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Abstract

We consider two learning scenarios, the offline Bayesian ranking and selection problem with
independent normal rewards and the online multi-armed bandit problem. By reducing the
Bayesian ranking and selection problems to the adaptive stochastic multi-set maximiza-
tion problems, we derive the first finite-time bound of the knowledge-gradient policy for
adaptive submodular objective functions. In addition, we introduce the concept of prior-
optimality and provide another insight into the performance of the KG policy based on the
submodular assumption on the value of information. We demonstrate submodularity for
the two-alternative case and provide other conditions for more general problems, filling in a
gap in the analysis of the knowledge gradient policy. We then address the relative paucity of
empirical testing of learning algorithms (of any type) by introducing a new public-domain,
modular optimal learning testing environment (MOLTE) that allows users to draw on a
library of algorithms and test problems which makes it easy to add new algorithms and new
test problems. We demonstrate the capabilities of MOLTE through a series of comparisons
of policies on a starter library of test problems.

1. Introduction

We consider sequential decision problems in which at each time step, we choose one of
finitely many alternatives and observe a random reward. The rewards are independent of
each other and follow some unknown probability distribution. One goal can be to identify
the alternative with the best expected performance within a limited measurement budget,
which is the objective of offline ranking and selection. Another goal can be to maximize
the expected cumulative sum of rewards obtained in a sequence of allocations, a problem
class often addressed under the umbrella of multi-armed bandit problems. Both ranking
and selection problems and bandit problems are examples of sequential decision making
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problems with partial information that address the exploration-exploitation trade-off. Since
the learner does not know the true distribution of each alternative, it needs to explore the
choices that might give good rewards in the future as well as exploit the alternatives that
appear to be better based on previous observations.

Ranking and selection problems arise in many settings. We may have to choose a type
of material that has the best performance, the features in a laptop or car that produce the
highest sales, or the molecular combination that produces the most effective drug. Often,
the cost of a measurement may be substantial. Laboratory or field experiments may take
a day or several weeks. For this reason, we assume we have a limited budget for making
measurements.

Raiffa and Schlaifer (1961) established the Bayesian framework for R&S problems. Sev-
eral two-stage and sequential procedures exist for selecting the best alternative. Branke
et al. (2007) made a thorough comparison of several fully sequential sampling procedures.
They indicate that the optimal computing budget allocation (OCBA) (Chen et al., 1996,
2000; He et al., 2007) and value of information procedures (VIP) (Chick, 2001) perform
quite well and better than a deterministic or two-stage policy (Chen et al., 2006). Another
single-step Bayesian look-ahead policy first introduced by Gupta and Miescke (1996) and
then further studied by Frazier et al. (2008) is called the “knowledge-gradient policy” (KG).
It chooses to measure the alternative that maximizes the single-period expected value of
information. Whereas the above mentioned policies assumed an independent normal or
one-dimensional Wiener process prior on the alternatives’ true means, Frazier et al. (2009)
modified the knowledge-gradient policy to handle correlated multivariate normal belief on
the mean values of these rewards.

The bandit problem was originally studied under Bayesian assumptions (Gittins, 1979).
A widely used class of policies for multi-armed bandit problems is called upper confidence
bounding policies (UCB). Different UCB-type variants have been developed for many types
of reward distributions and have provable logarithmic regret bounds (Lai and Robbins,
1985; Agrawal, 1995; Auer et al., 2002; Kleinberg et al., 2010; Bubeck et al., 2012). By
contrast, knowledge gradient policies, which enjoy some nice theoretical properties, have
never been characterized by the type of regret bounds for which UCB policies are famous.

This paper makes the following contributions: (1) We first reduce the Bayesian rank-
ing and selection problem to adaptive stochastic multi-set function maximization problems
where each multi-set corresponds to a set of selected alternatives. The multi-set represen-
tation captures our ability to evaluate the same alternative more than once. We derive
the first finite-time bound for the knowledge gradient policy for R&S problems under the
assumption that the utility function is adaptive submodular. However, pathwise adaptive
submodularity can fail in offline learning settings when the utility function itself involves
a maximum. To this end, instead of the pathwise behavior analyses of the utility func-
tion, we further study its average behavior by taking expectations over the observations
given any fixed sample allocation, resulting in a well-know quantity: the value of infor-
mation. As a result, we introduce the concept of the prior-value of a policy and analyze
the prior-optimality of the KG policy to provide another insight into its performance based
on the submodular assumption of the value of information that is weaker than adaptive
submodularity. To accomplish this, we build on the general structure of the analysis of
greedy algorithms given in Nemhauser et al. (1978) and Golovin and Krause (2010). We
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demonstrate submodularity for the two-alternative case and provide other conditions for
more general problems, filling in a gap in the analysis of the knowledge gradient policy.
(2) We introduce a new Modular Optimal Learning Testing Environment (MOLTE) for
comparing a number of policies on a wide range of learning problems, providing the most
comprehensive testbed that has yet appeared in the literature. We draw the conclusion
that there is no universal best policy for all problem classes, which means that theoretical
guarantees are not by themselves reliable indicators of which policy is best for a particular
problem class. We offer MOLTE as an easy-to-use tool for the research community that will
make it possible to perform much more comprehensive testing, spanning a broader selection
of algorithms and test problems. We also address the problem of tuning and constructing
priors that have been largely overlooked in optimal learning literature.

This paper is organized as follows. In section 2, we lay out the mathematical models for
R&S problems and multi-armed bandit problems. In section 3, we describe the knowledge
gradient policies for offline and online learning. In section 4, we provide theoretical analyses
for the KG for offline learning. In section 5, we point out that submodularity does not hold
in general. We analyze submodularity for a problem with two alternatives, and present
insights for more general problems. Finally, in section 6 we introduce a new Modular
Optimal Learning Testing Environment (MOLTE) which gives researchers access to a wide
range of test problems and competing policies, within an architecture that makes adding
new problems and policies quite easy. In sections 7 and 8, we present performance results
and analyses of various policies for both R&S problems and multi-armed bandit problems.
These experiments illustrate the features of MOLTE, and help to demonstrate that it is
hard to predict how well a particular policy will work on a particular problem class. Our
hope is that MOLTE can be used by the research community to simplify the process of
doing more comprehensive experimental testing. We close in section 9 with a discussion of
the problem of tunable parameters and constructing priors.

2. Model

In this section, we provide formal definitions of the offline ranking and selection problem,
and the online multi-armed bandit problem.

2.1 The Offline Ranking and Selection Problem

Suppose we have a collection X of M alternatives (where M might be quite large), each of
which can be measured sequentially to estimate its unknown mean µx. We assume normally
distributed measurement noise with known variance σ2

W . We first introduce the model for
independent normal beliefs. We begin with a normally distributed Bayesian prior belief
on the sampling means that is independent across alternatives, µx ∼ N (θ0

x, σ
0
x). At the

nth iteration, we use some measurement policy π to choose one alternative xn and observe
Wn+1
xn ∼ N (µxn , σW ).

For convenience, we introduce the σ-algebras Fn for any n = 0, 1, ..., N − 1 which is
formed by the previous n measurement choices and outcomes, x0,W 1, ..., xn−1,Wn. We
define θnx = E[µx|Fn] and (σnx)2 = Var[µx|Fn]. Then conditionally on Fn, µx ∼ N (θnx , σ

n
x).

Let βnx = 1
(σnx )2

be the conditional precision of µx and our state of knowledge be Sn =
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(θnx , β
n
x )x∈X . We will use Fn and Sn interchangeably. After the nth measurement we

update our beliefs using Bayes’ rule:

θn+1
x =

{
βnx θ

n
x+βWWn+1

βn+βW
if xn = x

θnx otherwise,
βn+1
x =

{
βn + βW if xn = x
βnx otherwise,

where βW = 1/σ2
W .

We may impose correlated beliefs between alternatives in order to strengthen the effect
of each measurement. Starting from a prior distribution N (θ0,Σ0) and after measurement
Wn+1 of alternative x, a posterior distribution on the beliefs are calculated by:

θn+1 = Σn+1
(

(Σn)−1 θn + βWWn+1ex

)
, (1)

Σn+1 =
(

(Σn)−1 + βW exe
T
x

)−1
, (2)

where ex is the vector with 1 in the entry corresponding to alternative x and 0 elsewhere.
Sn = (θn,Σn) is then our state of knowledge in this case.

A decision function Xπ(Sn) is defined as a mapping from the knowledge state to X . We
refer to the decision function Xπ and the policy π interchangeably.

If we are limited to N measurements, the objective is to maximize the expected reward
of the final recommended alternative:

max
π∈Π

E [µxπ ] , (3)

where xπ = arg maxx∈X θ
N
x and xn = Xπ(Sn) for 0 ≤ n < N .

2.2 The Multi-armed Bandit Problem

In the multi-armed bandit problem, every arm x ∈ X corresponds to an unknown probability
distribution with mean µx. At each step, we use some policy to choose one arm xn = Xπ(Sn)
and receive a reward Wn+1 drawn from that arm’s distribution. The goal is to maximize
the total expected reward collected over time:

max
π∈Π

E

[
N−1∑
n=0

µXπ(Sn)

]
. (4)

3. Knowledge Gradient

For R&S problems, the knowledge gradient is a policy that at the nth iteration chooses
its (n+ 1)st measurement from X to maximize the single-period expected increase in value
(Frazier et al., 2008, 2009). To be more specific, the value of being in state Sn is maxx∈X θ

n
x .

If we choose to measure xn = x right now, allowing us to observe Wn+1
x , then we transition

to a new state of knowledge Sn+1 = (θn+1,Σn+1). At iteration n, θn+1
x is a random variable

since we do not yet know what Wn+1 is going to be. We would like to choose x at iteration
n which maximizes the expected value of maxx∈X θ

n+1
x . We can think of this as choosing

an alternative to maximize the incremental value, given by

νKG,n
x = E[max

x′
θn+1
x′ −max

x′
θnx′ |xn = x, Sn]. (5)
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The knowledge gradient policy XKG(Sn) is defined by

XKG(Sn) = arg max
x∈X

νKG,n
x . (6)

The knowledge gradient policy can handle the presence of a variety of belief models such
linear (Negoescu et al., 2011) or nonparametric (Mes et al., 2011; Barut and Powell, 2013).

Next, we present a recent result of the knowledge gradient for undiscounted multi-armed
bandit problems. If νKG,nx is the offline knowledge gradient, then the online knowledge
gradient νOLKG,nx is given as

νOLKG,nx = θnx + (N − n)νKG,nx . (7)

As before, the KG policy chooses the alternative with the largest value, which is to say
XOLKG(hn) = arg maxx∈X ν

OLKG,n
x (Ryzhov et al., 2012). This relationship allows the

online knowledge gradient to inherit our ability to handle correlated beliefs (Ryzhov et al.,
2012) with no additional computational effort.

The knowledge gradient policy has some nice properties. For offline learning settings, the
knowledge gradient policy is optimal (by definition) if the measurement budget N = 1. The
knowledge gradient is guaranteed to find the best alternative as the measurement budget N
tends to infinity. If there are only two choices, the knowledge gradient policy is optimal for
any measurement budget. The knowledge gradient policy is the only stationary policy that
is both myopically and asymptotically optimal. For online learning problems, the knowledge
gradient policy is asymptotically optimal as the discount factor tends to one. However, the
KG has not enjoyed the finite-time bounds that have been popular in the UCB policies.

4. Finite-time Bound for the Knowledge Gradient Policy

We follow the general structure of the analysis of greedy approximation (Nemhauser et al.,
1978) to develop the first finite-time bound for the knowledge gradient policy for offline
learning as follows. In Section 4.1, by reducing the Bayesian R&S problems to the adaptive
stochastic multi-set maximization problems, we show that the KG policy inherits precisely
the performance guarantees of the greedy algorithm for classic submodular maximization
problems if the utility function is adaptive submodular. We show that the adaptive sub-
modular assumption easily fails in the ranking and selection problems. Hence, instead of the
pathwise behavior analyses of the utility function, we study its average behavior by taking
expectation over the observations in Section 4.2. In Section 4.3, we analyze the prior-
optimality which provides another insight into the performance of the KG policy based on
the submodularity of a well-understood quantity–value of information.

It is important to note that both the submodular maximization reduction and the theo-
retical analyses on the prior-optimality are not only applied to the specific setup of Gaussian
noise in observations and Gaussian prior structure. The theoretical guarantees are more
generally applicable to any prior and measurement noise model as long as the adaptive
submodular assumption or the submodular value of information assumption holds.

4.1 The Reduction of R&S to Adaptive Stochastic Multi-set Maximization

We first introduce the adaptive stochastic maximization problem. Let E be a finite set of
items. Each item e ∈ E maps to a random outcome of a measurement Φ(e) in a set O of
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possible values. We define a realization as a function φ : E 7→ O representing the observation
of each item in the ground set. Under Bayesian interpretation, we assume that there is a
known prior probability distribution p(φ) := P(Φ = φ) over all possible realizations. The
adaptive stochastic optimization problem consists of sequentially picking an item e ∈ E,
revealing its outcome Φ(e) and picking the next item. After each pick, the observations so
far can be represented as a partial realization ψ. A partial realization ψ is consistent with
realization φ, denoted as φ ∼ ψ, if all the items selected in ψ have the same outcomes as
in φ. We use dom(ψ) to refer to the items observed in ψ. We use the notation Zπ(φ) to
denote the set of items chosen by policy π under realization φ.

We wish to maximize some utility function f : 2E × OE 7→ R that depends on which
items we pick and which states they are in. The expected utility of a policy π is favg(π) :=
E
[
f
(
Zπ(Φ),Φ

)]
where the expectation is taken over the prior distribution p(φ). The goal of

adaptive stochastic set maximization problem is to find an optimal policy π∗ that maximizes
its expected utility under a cardinality constraint,

π∗ ∈ arg max
π

favg(π), subject to |Zπ(φ)| ≤ N,

where N is the measurement budget.
It is not obvious to treat the ranking and selection problem in an adaptive stochastic

multi-set maximization way of thinking. To see this, define the ground set E = X . The
outcomes are real numbers with O = R. Each alternative e = x can be selected multiple
times. After each selection, its random outcome Φ(e) = Wx ∈ O is revealed.

Since the true values µx are random variables, we can let ϕ be a sample realization of the
truth with a (correlated) prior distribution p(ϕ) = N (θ0,Σ0). We use the notation φ ∈ Φ
to denote an realization of the random observations in our problem. The prior probability
distribution over the realizations is determined by p(ϕ) and the noise distribution N (0, σW ).
For example, if in the ranking and selection problems each alternative can only be selected
once, φ : E 7→ O. For multi-selections, one way of defining the realization is by first making
replicas of each item to construct E′ and then selecting each e′ ∈ E′ at most once.

Consider any sampling allocation z = (zx)x∈X , by which we measure alternative x for
zx ∈ N times. We use Z to represent its corresponding multi-set. We use Zπ(φ) : Φ 7→
(X × N) to refer to the alternatives selected by π under realization φ. Let θn be our
vector of estimates of the means after n measurements according to allocation Z under
realization φ, where |Z| = n. θn can be obtained according to the updating equation (1)
and (2), and does not depend on the order of the allocations. It can thus be denoted
as θn(Z, φ) : (X × N) × Φ 7→ RM . The next lemma states the equivalence of E[µxπ ] and
E[maxx θ

N
x ]. Hence, the utility function f : (X×N)×Φ 7→ R can be defined as maxx θ

n
x(Z, φ)

and favg(π) := E
[

maxx θ
N
x

(
Zπ(Φ),Φ

)]
. The R&S objective (3) can then be re-written as

π∗ ∈ arg max
π

favg(π), subject to |Zπ(φ)| ≤ N.

Lemma 1 (Powell and Ryzhov (2012)) Let π be a policy, and let xπ = arg maxx θ
N
x be

the alternative selected by the policy. Then

E[µxπ ] = E[max
x

θNx ].
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The definition of the knowledge gradient νKG,nx coincides with the Conditional Expected
Marginal Benefit ∆(e|ψ) defined by Golovin and Krause (2010):

∆(e|ψ) := E
[
f
(
dom(ψ) ∪ {e},Φ

)
− f

(
dom(ψ),Φ

)
|Φ ∼ ψ

]
.

The knowledge gradient policy is thus in fact the adaptive greedy policy with uniform
item costs, with a slight difference in the ability of selecting each item more than once.
We generalize the definition of adaptive monotonicity and adaptive submodularity for set
functions given by Golovin and Krause (2010) to multi-set functions as follows.

Definition 2 (Adaptive Monotonicity) A function f : (X × N) × Φ 7→ R is adaptive
monotone with respect to distribution p(φ) if the conditional expected marginal benefit of
any item is nonnegative: for all ψ and all x ∈ X .

∆(x|ψ) ≥ 0.

Definition 3 (Adaptive Submodularity) A function f : (X × N)× Φ 7→ R is adaptive
submodular with respect to distribution p(φ) if for all ψ and ψ′ such that dom(ψ) ⊆ dom(ψ′)
and both ψ,ψ′ are consistent with some realization φ (i.e. ψ ⊆ ψ′), we have the conditional
expected marginal benefit of any fixed item x ∈ X does not increase as more items are
selected and observed,

∆(x|ψ) ≥ ∆(x|ψ′).

Let π∗ be the optimal policy to R&S problems. If f := maxx θ
n
x(Z, φ) is adaptive

monotone and adaptive submodular with respect to the prior distribution p(φ), then

favg(KG) > (1− e−1)favg(π∗).

We next show that the instances generated by ranking and selection problems are adap-
tive monotone and yet not necessarily submodular.

Lemma 4 In ranking and selection problems, the utility function maxx θx is adaptive mono-
tone with any Gaussian prior.

Proof For any ψ, let n = |ψ|. Then for any item x ∈ X , ∆(x|ψ) can be rewritten as
E[maxx′ θ

n+1
x′ −maxx′ θ

n
x′ |xn = x,Fn] = νKG,n

x . Since for any x, θn+1
x = θnx + σ̃(Σn, xn)Zn+1,

where σ̃(Σ, x) = Σex√
1/βW+Σxx

and the random variable Zn+1 is standard normal when con-

ditioned on Fn Frazier et al. (2009). Hence we have E[θn+1
x′ |x

n = x,Fn] = θnx′ for any x′.

By Jensen’s inequality, we have ∆(x|ψ) = νKG,n
x ≥ 0.

Even though intuition suggests that the utility function should be adaptive submodular in
the amount of information collected, as we collect more information it is natural to expect
that the marginal value of this information should decrease, yet it is not always the case.
The proof of the next lemma can be found in Appendix A.

Lemma 5 For any independent normal prior distribution p(ϕ) and non-degenerated noise
distribution (i.e. σW 6= 0), there exists ψ, ψ′ and x ∈ X such that ψ ⊆ ψ′ and ∆(x|ψ) <
∆(x|ψ′).
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It can be seen that the adaptive submodular assumption easily fails in the ranking
and selection problems with the special utility function f = maxx θ

n
x(Z, φ) that involves

maximization itself. To this end, instead of the above pathwise behavior analyses of the
utility function, we would like to study its average behavior by taking the expectation over
the observations given any fixed sample allocation Z in the next section.

4.2 The Value of Information

We define the pathwise value of information v̂(Z, φ) as the incremental improvement over
the best expected value that can be obtained without measurement, which is maxx∈X θ

0
x,

v̂(Z, φ) := max
x∈X

θnx(Z, φ)−max
x∈X

θ0
x.

The value of information v(Z) is then defined to be

v(Z) := EΦ[v̂(Z,Φ)],

where the expectation is taken over the prior distribution p(φ).
The value of information has a long history spanning the literatures of several disciplines.

Stigler (1961) considers the value of information in economics when buyers search for the
best price. Howard et al. (1966) laid the groundwork for the value of information in a
decision-theoretic context and spawned a great deal of work in this area. Yokota and
Thompson (2004) give a first comprehensive review of value of information analyses related
to health risk management. Raiffa and Schlaifer (1961) poses the Bayesian R&S problem
and defines the associated value of information, which marked the beginning of a number
of literature on the value of information within Bayesian R&S and the budgeted learning
problem (Guttman et al., 1964; Kapoor and Greiner, 2005; Chen et al., 1996; Chick, 2001;
Frazier et al., 2008).

Since the value of information is a multi-set function, we first generalize the defini-
tions and properties of submodular set functions described by Nemhauser et al. (1978) to
submodular multi-set functions.

Definition 6 Given a finite set E, a real-valued function g on the set of multi-sets over E
is called submodular if for all multi-sets S and T whose elements belong to E,

ρx(S) ≥ ρx(T ),∀S ⊆ T, ∀x ∈ E,

where ρx(S) , g(S∪{x})−g(S) is the incremental value of adding element x to the multi-set
S.

Proposition 1 Each of the following statements is equivalent and defines a submodular
multi-set function (S pathwiseand T are multi-sets on E, x, y ∈ E):

1. ρx(S) ≥ ρx(T ),∀S ⊆ T and ∀x.

2. ρx(S) ≥ ρx(S ∪ {y}),∀S, x, y.

3. g(T ) ≤ g(S) +
∑

x∈T−S ρx(S)−
∑

x∈S−T ρx(S ∪ T − {x}), ∀S, T .
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4. g(T ) ≤ g(S) +
∑

x∈T−S ρx(S),∀S ⊆ T .

This proposition follows from a similar proof of Proposition 2.1 in Nemhauser et al.
(1978). For completeness we provide the proof in Appendix B.

It is obvious that if θnx(Z, φ) is adaptive monotone or adaptive submodular with respect
to p(φ), then so does v̂(Z, φ). It is also easy to show that if θnx(Z, φ) is adaptive monotone
or adaptive submodular with respect to p(φ), then by the law of total expectation, i.e.
E[E[U |V ]] = E[U ] for any random variables U and V , the value of information v(Z) is
monotone or submodular. We close this section by showing the monotonicity of the multi-
set function v and leave the analyses of submodularity in Section 5.

Lemma 7 (Monotonicity of the value of information)

For any sampling allocation Z1 and Z2, if Z1 ⊆ Z2, then v(Z1) ≤ v(Z2).

Proof We prove the monotonicity of v by showing v(Z) ≤ v(Z∪{xn+1}) for any allocation
Z (with

∑
x∈X zx = n) and any additional measurement xn+1. By the tower property,

v(Z ∪ {xn+1})− v(Z) = EΦ[v̂(Z ∪ {xn+1})]− E[v̂(Z)]

= EΦ[max
x∈X

θn+1
x (Z ∪ {xn+1})]− E[max

x∈X
θnx(Z)]

= EΦ[E[max
x

θn+1
x (Z ∪ {xn+1})−max

x
θnx(Z)|Φ ∼ ψZ ]]

= EΦ[νKG,n
x ],

where ψZ is the partial realization with dom(ψZ) = Z. The lemma follows from the adap-
tive monotonicity, νKG,n

x ≥ 0.

4.3 Guarantees on the Prior-optimality of the Knowledge Gradient Policy

There are two ways to evaluate the value of a policy. The first, which we call the posterior
view, conditions on the allocation Z = Zπ(Φ) that would have occurred under policy π for
each sample path φ ∈ Φ. This is the more conventional approach for evaluating policies.
The second, which we call the prior view, starts by characterizing the value of an arbitrary
allocation Z (before we have seen any sample realizations).

More formally, the classical way to estimate the value of a policy is to calculate the
incremental improvement over what we could do before we collect any information, is given
by

f ′avg(π) = E[f(Zπ(Φ),Φ)]−max
x

θ0
x.

We let P(π  Z) be the probability that policy π produces allocation Z. Since with a fixed
budget of N measurements, there are only finite choices of possible allocations, using the
tower property, we can condition on the allocation Zπ = Z which gives us

f ′avg(π) =
∑
Z∈ZN

P(π  Z)

(
E[max

x
θnx(Zπ(Φ),Φ)|Zπ = Z]−max

x
θ0
x

)
.
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We note that in this method for evaluating a policy (which is the standard method), we
only consider allocations Z that are actually produced by policy π for the outcomes in φ.
This approach makes it much more difficult to understand the relationship between the
allocation Z and the value of a policy.

For this reason, we adopt a different method of evaluating a policy which we term the
prior view. Since this idea is new, we define it formally as follows

Definition 8 (The prior-value of a policy) Let Zn be the set of all possible allocations
with a limited budget n. The value of a policy π with N measurements is defined as

F π =
∑
Z∈ZN

P(π  Z)

(
EΦ[max

x
θnx(Z,Φ)]−max

x
θ0
x

)
=

∑
Z∈ZN

P(π  Z)v(Z).

In this view, we use the prior probability of an outcome p(φ) instead of the posterior
p(φ|Zπ(φ) = Z) which is conditioned on an allocation Z. The value of this approach is that
it writes the value of a policy directly as a function of v(Z), making it easier to study the
effect of the properties of v(Z) on the value of a policy. Intuitively, since a policy could
generate different allocations Z for different sample realizations, it is natural to define the
value of a policy π as the weighted sum of the expected value of information based on all
possible allocations Z and the weight should be the probability of occurrence of Z based
on policy π.

We make the following assumption which is weaker than the adaptive submodularity
assumption and will analyze it further in Section 5.

Assumption 1 The value of information v is a submodular multi-set function on the set
of alternatives X with respect to the prior distribution p(φ).

Let π∗ be the optimal sequential policy under a budget of N measurements in the sense
that the prior-value of π∗ is the largest. We call it prior-optimality. In what follows, we
first bound KG’s sub-prior-optimality in Proposition 12:

F π
∗ ≤ FKG[n]@π∗ ≤ FKG[n−1]

+N(FKG[n]

− FKG[n−1]

), n = 1, 2, ..., N.

Then we derive the worst-case bound for the knowledge gradient policy in Theorem 14:

FKG

F π∗
≥ 1− (

N − 1

N
)N ≥ e− 1

e
≈ 0.632.

Besides the posterior optimality bound obtained from adaptive stochastic multi-set max-
imization, the prior-optimality provides another insight into the performance of the KG
policy based on a well-understood quantity: value of information.

Definition 9 (Policy concatenation) (Golovin and Krause, 2010) A concatenated pol-
icy π = π1@π2 is constructed by running π1 to completion, and then running policy π2 from
a fresh start ignoring all the information collected while running π1.

10
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To be more specific, suppose πi has a budget of ni, i = 1, 2, the first phase is to run
π1 for n1 iterations starting from S0 and we get a sample realization including decisions
and their corresponding measurements. The second phase is to run π2 for n2 measurements
starting from S0 and we get another sample realization. Thus the sample realization of the
concatenated process is all the decisions and their corresponding measurements collected
in two phases. Note here, when running the second policy, we ignore all the information
collected during running the first one, but when calculating the value of π1@π2, F π1@π2 , we
use all the information collected in two phases.

Definition 10 (Policy truncation) (Golovin and Krause, 2010) For a policy π, define
the j-truncation π[j] of π as the policy that runs exactly (j + 1) steps under π’s decision
rule and π{j} as the single step policy that randomly chooses an alternative according to the
probability distribution of policy π’s decision for the (j + 1)-th step.

We now show that the value of π1 is no larger than the value of π1@π2.

Lemma 11 F π1 ≤ F π2@π1 for all policies π1 and π2 under any prior and probability dis-
tribution that describes a measurement.

Proof We first show that F π1@π2 = F π2@π1 . In a concatenated policy, the two phases
are independent since no information is shared among the two phases. Hence for a given
allocation pair (Z1, Z2) where Z1 ∈ Zn1 , Z2 ∈ Zn2 , we have

P(π1@π2  (Z1, Z2)) = P(π1  Z1)P(π2  Z2)

= P(π2  Z2)P(π1  Z1)

= P(π2@π1  (Z2, Z1)).

F π1@π2 = F π2@π1 follows immediately from taking the sum over all possible pairs of (Z1, Z2))
such that Z2 ∪ Z1 = Z for any fixed allocation Z.

Therefore F π1 ≤ F π1@π2 holds if and only if F π1 ≤ F π2@π1 . We then finish this proof
by showing F π1 ≤ F π1@π2 . We write F π1@π2 − F π1 as a telescoping sequence

F π1@π2 − F π1

=
∑

Z∈Zn1+n2
v(Z)P(π1@π2  Z)−

∑
Z1∈Zn1

v(Z1)P(π1  Z1)

=
∑

Z∈Zn1+n2

∑
Z1∪Z2=Z

v(Z)P(π1  Z1)P(π2  Z2)

−
∑

Z1∈Zn1

∑
Z2∈Zn2

v(Z1)P(π1  Z1)P(π2  Z2)

=
∑

Z1∈Zn1

∑
Z2∈Zn2

[
v(Z1 ∪ Z2)− v(Z1)

]
P(π1  Z1)P(π2  Z2)

≥ 0,

where the second equality holds due to the same reason as in the proof above for F π1@π2 =
F π2@π1 and the third equality is just the same summation in different orders. The last
inequality holds because of the monotonicity of multi-set function v.

11
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Based on the monotonicity of v and a similar argument as in Proposition 11, F is non-
decreasing with respect to the number of measurements. Thus the more measurements,
the better the policy. Hence π∗ has exactly N measurements. We have the following
sub-optimality bound on KG’s prior-value. For a proof see Appendix C.

Proposition 12 Let ρKG,n = FKG[n] − FKG[n−1]
, then

F π
∗ ≤ F KG[n−1]@π∗ ≤ F KG[n−1]

+NρKG,n

=

n−1∑
i=0

ρKG,i +NρKG,n, n = 0, 1, ..., N − 1. (8)

We now derive a bound for the adaptive greedy policy by applying linear programming to
the problem of minimizing FKG

Fπ
∗ subject to the inequalities (8), which is a worst-case analysis.

The following lemma states the linear program and its solution. We use it afterwards to
establish the bounds.

Lemma 13 Given N ∈ Z+, consider the following linear program

min
N−1∑
i=0

ai,

t−1∑
i=0

ai +Nat ≥ 1, t = 0, 1, ..., N − 1.

Then under these N constraints, min
∑N−1

i=0 ai = 1− αN , where α = N−1
N .

The proof of this lemma can be found in Nemhauser et al. (1978).
We have the following results, which generalizes the classic result of the greedy algorithm

that achieves (1−1/e)-approximation to prior-optimality for ranking and selection problems.

Theorem 14 Assume we have a budget of N measurements. Let π∗ denote the optimal
sequential policy for the ranking and selection problem, then we have

FKG

F π∗
≥ 1− (

N − 1

N
)N .

Proof By Proposition 12, we have F π
∗ ≤

∑n−1
i=0 ρ

KG,i+NρKG,n, n = 0, 1, ..., N −1. Divide
by F π

∗
on both sides of this inequality, we have

1 ≤
n−1∑
i=0

ρKG,i

F π∗
+N

ρKG,n

F π∗
, n = 0, 1, ..., N − 1.

Let ai = ρKG,i

Fπ∗
, and then these inequalities are identical to the constraints in Lemma 13.

We notice that

min
N−1∑
i=0

ai = min
N−1∑
i=0

ρKG,i

F π∗
≤

N−1∑
i=0

ρKG,i

F π∗
=
FKG

F π∗
.

By Lemma 13, we have min
∑N−1

i=0 ai = 1− αN , so FKG

Fπ∗
≥ 1− αN = 1− (N−1

N )N .
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5. Analysis of Submodularity of the Value of Information

The finite-time bounds obtained in the previous sections assume that the value of informa-
tion is submodular. In general, submodularity does not hold for arbitrary value functions.
In this section, we analyze the submodularity of the two-alternative case for independent
beliefs.

While submodularity is a property for multi-set functions, we can extend it to any
continuous function by making it possible for the increment to take any positive value. It
could be easily extended to any continuous function. This allows us to use results from real
analysis to study submodularity.

Definition 15 A function f : Rn 7→ R is submodular if for all x, y ∈ Rn, xi ≤ yi and
δ ∈ Rn+,

f(x+ δ)− f(x) ≥ f(y + δ)− f(y).

We show that submodularity of C2 functions is directly related to its second derivatives
and cross-derivatives (the proof is given in Appendix D):

Theorem 16 C2 function f: Rn → R is submodular if and only if every element of its
Hessian is non-positive.

The concavity of the value of information has been studied extensively by Frazier and
Powell (2010). In this section, we only study the cross-derivatives of the value of information.

Let M = 2 and the measurement allocation z = (z1, z2). The value of information v(z) =

s(z)f(− |θ
0
1−θ02 |
s(z) ), where s(z) =

√
σ̃2

1(z1) + σ̃2
2(z2), σ̃2

i (zi) =
σ2,0
i zi

σ2
W /σ2,0

i +zi
, f(a) = aΦ(a) + φ(a),

Φ and φ are the standard normal cumulative distribution and density respectively (Frazier
and Powell, 2010).

Although the value of information is not concave in general in the two-alternative case,
v is concave on the region where all zi’s are large enough (see Frazier and Powell, 2010,
Theorem 2).

We directly calculate the first derivative and cross-derivative of v as

∂v

∂z1
=
σ̃1(z1)σ̃′1(z1)

s(z)

[
f(−|θ

0
1 − θ0

2|
s(z)

) + |θ0
1 − θ0

2|
Φ(− |θ

0
1−θ02 |
s(z) )

s(z)

]
,

∂2v

∂z1∂z2
=
σ̃1(z1)σ̃′1(z1)σ̃2(z2)σ̃′2(z2)

s3(z)
φ(−|θ

0
1 − θ0

2|
s(z)

)

(
|θ0

1 − θ0
2|2

σ̃2
1(z1) + σ̃2

2(z2)
− 1

)
.

Theorem 17 The value of information is submodular when M = 2 and θ0
1 = θ0

2.

Proof Concavity of v(z) is proven in Remark 2 by Frazier and Powell (2010). Since θ0
1 = θ0

2,

|θ0
1 − θ0

2| = 0 and thus ∂2v
∂z1∂z2

≤ 0. Therefore, v is submodular in this case.

∂2v
∂z1∂z2

≤ 0 is equivalent to |θ0
1 − θ0

2|2 ≤ σ̃2
1(z1) + σ̃2

2(z2). Rewriting this inequality, we get

1
1

σ2,0
1

+ z1
σ2
W

+
1

1

σ2,0
2

+ z2
σ2
W

≤ σ2,0
1 + σ2,0

2 − |θ
0
1 − θ0

2|2. (9)
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We need σ2,0
1 + σ2,0

2 − |θ0
1 − θ0

2|2 ≥ 0, which can be achieved by setting our prior variance
large enough or using a uniform prior over all alternatives. This is very reasonable when
we have very little information about our problem domain.

Inequality equation (9) defines a region in the z1 − z2 plane. Specifically, this region
has the hyperbolic line 1

1

σ
2,0
1

+
z1
σ2
W

+ 1
1

σ
2,0
2

+
z2
σ2
W

= σ2,0
1 + σ2,0

2 − |θ0
1 − θ0

2|2 as its boundary and

contains infinity. In particular, when z1 and z2 are large enough (or equivalently when our
measurement is accurate enough), the value of information is submodular.

Since there is no closed-form expression for the value of information under arbitrary
allocations, we cannot verify submodularity in a simple way for problems with more than
two alternatives and for correlated beliefs. Instead, it can be checked using numerical
approximation and is easy to guarantee by running repeated experiments and averaging to
reduce measurement noise. A necessary condition is the concavity of the value of information
for measuring a fixed alternative x for n times, which can be checked exactly.

Intuitively, we may expect that the marginal value of information should decline as
we make more observations. But it is not always the case. It is shown that the value of
information for measuring a single alternative may form an S-curve which is concave when
there are many measurements, but may be convex at the beginning (Frazier and Powell,
2010). The S-curve behavior arises when the measurement noise is large and thus a single
measurement simply contains too little information, leading to algorithmic difficulties and
apparent paradoxes. This issue is not related to any specific policy, but rather is an inherent
property of learning problems. Although the value of information is not necessarily concave,
it can be made concave by measuring each alternative enough times or (equivalently) using
sufficiently precise measurements.

6. Modular Optimal Learning Testing Environment (MOLTE)

Since the seminal paper by Lai and Robbins (1985), there has been a long history in the
optimal learning literature of proving some sort of bound, supported at times by relatively
thin empirical work by comparing a few policies on a small number of randomly generated
problems (Audibert et al., 2010; Cappé et al., 2013; Srinivas et al., 2009; Auer et al., 2002;
Garivier and Moulines; Audibert et al., 2009). The problem, of course, is that compiling
a library of test problems, and then running an extensive set of comparisons, is difficult.
The problem is this means that we are analyzing the finite time performance of algorithms
using bounds that only apply asymptotically by limited empirical experiments to support
the claim of finite time performance.

In this section, we describe a modular optimal learning testing environment (MOLTE)1

that will make it much easier for researchers to test new policies against a library of test
problems, and a library of previously coded policies. The Matlab-based modular archi-
tecture, where policies and problems are captured in a set of .m files, makes it easy for
researchers to add new policies and new problems.

1. The software is available at http://www.castlelab.princeton.edu/software.htm.
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6.1 Structural overview

We pre-coded many standard truth functions (problem classes), including standard opti-
mization test functions with additive Gaussian noise (for example, Branin’s function in
Dixon and Szegö (1978), Goldstein Price function, Rosenbrock function, Griewank function
in Hu et al. (2008), Six-hump camel back function in Molga and Smutnicki (2005), etc.),
synthetic bandit experiments (Audibert et al., 2010), Gaussian process regression and real-
world applications like newsvendor problems and payload delivery. We also pre-coded a
number of competing policies, including UCB variants, successive rejects, sequential Krig-
ing (SKO, as a representative of Bayesian global optimization (Jones et al., 1998; Huang
et al., 2006; Gutmann, 2001; Jones, 2001)), Thompson sampling, KG variants, etc. Each
of the problem classes and policies is organized in its own Matlab file, so that it is easy
for a user to add in a new problem or a policy. In order to make a fair comparison, all
the observations are pre-generated and shared between competing policies. There may be
problems where a domain expert can provide prior knowledge, such as kinetic models in
materials science, but we may need to estimate them from data in some cases (optimization
test functions). In MOLTE we provide various ways to construct a prior, including user-
provided prior distributions, hard-coded default prior distributions, an uninformative prior
and MLE estimation (see Section 6.1.3).

The input to the simulator is a spreadsheet which allows users to specify the problem
classes and competing policies, as well as the belief models, the objectives, the prior con-
struction and the measurement budgets. We provide a sample input spreadsheet in Table 1.
For policies that have tunable parameters, a star included in the parentheses after the pol-
icy will initiate an automatic brute force tuning procedure with the optimal value reported.
Whereas the user can also specify the value to be used for the policy in the parentheses.
All the numerical results presented below are obtained using this environment.

Table 1: Sample input spreadsheet.
Problem

class
Prior

Measurement
Budget

Belief Model
Offline/
Online

Number
of policies

Bubeck1 Uninform 10 independent Online 3 OLKG IE(*) UCB
Branin MLE 5 independent Offline 4 UCBE(*)IE(1.7) KG SR
GPR Default 0.3 correlated Online 4 KLUCB EXPL UCBTS

NanoDesign MLE 0.5 correlated Offline 3 Kriging EXPT KG

While a wide range of problem classes and policies are precoded in MOLTE, in the next
two subsections we only briefly summarize the problem classes and policies mentioned in
the following numerical experiments of this paper.

Similar libraries have been proposed for Bayesian optimization in different program-
ming languages with different metrics and visualizations, for example, BayesOpt (Martinez-
Cantin, 2014) and Spearmint (Snoek et al., 2012). Thanks to its unique modular design,
MOLTE allows users to easily specify their own problems or their own algorithms without
limitation as long as they follow the general function interface. With various (graphical)
metrics, our hope is that MOLTE can be used to facilitate the process of more compre-
hensive comparisons, on a broader set of test problems and a broader set of policies, so
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that researchers can more easily draw insights into the behavior of different policies in the
context of different problem classes.

6.1.1 Problem Classes

Bubeck’s Experiments: (Audibert et al., 2010) We consider Bernoulli distributions with
the mean of the best arm always µ1 = 0.5. M is the number of arms.
Bubeck1: M = 20, µ2:20 = 0.4.
Bubeck2: M = 20, µ2:6 = 0.42, µ7:20 = 0.38.
Bubeck3: M = 4, µi = 0.5− (0.37)i, i ∈ {2, 3, 4}.
Bubeck4: M = 6, µ2 = 0.42, µ3:4 = 0.4, µ5:6 = 0.35.
Bubeck5: M = 15, µi = 0.5− 0.025i, i ∈ {2, · · · , 15}.
Bubeck6: M = 20, µ2 = 0.48, µ3:20 = 0.37.
Bubeck7: M = 30, µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

Asymmetric unimodular function (AUF): x is a controllable parameter ranging
from 21 to 120. The objective function is F (x, ξ) = θ1 min(x, ξ)− θ2x, where θ1, θ2 and the
distribution of the random variable ξ are all unknown. ξ is taken as a normal distribution
with mean 60. Three noise levels are considered by setting different noise ratios between
the standard deviation and the mean of ξ: HNoise–0.5, MNoise–0.4, LNoise–0.3. Unless
explicitly pointed out, experiments are taken under LNoise.

Equal-prior: M = 100. The true values µx are uniformly distributed over [0, 60] and
measurement noise σW = 100. θ0

x = 30 and σ0
x = 10 for every x.

All the standard optimization test functions are flipped in MOLTE to generate max-
imization problems instead of minimization in line with R&S and bandit problems. The
standard deviation of the additive Guassion noise is set to 20 percent of the range of the
function values.

Rosenbrock functions with additive noise:

f(x, y, φ) = 100(y − x2)2 + (1− x)2 + φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.

Pinter’s function with additive noise:

f(x, y, φ) = log10

(
1 + (y2 − 2x+ 3y − cosx+ 1)2

)
+ log10

(
1 + 2(x2 − 2y + 3x− cos y + 1)2

)
+ x2 + 2y2 + 20 sin2(y sinx− x+ sin y) + 40 sin2(x sin y − y + sinx) + 1 + φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.

Goldstein-Price’s function with additive noise:

f(x, y, φ) = [1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)] ·
[30 + (2x− 3y)2(18− 32x+ 12x2 + 48y − 36xy + 27y2)] + φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.

Branins’s function with additive noise:

f(x, y, φ) = (y − 5.1

4π2
x2 +

5

π
x− 6)2 + 10(1− 1

8π
) cos(x) + 10 + φ,
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where −5 ≤ x ≤ 10, 0 ≤ y ≤ 15. x and y are uniformly discretized into 15 × 15 alternatives.
Ackley’s function with additive noise:

f(x, y, φ) = −20 exp
(
−0.2·

√
1

2
(x2 + y2)

)
−exp

(1

2
(cos(2πx)+cos(2πy))

)
+20+exp(1)+φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.
Hyper Ellipsoid function with additive noise:

f(x, y, φ) = x2 + 2y2 + φ.

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.
Rastrigin function with additive noise:

f(x, y, φ) = 20 +
[
x2 − 10 cos(2πx)

]
+
[
x2 − 10 cos(2πy)

]
+ φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 11 × 11 alternatives.
Six-hump camel back function with additive noise:

f(x, y, φ) = (4− 2.1x2 +
x4

3
)x2 + xy + (−4 + 4y2)y2 + φ,

where −2 ≤ x ≤ 2, −1 ≤ y ≤ 1. x and y are uniformly discretized into 13 × 13 alternatives.

6.1.2 Policies Considered

In addition to the KG policies defined in (6) and (7), we shall consider the following policies
π, which differ according to their decision Xπ,n(Sn) of the alternative to measure at time
n given state Sn.

Interval Estimation (IE): (Kaelbling, 1993)

XIE,n(Sn) = arg max
x

θnx + zα/2σ
n
x ,

where zα/2 is a tunable parameter.
Kriging: Huang et al. (2006)
Let x∗ = arg maxx(θnx + σnx), then

XKriging,n(Sn) = arg max
x

(θnx − θnx∗)Φ(
θnx − θnx∗
σnx

) + σnxφ(
θnx − θnx∗
σnx

),

where φ and Φ are the standard normal density and cumulative distribution functions.
Thompson sampling (TS): (Thompson, 1933)

XTS,n(Sn) = arg max
x

θ̂nx ,

where θ̂nx ∼ N (θnx , σ
n
x) for independent beliefs or θ̂nx ∼ N (θn,Σn) for correlated beliefs.

UCB: (Auer et al., 2002)

XUCB,n(Sn) = arg max
x

µ̂nx +

√
2V n

x log n

Nn
x

,
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where µ̂nx, V n
x , Nn

x are the sample mean of µx, sample variance of µx, and number of times
x has been sampled up to time n, respectively. The quantity µ̂0

x is initialized by measuring
each alternative once. These are similarly defined in the following variants of UCB.

UCB-E: (Audibert et al., 2010)

XUCB-E,n(Sn) = arg max
x

µ̂nx +

√
α

Nn
x

,

where α is a tunable parameter.
UCB-V: (Audibert et al., 2009)

XUCB-V,n(Sn) = arg max
x

µ̂nx +

√
V n
x log n

Nn
x

+ 1.5
log n

Nn
x

.

SR: (Audibert et al., 2010) Let A1 = X , log(M) = 1
2 +

∑M
i=2

1
i ,

nm =
⌈ 1

log(M)

n−M
M + 1−m

⌉
.

For each phase m = 1, ...,M − 1:

1. For each x ∈ Am, select alternative x for nm − nm−1 rounds.

2. Let Am+1 = Am \ arg minx∈Am µ̂x.

KLUCB: (Cappé et al., 2013)

XKLUCB,n(Sn) = arg max
x

µ̂nx +

√
2V n

x (log n+ 3 log log(n))

Nn
x

.

EXPL: A pure exploration strategy that tests each alternative equally often.
EXPT: A pure exploitation strategy.

XEXPT,n(Sn) = arg max
x

µ̂nx.

6.1.3 Prior Generation

If an uninformative prior is specified by the user for independent beliefs, a uniform prior
will be used with θ0

x = 0 and σ0
x = inf for every x. In such case, same as with frequentist

approaches (for example, UCBs), Bayesian approaches will measure each alternative once
at the very beginning.

If maximum likelihood estimation (MLE) is chosen to obtain the prior distribution for
either independent beliefs or correlated beliefs, we follow Jones et al. (1998) and Huang et al.
(2006) to use Latin hypercube designs for initial fit. For independent beliefs, we adopt a
uniform prior with the same mean value θ0

x and standard deviation σ0
x for all alternatives.

For correlated beliefs, we use a constant mean value θ0
x for all alternatives and a prior

covariance matrix of the form

Σ0
xx′ = σe−

∑d
i=1 λi(xi−x′i)2 ,
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where each arm x is a d-dimensional vector and σ, λi are constant. We adopt the rule of
thumb by Jones et al. (1998) for the default number (10×p) of points, where p is the number
of parameters to be estimated. In addition, as suggested by Huang et al. (2006), to estimate
the random errors, after the first 10× p points are evaluated, we add one replicate at each
of the locations where the best p responses are found. Maximum likelihood estimation is
then used to estimate the parameters based on the points in the initial design.

7. Numerical Experiments for Offline Ranking and Selection Problems

In this section we report on a series of experiments with the goal of illustrating the use of
MOLTE and the types of reports that it produces. We do not attempt to demonstrate that
any policy is better than another, but our experiments support the hypothesis that different
policies work well on different problem classes. This observation supports the claim more
careful empirical work is needed to develop a better understanding of which policies work
best, and under what conditions.

7.1 Illustration of the submodularity assumption

We consider two offline learning settings, Equal-prior and AUF, to illustrate the necessary
condition of our submodularity assumption: the concavity of the value of information for
measuring a fixed alternative x for n times. Assuming we are measuring a single alternative
x for nx times and nx′ = 0 for x′ 6= x. Figure 1 shows the value of nx measurements as
nx ranges from 1 to 250 for equal-prior problems and the AUF problem with θ2 = 0.2θ1.
The plots for AUF problem with θ2 = 0.5θ1 and θ2 = 0.8θ1 are similar to the one with
θ2 = 0.2θ1. These plots show that the value of information is concave.
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(a) Equal-prior
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(b) AUF with θ2 = 0.2θ1

Figure 1: Value of measuring a single alternative.

7.2 Experiments with independent beliefs

We first compare the performance of KG, IE with tuning, UCB-E with tuning, SR, EXPL
and EXPT for offline ranking and selection problems. MLE is used to construct the prior
distribution for KG and IE. Figure 2 shows the performance in problem classes AUF and
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(b) AUF: Probability of optimality/winning
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(c) Goldstein: Opportunity cost
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(d) Goldstein:Probability of optimality/winning

Figure 2: Comparisons for AUF and Goldstein. (a) and (c) depict the mean opportunity
cost with error bars indicating the standard deviation of each policy. The first bar
group in (b) and (d) demonstrates the probability that the final recommendation
of each policy is the optimal one. The second bar group in (b) and (d) illustrates
the probability that the opportunity cost of each policy is the lowest.
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Goldstein with independent beliefs under a measurement budget five times the number of
alternatives.

We run each policy for 1000 times. In each run, we pre-generate all the observations and
share across different policies in order to make a fair comparison. We illustrate in the first
column of Figure 2 the mean opportunity cost and the standard deviation of each policy
over 1000 runs, with the opportunity cost (OCπ) defined as:

OCπ = max
x

µx − µxN ,

where xN = arg maxx θ
N
x .

In order to give a more comprehensive comparison of different policies, we also calculate
the probability that the final recommendation of each policy is the optimal one and the
probability that the opportunity cost of each policy is the lowest, as illustrated in the
figures on the right hand side of Figure 2.

The three criteria characterize the behavior of policies in different aspects. For example,
under AUF, if one cares about the average performance of the policy and its stability, SR
is the best choice concluding from Figure 2 (a). Yet, if one can only run one trial (as in
most cases of experimental science) and want to identify the best alternative, KG might be
a better choice since it has the highest probability of finding the optimal alternative. Or if
one can live with fairly good alternatives other than the optimal one, UCB-E could be the
choice (although it has to be carefully tuned).

One observation is that there is no universal best policy for all problem classes or under
all criteria. In practice, a useful guidance could be abstracting the real world problem and
running synthetic simulations to find the best simulated policy under some desired criterion
before conducting the real experiments.

7.3 Experiments with correlated beliefs

In this section, we exploit correlated beliefs between alternatives in order to strengthen
the effect of each measurement so that one measurement of some alternative can provide
information for other alternatives.

First, we present the performance of different policies as time goes by under AUF (θ2 =
0.5θ1) in Figure 3. We run each policy on 1000 different sample paths and compute the
mean OC obtained after each measurement. We tune zα for IE and α for UCB for N = 400
measurements and the optimal values are zα = 0.969 and α = 6.657. Since UCB-E needs
to measure each alternative once, we omit the OC for its first 100 (which is the number of
alternatives) steps. KG uses independent beliefs while KGCB, IE and Kriging start from
MLE fitted correlated beliefs. When incorporating correlated beliefs, a measurement of one
alternative tells us something about other alternatives. As a result, KGCB learns faster
than KG. We draw the conclusion that correlated beliefs make learning faster and make
learning possible for the case where the measurement budget is smaller (and potentially
much smaller) than the number of alternatives.

In order to better understand the behavior of each policy, a useful way is to examine
the sampling pattern of each policy. We present an example of the frequency of measuring
each alternative for each competing policy for Branin functions with a measurement budget
of 100. To take advantage of correlated beliefs, rather than measuring each alternative
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Figure 3: OC obtained by each policy after each measurement under AUF (θ2 = 0.5θ1).

once to initialize the empirical mean, we use the prior mean as the starting point and use
the posterior mean θn in place of the empirical mean µ̂n for UCB-E. In the left column
of Figure 4, the sampling pattern of each policy is displayed together with the contour of
the Branin objective function which exhibits one global maximum at (−3, 12) and other
two local maxima at (9, 3) and (16, 4). The frequency that each alternative is measured is
marked in numbers. The right column depicts the final prediction under each policy. All
the observations are pre-generated and shared for all policies. We see from the figures that
since KGCB and Kriging take correlation into consideration in the decision functions, they
need less exploration and rely on the correlation to provide information for less explored
alternatives. They quickly begin to focus on the alternatives that have the best values.
Yet Kriging wanders around local minima for a while before it heads toward the global
maximum. Note that the prediction of KGCB gives a good match in general. The function
value at the true maximum alternative is well approximated, while moderate error in the
estimate is located away from this region of interest. UCB-E is exploring more than neces-
sary and wasting time on less promising regions. But when the budget is big enough, the
exploration will contribute to better prediction of the surface, leading to a potentially larger
final outcome in the long run. Pure exploitation gets stuck in a seemingly good alternative
and the sampling pattern is not reasonable nor meaningful.

8. Numerical Experiments for Online Multi-armed Bandit Problems

In this section, we provide sample comparisons of different policies using the online objective
function. The performance measure that we use to evaluate a policy π in online setting is
R̄πN
N , where the pseudo-regret R̄πN is defined as

R̄πN = N max
x∈X

µx −
N∑
n=0

E[µXπ,n(sn)].

The opportunity cost (OC) between two policies in online setting is defined as the difference
of their pseudo-regrets.
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Figure 4: Left column: sampling distribution. Right column: posterior distribution.
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8.1 Experiments with independent beliefs

In real world problems, especially in experimental science, frequentist techniques cannot
incorporate prior knowledge from domain experts, relying instead on the training from vast
pools of data. This may be infeasible to perform in reality since running one experiment
might be very expensive. The advantage of a Bayesian approach is unarguable in such cases.
However, if we use MLE to fit the prior instead of using domain knowledge, it seems that
the comparisons are in favor of Bayesian approaches by using an extra 11×p measurements.
In order to make a seemingly more fair comparison in our synthetic experimental setting,
we also experiment with uninformative priors with no additional information provided for
Bayesian approach.

Tables 2, 3 and 4 provide comparisons of OLKG, IE with tuning, UCB-E with tuning,
UCB, KLUCB, pure exploration (EXPL) using the Bubeck problems with uninformative
prior. The measurement budgets are set to 10, 100 and 500 times the number of alternatives
of each problem class in Tables 2, 3 and 4, respectively. IE and UCB-E are carefully
tuned for each problem class. Under each problem class, we ran each policy for 1000
times. In each run, all the measurements are pre-generated and shared across all the
policies. For each policy we record the normalized opportunity cost between OLKG and
other competing policies, where the normalized opportunity cost is defined as the ratio

between the opportunity cost
R̄πN
N −

R̄OLKG
N
N and the range of the truth µ. Positive values

of OC indicate that the corresponding policy underperforms OLKG on average. Other
than the interest of average performance measured by pseudo-regret, only one sample path
will be realized in real world experiments and it is meaningful to find out which policy is
most likely to perform the best in one sample run. Thus we also report the probability
that each of the other policy outperforms (obtains a lower regret than) OLKG within 1000
realizations. Any policy can be set as a benchmark by placing it as the first policy in the
input spreadsheet.

We see from the three tables that the probability of any other policy that outperforms
OLKG is in general much less than 0.5. If this criterion is what an experimenter anticipates,
then OLKG is a safe choice in most situations. We then discuss the performance of each
policy in terms of OC. At the beginning of each trial, IE and UCB-E are more exploiting
than exploring while OLKG tends to explore before it moves toward the best estimates.
This contributes to good performance (measured by OC) of IE and UCB-E in Table 2
with a small measurement budget. The tuned values of parameters further sharpen this
effect by utilizing smaller values compared to those under larger measurement budgets as
reported in Table 5 which summarizes the optimally tuned values for each parameter. Since
UCB policies tend to explore more than necessary (which can be seen from the sampling
pattern, for example, Figure 4), the performance degenerates with a moderate measurement
budget as shown in Table 3. In this case, OLKG yields the best performance since after
an exploration period, it begins to focus on the alternatives that have the best estimates
while looking for alternatives whose estimates are less certain. Yet exploration benefits in
the long run. Thus the performance of UCB policies and IE improves if allowed to explore
for a sufficiently long time as reported in Table 4.
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Table 2: The difference between each policy and OLKG (OC), and the probability that
each policy outperforms OLKG, using uninformative priors with a measurement
budget 10 times the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 -0.031 0.43 -0.032 0.43 0.073 0.51 0.016 0.35 0.054 0.50 0.078 0.50
Bubeck2 -0.032 0.55 -0.031 0.52 0.097 0.30 0.025 0.43 0.070 0.35 0.105 0.29
Bubeck3 -0.000 0.29 0.006 0.30 0.068 0.26 0.021 0.53 0.020 0.34 0.095 0.23
Bubeck4 -0.004 0.39 -0.003 0.57 0.100 0.36 0.029 0.48 0.040 0.40 0.124 0.33
Bubeck5 -0.019 0.71 -0.020 0.71 0.213 0.01 0.018 0.48 0.087 0.11 0.255 0.00
Bubeck6 -0.034 0.49 -0.035 0.48 0.139 0.34 0.034 0.41 0.098 0.37 0.151 0.33
Bubeck7 -0.036 0.70 -0.036 0.71 0.065 0.17 0.009 0.48 0.043 0.22 0.073 0.15

Table 3: The difference between each policy and OLKG (OC), and the probability that
each policy outperforms OLKG, using uninformative priors with a measurement
budget 100 times the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 0.006 0.34 0.015 0.32 0.387 0.36 0.245 0.14 0.311 0.37 0.431 0.36
Bubeck2 0.006 0.31 0.017 0.35 0.399 0.09 0.226 0.17 0.309 0.22 0.458 0.06
Bubeck3 0.002 0.32 0.007 0.31 0.111 0.18 0.077 0.39 0.052 0.25 0.214 0.07
Bubeck4 -0.014 0.31 -0.005 0.30 0.232 0.27 0.156 0.32 0.114 0.30 0.365 0.17
Bubeck5 -0.003 0.39 0.003 0.34 0.228 0.01 0.064 0.26 0.094 0.15 0.425 0.00
Bubeck6 0.014 0.38 0.025 0.38 0.522 0.10 0.274 0.12 0.380 0.10 0.619 0.09
Bubeck7 0.015 0.52 0.016 0.44 0.260 0.00 0.158 0.21 0.215 0.09 0.303 0.00

Table 4: The difference between each policy and OLKG (OC), and the probability that
each policy outperforms OLKG, using uninformative priors with a measurement
budget 500 times the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 -0.105 0.30 -0.098 0.30 0.296 0.26 0.288 0.10 0.175 0.27 0.634 0.26
Bubeck2 -0.089 0.28 -0.080 0.26 0.253 0.31 0.226 0.15 0.139 0.32 0.609 0.02
Bubeck3 -0.009 0.34 -0.006 0.31 0.069 0.18 0.077 0.39 0.035 0.29 0.268 0.03
Bubeck4 -0.075 0.28 -0.069 0.27 0.091 0.26 0.174 0.24 0.014 0.26 0.462 0.12
Bubeck5 -0.030 0.33 -0.026 0.31 0.066 0.28 0.050 0.23 0.012 0.34 0.462 0.00
Bubeck6 -0.024 0.26 -0.022 0.24 0.310 0.05 0.227 0.16 0.190 0.06 0.771 0.05
Bubeck7 -0.045 0.33 -0.045 0.34 0.262 0.11 0.152 0.23 0.200 0.27 0.430 0.00
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Table 5: Tuned parameters of IE and UCB-E under different problem classes and mea-
surement budgets. The second row indicates the ratio between the measurement
budget and the number of alternatives.

Problem Class
IE UCBE

10 100 500 10 100 500

Bubeck1 0.0007079 1.295 2.036 0.0008991 0.3934 1.103
Bubeck2 0.1675 1.295 2.169 0.002359 0.337 0.9063
Bubeck3 0.8991 1.395 1.878 0.1206 0.4562 0.8635
Bubeck4 0.8991 1.571 2.196 0.004392 0.5332 1.197
Bubeck5 0.004566 1.395 2.169 0.0003102 0.3518 1.002
Bubeck6 0.09063 1.197 1.642 0.000505 0.3201 0.7748
Bubeck7 0.002773 0.8991 1.878 0.0005936 0.2169 0.8007

8.2 Experiments with correlated beliefs

In this section, we summarize numerical experiments on problems with correlated beliefs
between different policies, including OLKG, IE with tuning, UCBE, UCBV, Kriging, UCB,
Thompson Sampling (TS) and pure exploration (EXPL). To take advantage of correlated
beliefs, we use the prior mean as the starting point and use posterior mean θn in place of
the empirical mean for UCBV and UCB policies.

In order to gain a good understanding of the performance of the policies, MOLTE
produces histograms illustrating the distribution of the difference between the normalized
OC of a benchmark policy and either of the other policies over 1000 runs. Whichever policy
that is listed as the first policy is treated as the benchmark. The measurement budget
is set to 0.2 times the number of alternatives of each problem class. Figure 4 compares
the performance of several policies under various problem classes with different benchmark
policies. A distribution centered around a positive value implies the policy underperforms
the benchmark policy, while one centered around a negative number means the policy
outperforms the benchmark. For example, Figure 4(a) compares the performance of UCBV,
OLKG, IE, TS and EXPL under Goldstein with UCBV as the benchmark policy. We can
see that the tuned IE and OLKG are outperforming UCBV and others are underperforming.

We close this section by providing more comparisons between other policies with OLKG
under various problem classes. The measurement budget is set to 0.2 times the number
of alternatives of each problem class. Table 6 reports the normalized mean OCs and the
probability that each of the other policy outperforms OLKG under 1000 runs. IE and
UCB-E are carefully tuned for each problem classes with the optimal value shown in Table
7. IE and UCB-E after tuning works generally well. Yet the optimal values of the tuned
parameters are quite different for different problems as shown in Table 5 and 7. In addition,
the performance of the policies are sensitive to the value of the tunable parameters. In light
of this issue, we can conclude that OLKG and Kriging have one attractive advantage over
IE and UCB-E: they require no tuning at all, while yielding comparable performance to a
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Figure 4: Normalized opportunity cost between different policies.

Table 6: Comparisons with OLKG for correlated beliefs with the measurement 0.2 times
the number of alternatives of each problem class.

Problem Class
IE UCBE UCBV Kriging TS EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Goldstein -0.061 0.81 -0.097 0.92 -0.003 0.45 -0.031 0.73 0.100 0.09 0.041 0.16
AUF HNoise 0.058 0.40 0.022 0.43 0.037 0.54 0.031 0.39 0.073 0.22 0.047 0.48
AUF MNoise 0.043 0.29 0.027 0.42 0.343 0.21 0.023 0.28 0.173 0.21 -0.057 0.52
AUF LNoise -0.043 0.73 -0.013 0.64 0.053 0.51 0.005 0.53 0.038 0.20 0.003 0.62

Branin -0.027 0.76 0.025 0.24 0.026 0.26 0.004 0.54 0.041 0.07 0.123 0.00
Ackley 0.007 0.42 0.04 0.41 0.106 0.20 0.037 0.42 0.100 0.23 0.344 0.00

HyperEllipsoid -0.059 0.73 0.064 0.12 0.08 0.07 0.146 0.22 0.011 0.38 0.243 0.03
Pinter -0.028 0.56 -0.003 0.51 0.029 0.42 -0.055 0.65 0.122 0.19 0.177 0.04

Rastrigin -0.082 0.70 -0.03 0.56 0.162 0.04 -0.026 0.57 0.136 0.08 0.203 0.01

finely tuned IE or UCB-E policy. A detailed study on the issue of tuning is presented in
Section 9.1.

Table 6 together with the comparisons shown in previous sections suggests that there is
no universal best policy for all problem classes and one could possibly design toy problems
for either policy to perform the best. Similar observations have also been reported by
Kuleshov and Precup (2000) for different bandit problems on different metrics. Besides,
there are theoretical guarantees proved for each of the policy mentioned above, but the
existence of these bounds does not appear to provide reliable guidance regarding which
policy works best. An asymptotic bound does not provide any assurance that an algorithm
will work well on a particular problem in finite time. In practice, we believe that more
useful guidance could be obtained by abstracting a real world problem, running simulations
and using these to indicate which policy works best.
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Table 7: Tuned parameters of IE and UCB-E under different problem classes.
Problem Class IE UCBE

Goldstein 0.009939 2571
AUF HNoise 0.01497 0.319
AUF MNoise 0.01871 1.591
AUF LNoise 0.01095 6.835

Branin 0.2694 0.0003664
Ackley 1.197 1.329

HyperEllipsoid 0.8991 21.21
Pinter 0.9989 0.0001636

Rastrigin 0.2086 0.001476

9. Discussion

We close our presentation by discussing two issues that tend to be overlooked in comparisons
of learning algorithms: the tuning of heuristic parameters (widely used in frequentist UCB
policies) and priors (used in all Bayesian policies such as knowledge gradient).

9.1 The issue of tuning

Previous experimental results show that tuned version of IE and UCB-E yield good per-
formance in general and yet the optimal value for IE and UCB-E may be highly problem
dependent. Our experiments also suggest that the performance of a policy is sensitive to
the value of the tuned parameter. For example, Figure 8 provides the comparisons between
the performances of IE with different parameter values (provided in the parentheses) with
the online objective function under various problem classes. The measurement budget is set
to five times the number of alternatives for each problem class experimented with indepen-
dent beliefs and 0.3 times the number of alternatives for each problem class experimented
with correlated beliefs. ’OC’ is the mean opportunity cost comparing tuned IE with others
OCIE−OCπ, with a positive value indicating a win for tuned IE. ‘Prob.’ is the probability
that other policies outperform the tuned IE. We see from the table that zα is highly problem
dependent and the performance degrades quickly away from the optimal value. For some
experimental applications, tuning can require running physical experiments, which may be
very expensive or even entirely infeasible.

9.2 The issue of constructing priors

In MOLTE, we use MLE to fit the prior for test functions based on sampling measurements,
which seems like a tuning process. Yet designing a Bayesian prior is not necessarily the same
as tuning parameters. In real world problems, such as applications in experimental sciences
(although there are many other examples from other problem domains), the Bayesian prior
may be based on an understanding of the physical system and might be based on the
underlying chemistry/physics of the problem, a review of the literature, or past experience.
This information might be qualitative in nature and is not easily incorporated by frequentist
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.

Problem Class B z∗α
IE(1) IE(2) IE(3) IE(4) IE(5)

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck4 I 2.086 0.002 0.40 0.001 0.45 0.002 0.46 0.015 0.47 0.017 0.47
Bubeck6 I 2.01 0.003 0.44 0.001 0.48 0.004 0.43 0.013 0.23 0.028 0.13

AUF MNoise I 1.1305 0.004 0.38 0.041 0.04 0.071 0.00 0.095 0.00 0.114 0.09
CamelBack I 1.295 0.006 0.35 0.069 0.32 0.108 0.03 0.145 0.00 0.172 0.00
AUF LNoise C 0.9498 0.043 0.00 0.080 0.00 0.105 0.00 0.123 0.03 0.136 0.00

Branin C 0.4438 0.001 0.25 0.005 0.32 0.014 0.07 0.023 0.01 0.032 0.01
Goldstein C 0.079 0.071 0.00 0.090 0.00 0.101 0.00 0.108 0.00 0.113 0.00

Rosenbrock C 0.9989 0.007 0.18 0.060 0.08 0.093 0.05 0.120 0.04 0.143 0.03

Table 8: Comparisons between tuned IE and IEs with fixed parameter values. The second
column indicates the belief model, with I for independent belief and C for corre-
lated belief. z∗α is the tuned value for each problem class. The number included in
the parenthesis is the parameter value used by each IE policy.

approaches. When this domain knowledgeable is available, and especially when experiments
are expensive, Bayesian approaches are strongly preferred.

10. Conclusion

In this paper we present the first finite-time bounds for the knowledge gradient policy
applied to offline ranking and selection problems from two directions. First by reducing the
Bayesian ranking and selection problems to the adaptive stochastic multi-set maximization
problems, we show that the KG policy inherits precisely the performance guarantees of the
greedy algorithm for classic submodular maximization problems if the utility function is
adaptive submodular. We also analyze the prior-optimality of the KG policy under a weaker
assumption on the value of information to provide another insight into the performance of
the KG policy. We point out that in general, submodularity does not hold for arbitrary
value functions and analyze the submodularity of the two-alternative case. We introduce
a new modular optimal learning testing environment (MOLTE) and present its ability to
compare different policies under various problem classes. We draw the conclusion that there
is no universal best policy for all problem classes, and bounds, by themselves, do not provide
reliable guidance to the policy that will work the best. We offer MOLTE as a public-domain
test environment to facilitate the process of more comprehensive comparisons, on a broader
set of test problems and a broader set of policies, so that researchers can more easily draw
insights into the behavior of different policies in the context of different problem classes.
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Appendix A: Proof of Lemma 5.

For any ψ with |ψ| = n, we consider the resulting knowledge state Sn = (θnx , β
n
x )x∈X . Since

σW 6= 0, there exists such ψ that maxx θ
n
x > maxx 6=x′ θ

n
x with positive probability. Now

consider another realization ψ′ with dom(ψ′) = dom(ψ) ∪ {x2}, where x2 is the second
largest alternative of θnx . We denote the observation of x2 in ψ′ as W2 and the resulting
Sn+1 as (θn+1

x , βn+1
x )x∈X according to Bayes’ rule. The knowledge gradient ∆(x|ψ) = νKG,n

x

can be analytically expressed by

νKG,n
x = σ̃nxf(ζnx ),

where σ̃nx =
√

(βnx )−1 − (βnx + βW )−1, ζnx = −
∣∣∣ θnx−maxx′ 6=x θ

n
x′

σ̃nx

∣∣∣ and f(ζ) = ζΦ(ζ) + φ(ζ).

Φ(ζ) and φ(ζ) are, respectively, the cumulative standard normal distribution the standard
normal density (Frazier et al., 2008). We first notice that f ′(ζ) = Φ(ζ) ≥ 0 for any ζ ∈ R
so that f(ζ) is non-decreasing. We next compare νKG,n

x1 and νKG,n+1
x1 for x1 = arg maxx θ

n
x .

According to Bayes’ rule, the precision β of x2 changes only when x2 is measured. So we
have σ̃nx = σ̃n+1

x . Similarly we have all the θn+1
x unchanged except for alternative x2. By

some algebra, it can be shown that for any W2 such that θnx2 < W2 ≤
βnx2
βW

(θnx1 − θ
n
x2) + θnx1 ,

we have νKG,n
x1 < νKG,n+1

x1 . Since θnx1 > θnx2 by construction, such W2 can be obtained with
positive probability.

Appendix B: Proof of Proposition 1.

In this appendix, we prove the properties of submodular multi-set functions. We prove the
equivalence by showing 2)⇒ 1)⇒ 3)⇒ 4)⇒ 2).

• 2) ⇒ 1). Take S ⊆ T and T − S = {x1, x2, ..., xr}. Then from 3) we have ρx(S) ≥
ρx(S ∪ {x1}), ρx(S ∪ {x1}) ≥ ρx(S ∪ {x1, x2}),..., ρx(S ∪ {x1, x2, ..., xr−1}) ≥ ρx(T ).
Summing these r inequalities yields 1).

• 1)⇒ 3). For arbitrary S and T with T−S = {x1, x2, ..., xr} and S−T = {y1, y2, ..., yq},
from 1) we have

g(S ∪ T )− g(S) =
r∑
t=1

[g(S ∪ {x1, ..., xt})− g(S ∪ {x1, ..., xt−1})]

=

r∑
t=1

ρxt(S ∪ {x1, ..., xt−1})

≤
r∑
t=1

ρxt(S) =
∑

x∈T−S
ρx(S). (10)
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And

g(S ∪ T )− g(T ) =

q∑
t=1

[g(T ∪ {y1, ..., yt})− g(T ∪ {y1, ..., yt−1})]

=

q∑
t=1

ρyt(T ∪ {y1, ..., yt} − {yt}})

≥
q∑
t=1

ρyt(T ∪ S − {yt}) =
∑

x∈S−T
ρx(S ∪ T − {x}). (11)

Subtracting equation (11) from equation (10) we get 3).

• 3)⇒ 4). If S ⊆ T , S − T = ∅, and therefore the last term in 3) vanishes.

• 4)⇒ 2). Substitute T = S ∪ {x, y} into 4) to obtain

g(S ∪ {x, y}) ≤ g(S) + ρx(S) + ρy(S) = ρx(S) + g(S ∪ {y}).

Rearrange this inequality, we get

ρx(S ∪ {y}) = g(S ∪ {x, y})− g(S ∪ {y} ≤ ρx(S).

Appendix C: Proof of Proposition 12.

Let z∗(Z, π,Φ) be the next adaptive greedy choice that maximizes the expected marginal
increment given that policy π has generated Z. We first show that

F π2@π1 ≤ F π2 + n1

∑
Z∈Zn

P(π2  Z)
(
E
[
v̂(Z ∪ {z∗(Z, π2,Φ)},Φ)

]
− v(Z)

)
for all policies π1 with a measurement budget n1 and π2 with a budget n2 under any prior
and probability distribution that describes a measurement.
Proof Let π[j] denote the first j measurement decisions under some policy π. First of all
we break F π2@π1 − F π2 into n1 consecutive differences,

F π2@π1 − F π2 =

n1∑
j=1

(
F π2@π

[j]
1 − F π2@π

[j−1]
1

)
.

Similar to what we did in the last lemma, for each difference we have

F π2@π
[j]
1 − F π2@π

[j−1]
1

=
∑

Z1∈Zn2+j
P(π2@π

[j]
1  Z1)v(Z1)−

∑
Z2∈Zn2+j−1

P(π2@π
[j−1]
1  Z2)v(Z2)

=
∑

Z1∈Zn2+j

∑
Z2∈Zn2+j−1,Z2∪Z3=Z1

P(π2@π
[j−1]
1  Z2)P(π

{j}
1  Z3|π2@π

[j−1]
1  Z2)v(Z1)

−
∑

Z2∈Zn2+j−1

∑
Z3∈Z1

P(π2@π
[j−1]
1  Z2)P(π

{j}
1  Z3|π2@π

[j−1]
1  Z2)v(Z2)

=
∑

Z2∈Zn2+j−1

∑
Z3∈Z1

P(π2@π
[j−1]
1  Z2)P(π

{j}
1  Z3|π2@π

[j−1]
1  Z2)

(
v(Z2 ∪ Z3)− v(Z2)

)
.
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Now we consider all possible pair (Z4, Z5) such that Z4 ∈ Zn2 , Z5 ∈ Zj−1 and Z4∪Z5 = Z2.

Notice that the policy π2@π
[j]
1 employs a fresh start at the time n2, therefore the events

before and after time n2 are independent. Then we have∑
Z2∈Zn2+j−1

∑
Z3∈Z1

P(π2@π
[j−1]
1  Z2)P(π

{j}
1  Z3|π2@π

[j−1]
1  Z2)

(
v(Z2 ∪ Z3)− v(Z2)

)
=

∑
Z2∈Zn2+j−1

∑
Z4∪Z5=Z2

∑
Z3∈Z1

P(π2  Z4)P(π
[j−1]
1  Z5)P(π

{j}
1  Z3|π2@π

[j−1]
1  Z2)

×
(
v(Z2 ∪ Z3)− v(Z2)

)
.

Based on the submodular property of function v, we have

v(Z2 ∪ Z3)− v(Z2) ≤ v(Z4 ∪ Z3)− v(Z4).

Then from the definition of z∗, we have

v(Z4 ∪ Z3)− v(Z4) = E[v̂(Z4 ∪ Z3,Φ)− v̂(Z4,Φ)]

= EΦ

[
E[v̂(Z4 ∪ Z3,Φ)− v̂(Z4,Φ)|Zπ2(Φ) = Z4]

]
≤ EΦ

[
E[v̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v̂(Z4,Φ)|Zπ2(Φ) = Z4]

]
= EΦ[v̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)]− v(Z4).

Combining the last two inequalities, we have∑
Z2∈Zn2+j−1

∑
Z4∪Z5=Z2

∑
Z3∈Z1

P(π2  Z4)P(π
[j−1]
1  Z5)P(π

{j}
1  Z3|π2@π

[j−1]
1  Z2)

×
(
v(Z2 ∪ Z3)− v(Z2)

)
≤

∑
Z2∈Zn2+j−1

∑
Z4∪Z5=Z2

∑
Z3∈Z1

P(π2  Z4)P(π
[j−1]
1  Z5)P(π

{j}
1  Z3|π2@π

[j−1]
1  Z2)

×
(
Ev̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v(Z4)

)
=

∑
Z2∈Zn2+j−1

∑
Z4∪Z5=Z2

P(π2  Z4)P(π
[j−1]
1  Z5)

(
Ev̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v(Z4)

)
=

∑
Z4∈Zn2

∑
Z5∈Zj−1

P(π2  Z4)P(π
[j−1]
1  Z5)

(
Ev̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v(Z4)

)
=

∑
Z4∈Zn2

P(π2  Z4)
(
Ev̂(Z4 ∪ {z∗(Z4, π2,Φ)},Φ)− v(Z4)

)
,

and this ends the proof.

Set π1 = π∗ and π2 = KG[n−1] in Lemma 11 and the above proposition then what left
to show is that

FKG[n]

− FKG[n−1]

≥
∑
Z∈Zn

P(π2  Z)
(
Ev̂(Z ∪ {z∗(Z,KG[n−1],Φ)},Φ)− v(Z)

)
.
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From the definition, the left hand side of the last equation:

FKG[n]

− FKG[n−1]

=
∑

Z1∈Zn+1

P(KG Z1)v(Z1)−
∑

Z2∈Zn
P(KG Z2)v(Z2)

=
∑

Z2∈Zn

∑
Z3∈Z1

P(KG Z2)P(KG Z3|KG Z2)v(Z2 ∪ Z3)

−
∑

Z2∈Zn
P(KG Z2)v(Z2).

Now it is enough to show that∑
Z3∈Z1

P(KG Z3|KG Z2)v(Z2∪Z3)−v(Z2) ≥ Ev̂(Z2∪{z∗(Z2,KG[n−1],Φ)},Φ)−v(Z2).

We could group together the partial realizations ψ that lead to the same single step optimal
decision z∗(Z2,KG[n−1],Φ), and then the last inequality follows from the adaptive greedy
nature of the KG policy.

Appendix D: Proof of Theorem 16.

First of all, we consider the case when f is a two dimensional function and the four points
we pick form a rectangle. Assume f(x, y) is submodular. For any given point (x0, y0),
we have f(x0 + t + s, y0) − f(x0 + t, y0) ≤ f(x0 + s, y0) − f(x0, y0) and f(x0 + t, y0) −
f(x0, y0) ≤ f(x0 + t, y0 + s) − f(x0, y0 + s) for any s, t > 0. From the first inequality we
get fxx(x0, y0) ≤ 0 directly. From the second inequality, we have fx(x0, y0) ≤ fx(x0, y0 + s),
and finally fx,y(x0, y0) ≤ 0. On the other hand, if we have fxy ≤ 0, fxx ≤ 0, for any (x, y),
then due to the fact that f(x0 + t, y0 + s) − f(x0 + t, y0) −

(
f(x0, y0 + s) − f(x0, y0)

)
=∫ x0+t

x0

∫ y0+s
y0

fxy(u, v)dudv ≤ 0, f(x0 + t+ s, y0)−f(x0 + t, y0)−
(
f(x0 + s, y0)−f(x0, y0)

)
=

stfxx(x0 + ξ, y0) ≤ 0, we obtain the submodularity.
We next consider the general case when f is n dimensional and the four points only form

a parallelogram. Since the difference between the two marginal values can be decomposed
into summation of several marginal value differences whose reference points form rectangles
that parallel to coordinate planes, the result for the general case is straightforward from
the two dimensional case.
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