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Currently most Renewable Energy Certificate (REC) markets are defined based on targets which create an

artificial step demand function resembling a cliff. This target policy produces volatile prices which make

investing in renewables a risky investment. In this paper, we propose an alternative policy called Adjustable

Dynamic Assignment of Penalties and Targets (ADAPT) which uses a sloped compliance penalty designed to

stabilize REC prices. To capture market behavior, we model the market as a dynamic programming problem

to understand how the market might balance the decision to use a REC now versus holding it for the future.

Then, we present and prove some of the properties of this market, and finally we show that this mechanism

reduces the volatility of REC prices which will stabilize the market and encourage long-term investments in

renewables.
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1. Introduction

To promote the use of renewable sources of energy such as wind, solar, geothermal and biomass,

Renewable Portfolio Standards (RPSs) have been implemented in a number of states in the US

and other countries. These are sets of regulations requiring more generation from renewable

energy sources usually by obligating Load Serving Entities (LSEs) to obtain a percentage of

their generation from renewable sources. A Renewable Energy Certificate (REC) market is one

tool used by many states to implement these policies. According to a set of regulations, certified

renewable generators are credited by RECs for each unit of electricity generation. All LSEs are

required to comply with their regulatory obligations by submitting enough RECs each Energy

Year (EY), and otherwise they are charged with a penalty called the Alternative Compliance

Payment (ACP) for each REC they are short. These market-based tools are expected to provide

a more efficient, competitive and innovative environment for increasing renewable energy supply

and decreasing the cost of generation in comparison with other regulatory tools such as feed-in

tariffs (Burns and Kang (2012), Naroditsky (2013)).

This particular market design, however, as we discuss more extensively in the next section, can

result in undesirably volatile prices. Although REC markets incentivize investing in renewables,

excess volatility can affect the amount of the investment negatively. Price volatility is mostly

attributed to the artificial vertical demand curve imposed by regulations. A number of papers

(such as Felder and Loxley (2012), Berry (2002), Kildegaard (2008), Marchenko (2008)) discuss

extensively the problems arising from a vertical demand curve (or a cliff policy) such as an

uncompetitive market, volatile prices, higher cost of investment (due to higher risk), and difficult

policy evaluation.

In this paper, we propose an Adjustable Dynamic Assignment of Penalties and Targets

(ADAPT) policy by introducing both a sloped penalty function and an adaptive mechanism

for requirements which can adjust to supply and demand changes. Under this sloped penalty

proposal, the effective ACP is a function of the total submitted RECs in each energy year.

While the requirement is not directly a function of the submitted or generated RECs, it can

also be chosen to be a function of last year’s surplus (or shortage). The slope of the penalty
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function and the sensitivity to last year’s surplus are both tunable regulatory parameters. We

show in this paper that this mechanism can be used by policy makers to dampen the volatility

of market prices which will stabilize the market and encourage long-term investments in solar.

We conduct our study of the ADAPT policy using the same generation model as that provided

in Coulon et al. (2013). The price dynamics are the same, with the exception that we extend

the model to handle multiple vintage years (i.e. year of production) simultaneously (Coulon

et al. (2013) model each vintage year separately), and we extend the model to a longer horizon.

This paper makes the following contributions.

1. We propose a sloped target policy (which we call ADAPT), which can be used to encourage

markets to achieve specific goals (e.g. energy from renewables, limiting emission,s ethanol

targets, recyclable garbage, or water usage), without the instability that is experienced

with more classical “cliff” policies which impose penalties when specific quantity targets

are not met. The ADAPT policy is easily integrated into current markets, and represents

a generalizable concept for hitting quantitative targets. Through a set of empirical and

theoretical results, we show that the ADAPT policy produces prices that are dramatically

more stable than would occur assuming optimal behavior with a cliff policy.

2. We derive an optimal policy for submitting RECs to the market, which describes the

collective market behavior. We describe a series of structural results to accelerate the

calculations, and then prove several properties of the optimal policy. These include the

following:

(a) We demonstrate how the optimal submission under ADAPT is chosen by market

partici-pants to balance prices through time.

(b) We show that the prices of RECs of different vintages (RECs generated in different

years) are the same, which reduces the volatility of prices under the ADAPT policy.

(c) We prove a property of the optimal solution that reduces the dimensionality across

vintages to a scalar.

(d) We prove that the total penalty payments under the sloped policy is bounded from

below by the total payments of the cliff policy for a given submission level.
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This paper is organized as follows. In section 2, we introduce and discuss the market design,

regulations, and performance of the New Jersey SREC market, including the problems resulting

from the current market design. In section 3, we introduce the ADAPT policy and describe how

it can be implemented. In section 4, we formulate the collective behaviour of market participants

using a stochastic dynamic programming model. In section 5, we characterize and prove some

of the properties of the REC markets. In section 6, we calibrate our model to the NJ SREC

market and discuss our methodology for solving this stochastic dynamic program. In section 7,

we perform some experiments on different aspects of the ADAPT policy and its performance in

comparison to the current cliff mechanisms. In section 8, we provide our concluding remarks.

2. Case Application: The New Jersey SREC Market

In the US, nearly 30 states have established RPSs and some of these use multipliers (e.g. 2

or 3 credits for each MWh of generation from solar) to specifically promote investment in

solar energy. However, many LSEs prefer to use less expensive and more productive sources of

renewable energy (in comparison with solar) such as wind energy to meet their REC obligations.

Therefore, to even further promote the use of solar energy, 14 states have established separate

solar set-asides and tradeable SRECs, and have been more successful in increasing investment

in solar generation (Wiser et al. (2011), Witmer et al. (2012), Bird and Reger (2013), Bird et al.

(2011), Glickstein (2013)).

The New Jersey (NJ) SREC market is the biggest in the US, and has the most ambitious

target of over 4% generation from solar energy by 2028. The NJ SREC market has recorded the

highest SREC prices of about $700 per SREC in year 2009, and NJ SREC generation has grown

very rapidly from around 30,000 SRECs in EY2007 to more than 1,000,000 in EY2013. Each

energy year represents the twelve month period ending on May 31 of that year. For example,

EY2013 corresponds to the period between June 1 2012 and May 31 2013. Table 1 shows the

requirement and Solar ACP (SACP) levels according to the latest rule change in 2012 (Bird

and Reger (2013), DESIRE (2013), NJCEP (2013)).

The rules of the current SREC market in New Jersey can be summarized as follows.

• For each MWh of electricity generated by solar power plants, one SREC is issued to the

owner of the power plant.
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Table 1 The current requirement and penalty levels (last changed in 2012)

Energy

Year

Target

(% supply)

Target

(projected MWh)
SACP

2012 442,000 $658.00

2013 596,000 $641.00

2014 2.05% 1,707,931 $339.00

2015 2.45% 2,071,803 $331.00

2016 2.75% 2,360,376 $323.00

2017 3.00% 2,613,580 $315.00

2018 3.20% 2,829,636 $308.00

2019 3.29% 2,952,857 $300.00

2020 3.38% 3,079,139 $293.00

• For several years into the future, the government sets targets for consumption of electricity

from solar. These requirements are currently represented as a percentage of the total load.

• All LSEs, which are primarily utilities, are required to meet their requirement by submit-

ting a sufficient number of SRECs each year. Otherwise, they need to pay a fixed penalty (Solar

ACP, or SACP) for each megawatt-hour they fall below the target. They are free to generate

SRECs themselves or to buy from other SREC generators.

• Finally, SRECs can be banked and used for a few years in the future. In the current

New Jersey SREC market, SRECs can be banked and used for four years in addition to their

production year.

Figure 1a shows historical SREC prices in NJ between 2007 and 2013. Shortly after its

introduction, the NJ SREC market sustained very high prices, close to its SACP level, as the

market struggled to meet the targets. However, several price drops and jumps can be observed

in the historical prices. A market with such volatile prices is a risky environment for investors

and thus decreases competition and increases the cost of generation (Felder and Loxley (2012)).

To reduce the volatility of SREC prices and thereby reduce the risk of solar investments,

several rule changes have been introduced in the NJ SREC market. For example, higher SACP
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Figure 1 Historical NJ SREC prices and generation

levels and the possibility of banking (for two years) were introduced in 2008. In 2012, the

banking horizon was extended to five years, along with increases in the targets. The frequency

of changes in the market mechanism shows that these policy adjustments have not been a

long-term solution and that market design has some room for improvement. To alleviate these

problems, various alternatives are discussed by Felder and Loxley (2012), including price floors,

long-term contracts and increased banking years. In addition they briefly suggest the use of a

downward sloping demand curve to set non-zero SACP levels even when generation far exceeds

the annual SREC requirement. However, as their exponential curve never reaches zero, there

is no way to achieve compliance in such a scheme, removing somewhat the notion of a true

quantity target. Furthermore, they provide only a rough qualitative sketch of the idea, leaving

out the details of the implementation of their proposal, and making no attempt to model the

resulting price dynamics.

3. ADAPT: A Price-stabilizing Compliance Policy

In this section, we introduce a new class of policies for computing alternative compliance penal-

ties that allows regulators to avoid excess price volatility, which can discourage investment, and

keep it within some tolerance levels. In this section, we provide a sketch of the policy, which

we refer to as ADAPT, followed by a more rigorous mathematical model in section 4 which is

used to understand how it behaves. We present the ADAPT policy in the framework of SREC

markets.

The standard policy for assessing the alternative compliance payment used in New Jersey

and elsewhere, looks like a cliff (see figure 2), where the SACP is assessed if usage is less than
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Figure 2 How a sloped SACP function can reduce price volatility (for two submission scenarios x1 and x2).

The red and blue hashed areas represent total penalty payment under ADAPT for submission values

x1 and x2 respectively.

the target dropping to zero if usage meets or exceeds the target. The distinguishing feature of

ADAPT is to replace the cliff with a downward sloping function, as illustrated in figure 2. The

idea of ADAPT is to reduce the large uncertainty in alternative compliance payments that has

been observed to arise with a simple target-cliff style policy.

Figure 2 shows a step SACP function i.e. the current mechanism (the solid line), and its

counterpart, a sloped SACP function (the purple dashed line). In this figure, x1 and x2 represent

two scenarios of SREC submissions, with x1 slightly smaller than the requirement and x2 slightly

larger than the requirement. Also, p1 and p2 are the penalty values of the current mechanism

for x1 and x2 respectively, with p1 an extremely high value while p2 extremely low at zero. This

means small changes in generation can result in high price volatility. On the other hand, with

the sloped SACP function, the same submissions x1 and x2 result in penalties p′
1 and p′

2. These

penalties are much closer than under the cliff policy, explaining why ADAPT produces more

stable prices.

Also, the hashed gray area represents total penalty payment in the current mechanism for x1,

while total penalty payment for x2 is zero. Note that the SREC requirement under the sloped



Khazaei and Powell and Coulon: ADAPT: A Price-stabilizing Compliance Policy
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

mechanism (i.e. the right end of the sloped section) is more than the requirement of the current

mechanism and so the penalty is paid for a higher number of SRECs (but a smaller penalty

value for each unit). The hashed red and blue areas show the total penalty payment under the

sloped mechanism for x1 and x2 respectively. The intuition behind this penalty payment (v.s.

a rectangular payment in which the same SACP price p′ is paid for all SRECs short of the

requirement) is that in the slope region each SREC further from the right end of the sloped

area should be penalized gradually more and more until ADAPT finally starts to penalize each

one at the full SACP. This allows us to interpret the SACP function as a marginal demand

curve, for which a total penalty equal to the area under the curve must be paid.

The sudden drop from a level close to the SACP to a level close to zero in the cliff policy

happens specifically when transiting to a new year. For example, while the probability of the

current level of generation not meeting this year’s requirement may be high (i.e. SREC prices

are high for this year), this probability may be low for the next year. This behavior can occur

because targets are different every year, and generation may overtake a future target, producing

much lower prices. The sloped SACP function can mitigate this problem by avoiding the binary

nature of the cliff policy. An additional feature may also be incorporated to automatically

redefine next year’s requirement level, as we shall explain below.

The rules of the proposed ADAPT market can be summarized as follows.

• For each MWh of electricity generated by solar power plants, one SREC is issued to the

owner of the power plant.

• The regulator sets SREC requirement levels for several years in the future. However, the

requirement levels can be automatically adapted to generation levels according to the market

performance in the last year. For example, in case of a surplus (shortage) in the last year,

requirements will be increased (decreased) according to a formula.

• All Load Serving Entities (LSEs), which are primarily utilities, have to meet their require-

ment by submitting a sufficient number of SRECs each year. Otherwise, they need to pay a

penalty for each megawatt-hour they fall below the target. Penalties, however, are calculated

based on a sloped SACP function as represented in figure 2; the more SRECs submitted, the

lower the penalty value (assuming being in the sloped area of the function).
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Figure 3 Sloped SACP function (left): the hashed area shows total market penalty payment and xt represents

the total submitted SRECs at the compliance time t (t ∈ N). Adaptive requirements (right): how

Rt is calculated from the fixed base requirement R̃t and surplus from the last compliance time (st).

• A generator (or LSE) holding SRECs can bank SRECs to the following year, raising the

value of the SRECs that they are submitting now. This allows holders to more precisely balance

the value of SRECs in the future against the price they receive now, but only within a specified

range (due to the limited lifetime of each SREC).

Example 1. Assume that the sloped SACP function is defined as represented in figure 3 (the

left plot) with λ = 0.1. Let t = 14 and 15 represent the compliance times of EY2014 and EY2015

respectively. According to the requirement and penalty figures given in table 1, the effective

requirements of the sloped mechanism (the right end of the sloped area) for EY2014 will be

equal to

(1+ λ)R14 = 1,878,724.

Also the maximum (but not the effective) penalty P14and P15 is equal to the current SACP

levels $339 and $331 respectively. Now assume that a total of 2,000,000 SRECs are available

before the compliance time of EY2014. We call this value the number of banked SRECs at time

t = 14, and represent it with b14 = 2,000,000. Assume that all market participants submit a

collective of xt = 1,800,000 SRECs to the regulators, and the rest of SRECs are banked to be
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used in the future. According to the sloped SACP function, for this amount of submission, the

SACP is equal to $78. This means market participants are obliged to pay a total amount of

0.5× 78× 78,724 dollars. SRECs are banked because their expected future price is higher than

or equal to the penalty of $78.

Here, total available SRECs at t = 14 has exceeded the target R14 (1,707,931, from table

1). Let st represent this surplus (or shortage if negative) from the last compliance time. In this

case,

st = b14 −R14 = 292,069, t∈ (14,15].

In an adaptive requirement scheme, we increase the next year’s requirement by a portion of st

(as shown in the right plot of figure 3). For example, for α = 0.5, we obtain:

R15 = R̃15 + αs15

= 2,071,803+0.5× 292,069

= 2,217,838,

where, R̃15 is equal to the already announced requirement for EY2015 (from table 1). We earlier

assumed s14 = 0, and that is why we use R14 = R̃14; however, we avoided asserting it before

introducing the concept of surplus to prevent confusion.

Note that a (more complicated) formula similar to our adaptive requirement scheme is being

used in the Massachusetts SREC market. We can use a mathematical model of this mechanism

to investigate the effects of the sloped SACP function as well as other variations (and their

combinations) to the current market. In addition to the sloped SACP function, these variations

can include the possibility and the degree of adaptive requirements and/or number of banking

years. Readers should be aware that the current mechanism is a special case of this general

model, in which the slope factor and requirement adaptation factor are set to zero and SRECs

are allowed to be banked for four years.

4. Mathematical Model

We consider a market with a sloped SACP function, adaptive requirements, and the possibility

of banking for several years.

We use the following notation.
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Indices (t, y): We index time by t, and energy year by y. In this model, the smallest time

step is assumed to be a period of one month (i.e. Δt = 1
12

). Each energy year y ∈N is associated

with the time interval [y − 1, y], while t = y determines the compliance time of energy year y.

For example, time t = 6 corresponds to the end of energy year 2006 (May 31 2006). We also

use y to index the vintage year of SRECs.

Parameters (τ,λ,α, R̃y, Py, r):

• τ : The maximum number of years (compliance times) that an SREC can be banked.

• λ (0≤ λ≤ 1): The parameter determining the shape and slope of the SACP function (see

figure 3). If λ = 0, we obtain the current cliff policy.

• α (0≤ α≤ 1): The parameter representing the portion of last year’s surplus (shortage) to

be added to (deducted from) the base requirement.

• R̃y : Number of SRECs required for energy year y, determined by the regulation and

announced in advance. This, however, is not the effective requirement Ry, which is determined

and updated according to market performance.

• Py : The penalty set by the regulation to be paid for each SREC short of the requirement

Ry in energy year y. We assume that Py is decreasing in time, as these penalties have been

decreasing sequences in all regulation changes in the NJ SREC market.

• r: Interest rate.

State variables: The state variable St = ((bt,y)y, ĝt, p̄t, st) is defined as follows.

• (bt,y)y : Total number of accumulated or banked SRECs from different vintages at time

t. Also, let bt denote the total number of accumulated SRECs (valid for trading) at time t. If

SRECs can be banked for τ years, at time t we have

bt =
dte∑

y=max{1,dte−τ}

bt,y.

• ĝt : The installed capacity of SREC generation at time t.

• p̄t : The (weighted and lagged) average historical price of SRECs up to time t. This is used

to determine the rate of future solar installations.

• st : The surplus (or shortage) of SRECs from the last compliance time known at time t

(st = bdte−1 − R̃dte−1). This variable is needed for determining adaptive requirements.
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Decision variables ((xt,y)y):

• (xt,y)y : The number of SRECs to be submitted to the market at time t from different

vintage years. We represent the total number of SRECs submitted at time t by xt defined as

xt =
∑

y

xt,y.

Decisions will be made by a policy π using a function Xπ
t (St) to be determined later.

Exogenous information processes (Wt): The exogenous information processes Wt = (εt) is

defined as the random variable indicative of noise in generation. Let ω ∈Ω be a sample path for

(W1, . . . ,WT ). Let Ft = σ(W1, . . . ,WT ) be the sigma-algebra on Ω, and let P be the probability

measure on (Ω,F), giving us a probability space (Ω,F ,P). Throughout our presentation, we

assume that any variable indexed by t is Ft-measurable.

Other functions (gt(p̄, εt),Rt(st), fSACP
t (xt)):

• gt(p̄, εt) : Rate of SREC generation at time t. The generation rate gt consists of an increas-

ing trend of generation growth, seasonality, noise, and a feedback procedure to capture the

dependence on the average historical prices of SRECs. We can represent gt as:

gt(p̄, εt) = h1(t−btc)h2(εt)ĝt(p̄),

where functions h1 and h2 represent seasonality and random noise in the SREC rate of

generation respectively. The increasing trend of installations and its dependance on the average

historical prices of SRECs are captured by ĝt(p̄).

According to our generation model, and supported by the historical generation and price

data in New Jersey, we model gt as

ĝt(p̄) = exp



a0 + a5t + a6

∑

u∈{0,Δt,2Δt,...,t}

p̄uΔt



 , (1)

gt(p̄, εt) = ĝt(p̄) exp
(
a1 sin(4πt)+ a2 cos(4πt)+ a3 sin(2πt)+ a4 cos(2πt)+ εt

)
. (2)

• Rt(st) : The number of SRECs required by the regulation for time period t. This require-

ment is defined as

Rt(st) =






R̃t + αst t∈N,

0 t /∈N.
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• fSACP
t (xt) : The SACP function, determining the penalty price for any value of submission

xt at time t. This is the (artificial) inverse demand function of SRECs and at any compliance

time (t∈N) it can be represented by (λ > 0):

fSACP
t (xt) =






Pt, xt < (1−λ)Rt,

Pt −
Pt

2λRt
(xt − (1−λ)Rt), (1−λ)Rt ≤ xt < (1+ λ)Rt,

0 (1+ λ)Rt ≤ xt.

For other time periods t /∈ N, we define fSACP
t (xt) = 0. This definition helps us to present

a more general and cleaner model without the need to discriminate between compliance and

non-compliance times.

Transition functions: We represent the transition function generically using St+Δt =

SM(St, (xt,y)y,

Wt+Δt).

According to equations (2) and (1),

ĝt+Δt = ĝt exp(a5Δt + a6p̄tΔt),

gt+Δt = ĝt+Δt exp
(
a1 sin(4π(t +Δt))+ a2 cos(4π(t +Δt))

+a3 sin(2π(t +Δt))+ a4 cos(2π(t +Δt))+ ε̂t+Δt

)
.

The number of banked SRECs bt+Δt,y can be obtained from

bt+Δt,y =






0 y < dt +Δte− τ,

bt,y −xt,y dt +Δte− τ ≤ y < dt +Δte ,

bt,y + gtΔt−xt,y y = dt +Δte ,

0 y > dt +Δte .

This means that the expired SRECs are not banked any more, and of course, there is no

SREC generation of future vintages. The newly generated SRECs are banked as current year

SRECs, and total submissions in the last time step should also be taken into account. Note that

based on the definition of the SACP and requirement functions, no SRECs would be submitted

at non-compliance times (xt,y = 0 if t /∈N).
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Also, the average historical price must be updated:

p̄t+Δt = δpt−γ,ymax +(1− δ)p̄t, 0≤ δ ≤ 1

where ymax = dte represents the newest vintage year at time t, and γ represents the lag, i.e. the

time between investment decision and actual generation.

Finally, surplus process can be updated as

st+Δt =






bt − R̃t t∈N,

st t /∈N.

Objective function: At each time step, the collective behaviour of a competitive market max-

imizes social welfare. Social welfare can be defined as the area under the (artificial) demand

function minus the area under the marginal cost function. As the marginal cost of SREC gener-

ation is zero, social welfare is equal to the area under the SACP function. Let C(St, xt) denote

the contribution function at time t, then we have

C(St, xt) =
∫ xt

0

fSACP
t (u)du.

In order to obtain cleaner equations, we use Ft(xt) to represent
∫ xt

0
fSACP

t (u)du. Let Π be the

set of all policies π i.e. functions that match each state St to a decision Xπ
t (St). We intend to

find the best policy π ∈Π that maximizes Et

∑T

t′=t e
−r(t′−t)C(St′ ,X

π
t′(St′)):

Vt(St) = max
π∈Π

Et

T∑

t′=t

e−r(t′−t)Ft′(Xπ
t′(St′)),

where e−r(t′−t) is the discount factor, and Et is a time t conditional risk-neutral expectation.

5. Model Properties

In this section, we derive a few properties of the model that help us in analysing the market

and solving the dynamic programming model introduced in the previous section. We start by

proving some features of the SREC markets that help us reduce the complexity of the stochastic

dynamic program. Then, through a series of theorems and propositions, we prove different

properties of the collective market behaviour. We use these results to obtain the optimal SREC

submission policy representing the market behaviour for different market states. We then prove
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that (excluding very atypical circumstances) there is no price difference among different vintage

years, which is one of the reasons why the ADAPT policy reduces price volatility. We also prove

a theorem to compare total penalty payment under the two regimes.

Our first step in analysing this market is to reduce the number of decision variables to one

variable. The following theorem shows that if we only solve the problem for the total number

of banked SRECs, xt, we can obtain the individual vintages, xt,y, from xt.

Theorem 1. If the optimal number of submitted SRECs at time t, xt, is known, the optimal

number of SRECs submitted from different vintages at time t is given by

xt,y =






0 y < dte− τ

min{bt,y, xt −
∑y−1

u=dte−τ xt,u} dte− τ ≤ y ≤ dte

0 y > dte

Proof. On one hand, all SREC vintages have the same contribution to the function Ft(xt)

at each time (if they have not expired). On the other hand, the newer SRECs can be used

further in the future to maximize Et

∑
u e−r(u−t)Fu(xu). Therefore, for any y, if xt,y < bt,y,

xt,y+1 = 0 (i.e. the older SRECs must be submitted first). This means that the oldest SRECs

(y = dte− τ) must all be submitted (xt,dte−τ = bt,dte−τ ) unless this value exceeds xt. Therefore,

we have xt,dte−τ = min{bt,dte−τ , xt}. Similarly, the second oldest SRECs must all be submitted if

this does not exceed the total remaining SRECs from the optimal submission xt, or xt,dte−τ+1 =

min{bt,dte−τ+1, xt −xt,dte−τ}. Extending this to other vintages dte− τ ≤ y ≤ dte, we obtain xt,y =

min{bt,y, xt −
∑y−1

u=dte−τ xt,u}.

The expired SRECs (y < dte − τ) and SRECs that are not yet produced (y > dte) of course

cannot form a part of the optimal submitted SRECs xt. �

SRECs are not a physical commodity and they do not have any storage or delivery costs

or other constraints related to physical commodities. This means SREC prices must satisfy

the martingale condition (at all times including compliance dates, as long as some SRECs are

banked for the future). Thus, to ensure no arbitrage, at each time step, an SREC is valued

at either the penalty price of that time period or the discounted expected SREC price in the

next time period whichever is higher (under a risk-neutral measure). The expired SRECs do

not have any value.
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Definition 1. Price of SRECs of vintage y at time t can be calculated as

pt,y =






max{fSACP
t (xt), e−rΔtEt{pt+Δt,y}}, t≤ y + τ,

0, t > y + τ.

(3)

Note that fSACP
t (xt) = 0 for times other than the compliance time (t /∈N).

In order to obtain a proper policy for choosing xt, we first need to prove the following theorem

and propositions.

The following proposition shows how penalty value evolves through time under certain con-

ditions.

Proposition 1. Let us represent the optimal policy at any compliance time t ∈ N by xt =

X∗
t (St) (τ > 0). Firstly, if xt < bt, then we have fSACP

t (xt) ≤ e−rEt{fSACP
t+1 (xt+1)|xt}. Also, if

bt,t−τ < xt, then we have fSACP
t (xt)≥ e−rEt{fSACP

t+1 (xt+1)|xt}.

Proof. • xt < bt ⇒ fSACP
t (xt)≤ e−rEt{fSACP

t+1 (xt+1)|xt}:

We prove this by contradiction. Let xt = X∗
t (St) represent the optimal compliance policy over

time (t∈N). Assume by contradiction that there exists t′ for which we have xt′ < bt′ and

fSACP
t′ (xt′) > e−rEt′{f

SACP
t′+1 (xt′+1)|xt′}.

We show that the policy x̂ = X̂t(St), defined over all time periods as

X̂t(St) =






X∗
t (St)+ ε t = t′,

X∗
t (St)− ε t = t′ +1,

X∗
t (St) Otherwise,

gives a higher objective value than xt for some small ε > 0.

Note that x̂t is a feasible solution, firstly because the total number of SRECs is still the same

and submission has not exceeded the total available SRECs at each time (bt). Also, X∗
t (St) is

always positive at the compliance times because P is decreasing in time, and, hence to maximize

the objective function, it is always better that an available SREC (in the maximum flat area

of fSACP
t (xt)) be submitted now rather than be banked for future. Note that bt > 0, because

generation rate is positive and thus there are some SRECs generated during the year.
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Recall that xt = X∗
t (St) and x̂t = X̂t(St). The objective function for x̂ at any time t′ can be

obtained from

Et′

{ T∑

t=t′

Ft(x̂t)
}

=Et′

{ T∑

t=t′

Ft(xt)
}

+
∫ xt′+ε

xt′

fSACP
t′ (u)du− e−rEt′

∫ xt′+1

xt′+1−ε

fSACP
t′+1 (u)du.

As fSACP
t and fSACP

t+1 are continuous decreasing functions, we have

Et′

{ T∑

t=t′

Ft(x̂t)
}

>Et′

{ T∑

t=t′

Ft(xt)
}

+ fSACP
t′ (xt′ + ε)ε− e−rEt′{f

SACP
t′+1 (xt′+1 − ε)ε}.

As from the initial assumption, fSACP
t′ (xt′) > e−rEt′{fSACP

t′+1 (xt′+1)|xt′}, and f is a continuous

function, we can always find ε > 0 for which fSACP
t′ (xt′ + ε)− e−rEt′{fSACP

t′+1 (xt′+1 − ε) > 0. This

means Et′

{
∑T

t=t′ Ft(x̂t)
}

> Et′

{
∑T

t=t′ Ft(xt)
}

, which leads to a contradiction with xt being

the optimal decision and so proves that fSACP
t (xt)≤ e−rEt{fSACP

t+1 (xt+1)|xt}.

• bt,t−τ < xt ⇒ fSACP
t (xt)≥ e−rEt{fSACP

t+1 (xt+1)|xt}:

We can use a similar methodology to prove this part of the proposition.

�

The following proposition provides the conditions under which SRECs are banked for future

use.

Proposition 2. Let xt = X∗
t (St) represent the optimal policy at all compliance times t∈N. If

fSACP
t (bt) < e−rEt{fSACP

t+1 (xt+1)}, and bt,t−τ < bt then xt < bt.

Proof. Let xt = X∗
t (St) be the optimal policy, and assume that there is some t′ for which

X∗
t′(St′) = bt′ while fSACP

t′ (bt′) < e−rEt′f
SACP
t′+1 (X∗

t′+1(St′+1)). We can show that x̂t = X̂t(St)

defined as follows provides a better objective function.

X̂t(St) =






X∗
t (St)− ε t = t′,

X∗
t (St)+ ε t = t′ +1,

X∗
t (St) Otherwise,

Firstly notice that X̂t(St) provides a feasible solution, because X̂t(St) = X∗
t (St), except that

ε non-expiring SRECs have been submitted at time t′ +1 instead of t′. Recall that xt = X∗
t (St)

and x̂t = X̂t(St). The objective function for x̂ at time t′ can be obtained from

Et′

{ T∑

t=t′

Ft(x̂t)
}

= Et′

{ T∑

t=t′

Ft(xt)
}

−
∫ bt′

bt′−ε

fSACP
t′ (u)du + e−rEt′

∫ xt′+1+ε

xt′+1

fSACP
t′+1 (u)du

≥ Et′

{ T∑

t=t′

Ft(xt)
}

− fSACP
t′ (bt′ − ε)ε + e−rEt′{f

SACP
t′+1 (xt′+1 + ε)}ε. (4)
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As fSACP
t′ (bt′) < e−rEt′{fSACP

t′+1 (xt′+1)} and f functions are continuous, we can always find

small enough ε > 0 for which we have fSACP
t′ (bt′ − ε) < e−rEt′{fSACP

t′+1 (xt′+1 + ε)}. Therefore, we

have

Et′

{ T∑

t=t′

Ft(x̂t)
}

>Et′

{ T∑

t=t′

Ft(xt)
}

,

which contradicts the optimality of xt. �

The next proposition establishes conditions under which more than zero bankable SRECs

(i.e. SRECs that are not expiring) are submitted.

Proposition 3. Let xt = X∗
t (St) represent the optimal policy at all compliance times t∈N. If

e−rEt{fSACP
t+1 (xt+1)}< fSACP

t (bt,t−τ ), and bt,t−τ < bt, then xt > bt,t−τ .

Proof. Firstly, all SRECs that are about to expire (bt,t−τ ) must be submitted at time t∈N,

because these SRECs can contribute to the objective function at time t but will not be available

in the future. This means xt ≥ bt,t−τ . We show that under the proposition conditions, xt 6= bt,t−τ .

Similar to the proof of proposition 2, we can show that there exists a small enough ε > 0, for

which x̂t = X̂t(St) defined as follows is feasible and yields a better objective value than (xt)t

with xt′ = bt′,t′−τ .

x̂t =






bt,t−τ + ε t = t′,

xt − ε t = t′ +1,

xt Otherwise.

�

We can now prove the following theorem which we can use to describe the optimal policy.

Theorem 2. If τ > 0, then at any time t∈N, the optimal policy xt = X∗
t (.) must solve

fSACP
t (xt) = min{fSACP

t (bt,t−τ ),max{fSACP
t (bt), e−rEt{f

SACP
t+1 (xt+1)|xt}}}.

Proof. As with the previous proof, we again have that all SRECs that are about to expire

(bt,t−τ ) must be submitted at time t∈N, because these SRECs can contribute to the objective
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function at time t but will not be available in the future. Therefore, xt ≥ bt,t−τ or fSACP
t (bt,t−τ )

is an upper bound for fSACP
t (xt):

xt ≥ bt,t−τ or fSACP
t (xt)≤ fSACP

t (bt,t−τ ). (5)

From (5), if bt,t−τ = bt, then all SRECs must be submitted (xt = bt) which is consistent with

the formula given by the theorem. So, from here onwards, we prove the theorem only for the

case of bt,t−τ < bt.

Case 1 fSACP
t (bt) > e−rEt{fSACP

t+1 (xt+1)} ⇒ xt = bt (fSACP
t (xt) = fSACP

t (bt)) : We prove

this by contradiction. Assume on the contrary that for the optimal x and a time t′, we have

xt′ < bt′ while fSACP
t′ (bt′) > e−rEt′{fSACP

t′+1 (xt′+1)}. From proposition 1 we can conclude that

as xt′ < bt′ , fSACP
t′ (xt′) ≤ e−rEt′{fSACP

t′+1 (xt′+1)}. Also fSACP
t′ is a non-increasing function and

xt′ < bt′ , thus fSACP
t′ (xt′) ≥ fSACP

t′ (bt′). However, this contradicts the condition fSACP
t′ (bt′) >

e−rEt′{fSACP
t′+1 (xt′+1)} ≥ fSACP

t′ (xt′).

Case 2 fSACP
t (bt)≤ e−rEt{fSACP

t+1 (xt+1)}⇒ fSACP
t (xt) = min{fSACP

t (bt,t−τ ),

e−rEt{fSACP
t+1 (xt+1)}}: We divide this case into subcases 2a and 2b.

Case 2a fSACP
t (bt) < fSACP

t (bt,t−τ ) ≤ e−rEt{fSACP
t+1 (xt+1)} ⇒ xt = bt,t−τ (fSACP

t (xt) =

fSACP
t (bt,t−τ )): Proposition 2 ensures that xt 6= bt. Also, xt cannot satisfy bt,t−τ < xt < bt. If

this were true, according to proposition 1, fSACP
t (xt) must be equal to e−rEt{fSACP

t+1 (xt+1)}.

There are two possibilities in this case. First, bt,t−τ is in the sloped area of the SACP

function, and so bt,t−τ < xt is equivalent to fSACP
t (xt) < fSACP

t (bt,t−τ ). However, we know

from the assumption of case 2a that fSACP
t (bt,t−τ ) ≤ e−rEt{fSACP

t+1 (xt+1)}, and this contradicts

fSACP
t (xt) = e−rEt{fSACP

t+1 (xt+1)}. Second, bt,t−τ is in the top flat area of the SACP func-

tion, in which case fSACP
t (bt,t−τ ) = Pt > Pt+1 ≥ e−rEt{fSACP

t+1 (xt+1)}, and therefore, bt,t−τ <

xt means fSACP
t (xt) ≥ fSACP

t (bt,t−τ ) > e−rEt{fSACP
t+1 (xt+1)}, and this contradicts fSACP

t (xt) =

e−rEt{fSACP
t+1 (xt+1)}. Thus, xt /∈ (bt,t−τ , bt), and according to equation (5) the only remaining

choice is xt = bt,t−τ .

Case 2b fSACP
t (bt)≤ e−rEt{fSACP

t+1 (xt+1)}< fSACP
t (bt,t−τ )⇒ fSACP

t (xt) =

e−rEt{fSACP
t+1 (xt+1)}: Firstly, from proposition 3 we can conclude that xt 6= bt,t−τ and according

to equation (5) xt > bt,t−τ . Now there are two cases. First, if fSACP
t (bt) = e−rEt{fSACP

t+1 (xt+1)}



Khazaei and Powell and Coulon: ADAPT: A Price-stabilizing Compliance Policy
20 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

then xt cannot be in (bt,t−τ , bt) because based on proposition 1 this means fSACP
t (xt) =

e−rEt{fSACP
t+1 (xt+1)} = fSACP

t (bt) and contradicts xt ∈ (bt,t−τ , bt). Thus, in this case, the only

remaining possibility is fSACP
t (xt) = fSACP

t (bt) = e−rEt{fSACP
t+1 (xt+1)}. Second, if fSACP

t (bt) 6=

e−rEt{fSACP
t+1 (xt+1)} (or equivalently fSACP

t (bt) < e−rEt{fSACP
t+1 (xt+1)}), according to proposi-

tion 2, xt 6= bt. Thus, the only remaining possibility is that bt,t−τ < xt < bt, and according to

proposition 1 this means fSACP
t (xt) = e−rEt{fSACP

t+1 (xt+1)}. �

Let us represent the oldest (newest) SREC vintage at time t by ymin
t = dte− τ (ymax

t = dte).

The following theorem represents an important property of the optimal policy and demon-

strates how the optimal submission under ADAPT is chosen by market participants to balance

prices through time.

Theorem 3. If xt = X∗
t (St) is an optimal policy at time t∈N, and xt > bt,t−τ for all t∈N, we

have e−rEt{fSACP
t+1 (xt+1)}= e−rΔtEt{pt+Δt,ymax

t
}.

Proof. At the end of their life (T = ymax
t + τ), vintage ymax

t SRECs are priced at pT,ymax
t

=

fSACP
T (xT ) according to the price formula (3). At time T − 1, we have

pT−1,ymax
t

= max{fSACP
T−1 (xT−1), e−rΔtET−1{pT−1+Δt,ymax

t
}}

= max{fSACP
T−1 (xT−1), e−rET−1{pT,ymax

t
}}

= max{fSACP
T−1 (xT−1), e−rET−1{f

SACP
T (xT )}}.

But according to proposition 1, because xt > bt,t−τ , we have fSACP
t (xt) ≥ e−rEtf

SACP
t+1 (xt+1) for

all t. Therefore, we obtain pT−1,ymax
t

= fSACP
T−1 (xT−1). Continuing this argument while going

backward in time, we get pt+1,ymax
t

= fSACP
t+1 (xt+1). Therefore, we have e−rEt{fSACP

t+1 (xt+1)} =

e−rEt{pt+1,ymax
t

}= e−rΔtEt{pt+Δt,ymax
t

}. �

If some banking is allowed, then it is very unlikely that at a compliance time only the oldest

SRECs (bt,t−τ ) are submitted. Specifically when τ is a number like 4 as in NJ, there are typically

very few (if any) of these SRECs left and newer SRECs must be submitted instead. Under this

assumption, the following theorem shows that no price difference is expected among older and

newer SRECs under ADAPT.
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Theorem 4. If xt = Xπ
t (St) is an optimal policy at time t∈N, and xt > bt,t−τ for all t∈N, all

SREC vintages have the same price.

Proof. According to the price definition (3) and theorem 2 (when xt > bt,t−τ ) we have

pt,y = max{fSACP
t (xt), e−rΔtEt{pt+Δt,y}}

= max{e−rEt{f
SACP
t+1 (xt+1)}, fSACP

t (bt), e−rΔtEt{pt+Δt,y}}.

Replacing e−rEt{fSACP
t+1 (xt+1)} with its value from theorem 3 we obtain

pt,y = max{e−rΔtEt{pt+Δt,ymax
t

}, fSACP
t (bt), e−rΔtEt{pt+Δt,y}}.

However, from price definition (3) we know that e−rΔtEt{pt+Δt,ymax
t

} ≥ e−rΔtEt{pt+Δt,y}. This

simplifies the value of pt,y to

pt,y =max{e−rΔtEt{pt+Δt,ymax
t

}, fSACP
t (bt)}.

�

In other words, a price difference can only emerge if the optimal submission decision xt,

needed to balance today’s penalty with expected future prices, would fall below the bound bt,t−τ .

In this case, it is instead preferable to submit bt,t−τ to avoid wasting SRECs, thus bringing

down the price of the expiring vintage compared to others.

According to this general market design, instead of a high penalty of Py for xy = Ry − ε, and

a low penalty of zero for xy = Ry + ε in the current mechanism, a middle ground is chosen in

which the penalty of both of these cases is near Py

2
. However, this does not mean that the total

penalty payment under both regimes remains the same in expectation. The following theorem

shows that the total penalty payment is always more under the sloped market design.

Theorem 5. Total penalty payment of the sloped market design is always greater than or equal

to the original step mechanism for any fixed number of submitted SRECs.

Proof. Let xt denote the total submitted SRECs at time t ∈ N. Also let us represent the

total penalty payment in the current cliff mechanism and the sloped mechanism by hCliff
t (xt)

and hADAPT
t (xt) respectively. We also represent the SACP functions of the ADAPT and cliff

policies with fADAPT
t (xt) and fCliff

t (xt) respectively.
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a0 a1 a2 a3 a4 a5 a6 σ

10.9558 -0.1209 0.0900 0.2151 0.3859 -0.0151 1.27×10−3 0.186

Table 2 Estimated parameters for our linear model

According to our definition of the penalty functions,
∫∞

0
fADAPT

t (z)dz =
∫∞

0
fCliff

t (z)dz, and

we use K to denote this value. Hence, we have

hADAPT
t (z) = K −

∫ xt

0

fADAPT
t (z)dz,

hCliff
t (z) = K −

∫ xt

0

fCliff
t (z)dz.

Therefore, to prove the theorem, we must show that
∫ xt

0
fADAPT

t (z)dz ≤
∫ xt

0
fCliff

t (z)dz for any

xt ∈ [0,∞).

If 0≤ xt ≤Rt, we have 0 < fADAPT
t (xt)≤ fCliff

t (xt), and hence we conclude
∫ xt

0
fADAPT

t (z)dz ≤
∫ xt

0
fCliff

t (z)dz.

If xt ≥Rt, we have
∫ xt

0
fCliff

t (z)dz = K =
∫∞

0
fADAPT

t (z)dz ≥
∫ xt

0
fADAPT

t (z)dz. �

6. Calibrating and Solving the Models

To gain insight into the effects of different SREC policies, we need to first be able to estimate

some parameters for the current market design to serve as our benchmark. We can then modify

some of these parameters to design new markets and assess their performance.

To represent the current market mechanism, for parameters R̃t and Pt we use the values

given in table 1, which are based on the latest regulation changes in NJ. Also, we use a constant

interest rate of 2% estimated based on historical interest rates (the interest rate has little effect

on the results of our experiments). The current SREC market design is characterized by a sharp

cliff. Therefore, we set λ = 0 to represent the current SREC market design. In addition, we set

α = 0 to capture the fact that the current market targets are nonadaptive.

6.1. Generation model parameters

The parameters for the general model are obtained by fitting a linear model to the log of the

historical generation data (see Coulon et al. (2013) for more details). These parameters are

given in table 2.

Also, according to the historical generation data, a normal distribution with mean zero and

standard deviation 0.186 seems to characterize the noise εt very well.
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6.2. Computing the price surface

The original dynamic programming model is computationally intractable due to the dimension-

ality of the state variable. However, we can reduce the dimensionality, preserving the structure

and behavior of the problem yet producing a model that can be solved exactly.

Specifically, the number of dimensions can be reduced greatly by using the scalar bt, giv-

ing the aggregate number of banked SRECs, instead of the vector (bt)t which captures the

banking by vintage. These variables only appear in the function fSACP
t (xt) = min{fSACP

t (bt,t−τ ),

max{fSACP
t (bt), e−rEt{fSACP

t+1 (xt+1)|xt}}, and are only effective if the number of older SRECs

that are about to expire is very large. This is quite unlikely to happen in reality (in fact, for

τ = 4, bt,t−τ = 0 is virtually guaranteed), specifically because the oldest SRECs are the first to be

submitted at each compliance time (theorem 1). Therefore, when generating our price surfaces,

we fit the value function around the scalar bt, but we retain the vector of banked SRECs by

vintage, (bt)t, as we simulate forward, making it possible to check to see if our approximation

is valid. The transition function for bt, then, is given by

bt+Δt = bt + gtΔt−xt.

The previously discussed assumption that bt,t−τ < xt, means that fSACP
t (xt) = max{fSACP

t (bt),

e−rEt{fSACP
t+1 (xt+1)} (see theorem 2). As bt,t−τ < xt, according to theorem 3, fSACP

t (xt) can be

determined based on expected future SREC prices of the newest vintage at time t:

fSACP
t (xt) = max{fSACP

t (bt), e−rΔtEt{pt+Δt,ymax
t

}}.

Thus, the optimal xt can be obtained from

xt = min{bt, (fSACP)−1
t (e−rΔtEt{pt+Δt,ymax

t
})} (6)

at time t ∈ N. Note that e−rΔtEt{pt+Δt,ymax
t

} is in the sloped area of fSACP
t (because P is

decreasing in time) and therefore (fSACP)−1
t is defined. This means we can solve our dynamic

program based on SREC prices instead of the original objective function (i.e. social welfare).

This simplifies calculations at each time step and directly outputs SREC prices.
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According to the definition of SREC prices (equation (3)), we obtain,

pt,y = exp(−rΔt)Et[pt+Δt,y], t /∈N, (7)

and at the compliance dates (t∈N), we have

pt,y = max{fSACP
t (xt), exp(−rΔt)Et[pt+Δt,y]}, t∈N. (8)

We can use equations (6), (7), and (8) to compute the SREC prices using backward induction

on a discretized state space.

Also, in most of our experiments, we reduce p̄t to the current price pt (by choosing δ = 1 and

γ = 0), in order to decrease the number of dimensions in the dynamic program and increase

computational performance. As discussed and shown by example in Coulon et al. (2013), this

does not have a significant impact on the results of our experiments.

We compute the price surface according to the following algorithm.

1. Discretize the state variable St = (bt, ĝt, st) on a grid ranging over [0, κbRy+τ ], [0, κgRy+τ ],

and [−κsRy+τ , κ
sRy+τ ] respectively for each vintage year y, where κb and κg are coefficients

greater than one (e.g. 1.5), and κs is a positive number (e.g. 0.5). Also discretize the

distribution of the noise variable εt into n outcomes εt,i with probability pr{εt,i}, for

i = 1, . . . , n.

2. Initialize the dynamic program by calculating p
T,yfin = fSACP

T (xT ) at all grid points, where

yfin denotes the final SREC vintage in our simulation, and T = yfin + τ .

3. Go backward through time and compute prices of all (possibly existing) SREC vintages

(ymin
t , . . . , ymax

t ) from (7) and (8) at each grid point (bt, ĝt, st):

(a) If t /∈N, x̃t = 0, otherwise find x̃t by solving fSACP
t (x̃t) = e−rΔtEt{pt+Δt,ymax

t
|x̃t}:

i. Set x̃t = (1+ λ)Rt; at this point fSACP
t (x̃t) = 0.

ii. xt = min{x̃t, bt}

iii. pt,ymax
t

= max{fSACP
t (x̃t), fSACP

t (bt)}.

iv. From (1) ĝt+Δt = ĝt exp(a5Δt + a6p̄tΔt); if δ = 1, p̄t = pt,ymax
t

.

v. For each i = 1, . . . , n from (2)

gt+Δt,i = ĝt+Δt exp
(
a1 sin(4π(t +Δt))+ a2 cos(4π(t +Δt))

+a3 sin(2π(t +Δt))+ a4 cos(2π(t +Δt))+ εt,i

)
.
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vi. bt+Δt,i = bt + gt+Δt,iΔt−xt.

vii. st+Δt = bt − R̃t.

viii. Using the discretized distribution function

Et[pt+Δt,ymax
t

] =
n∑

i=1

pr{εt,i}pt+Δt,ymax
t

(
bt+Δt,i, ĝt+Δt, st+Δt

)
.

ix. If fSACP
t (x̃t) < e−rΔtEt{pt+Δt,ymax

t+Δt
}, update x̃t to x̃t−k with k > 0, and go to (ii).

(b) Set xt = min{bt, x̃t}, and compute bt+Δt, ĝt+Δt, and st+Δt as of (a iii) to (a vi) equations.

(c) For y : ymax
t to ymin

t

i. Calculate Et[pt+Δt,y] =
∑n

i=1 pr{εt,i}pt+Δt,y

(
bt+Δt, ĝt+Δt, st+Δt

)
.

ii. pt,y = max{fSACP
t (xt), e−rΔtEt{pt+Δt,y}}.

CPU times for solving a simulation over a decade to appropriately tackle accuracy, with a

single fine-grained grid, are excessive (in the order of several weeks). As our state variables (e.g.

generation) lie on different ranges for early and late years, we can use separate smaller grids for

different vintage years (as given in step 1 above) instead of a single large grid. This maintains

the same level of accuracy, while keeping the problem computationally tractable. Experiments

were run for 50 to 100 grid points for each state variable for each vintage year, and this was

found to produce an acceptable tradeoff between accuracy and CPU times.

7. Experiments

We now report on experiments designed to provide insights into the effect of different market

designs. We begin our experiments assuming a steady growth in targets, a strategy that ensures

that SREC prices do not rapidly fall towards zero. For this purpose, we assume that require-

ments are determined by Ry = α expβ(y− 14), with α equal to the requirement level of EY2014

and β equal to a positive number (β = 0.35 in the following experiments). Also, we assume five

years of lifetime (τ = 4). After studying the behavior of market designs using this formula for

requirements, we report on a study of the current requirement schedule.

7.1. The slope of the SACP function

There are four critical differences between ADAPT and the current market mechanism. Firstly,

if λ is large enough (producing a shallow SACP function), extreme prices of zero or Pt only
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Figure 4 20 price sample paths for an 8 year simulation (for λ = 0, 0.1, 0.3, and 0.7 from left to right, top to

bottom).

happen if the total banked SRECs are either very high or very low. Secondly, in the sloped

mechanism, penalties can have any values between 0 and Pt unlike the binary nature of the

step mechanism. Thirdly, in the step market design, if the total banked SRECs are less than

the requirement, they must all be submitted, as Pt is a decreasing sequence through time and

so the current penalty is more than any possible future price. Thus, in effect there is no real

choice for how many SRECs to submit and how many to bank in the step mechanism, while

under ADAPT participants can choose the submission value to balance prices before and after

submission. Finally, the second and third differences result in equal prices across vintages under

ADAPT.

Figures 4 and 5 compare SREC prices of different vintage years between a step SACP mech-

anism and a sloped SACP mechanism. These results are obtained from twenty sample paths,
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Figure 5 Average SREC prices over 10000 simulations (for λ = 0,0.1,0.3,and 0.7 from left to right, top to

bottom)

and an average of 10000 simulations with 100 grid points for each state variable ĝt and bt (the

price feedback parameter a6 is 7 × 10−4). To obtain a meaningful comparison in which price

volatility can be easily observed, we need prices that are not too high or too low. Therefore, we

do not match our initial conditions to the market today, and instead we use ĝ13 = R14 exp(−β)

and b13 = 0 which result in mid-range prices.

Figures 4 and 5 show that the cliff policy (with λ = 0) not only produces lower prices moving

forward, but also far more volatile prices. Figure 5 also shows that there is no price difference

between SRECs of different vintages when we used a sloped SACP (λ > 0), a conclusion that

appears to be valid for all positive values of λ. This observation matches our expectation based

on theorem 4. Both of these observations indicate that the sloped mechanism provides a much

safer and more attractive environment for investment in solar power.



Khazaei and Powell and Coulon: ADAPT: A Price-stabilizing Compliance Policy
28 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Also, these figures show that price volatility decreases when λ increases. By using higher

λs, we effectively increase the total requirement level. Higher requirement levels mean less of

a chance of hitting zero and so higher and more stable prices. In ADAPT, (in most cases) an

equilibrium can form between the price of SRECs before and after compliance. This is because if

the price after compliance is expected to be higher, a firm would prefer to bank more, accepting

a higher penalty today while reducing the price of SRECs in the future, until these two values

are balanced.
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Figure 6 Left: Mean standard deviation of generation across different sample paths for different λs. Right:

Distribution (discretized frequency) of installed capacity for different λ values.

One may view increasing λ as moving from a quantity-based regulatory policy towards a

price-based policy, and thus expect that increasing λ will decrease the probability of meeting

the requirement. The right plot in figure 6 shows that higher levels of λ reduce the final installed

capacity across 10000 sample paths, which means higher λs decrease the probability of meeting

the target. The figure on the left, however, shows that generation variability decreases across

different sample paths, when λ increases. This can be explained by the previously observed

behaviour of higher slopes in decreasing price volatility. As discussed earlier (e.g. see equations

(1) and (2)), generation is a function of SREC prices, and thus it is not surprising that a market

design yielding lower price volatility, in comparison with others, decreases generation volatility

as well.
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However, increasing λ is equivalent to increasing the requirement, and therefore, imposing

a higher total payment to the society (as theorem 5 suggests). Therefore, one may seek a

balance between higher payments and less volatility. It seems that the main goal of making solar

energy more attractive for investment can be achieved by a market mechanism that produces

relatively high prices with no price difference between various vintages. An ADAPT mechanism

with a small positive λ can provide these major benefits, and it seems that price variability for

small λs does not produce a big risk for investors. Therefore, one may argue that an ADAPT

mechanism with a small positive λ is an appropriate choice for improving market attractiveness

for investors and simultaneously imposing a lower cost on market participants.

7.2. Adaptive requirements

A challenge faced by policy makers is the design of a fixed target schedule, which appears to

require estimating a highly uncertain rate of market adoption many years in advance. Such a

strategy is based on a forecast of behaviour, and is not adaptable to many different outcomes,

such as the possibility of changes in the cost of installing solar and the behavior of the market.

We can circumvent this problem by allowing the requirements to adapt to the current generation

level.

In our model, we use a combination of a fixed rule and an adaptive rule:

Ry = R̃y + α (by−1 − R̃y−1), 0≤ α≤ 1, y ∈N.

According to this mechanism, there are two sets of requirements. The base requirement level

R̃y is a fixed number determined by the regulators and known to market participants, and the

adaptive requirement Ry is the effective requirement for energy year y. According to this rule,

a portion of last year surplus (shortage) is added to (deducted from) the already known base

requirement R̃y. Note that surplus and shortage is defined based on the difference between

the total number of available SRECs and the base requirement. One may expect that such an

adaptive mechanism can yield less volatile prices by enforcing a balanced growth for generation

and requirement levels.

As discussed earlier in section 4, modeling a market design with adaptive requirements

requires one extra dimension in our dynamic program. Although this extra dimension increases
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Figure 7 20 price sample paths for an 8 year simulation (first row: non-adaptive requirements; second row:

adaptive requirements; left: cliff policy; right: sloped policy; for (λ,α) tuples (0,0), (0.3,0), (0, 0.5),

and (0.3,0.5) from left to right, top to bottom).

the computational time significantly (from around one hour to around a week with 50 grid

points for each dimension), we still are able to solve this problem using an exact dynamic pro-

gramming approach. Figures 7 and 8 compare the results of the non-adaptive mechanism (for

(λ,α) equal to (0,0) and (0.3,0)) with a similar mechanism with adaptive requirements ((λ,α)

equal to (0,0.5) and (0.3,0.5)). According to these results, an adaptive cliff policy reduces price

volatility and maintains higher SREC prices in comparison with a simple cliff policy (the cur-

rent mechanism). Adaptive requirements, however, increase price volatility in comparison with

a simple sloped policy (ADAPT with λ > 0, and α = 0), and therefore are not desirable in this

case.

Figure 9 shows SREC prices for 20 sample paths of another experiment on a sloped policy

(λ = 0.3) with and without adaptive requirements (α = 0, α = 0.5, and α = 1). In this experiment
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Figure 8 Average SREC prices over 10000 simulations (first row: non-adaptive requirements; second row:

adaptive requirements; left: cliff policy; right: sloped policy; for (λ,α) tuples (0,0), (0.3,0), (0, 0.5),

and (0.3,0.5) from left to right, top to bottom).
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Figure 9 20 sample paths for original requirements for α = 0, 0.5, and 1 respectively (λ = 0.3, ĝ13 =

R14 exp(−β))

the original requirement schedule is used, and thus the rate of generation growth is not in line

with the rate of requirement growth. The adaptive requirement mechanism (α = 0.5) delays the

rate of convergence to zero for a couple of years, but it cannot completely stop it. This can be
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better explained if we refer to the case with α = 1. When α = 1, any value of positive surplus

would be added to the next year requirement, and this would somewhat neutralize the effect

of banked SRECs. However, the rate of generation is still more than the requirement and thus

prices fall to zero but slower in comparison with the cases of α = 0 and 0.5. The price variability

increases perhaps because adaptivity counteracts the effect of banking, and as we discuss in the

next section, lack of banking possibility can increase price volatility.

All in all, although the adaptive requirements can increase price volatility, they can also,

to some extent, correct human mistakes in predicting the rate of generation and ensure more

balanced prices in the long term, without the need for frequent regulatory fixes.

7.3. More banking years

Another strategy chosen by the regulators during the life time of the NJ SREC market has

been increasing the number of banking years. This strategy firstly ensures higher SREC prices

as a result of extra years of validity. Secondly, this can stabilize prices from falling too low or

rising too high, by striking a balance among different energy years.

Figure 10 shows the results of an experiment on the number of banking years. Note that at

each time, different SREC vintages may exist, and prices (e.g. price means) are all represented

with the same color; however, the lines with higher prices correspond to newer vintages. Accord-

ing to this figure, the difference between the 10th and the 90th percentile of SREC prices of the

newer vintages, which are the majority of SRECs at each time, decreases with higher number

of banking years. For example, with five years of lifetime, prices of the majority of SRECs (zero

or one year old SRECs) are much less volatile than those of one or two years of lifetime.

7.4. Rate of requirement growth

The early years of New Jersey’s SREC market has seen an exponential growth in generation as

the market responded to the generous incentives provided by high SREC targets and penalties.

However, according to the latest regulation changes in 2012 (as shown in table 1), the current

rate of requirement growth per year is a decreasing function of time (R is a concave function

of time). This means that although the current requirement levels are compatible with the



Khazaei and Powell and Coulon: ADAPT: A Price-stabilizing Compliance Policy
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Month (from the start of EY2014)

S
R

E
C

 p
ric

e 
(d

iff
er

en
t v

in
ta

ge
 y

ea
rs

)

 

 

90th Percentile
Mean
10th Percentile

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Month (from the start of EY2014)

S
R

E
C

 p
ric

e 
(d

iff
er

en
t v

in
ta

ge
 y

ea
rs

)

 

 

90th Percentile
Mean
10th Percentile

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Month (from the start of EY2014)

S
R
E
C
 p
ric
e 
(d
iff
er
en
t v
in
ta
ge
 y
ea
rs
)

90th Percentile
Mean
10th Percentile

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Month (from the start of EY2014)

S
R

E
C

 p
ric

e 
(d

iff
er

en
t v

in
ta

ge
 y

ea
rs

)

 

 

90th Percentile
Mean
10th Percentile

Figure 10 The 10th and the 90th percentiles and mean of SREC prices for 10000 simulations with 1, 2, 3,

and 5 years of lifetime from left to right top to bottom respectively (with λ = 0, α = 0).

generation level for a few years in the future, there is a very good chance that the generation

rate exceeds the requirement level afterwards. For example, SREC generation, as we write in

July 2014 with 1,189,542 SRECs issued for EY2014 has greatly exceeded the old requirement

of 772,000 SRECs for EY2014, and is much more than the old SREC requirement of EY 2016

(1,150,000). Indeed, this was the main motivation for the recent rule changes in the NJ SREC

market (i.e. increasing requirement levels to prevent prices from falling to zero).

The planned growth in requirements represents an important policy decision. Managing the

rate of growth of the solar industry requires striking a balance between the goal of growing the

number of installations, and increasing the cost to the society as a result of solar subsidies.

Figure 11 provides a comparison between SREC prices under the current requirement levels

and an exponentially growing requirement scheme based on 10000 simulations. In this example,
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Figure 11 SREC prices under the current requirement scheme (left) vs. an exponentially growing scheme

(right) for 20 identical sample paths, and average of 10000 sample paths.

the exponentially growing requirements R′
t = α exp(β(t−14)) is used, where t = 14 corresponds

to end of EY2014, α = R14 and β = 0.35. According to this example, with the current require-

ments, SREC prices are expected to fall to zero after three years of decreasing prices. However,

prices may actually stay non-negative (but low) due to market expectations of any possible

regulation changes. Also, notice that there is no price difference between different vintage years

under the current requirements. This is because all SRECs will be used up before their final

expiry date and therefore, newer SRECs do not provide any advantage to the older SRECs.

Figure 9 provides 20 sample paths for a sloped mechanism with original requirements and

α = 0 and 0.5 respectively (λ = 0.3, ĝ13 = R14 exp(−β)).

Note that although not necessarily realistic, exponentially growing requirements are con-

sistent with the assumptions of our generation model, and therefore useful for the purpose

of running experiments in which prices remain high and relatively stable. Despite the cur-

rent requirements, exponentially growing requirements can guarantee long-term relatively high
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prices for our generation model, and so can provide a good environment for comparing different

policy options.

8. Conclusion

The current SREC market design produces volatile prices and this reduces the attractiveness of

this market for investment. This itself creates other problems such as reducing competitiveness

of the market and therefore inefficiency in SREC generation. We propose the ADAPT policy

which uses a sloped SACP function. We develop a dynamic programming model in order to

predict collective market behaviour, and we derive and prove some of the properties of this

market such as the collective SREC submission policy. We then use this submission policy and

other market properties in a pricing model that enables us to compare the performance of

different market designs in terms of price level and volatility.

The results of our experiments show that the ADAPT policy (specifically the sloped SACP

function) can greatly reduce price drops and volatility, and ensure relatively high and stable

prices in long-term.
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