and let G, = o[X; : k > n| be the o-field generated by
{Xk : k> n}. We write X € Fj, to indicate that X is Fi-measurable. Let

an = sup{|P(ANB) — P(A)P(B)|: A€ Fy, BE€Grin}  (4.5)

pn =sup{|E[XY]|: X € F, EX =0,
EX?<1,Y €Gypn, EY =0, EY? <1} (4.6)
¢n = sup{|P(B|A) — P(B)|: A € Fy, P(A) > 0,B € G} (4.7)

It turns out that these three measures of dependence are ordered by

on < pp <24/ ¢y -

Theorem 4.4.1. (FCLT for stationary sequence with uniform mixing) As-
sume that {X, : —oo < n < oo} is a two-sided stationary sequence with
Var X,, < oo and

o0
D pn<oo. (4.8)
n=1

for pp in (4.6). Then the series in (4.4) converges absolutely and the FCLT
(4.2) holds with m = EX, and o being the asymptotic variance in (4.4).

In many applications condition (4.8) will be hard to verify, but it does ap-
ply directly to finite-state discrete-time Markov chains (DTMC’s), as shown
on p. 201 of Billingsley (1999).
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Theorem 4.4.2. (FCLT for stationary DTMCs) Suppose that {Y, : —oco <
n < oo} is the stationary version of an irreducible finite-state Markov chain
and let X, = f(Y,) for a real-valued function f on the state space. Then
the conditions on {X,} in Theorem 4.4.1 and the conclusions there hold.

It is also possible to replace the quantitative measure of dependence in
(4.6) with a qualitative characterization of dependence. We say that the
sequence {X, : —0o < n < oo} is associated if, for any k and any two
(coordinatewise) nondecreasing real-valued functions f; and f, on RF for
which E[f;(X1,...,X})?] < oo for i = 1,2,

Cov(fi(X1,...,Xk), fo(X1,...,Xk)) >0,

(For further discussion of associated processes in queues and other discrete-
event systems, see Glynn and Whitt (1989) and Chapter 8 of Glasserman
and Yao (1994).) The following FCLT is due to Newman and Wright (1981).
See Cox and Grimmett (1984) and Dabrowski and Jakubowski (1994) for
extensions.

Theorem 4.4.3. (FCLT for associated process) If {X, : —oo < n < oo}

is an associated stationary sequence with EX2 < oo and 0? < oo for o2 in

(4.4), then the FCLT (4.2) holds.

Instead of uniform mixing conditions, we can use ergodicity and martin-
gale properties; see p. 196 of Billingsley (1999). For a stationary process
{X,}, ergodicity essentially means that the SLLN holds: n~='S, — EX;
w.p.1 as n — oo, where E|X;| < oo; e.g., see Chapter 6 of Breiman (1968).
The sequence of centered partial sums {S, —mn : n > 1} is a martingale if
E|Xi| < oo and E[X,, — m|F,_1] = 0 for all n > 1, where as before F,, is
the o-field generated by Xi,..., X,.

Theorem 4.4.4. (stationary martingale FCLT) Suppose that {X,, : —oo <
n < oo} is a two-sided stationary ergodic sequence with Var X, = 02, 0 <
0?2 < 00, and E[X, —m|F,_1] = 0 for all n for some constant m. Then the
FCLT (4.2) holds with (m,o0?) specified in the conditions here.

There are two difficulties with the FCLT’s stated so far. First, they
require stationarity and, second, they do not contain tractable expressions
for the asymptotic variance. In many applications, the stochastic process
of interest does not start in steady state, but it is asymptotically station-
ary, and that should be enough. For those situations, it is convenient to
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exploit regenerative structure. Regenerative structure tends to encompass
Markovian structure as a special case. The additional Markovian structure
enables us to obtain formulas and algorithms for computing the asymptotic
variance. We discuss FCLT’s in Markov and regenerative settings in Section
2.3 of the Internet Supplement.

4.5. The Noah Effect: Heavy Tails

In the previous section we saw that the conclusion of Donsker’s theo-
rem still holds when the IID assumption is relaxed, with the finite-second-
moment condition maintained; only the asymptotic-variance parameter o>
in (4.3) and (4.4) needs to be revised, with the key condition being that o>
be finite. We now see what happens when we keep the IID assumption but
drop the finite-second-moment condition.

As we saw in Chapter 1, when the second moment is infinite, there is a
dramatic change! When the second moments are infinite, there still may be
limits, but the limits are very different. First, unlike in the finite-second-
moment case, there may be no limit at all; the existence of a limit depends
critically on regular behavior of the tails of the underlying probability dis-
tribution (of X7). But that regular tail behavior is very natural to assume.
When that regular tail behavior holds with infinite second moments, we
obtain limits, but limits with different scaling and different limit processes.

Of particular importance to us, the new limit processes have discontin-
uous sample paths, so that the space D becomes truly important. In this
setting we do not need the M; topology to establish the FCLT for partial
sums of IID random variables, but we do often need the M; topology to
successfully apply the continuous-mapping approach starting from the ini-
tial FCLTs to be described in this section. We illustrate the importance of
the M; topology in Sections 6.3 and 7.3 below when we discuss FCLTs for
counting processes.

The framework here will be a single sequence {X,, : n > 1} of IID random
variables, where EX? = co. As before, we will focus on the associated partial
sums S, = X1+ -+ X,,, n > 1, with Sy = 0. We form the normalized
processes

Sn(t) = C;I(SWJ —mpnt), t>0, (5.1)

in D where {m, : n > 1} and {¢, : n > 1} are general deterministic
sequences with ¢, — 0o as n — oco. Usually we will have m,, = m as in (2.1),
but we need translation constants depending on n in one case (when the
stable index is & = 1). In Sections 4.3 and 4.4 we always had ¢, = \/n. Here
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will have ¢, //n — co; a common case is ¢, = n'/® for 0 < a < 2, where a
depends on the asymptotic behavior of the tail probability P(|X| > t) as
t — oo. Under regularity conditions, the normalized partial-sum process S,
in (5.1) will converge in (D, J1) to a process called stable Lévy motion.

We consider the more general double-sequence (or triangular array) frame-
work using {X,,  : n > 1,k > 1} in Section 2.4 of the Internet Supplement.
Unlike in Sections 4.3 and 4.4 above, with heavy-tailed distributions, there
is a big difference between a single sequence and a double sequence, because
the class of possible limits is much larger in the double-sequence frame-
work: With IID conditions, the possible limits in the framework of double
sequences are all Lévy processes. Like the stable Lévy motion considered in
this section, general Lévy processes have stationary and independent incre-
ments, but the marginal distributions need not be stable laws; the marginal
distributions of Lévy processes are infinitely divisible distributions (a sur-
prisingly large class). The smaller class of limits we obtain in the single-
sequence framework has the advantage of producing more robust approxi-
mations; the larger class we obtain in the double-sequence framework has
the advantage of producing more flexible approximations.

A stable stochastic process is a stochastic process all of whose finite-
dimensional distributions are stable laws. The Gaussian distribution is a
special case of a stable law, and a Gaussian process is a special case of a stable
process, but the limits with infinite second moments will be non-Gaussian
stable processes, whose finite-dimensional distributions are non-Gaussian
stable laws. The non-Gaussian stable distributions have heavy tails, so that
exceptionally large increments are much more likely with a non-Gaussian
stable process than with a Gaussian process. We refer to Samorodnitsky
and Tagqu (1994) for a thorough treatment of non-Gaussian stable laws
and non-Gaussian stable processes. For additional background, see Bertoin
(1996), Embrechts, Kliippelberg and Mikosch (1997), Feller (1971), Janicki
and Weron (1993) and Zolotarev (1986).

4.5.1. Stable Laws

A random variable X is said to have a stable law if, for any positive
numbers a; and a9, there is a real number b = b(a1,a2) and a positive
number ¢ = ¢(aq, a2) such that

a1 X1+ asXs L b+ X, (5.2)

where X7 and X5 are independent copies of X and 4 denotes equality in
distribution. A stable law is strictly stable if (5.2) holds with b = 0. Except



134 CHAPTER 4. A PANORAMA

in the pathological case @ = 1, a stable law always can be made strictly
stable by appropriate centering. Note that a random variable concentrated
at one point is always stable; that is a degenerate special case.
It turns out that the constant ¢ in (5.2) must be related to the constants
a1 and a9 there by
af + a5 =c® (5.3)
for some constant o, 0 < a < 2. Moreover, (5.2) implies that, for any n > 2,

we must have
X4+ X, 2pteX b, (5.4)

where X1,..., X, are independent copies of X and « is the same constant
appearing in (5.3), which is called the indez of the stable law.

The stable laws on R can be represented as a four-parameter family.
Following Samorodnitsky and Taqqu (1994), let Sy (o, 3, ) denote a stable
law (also called a-stable law) on the real line. Also let S,(o, 3, 1) denote
a real-valued random variable with the associated stable law. The four
parameters of the stable law are: the index a, 0 < a < 2; the scale parameter
o > 0; the skewness parameter 3, —1 < < 1; and the location or shift
parameter pu, —oco < p < co. When 1 < a < 2, the shift parameter is the
mean. When a < 1, the mean is infinite. The logarithm of the characteristic
function of Sy (o, B, i) is

lOg Eeiesa (U,,@,M)
{ —0?|0|%(1 — i8(sign 0) tan(mwa/2)) +ipd, a#1
o161 + i8(2/)(sign O)in((6) + ind, =1,

where sign(f) =1, 0 or —1 for > 0, 6 = 0 and 0 < 0.

The cases « = 1 and o = 2 are singular cases, with special properties
and special formulas. They are boundary cases, at which abrupt change of
behavior occurs. The normal law is the special case with «« = 2; then p is
the mean, 202 is the variance and 3 plays no role because tan(7) = 0; i.e.,
Sa(0,0, 1) = N(u,20%). When 8 =1 (8 = —1), the stable distribution is
said to be totally skewed to the right (left). For limits involving nonnegative
summands, we will be interested in the centered totally-skewed stable laws
Sa(0,1,0).

With the notation S, (o, 3, 1) for stable laws, we can refine the stabil-
ity property (5.4). If Xi,..., X, are IID random variables distributed as
Sao(o, B, 1), then

(5.5)

d n/eX| + pin —nt/Y), a#1
X1+ + Xy, = (5.6)
nXi + 206nin(n), a=1.
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From (5.6), we see that S, (o, ,0) is strictly stable for all @ # 1 and that
S1(0,0, 1) is strictly stable.

All stable laws have continuous pdf’s, but there are only three classes of
these pdf’s with convenient closed-form expressions: The first is the Gaus-
sian distribution; as indicated above, Sy(o,0, 1) = N(u,202). The second is
the Cauchy distribution S1(c,0, ), whose pdf is

g
0= v oy
In the case u =0,
P(S1(,0,0) <) = - + L Arcta (f)
110, Y, _:E_2 71_1? ng.

The third is the Lévy distribution S, j5(o, 1, 1), whose pdf is

fz) = (%)1/2 T —1N)3/2 exp (2(;:7“)) , T>[.

For the case p = 0, the cdf is

P(S1/2(0,1,0) <z) =2(1 — ®(\/o/x), x>0,

where ® is the standard normal cdf.
There are simple scaling relations among the non-Gaussian stable laws:
For any non-zero constant c,

So(0, By 1) + ¢ L Solo, B+ ©) (5.7)
S, (|c|o, si : if 1
cSelo, B, 1) S el sign()5 1 e (5.8)
Si(lc|o, sign(c) 8, cu — 2(In(|e))oB) if a=1,

d
—Sa(O', /Ba 0) = Sa(O', _ﬁ’ 0) . (59)
If Su (04, Bi, ui) are two independent a-stable random variables, then

4

Sa(o'laﬂla,ul) +So¢(0-27627,u2) Sa(o-algwu‘) (510)

for
Brof + B20%

o o o
o =07 +0 8=
' 2 0(11 Oél

;= patpe. (5.11)

In general, the stable pdf’s are continuous, positive and unimodal on
their support. (Unimodality means that there is an argument ¢y such that
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the pdf is nondecreasing for ¢ < ¢y and nonincreasing for ¢t > #y.) The stable
laws S, (0,1, 1) with 0 < a < 1 have support (u,00), while the stable laws
Sa(o,—1, 1) with 0 < a < 1 have support (—oo, ). All other stable laws
(ifa>1orifa <1andf # 1) have support on the entire real line. See
Samorodnitsky and Taqqu (1994) for plots of the pdf’s.

It is significant that the non-Gaussian stable laws have power tails. As
in (4.6) in Section 1.4, we write f(z) ~ g(x) as © — oo if f(x)/g(z) — 1 as
xz — 00. For 0 < a <2,

1
P(Sy(0,B,p) > x) ~ :JUO‘CQ@JO‘ (5.12)

and .
P(S,(0,8, 1) < —x) ~ xaCa%aa, (5.13)

where
o0 -1 re ) esmayy I a#1
Co = (/ x @ sinxdm) = (5.14)
0 2/m if a=

with T'(z) being the gamma function.

Note that there is an abrupt change in tail behavior at the boundary
a = 2. For all a < 2, the stable pdf has a power tail, but for & = 2, the pdf
is of order e=**/2. There also is a discontinuity in the constant C, in (5.14)
ata=1;asa— 1, Cy — 1, but C; =2/7.

When 5 =1 (8 = —1), the left (right) tail is asymptotically negligible.
When also a < 1, there is no other tail. When 1 < @ < 2 and § = 1, the
left tail decays faster than exponentially. Indeed, when 1 < a < 2,

P(S4(0,1,0) < —x)

—a/(2(a-1)) z /(D)
~ A ( . ) exp | —(a—1) ( . ) (5.15)
b, ad,

A= (2rale—1)"Y? and 64 = o(cos((r/2)(2 — a))~ Ve .

where

When o =1 and g =1,

P(S1(0,1,0) < —z) ~ \/12_7r exp (—% - e(w/z")x_1> . (5.16)
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Consequently, the Laplace transform of S,(c,1,0) is well defined, even
though the pdf has the entire real line for its support. In particular, the
logarithm of the Laplace transform of S,(o,1,0) is

—0%s%/cos(ma/2), a#1
Yo (s) = log Be%(@10) — / cos{mer/2) (5.17)
205 In(s)/m, a=1,

for Re(s) > 0.
From the asymptotic form above, we can deduce properties of the mo-
ments. In particular, for 0 < a < 2,

E|Sq(0,8,p)|P <oo for 0<p<a and
E|Sq(o,B,p)|P =00 for p>a. (5.18)

4.5.2. Convergence to Stable Laws

We now discuss convergence to stable laws. A cdf F' on R is said to be in
the domain of attraction of the stable law S, (o, 3, 1) if there exist constants
my and ¢, such that

¢t (Sn —mn) = Salo, B, 1) | (5.19)

where S;, = X; +---+ X, n > 1, {X,, : n > 1} is a sequence of IID random
variables and X has cdf F. By (5.4), Su(0, 8, i) is contained in the domain
of attraction of S, (o, 8, 1) for all (a, 0,3, ). Clearly, by scaling, it suffices
to let o =1 and p = 0. Hence, only the parameters a and (§ are unaltered
by scaling. A cdf F is said to be in the normal domain of attraction of the
stable law S, (o, 3, 1) if, in addition to being in the domain of attraction,
the constants ¢, in (5.19) can be chosen so that 4 = 0, 0 = 1 and ¢,, = cn!/®
for some constant c.

This limit theory is classical; see Gnedenko and Kolmogorov (1968),
Feller (1971) and p. 50 of Samorodnitsky and Taqqu (1994). Naturally, a
key role is played by the cdf F' of X;. A big role is also played by the cdf of
| X1]; let G be its cdf and G° =1 — G its complementary cdf (ccdf), i.e.,

G(z) = P(|X1| >z)=1—-F(z) + F(—z) . (5.20)

The conditions make use of regularly varying functions; see Appendix A.
We write G¢ € R(—a) if the ccdf is regularly varying with index —a. That
holds if and only if G¢(z) = z~*L(z) for some slowly varying function L.



138 CHAPTER 4. A PANORAMA

Theorem 4.5.1. (stable-law CLT) Let {X,, : n > 1} be an IID sequence of
real-valued random variables with cdf F. The cdf F belongs to the domain
of attraction of Su(1,53,0) for 0 < a < 2, i.e., (5.19) holds for c = 1 and
w =0, if and only if both G° € R(—«), i.e.,

zG(z) = L(z) (5.21)

for G¢ in (5.20), where L is slowly varying, and

1
Fe(z)/G(z) — %’8 as T — 00 . (5.22)
The space-scaling constants ¢y, in (5.19) then must satisfy
nL(cn)

lim
n—00 c%

=C,, (5.23)

for Cy in (5.14) and L in (5.21). The translation constants my in (5.19)
may be chosen to satisfy

0 if 0<ax<l
my, = { ne, [To sin w/cn dF(z) if a=1 (5.24)
nf xdF (x if 1<a<2.

If ¢, satisfies (5.23), then ¢, = nl/aLg(n), where Ly is slowly varying (in
general different from L in (5.21)).

At the expense of changing the scaling constants ¢ and p in the limit,
the normalization constants ¢, in Theorem 4.5.1 can be chosen to be the
(1 — n~1)*™ percentile of the cdf G instead of (5.23); i.e., we can let

cn = (1/G) (n) = inf{y : G(y) > n} ; (5.25)

see p. 3 of Resnick (1987) and p. 78 of Embrechts et. al. (1997).

Theorem 4.5.1 contains the result about normal domains of attraction
as a special case. Note that the condition has the summand having a power
law.

Theorem 4.5.2. (normal domain of attraction of a stable law) Let {X,
n > 1} be an IID sequence with cdf F'. The cdf belongs to the normal domain
of attraction of Sa(1,5,0) for 0 < a < 2, i.e., (5.19) holds with ¢, = en'/®,
o=1and p =0, if and only if both

G(z) ~Az™ ™ as = — o0 (5.26)
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for G¢ in (5.20) and positive constants A and o, and

Fe 1
GCEQ — ;L’B as T — 00 . (5.27)
The space-scaling constants can then be
en = (A)Cy)Yonl e (5.28)

where the pair (A, @) is from (5.26) and Cq is the stable-law asymptote in
(5.14). The translation constant m,, can then be as in (5.24).

Proof. Given Theorem 4.5.1, for 0 < a < 2, ¢, can be chosen to be of
the form cn'/® for some constant ¢, while satisfying (5.23), if and only if
the slowly varying function L(t¢) approaches a constant as ¢ — oo. Thus,
a cdf belongs to the normal domain of attraction of a stable law of index
a if and only if (5.21) and (5.22) hold with L(t) — A as ¢ — oo for some
constant A. In other words, for the normal domain of attraction, (5.21)
should be restated as (5.26). Then the left side of (5.23) becomes nA/cy. If
nA/c® — Cq as n — 0o, then n'/*AY /¢, — O as n — 00, so that it
suffices to use (5.28). =

It is useful to have a sanity check to verify the form of the space-scaling
constants in (5.28). That is provided by considering the special case in which

Xy £ (A)Ca)*Sa(1,,0)
Note that this X, satisfies (5.26) and (5.27); e.g., by (5.12) and (5.13),
P(A/Ca)"*|Sa(1,8,0)] > ) = P(|Sa(1,5,0)| > (Ca/A)/*z) ~ Ax™ .
However, by (5.6),
(Co/nA)(X) + -+ X,) £ S0(1,8,0) forall n>1.

Hence we must have (5.28).

From a mathematical perspective, Theorem 4.5.1 is appealing because it
fully characterizes when the limit exists and gives its value. However, from a
practical perspective, the special case in Theorem 4.5.2 may be more useful
because it yields a more parsimonious approximation as a function of n. For
the case 0 < @ < 2, Theorem 4.5.1 yields the approximation

Sn g ES, + CnSa(]wBaO) )
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with the approximation as a function of n being a function of «, § and the
entire (in general complicated) sequence {c, : n > 1}. On the other hand,
for the same case, Theorem 4.5.2 yields the approximation

Sy & ESy + en/ S, (1, 8,0) (5.29)

with the approximation as a function of n being a function only of the three
parameters «, 3 and c.

In applications it is usually very difficult to distinguish between a power
tail and a regularly-varying non-power tail of the same index. Even estimat-
ing the stable index « itself can be a challenge; see Embrechts et al. (1997),
Resnick (1997) and Adler, Feldman and Taqqu (1998).

4.5.3. Convergence to Stable Lévy Motion

We now want to obtain the FCLT generalization of the stable-law CLT in
Theorem 4.5.1. The limit process is a stable Lévy motion, which is a special
case of Lévy process. A Lévy process is a stochastic process L = {L(t) : t >
0} with sample paths in D such that L(0) = 0 and L has stationary and
independent increments; we discuss Lévy processes further in Section 2.4 of
the Internet Supplement. A standard stable (or a-stable) Lévy motion is a
Lévy process S = {S() : t > 0} such that the increments have stable laws,
in particular,

S(t+5) — S(s) < Sa(t'/%,5,0) £ 1/95,(1, 5,0) (5.30)

for any s > 0 and t > 0, for some o and S with0 < a <2 and -1 <3< 1.
The adjective “standard” is used because the shift and scale parameters of
the stable law in (5.30) are = 0 and o = t'/® (without an extra multi-
plicative constant). When we want to focus on the parameters, we call the
process a standard («, 3)-stable Lévy motion. Formula (5.30) implies that
a stable Lévy motion has stationary increments. When o = 2, stable Lévy
motion is Brownian motion. Except in the cases when = 1 and 8 # 1,
a stable (or a-stable) Lévy motion is self-similar with self-similarity index
H=1/a,ie.,
{S(ct) 1 >0} < {c/*S(t) : ¢ > 0} .
In many ways, non-Brownian (« < 2) stable Lévy motion is like Brown-

ian motion (o = 2), but it is also strikingly different. For example, Brownian
motion has continuous sample paths, whereas stable Lévy motion, except
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for its deterministic drift, is a pure-jump process. It has infinitely many
discontinuities in any finite interval w.p.1. On the positive side, there is a
version with sample paths in D, and we shall only consider that version. For
0 < a<1and g =1, stable Lévy motion has nondecreasing sample paths,
and is called a stable subordinator.

For a > 1 and B = 1, stable Lévy motion has no negative jumps; it
has positive jumps plus a negative drift. For a > 1, stable Lévy motion
(like Brownian motion) has sample paths of unbounded variation in each
bounded interval. Like Brownian motion, stable Lévy motion has compli-
cated structure from some points of view, but also admits many simple
formulas.

In the case of IID summands (for both double and single sequences),
Skorohod (1957) showed that all ordinary CLT’s have FCLT counterparts
in (D, Jy); see Jacod and Shiryaev (1987) for further discussion, in partic-
ular, see Theorems 2.52 and 3.4 on pages 368 and 373. Hence the FCLT
generalization of Theorem 4.5.1 requires no new conditions.

Theorem 4.5.3. (stable FCLT) Under the conditions of Theorem 4.5.1, in
addition to the CLT

¢y (Sn —mn) = Sa(1,8,0) in R,
there is convergence in distribution
S,=S in (D,Jy) (5.31)
for the associated normalized process
Sn(t) = ¢, (Spsy — mnt), t>0, (5.32)
where the limit S is a standard (o, 3)-stable Lévy motion, with
S(t) £ 11754 (1,8,0) £ Sa(t'/*, 8,0).

We have seen the stable FCLT in action in Chapter 1. Plots of random
walks with IID steps having Pareto(p) distributions converging to stable
Lévy motion with a = p are shown in Figures 1.20, 1.21 and 1.22 for p = 3/2
and in Figures 1.19, 1.25 and 1.26 for p = 1/2. We have also seen how
the stable FCLT can be applied with the continuous-mapping approach to
establish stochastic-process limits for queueing models. Plots of workload
processes converging to reflected stable Lévy motion appear in Figures 2.3
and 2.4.
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Of course, there is a corresponding FCLT generalization of Theorem
4.5.2. There also is a k-dimensional generalization of Theorem 4.5.3 paral-
leling Theorem 4.3.5 in Section 4.3. The proof is just like that for Theorem
4.3.5, again exploiting the Cramér-Wold device in Theorem 4.3.3. To apply
the Cramér-Wold device, we use the fact that a stochastic process is strictly
stable (stable with index o > 1) if and only if all linear combinations (over
time points and coordinates) of the process are again strictly stable (stable
with index o > 1); combine Theorems 2.1.5 and 3.1.2 of Samorodnitsky and
Taqqu (1994). (For a # 1, we always work with the centered stable laws
having p = 0, so that they are strictly stable.)

4.5.4. Extreme-Value Limits

We have observed that the sample paths of stable Lévy motion are dis-
continuous. For that to hold, the maximum jump X,, must be asymptotically
of the same order as the centered partial sum S, — mn for > 1 and the
uncentered sum S, for « < 1. That was illustrated by the random-walk
sample paths in Section 1.4. Further insight into the sample-path structure,
and to the limit more generally, can be obtained from extreme-value theory,
for which we draw upon Resnick (1987) and Embrechts et al. (1997). We
will focus on the successive maxima of the random variables | X,,|. Let

As in (5.20), | X;| has ccdf G¢. Extreme-value theory characterizes the
possible limit behavior of the successive maxima M,,, with scaling. Of special
concern to us is the case in which the limiting cdf is the Fréchet cdf

0, <0
Dy () = (5.34)
exp(—z~%), x>0,
which is defined for all o > 0. Let ®, also denote a random variable with
cdf ®,. Here is the relevant extreme-value theorem (which uses the concept
of regular variation; see Appendix A and Section 1.2 of Resnick (1987):

Theorem 4.5.4. (extreme-value limit) Suppose that {|X,| : n > 0} is a
sequence of IID random variables having cdf G with EX2 = co. There exist
constants ¢, and b, such that c,(M, — b,) converges in distribution to a
nondegenerate limit for M, in (5.33) if and only if G¢ € R(—«), in which
case

ey tM, = ®, in R, (5.35)
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where ®,, has the Fréchet cdf in (5.34) and the scaling constants may be
n = (1/G)" (n)
as in (5.25).
As noted after Theorem 4.5.1, we can also use the scaling constant ¢, in
(5.25) in the CLT and FCLT for partial sums; i.e., under the conditions of

Theorem 4.5.1, we have
c;an = O, ,

C;I(Sn - nmn) = Sa(O',IB, 0)

and
S,=8S,

where
Sn(t) = CT_LI(S\_ntJ - mnnt)a t Z 0 )

0 if 0<a<l1
myp =
EX; if 1<a<2,

and S is a nondegenerate stable Lévy motion with

(5.36)

S(1) £ Sa(a, 8,0)

for some o, § and the scaling constants ¢, throughout being as in (5.25).

It turns out that we can also obtain a limit for M, by applying the
continuous mapping theorem with the FCLT in (5.31). For that purpose,
we exploit the mazimum-jump functional J : D — R defined by

J(@) = sup {Ja(t) = a(t-)]} - (5.37)
0<t<1
In general, the maximum-jump function is not continuous on D, but it is

almost surely with respect to stable Lévy motion; see p. 303 of Jacod and
Shiryaev (1987). As before, let Disc(x) be the set of discontinuities of z.

Theorem 4.5.5. (maximum jump function) The mazimum-jump function
J in (5.37) is measurable and continuous on (D, J1) at all x € D for which
1 € Disc(x)¢. Hence, J is continuous almost surely with respect to stable
Lévy motion.

Hence we can apply the continuous mapping theorem in Section 2.7 with
Theorems 4.5.3-4.5.5 to obtain the following result. See Resnick (1986) for
related results.
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Theorem 4.5.6. (joint limit for normalized maximum and sum) Under the
conditions of Theorem 4.5.1, we have the FCLT (5.31) with (5.32) for ¢, in
(5.25) and

¢y (My, Sp —nmy,) = (J(8),8(1)) in R,

where

JS) Lo,
for J in (5.37), @4 in (5.34) and my, in (5.36). Consequently, on any positive
interval the stable process S has a jump w.p.1. and (S, — nmy)/M, has a

nondegenerate limit as n — o0.

More generally, it is interesting to identify cases in which the largest
single term M,, among {Xi,...,X,}, when X; > 0, is (i) asymptotically
negligible, (ii) asymptotically of the same order, or (iii) asymptotically dom-
inant compared to the partial sum S, or its centered version. Work on this
problem is reviewed in Section 8.15 of Bingham et al. (1989); we summarize
the main results below.

Theorem 4.5.7. (asymptotics for the ratio of the maximum to the sum)
Let {X,, : n > 1} be a sequence of IID random variables with cdf F having
support on (0,00). Let S,, be the n'" partial sum and M, the n'™ mazimum.
Then

(a) My /S, = 0 if and only if [ ydF(y) is slowly varying;

(b) M, /Sy, = 1 if and only if F€ is slowly varying;

(c) My, /Sy converges in distribution to a nondegenerate limit if and only
if F'© 1s reqularly varying of index —a for some a, 0 < o < 1.

(d) If, in addition F has finite mean p, then (S, —nu)/M, converges in
distribution to a nondegenerate limit if and only if F€ is regularly varying
of index —a for some a, 1 < a < 2.

4.6. The Joseph Effect: Strong Dependence

In Section 4.4 we saw that the conclusion of Donsker’s theorem still
holds when the independence condition is replaced with weak dependence,
provided that the finite-second-moment condition is maintained. The situa-
tion is very different when there is strong dependence, also called long-range
dependence.

In fact, all hell breaks loose. The statistical regularity we have seen,
both with light and heavy tails, depends critically on the independence. As
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we saw in Section 4.4, we can relax the independence considerably, but the
results depend on the dependence being suitably controlled. By definition,
strong dependence occurs when that control is lost.

When we allow too much dependence, many bizarre things can happen.
A simple way to see the possible difficulties is to consider the extreme case
in which the random variables X, are all copies of a single random variable
X, where X can have any distribution. Then the scaled partial sum n~1S,
has the law of X, so n™'S,, = X. Obviously there is no unifying stochastic-
process limit in this degenerate case.

Nevertheless, it is important to study strong dependence, because it can
be present. With strong dependence, we need to find some appropriate
way to introduce strong structure to replace the independence we are giving
up. Fortunately, ways to do this have been discovered, but no doubt many
more remain to be discovered. We refer to Beran (1994), Eberlein and
Taqqu (1986) and Samorodnitsky and Taqqu (1994) for more discussion
and references.

We will discuss two approaches to strong dependence in this section. One
is to exploit Gaussian processes. Gaussian processes are highly structured
because they are fully characterized by their first and second moments, i.e.,
the mean function and the covariance function. The other approach is to
again exploit independence, but in a modified form.

When we introduce this additional structure, it often becomes possible to
establish stochastic-process limits with strong dependence. Just as with the
heavy tails considered in Section 4.5, the strong dependence has a dramatic
impact on the form of the stochastic-process limits, changing both the scaling
and the limit process.

4.6.1. Strong Positive Dependence

Consider a stationary sequence {X, : n > 1} with EX,, = 0 and
Var X, < oo. Since the variance Var X,, is assumed to be finite, we call
this the light-tailed case; in the next section we consider the heavy-tailed
case in which Var X;,, = oco. Strong dependence can be defined by saying
that the natural mixing conditions characterizing weak dependence, as in
Theorem 4.4.1, no longer hold. However, motivated by applications, we are
interested in a particular form of strong dependence called strong positive
dependence. Roughly speaking, with positive dependence, we have

Var(S,) >nVar(X;) for n>1,
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i.e., the variance of the n'® partial sum is greater than it would be in the IID
case. We are interested in the case in which this is true for all sufficiently
large n (ignoring departures from the assumption in a short time scale).
Even though Var X, is finite, there may be so much dependence among
the successive variables X, that the variance of the partial sum S,, = X; +
.-+ + X, is not of order n. Unlike (4.3), we are now primarily interested in

the case in which
Var(S,
lim L4 n) (6.1)
n—00 n
In particular, we assume that Var(S,) is a regularly varying function with

index 2H for some H with
1/2<H<1, (6.2)

ie.,
Var(S,) =n*"L(n) as n— oo, (6.3)

where L(t) is a slowly varying function; see Appendix A. The principal
case of interest for applications is L(t) — ¢ as t — oo for some constant
c. When (6.2) and (6.3) hold, we say that {X,} and {S,} exhibit strong
positive dependence. Since Var(S,) < n?Var X, (6.2) covers the natural
range of possibilities when (6.1) holds. In fact, we allow 0 < H < 1, which
also includes negative dependence.

We primarily characterize and quantify the strong dependence through
the asymptotic form of the variance of the partial sums, as in (6.3). However,
it is important to realize that we still need to impose additional structure
in order to allow us to focus only on these variances. We will impose appro-
priate structure below.

It is natural to deduce the asymptotic form of the variance Var(S,) in
(6.3) directly, but we could instead start with a detailed characterization
of the covariances between variables in the sequence {X,}. We want to
complement the weak-dependent case in (4.3) and (4.4), so we focus on
the cases with H # 1/2. We state the result as a lemma; see p. 338
of Samorodnitsky and Taqqu (1994). We state the result for pure power
asymptotics, but there is an extension to regularly varying functions.

Lemma 4.6.1. (from covariance asymptotics to variance asymptotics) Sup-
pose that the covariances have the asymptotic form

= Cov(X1, X14p) = E[(X] — EX1)( X140 — EX14p)] ~ en?1 72
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asn —oo. Ifc>0and 1/2 < H < 1, then

n2H
VCL’)"(Sn) ~ Cm as n — 0.
Ifc<0and 0 < H < 1/2, then
,’,LZH
VG/F(Sn) ~ |C|m as mn — 00.

In this setting with Var(X,,) < oo and centering to zero mean, the nat-
ural scaled process is

Sn(t) =¢,'Siny, t>0, (6.4)

where

cn = (Var(Sp))'/2. (6.5)
With the scaling in (6.4), we have

ES,(t)=0 and Var(S,(t))=t t>0.

Space scaling asymptotically equivalent to (6.5) is required to get conver-
gence of the second moments to a proper limit. We will find conditions
under which S;, = S in D and identify the limit process S. Note that the
strong positive dependence causes c,/y/n — 00 as n — oo.

4.6.2. Additional Structure

We now impose the additional structure needed in order to obtain a
FCLT. As indicated above, there are two cases that have been quite well
studied. In the first case, {X,,} is a zero-mean Gaussian sequence. Then the
finite-dimensional distributions are determined by the covariance function.
A generalization of this first case in which X,, = g¢(Y,), where {Y,} is
Gaussian and ¢ : R — R is a smooth nonlinear function, has also been
studied, e.g., see Taqqu (1975, 1979) and Dobrushin and Major (1979), but
we will not consider that case. It gives some idea of the complex forms
possible for limit processes with strong dependence.

In the second case, the basic stationary sequence {X,} has the linear-
process representation

oo
Xy =) a¥, 4, n>1, (6.6)
=0
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where {Y;, : —oo < n < oo} is a two-sided sequence of IID random variables
with EY,, = 0 and EY,2 = 1, and {a; : j > 0} is a sequence of (deterministic,
finite) constants with

i aj < 0. (6.7)

Jj=0

With (6.6), the stochastic process {X,,} is said to obtained from the under-
lying process {Y,,} by applying a linear filter; e.g., see p. 8 of Box, Jenkins
and Reinsel (1994).

In fact, the linear-process representation tends to include the Gaussian
sequence as a special case, because if { X}, } is a stationary Gaussian process,
then under minor regularity conditions, {X,,} can be represented as in (6.6),
where {Y;,} is a sequence of IID random variables distributed as N (0, 1); e.g.,
see Hida and Hitsuda (1976). Of course, in general the random variables in
the linear-process representation need not be normally distributed. Thus,
the linear-process representation includes the Gaussian sequence as a special
case.

The second case can also be generalized by considering variables g(X,)
for X, in (6.6) and ¢ : R — R a smooth nonlinear function, see Avram
and Taqqu (1987) and references there, but we will not consider that gen-
eralization either. It provides a large class of stochastic-process limits in a
setting where the strong dependence is still quite tightly controlled by the
underlying linear-process representation.

It is elementary that {X,,} in (6.6) is a stationary process and

Var(X,) = Za? ,
§=0

so that condition (6.7) ensures that Var(X,) < oo, as assumed before. It is
also easy to determine the covariance function for X,,:

o0
'm = E AjGjin-
J=0

The n'* partial sum can itself be represented as a weighted sum of the
variables from the underlying sequence {Y;,}, namely,

n
Sn = Z Yieank ,

k=—00
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where
E@:éfaj , 1<k<n,
On k = ‘Zﬁ»k
> itk G E<O0.

Example 4.6.1. Power weights.
Suppose that the weights a; in (6.6) have the relatively simple form

aj=cj . (6.8)

To get strong positive dependence with (6.7), we need to require that 1/2 <
v < 1. The associated covariances are

o0
ra=cY G +n)7 .
j=0

By applying the Euler-Maclaurin formula, Chapter 8 of Olver (1974), and
the change of variables © = nu, we obtain the asymptotic form of r,:

o0 o0
Ty ~ 02/ N (z+n)"dr ~ n1_2702/ uw (1 +u)"du
0 0
as n — 0o, where
o0
| =B - 22y - ) = L= )Py - D/T0)
0

with B(z,w) and I'(z) the beta and gamma functions; see 6.1.1, 6.2.1 and
6.2.2 of Abramowitz and Stegun (1972). Hence

oo~ O™ as n— oo, (6.9)

where

Ci = T(1 —y)0(2y —1)/T(v) . (6.10)
By Lemma 4.6.1, H = (3 — 2v)/2 and

Var(Sy) ~ Con®™? as n — oo, (6.11)

where

Cy = 2¢°T(1 = )02y = 1)/T(7)(3 — 27)* . (6.12)
For instance, if v = 3/4, then H = 3/4 and Cy = 41.95¢% for ¢ in (6.8). =
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4.6.3. Convergence to Fractional Brownian Motion

We can deduce that the limit process S for S,, in (6.4), with (6.6) holding,
must be a Gaussian process. First, if the basic sequence {X,, : n > 1} is
a Gaussian process, then the scaled partial-sum process {S,(¢) : t > 0}
must also be a Gaussian process for each n, which implies that S must be
Gaussian if S, = S. Hence, if a limit holds more generally without the
Gaussian condition, then the limit process must be as determined for the
special case.

Alternatively, starting from the linear-process representation (6.6) with
a general sequence {Y,,} of IID random variables with EY,, = 0 and EY,? =
1, we can apply the central limit theorem for non-identically distributed
summands, e.g., as on p. 262 of Feller (1971), and the Cramer-Wold device
in Theorem 4.3.3 to deduce that

(Sp(t1),...,Sn(ty)) = (S(t1),...,S(tx)) in R

for all positive integers k and all k-tuples (¢1,...,t;) with 0 <t; < -+ < t,
where (S(¢1),...,S(¢x)) must have a Gaussian distribution. Thus, weak
convergence in D only requires in addition showing tightness.

The limit process in the FCLT is fractional Brownian motion (FBM).
Standard FBM is the zero-mean Gaussian process Zy = {Zy(t) : t > 0}
with covariance function

1
ri(s,t) = Cov(Zy(s),Zy(t)) = E(tZH R I (6.13)
where any H with 0 < H < 1 is allowed. For H = 1/2, standard FBM
reduces to standard Brownian motion.
Standard FBM can also be expressed as a stochastic integral with respect
to standard Brownian motion; in particular,

t
Z(t) = / wy (£, 1) dB (), (6.14)
where
0, u > t,
wy (tyu) = (8 —u)-1/2, 0<u<t, (6.15)

(t —u)-12 — (—u)H-1/2 4 <.

Of course, some care is needed in defining the stochastic integral with respect
to Brownian motion, because the paths are of unbounded variation, but this
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problem has been addressed; e.g., see Karatzas and Shreve (1988), Protter
(1992), Section 2.4 of Beran (1994) and Chapter 7 of Samorodnitsky and
Taqqu (1994).

Note that (6.14) should be consistent with our expectations, given the
initial weighted sum in (6.6). From (6.14) we can see how the dependence
appears in FBM. We also see that FBM is a smoothed version of BM. For ex-
ample, from (6.14) it is evident that FBM has continuous sample paths. The
process FBM is also H-self-similar, which can be regarded as a consequence
of being a weak-convergence limit, as discussed in Section 4.2.

We are now ready to state the FCLT, which is due to Davydov (1970);
also see p. 288-289 of Taqqu (1975). Note that the theorem always holds for
1/2 < H < 1, but also holds for 0 < H < 1/2 under extra moment conditions
(in (6.17) below). These extra moment conditions are always satisfied in the
Gaussian case. For refinements, see Avram and Taqqu (1987) and references
therein.

Theorem 4.6.1. (FCLT for strong dependence and light tails) Suppose that
the basic stationary sequence {X, : n > 1} is either a zero-mean Gaussian
process or a zero-mean linear process as in (6.6) and (6.7) with E[X?2] < oco.

If

Var(S,) = =n?2L(n), n>1, (6.16)
for 0 < H < 1, where L is slowly varying, and, in the non-Gaussian case,
E|S,|** < K(E[S%]%) for some a>1/H (6.17)

for some constant K, then
S, =Zyg in (D,Jy) (6.18)

for Sy, in (6.4) with ¢, in (6.16) and Zy standard FBM with self-similarity
index H.

Remark 4.6.1. Applying the continuous-mapping approach. Considering
the linear-process representations in (6.6) and (6.14), it is natural to view
the limit in (6.18) as convergence of stochastic integrals

/wndBn — /de, (6.19)
where the integrands are deterministic, the limiting stochastic integral cor-

responds to (6.14) and

[nt]
B,(t)=n"'2)"V;,, t>0.
=1
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Donsker’s theorem states that B,, = B in D. It remains to show that
wy — w in a manner so that (6.19) holds. An approach to weak convergence
of linear processes along this line is given by Kasahara and Maejima (1986).
An earlier paper in this spirit for the special case of discounted processes
is Whitt (1972). For more on convergence of stochastic integrals, see Kurtz
and Protter (1991) and Jakubowski (1996). The point of this remark is that
Theorem 4.6.1 should properly be viewed as a consequence of Donsker’s
FCLT and the continuous-mapping approach. =

The linear-process representation in (6.6) is convenient mathematically
to impose structure, because we have constructed the stationary sequence
{X,} from an underlying sequence of IID random variables with finite sec-
ond moments, which we know how to analyze. What may not be evident,
however, is that the linear-process representation can arise naturally from
modelling. We show that it can arise naturally from time-series modeling in
Section 2.5 of the Internet Supplement.

In Chapter 1, the random-walk simulations suggested stochastic-process
limits. Having already proved convergence to FBM, we now can use the
stochastic-process limits to provide a way to simulate FBM.

Example 4.6.2. Simulating FBM. We can simulate FBM, or more prop-
erly an approximation of FBM, by simulating a random walk {S,} with
steps X, satisfying the linear-process representation in (6.6), where {Y,,}

is IID with mean 0 and variance 1. We will let V; £ N (0,1). As part of
the approximation, we truncate the series in (6.6). That can be done by
assuming that a; = 0 for j > N, where N is suitably large.

As in Chapter 1, the plotter does the appropriate space scaling auto-
matically. In order to verify that what we see is consistent with the theory,
we calculate the appropriate space-scaling constants. To be able to do so
conveniently, we use the power weights in Example 4.6.1 with ¢ = 1 and
v = 3/4. As indicated there, then the self-similarity index is H = 3/4,
Var(S,) ~ 41.95n*H and the space-scaling constants are

¢n =\/Var(Sy) = 6.47Tn3/* .

We plot S, for 0 < k < n for n = 10% and n = 10? in Figures 4.1 and 4.2.
We plot four independent replications in each case. In these examples, we let
N = 10%. We use smaller n than in the IID case, because the computation is
more complex, tending to require work of order n/N. Comparing Figure 4.1
to Figures 1.3 and 1.4, we see that the sample paths of FBM are smoother
than the paths of BM, as we should anticipate from (6.14).
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Figure 4.1: Four independent realizations of the first 10 steps of the un-
scaled random walk {Sj : 0 < k < n} associated with the strongly dependent
steps in Example 4.6.1.
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Figure 4.2: Four independent realizations of the first 10% steps of the un-
scaled random walk {Sj : 0 < k < n} associated with the strongly dependent
steps in Example 4.6.1.
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As in Chapter 1, we can see emerging statistical regularity by consider-
ing successively larger values of n. The plots tend to look the same as n
increases. However, as with the heavy-tailed distributions (the Noah effect),
there is more variability from sample path to sample path than in the ITD
light-tailed case, as depicted in Figures 1.3 and 1.4. Even though the steps
have mean 0, the strong dependence often make the plots look like the steps
have non-zero mean. These sample paths show that it would be impossible
to distinguish between strong dependence and nonstationarity from only a
modest amount of data, e.g., from only a few sample paths like those in
Figures 4.1 and 4.2.

The standard deviations of S, for n = 100 and n = 1,000 are 205 and
1152, respectively. That is consistent with the final positions seen in Figures
4.1 and 4.2.

Since it is difficult to simulate the random walk S, with dependent steps
X, it is natural to seek more efficient methods to simulate FBM. For discus-
sion of alternative methods, see pp. 370, 588 of Samorodnitsky and Tagqu
(1994).

The strong dependence poses a difficulty because of increased variability.
The increased variability is indicated by the growth rate of Var(S,) as n —
oo. However, the strong dependence also has a positive aspect, providing
an opportunity for better prediction.

Remark 4.6.2. Exploiting dependence for prediction. The strong depen-
dence helps to exploit observations of the past to predict process values in
the not-too-distant future. To illustrate, suppose that we have a linear pro-
cess as in (6.6), and that as time evolves we learn the values of the underlying
sequence Yy, so that after observing X,, and S,, we know the variables Y;
for j <mn. From (6.6), the conditional means and variances are

o0
E[Xpk]Yiyj <nl =" ary;Yn s (6.20)
§=0
k—1
Var(Xn Vs, j <n) = E[(Xnik — B[X,14]Y5,5 <nl)’] =Y a7, (6.21)
j=0
oo jtk
B[Snik]Yj,d <nl=> (Y ai)Yu (6.22)

§=0 i=j+1
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and

B
—_

J
Q)

=0

Var(SuslYj,d < n) = Bl(Susr — ElSusi|¥j < n])

<.
I
=)

If we use a criterion of mean-squared error, then the conditional mean
is the best possible predictor of the true mean and the conditional variance
is the resulting mean-squared error. A similar analysis applies to FBM,
assuming that we learn the history of the underlying Brownian motion in the
linear-process representation in (6.14). However, in many applications we
can only directly observe the past of the sequence {X,,}, or the FBM Zy(t)
in case of the limit process. Fortunately, prediction can still be done by
expoliting time-series methods. We discuss prediction in queues in Remark
8.7.2. =

In some applications (e.g., at the end of Section 7.2 below) we will want
continuous-time analogs of Theorem 4.6.1. With continuous-time processes,
we need to work harder to establish tightness. We show how this can be
done for Gaussian processes with continuous sample paths.

Theorem 4.6.2. (FCLT for Gaussian processes in C) If {Y(¢) : t > 0} is
a zero-mean Gaussian process with stationary increments, sample paths in
C,Y(0)=0,

VarY (t) ~ ct*  as t — oo (6.23)

and
VarY (t) < Kt*% forall t>0 (6.24)

for some constants ¢, K and H with 1/2 < H < 1, then
Z,=cZy in (C,U),
where Zy s standard FBM and

Z,(t) =n" 1Y (nt), t>0.

Proof. For each n, Z, is a Gaussian process. Given (6.23), it is elementary
that cov(Zy,(s),Zn(t)) — cov(Z(s),Z(t)) as n — oo for all s and ¢. That
establishes convergence of the finite-dimensional distributions. By (6.24),

E[(Zn(t) — Zn(5)?] =n 22VarY (n(t — s)) < K(t — s)*,

which implies tightness by Theorem 11.6.5. =
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4.7. Heavy Tails Plus Dependence

The previous three sections described FCLTs with only heavy tails (Sec-
tion 4.5) and with only dependence (Sections 4.4 and 4.6). The most compli-
cated case involves both heavy tails and dependence. Unfortunately, there
is not yet a well developed theory for stochastic-process limits in this case.
Evidently, a significant part of the difficulty stems from the need to use
nonstandard topologies on the function space D; e.g., see Avram and Taqqu
(1992) and Jakubowski (1996). Hence, this interesting case provides addi-
tional motivation for the present book, but it remains to establish important
new results.

We start by considering the natural analog of Section 4.4 to the case of
heavy tails: stable limits with weak dependence. Since the random variables
do not have finite variances, even describing dependence is complicated,
because the covariance function is not well defined. However, alternatives to
the covariance have been developed; see Samorodnitsky and Taqqu (1994).
We understand weak dependence to hold when there is dependence but the
stochastic-process limit is essentially the same as in the IID case.

We state one result for stable limits with weak dependence. It is a
FCLT for linear processes with heavy tails. However, there is a significant
complication caused by having dependence together with jumps in the limit
process. To obtain a stochastic-process limit in D, it is necessary to use the
M, topology on D. Moreover, even with the M; topology, it is necessary to
impose additional conditions in order to establish the FCLT.

4.7.1. Additional Structure

Just as in the last section, in this section we assume that the basic
sequence {X, : n > 1} is a stationary sequence with a linear-process repre-
sentation

X, = Zann_j, (7.1)
§=0

where the innovation process {Y, : —oo < n < oo} is a sequence of IID
random variables, but now we assume that Y,, has a heavy-tailed distribu-
tion. In particular, we assume that the distribution of Y;, is in the domain
of attraction of a stable law S, (1,3,0) with 0 < a < 2; i.e., we assume that
(5.21) and (5.22) hold. That in turn implies that Var(Y;,) = oc.
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Given the stable index «, we assume that

o
Z laj|*™¢ < oo for some €>0. (7.2)
=0

Condition (7.2) ensures that the sum (7.1) converges in the LP space for
p = a — € and w.p.1; see Avram and Taqqu (1992). However, the variance
Var(X,) is necessarily infinite.

We first remark that condition (7.2) permits quite strong dependence,
because we can have

aj~cj~7 as j—oo for any y>al, (7.3)

where ¢ is a positive constant, so we might have 322, |a;| = oco.

For simplicity, we assume that EFY, = 0 if 1 < a < 2 and that the
distribution of Y, is symmetric if &« = 1. Then, under the assumptions
above, Theorems 4.5.1 and 4.5.3 imply that

S, =S in (D,J), (7.4)
where
[nt]
Sn(t)=c,' Y Vi, t>0, (7.5)
i=1

S is a stable process with S(1) 4 S,(1,8,0) and ¢, = n'/*L(n) for some
slowly varying function L. We are interested in associated FCLTs for

[nt)

Zn(t)=c;,' > X, t>0, (7.6)
=1

for {X,} in (7.1) and {c, : n > 1} in (7.5).

4.7.2. Convergence to Stable Lévy Motion

In considerable generality, Z,, in (7.6) satisfies essentially the same FCLT
as S, in (7.5), with the limit being a constant multiple of the previous
limit S. The following result is from Astrauskas (1983), Davis and Resnick
(1985) and Avram and Taqqu (1992). Note that the M; topology is used.
Let Z, = Z in (D, f.d.d.) mean that there is convergence of all finite-
dimensional distributions.
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Theorem 4.7.1. (FCLT for a linear process with heavy tails) Suppose that
the sequence {X,} is the linear process in (7.1) satisfying the assumptions
above, which imply (7.4). If, in addition,

o0

> laj| < oo, (7.7)

=0
then -
Zn = () a;)S in (D,f.dd.)
=0

for S in (7.4) and Z,, in (7.6). Suppose, in addition, that a; > 0 for all i.
If any one of the following conditions hold:

(1)) 0 <a<l,
(11) a; # 0 for only finitely many i,

(iii) o > 1, 32 |a;|” < oo for some v < 1 and {a;} is a monotone
sequence,

then o
Zn= (D> a;)S in (D,M).

§=0

Avram and Taqqu (1992) actually established the M;-convergence part
of Theorem 4.7.1 under a somewhat weaker condition than stated above.
Avram and Taqqu (1992) show that the M; topology is critical in Theorem
4.7.1; the result does not hold in (D, Jy) if there are at least two nonzero
coefficients in (7.1). Indeed, that is evident because an exceptionally large
value of Y,, will correspond to more than one exceptionally large value in the
X,; i.e., the jump in the limit process for Z, will correspond to more than
one jump in the converging processes. The linear-process structure is yet
another setting leading to unmatched jumps in the limit process, requiring
the M; topology instead of the familiar J; topology.

Note that the limit process in Theorem 4.7.1 has independent increments.
Thus, just as in Section 4.4, the dependence in the original process is asymp-
totically negligible in the time scaling of the stochastic-process limit. Thus,
the predicted value of S|, for ¢ > 1 given Sj,j < n, is about S,. At
that time scale, there is not much opportunity to exploit past observations,
beyond the present value, in order to predict future values.
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Figure 4.3: Four independent realizations of the first 10% steps of the un-
scaled random walk {S; : 0 < k < n} associated with the dependent heavy-
tailed steps in Example 4.7.1.

Example 4.7.1. Simulation to experience Theorem 4.7.1. To illustrate
Theorem 4.7.1, suppose that Y] has the Pareto(p) distribution with p = 3/2,
just as in Section 1.4. Let the weights be a; = 478 for 5 > 0. We simulate
the random walk just as in Example 4.6.2. Since the weights decay faster
here, it suffices to use a smaller truncation point N; we use N = 100. We
plot four independent replications of the random walk {Sy : 0 < k < n} for
n = 1,000 in Figure 4.3. The plots look just like the plots of the random
walk in the IID case in Figures 1.20, 1.21 and 1.22. Thus the simulation is
consistent with Theorem 4.7.1. =
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4.7.3. Linear Fractional Stable Motion

Note that the conditions of Theorem 4.7.1 do not cover the case in which
aj~cj 7 as j— o0 (7.8)

for ¢ > 0 and ! <y <1, where 1 < a < 2. We include v > a~! in (7.8)
so that condition (7.2) is still satisfied, but condition (7.7) is violated. We
refer to this case as strong positive dependence with heavy tails.

The limit process when (7.8) holds is linear fractional stable motion
(LFSM), which is an H-sssi a-stable process with self-similarity index

H=al'4+1—y>a!, (7.9)

where 1 < a < 2, so that 27! < a~! < 1, and H < 1; see Sections 7.3 and
7.4 of Samorodnitsky and Taqqu (1994).

Paralleling the representation of FBM as a stochastic integral with re-
spect to standard Brownian motion in (6.14), we can represent LFSM as
a stochastic integral with respect to stable Lévy motion; in particular, for
l<a<2anda < H <1,

Zia(t) = / t w (t,u)dSa(u) | (7.10)

—o0
where S, is an a-stable Lévy motion with S,(1) 4 So(1,5,0) and

0, u > t,

wr(tu) = (8 — ), 0<u<t, (7.11)
(t _ U)Hfl/a _ (_U)Hfl/a u<0;

The LFSM in (7.10) is natural because Zp ,(t) depends upon S, only over
the interval (—oo,t| for any ¢, so that we can regard S, as an innovation
process. For more general LFSMs, see Samorodnitsky and Taqqu (1994).
It is significant that the LFSM above has continuous sample paths; see
Theorem 12.4.1 of Samorodnitsky and Taqqu (1994).

Theorem 4.7.2. (FCLT with both the Noah and Joseph effects) Suppose
that the basic sequence {X,} has the linear-process representation (7.1),
where {Yy,} is a sequence of IID random wvariables with Yy in the normal
domain of attraction of the stable law S, (1,[3,0) i.e., such that (5.26) and
(5.27) hold. If, in addition, (7.8) holds, then

Z,=Zy, in (D,J;),



162 CHAPTER 4. A PANORAMA

where Zp o is LFESM in (7.10) and Z,, is the scaled partial-sum process in
(7.6) with space-scaling constants

en =0 (A)C)V(c/(1=7)), n>1 (7.12)

for A in (5.26), Cy in (5.14), (¢,7y) in (7.8) and the self-similarity index H
in (7.9).

By Theorem 4.5.2, under the assumptions in Theorem 4.7.2, the space-
scaling constants for the partial sums of Y, are ¢, = (nA/Cy)"/®. From
(7.12), we see that the linear-process representation produces the extra mul-
tiplicative factor =% "¢(1 — )L,

We remark that Astrauskas (1983) actually proved a more general result,
allowing both the tail probability P(]Yi| > z) and the weights a; to be
regularly varying at infinity instead of pure power tails. For extensions of
Theorems 4.7.1 and 4.7.2, see Hsing (1999) and references therein.

Example 4.7.2. Simulating LFSM.

To illustrate Theorem 4.7.2, suppose that Y7 has the Pareto(p) distri-
bution with p = 3/2, just as in Example 4.7.1, but now let the weights be
aj = j~7 for v = 3/4, just as in Example 4.6.2. Hence we have combined the
heavy-tailed feature of Example 4.7.1 with the strong-dependence feature in
Example 4.6.2. Since a = p,

y>al=2/3
and (7.8) is satisfied. From (7.9), the self-similarity index in this example is
H=a'4+1-y=11/12,

so that H is much greater than 1/2.

We simulate the random walk just as in Example 4.7.1, except that we
let the truncation point N be higher because of the more slowly decaying
weights; in particular, now we let N = 1,000. We plot four independent
replications of the random walk {S; : 0 < k < n} for n = 1,000 in Figure
4.4.

Unlike the plots in Figure 4.3, it is evident from Figure 4.4 that the
sample paths are now continuous. However, the heavy tails plus strong
dependence can induce strong surges up and down. The steady downward
trend in the first plot occurs because there are relatively few larger values.
The sudden steep upward surge at about ;7 = 420 in the fourth plot in
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Figure 4.4: Four independent realizations of the first 10 steps of the un-
scaled random walk {Sj : 0 < k < n} associated with the strongly dependent
steps in Example 4.7.2.
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Figure 4.4 occurs because of a few exceptionally large values at that point.
In particular, Y316 = 17.0, Yio6 = 88.1 and Y430 = 24.3. In contrast, in the
corresponding plot of FBM in Figure 4.2 with the same weights a; = G734,
all 2,000 of the normally distributed Y; satisfy |Y;| < 3.2. Finally, note that
the large value of H is consistent with the large observed values of the range
in the plots. =

From the dependent increments in the LESM limit process, it is evident
that there is again (as in Section 4.6) an opportunity to exploit the history
of past observations in order to predict future values of the process. With
strong dependence plus heavy-tailed distributions, the statistical techniques
are more complicated, but there is a growing literature; see Samorodnitsky
and Taqqu (1994), Kokoszka and Taqqu (1995, 1996a,b), Montanari, Rosso
and Taqqu (1997), Embrechts, Kliippelberg and Mikosch (1997) and Adler,
Feldman and Tagqu (1998).

4.8. Summary

We have now presented FCLT's for partial sums in each of the four cases
— light or heavy tails with weak or strong dependence. We summarize the
results in the table below.

Dependence
Weak Strong
Joseph effect
light | Sections 4.3 and 4.4 Section 4.6
Tails

heavy

Section 4.5 Theorem 4.7.2
Noah Theorem 4.7.1
effect

Table 4.1: The four kinds of FCLT's established in Sections 4.3-4.7

In conlusion, we observe that the theory seems far from final form for
the strong dependence discussed in Sections 4.6 and 4.7 and for heavy tails
with any form of dependence. The results should be regarded as illustrative
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of what is possible. Careful study of specific applications is likely to unearth
important new limit processes.

We next show how the continuous-mapping approach can be applied with
established stochastic-process limits to establish heavy-traffic stochastic-
process limits for queues. In Chapter 7 we present additional established
stochastic-process limits.
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Chapter 5

Heavy-Traffic Limits for
Fluid Queues

5.1. Introduction

In this chapter we see how the continuous-mapping approach can be ap-
plied to establish heavy-traffic stochastic-process limits for queueing models,
and how those heavy-traffic stochastic-process limits, in turn, can be applied
to obtain approximations for queueing processes and gain insight into queue-
ing performance.

To establish the heavy-traffic stochastic-process limits, the general idea
is to represent the queueing “content” process of interest as a reflection of
a corresponding net-input process. For single queues with unlimited stor-
age capacity, a one-sided one-dimensional reflection map is used; for single
queues with finite storage capacity, a two-sided one-dimensional reflection
map is used. These one-dimensional reflection maps are continuous as maps
from D to D with all the principal topologies considered by virtue of results
in Sections 13.5 and 14.8. Hence, FCLT’s for scaled net-input processes
translate into corresponding FCLT’s for scaled queueing processes.

Thus we see that the relatively tractable heavy-traffic approximations
can be regarded as further instances of the statistical regularity stemming
from the FCLT’s in Chapter 4. The FCLT for the scaled net-input processes
may be based on Donsker’s theorem in Section 4.3 and involve convergence
to Brownian motion; then the limit process for the scaled queueing processes
is reflected Brownian motion (RBM). Alternatively, the FCLT for the scaled
net-input processes may be based on one of the other FCLT’s in Sections

167
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4.5 — 4.7 and involve convergence to a different limit process; then the limit
process for the scaled queueing processes is the reflected version of that other
limit process.

For example, when the net-input process can be constructed from partial
sums of IID random variables with heavy-tailed distributions, Section 4.5
implies that the scaled net-input processes converge to a stable Lévy motion;
then the limit process for the queueing processes is a reflected stable Lévy
motion. The reflected stable Lévy motion heavy-traffic limit describes the
effect of the extra burstiness due to the heavy-tailed distributions.

As indicated in Section 4.6, it is also possible to have more burstiness
due to strong positive dependence or less burstiness due to strong negative
dependence. When the net-input process has such strong dependence with
light-tailed distributions, the scaled net-input processes may converge to
fractional Brownian motion; then the limit process for the scaled queueing
processes is reflected fractional Brownian motion.

In this chapter, attention will be focused on the “classical” Brownian
approximation involving RBM and its application. For example, in Section
5.8 we show how the heavy-traffic stochastic-process limit with convergence
to RBM can be used to help plan queueing simulations, i.e., to estimate
the required run length to achieve desired statistical precision, as a function
of model parameters. Reflected stable Lévy motion will be discussed in
Sections 8.5 and 9.7, while reflected fractional Brownian motion will be
discussed in Sections 8.7 and 8.8.

In simple cases, the continuous-mapping approach applies directly. In
other cases, the required argument is somewhat more complicated. A specific
simple case is the discrete-time queueing model in Section 2.3. In that case,
the continuous-mapping argument applies directly: FCLT’s for the partial
sums of inputs Vi translate immediately into associated FCLT’s for the
workload (or buffer-content) process {Wj}, exploiting the continuity of the
two-sided reflection map. The continuous-mapping approach applies directly
because, as indicated in (3.5) in Chapter 1, the scaled workload process is
exactly the reflection of the scaled net-input process, which itself is a scaled
partial-sum process. Thus all the stochastic-process limits in Chapter 4
translate into corresponding heavy-traffic stochastic-process limits for the
workload process in Section 2.3.

In this chapter we see how the continuous-mapping approach works
with related continuous-time fluid-queue models. We start considering fluid
queues, instead of standard queues (which we consider in Chapter 9), be-
cause fluid queues are easier to analyze and because fluid queues tend to
serve as initial “rough-cut” models for a large class of queueing systems.



5.2. A GENERAL FLUID-QUEUE MODEL 169

The fluid-queue models have recently become popular because of applica-
tions to communication networks, but they have a long history. In the
earlier literature they are usually called dams or stochastic storage mod-
els; see Moran (1959) and Prabhu (1998). In addition to queues, they have
application to inventory and risk phenomena.

In this chapter we give proofs for the theorems, but the emphasis is on
the statement and applied significance of the theorems. The proofs illustrate
the continuous-mapping approach for establishing stochastic-process limits,
exploiting the useful functions introduced in Section 3.5. Since the proofs
draw on material from later chapters, upon first reading it should suffice to
focus, first, on the theorem statements and their applied significance and,
second, on the general flow of the argument in the proofs.

5.2. A General Fluid-Queue Model

In a fluid-queue model, a divisible commodity (fluid) arrives at a storage
facility where it is stored in a buffer and gradually released. We consider an
open model in which fluid arrives ezogenously (from outside). For such open
fluid-queue models, we describe the buffer content over time. In contrast,
in a standard queueing model, which we consider in Chapter 9, individual
customers (or jobs) arrive at a service facility, possibly wait, then receive
service and depart. For such models, we count the number of customers in
the system and describe the experience of individual customers. The fluid
queue model can be used to represent the unfinished work in a standard
queueing model. Then the input consists of the customer service require-
ments at their arrival epochs. And the unfinished work declines at unit rate
as service is provided.

In considering fluid-queue models, we are motivated to a large extent by
the need to analyze the performance of evolving communication networks.
Since data carried by these networks are packaged in many small packets, it
is natural to model the flow as fluid, i.e., to think of the flow coming contin-
uously over time at a random rate. A congestion point in the network such
as a switch or router can be regarded as a queue (dam or stochastic storage
model), where input is processed at constant or variable rate (the available
bandwidth). Thus, we are motivated to consider fluid queues. However,
we should point out that other approaches besides queueing analysis are
often required to engineer communication networks; to gain perspective, see

Feldmann et al. (2000, 2001) and Krishnamurthy and Rexford (2001).
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5.2.1. Input and Available-Processing Processes

In this section we consider a very general model: We consider a single fluid
queue with general input and available-processing (or service) processes.
For any ¢t > 0, let C(t) be the cumulative input of fluid over the interval
[0,t] and let S(¢) be the cumulative available processing over the interval
[0,%]. If there is always fluid to process during the interval [0,¢], then the
quantity processed during [0,¢] is S(¢). We assume that {C(¢) : t > 0}
and {S(¢) : t > 0} are real-valued stochastic processes with nondecreasing
nonnegative right-continuous sample paths. But at this point we make no
further structural or stochastic assumptions.

A common case is processing at a constant rate ;4 whenever there is fluid
to process; then

St)=put, t>0. (2.1)

More generally, we could have input and output at random rates. Then

C(t) = /Ot R;(s)ds and S(t) = /Ot Ry(s)ds, t>0, (2.2)

where {R;(t) : t > 0} and {R,(t) : t > 0} are nonnegative real-valued
stochastic processes with sample paths in D. For example, it is natural
to have maximum possible input and processing rates v; and v,. Then, in
addition to (2.2), we would assume that

0<Ri(t)<v; and 0< R,(t)<v, forall ¢t w.p.l. (2.3)

With (2.2), the stochastic processes C' and S have continuous sample paths.
We regard that as the standard case, but we allow C and S to be more
general.

With the general framework, the discrete-time fluid-queue model in Sec-
tion 2.3 is actually a special case of the continuous-time fluid-queue model
considered here. The previous discrete-time fluid queue is put in the present
framework by letting

Lt]
C(t)EZVk and S(t)=plt], t>0,
k=1

where |t] is the greatest integer less than or equal to t.
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5.2.2. Infinite Capacity

We will consider both the case of unlimited storage space and the case
of finite storage space. First suppose that there is unlimited storage space.
Let W (t) represent the workload (or buffer content, i.e., the quantity of
fluid waiting to be processed) at time ¢. Note that we can have significant
fluid flow without ever having any workload. For example, if W (0) = 0,
C(t) = At and S(t) = pt for all ¢ > 0, where A\ < p, then fluid is processed
continuously at rate A, but W (¢) = 0 for all ¢. However, if C' is a pure-jump
process, then the processing occurs only when W (¢) > 0. (The workload or
virtual-waiting-time process in a standard queue is a pure-jump process.)

The workload W (t) can be defined in terms of an initial workload W (0)
and a net-input process C(t) — S(t), t > 0, via a potential-workload process

X(@t)=W(00)+C(t)—S(t), t>0, (2.4)
by applying the one-dimensional reflection map to X, i.e., by letting
W(t) = p(X)(1) = X(1) - inf {X(s)AO}, £20,  (25)
_s_

where a A b = min{a, b}.

We could incorporate the initial workload W (0) into the cumulative-
input process {C(t) : t > 0} by letting C(0) = W (0). Then X would simply
be the net-input process. However, we elect not to do this, because it is
convenient to treat the initial conditions separately in the limit theorems.

The potential workload represents what the workload would be if we
ignored the emptiness condition, and assumed that there is always output
according to the available-processing process S. Then the workload at time
t would be X(¢): the sum of the initial workload W (0) plus the cumula-
tive input C(¢) minus the cumulative output S(¢). Since emptiness may
sometimes prevent output, we have definition (2.5).

Formula (2.5) is easy to understand by looking at a plot of the potential
workload process {X(¢) : ¢ > 0}, as shown in Figure 5.1. Figure 5.1 shows
a possible sample path of X when S(t) = ut for ¢ > 0 w.p.1 and there is
only one on-off source that alternates between busy periods and idle periods,
having input rate r > p during busy periods and rate 0 during idle periods.
Hence the queue alternates between net-input rates r — p > 0 and —p < 0.
The plot of the potential workload process {X(t) : ¢ > 0} also can be
interpreted as a plot of the actual workload process if we redefine what is
meant by the origin. For the workload process, the origin is either 0, if X
has not become negative, or the lowest point reached by X. The position of
the origin for W is shown by the shaded dashed line in Figure 5.1.
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X (t)

Figure 5.1: A possible realization of the potential workload process {X (¢) :
t > 0} and the actual workload process {W(¢) : ¢ > 0} with unlimited
storage capacity: The actual workload process appears if the origin is the
heavy shaded dashed line; i.e., solid line - dashed line = actual workload.

An important observation is that the single value W (¢), for any ¢ > 0,
depends on the initial segment {X(s) : 0 < s < t}. To know W(¢), it is
not enough to know the single value X (¢). However, by (2.5) it is evident
that, for any ¢t > 0, both W (¢) and the initial segment {W(s) : 0 < s < ¢}
are functions of the initial segment {X(s) : 0 < s < ¢t}. With appropriate
definitions, the reflection map in (2.5) taking the modified net-input process
{X(t) : t > 0} into the workload processes {W(¢) : t > 0} is a continuous
function on the space of sample paths; see Section 13.5. Thus, by exploiting
the continuous mapping theorem in a function space setting, a limit for a
sequence of potential workload processes will translate into a corresponding
limit for the associated sequence of workload processes.

Remark 5.2.1. Model generality. It may be hard to judge whether the
fluid queue model we have introduced is exceptionally general or restrictive.
It depends on the perspective: On the one hand, the model is very general
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because the basic stochastic processes C' and S can be almost anything. We
illustrate in Chapter 8 by allowing the input C' to come from several on-off
sources. We are able to treat that more complex model as a special case
of the model studied here. On the other hand, the model is also quite re-
strictive because we assume that the workload stochastic process is directly
a reflection of the potential-workload stochastic process. That makes the
continuous-mapping approach especially easy to apply. In contrast, as we
will see in Chapter 9, it is more difficult to treat the queue-length process in
the standard single-server queue without special Markov assumptions. How-
ever, additional mathematical analysis shows that the model discrepancy is
asymptotically negligible: In the heavy-traffic limit, the queue-length pro-
cess in the standard single-server queue behaves as if it could be represented
directly as a reflection of the associated net-input process. And similar
stories hold for other models. The fluid model here is attractive, not only
because it is easy to analyze, but also because it captures the essential nature
of more complicated models. =

The general goal in studying this fluid-queue model is to understand
how assumed behavior of the basic stochastic processes C' and S affects the
workload stochastic process W. For example, assuming that the net-input
process C' — S has stationary increments and negative drift, under minor
regularity conditions (see Chapter 1 of Borovkov (1976)), the workload W ()
will have a limiting steady-state distribution. We want to understand how
that steady-state distribution depends on the stochastic processes C' and
S. We also want to describe the transient (time-dependent) behavior of the
workload process. Heavy-traffic limits can produce robust approximations
that may be useful even when the queue is not in heavy traffic.

We now want to consider the case of a finite storage capacity, but before
defining the finite-capacity workload process, we note that the one-sided
reflection map in (2.5) can be expressed in an alternative way, which is
convenient for treating generalizations such as the finite-capacity model and
fluid networks; see Chapter 14 and Harrison (1985) for more discussion.
Instead of (2.5), we can write

W(t) = H(X)(t) = X(¢t) + L(¢t), (2.6)

where X is the potential workload process in (2.4) and {L(¢) : ¢ > 0} is a
nondecreasing “regulator” process that increases only when W (t) = 0, i.e.,
such that

/t W(s)dL(s) =0, +>0. (2.7)
0
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From (2.5), we know that

L(t) = — inf {X >0. 2.
(6)= - inf {X() A0}, £20 (28)
It can be shown that the characterization of the reflection map via (2.6)
and (2.7) is equivalent to (2.5). For a detailed proof and further discussion,
see Chapter 14, which focuses on the more complicated multidimensional
generalization.

5.2.3. Finite Capacity

We now modify the definition in (2.6) and (2.7) to construct the finite-
capacity workload process. Let the buffer capacity be K. Now we assume
that any input that would make the workload process exceed K is lost. Let

W(t) = ¢ (X)(t) = X(1) + L(t) = U(t), t>0, (2.9)

where again X (¢) is the potential workload process in (2.4), the initial con-
dition is now assumed to satisfy 0 < W(0) < K, and L(¢t) and U(t) are both
nondecreasing processes. The lower-boundary regulator process L = 1, (X)
increases only when W (t) = 0, while the upper-boundary regulator process
U = 1y (X) increases only when W (t) = K i.e., we require that

/t W (s)dL(s) = /t[K CW(s)dU(s) =0, t>0.  (2.10)
0 0

The random variable U () represents the quantity of fluid lost (the overflow)
during the interval [0,¢]. We are often interested in the overflow process
{U(t) : t > 0} as well as the workload process {W(¢t) : t > 0}.

Note that we can regard the infinite-capacity model as a special case of
the finite-capacity model. When K = oo, we can regard the second integral
in (2.10) as implying that U(t) = 0 for all ¢ > 0.

Closely paralleling Figure 5.1, for the finite-capacity model we can also
depict possible realizations of the processes X and W together, as shown in
Figure 5.2. As before, the potential workload process is plotted directly, but
we also see the workload (buffer content) process W if we let the origin and
upper barrier move according to the two heavily shaded dashed lines, which
remain a distance K apart. Decreases in the dashed lines correspond to in-
creases in the lower-barrier regulator process L, while increases in the shaded
lines correspond to increases in the upper-barrier regulator process U. From
the Figure 5.2, the validity of (2.9) and (2.10) is evident. Furthermore, it
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is evident that the two-sided reflection in (2.9) can be defined by successive
applications of the one-sided reflection map in (2.5) and (2.6) correspond-
ing to the lower and upper barriers separately. For further discussion, see
Section 14.8.

Y ()
K 1}
\
\ -
A
W(t) ¢ ===

0
4 time ¢
!
4

Figure 5.2: A possible realization of the potential workload process {X (¢) :
t > 0} and the actual workload process {W (t) : ¢ > 0} with finite storage
capacity K: The actual workload process appears if the origin and upper
limit are the heavily shaded dashed lines always a distance K apart. As in
Figure 5.1, solid line - lower dashed line = actual workload.

As in the infinite-capacity case, given K, the initial segment {W(s), L(s), U(s) :
0 < s < t} depends on the potential-workload process X via the cor-
responding initial segment {X(s) : 0 < s < t}. Again, under regular-
ity conditions, the reflection map in (2.9) taking {X(¢) : ¢ > 0} into
{(W(t),L(t),U(t) : t > 0} is a continuous function on the space of sample
paths (mapping initial segments into initial segments). Thus, stochastic-
process limits for X translate into stochastic-process limits for (W, L,U),
by exploiting the continuous-mapping approach with the full reflection map
(¢K,%r,%y) in a function space setting.

Let D(t) represent the amount of fluid processed (not counting any over-
flow) during the time interval [0,¢]. We call {D(¢) : t > 0} the departure
process.
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From (2.4) and (2.9),

D(t) = W(0)+Ct) —W(t) - U(t)
= S{t)—L{t), t>0. (2.11)

Note that the departure process D in (2.11) is somewhat more compli-
cated than the workload process W because, unlike the workload process,
the departure process cannot be represented directly as a function of the
potential workload process X or the net-input process C — S. In general,
the departure process cannot be represented directly in terms of X or C— S
because these processes cannot see the values of jumps in C and S that occur
at the same time. Simultaneous jumps in C' and S correspond to instants
at which fluid arrives and some of it is instantaneously processed. The fluid
that is instantaneously processed immediately upon arrival never affects the
workload process. To obtain stochastic-process limits for the departure pro-
cess, we will impose a condition to rule out such cancelling jumps in the limit
processes associated with C' and S. In particular, the departure process is
considerably less complicated in the case of constant processing, as in (2.1).

We may also be interested in the processing time T(t), i.e., the time
required to process the work in the system at any time ¢, not counting
any future input. For the processing time to correctly represent the actual
processing time for the last particle of fluid in the queue, the fluid must
be processed in the order of arrival. The processing time 7'(¢) is the first
passage time to the level W (t) by the future-available-processing process
{S(t+ u) — S(t) : u >0}, ie.,

T(t) = inf{u>0:S(t+u)—SEt) >WH)}, t>0. (2.12)

We can obtain an equivalent representation, involving a first passage time
of the process S alone on the left in the infimum, if we use formula (2.9) for
W (t):

Tt)+t=t+inf{u>0:S(t+u)—S(t) > X(t)+ L(t) - U(t)},
=inf{u>0:S(u) >W(0)+C(t)+ L(t) - U(t)}, t>0.(2.13)
In general, the processing time is relatively complicated, but in the common

case of constant processing in (2.1), T'(¢) is a simple modification of W (¢),

namely,
T(t)=W(t)/p, t>0. (2.14)

More generally, heavy-traffic limits also lead to such simplifications; see
Section 5.9.2.
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5.3. Unstable Queues

There are two main reasons queues experience congestion (which here
means buildup of workload): First, the queue may be unstable (or over-
loaded); i.e., the input rate may exceed the output rate for an extended
period of time, when there is ample storage capacity. Second, the queue
may be stable, i.e., the long-run input rate may be less than the long-run
output rate, but nevertheless short-run fluctuations produce temporary pe-
riods during which the input exceeds the output.

The unstable case tends to produce more severe congestion, but the
stable case is more common, because systems are usually designed to be
stable. Unstable queues typically arise in the presence of system failures.
Since there is interest in system performance in the presence of failures,
there is interest in the performance of unstable queues. For our discussion of
unstable queues, we assume that there is unlimited storage capacity. We are
interested in the buildup of congestion, which is described by the transient
(or time-dependent) behavior of the queueing processes.

5.3.1. Fluid Limits for Fluid Queues

For unstable queues, useful insight can be gained from fluid limits as-
sociated with functional laws of large numbers (FLLN’s). These stochastic-
process limits are called fluid limits because the limit processes are deter-
ministic functions of the form ct for some constant c¢. (More generally, with
time-varying input and output rates, the limits could be deterministic func-
tions of the form f[f r(s)ds, t > 0, for some deterministic integrable function
r.)

To express the FLLN’s, we scale space and time both by n. As before, we
use bold capitals to represent the scaled stochastic processes and associated
limiting stochastic processes in the function space D. We use a hat to denote
scaled stochastic processes with the fluid scaling (scaling space as well as
time by n). Given the stochastic processes defined for the fluid-queue model
in the previous section, form the associated scaled stochastic processes

Cn(t) = n~'C(nt),
S.(t) = n~'S(nt),
X,(t) = n7'X(nt),
W, (t) = n~'W(nt),
L.(t) = n 'L(nt),
D,(t) = n 'D(nt),
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T,.(t) = n~'T(nt), t>0. (3.1)

The continuous-mapping approach shows that FLLN’s for C' and S imply
a joint FLLN for all the processes. As before, let e be the identity map, i.e.,
e(t)=1t,t>0. Let u AX=min{p, A} and A\ = maz{\,0} for constants A
and p.

We understand D to be the space D([0, 00), R), endowed with either the
J1 or the M; topology, as defined in Section 3.3. Since the limits are contin-
uous deterministic functions, the J; and M; topologies here are equivalent
to uniform convergence on compact subintervals. As in Section 3.3, we use
D* to denote the k-dimensional product space with the product topology;
then z,, — z, where z, = (z).,...2F) and z = (2!,...,2"), if and only if
xl — x; for each i.

We first establish a functional weak law of large numbers (FWLLN),
involving convergence in probability or, equivalently (because of the deter-
ministic limit), convergence in distribution (see p. 27 of Billingsley (1999)).
As indicated above, we restrict attention to the infinite-capacity model. It
is easy to extend the results to the finite-capacity model, provided that the
capacity is allowed to increase with n, as in Section 2.3.

ny e

Theorem 5.3.1. (FWLLN for the fluid queue) In the infinite-capacity fluid-
queue model, if C, = Xe and S, = pe in (D, M), where 0 < p < oo and
C, and S, are given in (3.1), then

(Cn»Sn, X0, Wy, Ly, D, T)) =
(Ae, e, (A — p)e, (A — ) Te, (n— M) e, (A Ape, (p—1)Te)(3.2)
in (D, M1)" for p=\/p.

Proof. The single limits can be combined into joint limits because the
limits are deterministic, by virtue of Theorem 11.4.5. So start with the joint
convergence

(Cn, S, n 1W(0)) = (Ne,pe,0) in (D,M)?>xR.
Since
X, =C, =S, +n W(0)
by (2.4), we can apply the continuous-mapping approach with addition,

using the fact that addition on D? is measurable and continuous almost
surely with respect to the limit process, to get the limit

X, =>X=\—pe
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Specifically, we invoke Theorems 3.4.3 and 12.7.3 and Remark 12.7.1.
Then, because of (2.5) — (2.8), we can apply the simple continuous-
mapping theorem, Theorem 3.4.1, with the reflection map to get

W,=>W=¢X)=(A-p'e

and
L,=L=y,(X)=(p—)N"e,

drawing on Theorems 13.5.1, 13.4.1 and 14.8.5. Then, by (2.11), we can
apply the continuous-mapping approach with addition again to obtain D,, =
D = (A A p)e. Finally, by (2.13),

n~ T (nt)+t = inf{u > 0:n"'S(nu) > n=(C(nt)+ L(nt)+W(0))} (3.3)

or, in more compact notation,

A

T,+e=58"10(C,+L,+n'W(0)) . (3.4)

Hence, we can again apply the continuous-mapping approach, this time with
the inverse and composition functions. As with addition used above, these
functions as maps from D and D x D to D are measurable and continuous al-
most surely with respect to the deterministic, continuous, strictly increasing
limits. Specifically, by Corollary 13.6.4 and Theorem 13.2.1, we obtain

T,+e=pu leoNe+ (u—Nte)=(pVie,

so that
T, = (:0 - 1)+e ’

as claimed. By Theorem 11.4.5, all limits can be joint. =

From Theorem 5.3.1, we can characterize stable queues and unstable
queues by the conditions A < p and A > u, respectively, where A and p
are the translation constants in the limits for the input process C' and the
available-processing process S. Equivalently, we can use the traffic intensity
p, defined as

pP=ANu . (3.5)

From the relatively crude fluid-limit perspective, there is no congestion
if p < 1; i.e., Theorem 5.3.1 implies that W,, = Oe if p < 1. On the other
hand, if p > 1, then the workload tends to grow linearly at rate A — . Con-
sistent with intuition, the fluid limits suggest using a simple deterministic
analysis to describe congestion in unstable queues. When a queue is unstable
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for a significant time, the relatively simple deterministic analysis may cap-
ture the dominant congestion effect. The same reasoning applies to queues
with time-dependent input and output rates that are unstable for substan-
tial periods of time. See Oliver and Samuel (1962), Newell (1982) and Hall
(1991) for discussions of direct deterministic analysis of the congestion in
queues.

Ordinary weak laws of large numbers (WLLN’s), such as

W)= A—p)T in R as t— o0,

follow immediately from the FWLLN’s in Theorem 5.3.1 by applying the
continuous-mapping approach with the projection map, which maps a func-
tion z into z(1). We could not obtain these WLLN’s or the stronger
FWLLN’s in Theorem 5.3.1 if we assumed only ordinary WLLN’s for C
and S, i.e., if we had started with limits such as

t7'Ct)=X in R as t— o0,

because we needed to exploit the continuous-mapping approach in the func-
tion space D. We cannot go directly from a WLLN to a FWLLN, because
a FWLLN is strictly stronger than a WLLN.

However, we can obtain functional strong laws of large numbers (F'S-
LLN’s) starting from ordinary strong laws of large numbers (SLLN’s), be-
cause a SLLN implies a corresponding FSLLN; see Theorem 3.2.1 and Corol-
lary 3.2.1 in the Internet Supplement. To emphasize that point, we now state
the SLLN version of Theorem 5.3.1. Once we go from the SLLN’s for C' and
S to the FSLLN’s, the proof is the same as for Theorem 5.3.1.

Theorem 5.3.2. (FSLLN for the fluid queue) In the infinite-capacity fluid-
queue model, if

t1C(t) =X and t7'S(t) = p in R wpl as t— oo,
for 0 < p < oo, then

(Cna Sna Xna Wna I:na f)na Tn) -
(>‘ea me, ()‘ - M)ea ()‘ - /1')+ea (/1' - )‘)+ea ()‘ A M)ea (:0 - 1)+e) (36)

w.p.1 in (D, M) for p in (3.5).
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5.3.2. Stochastic Refinements

We can also employ stochastic-process limits to obtain a more detailed
description of congestion in unstable queues. These stochastic-process limits
yield stochastic refinements to the fluid limits in Theorems 5.3.1 and 5.3.2
above. For the stochastic refinements, we introduce new scaled stochastic
processes:

C.(t) = ¢, (C(nt) — Ant),

Su(t) = ;' (S(nt) — unt),

Xu(t) = ¢, (X(nt) = (A= p)nt),
Wo(t) = ¢, (W(nt) — (A= p)tnt),

Lo(t) = ¢, (L(nt) — (u—A)nt),

D,(t) = ¢ (D(nt) — (A A p)nt),

T,(t) = ¢, (T(nt)—(p—1)"nt), t>0. (3.7)

As in the last chapter, the space scaling constants will be assumed to
satisfy ¢, — oo and n/¢, — 0o as n — oo. The space-scaling constants
will usually be a power, i.e., ¢, = nfl for 0 < H < 1, but we allow other
possibilities. In the following theorem we only discuss the cases p < 1 and
p > 1. The more complex boundary case p = 1 is covered as a special case
of results in the next section. Recall that D* is the product space with the
product topology; here we let the component space D = D! have either the
J1 or the M; topology.

Since the limit processes C and S below may now have discontinuous
sample paths, we need an extra condition to apply the continuous-mapping
approach with addition. The extra condition depends on random sets of
discontinuity points; e.g.,

Disc(S) = {t : S(t) # S(t—)} ,

where z(t—) is the left limit of the function z in D (see Section 12.2). The
random set of common discontinuity points of C and S is Disc(C)NDisc(S).
The jump in S associated with a discontinuity at ¢ is S(¢) — S(t—). The
required extra condition is somewhat weaker for the M; topology than for
the J; topology.

Theorem 5.3.3. (FCLT’s for the stable and unstable fluid queues) In the
infinite-capacity fluid queue, suppose that ¢, — oo and ¢, /n — 0 asn — co.
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Suppose that
(Cn,Sn) = (C,S) in D, (3.8)

where D? has the product topology with the topology on D' being either J;
or My, C,, and S, are defined in (3.7) and

P(C(0) =S(0)=0) =1 . (3.9)

If the topology is Ji, assume that C and S almost surely have no common
discontinuities. If the topology is My, assume that C and S almost surely
have no common discontinuities with jumps of common sign.

(a) If p < 1 and C — S has no positive jumps, then

(CnsSn, X, Wy, Ly, Dy) =
(C,S,C —S,0e,S — C,C) (3.10)

in D% with the same topology.
(b) If p > 1, then

(Cna Sna XnaWna Lna Dn) =
(C,S,C—S,C —S,0e,S) (3.11)

in DS with the same topology.

Proof. Paralleling the proof of Theorem 5.3.1 above, we start by applying
condition (3.8) and Theorem 11.4.5 to obtain the joint convergence

(Cn,Sn,c,'W(0)) = (C,8,0) in D*xR.

Then, as before, we apply the continuous mapping approach with addition,
now invoking the conditions on the discontinuities of C and S, to get

(Cn,Sp, X, ¢, ' W(0)) = (C,8,C —S,0) in D3>xR. (3.12)

For the M; topology, we apply Theorems 3.4.3 and 12.7.3 and Remark 12.7.1.
For Ji, we apply the J; analog of Corollary 12.7.1; see Remark 12.6.2.

The critical step is treating W,,. For that purpose, we apply Theorem
13.5.2, for which we need to impose the extra condition that C — S have
no positive jumps in part (a). We also use condition (3.9), but it can be
weakened. We can use the Skorohod representation theorem, Theorem 3.2.2,
to carry out the argument for individual sample paths.

The limit for L, in part (a) then follows from (2.6), again exploiting
the continuous-mapping approach with addition. The limits for L,, in part



5.3. UNSTABLE QUEUES 183

(b) follows from Theorem 13.4.4, using (2.8) and condition (3.9). We can
apply the convergence-together theorem, Theorem 11.4.7, to get limits for
the scaled departure process D,,. If A < p, then

dy(Dn, Cp) < IDp — Calle < lleg ' W(0) = Wylle = 0

by (2.11), where d; and || - || are the J; (or My) and uniform metrics for the
time interval [0,¢], as in equations (3.2) and (3.1) of Section 3.3. If A > u,
then

by (2.11). =

The obvious sufficient condition for the limit processes C and S to al-
most surely have no discontinuities with jumps of common sign is to have
no common discontinuities at all. For that, it suffices for C and S to be
independent processes without any fixed discontinuities; i.e., C has no fixed
discontinuities if P(t € Disc(C)) = 0 for all ¢.

With the J; topology, the conclusion can be strengthened to the strong
SJy topology instead of the product J; topology, but that is not true for
Mi; see Remark 9.3.1 and Example 14.5.1.

When p < 1, we not only obtain the zero fluid limit W,, = 0Oe in Theorem
5.3.1, but we also obtain the zero limit W,, = Oe in Theorem 5.3.3 (a) with
the refined scaling in (3.7), provided that C — S has no positive jumps.
However, if C'— S has positive jumps, then the scaled workload process W,
fails to be uniformly negligible. That shows the impact of jumps in the limit
process.

Under extra conditions, we get a limit for T, jointly with the limit in
Theorem 5.3.3.

Theorem 5.3.4. (FCLT for the processing time) Let the conditions of The-
orem 5.3.3 hold. If the topology is Ji, assume that S has no positive jumps.
(a) If p < 1, then jointly with the limit in (3.10)

T, = Oe

i D with the same topology.

(b) Suppose that p > 1. If the topology is Ji, assume that C and S o pe
almost surely have no common discontinuities. If the topology is My, assume
that C and S o pe almost surely have no common discontinuities with jumps
of common sign. Then jointly with the limit in (3.11)

Ty = /1'71(0 -5 ope)

in D with the same topology.
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Proof. We can apply Theorem 13.7.4 to treat T,,, starting from (3.3) and
(3.4). If X > p, then

(n/cn)(Sy — pe, Cp + L, +n~'W(0) — Xe) = (S,C) , (3.13)
because Ly, = 0e and n~'W(0) = 0. If A < p, then

(n/cn)(Sn — e, Cp + Ly, + 0 *W(0) — pe) = (S,S) (3.14)
because, by (2.6),

di(Cp + Ly, + ¢, 'W(0),S,) < ||Lp + Xy|ls = [[Wa|: = 0.

We can apply Theorem 13.7.4 to obtain limits for T,, jointly with the other
limits because

T, = (n/cn)(Tn —(p—1)Te)

— (nfen)(8, 0 Zn — (pV 1)e)

= (n/cn)(S, 0 Zy —pteo (AV p)e)
for appropriate Z,, (specified in (3.13) and (3.14) above), where n/c, — oo
as n — 0o. Theorem 13.7.4 requires condition (3.9) for S. =

We regard the unstable case p > 1 as the case of primary interest for a

single model. When p > 1, Theorem 5.3.3 (b) concludes that W (t) obeys
the same FCLT as X (¢). In a long time scale, the amount of reflection is
negligible. Thus we obtain the approximation

W(t) ~ (A — )t + cnX(t/n) (3.15)

for the workload, where X = C — S. In the common setting of Donsker’s
theorem, ¢, = n'/? and X = oxB, where B is standard Brownian motion.
In that special case, (3.15) becomes

W(t) ~ (A—p)t+n'oxB(t/n)
~ N((\—p)t,o%t) . (3.16)

In this common special case, the stochastic refinement of the LLN shows
that the workload obeys a CLT and, thus, the workload W (¢) should be ap-
proximately normally distributed with mean equal to the fluid limit (A —p)t
and standard deviation proportional to v/¢, with the variability parameter
given explicitly. With heavy tails or strong dependence (or both), but still
with finite mean, the stochastic fluctuations about the mean will be greater,
as is made precise by the stochastic-process limits.
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Remark 5.3.1. Implications for queues in series. Part (a) of Theorem
5.3.3 has important implications for queues in series: If the first of two
queues is stable with p < 1, then the departure process D at the first queue
obeys the same FCLT as the input process C' at that first queue. Thus, if
we consider a heavy-traffic limit for the second queue (either because the
second queue is unstable or because we consider a sequence of models for the
second queue with the associated sequence of traffic intensities at the second
queue approaching the critical level for stability, as in the next section), then
the heavy-traffic limit at the second queue depends on the first queue only
through the input stochastic process at that first queue. In other words, the
heavy-traffic behavior of the second queue is the same as if the first queue
were not even there. We obtain more general and more complicated heavy-
traffic stochastic-process limits for the second queue only if we consider a
sequence of models for both queues, and simultaneously let the sequences
of traffic intensities at both queues approach the critical levels for stability,
which puts us in the setting of Chapter 14. For further discussion, see
Example 9.9.1, Chapter 14 and Karpelovich and Kreinin (1994). =

In this section we have seen how heavy-traffic stochastic-process limits
can describe the congestion in an unstable queue. We have considered the
relatively elementary case of constant input and output rates. Variations
of the same approach apply to queues with time-varying input and out-
put rates; see Massey and Whitt (1994a), Mandelbaum and Massey (1995),
Mandelbaum, Massey and Reiman (1998) and Chapter 9 of the Internet
Supplement.

5.4. Heavy-Traffic Limits for Stable Queues

We now want to establish nondegenerate heavy-traffic stochastic-process
limits for stochastic processes in stable fluid queues (where the long-run
input rate is less than the maximum potential output rate). (With a finite
storage capacity, the workload will of course remain bounded even if the
long-run input rate exceeds the output rate.)

The first heavy-traffic limits for queues were established by Kingman
(1961, 1962, 1965). The treatment here is in the spirit of Iglehart and
Whitt (1970a, b) and Whitt (1971a), although those papers focused on
standard queueing models, as considered here in Chapters 9 and 10. An early
heavy-traffic limit for finite-capacity queues was established by Kennedy
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(1973). See Whitt (1974b) and Borovkov (1976, 1984) for background on
early heavy-traffic limits.

In order to establish the heavy-traffic stochastic-process limits for stable
queues, we consider a sequence of models indexed by a subscript n, where
the associated sequence of traffic intensities {p, : n > 1} converges to 1, the
critical level for stability, as n — oco. We have in mind the case in which
the traffic intensities approach 1 from below, denoted by p, 1 1, but that is
not strictly required. For each n, there is a cumulative-input process C,, an
available-processing process Sy, a storage capacity K, with 0 < K,, < oo
and an initial workload W, (0) satisfying 0 < W, (0) < K,,. As before, we
make no specific structural or stochastic assumptions about the stochastic
processes C,, and S, so we have very general models. A more detailed
model for the input is considered in Chapter 8.

To have the traffic intensity well defined in our setting, we assume that
the limits

= | -1
An = tlg&t Ch(t) (4.1)
and
= | -1
fon, = tlgc{lot S (t) (4.2)

exist w.p.1 for each n. We call A\, the input rate and u, the mazimum
potential output rate for model n. (The actual output rate is the input rate
minus the overflow rate.) Then the traffic intensity in model n is

Pn = A\n/pon - (4.3)

We will be letting p, — 1 as n — oo.

Given the basic model elements above, we can construct the potential-
workload processes { X, (t) : t > 0}, the workload processes {W,(t) : t > 0},
the upper-barrier regulator (overflow) processes {U,(t) : t > 0}, the lower-
barrier regulator processes {Ly(t) : ¢ > 0} and the departure processes
{D,(t) : t > 0} as described in Sections 5.2.

We now form associated scaled processes. We could obtain fluid limits in
this setting, paralleling Theorems 5.3.1 and 5.3.2, but they add little beyond
the previous results. Hence we go directly to the generalizations of Theorem
5.3.3. We scale the processes as in (3.7), but now we have processes and
translation constants for each n. Let

C.(t) = C;I(Cn(nt) — Apnt) ,
6 (Su(nt) — jonnit)
X,(t) = ¢, 'X,(nt),

92!
S
—~

5
~

M1l
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W, (t) = ¢, 'W,(nt),
U,(t) = ¢, Uy(nt),
L,t) = ¢,'Ly(nt), t>0. (4.4)

For the scaling constants, we have in mind A, — X and pu, — p as
n — 0o, where 0 < A < o0 and 0 < p < oo, with ¢, — oo and n/c, — oo
as n — o0o. As in Section 2.3, the upper barrier must grow as n — oo;
specifically, we require that K, = ¢, K.

Our key assumption is a joint limit for C,, and S,, in (4.4). When there
are limits for C,, and S, with the translation terms involving A, and u,,
the w.p.1 limits in (4.1) and (4.2) usually hold too, but (4.1) and (4.2) are
actually not required. However, convergence in probability in (4.1) and (4.2)
follows directly as a consequence of the convergence in distribution assumed
below. Hence it is natural for the limits in (4.1) and (4.2) to hold as well.

Let (¢x,%v,1r) be the reflection map mapping a potential-workload
process X into the triple (W, U, L), as defined in Section 5.2. Here is the
general heavy-traffic stochastic-process limit for stable fluid queues. It fol-
lows directly from the continuous-mapping approach using addition and re-
flection.

Theorem 5.4.1. (general heavy-traffic limit for stable fluid queues) Con-
sider a sequence of fluid queues indexed by n with capacities K,, 0 <
K, < oo, general cumulative-input processes {Cy(t) : t > 0} and gen-
eral cumulative-available-processing processes {Sy(t) : t > 0}. Suppose that
K,=c,K,0< K <o00,0<W,(0) <K,,

(¢ ' W, (0),Cp, Sn) = (W'(0),C,S) in R x D? (4.5)

for C, and S, in (4.4), where the topology on D? is the product topology
with the topology on D' being either J, or My, ¢, — 00, c,/n — 0 and
Ap — tn — 0, so that

M =n(Ap — pn)/Cn — 1, (4.6)

where —oo < 1 < oo. If the topology is Ji, suppose that almost surely
C and S have no common discontinuities. If the topology is My, suppose
that almost surely C and S have no common discontinuities with jumps of
common sign. Then, jointly with the limit in (4.5),

(X,,W,,U,,L,) = (X,W,U,L) (4.7)
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in D* with the same topology, where
X(t)=W'(0) + C(t) — S(t) +nt, t>0. (4.8)

and

(W, U,L) = (¢x(X), v (X), (X)) (4.9)
with (¢x, Yy, 1) being the reflection map associated with capacity K.

Proof. Note that
X, = ¢, ' Wn(0) + C, — Sy + e, (4.10)

where e(t) = ¢ for t > 0. Thus, just as in Theorems 5.3.1 and 5.3.3 above,
we can apply the continuous-mapping approach starting from the joint con-
vergence

(¢ ' Wy (0), Cp, Sy mne) = (W'(0), C, S, ne) (4.11)

in R x D3, which follows from (4.5), (4.6) and Theorem 11.4.5. We apply the
continuous mapping theorem, Theorem 3.4.3, with addition to get X,, = X.
(Alternatively, we could use the Skorohod representation theorem, Theorem
3.2.2.) We use the fact that addition is measurable and continuous almost
surely with respect to the limit process, by virtue of the assumption about
the discontinuities of C and S. Specifically, for M; we apply Remark 12.7.1
and Theorem 12.7.3. For J; we apply the analog of Corollary 12.7.1; see
Remark 12.6.2. Finally, we obtain the desired limit in (4.7) because

(Wna U,, Ln) = (¢K(Xn)a ¢U(Xn)a ¢L(Xn))

for all n. We apply the simple continuous-mapping theorem, Theorem 3.4.1,
with the reflection maps, using the continuity established in Theorems 13.5.1
and 14.8.5. =

Just as in Theorem 5.3.3, with the J; topology the conclusion holds in
the strong SJ; topology as well as the product J; topology. As before, the
conditions on the common discontinuities of C and S hold if C and S are
independent processes without fixed discontinuities.

In the standard heavy-traffic applications, in addition to (4.6), we have
An < finy pn = pfor 0 < p < 00, Ay — iy = 0 and p, = A\/pn T 1.
However, we can have non-heavy-traffic limits by having A,n/c, — a > 0
and ppn/c, — b >0, so that ¢ = a — b and p, = A\, /pun, — a/b, where a/b
can be any positive value. Nevertheless, the heavy-traffic limit with p, 11
is the principal case.
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We discuss heavy-traffic stochastic-process limits for the departure pro-
cess and the processing time in Section 5.9. Before discussing the implica-
tions of Theorem 5.4.1, we digress to put the heavy-traffic limits in perspec-
tive with other asymptotic methods.

Remark 5.4.1. The long tradition of asymptotics. Given interest in the
distribution of the workload W (t), we perform the heavy-traffic limit, al-
lowing p, T 1 as n — oo in a sequence of models index by n, to obtain
simplified expressions for the ccdf P(W (¢) > z) and the distribution of the
entire process {W(t) : ¢ > 0}. We describe the resulting approximation in
the Brownian case in Section 5.7 below. To put the heavy-traffic limit in
perspective, we should view it in the broader context of asymptotic meth-
ods: For general mathematical models, there is a long tradition of applying
asymptotic methods to obtain tractable approximations; e.g., see Bender
and Orszag (1978), Bleistein and Handelsman (1986) and Olver (1974). In
this tradition are the heavy-traffic approximations and asymptotic expan-
sions obtained by Knessl and Tier (1995, 1998) using singular perturbation
methods.

For stochastic processes, it is customary to perform asymptotics. We
usually simplify by letting ¢ — oo: Under regularity conditions, we obtain
W (t) = W (oo) as t — oo and then we focus on the limiting steady-state ccdf
P(W(oc0) > ). (Or, similarly, we look for a stationary distribution of the
process {W(t) : ¢ > 0}.) This asymptotic step is so common that it is often
done without thinking. See Asmussen (1987), Baccelli and Bremaud (1994)
and Borovkov (1976) for supporting theory for basic queueing processes.
See Bramson (1994a,b), Baccelli and Foss (1994), Dai (1994), Meyn and
Down (1994) and Borovkov (1998) for related stability results for queueing
networks and more general processes.

Given a steady-state ccdf P(W(oo) > x), we may go further and let
x — oo to find the steady-state tail-probability asymptotics. As noted in
Section 2.4.1, a common case for a queue with unlimited waiting space is
the exponential tail:

P(W(c0) >x) ~ae™™ as z — o0,
which yields the simple exponential approximation
P(W(x) > zx) = ae™™

for all z not too small; e.g., see Abate, Choudhury and Whitt (1994b, 1995).
With exponential tail-probability asymptotics, the key quantity is the
asymptotic decay rate 7. Since « is much less important than 7, we may
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ignore « (i.e., let @ = 1), which corresponds to exploiting weaker large-
deviation asymptotics of the form

log P(W(o00) > ) ~ —nzr as x — 00 ;

e.g., see Glynn and Whitt (1994) and Shwartz and Weiss (1995).

The large deviations limit is associated with the concept of effective
bandwidths used for admission control in communication networks; see
Berger and Whitt (1998a,b), Chang and Thomas (1995), Choudhury, Lu-
cantoni and Whitt (1996), de Veciana, Kesidis and Walrand (1995), Kelly
(1996) and Whitt (1993b). The idea is to assign a deterministic quantity,
called the effective bandwidth, to represent how much capacity a source will
require. New sources are then admitted if the sum of the effective band-
widths does not exceed the available bandwidth.

We will also consider tail-probability asymptotics applied to the steady-
state distribution of the heavy-traffic limit process. We could instead con-
sider heavy-traffic limits after establishing tail-probability asymptotics. It is
significant that the two iterated limits often agree: Often the heavy-traffic
asymptotics for n as p 1 1 matches the asymptotics as first ¢ — oo and then
x — 00 in the heavy-traffic limit process; see Abate and Whitt (1994b) and
Choudhury and Whitt (1994). More generally, Majewski (2000) has shown
that large-deviation and heavy traffic limits for queues can be interchanged.
The large-deviation and heavy-traffic views are directly linked by moderate-
deviations limits, which involve a different scaling, including heavy traffic
(pn T 1); see Puhalskii (1999) and Wischik (2001b).

However, as noted in Section 2.4.1, other asymptotic forms are possible
for queueing processes. We often have

P(W(c0) > z) ~az Pe™ as z— oo, (4.12)

for non-zero f3; e.g., see Abate and Whitt (1997b), Choudhury and Whitt
(1996) and Duffield (1997). Moreover, even other asymptotic forms are
possible; e.g., see Flatto (1997).

With heavy-tailed distributions, we usually have a power tail, i.e., (4.12)
holds with n = 0:

P(W(x)>z)~az™? as z— 0.

When the steady-state distribution of the workload in a queue has a power
tail, the heavy-traffic theory usually is consistent; i.e., the heavy-traffic limits
usually capture the relevant tail asymptotics; see Section 8.5. For more on
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power-tail asymptotics, see Abate, Choudhury and Whitt (1994a), Duffield
and O’Connell (1995), Boxma and Dumas (1998), Sigman (1999), Jelenkovié¢
(1999, 2000), Likhanov and Mazumdar (2000), Whitt (2000c) and Zwart
(2000, 2001).

With the asymptotic form in (4.12), numerical transform inversion can
be used to calculate the asymptotic constants 7, 8 and a from the Laplace
transform, as shown in Abate, Choudhury, Lucantoni and Whitt (1995)
and Choudhury and Whitt (1996). When n = 0, we can transform the
distribution into one with > 0 to perform the computation; see Section 5
of Abate, Choudhury and Whitt (1994a) and Section 3 of Abate and Whitt
(1997b). See Abate and Whitt (1996, 1999a,b,c) for ways to construct heavy-
tailed distributions with tractable Laplace transforms.

And there are many other kinds of asymptotics that can be consid-
ered. For example, with queueing networks, we can let the size of the net-
work grow; e.g., see Whitt (1984e, 1985c¢), Kelly (1991), Vvedenskaya et al.
(1996), Mitzenmacher (1996), and Turner (1998) =

5.5. Heavy-Traffic Scaling

A primary reason for establishing the heavy-traffic stochastic-process
limit for stable queues in the previous section is to generate approximations
for the workload stochastic process in a stable fluid-queue model. However,
it is not exactly clear how to do this, because in applications we have one
given queueing system, not a sequence of queueing systems. The general
idea is to regard our given queueing system as the n'" queueing system in
the sequence of queueing systems, but what should the value of n be?

The standard way to proceed is to choose n so that the traffic intensity
pn in the sequence of systems matches the actual traffic intensity in the
given system. That procedure makes sense because the traffic intensity p is
a robust first-order characterization of the system, not depending upon the
stochastic fluctuations about long-term rates. As can be seen from (4.1) —
(4.3) and Theorems 5.3.1 and 5.3.2, the traffic intensity appears in the fluid
scaling. Thus, it is natural to think of the heavy-traffic stochastic-process
limit as a way to capture the second-order variability effect beyond the traffic
intensity p.

In controlled queueing systems, it may be necessary to solve an op-
timization problem to determine the relevant traffic intensity. Then the
traffic intensity can not be regarded as given, but instead must be derived;
see Harrison (2000, 2001a,b). After deriving the traffic intensity, we may
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proceed with further heavy-traffic analysis. Here we assume that the traffic
intensity has been determined.

If we decide to choose n so that the traffic intensity p,, matches the given
traffic intensity, then it is natural to index the models by the traffic intensity
p from the outset, and then consider the limit as p T 1 (with 1 indicating
convergence upward from below). In this section we show how we can index
the queueing models by the traffic intensity p instead of an arbitrary index
n. We also discuss the applied significance of the scaling of space and time in
heavy-traffic stochastic-process limits. We focus on the general fluid model
considered in the last two sections, but the discussion applies to even more
general models.

5.5.1. The Impact of Scaling Upon Performance

Let W,(t) denote the workload at time ¢ in the infinite-capacity fluid-
queue model with traffic intensity p. Let ¢(p) and b(p) denote the functions
that scale space and time, to be identified in the next subsection. Then the
scaled workload process is

W, () = (o)™ Wpb(p)t) ¢20. (5.1)
The heavy-traffic stochastic-process limit can then be expressed as
W,=W in (D,M;) as pt1l, (5.2)

where D = D([0,00),R) and {W(¢) : ¢ > 0} is the limiting stochastic pro-
cess. In the limits we consider, ¢(p) 1 oo and b(p) 1 oo as p 1 1. Thus, the
heavy-traffic stochastic-process limit provides a macroscopic view of uncer-
tainty.

Given the heavy-traffic stochastic-process limit for the workload process
in (5.2), the natural approximation is obtained by replacing the limit by
approximate equality in distribution; i.e.,

c(p) T Wy (b(p)t) = W(t), >0,
or, equivalently, upon moving the scaling terms to the right side,
W,(t) = c(p)W(b(p) 1), ¢>0, (5.3)

where &~ means approximately equal to in distribution (as stochastic pro-
cesses).
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We first discuss the applied significance of the two scaling functions ¢(p)
and b(p) appearing in (5.1) and (5.3). Then, afterwards, we show how to
identify these scaling functions for the fluid-queue model.

The scaling functions ¢(p) and b(p) provide important insight into queue-
ing performance. The space-scaling factor ¢(p) is relatively easy to interpret:
The workload process (for times not too small) tends to be of order ¢(p) as
p 1 1. The time-scaling factor b(p) is somewhat more subtle: The workload
process tends to make significant changes over time scales of order b(p) as
p 1 1. Specifically, the change in the workload process, when adjusted for
space scaling, from time #1b(p) to time t2b(p) is approximately characterized
(for suitably high p) by the change in the limit process W from time #; to
time t2.

Consequently, over time intervals of length less than b(p) the workload
process tends to remain unchanged. Specifically, if we consider the change
in the workload process W, from time t;b(p) to time ¢2(p), where t2(p) >
t1b(p) but t2(p)/b(p) — 0 as p 1T 1, and if the limit process W is almost
surely continuous at time ¢1, then we conclude from the heavy-traffic limit in
(5.2) that the relative change in the workload process over the time interval
[t1b(p), t2(p)] is asymptotically negligible as p increases.

On the other hand, over time intervals of length greater than b(p), the
workload process W), tends to approach its equilibrium steady-state distri-
bution (assuming that both W (¢) and W,(t) approach steady-state limits
as t — 00). Specifically, when t2(p) > t1b(p) and t2(p)/b(p) — oo as p 11,
the workload process at time t2(p) tends to be in steady state, independent
of its value at time #1b(p). Thus, if we are considering the workload process
over the time interval [t1b(p), t2(p)], we could use steady-state distributions
to describe the distribution of W,(t2(p)), ignoring initial conditions at time
t1b(p). (In that step, we assume that W (t) approaches a steady-state distri-
bution as ¢ — oo, independent of initial conditions.) Thus, under regularity
conditions, the time scaling in the heavy-traffic limit reveals the rate of
convergence to steady state, as a function of the traffic intensity.

The use of steady-state distributions tends to be appropriate only over
time intervals of length greater than b(p). Since b(p) T oo as p T 1, transient
(time-dependent) analysis becomes more important as p increases. Fortu-
nately, the heavy-traffic stochastic-process limits provide a basis for ana-
lyzing the approximate transient behavior of the workload process as well
as the approximate steady-state behavior. As indicated above, the change
in the workload process (when adjusted for space scaling) between times
t1b(p) and t2b(p) is approximately characterized by the change in the limit
process W from time #; to time #9. Fortunately, the limit processes often
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are sufficiently tractable that we can calculate such transient probabilities.

Remark 5.5.1. Relazation times. The approximate time for a stochastic
process to approach its steady-state distribution is called the relaxzation time;
e.g., see Section II1.7.3 of Cohen (1982). The relaxation time can be defined
in a variety of ways, but it invariably is based on the limiting behavior as
t — oo for fixed p. In the relatively nice light-tailed and weak-dependent
case, it often can be shown, under regularity conditions, that

E[f(Wy(1))] = B[f(W,(00))] ~ g(t, p)e ""#) as ¢ = oo, (5.4)

for various real-valued functions f, with the functions g and r in general
depending upon f. The standard asymptotic form for the second-order term
g is g(t,p) ~ c(p) or g(t,p) ~ c(p)t?® as t — co. When (5.4) holds with
such a g, r(p) is called the relaxation time. Of course, a stochastic process
that starts away from steady state usually does not reach steady state in
finite time. Instead, it gradually approaches steady state in a manner such
as described in (5.4). More properly, we should interpret 1/r(p) as the rate
of approach to steady state.
With light tails and weak dependence, we usually have

r(p)/b(p) = c as ptT1,

where ¢ is a positive constant; i.e., the heavy-traffic time-scaling usually
reveals the asymptotic form (as p 1 1) of the relaxation time.

However, with heavy tails and strong dependence, the approach to steady
state is usually much slower than in (5.4); see Asmussen and Teugels (1996)
and Mikosch and Nagaev (2000). In these other settings, as well as in the
light-tailed weak-dependent case, the time scaling in the heavy-traffic limit
usually reveals the asymptotic form (as p 1 1) of the approach to steady
state. Thus, the heavy-traffic time scaling can provide important insight
into the rate of approach to steady state. With heavy tails and strong
dependence, the heavy-traffic limits show that transient analysis becomes
more important. =

5.5.2. Identifying Appropriate Scaling Functions

We now consider how to identify appropriate scaling functions b(p) and
¢(p) in (5.1). We can apply the general stochastic-process limit in Theorem
5.4.1 to determine appropriate scaling functions. Specifically, the scaling
functions b(p) and ¢(p) depend on the input rates A,, the output rates pu,
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and the space-scaling factors ¢, appearing in Theorem 5.4.1. The key limit
is (4.6), which determines the drift n of the unreflected limit process X.

To cover most cases of practical interest, we make three additional as-
sumptions about the scaling as a function of n in (4.4): First, we assume
that the space scaling is by a simple power. Specifically, we assume that

co=nfl for 0<H<1. (5.5)

(See Section 4.2 for discussion about the possible scaling functions.) We
need the condition on the exponent H in (5.5) in order to have ¢, — oo and
cn/n — 0 as n — oo, as assumed in Theorem 5.4.1.

Second, we assume that the translation terms A, and p,, in (4.4) converge
to finite positive limits as n — oo. In view of condition (4.6) in Theorem
5.4.1, it suffices to assume only that

Wn —> 4 A8 N — 00, (5.6)

where 0 < p < o0.

Third, we assume that the basic limit in (4.6) holds with n < 0. That
implies that the traffic intensities p, are less than 1 for all n sufficiently
large. Now, if we combine (4.6), (5.5) and (5.6) (and divide by p, in (4.6)),
we obtain the condition

n' (1= pp) = ¢=—n/p >0 (5.7)
for 0 < ¢ < co. From (5.7), we obtain the associated limit
n(l — pp) /=) 5 ¢V/O=H) 45 n 5 (5.8)

or, equivalently,

¢\
n~< ) as n— oo . (5.9)
1—pn

Thus the canonical forms of the scaling functions are

b(p) =n= <L> o (5.10)

and
o(p) = nl = <L> o (5.11)

for ( = —n/p as in (5.7).
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To summarize, when the net-input process and potential-workload pro-
cess satisfies a FCLT with time scaling by n and space scaling by n’, the
associated scaled workload processes, as functions of the traffic intensity p,
have a heavy-traffic limit with the time-scaling function in (5.10) and space-
scaling function in (5.11); i.e., as functions of p, the time-scaling exponent
is 1/(1 — H) and the space-scaling exponent is H/(1 — H).

The initial space-scaling exponent H (the Hurst parameter) depends on
the burstiness; see Chapter 4. As the burstiness increases, H increases.
Of course, the standard case, considered in most heavy-traffic limits for
queues, is H = 1/2. The standard case with H = 1/2 occurs with Donsker’s
theorem and its variants with weak dependence and light tails, as discussed
in Sections 4.3 and 4.4. Since H = 1/2 is the standard case, it is also the
reference case. Values of H with 1/2 < H < 1 indicate greater burstiness
associated with heavy tails or strong positive dependence (or both). Values
of H with 0 < H < 1/2 are associated with strong negative dependence, as
might occur with strong traffic shaping, e.g., scheduling.

From (5.10) and (5.11), we see that the scaling functions b(p) and c(p)
increase rapidly as H 1 1 for p near 1. Indeed, the scaling exponents increase
as H increases from 0 toward 1. To make that important point clear, we
display the two scaling exponents for a range of H values in Table 5.1.

time-scaling | space-scaling
exponent exponent
H 1/(1—H) H/(1-H)
1/101 101/100 1/100
1/11 11/10 1/10
1/5 5/4 1/4
1/3 3/2 1/2
1/2 2 1
2/3 3 2
4/5 5 4
10/11 11 10
100/101 101 100

Table 5.1: The time-scaling and space-scaling exponents as a function of the
Hurst parameter H.

Since H increases as the burstiness increases, we see that increased
burstiness leads to greater scaling functions ¢(p) and b(p) for any given
traffic intensity p. The larger value of ¢(p) shows that the buffer content is
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likely to be larger (or that one needs larger buffers to avoid overflow). The
larger values of b(p) show that the time scales for statistical regularity are
longer. When there is larger burstiness, transient analysis becomes more
important in contrast to steady-state analysis.

From a practical engineering perspective, the analysis of the heavy-traffic
scaling functions b(p) and ¢(p) indicates that, when exceptional variability is
a possibility in a queueing setting, attention should be focused on the space-
scaling exponent H for the net-input process as well as the traffic intensity p.
Second-order refinements are provided by the constant ¢ appearing in (5.7),
(5.10) and (5.11) and the limit process W appearing in (5.2) and (5.3).

5.6. Limits as the System Size Increases

In this section we see how heavy-traffic stochastic-process limits for sta-
ble fluid queues change as the system size increases. The heavy-traffic limits
thus show how performance scales as the system size increases. We will
see that the performance impact depends on the way that the system size
increases. We start with a base infinite-capacity fluid queue for which there
is a heavy-traffic stochastic-process limit. We assume that there is a limit
for the potential-workload processes of the form X,, = X, where

X,(t)=n""X,(nt), t>0, (6.1)

for 0 < H <1 and
X(t)=nt+Y(t), t>0, (6.2)

with {Y(¢) : ¢ > 0} being H-self-similar, i.e.,
{(Y(ct): t>0} L {cHY(t): t >0} (6.3)

as in (2.5) in Section 4.2. Of course, there is a corresponding heavy-traffic
stochastic-process limit for the workload process,

W, =W =¢(X),

where

It will be convenient to focus on the potential-workload processes X,,
instead of the workload processes W,,. We will focus on the scale factor o
when the limit process has the representation X = ne + oY. For fixed 5
and Y, the associated reflection {W(¢) : ¢ > 0} tends to be increasing in



198 CHAPTER 5. HEAVY-TRAFFIC LIMITS

o (in a stochastic sense). For example, if Y is standard Brownian motion
and 7 < 0, then the steady-state quantity W(oo) has mean o2/2|n|; see
(7.13) below. More generally, o serves as a quantitative measure of the
variability (for fixed Y). The general principle is: Increased variability in
the potential workload process leads to larger workloads, where “larger” is
measured appropriately, e.g., by the mean or by a form of stochastic order.

We consider three ways to make the system larger: scaling space, scaling
time and creating independent replicas. Let the size-increase factor be a
positive integer m. We scale space (make it larger) by considering mX,,; we
scale time (make it faster) by considering X,,ome; and we create independent
replicas by considering X, 1 + - -+ + Xy, p, where X, 1,..., X, p, are m IID
copies of the original stochastic processes X,,.

For communication network applications, it is useful to think of constant
deterministic processing, whose rate is being increased by a factor m. Scaling
space then amounts to making the files or packets m times bigger to match
the increased capacity. Scaling time amounts to sending the same input
m times faster. Creating independent replicas means superposing (adding)
m independent sources, each distributed as the original one. (We will be
considering heavy-traffic limits for superposition input processes further in
later chapters; see Sections 8.7.1, 9.4 and 9.8.)

In manufacturing, scaling space can also occur. Scaling space occurs
in batching and unbatching; e.g., see Sections 8.5 and 9.3 of Hopp and
Spearman (1996).

When we scale space, the limit process is

mX =mne +mY . (6.4)
When we scale time, the limit process is

X ome mne + Y ome

4 mne +mY . (6.5)

When we create independent replicas, the limit process is

m m
Y X;=mne+» Y. (6.6)
=1

=1

The rate of the limit process increases by the same factor m in all three
cases, but the impact on the stochastic component, characterized by the
stochastic process Y, is different for the three methods. Scaling time by
m produces smaller stochastic fluctuations than scaling space by m, in the
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sense that the scale factors before Y in (6.4) and (6.5) are ordered: m” < m.
The advantage of time scaling over space scaling increases as H decreases
(when the variability is smaller).

The impact of creating independent replicas depends on the properties
of the stochastic process Y. If Y is a Lévy process (has stationary and
independent increments), then a concatenation of independent versions is
equivalent to a longer version, i.e.,

m
S Y £ Yome. (6.7)
=1

Thus, if Y is a Lévy process, creating independent replicas is equivalent to
scaling time, which we have seen produces better performance than scaling
space.

On the other hand, suppose that Y is fractional Brownian motion (FBM),
the principal example of a non-Lévy limit process in Chapter 4. Since FBM
is not a Lévy process, (6.7) does not hold. When Y is FBM, both Y and
>, Y, are zero-mean Gaussian processes. For zero-mean Gaussian pro-
cesses, it is natural to focus on the variances. With independent replicas,
the variance is

Varzm:Yi(t) =m(VarY(t)), t>0. (6.8)
=1

In contrast, with time scaling, because of the H-self-similarity, the variance
is

VarY(mt) = Var(m?Y (t)) = m*" (VarY(t)) . (6.9)

Hence, the variance with independent replicas is less than, equal to or greater
than the variance with time scaling, respectively, when H > 1/2, H = 1/2
or H <1/2.

More generally, we can compare all three methods using the variance
when Y (¢) has finite variance. Using the H-self-similarity of Y, we obtain

Var(mY(t)) = m*(VarY(t)),
VarY(mt) = m*H(VarY(t)),

VariYi(t) = m(VarY(t)) . (6.10)
i=1

For H < 1/2, time scaling produces least variability; for H > 1/2, indepen-
dent replicas produces least variability.
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It is interesting to compare one large system (increased by factor m)
to m separate independent systems, distributed as the original one. We
say that there is economy of scale when the workload in the single large
system tends to be smaller than the sum of the workloads in the separate
systems. With finite variances, there is economy of scale when the ratio of
the standard deviation to the mean is decreasing in m. From (6.10), we see
that there is economy of scale with time scaling and independent replicas,
but not with space scaling. For communication networks, the economy of
scale associated with independent replicas is often called the multiplexing
gain, i.e., the gain in efficiency from statistical multiplexing (combining in-
dependent sources). See Smith and Whitt (1981) for stochastic comparisons
demonstrating the economy of scale in queueing systems. See Chapters 8
and 9 for more discussion.

Example 5.6.1. Brownian motion. Suppose that X = ne+oB, where 1 <
0, 0 > 0 and B is standard Brownian motion. As noted above, the associated
RBM has steady-state mean o2/2|n|. With space scaling, time scaling and
creating independent replicas, the steady-state mean of the RBM’s become

mo?/2ln|, o?/2ln| and o?/2Jn|,

respectively. Thus, with space scaling, the steady-state mean is the same as
the total steady-state mean in m separate systems. Otherwise, the steady-
state mean is less by the factor m. =

In this section we have considered three different ways that the fluid
queue can get larger. We have shown that the three different ways have
different performance implications. It is important to realize, however, that
in applications the situation may be more complicated. For example, a
computer can be made larger by adding processors, but there invariably
are limitations that prevent the maximum potential output rate from be-
ing proportional to the number of processors as the number of processors
increases.

If the jobs are processed one at a time, then we must exploit parallel pro-
cessing, i.e., the processors must share the processing of each job. However,
usually a proportion of each job cannot be parallelized. Thus, with paral-
lel processing, the capacity tends to increase nonlinearly with the number
of processors; the marginal gain in capacity tends to be decreasing in m;
e.g., see Amdahl (1967) and Chapters 5-7 and 14 of Gunther (1998). With
deterministic processing, our analysis would still apply, provided that we
interpret m as the actual increase in processing rate.
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Even if we can accurately estimate the effective processing rate, there
remain difficulties in applying the analysis in this section, because with
parallel processing, it may not be appropriate to regard the processing as
deterministic. It then becomes difficult to determine how the available-
processing process S and its FCLT should change with m.

5.7. Brownian Approximations

In this section we apply the general heavy-traffic stochastic-process limits
in Section 5.4 to establish Brownian heavy-traffic limits for fluid queues. In
particular, under extra assumptions (corresponding to light tails and weak
dependence), the limit for the normalized cumulative-input process will be a
zero-drift Brownian motion (BM) and the limit for the normalized workload
process will be a reflected Brownian motion (RBM), usually with negative
drift.

The general heavy-traffic stochastic-process limits in Section 5.4 also
generate non-Brownian approximations corresponding to the non-Brownian
FCLT’s in Chapter 4, but we do not discuss them here. We discuss ap-
proximations associated with stable Lévy motion and fractional Brownian
approximations in Chapter 8.

Since Brownian motion has continuous sample paths and the reflection
map maps continuous functions into continuous functions, RBM also has
continuous sample paths. However, unlike Brownian motion, RBM does not
have independent increments. But RBM is a Markov process. As a (well-
behaved) Markov process with continuous sample paths, RBM is a diffusion
process.

Harrison (1985) provides an excellent introduction to Brownian motion
and “Brownian queues,” showing how they can be analyzed using martin-
gales and the Ito stochastic calculus. Other good introductions to Brown-
ian motion and diffusion processes are Glynn (1990), Karatzas and Shreve
(1988) and Chapter 15 of Karlin and Taylor (1981). Borodin and Salminen
(1996) provide many Brownian formulas. Additional properties of RBM are
contained in Abate and Whitt (1987a-b, 1988a-d).

5.7.1. The Brownian Limit

If B is a standard Brownian motion, then {y + nt + cB(¢) : t > 0} is a
Brownian motion with drift n, diffusion coefficient (or variance coefficient)
o? and initial position y. We have the following elementary application of
Section 5.4.
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Theorem 5.7.1. (general RBM limit) Suppose that the conditions of Theo-
rem 5.4.1 are satisfied with W'(0) =y, ¢, = v/n and (C, S) two-dimensional
zero-drift Brownian motion with covariance matrix

2:( 7 U%,5> . (7.1)

U%’,S 0?9
Then the conclusions of Theorems 5.4.1, 5.9.1 and 5.9.3 (b) hold with
(Wa Ua L) = (¢K(X)a z/)U(X)a z/)L(X))

being reflected Brownian motion, i.e.,
X(t) £y + nt + oxB(t) (7.2)

for standard Brownian motion B, drift coefficient n in (4.6) and diffusion
coefficient
0% = 0% + 0% — 20%75 . (7.3)

Proof. Under the assumption on (C,S), C — S is a zero-drift Brownian
motion with diffusion coefficient ¢% in (7.3). =

As indicated in Section 5.5, we can also index the queueing systems by
the traffic intensity p and let p + 1. With n = ¢2/(1 — p)? as in (5.10), the
heavy-traffic limit becomes

(A=W, %/ (1= p)?) : 1> 0} = ¢ (X) as pT1, (7.4)

where W), is the workload process in model p, which has output rate x4 and
traffic intensity p, and

X(t) Sy —Cut+B(okt), 20, (7.5)
with B being a standard Brownian motion. The capacity in model p is

K, = CK/(1—p).
We have freedom in the choice of the parameter (. If we let

and rescale time by replacing ¢ by t/o%, then the limit in (7.4) can be
expressed as

{o°n(1 = pW,(toX /(1 = p)?) : t > 0} = ¢ (X) (7.7)
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where X is canonical Brownian motion with drift coefficient —1 and variance
coeficient 1, plus initial position ¥, i.e.,

(X(t):t>0} S {y—t+B(t): >0} .
That leads to the Brownian approrimation

[Wo(t) 2 0} = {03 (1= p) Lbwe (X) (42 (1 — p)?t/0%) : £ > O}, (7.8)
where X is again canonical Brownian motion.

Remark 5.7.1. The impact of variability The Brownian limit and the Brow-
nian approximation provide insight into the way variability in the basic
stochastic processes C' and S affect queueing performance. In the heavy-
traffic limit, the stochastic behavior of the processes C' and S, beyond their
rates A and p, affect the Brownian approximation solely via the single vari-
ance parameter 0% in (7.3), which can be identified from the CLT for C' — S.
For further discussion, see Section 9.6.1. =

We now show how the Brownian approximation applies to the steady-
state workload.

5.7.2. The Steady-State Distribution.

The heavy-traffic limit in Theorem 5.7.1 does not directly imply that the
steady-state distributions converge. Nevertheless, from (7.8), we obtain an
approximation for the steady-state workload, namely,

~ X
Wylo0) = =5 (X) o) (7.9)
Conditions for the convergence of steady-state distributions in heavy traffic
have been established by Szczotka (1986, 1990, 1999).
We now give the steady-state distribution of RBM with two-sided reflec-
tion; see p. 90 of Harrison (1985). We are usually interested in the case of
negative drift, but we allow positive drift as well when K < oo.

Theorem 5.7.2. (steady-state distribution of RBM) Let {W (t) : t > 0} be
one-dimensional RBM with drift coefficient n, diffusion coefficient o2, initial
value y and two-sided reflection at 0 and K. Then

W(t) = W(co) in R as t— o0,
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where W (c0) has pdf

1/K if =0
flz) = s (7.10)
ey if n#0,
with mean
K/2, if n=0
EW(o0) = (7.11)
l,efieK _% if n#0
for

0 = 2n/o? (7.12)

Note that the steady-state distribution of RBM in (7.10) depends only
on the two parameters @ in (7.12) and K. The steady-state distribution is
uniform in the zero-drift case; the steady-state distribution is an exponential
distribution with mean —§~! = 02 /2|n|, conditional on being in the interval
[0, K], when n < 0 and 0 < 0; K — W(o0o) has an exponential distribution
with mean =1 = 02/2n, conditional on being in the interval [0, K], when
n > 0and 6 > 0. Without the upper barrier at K, a steady-state distribution
exists if and only if 5 < 0, in which case it is the exponential distribution
with mean —~! obtained by letting K — oo in (7.10). As K gets large, the
tails of the exponential distributions rapidly become negligible so that

6]t if n<0
EW (c0) ~ (7.13)
K—o7! if n>0.

Let us now consider the approximation indicated by the limit. Since
n~'2W, (nt) = W(t), we use the approximations

W, (t) = vVnW(t/n) (7.14)

and
W, (00) ~ vVnW(o0) . (7.15)
Thus, when K = oo, the Brownian approximation for W,(co) is an

exponential random variable with mean

02
E[W,(00)] = WX—P) . (7.16)
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The RBM’s ¢ (X) in (7.4) and ¢ (X) in (7.7) and (7.8) are the Brow-
nian queues, which serve as the approximating models. From the approxi-
mations in (7.8) — (7.16), we see the impact upon queueing performance of
the processes C' and S in the heavy-traffic limit. In the heavy-traffic limit,
the processes C' and S affect performance through their rates A = pu and p
and through the variance parameter ag(, which depends on the elements of
the covariance matrix ¥ in (7.1) as indicated in (7.3).

Note in particular that the mean of RBM in (7.16) is directly propor-
tional to the variability of X = C — S through the variability parameter
0% in (7.3). The variability parameter 0% in turn is precisely the variance
constant in the CLT for the net-input process C' — S.

In (7.9)-(7.16) we have described the approximations for the steady-
state workload distribution that follow directly from the heavy-traffic limit
theorem in Theorem 5.7.1. It is also possible to modify or “refine” the
approximations to satisfy other criteria. For example, extra terms that
appear in known exact formulas for special cases, but which are negligible
in the heavy-traffic limit, may be inserted. If the goal is to develop accurate
numerical approximations, then it is natural to regard heavy-traffic limits
as only one of the possible theoretical reference points. For the standard
multi-server GI/G/s queue, for which the heavy-traffic limit is also RBM,
heuristic refinements are discussed in Whitt (1982b, 1993a) and references
therein.

For the fluid queue, an important reference case for which exact for-
mulas are available is a single-source model with independent sequences of
IID on times and off times (a special case of the model studied in Chap-
ter 8). Kella and Whitt (1992b) show that the workload process and its
steady-state distribution can be related to the virtual waiting time process
in the standard GI/G/1 queue (studied here in Chapter 9). Relatively sim-
ple moment formulas are thus available in the M/G/1 special case. The
steady-state workload distribution can be computed in the general GI/G/1
case using numerical transform inversion, following Abate, Choudhury and
Whitt (1993, 1994a, 1999). Such computations were used to illustrate the
performance of bounds for general fluid queues by Choudhury and Whitt
(1997).

A specific way to generate refined approximations is to interpolate be-
tween light-traffic and heavy-traffic limits; see Burman and Smith (1983,
1986), Fendick and Whitt (1989), Reiman and Simon (1988, 1989), Reiman
and Weiss (1989) and Whitt (1989b). Even though numerical accuracy can
be improved by refinements, the direct heavy-traffic Brownian approxima-
tions remain appealing for their simplicity.



206 CHAPTER 5. HEAVY-TRAFFIC LIMITS

Example 5.7.1. The M/G/1 steady state workload. It is instructive to
compare the approximations with exact values when we can determine them.
For the standard M/G/1 queue with K = oo, the mean steady-state work-
load has the simple exact formula

pok
BE[W,(o0)] = m ) (7.17)
which differs from (7.16) only by the factor p in the numerator of (7.17)
and the factor p in the denominator of (7.16). First, in the M/G/1 model
the workload process has constant output rate 1, so 4 = 1. Hence, the only
real difference between (7.16) and (7.17) is the factor p in the numerator of
(7.17), which approaches 1 in the heavy-traffic limit.
To elaborate, in the M/G/1 queue, the cumulative input C(t) equals
the sum of the service times of all arrivals in the interval [0,¢], i.e., the
cumulative input is

A(t)
Ct)y=> Vi, t>0,
k=1

where {A(t) : ¢ > 0} is a rate-v Poisson arrival process independent of
the sequence {Vj : k > 1} of IID service times, with V; having a general
distribution with mean EV;. Thus, the traffic intensity is p = vEV). The
workload process is defined in terms of the net-input process X (t) = C(t) —t
as described in Section 5.2.

The cumulative-input process is a special case of a renewal-reward pro-
cess, considered in Section 7.4. Thus, by Theorem 7.4.1, if

ot =VarV; < oo,

then the cumulative-input process obeys a FCLT C,, = C for C,, in (3.7)
with translation constant A = p and space-scaling function ¢, = n'/2. Then
the limit process is 0B, where B is standard Brownian motion and

U% = 1/0‘2/+,OEV1
= pEVi(ci+1), (7.18)

where c%, is the squared coefficient of variation, defined by
& =ob/(EV)?. (7.19)

Therefore,
0% =0k = pEVi( +1) . (7.20)
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With this notation, the exact formula for the mean steady-state workload
in the M/G/1 queue is given in (7.17) above; e.g., see Chapter 5 of Kleinrock
(1975). As indicated above, the approximation in (7.16) differs from the
exact formula in (7.17) only by the factor p in the numerator of the exact
formula, which of course disappears (becomes 1) in the heavy-traffic limit.

For the M/G/1 queue, it is known that

P(W,(0) =0)=1—p. (7.21)

Thus, if we understand the approximation to be for the conditional mean
E[W,(00)|W,(c0) > 0], then the approximation beomes exact. In general,
however, the distribution of W,(co) is not exponential, so that the expo-
nential distribution remains an approximation for the M/G/1 model, but
the conditional distribution of W (oco) given that W (oo) > 0) is exponen-
tial in the M/M/1 special case, in which the service-time distribution is
exponential. =

5.7.3. The Overflow Process

In practice it is also of interest to describe the overflow process. In a
communication network, the overflow process describes lost packets. An
important design criterion is to keep the packet loss rate below a specified
threshold. The loss rate in model n is

B = lim ¢710(2) . (7.22)
The limits in Theorems 5.4.1 and 5.7.1 show that, with the heavy-traffic
scaling, the loss rate should be asymptotically negligible as n — 0o. Specif-
ically, since n='/2U, (nt) = U(t) as n — oo, where U is the upper-barrier
regulator process of RBM, the cumulative loss in the interval [0,n] is of
order y/n, so that the loss rate should be of order 1/y/n as n — oco. (Of
course, this asymptotic form depends on having the upper barriers grow as
K, = \/nK and p, — 1.) More precisely, we approximate the loss rate (3,
by

B~ BV, (7.23)
where
p = lim U . (7.24)

Note that approximation (7.23) involves an unjustified interchange of limits,
involving n — oo and ¢ — oo.
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Berger and Whitt (1992b) make numerical comparisons (based on exact
numerical algorithms) showing how the Brownian approximation in (7.23)
performs for finite-capacity queues. For very small loss rates, such as 1072,
it is not possible to achieve high accuracy. (Systems with the same heavy-
traffic limit may have loss rates varying from 10~* to 107!5.) Such very
small probabilities tend to be captured better by large-deviations limits.
For a simple numerical comparison, see Srikant and Whitt (2001). Overall,
the Brownian approximation provides important insight. That is illustrated
by the sensitivity analysis in Section 9 of Berger and Whitt (1992b).

More generally, the heavy-traffic stochastic-process limits support the
approximation

U,(t) =~ v/nU(t/n), t>0, (7.25)

where U is the upper-barrier regulator process of RBM. In order for the
Brownian approximation for the overflow process in (7.25) to be useful,
we need to obtain useful characterizations of the upper-barrier regulator
process U associated with RBM. It suffices to describe one of the boundary
regulation processes U and L, because L has the same structure as U with a
drift of the opposite sign. The rates of the process L and U are determined
on p. 90 of Harrison (1985).

Theorem 5.7.3. (rates of boundary regulator processes) The rates of the
boundary requlator processes exist, satisfying

o?/2K if n=0

L(¢t EL(t
a= tlim % = tlim % = (7.26)
—00 —00 :
i if n#0
and
o?/2K if n=0
E
6= tim 90 _ jypy ZIO _ (7.27)
t—oo t t—o0 t

H% if n#0.

It is important to note that the loss rate 3 depends upon the variance o2,
either directly (when = 0) or via @ in (7.12). We can use regenerative anal-
ysis and martingales to further describe the Brownian boundary regulation
processes L and Uj; see Berger and Whitt (1992b) and Williams (1992). Let
T, be the first passage time from level a to level b within [0, K]. Epochs at
which RBM first hits 0 after first hitting K are regeneration points for the
processes L and U. Assuming that the RBM starts at 0, one regeneration



5.7. BROWNIAN APPROXIMATIONS 209

cycle is completed at time Ty i + Tk 9. Of course, L increases only during
[0, To,x], while U increases only during [To,x,To,x + Tk,]. We can apply
regenerative analysis and the central limit theorem for renewal processes to
show that the following limits exist

L) . EL(t)  EL(Tok +Tkp)
= lim —~ = 1 = ’ ’ 2
@ t—l)Ig) t tiglo t E(TO,K —|—TK,0) (7 8)
. U{#) .. EU®F) EU(Tox + Tkyo)
= lim —2 =1 = ’ : 2
L s M
L
o2 = 5im YUY d o2 =i Y UG (7.30)
t—o00

The parameters O'% and U2U in (7.30) are the asymptotic variance parameters
of the processes L and U. It is also natural to focus on the normalized
asymptotic variance parameters

2 =or/a and ¢ =05/0 . (7.31)

Theorem 5.7.4. (normalized asymptotic variance of boundary regulator
processes) The normalized asymptotic variance parameters in (7.31) satisfy

2
(L(TO,K) - (TO’%afi’ﬁii(jo’K)> /EL(TO,K)

02U = C%:E

2K/3 if n=0

- 21— K 149K ePE) . (7.32)
“O(1_ePK)2 if m#0

for 0 =2n/0? as in (7.12).

In order to obtain the last line of (7.32) in Theorem 5.7.4, and for its
own sake, we use an expression for the joint transform of L(Tp k) and Tp i
from Williams (1992). Note that it suffices to let 02 = 1, because if 02 > 0
and W is a (n/0,1) RBM on [0, K/o], then oW is an (1, 0?)-RBM on [0, K].

Theorem 5.7.5. (joint distribution of key variables in the regenerative rep-
resentation) For o2 =1 and all 51,52 > 0,

E[exp(—le(To,K) — SZT[)’K)]
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ﬁ Zf 77:0,82:0

1 P
- cosh(vK)+s1y~Lsinh(yK) if n=0,50#0 (733)

emK .
cos(vK)+(s1+m)y~Tsinh(vK) if n#0,

where v = /1% + 2s5.

Since an explicit expression for the Laplace transform is available, we can
exploit numerical transform inversion to calculate the joint probability dis-
tribution and the marginal probability distributions of Ty x and L(7p k); see
Abate and Whitt (1992a, 1995a), Choudhury, Lucantoni and Whitt (1994)
and Abate, Choudhury and Whitt (1999).

Explicit expressions for the moments of L(Tp k) and Ty x can be ob-
tained directly from Theorem 5.7.5.

Theorem 5.7.6. (associated moments of regenerative variables) If n = 0
and 0 =1, then

ETyx = K?, ET;x = 5K*/3,
E[L(To,x)] = K, E[L(Ty k)] =2K”
E[Ty xL(Tox)] = 5K?/3. (7.34)

If n # 0 and 02 = 1, then

ETox = (e —1+29K)/29% ,
ETfg] = (e 471K 4+ 6nKe " + 20 K* — 2) /20" ,
EL(Thk) = (1—e?)/2n,
EL(Tok)’] = (1—e ") /29,
ETy xL(Tox)] = (e 2 —3nKe 21K — e WK L pKy /20 . (7.35)

Fendick and Whitt (1998) show how a Brownian approximation can be
used to help interpret loss measurements in a communication network.

5.7.4. One-Sided Reflection

Even nicer descriptions of RBM are possible when there is only one
reflecting barrier at the origin (corresponding to an infinite buffer). Let
R = {R(t;n,0%,2) : t > 0} denote RBM with one reflecting barrier at the
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origin, i.e., R = ¢(B) for B = {B(t;n,0%,z) : t > 0}, where ¢ is the one-
dimensional reflection map in (2.5) and B is Brownian motion. There is
a relatively simple expression for the transient distribution of RBM when
there is only a single barrier; see p. 49 of Harrison (1985).

Theorem 5.7.7. (transition probability of RBM with one reflecting bar-
rier) If R = {R(t;n,02%,1) : t > 0} is an (n,0%)-RBM then

PR(t) <yR(0)=2) = 1-@ <W>

—exp(amy/o)e (L2

where @ is the standard normal cdf.

We now observe that we can express RBM with negative drift (and one
reflecting barrier at the origin) in terms of canonical RBM with drift coeffi-
cient —1 and diffusion coefficient 1. We first state the result for Brownian
motion and then for reflected Brownian motion.

Theorem 5.7.8. (scaling to canonical Brownian motion) If m < 0 and
0% >0, then

{aB(bt;m, 0%, z) : t >0} £ {B(t; —1,1,az) : t > 0} (7.36)
and
(B(t;m,02,2) 1t >0} < {a'B(b~'t;—1,1,az) : ¢t > 0} (7.37)
for
[m| o
= ? >0, b = W >0,
m o= —L < 2 = Loy (7.38)
N ab ’ T T 2 ' '

Theorem 5.7.9. (scaling to canonical RBM). If n < 0 and o2 > 0, then

{aR(bt;n, 0%, Y) : t >0} 4 {R(t;—1,1,aY) : t > 0} (7.39)
and

(R(t;n,0%,Y) : £ >0} 2 {a 'R(b ;—1,1,aY) : £ > 0} (7.40)
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for
_ _o?
a = g > 0, b= W’
-1 1
'r, = _ab’ 0’2 = —azb y (741)

as in (7.38) of Chapter 4.

Theorem 5.7.9 is significant because it implies that we only need to
do calculations for a single RBM — canonical RBM. Expressions for the
moments of canonical RBM are given Abate and Whitt (1987a,b) along
with various approximations. There it is shown that the time-dependent
moments can be characterized via cdf’s. In particular, the time-dependent
moments starting at 0, normalized by dividing by the steady-state moments
are cdf’s. Moreover the differences E(R(¢)|R(0) = z) — E[R(t)|R(0) = 0]
divided by z are complementary cdf’s (ccdf’s), and all these cdf’s have
revealing structure. Here are explicit expressions for the first two moments.

Theorem 5.7.10. (moments of canonical RBM) If R is canonical RBM,

then
PRORO) -] = 2+ vie ()
— (t—z+27Y) [1_@<t\_/;>]
91,20 [1 q)<t\—;;>]
and

ER(t)?R(0) =2] = 21+((x—1)\/£—\/t_3)¢<t_$>

+ (t—2)2+t—27Y [1—@(75)]
+ Xtz —27) [1—¢(tj;;>

where ® and ¢ are the standard normal cdf and pdf.
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When thinking about RBM approximations for queues, it is sometimes
useful to regard RBM as a special M/M/1 queue with p = 1. After doing
appropriate scaling, the M/M/1 queue-length process approaches a nonde-
generate limit as p — 1. Thus structure of RBM can be deduced from struc-
ture for the M/M/1 queue; see Abate and Whitt (1988a-d). This is one way
to characterize the covariance function of stationary RBM; see Abate and
Whitt (1988c). Recall that a nonnegative-real-valued function f is com-
pletely monotone if it has derivatives of all orders that alternate in sign.
Equivalently, f can be expressed as a mixture of exponential distributions;
see p. 439 of Feller (1971).

Theorem 5.7.11. (covariance function of RBM) Let R* be canonical RBM
initialized by giving R*(0) an exponential distribution with mean 1/2. The
process R* is a stationary process with completely monotone covariance
function

Cov(R*(0),R*(t)) = E[R*(t)—27")(R*(0) —27")]
2(1 — 2t — t*)[1 — ®(V1)] + 2VH(1 + t) (V1)
= Hi(t) = H3(t), t>0,

where Hy, is the k*™-moment cdf and Hf, is the stationary-excess ccdf asso-
ciated with the first-moment cdf, i.e.,
E[R(t)"|R(0) = 0]

Hy(t) = ER(OO)k , t>0,

and ;
Hi (t)y=1- 2/ Hi(s)ds, t>0.
0

Canonical RBM has asymptotic variance
t
ok = limt ' Var (/ R(s)ds|R(0) = (II) =1/2.
0

5.7.5. First-Passage Times

We can also establish limits for first passage times. For a stochastic
process {Z(t) : t > 0}, let T, ;,(Z) denote the first passage time for Z to go
from a to b. (We assume that Z(0) = a, and consider the first passage time
to b.) In general, the first passage time functional is not continuous on D
or even on the subset C', but the first passage time functional is continuous
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almost surely with respect to BM or RBM, because BM and RBM cross any
level w.p.1 in a neighborhood of any time that they first hit a level. Hence
we can invoke a version of the continuous mapping theorem to conclude that
limits holds for the first passage times.

Theorem 5.7.12. (limits for first passage times) Under the assumptions of
Theorem 5.7.1,
T, w,
a\/ﬁ,b;iﬁ( TL) = Ta’b(W)
for any positive a,b with a # b and 0 < a,b < K, where W is RBM and W,
s the unnormalized workload process in model n.

Now let T}, 5 (R) be the first-passage time from a to b for one-sided canon-
ical RBM. The first-passage time upward is the same as when there is a
(higher) upper barrier (characterized in Theorems 5.7.5 and 5.7.6), but the
first-passage time down is new. Let f(¢;a,b) be the pdf of Tj, ,(R) and let

f(s;a,b) be its Laplace transform, i.e.,

f(s;a,b) = /0 et a, byt

where s is a complex variable with positive real part. The Laplace transforms
to and from the origin have a relatively simple form; see Abate and Whitt
(1988a). Again, numerical transform inversion can be applied to compute
the probability distributions themselves.

Theorem 5.7.13. (RBM first-passage-time transforms and moments) For
canonical RBM (with no upper barrier), the first-passage-time Laplace trans-
forms to and from the origin are, respectively,

f(s;2,0) = e

and .
p LT T2
-0 —
f(S’ "II;) ,rle_xrz + 7,.2€xr1
for
ri(s) =14+vV1+2s and rofs) =vV1+2s—1,
so that
ET.p z, VarTyo = z,
ETy, = 27 1e? —1—-22] and
VarTy, = 4 e —1 -4z +4e* (1 —22) —4].
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The first passage time down is closely related to the busy period of
a queue, i.e., the time from when a buffer first becomes nonempty until
it becomes empty again. This concept is somewhat more complicated for
fluid queues than standard queues. In either case, the distribution of the
busy period for small values tends to depend on the fine structure of the
model, but the tail of the busy period often can be approximated robustly,
and Brownian approximations can play a useful role; see Abate and Whitt
(1988d, 1995b).

First-passage-time cdf’s are closely related to extreme-value ccdf’s be-
cause Tp (W) < t if and only if WT(t) = supye <, W(s) > a. Extreme-
value theory shows that there is statistical regularity associated with both
first-passage times and extreme values as ¢ — oo and @ — oo; see Resnick
(1987). Heavy-traffic extreme-value approximations for queues are discussed
by Berger and Whitt (1995a), Glynn and Whitt (1995) and Chang (1997).
A key limit is

2R (t) —log(2t) = Z as t— oo,

where R is canonical RBM and Z has the Gumbel cdf, i.e.,
P(Z <z)=exp(—e™), —oc0o<z<.

This limit can serve as a basis for extreme-value engineering.

To summarize, in this section we have displayed Brownian limits for a
fluid queue, obtained by combining the general fluid-queue limits in Theorem
5.4.1 with the multidimensional version of Donsker’s theorem in Theorem
4.3.5. We have also displayed various formulas for RBM that are helpful in
applications of the Brownian limit. We discuss RBM limits and approxima-
tions further in the next section and in Sections 8.4 and 9.6.

5.8. Planning Queueing Simulations

In this section, following Whitt (1989a), we see how the Brownian ap-
proximation stemming from the Brownian heavy-traffic limit in Section 5.7
can be applied to plan simulations of queueing models. In particular, we
show how the Brownian approximation can be used to estimate the required
simulation run lengths needed to obtain desired statistical precision, before
any data have been collected. These estimates can be used to help design the
simulation experiment and even to determine whether or not a contemplated
experiment should be conducted.

The queueing simulations considered are single replications (one long
run) of a single queue conducted to estimate steady-state characteristics,



216 CHAPTER 5. HEAVY-TRAFFIC LIMITS

such as long-run-average steady-state workload. For such simulations to be
of genuine interest, the queueing model should be relatively complicated, so
that exact numerical solution is difficult. On the other hand, the queueing
model should be sufficiently tractable that we can determine an appropriate
Brownian approximation.

We assume that both these criteria are met. Indeed, we specify the
models that we consider by stipulating that scaled versions of the stochastic
process of interest, with the standard normalization, converge to RBM as
p T 1. For simplicity, we focus on the workload process in a fluid queue with
infinite capacity, but the approach applies to other models as well.

Of course, such a Brownian approximation directly yields an approxima-
tion for the steady-state performance, but nevertheless we may be interested
in the additional simulation in order to develop a more precise understand-
ing of the steady-state behavior. Indeed, one use of such simulations is
to evaluate how various candidate approximations perform. Then we of-
ten need to perform a large number of simulations in order to see how the
approximations perform over a range of possible model parameters.

In order to exploit the Brownian approximation for a single queue, we
focus on simulations of a single queue. However, the simulation actually
might be for a network of queues. Then the analysis of a single queue is
intended to apply to any one queue in that network. If we want to estimate
the steady-state performance at all queues in the network, then the required
simulation run length for the network would be the maximum required for
any one queue in the network. Our analysis shows that it often suffices to
focus on the bottleneck (most heavily loaded) queue in the network.

At first glance, the experimental design problem may not seem very
difficult. To get a rough idea about how long the runs should be, one might
do one “pilot” run to estimate the required simulation run lengths. However,
such a preliminary experiment requires that you set up the entire simulation
before you decide whether or not to conduct the experiment. Nevertheless, if
such a sampling procedure could be employed, then the experimental design
problem would indeed not be especially difficult. Interest stems from the
fact that one sample run can be extremely misleading.

This queueing experimental design problem is interesting and important
primarily because a uniform allocation of data over all cases (parameter val-
ues) is not nearly appropriate. Experience indicates that, for given statistical
precision, the required amount of data increases as the traffic intensity in-
creases and as the arrival-and-service variability (appropriately quantified)
increases. Our goal is to quantify these phenomena.

To quantify these phenomena, we apply the space and time scaling func-
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tions. Our analysis indicates that to achieve a uniform relative error over all
values of the traffic intensity p that the run length should be approximately
proportional to the time-scaling factor (1 — p)~2 (for sufficiently high p).
Relative error appears to be a good practical measure of statistical preci-
sion, except possibly when very small numbers are involved. Then absolute
error might be preferred. It is interesting that the required run length de-
pends strongly on the criterion used. With the absolute error criterion, the
run length should be approximately proportional to (1 — p)~*. With either
the relative or absolute error criteria, there obviously are great differences
between the required run lengths for different values of p, e.g., for p = 0.8,
0.9 and 0.99.

We divide the simulation run-length problem into two components. First,
there is the question: What should be the required run length given that the
system starts in equilibrium (steady state)? Second, there is the question:
What should we do in the customary situation in which it is not possible
to start in equilibrium? We propose to delete an initial portion of each
simulation run before collecting data in order to allow the system to (ap-
proximately) reach steady state. By that method, we reduce the bias (the
systematic error that occurs when the expected value of the estimator dif-
fers from the quantity being estimated). The second question, then, can be
restated as: How long should be the initial segment of the simulation run
that is deleted?

Focusing on the first question first, we work with the workload stochastic
process, assuming that we have a stationary version, denoted by W 7. First,
however, note that specifying the run length has no meaning until we specify
the time units. To fix the time units, we assume that the output rate in the
queueing system is p. (It usually suffices to let y = 1, but we keep general
p to show how it enters in.)

For the general fluid-queue model we have the RBM approximation in
(7.8). However, since we are assuming that we start in equilibrium, instead of
the Brownian approximation in (7.8), we assume that we have the associated
stationary Brownian approzimation

W) > 0} ~ {0k (1= p) "R (032631 — )2t —1,1) : £ > 0},
(8.1)
where 0% is the variability parameter, just as in (7.8), and R* is a stationary
version of canonical RBM, with initial exponential distribution, i.e.,

(R*(t;—1,1) : £ > 0} L {R(t;—1,1,Y) : £ > 0} , (8.2)

where the initial position Y is an exponential random variable with mean
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1/2 independent of the standard Brownian motion being reflected; i.e., R* =
#(B+Y') where ¢ is the reflection map and B is a standard Brownian motion
independent of the exponential random variable Y.

The obvious application is with {W}(t) : t > 0} being a stationary ver-
sion of a workload process, as defined in Section 5.2. However, our analysis
applies to any stationary process having the Brownian approximation in
(8.1).

5.8.1. The Standard Statistical Procedure

To describe the standard statistical procedure, let {W(t) : t > 0} be a
stochastic process of interest and assume that is stationary with EW (¢)? <
0o. (We use that notation because we are thinking of the workload process,
but the statistical procedure is more general, not even depending upon the
Brownian approximation.) Our object is to estimate the mean E[W (0)] by
the sample mean, i.e., by the time average

t
Wtzt_l/o W(s)ds, t>0. (8.3)

The standard statistical procedure, assuming ample data, is based on a CLT
for W;. We assume that

t2(W, — E[W(0)]) = N(0,0%) as t— oo, (8.4)

where ¢ is the asymptotic variance, defined by

o? = lim tVar(W;) = 2/ C(t)dt , (8.5)
0

and C(t) is the (auto) covariance function
C(t) = EW (W (0)] - (EWO)2, 0. (5.6)

Of course, a key part of assumption (8.4) is the requirement that the asymp-
totic variance o2 be finite. The CLT in (8.4) is naturally associated with
a Brownian approximation for the process {W(t) : ¢ > 0}. Such CLTs for
stationary processes with weak dependence were discussed in Section 4.4.
Based on (8.4), we use the normal approximation

W, ~ N(E[W(0)], 0% /t) (8.7)

for the (large) ¢ of interest, where o is the asymptotic variance in (8.5).
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Based on (8.7), a [(1—/3)-100]% confidence interval for the mean E[W (0)]
is
[Wt - 25/2(02/’5)1/27 Wt + Zﬁ/2(02/t)1/2] ) (8.8)
where

P(—z5/2 < N(0,1) < z5p9) =1-0. (8.9)

The width of the confidence interval in (8.8) provides a natural measure
of the statistical precision. There are two natural criteria to consider: abso-
lute width and relative width. Relative width looks at the ratio of the width
to the quantity to be estimated, E[W (0)].

For any given 3, the absolute width and relative width of the [(1 — () -
100]% confidence intervals for the mean E[W (0)] are, respectively,

B 2025/2

2
walf) = =g and wn(f) =

= TP E W (8.10)

For specified absolute width e and specified confidence level 1— 3, the required
simulation run length, given (8.7), is

40222
ta(e, f) = EZW . (8.11)

For specified relative width € and specified confidence level 1 — 3, the required
length of the estimation interval, given (8.7), is

2.2
4o 2372

tr(e, 8) = 2

ZEW O] (8.12)

From (8.11) and (8.12) we draw the important and well-known conclusion
that both #,(e, 3) and t.(e, 3) are inversely proportional to €2 and directly
proportional to o2 and 22 9

Standard statistical theory describes how observations can be used to
estimate the unknown quantities E[W (0)] and o?. Instead, we apply addi-
tional information about the model to obtain rough preliminary estimates
for E[W(0)] and 02 without data.

5.8.2. Invoking the Brownian Approximation

At this point we invoke the Brownian approximation in (8.1). We assume
that the process of interest is W and that it can be approximated by scaled
stationary canonical RBM as in (8.1). The steady-state mean of canonical
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RBM and its asymptotic variance are both 1/2; see Theorems 5.7.10 and
5.7.11. Tt thus remains to consider the scaling.

To consider the effect of scaling space and time in general, let W again
be a general stationary process with covariance function C and let

W, (t) = yW(zt), t>0

for y,z > 0. Then the mean E[W, .(t)], covariance function Cy ,(t) and
asymptotic variance of W, , are, respectively,
E[W, - (1)] = yEW (2t) = yE[W (1)]
Cy-(t) = y*C(zt) and O'Z’Z =y’0%/z . (8.13)
Thus, from (8.1) and (8.13), we obtain the important approximations
I S
2ut(1—p)*t

2
Ox

; (8.14)

and 0’12/1/* ~
P

We have compared the approximation for the mean in (8.14) to the exact
formula for the M/G/1 workload process in Example 5.7.1. Similarly, the
exact formula for the asymptotic variance for the M/M/1 workload process,
where =1, is

‘712/V _ 2p(3 — p) .
o (L=pt

see (23) of Whitt (1989a). Formula (8.15) reveals limitations of the approx-
imation in (8.14) in light traffic (as p | 0), but formula (8.15) agrees with
the approximation in (8.14) in the limit as p — 1, because 0% = 2p for the
M/M/1 queue; let EVy =1 and ¢ = 1 in (7.20). Numerical comparisons
of the predictions with simulation estimates in more general models appear
in Whitt (1989a). These formulas show that the approximations give good
rough approximations for p not too small (e.g., for p > 1/2).

Combining (8.12) and (8.14), we see that the approximate required sim-
ulation run length for W} given a specified relative width € and confidence
level 1 — 3 for the confidence interval for E[W;(0)] is

(8.15)

803, 22

B/2
t ~—"1" 8.16
T(eaﬁ) 62/1,2(1 p)2 ( )

Combining (8.11) and (8.14), we see that the approximate required simu-
lation run length for W given a specified absolute width € and confidence
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level 1 — f3 for the confidence interval for E[W,(0)] is

20’§(Z§ /2
eput(l—p)t

In summary, the Brownian approximation in (8.1) dictates that, with a
criterion based on the relative width of the confidence interval, the required
run length should be directly proportional to both the the time-scaling term
as a function of p alone, (1—p)~2, and the heavy-traffic variability parameter
Ugg. In contrast, with the absolute standard error criterion, the required run
length should be directly proportional to (1 — p)~*, the square of the time-
scaling term as a function of p alone, and %, the cube of the heavy-traffic
variability parameter O'g(.

The second question mentioned at the outset is: How to determine an
initial transient portion of the simulation run to delete? To develop an
approximate answer, we can again apply the Brownian approximation in
(8.1). If the system starts empty, we can consider canonical RBM starting
empty. By Theorem 5.7.10, the time-dependent mean of canonical RBM
E[R(t)|R(0) = 0] is within about 1% of its steady-state mean 1/2 at ¢t = 4.
Hence, if we were simulating canonical RBM, then we might delete an initial
portion of length 4. Thus, by (8.1), a rough rule of thumb for the queueing
process W, (with unit processing rate) is to delete an initial segment of
length 40% /u?(1 — p)?. When we compare this to formula (8.16), we see
that the proportion of the total run that should be deleted should be about
€2/ 22% /g» Which is small when € is small.

We can also employ the Brownian approximation to estimate the bias
due to starting away from steady-state. For example, the bias due to starting
empty with canonical RBM is

ta(e, B) = (8.17)

t
ER,—1/2 = t_l/(E[R(t;—l,l,O]—1/2)ds
0

&

t_l/oo(E[R(s);—l,l,O] —1/2)ds = 1/4t , (8.18)
0

by Corollary 1.3.4 of Abate and Whitt (1987a). The approximate relative
bias is thus 1/2t. That same relative bias should apply approximately to
the workload process in the queue. We can also estimate the reduced bias
due to deleting an initial portion of the run, using Theorem 5.7.10 and the
hyperexponential approximation

1/2 — E[R(t; —1,1,0] = 0.36e %23 40.138¢ %" ¢>0.  (8.19)
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Our entire analysis depends on the normal approximation in (8.7), which
in turn depends on the simulation run length ¢. Not only must ¢ be suffi-
ciently large so that the estimated statistical precision based on (8.7) is
adequate, but ¢ must be sufficiently large so that the normal approximation
in (8.7) is itself reasonable. Consistent with intuition, experience indicates
that the run length required for (8.7) to be a reasonable approximation also
depends on the parameters p and 0%, with ¢ needing to increase as p and
ag( increase. We can again apply the Brownian approximation to estimate
the run length required. We can ask what run length is appropriate for a
normal approximation to the distribution of the sample mean of canonical
RBM. First, however, the time scaling alone tells us that the run length must
be at least of order 0% /u?(1 — p)?. This rough analysis indicates that the
requirement for (8.7) to be a reasonable approximation is approximately the
same as the requirement to control the relative standard error. For further
analysis supporting this conclusion, see Asmussen (1992).

5.9. Heavy-Traffic Limits for Other Processes

We now obtain heavy-traffic stochastic-process limits for other processes
besides the workload process in the setting of Section 5.4. Specifically, we
obtain limits for the departure process and the processing time.

5.9.1. The Departure Process

We first obtain limits for the departure process defined in (2.11), but in
general we can have difficulties applying the continuous-mapping approach
with addition starting from (2.11) because the limit processes S and —L
can have common discontinuities of opposite sign. We can obtain positive
results when we rule that out, again invoking Theorem 12.7.3.

Let the scaled departures processes be defined by

D, = ¢, (Dy(nt) — ppnt), t>0. (9.1)

Theorem 5.9.1. (limit for the departure process) Let the conditions of
Theorem 5.4.1 hold. If the topology on D is Ji, assume that S and L almost
surely have no common discontinuities. If the topology on D is My, assume
that S and L almost surely have no common discontinuities with jumps of
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common sign. Then, jointly with the limits in (4.5) and (4.7),
D,=D=S-L in D (9.2)
with the same topology, for Dy in (9.1), S in (4.5) and L in (4.9).

Proof. By (2.11),
D,=S,-L,.

By Theorem 5.4.1, (S,,,L,) = (S,L) in D? jointly with the other limits.
Just as in the proof of Theorem 5.4.1, we can apply the continuous mapping
theorem, Theorem 3.4.3, with addition. Under the conditions on the discon-
tinuities of S and L, addition is measurable and almost surely continuous.
Hence we obtain the desired limit in (9.2). =

The extra assumption in Theorem 5.9.1 is satisfied when P(S,(t) =
pnt, t > 0) =1 or when X has no negative jumps (which implies that
L = ¢1(X) has continuous paths).

As an alternative to (9.1), we can use the input rate A, in the translation
term of the normalized departure process; i.e., let

D!, =c, (Dy(nt) — A\ynt), t>0. (9.3)

n

When the input rate appears in the translation term, we can directly com-
pare the departure processes D,, to the cumulative-input processes C,,.

Corollary 5.9.1. (limit for the departure process with input centering) Un-
der the assumptions of Theorem 5.9.1,

D/ =D'=-ne+S—-L in (D,M) (9.4)
for D! in (9.3), n in (4.6), e(t) =t for t >0, S in (4.5) and L in (4.9).

Proof. Note that D/, = D,, — n,e. Hence, as before, we can apply the
continuous-mapping theorem, Theorem 3.4.3, with addition to the joint limit
(Dy,nne) = (D,ne), which holds by virtue of Theorems 5.9.1 and 11.4.5.

5.9.2. The Processing Time

We now establish heavy-traffic limits for the processing time 7'(¢) in
(2.12). We first exploit (2.13) when K = oo. Let the scaled processing-time
processes be

T,(t) =c,'T,(nt), t>0. (9.5)
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Theorem 5.9.2. (limit for the processing time when K = 0o) Suppose that,
in addition to the conditions of Theorem 5.4.1, K = 00, iy, — [4 G§ 1. — 00,
where 0 < p < 00,

ncn = n()‘n - M)/cn — Nc (9'6)
and

nsn = nlpn — p)/cn = ns (9.7)
where —o00 < o < o0 and —oo0 < ng < 00, so that n = noc —ns. If
the topology on D 1is Ji, suppose that almost surely no two of the limit
processes C, S and L have common discontinuities. If the topology on D
is My, assume that L and C almost surely have no common discontinuities

with jumps of opposite sign, and S and L almost surely have no common
discontinuities with jumps of common sign. Suppose that

P(S(0)=0)=1. 9.8)

Then

T,=p"'W in D (9.9)
with the same topology on D, jointly with the limits in (4.5) and (4.7), for
T, in (9.5) and W in (4.9) with K = oo.

Proof. We can apply the continuous-mapping approach with first passage
times, using the inverse map with centering in Section 13.7. Specifically,
we can apply Theorem 13.7.4 with the Skorohod representation theorem,
Theorem 3.2.2. From (2.13),

n Y, (nt)+nt = inf{u > 0:n 1S, (nu) > n Y (Cp(nt)+ W/ (0)+ Ly (nt))} .
By (4.5), (9.6) and (9.7),
(n/cn)(Sn — e, Zyn — pe) = (S +nse, Z +nce) (9.10)
where
S, =n"'S,(nt) and Z, =n"YCy(nt) + W (0) + Lp(nt)), t>0.
We use the conditions on the discontinuities of C and L to obtain the limit

(n/cn)(Zn — pe) = Z +nce ,

where

Z=C+W'(0)+L,
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by virtue of Theorem 12.7.3. Since

T, (t) = n T, (nt)

(S;'oZy)(t)—t, t>0, (9.11)

the desired limit for T, follows from Theorem 13.7.4. In particular, (9.10),
(9.11) and (9.8) imply the limit

(”/Cn)(Ar_Llo An—/ﬁ_leoue)
- (Z+nce) — (S+nse)ou~teope W
- — . u
H 1%

The continuity conditions in Theorem 5.9.2 are satisfied when S is almost
surely continuous and X almost surely has no negative jumps (which makes
L almost surely have continuous paths). That important case appears in
the convergence to reflected stable Lévy motion in Theorem 8.5.1.

We can also obtain a FCLT for T,, when K < oo under stronger con-
tinuity conditions and pointwise convergence under weaker conditions. (It
may be possible to establish analogs to part (b) below without such strong
continuity conditions.)

Theorem 5.9.3. (limits for the processing time when K < oo) Suppose
that the conditions of Theorem 5.4.1 hold with 0 < K < oo and py, — i,
where 0 < p < 00.

(a) If
P(t € Disc(S)) = P(t € Disc(W)) =0, (9.12)
then
T,t) = p *W(t) in R. (9.13)
(b) If
P(CeC)=PScC)=1, (9.14)
then
T,=p ‘W in (D,M), (9.15)

where P(W € C) = 1.

Proof. (a) By (2.12),
n" T, (nt) = inf{u > 0: S,(n(t +u)) — Sp(nt) > Wy (nt)} ,
so that

To(t) = inf{u > 0 : i + Su(t + ulca/n)) — Sn(t) > Wa(t)} .
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By the continuous-mapping approach, with condition (9.12),
To(t) = inf{u > 0+ ju > W(H)} |

which implies the conclusion in (9.13).
(b) Under condition (9.14),
sup {|Sn(t+ u(cp/n)) —Sp(t)|} =0 as n—o00 w.p.l
0<t<T

for any 7" with 0 < T' < o0; see Section 12.4. Hence the conclusion in
part (a) holds uniformly over all bounded intervals. An alternative proof
follows the proof of Theorem 5.9.2, including the process {U(t) : t > 0}
when K <oco. =

Remark 5.9.1. The heavy-traffic snapshot principle. With the previous
heavy-traffic theorems in this section, Theorems 5.9.2 and 5.9.3 establish
a version of the heavy-traffic snapshot principle, a term coined by Reiman
(1982): In the heavy-traffic limit, the processing time is asymptotically negli-
gible compared to the time required for the workloads to change significantly.
Since time is scaled by n, the workloads can change significantly only over
time intervals of length of order n. On the other hand, since the space scal-
ing is by ¢, where ¢, — oo but ¢,/n — 0 as n — oo, the workload itself
tends to be only of order ¢,, which is asymptotically negligible compared
to n. Correspondingly, Theorems 5.9.2 and 5.9.3 show that that processing
times also are of order ¢,. Thus, in the heavy-traffic limit, the workload
when a particle of work departs is approximately the same as the workload
when that particle of work arrived.

The heavy-traffic snapshot principle also holds in queueing networks.
Thus the workload seen upon each visit to a queue in the network and
upon departure from the network by a particle flowing through the network
is the same, in the heavy-traffic limit, as seen by that particle upon initial
arrival. The heavy-traffic snapshot principle implies that network status can
be communicated effectively in a heavily loaded communication network: A
special packet sent from source to destination may record the buffer content
at each queue on its path. Then this information may be passed back to the
source by a return packet. The snapshot principle implies that the buffer
contents at the queues will tend to remain near their original levels (relative
to heavy-loading levels), so that the information does not become stale. (A
caveat: With the fluid-limit scaling in Section 5.3, the heavy-traffic snapshot
principle is not valid. In practice, we need to check if the snapshot principle
applies.) For more on the impact of old information on scheduling service
in queues, see Mitzenmacher (1997).
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5.10. Priorities

In this book we primarily consider the standard first-come first-served
(FCFS) service discipline in which input is served in order of arrival, but it
can be important to consider other service disciplines to meet performance
goals. We now illustrate how we can apply heavy-traffic stochastic-process
limits to analyze a queue with a non-FCFS service discipline. Specifically,
we now consider the fluid-queue model with priority classes. We consider
the relatively tractable preemptive-resume priority discipline; i.e., higher-
priority work immediately preempts lower-priority work and lower-priority
work resumes service where it stopped when it regains access to the server.
Heavy-traffic limits for the standard single-server queue with the preemptive-
resume priority discipline were established by Whitt (1971a).

In general, there may be any number m of priority classes, but it suffices
to consider only two because, from the perspective of any given priority class,
all lower priority work can be ignored, and all higher-priority work can be
lumped together. Thus, the model we consider now is the same as in Section
5.2 except that there are two priority classes. Let class 1 have priority over
class 2. For 7 = 1,2, there is a class-¢ cumulative-input stochastic process
{C;i(t) : t > 0}. As before, there is a single server, a buffer with capacity K
and a single service process {S(t) : t > 0}. (There is only a single shared
buffer, not a separate buffer for each class.)

Like the polling service discipline considered in Section 2.4.2, the preemptive-
resume priority service discipline is a work-conserving service policy. Thus
the total workload process is the same as for the FCFS discipline consid-
ered above. We analyze the priority model to determine the performance
enhancement experienced by the high-priority class and the performance
degradation experienced by the low-priority class.

We first define class-i available-processing processes by letting

Si(?) S(t),
So(t) = Si(t) — Di(t), (10.1)

where Dy = {D(t) : t > 0} is the class-1 departure process, defined as in
(2.11). We then can define the class-i potential-workload processes by

Xi(t) = Wi(0) + Ci(t) — Si(t) (10.2)

just as in (2.4). Then the class-i workload, overflow and departure processes
are W; = ¢ (X;), U; = vy (X;) and D; = S; — ¢ (X;), just as in Section
5.2.
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We now want to consider heavy-traffic limits for the two-priority fluid-
queue model. As in Section 5.4, we consider a sequence of queues indexed
by n. Suppose that the per-class input rates Ay , and A2, and a maximum-
potential output rate p, are well defined for each n, with limits as in (4.1)
and (4.2). Then the class-i traffic intensity in model n is

and the overall traffic intensity in model n is

Pn = Pign + P2 - (10.4)

As a regularity condition, we suppose that u, — @ as n — oo, where
0<p<oo.

In this context, there is some difficulty in establishing a single stochastic-
process limit that generates useful approximations for both classes. It is
natural to let

Pin = Pi (10.5)

where 0 < p; < oco. If we let p = p; + p2 = 1, then the full system
is in heavy traffic, but the high-priority class is in light traffic: p, —
p1 < 1 as n — oco. That implies that the high-priority workload will be
asymptotically negligible compared to the total workload in the heavy-traffic
scaling. That observation is an important insight, but it does not produce
useful approximations for the high-priority class.

On the other hand, if we let p; = 1, then the high-priority class is in
heavy traffic, but p = p1+p2 > 1, so that the full system is unstable. Clearly,
neither of these approaches is fully satisfactory. Yet another approach is to
have both p, — 1 and p;, — 1 as n — oo, but that forces p2, — 0. Such a
limit can be useful, but if the low-priority class does not contribute a small
proportion of the load, then that approach will usually be unsatisfactory as
well.

5.10.1. A Heirarchical Approach

What we suggest instead is a heirarchical approach based on considering
the relevant scaling. From the scaling analysis in Section 5.5, including
the time and space scaling in (5.10) and (5.11), we can see that the full
system with higher traffic intensity has greater scaling than the high-priority
class alone. Thus, we suggest first doing a heavy-traffic stochastic-process
limit for the high-priority class alone, based on letting p1, 1 1 and, second,



5.10. PRIORITIES 229

afterwards doing a second heavy-traffic limit for both priority classes, based
on fixing p; and letting pa , 11 — p1.
As a basis for these heavy-traffic limits, we assume that

(Cl,nacZ,nasn) = (0170278) (106)
where

Cl,n(t) = niHO’l (Clyn(nt) — )\Lnnt),

CQ’n(t) = niHO’Q(ngn(nt)—)\gynnt),
S,(t) = n Hs(S,(nt) — unt) (10.7)

for 0 < Hg1 <1,0< Hep <1and 0 < Hg < 1. For simplicity, we let the
processing rate y be independent of n.

Note that a common case of considerable interest is the light-tailed weak-
dependent case with space-scaling exponents

Hci=Hep=Hs=1/2, (10.8)

but we allow other possibilities. We remark that in the light-tailed case with
scaling exponents in (10.8) the heirarchical approach can be achieved directly
using strong approximations; see Chen and Shen (2000). (See Section 2.2 of
the Internet Supplement for a discussion of strong approximations.)

When (10.8) does not hold, then it is common for one of the three space-
scaling exponents to dominate. That leads simplifications in the analysis
that should be exploited. In the heavy-traffic limit, variability appears only
for the processes with the largest scaling exponent.

Given a heavy-traffic stochastic-process limit as in Theorem 5.4.1 for the
high-priority class alone with the space scaling factors in (10.7), we obtain
the high-priority approximation

Hy 1
1-H; 1— 1—H,
Wi (1) ~ (1 E1p1> "W, (( C1p1> i t) . t>0,  (10.9)

as in (5.3) with the scaling functions in (5.10) and (5.11) based on the traffic
intensity p; and the space-scaling exponent

Hy =maz{Hc,,Hs} . (10.10)
The limit process W in (10.9) is ¢ (X1) as in (4.9), where

X1 (t) = W{(0) + C1(t) — S(t) + mt, t>0,
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as in (4.8). If Hoy > Hg, then S(¢) = 0 in the limit; if Hg > H¢, then
C1(t) =0 in the limit. Instead of (4.6), here we have

Mun = n(>\1,n - Nn)/cn — .

Next we can treat the aggregate workload of both classes using traffic
intensity p = p1 + p2. We can think of the high-priority traffic intensity p;
as fixed with p; < 1 and let p2,, T 1 — p;. By the same argument leading
to (10.9), we obtain a heavy-traffic stochastic-process limit supporting the
approximation

W0 ~ (ﬁ)“’ﬂ W ((%p)“ﬂ ) s, o)

where the space-scaling exponent now is
H =max{Hc,,Hcpo, Hs} . (10.12)
The limit process W in (10.11) is ¢ (X) as in (4.9), where
X(t) = W'(0) + Cy(t) + Co(t) —S(t) +nt, t>0,
as in (4.8). If Ho; < H, then C;(t) = 0 in the limit; if Hg¢ < H, then
S(t) = 0 in the limit. Instead of (4.6), here we have
M =n(Ain + Ao — fn)/cn =1 .

Not only may the space-scaling exponent H in (10.11) differ from its coun-
terpart Hy in (10.9), but the parameters p and ¢ in (10.11) routinely differ
from their counterparts p; and ¢; in (10.9).

Of course, the low-priority workload is just the difference between the
aggregate workload and the high-priority workload. If that difference is too
complicated to work with, we can approximate the low-priority workload by
the aggregate workload, since the high-priority workload should be relatively
small, i.e.,

Wop (£) = W,(t) — Wi (£) = W,(t), £>0. (10.13)

5.10.2. Processing Times

We now consider the per-class processing times, i.e., the times required
to complete processing of all work of that class in the system. For the
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high-priority class, we can apply Theorems 5.9.2 and 5.9.3 to justify (only
partially when K < oo) the approximation

Ty (1) = Wi, ()1 (10.14)

However, the low-priority processing time is more complicated because
the last particle of low-priority work must wait, not only for the total aggre-
gate workload to be processed, but also for the processing of all new high-
priority work to arrive while that processing of the initial workload is going
on. Nevertheless, the low-priority processing time is relatively tractable be-
cause it is the time required for the class-1 net input, starting from time ¢,
to decrease far enough to remove the initial aggregate workload, i.e.,

Ty(t) = inf{u>0: X1 (t+u) — X1(t) < —W(t)} . (10.15)

Note that (10.15) is essentially of the same form as (2.12). Thus, we can
apply (10.15) with the reasoning in Theorem 5.9.3 to establish an analog of
Theorem 5.9.3, which partly justifies the heavy-traffic approximation

W, (t)
p(l—p1)
In (10.16), T2 5, p,(t) is the low-priority processing time as a function of the
two traffic intensities and W,(¢) is the aggregate workload at time ¢ as a
function of the total traffic intensity p = p1 + p2.

The heavy-traffic approximation in (10.16) should not be surprising be-
cause, as p T 1 with p; fixed, the stochastic fluctuations in X; should be

negligible in the relatively short time required for the drift in X; to hit the
target level; i.e., we have a separation of time scales just as in Section 2.4.2.

T27p17p2 (t) ~ (1016)

However, in applications, it may be important to account for the stochas-
tic fluctuations in X;. That is likely to be the case when p; is relatively high
compared to p. Fortunately, the heavy-traffic limits also suggest a refined
approximation. Appropriate heavy-traffic limits for X; alone suggest that
the stochastic process {X(t) : t > 0} can often be approximated by a Lévy
process (a process with stationary and independent increments) without
negative jumps. Moreover, the future net input {X;(¢ +u) — X1(¢) : ¢t > 0}
often can be regarded as approximately independent of W (¢). Under those
approximating assumptions, the class-2 processing time in (10.15) becomes
tractable. The Laplace transform of the conditional processing-time distri-
bution given W (¢) is given on p.120 of Prabhu (1998). The conditional mean
is the conditional mean in the heavy-traffic approximation in (10.16).
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Remark 5.10.1. Other service disciplines. We conclude this section by
referring to work establishing heavy-traffic limits for non-FCFS service dis-
ciplines. First, in addition to Chen and Shen (2000), Boxma, Cohen and
Deng (1999) establish heavy-traffic limits for priority queues. As mentioned
in Section 2.4.2, Coffman, Puhalskii and Reiman (1995, 1998), van der Mei
and Levy (1997) and van der Mei (2000) establish heavy-traffic limits for
polling service disciplines. Kingman (1982) showed how heavy-traffic lim-
its can expose the behavior of a whole class of service disciplines related
to random order of service. Yashkov (1993), Sengupta (1992), Grishechkin
(1994), Zwart and Boxma (2000) and Boxma and Cohen (2000) establish
heavy-traffic limits for the processor-sharing discipline. Fendick and Ro-
drigues (1991) develop a heavy-traffic approximation for the head-of-the-
line generalized processor-sharing discipline. Abate and Whitt (1997a) and
Limic (1999) consider the last-in first-out service discipline. Doytchinov et
al. (2001) and Kruk et al. (2000) consider “real-time” queues with due
dates. These alternative service disciplines are important because they sig-
nificantly affect queueing performance. As we saw for the high-priority class
with two priority classes, the alternative service disciplines can effectively
control congestion for some customers when the input of other customers
is excessive. The derivations of the heavy-traffic limits with these alterna-
tive service disciplines are fascinating because they involve quite different
arguments.



Chapter 6

Unmatched Jumps in the
Limit Process

6.1. Introduction

As illustrated by the random walks with Pareto steps in Section 1.4 and
the workload process with Pareto inputs in Section 2.3, it can be important
to consider stochastic-process limits in which the limit process has jumps,
i.e., has discontinuous sample paths. The jumps observed in the plots in
Chapter 1 correspond to exceptionally large increments in the plotted se-
quences, i.e., large steps in the simulated random walk and large inputs
of required work in the simulated workload process of the queue. Thus,
in the associated stochastic-process limit, the jumps in the limit process
are matched by corresponding jumps in the converging processes. However,
there are related situations in which the jumps in the limit process are not
matched by jumps in the converging processes.

Indeed, a special focus of this book is on stochastic-process limits with
unmatched jumps in the limit process. In the extreme case, the converging
stochastic processes have continuous sample paths. Then the sample paths
of the converging processes have portions with steep slope corresponding to
the limiting jumps. In other cases, a single jump in the sample path of the
limiting stochastic process corresponds to many small jumps in the sample
path of one of the converging stochastic processes. In this chapter we give
several examples showing how a stochastic-process limit with unmatched
jumps in the limit process can arise. Most of these examples will be treated
in detail later.

We give special attention to stochastic-process limits with unmatched

233
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jumps in the limit process because they represent an interesting phenomenon
and because they require special treatment beyond the conventional theory.
In particular, as discussed in Section 3.3, whenever there are unmatched
jumps in the limit process, we cannot have a stochastic-process limit in the
function space D with the conventional Skorohod (1956) J; topology. To
establish the stochastic-process limit, we instead use the M topology.

Just as in Chapter 1, we primarily draw our conclusions in this chapter by
looking at pictures. By plotting initial segments of the stochastic processes
for various sample sizes, we can see the stochastic-process limits emerging
before our eyes. As before, the plots often do the proper scaling automat-
ically, and thus reveal statistical regularity associated with a macroscopic
view of uncertainty. The plots also show the relevance of stochastic-process
limits with unmatched jumps in the limit process.

First, though, we should recognize that it is common for the limit process
in a stochastic-process limit to have continuous sample paths. For example,
that is true for Brownian motion, which is the canonical limiting stochastic
process, occurring as the limit in Donsker’s theorem, discussed in Chapters 1
and 4. In many books on stochastic-process limits, all the stochastic-process
limits that are considered have limit processes with continuous sample paths,
and there is much to consider.

Moreover, when a limit process in a stochastic-process limit does have
discontinuous sample paths, the jumps in the limit process are often matched
in the converging processes. We have already pointed out that only matched
jumps appear in the examples in Chapter 1. Indeed, there is a substantial lit-
erature on stochastic-process limits where the limit process may have jumps
and those jumps are matched in the converging processes. The extreme-
value limits in Resnick (1987) and the many stochastic-process limits in
Jacod and Shiryaev (1987) are all of this form.

However, even for the examples in Chapter 1 with limit processes having
discontinuous sample paths, we would have stochastic-process limits with
unmatched jumps in the limit process if we formed the continuous-time rep-
resentation of the discrete-time process using linear interpolation, as in (2.1)
in Chapter 1. We contend that the linearly interpolated processes should
usually be regarded as asymptotically equivalent to the step-function ver-
sions used in Chapter 1; i.e., one sequence of scaled processes should con-
verge if and only if the other does, and they should have the same limit
process. That asymptotic eqivalence is suggested by Figure 1.13, which
plots the two continuous-time representations of a random walk with uni-
form random steps. As the sample size n increases, both versions approach
Brownian motion. Indeed, as n increases, the two alternative continuous-
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time representations become indistinguishable.

In Section 6.2 we look at more examples of random walks, comparing
the linearly interpolated continuous-time representations (which always have
continuous sample paths) to the standard step-function representation for
the same random-walk sample paths. Now we make this comparison for
random walks approaching a limit process with discontinuous sample paths.
Just as in Chapter 1, we obtain jumps in the limit process by considering
random walks with steps having a heavy-tailed distribution, in particular,
a Pareto distribution. As before, the plots reveal statistical regularity. The
plots also show that it is natural to regard the two continuous-time repre-
sentations of scaled discrete-time processes as asymptotically equivalent.

However, the unmatched jumps in the limit process for the random walks
in Section 6.2 can be avoided if we use the step-function representation
instead of the linearly interpolated version. Since the step-function version
seems more natural anyway, the case for considering unmatched jumps in
the limit process is not yet very strong. In the rest of this chapter we give
examples in which stochastic-process limits with unmatched jumps in the
limit process cannot be avoided.

6.2. Linearly Interpolated Random Walks

All the stochastic-process limits with jumps in the limit process consid-
ered in Chapter 1 produce unmatched jumps when we form the continuous-
time representation of the original discrete-time process by using linear in-
terpolation. We now want to show, by example, that it is natural to regard
the linearly interpolated continuous-time representation as asymptotically
equivalent to the standard step-function representation in settings where
the limit process has jumps.

Given a random walk or any discrete-time process {Sy : k > 0}, the
scaled-and-centered step-function representations are defined for each n > 1
by

Sn(t) = ¢, (Spyy —mlnt]), 0<t<1, (2.1)

where |z] is the greatest integer less than z and ¢, — oo as n — oo. The
associated linearly interpolated versions are

Sn(t) = (nt — |nt])Sp((|nt] +1)/n) + (1 + [nt] —nt)S,(|nt]/n) , (2.2)

for 0 <t < 1. Clearly the sample paths of S,, in (2.1) are discontinuous for
all n (except in the special case in which Sy = Sp,1 < k < n), while the
sample paths of S,, in (2.2) are continuous for all n.
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6.2.1. Asymptotic Equivalence with M,

We contend that the two sequences of processes {S, : n > 0} and {S,, :
n > 0} in the function space D = D([0,1],R) should be asymptotically
equivalent, i.e., if either converges in distribution as n — oo, then so should
the other, and they should have the same limit. It is easy to see that the
desired asymptotic equivalence holds with the M; metric. In particular, we
can show that dyy, (S, Sp) = 0 as n — oo.

Theorem 6.2.1. (the M; distance between the continuous-time represen-
tations) For any discrete-time process {Sy : k > 0},

dyr, (Sn,Sp) <n™t forall n>1,

for S, in (2.1) and S, in (2.2).

Proof. For the M; metric, we can use an arbitrary parametric represen-
tation of the step-function representation S,. Then, for any ¢ > 0, we can
construct the associated parametric representation of S,, so that it agrees
with the other parametric reprentation at the finitely many points in the do-
main [0, 1] mapping into the points (k/n,S,(k/n)) on the completed graph
of S, for 0 < k < n, with the additional property that the spatial com-
ponents of the two parametric representations differ by at most n=! + €
anywhere. Since € was arbitrary, we obtain the desired conclusion. =

We can apply Theorem 6.2.1 and the convergence-together theorem, The-
orem 11.4.7, to establish the desired asymptotic equivalence with respect to
convergence in distribution.

Corollary 6.2.1. (asymptotic equivalence of continuous-time representa-
tions) If either S,, = S in (D, M) or S, = S in (D, M), then both limits
hold.

Note that the conclusion of Theorem 6.2.1 is much stronger than the
conclusion of Corollary 6.2.1. Corollary 6.2.1 concludes that S,, S, and S
all have approximately the same probability laws for all suitably large n,
whereas Theorem 6.2.1 concludes that the individual sample paths of S,
and S,, are likely to be close for all suitably large n.

We used plots to illustrate the asymptotic equivalence of S,, and S,, for
random walks with uniform steps, for which the limit process is Brownian
motion, in Figure 1.13. That asymptotic equivalence is proved by Corollary
6.2.1. (Since the limit process has continuous sample paths, the various
non-uniform Skorohod topologies are equivalent in this example.)



6.2. LINEARLY INTERPOLATED RANDOM WALKS 237

Now we use plots again to illustrate the asymptotic equivalence of S,
and S,, in random walks with jumps in the limit process. Since the asymp-
totic equivalence necessarily holds in the M; topology by virtue of Corollary
6.2.1, but not in the J; topology, we are presenting a case for using the M;
topology.

6.2.2. Simulation Examples

We give three examples, all involving variants of the Pareto distribution.

Example 6.2.1. Centered random walk with Pareto(p) steps.
As in (3.5) (iii) in Section 1.3, we consider the random walk {S : k > 0}
with IID steps
X, =U P (2.3)

for Uj uniformly distributed on the interval [0,1]. The steps then have a
Pareto(p) distribution with parameter p, having cedf F¢(t) = ¢ P for ¢ > 1.
We first consider the case 1 < p < 2. In that case, the steps have a finite
mean m = 1+ (p — 1) ! but infinite variance. In Figures 1.20 — 1.22, we
saw that the plots of the centered random walks give evidence of jumps.
The supporting FCLT (in Section 4.5) states that the step-function repre-
sentations converge in distribution to a stable Lévy motion, which indeed
has discontinuous sample paths.

Just as in Chapter 1, we use the statistical package S to simulate and plot
the initial segments of the stochastic processes. Plots of the two continuous-
time representations S, and S, for the same sample paths of the random
walk are given for the case p = 1.5 and n = 107 with j = 1,2, 3 in Figure 6.1.
For n = 10, the two continuous-time representations look quite different. In-
deed, at first it may seem that they cannot be corresponding continuous-time
representations of the same realized segment of the random walk, but closer
examination shows that the two continuous-time representations are correct.
However, for n = 100 and beyond, the two continuous-time representations
look very similar. For larger values of n such as n = 10* and beyond, the
two continuous-time representations look virtually identical.

So far we have considered only p = 1.5. We now illustrate how the plots
depend on p for 1 < p < 2. In Figure 6.2 we plot the two continuous-time
representations of the random walk with Pareto(p) steps for three values of
p, in particular for p = 1.1,1.5 and 1.9. We do the plot for the case n = 100
using the same uniform random numbers (exploiting (2.3)). In each plot
the largest steps stem from the smallest uniform random numbers. The
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Figure 6.1: Plots of the two continuous-time representations of the centered
random walk with Pareto(1.5) steps for n = 107 with j = 1,2,3. The step-
function representation S, in (2.1) appears on the left, while the linearly
interpolated version S,, in (2.2) appears on the right.
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Figure 6.2: Plots of the two continuous-time representations of the centered
random walk with Pareto(p) steps with p = 1.1,1.5 and 1.9 for n = 102
based on the same uniform random numbers (using (2.3)). The step-function
representation S,, in (2.1) appears on the left, while the linearly interpolated
version S,, in (2.2) appears on the right.

three smallest uniform random numbers in this sample were Uz = 0.00542,
Uss = 0.00836 and U;g = 0.0201. The corresponding large steps can be seen
in each case of Figure 6.2. Again, we see that the limiting stochastic process
should have jumps (up). That conclusion is confirmed by considering larger
and larger values of n. As in Figures 6.1 and 6.2, the two continuous-time
representations look very similar. And the little difference we see for n = 100
deceases as n increases.

Example 6.2.2. Uncentered random walk with Pareto(0.5) steps. In Fig-
ures 1.19, 1.25 and 1.26 we saw that the wuncentered random walk with
Pareto(0.5) steps should have stochastic-process limits with jumps in the
limit process. The supporting FCLT implies convergence to another stable
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Plots of the uncentered random walk with Pareto(0.5) steps for n = 10
with j = 1,2,3. The step-function representation S, in (2.1) appears on the
left, while the linearly interpolated version S,, in (2.2) appears on the right.

Lévy motion as n — oo (again see Section 4.5). Moreover, such a limit holds
for IID Pareto(p) steps whenever p < 1, because then the steps have infinite
mean.

Now we look at the two continuous-time representations in this setting.
We now plot the two continuous-time representations én and S,, associated
with the uncentered random walk with Pareto(0.5) steps for n = 10/ with
j = 1,2,3 in Figure 6.2.2. Again, the two continuous-time representations
initially (for small n) look quite different, but become indistinguishable as
n increases. Just as in Chapter 1, even though there are jumps, we see
statistical regularity associated with large n. Experiments with different n
show the self-similarity discussed before.

Example 6.2.3. Centered random walk with limiting jumps up and down.
The Pareto distributions considered above have support on the inter-
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val [1,00), so that, even with centering, the positive tail of the step-size
distribution is heavy, but the negative tail of the step-size distribution is
light. Consequently the limiting stochastic process in the stochastic-process
limit for the random walks with Pareto steps can only have jumps up. (See
Section 4.5)

We can obtain a limit process with both jumps up and jumps down if we
again use (2.3) to define the steps, but we let Uy be uniformly distributed
on the interval [—1, 1] instead of in [0,1]. Then we can have both arbitrar-
ily large negative jumps and arbitrarily large positive jumps. We call the
resulting distribution a symmetric Pareto distribution (with parameter p).
Since the distribution is symmetric, no centering need be done for the plots
or the stochastic-process limits.

To illustrate, we make additional comparisons between the linearly in-
terpolated continuous-time representation and the step-function continuous-
time representation of the random walk, now using the symmetric Pareto(p)
steps for p = 1.5. The plots are shown in Figure 6.3. We plot the two
continuous-time representations for n = 107 with 5 = 2,3,4. From the
plots, it is evident that the limit process now should have jumps down as
well as jumps up. Again, the two continuous-time representations look al-
most identical for large n.

6.3. Heavy-Tailed Renewal Processes

One common setting for stochastic-process limits with unmatched jumps
in the limit process, which underlies many applications, is a heavy-tailed
renewal process. Given partial sums S, = X1 +--- + Xi,k > 1, from a
sequence of nonnegative random variables {Xy : £ > 1} (without an IID
assumption), the associated stochastic process N = {N(t) : t > 0} defined
by

N(t)=maz{k >0:S5, <t}, t>0, (3.1)

where Sy = 0, is called a stochastic counting process. When the random vari-
ables X are IID, the counting process is called a renewal counting process
or just a renewal process.

6.3.1. Inverse Processes

Roughly speaking (we will be more precise in Chapter 13), the stochastic
processes {Si : k > 1} and N = {N(¢) : t > 0} can be regarded as inverses
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Figure 6.3: Plots of the two continuous-time representations of the random
walk with symmetric Pareto(1.5) steps for n = 107 with j = 2,3, 4. The step-
function representation S, in (2.1) appears on the left, while the linearly
interpolated version S,, in (2.2) appears on the right.
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of each other, without imposing the IID condition, because
Sp <t ifand onlyif N(t)>k. (3.2)

The M; topology is convenient for relating limits for partial sums to asso-
ciated limits for the counting processes, because the M;-topology definition
makes it easy to exploit the inverse relation in the continuous-mapping ap-
proach.

Moreover, it is not possible to use the standard J; topology to establish
limits of scaled versions of the counting processes, because the J; topolgy
requires all jumps in the limit process to be matched in the converging
stochastic processes. The difficulty with the J; topology on D can easily be
seen when the random variables X are strictly positive. Then the count-
ing process N increases in unit jumps, and scaled versions of the counting
process, such as

N, (t) = ¢, " (N(nt) —m™'nt), t>0, (3.3)

where ¢, — oo, have jumps of magnitude 1/c¢,, which are asymptotically
negligible as n — oo . Hence, if N, in (3.3) is ever to converge as n — oo to
a limiting stochastic process with discontinuous sample paths, then we must
have unmatched jumps in the limit process. Then we need the M; topology
on D.

What is not so obvious, however, is that N, will ever converge to a
limiting stochastic process with discontinuous sample paths. However, such
limits can indeed occur. Here is how: A long interrenewal time creates a long
interval between jumps up in the renewal process. The long interrenewal
time appears horizontally rather than vertically, not directly causing a jump.
However, during such an interval, the scaled process in (3.3) will decrease
linearly at rate n/mcy, due to the translation term not being compensated
for by any jumps up. When n/¢, — oo (the usual case), the slope approaches
—o0. When the interrenewal times are long enough, these portions of the
sample path with steep slope down can lead to jumps down in the limit
process.

A good way to see how jumps can appear in the limit process for N,
is to see how limits for N,, in (3.3) are related to associated limits for S,
in (2.1) when both scaled processes are constructed from the same under-
lying process {S; : k > 0}. A striking result from the continuous-mapping
approach to stochastic-process limits (to be developed in Chapter 13) is an
equivalence between stochastic-process limits for partial sums and associ-
ated counting processes, exploiting the M; topology (but not requiring any
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direct independence or common-distribution assumption). As a consequence
of Corollary 13.8.1, we have the following result:

Theorem 6.3.1. (FCLT equivalence for counting processes and associated
partial sums) Suppose that 0 < m < 00, ¢, = 00, n/¢, — oo and S(0) = 0.
Then

S,=S in (D,M) (3.4)

for Sy, in (2.1) if and only if
N, =N in (D,M) (3.5)
for Ny, in (3.3), in which case
(Sn,Ny) = (S,N) in (D* WM), (3.6)
where the limit processes are related by
N(t) = (m 'Som te)(t) =m 'S(m~'t), t>0, (3.7)
or, equivalently,
S(t) = (mN ome)(t) = mN(mt), t>0, (3.8)
where e(t) =t, t>0.

Thus, whenever the limit process S in (3.4) has discontinuous sample
paths, the limit process N in (3.5) necessarily has discontinuous sample paths
as well. Moreover, S has only jumps up (down) if and only if N has only
jumps down (up). Whenever S and N have discontinuous sample paths, the
M; topology is needed to express the limit for N,, in (3.5). In contrast, the
limit for S,, in (3.4) can hold in (D, Jy).

6.3.2. The Special Case with m =1

The close relation between the limit processes S and N in (3.4) — (3.8)
is easy to understand and visualize when we consider plots for the special
case of strictly positive steps X, with translation scaling constant m = 1.
Note that the limit process N in (3.7) becomes simply —S when m = 1.

Also note that we can always scale so that m = 1 without loss of gen-
erality: For any given sequence {Xj : £ > 0}, when we multiply X, by m
for all k, we replace S,, by mS,, and N,, by N,, om~'e. Hence, the limits S
and N are replaced by mS and N o m™'e, respectively.
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Hence, suppose that m = 1. A useful observation, then, is that N(Sj) =
k for all k. (We use the assumption that the variables X} are strictly
positive.) With that in mind, note that we can plot N (t) — ¢ versus ¢, again
using the statistical package S, by plotting the points (0,0), (Sk, N(Sk) —
1 — Sy) and (Sg, N(Sk) — Sk) in the plane R? and then performing linear
interpolation between successive points.

Roughly speaking, then, we can plot N (¢)—t versus ¢ by plotting N (Sk)—
Sj. versus Si. On the other hand, when we plot the centered random walk
{Sx —k : k> 0}, we plot (S — k) versus k. Since N(S;) = k, we have

N(Sg) — Sp =k — Sp = —(Sk — k) .

Thus, the second component of the pair (Si, N(Sg) — Sk) is just minus
1 times the second component of the pair (k, Sy — k). Thus, the plot of
N (t) —t versus t should be very close to the plot of —(Sj — k) versus k. The
major difference is in the first component: For the renewal process, the first
component is Si; for the random walk, the first component is k. However,
since n=1S, — 1 as n — oo by the SLLN, that difference between these two
first components disappears as n — oo.

Example 6.3.1. Centered renewal processes with Pareto(p) steps for 1 <
p < 2. By now, we are well acquainted with a situation in which the limit
for S, in (3.4) holds and the limit process S has discontinuous sample paths:
That occurs when the underlying process {Si : & > 0} is a random walk
with IID Pareto(p) steps for 1 < p < 2. Then the limit (3.4) holds with
m = 1+ (p—1)~" and S being a stable Lévy motion, which has discontinuous
sample paths. The discontinuous sample paths are clearly revealed for the
case p = 1.5 in Figures 1.20 — 1.22 and 6.1.

To make the relationship clear, we consider the case m = 1. We obtain
m = 1 in our example with IID Pareto(1.5) steps by dividing the steps by 3;

ie., we let X}, = Uk_2/3/3. For this example with Pareto(1.5) steps having
ccdf decay rate p = 3/2 and mean 1, we plot both the centered renewal
process (N(t) — ¢ versus t) and minus 1 times the centered random walk
(—(Sk — k) versus k). We plot both sample paths, putting the centered
renewal process on the left, for the cases n = 10/ with j = 1,2,3 in Figure
6.4. We plot three possible representations of each for n = 10* in Figure
6.5. (We plot the centered random walk directly; i.e., we do not use either
of the continuous-time represenations.)

For small n, the sample paths of the two centered processes look quite
different, but as n increases, the sample paths begin to look alike. The
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Figure 6.4: Plots of the centered renewal process (on the left) and minus
1 times the centered random walk (on the right) for Pareto(1.5) steps with
mean m = 1 and n = 107 for j = 1,2, 3.

jumps in the centered random walk plot are matched with portions of the
centered-renewal-process plot with very steep slope. As n increases, the
slopes in the portions of the centered-renewal-process plots corresponding
to the random-walk jumps tend to get steeper and steeper, approaching the
jump itself.

It is natural to wonder how the plots look as the decay rate p changes
within the interval (1,2), which is the set of values yielding a finite mean
but an infinite variance. We know that for smaller p the jumps are likely
to be larger. To see what happens, we plot three realizations each of the
centered renewal process and minus 1 times the centered random walk for
Pareto steps having decay rates p = 7/4 and p = 5/4 (normalized as before
to have mean 1) for n = 10* in Figures 6.6 and 6.7. From Figures 6.5 —
6.7, we see that the required space scaling decreases, the two irregular paths
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Figure 6.5: Plots of three independent realizations of the centered renewal
process (on the left) and minus 1 times the centered random walk (on the
right) for Pareto(1.5) steps with mean m = 1 and n = 10*.
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Figure 6.6: Plots of three independent realizations of the centered renewal
process (on the left) and minus 1 times the centered random walk (on the
right) associated with Pareto(p) steps in (2.3) with p = 7/4, m = 1 and
n =104

become closer, and the slopes in the renewal-process plot become steeper,
as p increases from 5/4 to 3/2 to 7/4. For p = 5/4, we need larger n to
see steeper slopes. However, in all cases we can see that there should be
unmatched jumps in the limit process. =

For the Pareto-step random walk plots in Figures 6.4 — 6.7, we not only
have —S,, = —S and N,, = —S, but also the realizations of N,, and —S,,
are becoming close to each other as n — 0o. Such asymptotic equivalence
follows from Theorem 6.3.1 by virtue of Theorem 11.4.8. Recall that we can
start with any translation scaling constant m and rescale to m = 1.

Corollary 6.3.1. (asymptotic equivalence) If, in addition to the assump-
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Figure 6.7: Plots of three independent realizations of the centered renewal
process (on the left) and minus 1 times the centered random walk (on the
right) associated with Pareto(p) steps in (2.3) with p = 5/4, m = 1 and
n = 10%,



250 CHAPTER 6. UNMATCHED JUMPS

tions of Theorem 6.3.1, the limit S,, = S in (3.4) holds and m =1, then

dy, (N, —S,) =0 .

To summarize, properly scaled versions (with centering) of a renewal
process (or, more generally, any counting process) are intimately connected
with associated scaled versions (with centering) of random walks, so that
FCLTs for random walks imply associated FCLTs for the scaled renewal
process (and vice versa), provided that we use the M; topology. When
the limit process for the random walk has discontinuous sample paths, so
does the limit process for the renewal process, which necessarily produces
unmatched jumps. We state specific FCLTs for renewal processes in Section
7.3.

6.4. A Queue with Heavy-Tailed Distributions

Closely paralleling the heavy-tailed renewal process just considered, heavy-
traffic limits for the queue-length process in standard queueing models rou-
tinely produce stochastic-process limits with unmatched jumps in the limit
process when the service times or interarrival times have heavy-tailed dis-
tributions (again meaning with infinite variance). In fact, renewal processes
enter in directly, because the customer arrival process in the queueing model
is a stochastic counting process, which is a renewal process when the inter-
arrival times are IID.

We start by observing that jumps in the limit process associated with
stochastic-process limits for the queue-length process almost always are un-
matched jumps. That is easy to see when all the interarrival times and
service times are strictly positive. (That is the case w.p.1 when the interar-
rival times and service times come from sequences of random variables with
distributions assigning 0 probability to 0.) Then the queue length (i.e., the
number of customers in the system) makes changes in unit steps. Thus, any
jumps in the limit process associated with a stochastic-process limit for a
sequence of queue-length processes with space scaling, where we divide by
¢, with ¢, — 0o as n — oo, must be unmatched jumps.

The real issue, then, is to show that jumps can appear in stochastic-
process limits for the queue-length process. The stochastic-process limits
we have in mind occur in a heavy-traffic setting, as in Section 2.3.
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6.4.1. The Standard Single-Server Queue

To be specific, we consider a single-server queue with unlimited waiting
room and the first-come first-served service discipline. (We will discuss this
model further in Chapter 9. The model can be specified by a sequence of
ordered pairs of nonnegative random variables {(Ug,Vy) : & > 1}. The
variable U} represents the interarrival time between customers k and k —
1, with U; being the arrival time of the first customer, while the variable
Vi represents the service time of the customer k. The arrival time of the
customer k is thus

TkEUl-l-"'—i-Uk, kZl, (4.1)

and the departure time of the customer k is
Dy =T, +Wr+Ve, k>1, (4.2)

where W, is the waiting time (before beginning service) of customer k. The
waiting times can be defined recursively by

Wi = Wit + Ve — U™, k>2, (4.3)

where [z]T = maz{z,0} and W; = 0. (We have assumed that the system
starts empty; that of course is not critical.)

We can now define associated continuous-time processes. The counting
processes are defined just as in (3.1). The arrival (counting) process {A(t) :
t > 0} is defined by

A(t) =maz{k >0:T, <t}, t>0, (4.4)
the departure (counting) process {D(t) : t > 0} is defined by
D(t) =max{k >0: Dy <t}, t>0, (4.5)
and the queue-length process {Q(t) : t > 0} is defined by
Q(t) = A(t) — D(t), t>0. (4.6)
Here the queue length is the number in system, including the customer in
service, if any.
The standard single-server queue that we consider now is closely related
to the infinite-capacity version of the discrete-time fluid queue model con-

sidered in Section 2.3. Indeed, the recursive definition for the waiting times
in (4.3) is essentially the same as the recursive definition for the workloads
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in (3.1) of Section 2.3 in the special case in which the waiting space is un-
limited, i.e., when K = oo. For the fluid queue model, we saw that the
behavior of the workload process is intimately connected to the behavior of
an associated random walk, and that heavy-tailed inputs lead directly to
jumps in the limit process for appropriately scaled workload processes. The
same is true for the waiting times here, as we will show in Section 9.2.

6.4.2. Heavy-Traffic Limits

Thus, just as in Section 2.3, we consider a sequence of models indexed by
n in order to obtain interesting stochastic-process limits for stable queueing
systems. We can achieve such a framework conveniently by scaling a single
model. We use a superscript n to index the new quantities constructed in
the n'” model.

We start with a single sequence { (U, Vi) : £ > 1}. Note that we have
made no stochastic assumptions so far. The key assumption is a FCLT for
the random walks, in particular,

(Sgas;}z) = (Suasv) in (Dz,WMI) ) (47)

where

[nt]
St = ¢, (YU - |nt])
=1

and

[nt]
St =c,' (O _Vi—|nt]) .
=1

The standard stochastic assumption to obtain (4.7) is for {Uj} and {V}}
to be independent sequences of IID random variables with

EV, =EU,=1 forall k>1. (4.8)

and other regularity conditions (finite variances to get convergence to Brow-
nian motion or asymptotic power tails to get convergence to stable Lévy
motions).
Paralleling the scaling in (3.13) in Section 2.3, we form the n'* model by
letting
U =b,Uy and V'=Vy, k>1, (4.9)

where
bp =14+ mcp/n for n>1. (4.10)
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We assume that ¢, /n | 0 as n — oo, so that b, | 1 as n — oo. The scaling
in (4.9) is a simple deterministic scaling of time in the arrival process; i.e.,
the arrival process in model n is

A™(t) = A(b,'t), t>0,

for by, in (4.10).
We now form scaled stochastic processes associated with the sequence of
models by letting
Wa(t) =c," W, (4.11)

and
Q.(t) =¢, Q" (nt), t>0. (4.12)
We now state the heavy-traffic stochastic-process limit, which follows

from Theorems 9.3.3, 9.3.4 and 11.4.8. As before, for z € D, let Disc(z) be
the set of discontinuities of .

Theorem 6.4.1. (heavy-traffic limit for the waiting times and queue lengths)
Suppose that the stochastic-process limit in (4.7) holds and the scaling in
(4.9) holds with ¢, — 0o and c,/n — 0. Suppose that almost surely the sets
Disc(S*) and Disc(S") have empty intersection and

P(S(0) = 0) = P(S*(0) = 0) =1 .

Then
W, =W =¢S"—-S"—me) in (D,M), (4.13)
where ¢ is the one-sided reflection map in (5.4) in Section 3.5,
(Wi, Qo) = (W, W) in (D*,WM) (4.14)
and
da, (Wi, Qn) = 0. (4.15)

We now explain why the limit process Q for the scaled queue-length
processes can have jumps. Starting from (4.6), we have

Qn = An - Dn 3 (4'16)

where
A, (t) = ¢, (A" (nt) —nt), t>0 (4.17)

and
D, (t) = ¢, (D" (nt) —nt), t>0. (4.18)
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Just as for the renewal processes in the previous section, an especially long
service time (interarrival time) can cause a period of steep linear slope down
in D, (A,), which can correspond to jumps down in the associated limit
process. The jump down from D, (A,) corresponds to a jump up (down)
in the limit process for Q,,.

6.4.3. Simulation Examples

What we intend to do now is simulate and plot the waiting-time and
queue-length processes under various assumptions on the interarrival-time
and service-time distributions. Just as with the empirical cdf in Example
1.1.1 and the renewal process in Section 6.3, when we plot the queue-length
process we need to plot a portion of a continuous-time process. Just as
in the two previous cases, we can plot the queue-length process with the
statistical package S, exploiting underlying random sequences. Here the
relevant underlying random sequences are the arrival times {T;} and the
departure times { Dy}, defined recursively above in (4.1) and (4.2).

Since the plotting procedure is less obvious now, we specify it in detail.
We first form two dimensional vectors by appending a +1 to each arrival
time and a —1 to each departure time. (Instead of the arrival time 7;,, we
have the vector (T}, 1); instead of the departure time D,,, we have the vector
(Dp,—1).) We then combine all the vectors (creating a matrix) and sort on
the first component. The new first components are thus the successive times
of any change in the queue length (arrival or departure). We then form the
successive cumulative sums of the second components, which converts the
second components into the queue lengths at the times of change. We could
just plot the queue lengths at the successive times of change, but we go
further to plot the full continuous-time queue-length process. We can plot
by linear interpolation, if we include each queue length value twice, at the
jump when the value is first attained and just before the next jump. (This
method inserts a vertical line at each jump.)

We now give an S program to read in the first n interarrival times, service
times and waiting times and plot the queue-length process over the time
interval that these n customers are in the system (ignoring all subsequent
arrivals). At the end of the time interval the system is necessarily empty.
Our construction thus gives an odd end effect, but it can be truncated.
Indeed, in our plots below we do truncate (at the expected time of the n?
arrival).

Here is the S function:
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QueueLength <- function(U, V, W) {
QueueLength <- vector(“numeric”, 2«length(U) + 1)

T <- cumsum(U) #construct arrival times
D<-T+W+V # departure times

TT <- cbind(T, +1) #append +1 to arrivals
DD <- cbind(D, —1) #append —1 to deps.
m <- rbind(TT, DD) #merge into one matrix
msort <- m[sort.list(m[, 1]),] #sort on first comp.
timel <- msort[, c(1)] #extract change times
QLchg <- msort[, c(2)] #queue length changes
QL1 <- cumsum(QLchg) #successive q. lths.
time2 <- ¢(0, timel, timel) #times for lin.interp.
time <- sort(time2)

n <- length(timel) #q. lths. for lin. int.

QL <- ¢(0, QL1)

for (k in seq(n)) {

QueueLength[[2 « & — 1]] <- QL[[£]]

QueueLength[[2 x k]| <- QL[[¥]] }

QueueLength[2 x n + 1] <- QL[n + 1]

plot(time, QueueLength, type = “I”) #do the plotting

}

We now consider a few examples. We use the Kendall notation to de-
scribe the model: X/Y/c specifies a model with ¢ servers, arrival process of
type X and service process of type Y. For either X or Y, GI denotes an IID
sequence with a general distribution, while M (for Markov) denotes (in ad-
dition) the exponential distribution. We use P, for the Pareto distribution
with parameter p.

Example 6.4.1. The M/M/1 Queue.

We first consider the standard M/M/1 queue. Thus, here we assume that
the interarrival times and service times come from mutually independent
sequences of IID exponentially distributed random variables. It suffices to
specify the means of the interarrival time and the service time. Using the
scaling in equations (4.9) and (4.10), we need to specify the constant m and
the space-scaling sequence {c, : n > 1}.

At this point, we know what to do: There are no heavy-tailed distribu-
tions, so we should let ¢, = \/n. We also let m = 1. Thus, we fully specify



256 CHAPTER 6. UNMATCHED JUMPS

the sequence of M /M /1 models indexed by n by letting
EU}=1+1/y/n and EV=1 forall k and n. (4.19)

With that choice, the plotter can do the appropriate scaling automatically.

We are primarily interested in the queue-length process, but we also plot
the waiting times, because it is instructive to compare the plotted queue-
length process to the plotted waiting times. Hence, we plot both the waiting
times of the first n customers (linearly interpolated) and the queue-length
process over the time interval [0, n EU7] for the cases n = 107 with j = 1,2,3
in Figure 6.8.

For small n, the queue-length process looks very different from the wait-
ing time sequence, but as n increases, the sample path of the queue length
process becomes very similar to the sample path of the waiting times, except
possibly for the final portion, where the queue length experiences some of
the end effect. To confirm what we see in Figure 6.8, we plot three possible
realizations of the waiting times and the queue lengths for n = 10* in Figure
6.9.

From our experience so far, we should know what to expect: The plots
are approaching plots of reflected Brownian motion with drift —1 (which
does not have any jumps). Now the conditions and conclusions of Theorem
6.4.1 hold with ¢, = /n and W = ¢(cB —me), where B is standard Brow-
nian motion, e is the identity map, ¢ : D — D is the one-sided reflection
map and o2 = Var(U;) + Var(Vi) = 2. We apply Donsker’s theorem —
Theorem 4.3.2.

Moreover, the plots show that the distance between the two scaled pro-
cesses is indeed asymptotically negligible. Since the limit process here has
continuous sample paths, we can express this asymptotic equivalence using
the uniform norm over [0, 1]:

W, —Qn =0 as n— . (4.20)

Example 6.4.2. The M/P;5/1 Queue.

We now modify the previous example by letting the service-time distri-
bution be Pareto(p) with p = 1.5 and mean 1. (In the framework of Section
1.3.3, we can use 3~'U~%/3, where U is uniform on the interval [0, 1], which
has ccdf Fe(t) = (3t)3/2 for t > 1.) With this heavy-tailed service-time
distribtuion, we must scale space differently, because the space scaling in the
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Figure 6.8: Plots of the waiting times of the first n arrivals (on the left) and
the queue-length process over the interval [0,nEU}'| (on the right) in the
M/M/1 queue with scaling in (4.19) for n = 10’ with j = 1,2, 3.
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(on the right) in the M/M/1 queue with scaling in (4.19) for n = 10*.
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FCLT for the random walk involves ¢, = n?/3 instead of cp = nl/2. Hence,
instead of the scaling in (4.19), we now use
EUP=1+4+n"3 and EV"=1 forall k and n. (4.21)

The new scaling makes the traffic intensity p, smaller than in Example
6.4.1 for any given n. For example, for n = 10,000, before we had p, =
1/1.01 =~ 0.990, while now we have p,, = 1/1.046 =~ 0.956.

We plot three possible realizations of the waiting times of the first n
customers (on the bottom or left) and queue-length process over the interval
[0,nEU}!] (on the top or right) for n = 10%, in Figure 6.10. The first two
plots look much like the M/M/1 plots in Figure 6.9 except now we can see
upward jumps. But the third plot is very different!

There is now much more variability in the sample paths because of the
possibility of the occasional very large jumps. The range of values is excep-
tionally small in case 2 and exceptionally large in case 3. The possibility of
exceptionally large jumps produces large variations from plot to plot, as we
saw for the random walks in Figure 1.21.

When we look at the third plots closely, it is not evident that the waiting-
time and queue-length plots are for the same sample path. For instance, the
second big jump in the waiting times occurs at about index 3100, whereas
the corresponding second steep incline in the queue-length path begins at
about time 4100. However, upon reflection, we see that these actually are
consistent, because the waiting time of the customer having the second large
service time is about 1000. Since the arrival rate is 1, that customer arrives
at about time 3100. Hence that customer enters service, and begins occu-
pying the server, at about time 4100. Thus the queue length should start
building up at about time 4100, as it does.

The upward jumps are less sharp for the queue-length process, which
we know actually increases by unit jumps, but the asymptotic behavior is
evident from the plots. In this case, we are seeing a reflected stable Lévy
motion with drift —1, which has discontinuous sample paths, instead of a
reflected Brownian motion. Again we can explain the statistical regularity
we see by Theorem 6.4.1. However, now the scaling involves ¢, = n2/3.

By Theorems 4.5.2 and 4.5.3, the limit process is W = ¢(cS” —e) =
op(S? — oLe, where o = 1/3C2/* for Cy in (5.14) of Section 4.5.1, S
is a centered a-stable Lévy motion with S”(1) 4 Sa(1,1,0) and a = 3/2.
(Its steady-state distribution is given in Section 8.5.2.) Again, it is evident
that the two scaled processes W,, and Q, should now be asymptotically
equivalent. =
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Figure 6.10: Three possible realizations of the waiting times of the first n
arrivals (on the left) and the queue-length process over the interval [0, n EU}'|
(on the right) in the M/P; 5/1 queue with the scaling in (4.21) for n = 10%.
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Example 6.4.3. The P, 5/M/1 Queue.

It is evident that a heavy-tailed service-time distribution should cause
greater congestion, but it may not be evident that a heavy-tailed interarrival-
time distribution can as well, because extra long interarrival times only serve
to empty out the queue. However, heavy-tailed interarrival-time distribu-
tions can cause congestion as well. The reason is that, for given fixed mean,
the occasionally exceptionally long interarrival times must be compensated
for in the distribution by shorter interarrival times, and these shorter inter-
arrival times lead to bursts of arrivals and thus increased queue lengths.

We illustrate by considering the P, 5/M /1 queue, which has IID Pareto(1.5)
interarrival times and IID exponential service times. This model is the dual
of the model in Example 6.4.2, with the role of the interarrival times and
service times switched (adjusted by scaling, so that the expected interarrival
times are bigger than the expected service times in both cases).

In Figure 6.11 we plot three possible realizations of the waiting times
of the first n arrivals (on the left) and the queue-length process over the
interval [0, nEU{'] (on the right) in the Py 5/M/1 queue with the scaling in
(4.21) for n = 10*.

As in Figures 6.8 — 6.10, the queue-length plots are similar to the waiting-
time plot, except possibly for the final portion of the queue-length plot,
where the queue experiences its end effect. However, unlike in the previous
figures, in Figure 6.11 we see evidence of jumps down.

Just as for the M/P;5/1 model, the heavy-traffic FCLT in Theorem
6.4.1 applies to the P;5/M/1 and P;5/P;5/1 models. Indeed, we again
have the same scaling, but now the limiting reflected stable Lévy motions
are different, having jumps down only for the P; 5/M/1 model and haviing
jumps both up and down for the P; 5/P; 5/1 model, instead of having jumps
up only for the M/P; 5/1 model.

For the P;5/M/1 model, the heavy-traffic stochastic-process limit for
the workload process is W,, = W, where again ¢, = n?/3 but now

W = ¢(—0S" —e) L 5p(—S* — o e) ,

[le

where o = 1/3062/3 for a = 3/2, just as in Example 6.4.2. Here —S"(1)
Sa (1, —1,0).
For the Py 5/P; 5/1 model, the limit process is

W = $(0S” — 0S" — &) L 5p(S” — 8" — o te)

where S” — S* £ S with S being a stable Lévy motion satisfying S(1) 4
22/38,(1,0,0); see (5.8) — (5.11) in Section 4.5.1.
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Figure 6.11: Three possible realizations of the waiting times of the first
n = 10* arrivals (on the left) and the queue-length process over the interval

[0,nEUT] (on the right) in the P, 5/M/1 queue with the scaling in (4.21)
for n = 10*.



6.5. RARE LONG SERVICE INTERRUPTIONS 263

We should not be fooled by the jumps down for the Py 5/M/1 model. Of
course, the jumps down do constitute reductions in congestion, but elsewhere
in the plot the sample path is rising, so that the range of values experienced
can be substantial. Indeed, that is demonstrated by the heavy-traffic FCLT,
which has space scaling by n?/3, just as for the M/P; 5/1 model in Example
6.4.2. =

6.5. Rare Long Service Interruptions

The queueing example just considered illustrates a common cause of
congestion in queues: stochastic vartiability in the interarrival times and
service times. However, congestion in queues can occur for other reasons:
For example, the servers may be subject to breakdown and failure, causing
service interruptions. In manufacturing systems, service interruptions due to
machine failures or the unavailability of parts are often the dominant sources
of congestion. With evolving communication networks, there is debate about
whether the most important source of congestion is the uncertain burstiness
of customer input or the uncertain failure of system elements. The biggest
problems tend to occur when both happen together.

We can better understand the impact of service interruptions upon per-
formance if we develop a probability model and establish appropriate stochastic-
process limits. One such model, considered by Kella and Whitt (1990), is
a queue with rare long service interruptions. The queue can be a standard
single-server queue with unlimited waiting space, the first-come first-served
service discipline and random arrivals and service times, as considered in the
previous section. We can supplement that model by allowing random service
interruptions. The interruptions can be triggered by queueing events; e.g.,
they could occur only when the queue becomes empty. Or they can occur
exogenously. We will consider the case in which they occur exogenously.

Specifically, we will assume that the availability of the server is charac-
terized by an alternating renewal process; i.e., there are alternating periods
in which the server is available (up) or unavailable (down). For tractability,
we assume that the up and down times come from mutually independent
sequences of IID positive random variables with finite means and variances.

A revealing stochastic-process limit can be obtained by considering the
queue in a heavy-traffic limit, in which the load is allowed to approach
the critical value for stability. If the interruptions remain unchanged, then
the service interruptions alter the conventional heavy-traffic limit with a
reflected Brownian motion limit process only by increasing the traffic inten-
sity and increasing the variance parameter of the Brownian motion, both of
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which cause increased congestion. However, we obtain a different nondegen-
erate limit, which is consistent with many applications, if we let the intervals
between interruptions and the durations of the interruptions increase in the
limit. If we let these quantities increase appropriately, with the duration
of an interruption being asymptotically negligible compared to the time be-
tween interruptions, then we can obtain a revealing nondegenerate limit.

In particular, an interesting limiting regime has the random up times be
of order n and the random down times be of order \/n as a function of the
number n of customers being considered. Then, with the customary scaling
of time by n and space by /n, the scaled up times become of order 1 and the
scaled down times become of order 1/4/n. That makes the scaled down times
asymptotically negligible. Thus, after scaling, the service interruptions occur
in the limit according to a stochastic point process, with a finite positive
expected number of interruptions in a finite time interval.

Since the scaled durations of the service interruptions are aymptotically
negligible, the service interruptions occur instantaneously in the limit. Nev-
ertheless, the service interruptions can have a significant spatial impact,
because the number of arrivals during the order \/n down time is also of
order y/n. Thus, after scaling space by y/n, the input during the down time
causes a random jump of order 1 in the scaled queueing process at each
interruption time.

The proposed scaling, with up times of order n and down times of order
v/n, thus produces random jumps of order-1 size, spaced at random order-1
intervals. In the limit, the proportion of time that the server is unavail-
able because of interruption is asymptotically negligible. Nevertheless, the
asymptotic impact of the interruptions can be dramatic. With this limit,
it is possible to compare the effects of the service interruptions (which ap-
pear in the limit process as jumps) to the customary stochastic fluctuations.
Depending on the specific parameter settings, one or the other may domi-
nate. In Section 14.7, following Kella and Whitt (1990) and Chen and Whitt
(1993), we consider networks of queues with rare long service interruptions.

When we consider limits for sequences of queue-length stochastic pro-
cesses affected by rare long interruptions of the kind just described, the
jumps in the limit process are typically not matched in the converging scaled
queue-length processes. In the queueing system, arrivals usually are com-
ing one at a time. During a service interruption, service stops, but the
arrivals keep coming. Thus the queue length process increases by many
unit steps during such periods. After scaling time and space, the n'" scaled
queue-length process increases more rapidly (due to the time scaling) but by
smaller asymptotically negligible amounts (due to the space scaling). Thus
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the resulting limit is a stochastic-process limit with unmatched jumps in the
limit process.

In the rest of this subsection we illustrate the kind of limiting behav-
ior provided by rare long service interruptions. To do so, we simplify the
model: Even though service interruptions represent a different source of con-
gestion than variability in customer demand, we often can represent service
interruptions within the framework of a standard queueing model. We can
simply include the interruption in the service time of one of the customers.
Specifically, we can redefine the service-time distribution: The new service-
time distribution becomes a mixture: With probability p, the new service
time is the sum of an original service time and the interruption duration;
with probability 1 — p, the new service time reduces to an original service
time. We then choose the probability p to match the probability that a
customer is the first customer to experience a service interruption. If the
timing of service interruptions needs to be modeled very precisely, then we
can think of interruptions as special high-priority customers that preempt
regular customers (in line or in service), but the simple model above often
suffices

We have in mind rare long service interruptions occuring randomly, but
to illustrate the interruption phenomenon, we let the interruptions occur in
a fixed manner in our example below.

Example 6.5.1. The M/M/1 queue with two fized service interruptions.

We construct a simple example to illustrate the kind of limit behavior
associated with rare long service interruptions. Specifically, we consider the
M/M/1 queue with the heavy-traffic scaling in (4.19), just as in Example
6.4.1, except that now we let customers number n/4 and 3n/4 have service
times of 2y/n and \/n, respectively, as a function of n. These special service
times are introduced to represent interruptions that occur approximately at
times ¢/4 and 3¢/4 in the scaled processes plotted over the interval [0,1].
(By the SLLN, the scaled arrival time of customer number n/4 approaches
t/4 as n — 00.) Note that the spacings between the interruptions is indeed
order n, while the durations of the interruptions (as captured by the special
service times) are of order /n, as specified above.

We plot the waiting times of the first n customers and the queue-length
process for the time interval [0, n EUT'], the expected time for the n customers
to arrive, for n = 10/ with j = 2,3,4 in Figure 6.12. In Figure 6.12 the
impact of the interruptions is clearer for the waiting times than for the
queue lengths, especially for smaller n. For the queue-length process, the
portion of the plot corresponding to the jump gets steeper as n increases.
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Figure 6.12: Plots of the waiting times of the first n arrivals (on the left) and
the queue-length process over the interval [0, n EU}'| (on the right) for in the
M/M/1 queue with scaling in (4.19) and service interruptions of length 2/n
and /n associated with customers n/4 and 3n/4 for n = 10/ with j = 2,3, 4.

As before, we see that the queue-length and waiting-time plots coalesce as
n increases. Now both scaled processes approach reflected Brownian motion
with drift —1, modified by jumps of size 2 at time ¢ = 1/4 and of size 1 at
time ¢ = 3/4. For the scaled queue-length process, the limit process must
have unmatched jumps. =

Example 6.5.2. The P 5/M/1 queue with two fized service interruptions.

Now, as in Example 6.4.3 we consider the P; 5/M/1 queue with heavy-
traffic scaling in (4.21), modified by having customers number n/4 and 3n/4
experience interruptions. We choose the P;5/M/1 model instead of the
M/ P, 5/1 model, because it naturally (without the interruptions) produces
jumps down instead of up. Thus, it will be easier to recognize the new jumps
up caused by the service interruptions.
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In addition, the durations of the interruptions need to be scaled differ-
ently from the scaling in Example 6.5.1. In order to be consistent with the
heavy-traffic limiting behavior in Example 6.4.3, we now need to scale the
durations of the interruptions by n%/? instead of n'/2. In particular, now
we let the service times of customers number n/4 and 3n/4 be 2n%/3 and
n2/3, respectively. We plot three possible realizations of the waiting times
of the first n customers and the queue-length process over the time interval
[0,nEU], ignoring all arrivals after the first n, for the case n = 10* in
Figure 6.13.

Just as we would expect from Figures 6.11 and 6.12, we see randomly
occurring jumps down because of the Pj 5 arrival process and jumps up of
magnitude 2 at time ¢ = 1/4 and 1 at time ¢t = 3/4. However, both kinds
of jumps are much sharper for the waiting times than for the queue-length
process. Hence, we evidently need larger n in this case to have the queue-
length plots be visually similar to the waiting-time plots. The supporting
FCLTs state that both scaled processes converge to a stable Lévy motion
(with jumps down only) modified by the addition of two jumps up, a jump
of size 2 at ¢ = 1/4 and a jump of size 1 at t = 3/4; again, see Sections
4.5 and 14.7. Again, for the scaled queue-length process, that limit process
must have unmatched jumps. =

The simple models of service interruptions considered in Examples 6.5.1
and 6.5.2 are of course quite artificial. However, from these examples, we
can anticipate what we will see when we use the more realistic alternating
renewal process model for up and down times.

6.6. Time-Dependent Arrival Rates

In many service systems, congestion occurs primarily because of sys-
tematic, deterministic variations in the input rate over time. Many service
systems have arrival rates that vary systematically with time, so that there
are known busy periods with higher loads than average. However, every-
thing is not known. There remains uncertainty about the actual input; there
are unanticipated fluctuations about the known time-varying deterministic
rates.

To better understand the behavior of queues with time-varying arrival
rates, we need to focus directly on queueing models with time-varying arrival
rates. Just as for stationary queueing models, it can be helpful to consider
heavy-traffic limits for queues with time-varying arrival rates. With time-
varying arrival rates, we still scale time, but we think of expanding time
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Figure 6.13: Three possible realizations of the waiting times of the first n
arrivals (on the left) and the queue-length process over the interval [0, n EU}|
(on the right) in the P;5/M/1 queue with scaling in (4.21) and service
interruptions of length 2n?/3 and n?/3 associated with customers n/4 and
3n/4 for n = 10%.
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immediately prior to the time of interest. We increase the overall arrival
and service rate, which is tantamount to decreasing the rate of change in
the arrival-rate and service-rate functions, so that temporary periods of
overload or underload before the time of interest tend to persist longer and
longer.

With such scaling, a law of large numbers can be established, in which the
scaled queue-length process converges to a reflection of a deterministic net-
input process, where the limiting deterministic net-input process satisfies an
ordinary differential equation (ODE) driven by the original time-dependent
arrival and service rates. That limit is identical to the direct deterministic
ODE approximation we obtain if we ignore the stochastic aspects of the
model. In the direct deterministic approximation, the net input becomes
the solution an ODE driven by the time-dependent arrival and service rates;
i.e., if X is the arrival-rate function and p is the service-rate function, then the
deterministic approximation for the queue length is the function ¢ satisfying

a(t) = $(a)(1) =a(t) = inf a(s), 20, (6.1)

where ¢ is again the one-sided reflection map, ¢(0) is the initial queue length
(assumed to satisfy ¢(0) = 0) and z is the deterministic net-input function,
satifying the ODE

z(t) = At) —p(t), t>0. (6.2)

When the deterministic fluctuations dominate the stochastic fluctuations,
such a deterministic analysis can be very useful to describe system perfor-
mance; e.g., see Oliver and Samuel (1962), Newell (1982) and Hall (1991).

However, in stochastic-process limits, we are primarily interested in going
beyond the deterministic ODE limit described above. For example, Man-
delbaum and Massey (1995) show that it is possible to establish a stochastic
(FCLT) refinement to the deterministic ODE limit. It again can be ob-
tained by applying the continuous-mapping approach to stochastic-process
limits. In this setting, the continuous-mapping approach involves conver-
gence preservation with nonlinear centering, and can be approached by iden-
tifying the directional derivative of the reflection map; see Chapter 6 of the
Internet Supplement.

The behavior of the limit process in the stochastic-process limit depends
on the deterministic function ¢. At any time, the deterministic function ¢
must be in one of three states (based on the history of the build up prior
to the time of interest): overloaded, critically loaded (when the cumulative
input rate is in balance with the output rate) or underloaded. (Roughly
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speaking, these regimes correspond to the three cases p > 1, p = 1 and
p < 1 in a stationary queueing model.)

With the usual stochastic assumptions (without any heavy-tailed distri-
butions), the stochastic-process refinement is a diffusion process centered
about the deterministic function q. The diffusion process corresponds to:
ordinary Brownian motion when ¢ is overloaded, reflected Brownian motion
when ¢ is critically loaded, and the zero function when ¢ is underloaded.

Within each region, i.e., within any interval in which the determinisitic
function ¢ remains in one of its three basic states (overloaded, critically
loaded or underloaded), the limiting stochastic process has continuous sam-
ple paths, but at the boundaries between different regions the limiting
stochastic process can have jumps that are unmatched in the converging
processes. Thus, the boundary points between different regions for the de-
terministic function ¢ act as phase transitions for the queueing system. Rel-
atively abrupt changes in the queueing process can occur at these transition
times. And, once again, we have a stochastic-process limit with unmatched
jumps.

Example 6.6.1. A shift from critically loaded to underloaded.

We now give a simple example. In the standard situation we have in
mind, the arrival-rate function is changing continuously, so that we can
obtain the deterministic net-input function by solving the ODE in (6.2).
However, now we consider the more elementary situation in which there
is a sudden shift down in the arrival rate at one time. As in the standard
situation, we let the service rate be constant (although that is not required).

We let the queue initially be critically loaded, i.e., with p = 1, and then
in the middle of the time period, we reduce the arrival rate, making the
model underloaded. For simplicity, we again use the M/M/1 queue. We
let the mean service time always be 1. We actually deviate slightly from
the prescription for the arrival rate: We let the mean interarrival time for
the first /2 customers be 1 and the mean interarrival time of the next n/2
customers be 2. Hence, after n/2 arrivals, the instantaneous traffic intensity
suddenly shifts from p = 1 to p = 0.5. Of course, with this definition, the
shift in arrival rate occurs at a random time instead of a deterministic time,
but after scaling time by n, that scaled random shift time converges to /2
w.p.1. Thus, what we do is essentially the same as if we let the arrival-rate
shift occur exactly at time n/2 when we consider n arrivals.

For the specified model, we plot the waiting times of the first n cus-
tomers and the queue-length process over the time interval [0, n] for n = 10/
for 7 = 2,3,4 in Figure 6.14. As in previous plots, the situation is somewhat
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