
Dynamic Control of Multicommodity

Fleet Management Problems

Warren B. Powell

Tassio A. Carvalho

Department of Civil Engineering

and Operations Research

Princeton University

Princeton, NJ 08544

Statistics and Operations Research

Technical Report SOR-96-04

September 25, 1996

Abstract

Dynamic
eet management problems with multiple equipment types and limited sub-
stitution can be modeled as dynamic, multicommodity network
ow problems. These
problems are further complicated by the presence of time windows on task arcs (a task,
or load, can be handled at di�erent points in time) and the need for integer solutions.
In this paper, we formulate the problem as a dynamic control problem, and show that
we can produce solutions within four to �ve percent of a linear relaxation. In addition,
we can solve the ultra-large problems that arise in certain applications; these problems
are beyond the capabilities of state-of-the-art linear programming solvers.

Introduction

Freight transportation companies face the problem of matching a
eet of vehicles to

current and future customer demands. Prior research has most commonly formulated

the problem as a linear network (White and Bomberault [24], White [23], Herren [10, 11],

Turnquist [22] and Joborn [13]) while other researchers have focused on incorporating

uncertainty in forecasts of future demands (Jordan and Turnquist [15], Powell [18],

Frantzeskakis and Powell [8], Cheung and Powell [2]). All of this work has assumed a

homogeneous
eet of vehicles. Most problems in practice have multiple equipment types

with limited substitution (a load might be served by two or more vehicle types). These

problems are most commonly formulated as multicommodity network
ow problems

(Shan [21], Chih [3], Magnanti and Simpson [16], Hane et al. [12]) but can also be

formulated as set partitioning problems (Desrosiers et al. [6, 5]).

Integer, multicommodity network
ow problems remain a di�cult challenge and ac-

tive area of research. The hardest classes of problems (without assuming stochastic

demands) are those that combine relatively wide time windows that describe when a

task needs to be completed, with relatively long time horizons. In this paper, we pro-

pose a
exible, fast solution approach based on dynamic control of logistics queueing

networks (LQN). This modeling approach was �rst suggested by Powell and Carvalho

[19]. In contrast with prior modeling approaches, which formulate this class of problems

as a multicommodity network
ow problem, the LQN framework views the system as

a network of double-ended queues, comprised of a queue of vehicles waiting to serve

customers, and a queue of customers waiting to be served by a vehicle. When a vehicle

moves a customer from i to j, it is removed from the queue of vehicles at i, and added

to the queue at j at some point in the future. It then waits in the queue at j until it

is assigned to a waiting customer. A customer, at the same time, might sit in a queue

of other customers waiting to be assigned to a vehicle. However, while vehicles are ex-

pected to wait inde�nitely, it is expected that a customer will leave the system at the

end of a prespeci�ed time window.

The prior work with this technique ([19]) assumed a homogeneous
eet of vehicles.

1

In this paper, we extend the methodology to handle heterogeneous
eets of vehicles

with
exible substitution of di�erent vehicle types for di�erent types of customers. We

assume there are A types of vehicles and B types of loads. We use � as the matching

matrix such that �a;b = 1 if vehicle type a can be assigned to transport load type b, and

�a;b = 0 otherwise. Thus, we can capture relatively general rules for the substitution of

one type of equipment for another.

As an example, let us look at the simple problem of two di�erent types of vehicles

and two di�erent types of loads. In case either type of load is �t for either type of

vehicle, �a;b = 1 8 a; b . If indeed the two types of vehicles are interchangeable with no

cost penalty, the problem reduces to a single commodity
eet management problem. If

there can be no substitution, as for example in the case that the matching matrix is an

identity matrix, the problem decomposes into two independent single commodity
eet

management problems. Therefore, true multicommodity
eet management problems fall

in between these two extremes that are much simpler. Figure 1 shows a snapshot of a

network of transportation services with two types of vehicles and two types of loads and

the matching matrix for it.

In practice, substitution of equipment is seldom a clearcut issue. Resources and tasks

can be divided into types but there can be exceptions. Our model is developed from the

beginning assuming that loads have to be handled individually due to the time windows.

Thus the number of load types does not impact the complexity of the problem. The

number of vehicle types does a�ect complexity and every e�ort should be made by the

user to reduce that parameter to the least possible.

Linear programs resulting from multicommodity network problems lend themselves

to decomposition techniques due to their staircase structure. The way the problem

is formulated plays an important role in the e�ciency these problems are solved (see

Jones et al. [14]). Decomposition techniques lead to the possibility of using parallel

computation, and this has been explored extensively in the literature (for example,

Pinar and Zenios [17] and Shultz and Meyer [20]). Interior point methods have recently

been shown to be good tools for solving multicommodity problems (Choi and Goldfarb

2

1

5

4

2

Vehicles

Loads

Link

Terminal

Matching Matrix

1

1

0

1

6

3

Figure 1: Network of transportation services with two types of loads and two types of
vehicles.

[4]).

The logistics queueing network approach considers explicitly the dynamic structure

of the problem, and is similar in philosophy to the approach �rst suggested in Jordan and

Turnquist [15]. The concept involves solving large, dynamic resource allocation problems

through a series of subproblems that is solved at each point in space time. At the level

of each subproblem, complex equipment substitution rules are easily incorporated.

The contribution of this paper is as follows. 1) We show how the logistics queue-

ing network concept can be extended to handle heterogeneous
eets of vehicles. 2) We

present two algorithms for solving the problem as a dynamic control problem. 3) We

demonstrate experimentally that the technique produces high quality solutions for prob-

lems that are small enough to be solved using a commercial linear programming solver,

as well as problems that are too large to be solved in this way.

This paper is divided in �ve sections. Section 1 presents a mixed{integer program-

3

ming formulation for the problem. Section 2 introduces the basic equations for the

methodology. Section 3 discusses the algorithms and implementation issues. Section 4

presents the results of the computational experiments. Finally, section 5 presents the

conclusion and directions for further research.

1 Linear Programming Model

We assume that all the loads and vehicles that become available within the planning

horizon are known. The planning horizon is split into time periods so that time incre-

ments by discrete integer steps.

To formulate this problem as a linear program, we de�ne the following:

Network:

� C is the set of terminals i in the network.

� A is the set of vehicle types.

� �aij is the travel time for vehicle type a 2 A between terminal i 2 C and

terminal j 2 C.

� N is the set of nodes (i; t); i 2 C, t � T , in the dynamic network.

Activity variables:

� B is the set of load types.

� � is the indicator matrix of feasible load/vehicle pairs, such that if vehicle

type a can be assigned to load type b then �ab = 1, otherwise �ab = 0 .

� L is the set of loads l of all types available within the planning horizon, T .

� Lb is the set of loads l of type b, for each type b 2 B, available within the

planning horizon, T .

4

� Tl is the set of feasible departure times for satisfying load l 2 L, otherwise

known as the departure time window.

� Lb
ijt is the set of loads l 2 Lb with origin i and destination j having t as a

feasible departure time.

� Rait is the net in
ow (Rait > 0) or out
ow (Rait < 0) of vehicles of type a at

terminal i at time t.

� ralt is the pro�t generated by choosing vehicle type a and time t to satisfy

load l.

� caij is the cost of repositioning one vehicle type a over link (i; j; t).

Decision variables:

� xalt = 1 if load l is served by vehicle type a at time t.

� zl = 1 if load l is never served (within the time window).

� yaijt is the number of vehicles type a being repositioned empty along link

(i; j; t). If i = j, yaiit represents the number of vehicles of type a in inventory

at terminal i from time t to time t+ 1.

� waijt is the total
ow of vehicles of type a on the dynamic link (i; j; t) .

Whenever we refer to x; y; z and w, we assume they compose a feasible solution.

The objective function we are maximizing is stated as:

F (x; y) =
TX
t=0

X
i2C

X
j2C

X
a2A

0
B@X

b2B

X
l2Lb

ijt

raltxalt � caijyaijt

1
CA (1)

This problem can be formulated as:

max
x;y

F (x; y) (2)

5

subject to:

X
t2Tl

X
a2A

�abxalt + zl = 1 8 l 2 Lb 8 b 2 B (3)

X
b2B

X
l2Lb

ijt

�abxalt + yaijt � waijt = 0 8 i; j 2 C; 8 t � T ; 8 a 2 A (4)

X
j2C

waijt �
X
j2C

wajit��aij = Rait 8 (i; t) 2 N ; 8 a 2 A (5)

yaijt ; waijt � 0 (6)

xalt = (0; 1) (7)

Our problem consists of maximizing pro�ts by assigning up to one vehicle to each

load, enforced by constraints (3), and having
ow conservation of each type of vehicle

at each node, enforced by constraints (4) and (5). This formulation can be regarded as

a network problem with GUB (generalized upper bounding) constraints.

Typical multicommodity network problems consist of a similar set of bundling con-

straints plus
ow conservation. In the multicommodity LQN, however, the bundling

involves not only the choice of resource assignment (equation (4)), but also the choice

of departure time (equation (3)). The purpose of this linear program is to evaluate

the quality of the solutions obtained by using the LQN approach. In practice, large

multicommodity network problems are not usually solved directly, but decomposition

strategies are employed. To obtain the optimal solution, one needs to solve the linear

relaxation and then use branching to �nd the optimal integer solution. We limit our-

selves to �nding the optimal solution of the linear relaxation of this problem, which is an

upper bound to the optimal solution of the problem. Another way to obtain an upper

bound to the optimal value of the integer program is by ignoring the vehicle and load

types and solving the problem as if it were single commodity, i.e., �ab = 1 8a; b . We

refer to this relaxation as the commodity relaxation and we resort to it when the linear

relaxation is deemed too large.

This formulation ignores other constraints that arise in real-world applications like

terminal capacities, load prioritization and labor regulations of the crews assigned to

vehicles. It could indeed be extended to allow for loads that use a sequence of links

6

through intermediate terminals from origin to destination.

2 Equations for the Multicommodity LQN

The previous section presented a somewhat standard formulation of the
eet assignment

problem as a large scale linear program. These problems become notoriously di�cult

to solve as the planning horizon grows. In our approach, we view the problem in the

context of optimal control of queues. Consider a queue of vehicles and loads waiting to

be assigned to each other. In most large problems, we could assign vehicles to loads using

a simple prioritization srategy (�rst-in, �rst-out, or prioritizing loads that are closest to

the end of their time window). This simple strategy fails under two conditions: when

there are too many vehicles, or too many loads. In the case of too many loads, we would

like to prioritize loads in part based on the value of additional vehicles at the destination

of the load. If there are too many vehicles, we may have to reposition some of them

empty to other locations. Again, this would be based on the estimated value of the

vehicles at those destination.

In the LQN approach, we use a concept called the spatial potential function, denoted

by the vector:

�t = (: : : ; �a;i;t; : : :)

where

�a;i;t = the value of an additional vehicle of type a at location i at time t :

Below, we show how to estimate �t using gradients of an approximation of a value func-

tion derived using dynamic programming. The vector �t can be viewed as an estimate

of the slope of the value function, giving the marginal value of additional capacity of

each vehicle type at each location at a point in time. Thus, if there is a vehicle of type

a waiting at node (i; t) and we might assign it to a load l going to node (j; t+ �aij), then

the value of this assignment would be the net revenue from the load, ra;l;t, plus the value

of the vehicle at the destination, �a;j;t+�aij . Technically, the destination value �a;j;t+�aij

7

is a function of all other decisions being made. The e�ciency of the LQN approach

derives from the approximation being made whereby �a;j;t+�aij is held constant while the

assignment problem at time t is being solved.

This section is divided in three parts. In the �rst part we present the LQN formula-

tion for multicommodity problems. The second part contains equations to approximate

the gradients. The third part consists of the equations to update the gradients between

iterations based on the LAMA (Linear Approximation, Multiplier Adjustment) algo-

rithm �rst presented in Powell and Carvalho [1]. The LAMA algorithm given in [1], in

contrast with the subgradient algorithm given in [19], updates each individual element

of the vector �t based on a careful calculation of the exact impact of the change on

overall solution quality. The LAMA algorithm is slower and more complicated than the

subgradient algorithm given in [19] but gives higher quality results.

2.1 The Decomposition

In this section, we pose the problem in the format of a dynamic program. We then

replace the value function in the dynamic program with a linear approximation, which

in turn decomposes the problem into a series of double-ended queues. First de�ne:

� Lit is the set of loads l with origin i having t as a feasible departure time.

� �Lijt is the set of loads l with origin i and destination j, which are available

to move at time t but have not been moved at a time prior to time t at a

given solution.

� �Lit is made of the union of all sets �Lijt for all the destinations j 2 C.

� Lt is made of the union of all sets Lit0 such that t0 � t.

� L0
it is the set of loads l with origin i, where t is the beginning of the time

window Tl.

8

� Lf
it is the set of loads l with origin i, where t is the end of the time window

Td.

The recursive form for the objective function is represented by:

gi;t(x; y; Vi;t;Li;t) =
X
j2C

X
a2A

0
B@X

b2B

X
l2Lb

ijt

raltxalt � caijyaijt

1
CA (8)

Gt(Vt ;Lt) =
X
i2C

gi;t(x; y; Vi;t ;Li;t) +Gt+1(Vt+1 ;Lt+1) (9)

where gi;t is the contribution to the objective function of the decisions taken at time t

at terminal i and Gt is the contribution to the objective function of the decisions taken

from time t to the end of the planning horizon.

We solve this problem by replacing the value functionGt+1(Vt+1;Lt+1) in equation (9)

with the linear function �tVt. Since a linear approximation can produce unstable results,

we introduce a control variable in the form of an upper bound on the movement of empty

vehicles between locations. These upper bounds are decision variables, not constraints,

and the LQN algorithm iteratively adjusts these upper bounds to improve solution qual-

ity.

Let Va;i;t be the number of vehicles of type a available at node (i; t). With the

approximation, equation (9) becomes

Ĝt(Vt;Lt) =
X
i2C

gi;t(x; y; Vi;t ;Li;t) + �t+1Vt+1 (10)

The
ows of empties are then constrained by:

yaijt � uaijt 8a; i; j; t (11)

where ut is iteratively adjusted from one iteration to the next.

After replacing the approximation for the value function and expanding equation (10),

we arrive at the following equation:

Ĝt(Vt ;Lt) =
X
i2C

X
j2C

X
a2A

0
B@X

b2B

X
l2Lb

ijt

(ralt + �a;j;t+�aij)xalt + (�caij + �a;j;t+�aij)yaijt

1
CA (12)

9

This problem decomposes into local problems, one for each terminal. In order to

assure the feasibility of each local problem, we replace the linear approximation for the

pricing of inventory links by a piecewise linear approximation (see [19]). We can then

state the local problem at node (i; t):

max
xt;yt

X
j2C

X
a2A

0
B@X

b2B

X
l2Lb

ijt

(ralt + �a;j;t+�aij)xalt + (�caij + �a;j;t+�aij)yaijt

1
CA (13)

subject to:

X
a2A

xalt � 1 8l 2 �Lit (14)

yaijt � uaijt 8j 2 C; 8a 2 A (15)X
l2 �Lit

X
a2A

xalt +
X
j2C

yaijt � Va;i;t 8a 2 A (16)

xalt ; yaijt � 0 (17)

In the single commodity case, the subproblem reduces to a simple sort. However,

when there exist several types of vehicles, the local problem reduces to an assignment

problem. The assignment problem can be solved using especialized algorithms or greedy

heuristics to �nd a near optimal solution. After all the local problems for time t are

solved, the set of available loads and the vector of vehicles available in the next time

period are computed by:

�Lk;t+1 = f �Lkt n fL
s
kt [L

f
ktgg [L

0

k;t+1 8k 2 C (18)

Va;k;t+1 = Va;k;t �
X
j

wakjt +
X
i

waikt+1��aij +Rait+1 8k 2 C; 8a 2 A (19)

As the values of the decisions at node (i; t) depend on the coe�cients of the local

problem, we regard these decisions as having the following functional dependence:

xalt = xalt(Vi;t; �t+1; ui;t;Lit) (20)

yaijt = yaijt(Vi;t; �t+1; ui;t;Lit) (21)

The contributions in the objective function of each local problem are added up so

that

G(x; y) =
TX

t=0

X
i2C

gi;t(x; y; Vi;t ;Li;t) (22)

10

An issue that greatly a�ects the quality of the solutions obtained using this approxi-

mation is the estimation of the spatial potential function �. For the single commmodity

case, two strategies for the value of the potential function were explored. Let us �rst

de�ne the gradient of Gt with respect to Va;i;t:

�a;i;t =
@Ĝt

@Va;i;t

(23)

A gradient approximation strategy is explored in [19]. In this strategy, � is de�ned as

an average (��) of the gradient approximations through iterations. For iteration n + 1:

��n+1a;i;t =
�na;i;t + (1�
)��na;i;t (24)

where 0 <
 � 1 is the smoothing factor.

A multiplier adjustment strategy for � is investigated in [1], where the values of �

are adjusted by computing �nite di�erences �� and the impact of adjusting � by �� in

the objective function, �G(��). The multiplier adjustment strategy was shown to yield

values for the optimal solution that are within 2:0% of the optimal value of the linear

relaxation, at the expense of more computation time.

In this paper, we chose to investigate the performance of both procedures for multi-

commodity LQNs. Depending on the features of the problem, the gradient approxima-

tion approach might be more desirable for being faster, even though it delivers results

that might be slightly worse.

2.2 Gradients of the Objective Function

In this section we present the equations to compute the gradients of Gt with respect to

V and u. By de�nition,

�a;i;t =
@Ĝt

@Va;i;t

(25)

We also de�ne

�aijt =
@Ĝt

@uaijt

(26)

11

The equations to compute the gradients of G with respect to V and u for the single

commodity case have been rigorously derived in [19]. The derivation for the multicom-

modity case is similar but very tedious. We present the equation for each gradient and

the intuition behind it.

2.2.1 Supply Gradients

Using the recursive relation (9) we arrive at

�a;i;t =
@gi;t

@Va;i;t

+
@Ĝt+1(Vt+1;Lt+1)

@Va;i;t

(27)

In the single commodity case, an increase in the supply of vehicles at node (i; t) may

produce the following changes: the movement of a load l from (i; t) to its destination

node (j; t+ �ij), the increase in the supply of vehicles at the destination node, and the

removal of load l from the queue of loads at node (i; t+ 1) (it might be that load l was

not moved until some time t+ k, or it may never been moved at all.

In the multicommodity case, the outcome of increasing the supply of vehicle type

a at node (i; t) may be far more varied due to substitution possibilities. For example,

suppose there is only one load l0 at node (i; t), which is being carried by vehicle type

a1 in the current solution. If vehicle type a2 is more valuable at the destination of l0

than a1, then �a2;i;t must re
ect that substitution possibility. As there may be a chain of

substitutions, we use the results from [19] to approximate the gradient by a sum of the

individual contributions of perturbations in the solution for each task out of node (i; t).

We �rst show how to compute the right gradient. In order to represent the pertur-

bation on the vector of vehicles available at node (i; t), we de�ne the following notation:

~Vi;t(a) = Vi;t + ea (28)

where ea is a unit vector with the only positive component in position a. We compute

the following indicator variables:

@xa0lt

@V +

a;i;t

= X+

a0lt = xa0lt(~Vi;t(a); �t+1; ui;t;Lit)� xa0lt(Vi;t; �t+1; ui;t;Lit) (29)

12

@ya0ijt

@V +

a;i;t

= Y +

a0ijt = ya0ijt(~Vi;t(a); �t+1; ui;t;Lit)� ya0ijt(Vi;t; �t+1; ui;t;Lit) (30)

@~ya0iit
@V +

a;i;t

= Z+

a0iit = ~ya0iit(~Vi;t(a); �t+1; ui;t;Lit)� ~ya0iit(Vi;t; �t+1; ui;t;Lit) (31)

where ~ya0iit represents the unconstrained inventory of vehicles type a0 at terminal i from

time t to t+ 1.

Consistent with [19], there may be four types of perturbations in the current solution

out a node. The �rst two types relate to the load variables x. In the �rst type, an addi-

tional load is covered. In the second type, a load that is satis�ed at a later time period

in the current solution, is pushed to an earlier time. The third type of perturbation is

performing an additional empty move. Finally, the fourth type is to have the additional

supply in inventory. In practice, the sum of the individual e�ects has shown to be a

good approximation of the overall impact.

So, instead of starting from equation (27), we compute each individual perturbation

by the di�erences (29){ (31):

�+a;i;t '
X
j2C

X
a02A

(
X

l2 �Lijt

@Ĝt

@xa0lt

@xa0lt

@Va0;i;t

+
@Ĝt

@ya0i;j;t

@ya0i;j;t

@Va0;i;t

) (32)

This results in

�+a;i;t '
X
j2C

X
l2 �Lijt

X
a02A

X+

a0lt

0
@ra0lt + �+a0;j;t+�a0ij

+
X
t0>t

X
a002A

x̂a00lt0(�ra00lt0 + �+a00;i;t0 � ��a00;j;t0+�a00ij
)

1
A

+
X
j2C

X
a02A

Y +

a0ijt

�
�ca0ij + �+a0;j;t+�a0ij

�
+
X
a02A

Z+

a0iit �
+

a0;i;t+1 (33)

where

x̂a00lt0 = xa00lt0(Vi;t0; �t0+1; ui;t0;Lit0) (34)

Equation (33) has three components. The �rst one captures the �rst two types of

perturbations (load variables). The second captures perturbations from changes in the

repositioning decisions and the third changes from inventory decisions.

The left gradient is computed in the same fashion, but it is only de�ned where

Va;i;t > 0. We de�ne the following notation:

�Vi;t(a) = Vi;t � ea (35)

13

where ea is a unit vector with the only positive component in position a. We compute

the following indicator variables:

@xa0lt

@V �
a;i;t

= X�
a0lt = xa0lt(Vi;t; �t+1; ui;t;Lit)� xa0lt(�Vi;t(a); �t+1; ui;t;Lit) (36)

@ya0ijt

@V �
a;i;t

= Y �
a0ijt = ya0ijt(Vi;t; �t+1; ui;t;Lit)� ya0ijt(�Vi;t(a); �t+1; ui;t;Lit) (37)

@~ya0iit
@V �

a;i;t

= Z�
a0iit = ~ya0iit(Vi;t; �t+1; ui;t;Lit)� ~ya0iit(�Vi;t(a); �t+1; ui;t;Lit) (38)

The left gradient is approximated by

��a;i;t '
X
j2C

X
l2 �Lijt

X
a02A

X�
a0lt

0
@ra0lt + ��a0;j;t+�a0ij

+
X
t0>t

X
a002A

@xa00lt0

@Va0;i;t

(�ra00lt0 + ��a00;i;t0 � �+a00;j;t0+�a00ij
)

1
A+

X
j2C

Y �
a0ijt

�
�ca0ij + ��a0;j;t+�a0ij

�
+ Z�

a0iit �
�
a0;i;t+1 (39)

2.2.2 Upper Bound Gradients

Increasing the upper bound on a link may result in
ow increase or not. If there is

no
ow increase, there is no impact in the current solution. But if raising the upper

bound results in a
ow increase, then the origin node of that link loses one vehicle and

the destination node gains one vehicle. Through a similar derivation to the one for the

single commodity case [19], we arrive at

�+aijt0

�
' �caij + �+a;j;t0+1 � ��a;i;t0 if �caij + �+a;j;t0+1 � ��a;i;t0 > 0
= 0 otherwise

(40)

The result is similar for decreasing an upper bound. If indeed there is a decrease in

ow, one vehicle is added at the origin node of the link and one vehicle is removed from

the destination node.

��aijt0

�
' caij � ��a;j;t0+1 + �+a;i;t0 if caij � ��a;j;t0+1 + �+a;i;t0 > 0
= 0 otherwise

(41)

2.3 LAMA equations

In the Linear Approximation and Multiplier Ajustment (LAMA) method, the spatial

potential function for vehicles is regarded as a control variable and adjusted according

14

to the impact in the objective function. For each node (i; t), we compute the minimum

necessary perturbation on the value of �a;i;t for each vehicle type a. Increasing or decreas-

ing �a;i;t may result in a change in the number of vehicles available at node (i; t). For a

perturbation on �a;i;t we compute the corresponding change in the objective function. At

any given iteration of the LAMA method, we adjust the component of � that results in

the highest increase in the objective function. In this section we �rst present equations

to increase � and decrease � and the computation of the corresponding perturbations in

the objective function.

2.3.1 Increasing the Spatial Potential Function

Let us look at increasing the multiplier �a;i;t. Whenever (i; t) is the destination node

for a task from terminal k that can be assigned vehicle type a, �a;i;t must appear in the

objective function of the local problem at node (k; t� �aij). We need to �nd ��a;i;t, the

smallest increase in �a;i;t that will push an additional unit of
ow type a into node (i; t).

In order to �nd ��a;i;t we must compute �+akit for each terminal k, which is the smallest

increase in �a;i;t that will result in an additional unit of
ow being pushed from node

(k; t� �aki) to node (i; t).

��+a;i;t = min
k2C

f�+akitg (42)

Increasing
ow on link (k; i; t� �aki) can be achieved in three ways. First, a possible

empty move from (k; t � �aki) to (i; t) could be assigned
ow. Let �+1 (a; k; i; t) be the

necessary increase in �a;i;t for this case. Second, a load destined to (i; t) that would

otherwise be held may be assigned
ow. Let �+2 (a; k; i; t) be the necessary increase in

�a;i;t for this to happen. Third, a load bound to (i; t) that had been assigned a di�erent

type of vehicle could be assigned vehicle type a. Let �+3 (a; k; i; t) be the necessary increase

in �a;i;t for this case. Therefore

�+akit = minf�+1 (a; k; i; t); �
+

2 (a; k; i; t); �
+

3 (a; k; i; t)g (43)

15

where

�+
2
(a; k; i; t) = min

l
f�+

2l(a; k; i; t) 8 l 2 �Lkit��aki j
X
a0

xa0lt��kit = 0g (44)

�+3 (a; k; i; t) = min
l
f�+3l(a; k; i; t) 8 l 2 �Lkit��aki j xa0lt��kit = 1 ; a0 6= ag (45)

The smallest increase in �a;i;t that would result in an additional empty move from

(k; t� �aki) to (i; t) is represented by �+1 (a; k; i; t). Therefore the empty move has to be

more attractive, i.e., have a larger coe�cient in the objective funtion, than the value of

one less vehicle of type a at node (k; t� �aki). It follows that

�+1 (a; k; i; t) = ��a;k;t��aki
+ caki � �+a;i;t + 1 (46)

The smallest increase in �a;i;t that would result in assigning
ow to a load l at node

(k; t��aki) that would otherwise go on hold is represented by �
+

2l(a; k; i; t). The coe�cient

for xal;t��aki in the objective function of the local problem has to be larger than the value

of one less vehicle of type a at node (k; t� �aki).

�+
2l(a; k; i; t) = ��a;k;t��aki

� ral;t��aki � �+a;i;t + 1 (47)

The smallest increase in �a;i;t that would result in load l switching from vehicle type

a0 to vehicle type a is represented by �+3l(a; k; i; t). The coe�cient for xalt��aki in the

objective function of the local problem has to be larger than the coe�cient for xa0l;t��aki.

�+
3l(a; k; i; t) = �+a0;i;t + ra0l;t��aki � ral;t��aki � �+a;i;t + 1 (48)

After computing the smallest increase in �a;i;t that perturbs the current solution, the

next step is to �nd the impact in the objective function G of doing so, �G(��+a;i;t). Let

x̂ and ŷ be the current solution of the local problem at node (k; t � �aki) and ~x and

~y represent the solution of the local problem at the same node with �a;i;t increased by

��+a;i;t. We compute the di�erences:

�X+

alt��aki
= ~xalt��aki � x̂alt��aki 8l 2 �Lk;t��aki (49)

�Y +

akjt��aki
= ~yakjt��aki � ŷakjt��aki 8j 2 C (50)

�Z+

akkt��aki
= �

X
l2 �Lit��aki

�X+

at��aki
�
X
j2C

�Y +

aijt��aki
(51)

16

As the increase in � may result in other changes due to substitution possibilities,

we approximate the total change in G by a sum of the individual perturbations. The

equations to approximate single perturbations have been derived in [1].

�G(��+a;i;t) '
X
j2C

X
l2 �Lkjt��aki

X
a02A

X+

a0lt��aki

�
ra0lt��aki + �+a0;j;t��aki+�a0kj

+

X
t0>t��aki

X
a002A

x̂a00lt0 (�ra00lt0 + �+a00;k;t0 � ��a00;j;t0+�a00kj
)
�
+

X
j2C

X
a02A

Y +

a0kjt��aki
(�ca0kj + �+a0;j;t��a0ki+�a0kj

) +
X
a02A

Z+

a0kkt��aki
�+a0;k;t��aki+1

(52)

2.3.2 Decreasing the Spatial Potential Function

By using the same approach, we can �nd ���a;i;t, the smallest amount by which we must

decrease �a;i;t so that Va;i;t is reduced by one unit. We must then compute ��akit for each

k, which is the smallest decrease in �a;i;t that would result in one less unit of
ow type

a being pushed from node (k; t� �aki) to node (i; t).

���a;i;t = min
k2C

f��akitg (53)

The decreasing of
ow in this link can happen in several ways. An empty move from

(k; t� �aki) to (i; t) could be called o�. A load destined to (i; t) that had been assigned

ow could either be put on hold or reassigned another type of vehicle. Therefore

��akit = minf��1 (a; k; i; t); �
�
2 (a; k; i; t)g (54)

where

��2 (a; k; i; t) = min
l
f�+

2l(a; k; i; t) ; 8 l 2 �Lkit��akijxalt��kit = 1g (55)

The smallest decrease in �a;i;t that would result in one less empty move from (k; t�

�aki) to (i; t) is represented by ��1 (a; k; i; t). Therefore the empty move has to be less

attractive, i.e., have a smaller coe�cient in the objective funtion, than the value of one

additional vehicle of type a at node (k; t� �aki). It follows that

��1 (a; k; i; t) = ���a;k;t��aki
� caki + �+a;i;t + 1 (56)

17

The smallest decrease in �a;i;t that would result in load l not being assigned
ow type

a at node (k; t� �aki) is represented by ��2l(a; k; i; t). The coe�cient for xal;t��aki in the

objective function of the local problem has to be smaller than the value of one additional

vehicle of type a at node (k; t� �aki).

��2l(a; k; i; t) = ���a;k;t��aki
� ral;t��aki + �+a;i;t + 1 (57)

After computing the smallest decrease in �a;i;t that perturbs the current solution, we

need to �nd the impact in the objective function G of doing so, �G(���a;i;t). Let x̂ and

ŷ be the current solution of the local problem at node (k; t��a;k;i) and ~x and ~y represent

the solution of the local problem at the same node with �a;i;t decreased by ���a;i;t. We

compute the di�erences:

�X�
al;t��aki

= ~xal;t��aki � x̂a;l;t��aki 8l 2 �Lk;i;t��k;i (58)

�Y �
akj;t��aki

= ~yakj;t��aki � ŷakj;t��aki 8j 2 C (59)

�Z�
akk;t��aki

= �
X

l2 �Lit��aki

�X�
al;t��aki

�
X
j2C

�Y �
aij;t��aki

(60)

As in the case of increasing �, there might be several changes in the local problem

out of node (k; t� �aki). The decrease in G can be approximated by

�G(���a;i;t)'
X
j2C

X
l2 �Lkjt��aki

X
a02A

�X�
a0l;t��aki

�
ra0l;t��aki + ��a0;j;t��aki+�a0kj

+

X
t0>t��aki

X
a002A

@xa00lt0

@Va0;i;t

(�ra00;l;t0 + ��a00;k;t0 � �+a00;j;t0+�a00kj
)

!
+

X
j2C

X
a02A

�Y �
a0kj;t��aki

(�ca0kj + ��a0;j;t��aki+�a0kj
) +

X
a02A

�Z�
a0kk;t��aki

��a0k;t��aki+1
(61)

3 Algorithms

In this paper we compare two procedures for the multicommodity LQN. In the gradient

approximation method, the spatial potential function for vehicles is de�ned as an average

of the right gradient of G with respect to V (equation 24). In the LAMA method, the

spatial potential function for vehicles is regarded as a control variable that must be

18

adjusted according to gains in the objective function. For both methods, the algorithm

consists of three parts. The �rst part is the forward pass, consisting of solving the

local problems at each terminal, starting at time t = 0. After the local problems

for time period t are solved, the set of loads and the number of vehicles available for

the next time period are computed according to equations (18) and (19). The second

part consists of �nding approximations for the gradients � according to the equations

presented in the previous section. As the gradients for a given time t depend on the

gradients for later time periods, they are computed from the end to the beginning of the

planning horizon (Backward Pass). The gradients are used in the third part to perform

the control adjustment. The procedure is repeated iteratively to obtain values for the

control variables that yield a solution close to optimal.

3.1 Algorithm for the Gradient Approximation Method

The objective function of the local problem is represented by equation (13). The gradient

approximations are updated in every iteration and thus their presence in the objective

function may lead to instability, as the gradients might change abruptly from iteration

to iteration. To mitigate this e�ect we resort to a smoothing scheme similar to the one

used in stochastic linearization algorithms (see, for example, Ermoliev [7], Gupal and

Bazhenov [9]). For any iteration n + 1 we weight the new value of � with the one used

in the previous iteration:

��n+1a;i;t =
�n+1a;i;t + (1�
)��na;i;t (62)

where
, 0 <
 � 1, is the smoothing factor. The e�ect of
 in the quality of the

solutions for a range of single commodity problems was examined in [19]. It was found

that 0:1 �
 � 0:3 is the best range for
 values. We use �� in the Forward Pass of the

gradient method to price tasks. The objective function for the local problems in this

case is then:

max
xt;yt

X
i2C

X
j2C

X
a2A

0
B@X

b2B

X
l2Lb

ijt

(ralt + ��+a;j;t+�aij
)xalt + (�caij + ��+a;j;t+�aij

)yaijt

1
CA (63)

19

vehicle types

tasks

V1

V2

V3

V4

1

1

1

1

1

1

1

1

✪

✪

✪

✪

✪

✪

✪

✪

✪

✪

✪

✪

Figure 2: Local problem to be solved at each node.

In order to save CPU time we chose to employ a greedy heuristic, instead of solving

each local problem to optimality. A list of feasible assignments is created and the higher

valued assignments are implemented subject to the availability of vehicles.

The assignment that is solved at every local problem is illustrated in �gure 2. This

�gure shows an assignment problem with the left side representing vehicles and the

right side representing tasks available at terminal i at time t. There is one node for

each vehicle type and the in
ow is represented by the number of vehicles available at the

node. There is one node for each task (loaded or empty move allowed by upper bound)

that can be dispatched. The heuristic consists of computing the cost on each link of

this assignment problem. Let l be the task and a0 the vehicle type associated with the

highest valued link. We validate this assignment, i.e., xa0;l;t = 1 and then update the

assignment problem by removing the node associated to load l and reducing the number

of vehicles of type a0 available. Then we again �nd the highest valued link and continue

until either all vehicles have been used or all tasks have been assigned vehicles.

We also use the smoothed gradients to perform the upper bound adjustment in the

20

gradient approximation method, so that the right gradient of G with respect to u is

��+aijt0

�
' �ca;i;j + ��+a;j;t0+1 � ���a;i;t0 if �ca;i;j + ��+a;j;t0+1 � ���a;i;t0 > 0
= 0 otherwise

(64)

and the left gradient is

���aijt0

�
' ca;i;j � ���a;j;t0+1 + ��+a;i;t0 if ca;i;j � ���a;j;t0+1 + ��+a;i;t0 > 0
= 0 otherwise

(65)

Two strategies can be used to perform the upper bound adjustment. One is to

employ a gradient step. This procedure is used to start up the upper bound vector. It

consists of taking a gradient step in the steepest ascent direction. Let !n represent the

gradient vector in iteration n. The control vector for iteration n+ 1 is updated by

un+1 = un + sn!n (66)

where the step size sn is computed by

sn =
�n(Gu

n �Gl
n)

k!nk2
(67)

where �n is a coe�cient for which we have chosen the initial value �1 = 0:5 and is halved

whenever �ve iterations are done without improvement in the objective function. Gu
n

and Gl
n are upper and lower bounds on the objective function. The best value for the

objective function found up to iteration n is used as Gl
n. Whenever it is possible to solve

the linear relaxation to optimality, we use the optimal value of the objective function as

Gu
n. Otherwise, we use the optimal value of the commodity relaxation. Upper bounds

on the objective function can also be obtained by solving a static network or simply

adding up the pro�ts of all loads in the system.

This procedure is employed in the �rst 50 iterations and leads to non-integer values

for u. Therefore, the values obtained by using (66) are rounded to the closest integer to

be used in the Forward Pass.

The other upper bound adjustment procedure is to employ a coordinate search. It

consists of �nding the highest value among all ��+aijt0 and ���aijt0. In case the highest value

is a member of ��+, the corresponding upper bound is increased by one unit, otherwise

it is decreased by one unit.

21

3.2 Algorithm for the LAMA Method

By solving the local problem at each node, starting from time t = 0 up to time t = T

we obtain a feasible solution to the problem. Again, as in the gradient approximation

method, we do not solve each local problem to optimality, but employ a greedy heuristic.

For the gradient method, the objective function of the local problem is

max
xt;yt

X
i2C

X
j2C

X
a2A

0
B@X

b2B

X
l2Lb

ijt

(ralt + �a;j;t+�aij)xalt + (�caij + �a;j;t+�aij)yaijt

1
CA (68)

As the gradients do not appear in the objective function of the local problem in the

LAMA method, there is no need to smooth the gradient approximations. The spatial

potential function can be adjusted according to the equations presented in section 2.3.

Initially, we adopt the same upper bound adjustment strategy used in the gradient

approximation method, which is a gradient step towards the steepest ascent direction.

After getting the initial values for the upper bounds, we adopt a very conservative

strategy for the LAMA method in order to avoid sudden changes in the solution. At

any given iteration, only one multiplier or one upper bound is adjusted.

Our preliminary runs have shown that after running many iterations it is very likely

that no upper bound and no multiplier can be adjusted yielding an improvement in the

objective function. This is due to our restrictive policy of small changes from iteration to

iteration. We then added a perturbation step on the multipliers, arriving at the iterative

procedure shown in �gure 3.

The perturbation step on the multipliers consists of slightly altering their values by

a small percentage of the values of the gradients �. Whenever we get to iteration k and

no upper bounds or multipliers can be adjusted improving the overall objective function,

we update the multipliers for iteration k + 1 using:

�k+1i;t = (1� �)�ki;t + ��ki;t (69)

where � is the perturbation factor and we use � = 0:01.

22

Forward
 Pass

Backward
 Pass

iteration > 50

iteration < 50

 SS
Procedure

Upperbound
Adjustment

 Multiplier
Adjustment

Perturbation
 step on
 multipliers

NO NOYES

YES

Figure 3: Iterative procedure for the LAMA method.

4 Numerical Experiments

We have produced data sets with features that resemble those found in practice. We

chose a set of 40 terminals spread across the Eastern United States. The mileage between

terminals was taken from a road mileage chart and the average speed of 50 mph was set

regardless of vehicle type. We also set values for the empty cost per mile and the pro�t

for each load that were independent of vehicle type.

We have initially looked at data sets that have the same number of load types and

vehicle types. In order to generate the matching table, we �rst set all the diagonal

elements �a;a = 1. The substitution rate � is de�ned as the probability that any non{

diagonal element �a;b = 1. Using the substitution rate we randomly generate each

non{diagonal element of the matching matrix.

Each terminal has a di�erent rate for loads being called in. In the real world certain

load types tend to show up more often at a particular set of terminals. To mimic this

feature, we have generated di�erent load{type probabilities for each terminal. Let pb(i)

23

be the probability that a load appearing at terminal i is of type b. These probabilities

are generated using an exponential distribution. Some vehicle types are more useful

than others. Vehicle types that satisfy types of loads that appear more often are more

useful than those that satisfy types of loads that are not so common. Vehicle types that

satisfy several load types are also more useful than those that do not. In order to take

these two facts into account, we compute the probability for a vehicle being type a for

each terminal i, qa(i), according to:

qa(i) =

P
b pb(i)�a;bP

a

P
b pb(i)�a;b

(70)

The data sets used for testing are described in table 1. Each data set has a planning

horizon of �ve days. The departure time windows were generated according to a uniform

distribution in the interval [0; 40] hours. The total number of vehicles in each data set

was adjusted so that the rate of loads rejected is between 85% and 90%. In order to

reach the same rate of load rejection, more vehicles are needed when the substitution

ratio decreases or the number of vehicle types increases.

We chose data set 1 as the standard data set. In practice, it is expected that the

number of vehicle types will be larger than �ve. Also, real-world problems can have

as many as 2000 loads per day. However, linear programming solvers take too long to

solve larger problems. In order to �nd the optimal value of the linear relaxation of

the problem, we used CPLEX with steepest edge pricing. The CPU ratio is the ratio

between the CPU time for the linear programming solver and the CPU time necessary

for running 500 iteration of the LQN approach. The OPT ratio is the ratio between

the best objective function value obtained by using the LQN approach and the optimal

value of the objective function for the linear relaxation.

Table 2 shows the in
uence of the substitution ratio in the OPT ratio and the CPU

ratio for the gradient approximation method and for the LAMAmethod. As in the single

commmodity case investigated in [1], the LAMA method performed slightly better at

the expense of additional computation time. The better performance is due to the more

stable nature of the solutions of the local problems. More computation time is the result

24

data load vehicle subtitution total total

set types types ratio loads vehicles

1 5 5 0.3 2000 600

2 5 5 0.1 2000 660

3 5 5 0.2 2000 630

4 5 5 0.4 2000 570

5 5 5 0.5 2000 540

6 5 5 0.6 2000 510

7 5 5 0.7 2000 480

8 5 5 0.8 2000 450

9 5 5 0.9 2000 420

10 2 2 0.3 2000 450

11 3 3 0.3 2000 500

12 4 4 0.3 2000 550

13 6 6 0.3 2000 590

14 7 7 0.3 2000 630

15 8 8 0.3 2000 670

16 9 9 0.3 2000 700

17 10 10 0.3 2000 730

18 10 5 0.3 2000 650

19 5 10 0.3 2000 650

20 12 12 0.3 2000 760

21 15 15 0.3 2000 780

22 20 20 0.3 2000 800

23 10 10 0.3 4000 1420

24 10 10 0.3 6000 2000

25 20 20 0.3 6000 2100

Table 1: Summary of problem sets used for testing.

25

Gradient method LAMA

data set � CPU ratio OPT ratio CPU ratio OPT ratio

2 0.1 1.6 94.5 1.4 95.0

3 0.2 3.9 95.3 3.2 95.3

1 0.3 7.5 96.2 6.5 96.3

4 0.4 9.7 96.6 9.0 96.7

5 0.5 12.1 96.3 10.4 96.7

6 0.6 12.5 97.0 12.0 97.4

7 0.7 18.3 97.2 15.4 97.1

8 0.8 19.4 96.6 15.6 96.6

9 0.9 15.4 96.7 14.8 96.4

Table 2: CPU ratio and OPT ratio for di�erent substitution ratios.

of the added procedures to compute the variations in the spatial potential functions,

��, and the corresponding variation in the objective function, �G(��).

From table 2 we can also see how the substitution ratio a�ects the quality of the

solution. The OPT ratio generally increases with the substitution ratio. Problems

where there can be little substitution usually decompose into several problems with a few

vehicle types in each. Therefore, better results for the cases that have low substitution

ratio could be obtained by �nding a decomposition of the matrix �.

While the solution time of the linear programming relaxation increases with the

substitution ratio, the solution time using the LQN approach does not depend on it.

High substitution rates lead to very degenerate linear programs. Thus the CPU ratio

increases with the increase of the substitution ratio.

In real world problems we expect to �nd subtitution matrices that are not very dense.

Therefore the substitution ratio was kept at � = 0:3 for the other data sets. In table 3

we compare problems that have square substitution matrices of di�erent sizes. Once

again the LAMA method is shown to yield slightly better solutions at the expense of

more computation time. There is only a slight degradation in the quality of the solution

obtained using the LAMA method when the number of vehicle and load types increases.

26

Gradient method LAMA

data set commodities CPU ratio OPT ratio CPU ratio OPT ratio

10 2 3.3 96.6 3.0 97.0

11 3 4.7 95.4 3.9 95.3

12 4 7.5 96.0 6.6 95.9

1 5 7.5 96.2 6.5 96.3

13 6 11.3 96.1 9.3 96.4

14 7 11.6 95.6 9.5 95.7

15 8 17.8 96.4 15.2 96.7

16 9 15.4 96.0 12.6 96.6

17 10 21.1 95.7 17.1 96.2

Table 3: CPU ratio and OPT ratio for problems with square substitution matrices of
di�erent sizes.

data set 1 18 19 17

vehicle types 5 5 10 10

load types 5 10 5 10

CPLEX cpu (s) 13,456 11,896 64,353 61,402

LAMA cpu (s) 2,061 2,165 3,519 3,586

CPU ratio 6.5 5.5 18.3 17.1

OPT ratio 96.3 95.5 96.6 96.2

Table 4: Comparison among data sets with di�erent number of vehicle and load types.

The platform used for the experiments did not have enough memory to store the linear

programs generated for data sets larger than data set 17. In order to solve the linear

relaxation for data set 17, more than 60,000 CPU seconds were necessary. For these two

reasons, solving the linear relaxation for larger problems is not practical.

So far we have looked at data sets that have the same number of vehicle types

and load types, i.e., with square matching matrices. In order to investigate how each

dimension of the matching matrix is the dominant factor on the performance of the

algorithms, we use data sets 18 and 19. Table 4 shows the OPT ratio and the CPU ratio

for the LAMA method applied these data sets, and compared to data sets 1 and 17.

27

data set OF linear OF commodity gap %

relaxation relaxation

14 264,147 265,091 0.36

15 259,901 260,064 0.06

16 252,681 252,730 0.02

17 254,754 254,889 0.05

Table 5: Optimal objective function values (OF) for the linear relaxation and the com-
mmodity relaxation.

The number of vehicle types is the dominant parameter on the amount of computation

involved, not only for the LAMA method, but also for the linear program. This is in fact

expected as both the LQN approach and the linear program treat each load individually

with its speci�c time window, whereas vehicles are grouped into types. Also, in the LQN

approach, we have di�erent gradients for each vehicle type at a given node. By varying

the number of load types, we do not increase the number of gradients that have to be

computed. Thus, the number of vehicle types is the crucial parameter that a�ects the

computational complexity of the problem.

For data sets with more than 10 commodity types, we resort to the commodity

relaxation of the problem in order to �nd an upper bound for the objective function. In

this relaxation, the matching restrictions are ignored and the problem is solved as if there

were only one type of commodity. In order to probe the tightness of this bound, table 5

compares the bounds obtained by the linear relaxation and the commodity relaxation

for some of the mid{size data sets. We de�ne the CR ratio as the ratio between the

objective function value obtained by the LQN approach and the optimal value for the

objective function of the commodity relaxation. Three of the four datasets showed gaps

of less than one tenth of a percent, while one of the datasets (number 14) produced a

gap of 0.36 percent. All of these gaps are quite narrow, although we have no particular

explanation why dataset 14 was noticeably larger than the others. The narrowness of

the gap indicates that relaxing the constraints on the commodities produces a tight

bound on the optimal objective function, which otherwise would not be computable for

28

data set CR ratio CPU time (s)

20 96.5 3838

21 96.2 4924

22 96.4 6271

23 97.7 5866

24 96.2 9639

25 96.9 18925

Table 6: CR ratio and CPU time for the LAMA method applied to large data sets.

the larger problems. For example, the linear program for the linear relaxation of data

set 25 has around 30,000 constraints and 600,000 variables.

On average, we found an optimality gap of 3:5%. There are several reasons for this

gap. First, the objective function value used in the denominators of the OPT ratio

and the CR ratio are not the true optimal values but the result of relaxations. We

expect these bounds to be reasonably tight. Linear relaxation gaps of up to 0:2% have

been reported in [12] for similar problems of smaller size. We report in table 5 an

additional gap of up to 0:3% for the CR ratio. Second, the local problems were not

solved to optimality, but a feasible solution was found using a greedy heuristic. Third,

some of the gap is due to the gradient approximations. The gradient estimation fails

to capture acurately the interactions between perturbations that result of vehicle type

substitution. Finally, we attribute most of the optimality gap to the coordinate search

used to update the upper bounds. This procedure is limited in its quest to look for local

improvement. However, the search for improvement trees can turn very complicated and

time consuming, and thus we have not investigated this strategy.

5 Conclusion

We extend the logistics queueing network approach to multicommodity network
ow

problems. We obtain integer solutions that are on average within 3:5% of the optimal

value of the linear relaxation of the problem. On larger problems where the linear

29

relaxation cannot be solved, we obtain integer solutions that are within 3:5% of the

optimal value of the commodity relaxation of the problem.

Compared to a linear solver, the LQN approach becomes much faster for larger

problems. Our implementation of the algorithms was tuned to perform well on problems

with few commodity types and dense matching matrices. Improved computation times

on data sets with many commodity types and sparse matching matrix can be obtained

by using customized implementation. Another way to cut down the computation time is

to do a parallel implementation of the algorithm. The planning horizon can be divided

in several sections and one processor can be assigned to each section. The processors

share information on the gradient approximations and vehicle supply but can work

asynchronously.

The number of vehicle types is one of the key parameters that a�ect computational

complexity and thus CPU times. From a modeller perspective, it is desirable to consol-

idate vehicle types as much as possible. The number of load types was shown not to

a�ect computation requirements.

The LQN approach has several advantages over linear programming formulations. It

provides integer solutions. It allows for considering real-world constraints inside each

local problem that cannot be modeled as linear constraints. It provides solutions much

faster for the large problems found in the real-world.

The multicommodity LQN approach can be used not only for real time dispatching

but also to answer a variety of questions on strategical planning. One area of interest is

intermodal operations where rail, sea lines and trucks form complementary networks and

compete for service on some of the links. Given resource availability, the LQN approach

can be used to guide answers on matters like
eet renewal and facility location. This

can be achieved by running a variety of scenarios on a single model.

Future research can focus on problems involving consolidation. Such is the case when

intermodal operations involve railcars that can transport more than one container. Also,

the stochastic nature of
eet management problems can be explicity considered in the

30

model.

The assumption of multiple vehicle and load types adds considerable complexity to

the problem of dynamic resource allocation. In spite of this, we have shown that the

LQN approach can handle very big problems and provide near-optimal integer solutions.

References

[1] T. Carvalho andW.B. Powell. A multiplier adjustment method for dynamic resource
allocation problems. Report 96-03, Department of Civil Engineering and Operations
Research, Princeton University, 1995.

[2] R.K-M. Cheung and W.B. Powell. An algorithm for multistage dynamic networks
with random arc capacities, with an application to dynamic
eet management.
Operations Research, (to appear), 1994.

[3] K.C. Chih. A real time dynamic optimal freight car management simulation model
of the multiple railroad, multicommodity, temporal spatial network
ow problem.
Ph.D. Dissertation, Department of Civil Engineering and Operations Research,
Princeton University, 1986.

[4] I.C. Choi and D. Goldbarb. Solving multicommodity network
ow problems by an
interior point method. SIAM Proceedings in Applied Math, 46:58{69, 1990.

[5] J. Desrosiers, M. Solomon, and F. Soumis. Time constrained routing and scheduling.
In C. Monma, T. Magnanti, and M. Ball, editors, Handbook in Operations Research
and Management Science, Volume on Networks. North Holland, 1995.

[6] J. Desrosiers, F. Soumis, and M. Desrochers. Routing with time windows by column
generation. Networks, 14:545{565, 1984.

[7] Y. Ermoliev. Stochastic quasigradient methods. In Y. Ermoliev and R. Wets,
editors, Numerical Methods in Stochastic Programming. Springer-Verlag, 1988.

[8] L.F. Frantzeskakis and W.B. Powell. A successive linear approximation proce-
dure for stochastic dynamic vehicle allocation problems. Transportation Science,
24(1):40{57, 1990.

[9] A. M. Gupal and L. G. Bazhenov. A stochastic method of linearization. Cybernetics,
pages 482{484, 1972.

[10] Herren H. The distribution of empty wagons by means of computer: An analytical
model for the swiss federal railways (ssb). Rail International, 4(1):1005{1010, 1973.

[11] Herren H. Computer controlled empty wagon distribution on the ssb. Rail Inter-
national, 8(1):25{32, 1977.

[12] C.A. Hane, C. Barnhart, E.L. Johnson, R.E. Marsten, G.L. Nemhauser, and
G. Sigismondi. A
eet assignment problem: Solving a large-scale integer program.
Technical report, Georgia Institute of Technology, School of Industrial and Systems
Engineering, 1994. Report Series 92-04.

31

[13] M. Joborn. Empty freight car distribution at swedish railways - analysis and opti-
mization modeling. Ph.d. thesis, Department of Mathematics, Linkoping University,
Sweden, 1995.

[14] K.L. Jones, I.J. Lustig, J.M. Farvolden, and W.B. Powell. Multicommodity network

ows: The impact of formulation on decomposition. Mathematical Programming,
62:95{117, 1993.

[15] W.C. Jordan and M.A. Turnquist. A stochastic dynamic network model for railroad
car distribution. Transportation Science, 17:123{145, 1983.

[16] T.L. Magnanti and R.W. Simpson. Transportation network analysis and decompo-
sition methods. Report no. dot-tsc-rspd-78-6, U.S. Department of Transportation,
1978.

[17] M.C. Pinar and S.A. Zenios. Parallel decomposition of multicommodity network

ows using smooth penalty functions. Technical report, University of Pennsylvania,
The Warton School, 1990. Technical Report 90-12-06.

[18] W.B. Powell. A stochastic formulation of the dynamic assignment problem, with
an application to truckload motor carriers. Transportation Science, 30(3):195{219,
1996.

[19] W.B. Powell and T. Carvalho. Dynamic control of logistics queueing network for
large-scale
eet management. Report 96-01, Department of Civil Engineering and
Operations Research, Princeton University, 1996.

[20] G.L. Schultz and R.R. Meyer. An interior point method for block angular optimiza-
tion. SIAM Journal on Optimization, 1(4), 1991.

[21] Y Shan. A dynamic multicommodity network
ow model for real-time optimal rail
freight car management. Ph.d. dissertation, Princeton University, 1985.

[22] M.A. Turnquist. Mov-em: A network optimization model for empty freight car
distribution. School of Civil and Environmental Engineering, Cornell University,
1986.

[23] W.W. White. Dynamic transshipment networks: An algorithm and its application
to the distribution of empty containers. Networks, 2(3):211{236, 1972.

[24] W.W. White and A.M. Bomberault. A network algorithm for empty freight car
allocation. IBM Systems Journal, 8(2):147{171, 1969.

32

