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Schneider National needed a simulation model that would capture the dynamics of its fleet of over 6,000 long-
haul drivers to determine where the company should hire new drivers, estimate the impact of changes in work
rules, find the best way to manage Canadian drivers, and experiment with new ways to get drivers home.
It needed a model that could perform as well as its experienced team of dispatchers and fleet managers. In
developing our model, we had to simulate drivers and loads at a high level of detail, capturing both complex
dynamics and multiple forms of uncertainty. We used approximate dynamic programming to produce realistic,
high-quality decisions that capture the ability of dispatchers to anticipate the future impact of decisions. The
resulting model closely calibrated against Schneider’s historical performance, giving the company the confidence
to base major policy decisions on studies performed using the model. These policy decisions helped Schneider
to avoid costs of $30 million by identifying problems with a new driver-management policy, achieve annual
savings of $5 million by identifying the best driver domiciles, reduce the number of late deliveries by more
than 50 percent by analyzing service commitment policies, and save $3.8 million annually by reducing training
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expenses for new border-crossing regulations.
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Schneider National is one of the three largest
truckload motor carriers in the United States. Over
6,000 of its 15,000 drivers participate in moving one-
way truckloads, typically over distances ranging from
several hundred miles to several thousand miles.
These drivers often spend two weeks or more away
from home, a job characteristic that contributes to
driver turnover of 100 percent or more at most long-
haul carriers. Schneider wanted a model to allow it
to design business policies that would, among other
objectives, help its drivers get home on time on a reg-
ular basis. To meet this need, Schneider contracted
with CASTLE Laboratory at Princeton University to
develop a model that would handle the high level
of detail required for these studies and would also
capture the intelligence of an experienced team of
dispatchers.

Schneider needed a model that would help it
answer several questions. What would be the impact

of changes in federal regulations governing drivers?
What would be the best way to manage drivers based
in Canada? Where should new drivers be hired? How
many teams (i.e., drivers who work in pairs that can
operate 20 hours each day) should the company main-
tain? Could Schneider make commitments to drivers
on when they will be given time at home?

To produce believable results, our model had to
closely match actual fleet performance, correspond-
ing with the decisions of a skilled group of dispatch-
ers supported by state-of-the-art planning systems. To
capture driver behavior in a realistic way, it had to
model drivers using 15 separate attributes; to cap-
ture driver productivity, it had to represent all work
rules. Our model also had to consider customer ser-
vice requirements and other operational details, such
as driver relays and the proper handling of geograph-
ically constrained drivers (e.g., Canadian and regional
drivers).
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Perhaps our biggest challenge was the requirement
to design the model such that it could make real-
time decisions that could anticipate their impact on
the future. For example, if the model assigns a driver
domiciled in one city to a load terminating in another
city, will that driver be able to get home within a
reasonable time? Should a team, which is best used
on long loads because teams can move more miles
per day, be sent to a location that primarily produces
short loads? What if some of these short loads move
to a location that produces longer loads?

Dispatchers clearly think about future impacts.
Thus, it became clear that optimizing decisions at
a point in time would not be sufficient; we had to
optimize decisions over time. If we formulated the
problem as a mathematical optimization problem, we
would generate a linear program with literally hun-
dreds of millions of rows (constraints) and billions of
columns (i.e., decisions to assign drivers to loads over
several weeks).

We knew that even if we could solve such a
model, we would be ignoring the inherent uncer-
tainty of truckload operations. The customer demands
that would arise randomly over time were our most
important sources of uncertainty, complicating the
problem of getting drivers home. For example, we
would like to send a Virginia-based driver to Chicago
knowing that a load that would take that driver home
would be waiting there; however, this is simply not
how truckload operations work. Customers continu-
ally make new requests, and uncertainty in loading,
unloading, and transit times makes it impossible to
predict the availability of drivers and loads in the
future.

We formulated the problem as a stochastic
optimization model and used the modeling and algo-
rithmic framework of approximate dynamic program-
ming (ADP), a simulation-based type of optimization
algorithm that uses iterative learning to optimize
complex, stochastic problems. The extensive literature
on ADP (including its sister communities, which we
refer to by names such as reinforcement learning and
neurodynamic programming) has largely ignored the
challenges of high-dimensional decision variables. For
this project, we had to develop methods to handle
driver assignment problems with up to 60,000 vari-
ables in each period, millions of random variables (the

demands), and a state variable with a virtually infinite
number of dimensions.

To use a trite expression, necessity is the mother
of invention; we knew this project would require us
to develop a novel strategy to solve the problem.
Our solution involved combining results from three
PhD dissertations—Spivey (2001), Marar (2002), and
George (2005)—to create a model that could handle
the high level of detail while also producing deci-
sions that balance current and future rewards. Equally
important was the need to calibrate the model against
historical performance, a dimension that the academic
optimization community has largely ignored. Simao
et al. (2009) give a detailed technical description of
the model and the algorithm.

The Operational Problem

Truckload operations sound deceptively simple. A set
of drivers is available and must be assigned to a set
of loads. When a driver is assigned to a load, the
driver moves to the shipper, picks up a full truckload
of freight, and delivers it. When the truck is empty,
the trucking company must find a new load for the
driver to deliver.

In reality, truckload operations are far more com-
plex. Drivers are described by a multidimensional
attribute vector that can include many characteristics.
These include current location (destination location
for an en route driver), estimated time of arrival (if the
driver is currently moving), domicile (driver’s home
location), driver type (team or single driver, driver
using company-owned equipment, owner operator,
and other characteristics that describe drivers who
move primarily within a single region), days since last
visit to home, next scheduled time or desired time at
home, road hours (number of hours driven today),
duty hours (number of hours the driver has been on
duty today), and driver’s duty hours over each of the
previous seven days (to enforce the 70-duty-hours-in-
eight-days rule). Loads also have a complex vector of
attributes that capture pickup and delivery windows,
nature of the pickup and delivery appointments, and
the load priority.

When assigning a driver to a load, the dispatcher
must consider factors such as the number of miles
the truck must move empty to pick up the load,
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the driver’s ability to deliver the load on time, the
driver’s nationality, the appropriateness of the load
length for this driver type (e.g., teams are better used
on long loads), the driver’s ability to get home on
time after delivering the load, and the productiv-
ity (miles per day) of this driver type. Dispatchers
sometimes use complex strategies, such as swapping
drivers between loads en route and relaying loads
(dropping the loads at a location other than their des-
tination), so that a more appropriate driver can com-
plete the move.

Dispatchers want to minimize empty miles and
move loads on time; however, they also must manage
other goals. Driver turnover is a major consideration.
Two objectives that are important to dispatchers are
(1) getting drivers home on time (especially over a
weekend) and (2) giving each driver a specific num-
ber of miles to move each week to ensure income
for the driver. Schneider can impact the ability of
dispatchers to get drivers home both through the
choice of loads assigned to drivers (which requires
thinking about the future) and by choosing where to
hire drivers. Schneider was also interested in making
advance commitments to drivers; however, the com-
pany wanted to ensure that it could meet its commit-
ments at a reasonable cost.

The issue of maintaining driver productivity (mea-
sured by the average length of the loads to which a
driver was assigned) was more complex. Teams must
drive more miles because the work must generate
income for each team member. Drivers who own their
own tractors need more miles (but fewer miles than
teams) because they must cover lease payments on
their tractors. Single drivers using company-owned
equipment need the fewest miles. Drivers who are
assigned fewer miles than they normally expect may
quit (and usually do), forcing the company to hire
and train new drivers. However, there are no strict
rules on the length of a particular load given to any
driver. A team may be given a short load that repo-
sitions that team to a location that has long loads.
In addition, moving a short load is better than mov-
ing nothing. What matters to drivers is the average
number of miles they drive each week. If the model
deviates significantly from historical averages, then it
will be impossible to implement these policies with-
out risking much higher driver turnover, something

that we are simply not able to capture. For this reason,
Schneider decided that the model had to maintain key
driver metrics to produce a realistic simulation.

Getting drivers home on time and maintaining a
targeted length of haul were two critical issues in our
development of the model. However, we also had to
consider on-time service, both when picking up and
delivering a load. The model had to carefully observe
regulations on the number of hours a driver could
move each day; most notoriously, it had to consider
the infamous 70-duty-hours-in-eight-days rule, which
often limited a driver to substantially fewer than the
allowed 14 hours on duty in one day.

To produce realistic results, we had to incorporate
some of the more complex operating strategies used
by the dispatchers, who struggled to meet numer-
ous goals while keeping costs low. For example, we
could not schedule a driver to move an empty truck
300 miles just to pick up a load that would take that
driver near home. Instead, a dispatcher might assign
driver A in Baltimore to move load 1 going to Dallas
and driver B in Atlanta to move load 2 going to
Chicago, recognizing that driver A needs to get home
to Chicago. It might be possible to develop a schedule
such that these drivers meet and swap loads, allow-
ing driver A to finish moving the load to Chicago and
get home on time with little or no additional empty-
movement costs.

The Optimization Challenge

The optimization problem requires that we maxi-
mize the total revenue from moving loads (we do
not require that all loads be covered) minus the
cost of moving trucks to pick up and deliver loads.
The model also includes a number of bonuses and
penalties to encourage appropriate behaviors. These
include penalties for early or late pickups and deliv-
eries, bonuses for assigning Canada-based drivers to
loads that return to Canada, bonuses for getting a
driver home on time (in particular, on a weekend),
and bonuses and penalties for using team drivers, for
example, on longer loads. Of course, we cannot assign
a driver to two loads at the same time, and each load
can be covered by at most one driver. More subtly,
in assigning drivers to loads, we are not allowed to
use information that has not yet become known about
future loads.
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Drivers

Figure 1: The diagram depicts an assignment model for assigning known
drivers to known loads at a point in time.

Two optimization models are widely used in freight
transportation. The first is a simple assignment prob-
lem in which resources (resources are truck drivers in
our situation; they might be freight cars, locomotives,
or planes in other situations) are assigned to tasks
(loads of freight) (see Figure 1). This model represents
every driver and load individually, making it possible
to capture the attributes of each driver and load at a
high level of detail at a point in time. However, at this
point in time, the model cannot capture the impact of
decisions about the future.

The second modeling strategy, and the most com-
mon way of modeling activities into the future, is
to use a time-space network (see Figure 2). In this
model, resources are represented by their location at
a point in time. This model, which assumes that all
resources at the same location are identical, is useful
when modeling fleets of identical trailers; however, in

Time

Space

——> Loaded move
__________ > Empty move

Figure 2: The diagram depicts a classic time-space network, capturing
loaded movements (solid arcs) and empty movements (dashed arcs)
between different locations over time.

practice, the equipment usually differs in size (e.g.,
older 45-foot trailers, the more common 48-foot trail-
ers, and 53-foot trailers) and capability (e.g., refrig-
eration or special shock absorbers for more delicate
freight).

We can handle different types of equipment if we
use a multicommodity network-flow model (see Fig-
ure 3). Imagine that we are flowing each equipment
type over its own time-space network, except where
a loaded movement can be moved by more than
one equipment type. These problems become hard
to solve because we are only interested in integer
solutions; i.e., we cannot assign half of a driver to a
load. Modern solvers, such as CPLEX, have improved
dramatically in their ability to handle large integer

Commodities

Figure 3: The diagram depicts a multicommodity flow problem defined
over a time-space network in which we have represented three different
types of equipment.
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programming problems; however, problems such as
these can have hundreds of thousands of integer vari-
ables. Despite this large size, we are still not even
close to modeling the real problem.

If we discretize the country into 100 regions (which
is common for truckload motor carriers), and if we
have only one equipment type, then our time-space
diagram (see Figure 2) would have 100 nodes per
period. If we have five types of equipment, our
multicommodity network would have 500 nodes per
period. If we model individual drivers and capture
only 100 locations, five driver types, 100 home domi-
ciles, and up to 30 days since the last visit to home,
we already have 1.5 million nodes per period. If we
try to capture all the attributes, the number of possi-
bilities is effectively infinite.

The complexity of the problem arises when we
combine the detailed vector of attributes required to
model a driver with the need to make decisions that
anticipate the future impact of the decisions. Fig-
ure 4 illustrates an initial possible assignment of five
drivers to five loads. Focus now on a single driver
with attribute vector a;. This driver might be assigned
to each of the five loads, creating a new driver in the
future; this new driver has attributes that depend on
the initial attribute vector a;, along with the character-
istics of each load. To know if we should assign our
driver to each of these five loads, we have to think

Future potential
drivers

Loads

Drivers

Figure 4: The diagram illustrates the growth in the number of potential
drivers in the future when we consider possible assignments over time.

about what this particular driver might do after com-
pleting each of these five loads (and so on and so on).
If we extend this logic over the course of a month in
which a driver might be expected to handle 12 loads,
we might create about 240 million (5 = 2.44 x 10%)
potential future drivers. Now multiply 240 million by
the 6,000 drivers in our fleet (it is virtually impossi-
ble to have two drivers with identical attributes). The
resulting network would have over 1.4 trillion nodes
per time period.

This problem as stated is difficult enough; how-
ever, we now must also introduce the dimension of
uncertainty. Customer demands, which come in on a
rolling basis, are the most significant sources of uncer-
tainty in truckload trucking. In addition, we must
capture randomness in travel times. It is easy to claim
that because of the uncertainty, we do not have to
look into the future; however, our work demonstrates
that to accurately capture the behavior of Schneider’s
experienced dispatchers, thinking about the future
impact of a decision is critical. Furthermore, we must
realize that we will need the marginal value of a
driver over the entire simulation.

The presence of uncertainty guided us to an elegant
and practical solution. Even small versions of this
problem cannot be solved exactly using any standard
stochastic optimization framework. For this reason,
we turned to the modeling and algorithmic frame-
work of ADP, which offers both a rigorous mathe-
matical foundation and the property of being very
intuitive. We start with the simple concept of solv-
ing a sequence of simple assignment problems (see
Figure 1). After assigning drivers to loads, we simu-
late random travel times and new loads, advance the
clock, and solve the problem again. Of course, if we
do only this, we would be simulating only a simple
myopic policy that provides none of the important
qualities we need to solve this problem.

Instead, we solve a somewhat modified assignment
problem. Rather than only assigning drivers to loads,
we modify the assignment problem to capture an
approximate value of drivers in the future. Figure 5
illustrates this concept. We start with the same assign-
ment problem shown in Figure 1; however, we now
add an approximation of the value of a driver after
completing each load. Therefore, if we are considering
assigning the driver with attribute vector a5 to load 1,
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Value of we would obtain a driver with attribute vector ay;,
Drivers Loads glrévg o with an approximate value of 0(a},). We estimate the
value 0(a3,) by using the marginal value of drivers in

v (a31) the future.

This simple concept introduces some technical com-
plications, which Simao et al. (2009) summarize in
more detail. First, we might never have assigned the
driver with attribute a; to load 1, which means that
we were never allowed to observe a driver with
attribute a3, in the future. Instead, we view the prob-
lem of estimating the value 0¥(a}) as a statistical
exercise in which we need an estimate ©(a) for any
attribute a. Although we can present this as a sim-
ple exercise in statistical estimation, estimating these
values introduces enough issues to fill a doctoral dis-
sertation and several research papers. For example,
the value of a driver at one point in time depends
on the value of drivers in the future, which are also
approximations. In addition, a characteristic of our
problem is that many drivers live in some parts of the
country (e.g., lllinois and Georgia) and relatively few
drivers live in other locations (e.g., South Dakota and
Figure 5: We show the driver assignment problem with the approximate ~ 1Nevada). We require methods that allow us to take
value of drivers in the future. advantage of the large number of observations in the

more active parts of the country while still handling
the areas that have relatively few observations.
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Figure 6: The improvement in the objective function illustrates optimizing behavior.
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Figure 7: We show the effect of value functions and patterns on matching historical performance.

Estimating the value-function approximations re-
quires simulating the dispatch process (using a par-
ticular set of approximations) iteratively. After each
iteration (in which we simulate a month of dispatch-
ing), we use information from each assignment prob-
lem to update the value of drivers in the future. We
capture uncertainty by sampling any random vari-
ables (e.g., new loads or travel times) as we simulate
decisions over the month. Because of the need to sam-
ple from random quantities, we must use smoothing
techniques to balance out the noise. Again, this appar-
ently simple step of smoothing proved to be another
difficult research challenge.

We undertook extensive research in the use of ADP
for fleet management problems and showed that we
can obtain solutions that are near optimal when com-
pared with the optimal solution of deterministic, sin-
gle, and multicommodity flow problems (Godfrey
and Powell 2002, Topaloglu and Powell 2006). How-
ever, we could not obtain optimal solutions (or even
tight bounds) for the problem class described in this
paper. Instead, we first looked for evidence that the
algorithm is generally producing improvements in
the overall objective function (see Figure 6). This
improvement is significant because the first itera-
tion, in which we set ©(a) = 0, is equivalent to a
myopic policy. The more meaningful validations are

that (1) we produce results that closely match his-
torical performance, and (2) the value functions v(a)
accurately approximate the marginal value of increas-
ing the number of drivers of a particular type.

Matching Patterns

As we mentioned in the previous section, simply
optimizing the objective function was not sufficient
to obtain realistic behaviors. A major issue that
Schneider faced was the need to assign drivers to
loads of an appropriate length. Teams expected the
longest loads, whereas single drivers using company-
owned equipment were given the shorter loads.
However, a team could be assigned a shorter load;
moreover, although single drivers using company-
owned equipment were assigned shorter loads, they
still needed to drive enough miles per week to main-
tain their income.

Solving this problem by simply using penalties
when the length of a load is higher or lower than
the average for a particular type of driver is impossi-
ble. Every driver type needs to pull loads of different
lengths—only the averages count. Assigning a team
to a shorter load is not a problem, as long as the aver-
age length of haul matches historical data. If we devi-
ated significantly from historical averages, it is likely
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that we would start incurring higher driver turnover.
Therefore, Schneider was unwilling to experiment
with dispatch rules that deviated from its historical
patterns.

We solved this problem by introducing the concept
of a pattern metric, as Marar et al. (2006) and Marar
and Powell (2009) propose. In brief, it involves adding
a term that penalizes deviations from the historical
percentage of times that drivers of a particular type
(e.g., team, single) take loads of a particular length
(e.g., between 500 and 550 miles). As decisions are
made over time, the model keeps track of an estimate
of how often we move loads of a particular length
over the entire horizon. We only introduce penal-
ties when the average over the entire horizon starts
deviating from historical performance. This logic also
requires iterative learning; therefore, it fits naturally
within the iterative learning of the value functions.
Section 4.1 in Simao et al. (2009) describes the appli-
cation of the pattern logic to this problem.

Figure 7 illustrates how the model learns to match
historical performance using value functions with and
without a pattern. Our goal was to move a particular
metric (in this case, average length of haul for a par-
ticular class of driver) within a range that would be
acceptable to Schneider. We note that by simply using
value functions, we were able to move the model
within the acceptable range. Introducing the patterns
moved the metric within the allowable range more
quickly and moved it closer to the center of the range.
The pattern logic played a significant role in gener-
ating other statistics, which we highlight in the next
section.

Calibrating Against History

The central goal of our research was the development
of a model that we could use to analyze the effect
of changes in policies (e.g., allowing drivers to drive
11 hours per day instead of 10) or inputs (e.g., hir-
ing more team drivers housed in a particular loca-
tion). If the results of these analyses are to be credible,
the model must closely match historical performance.
For example, if we did not model the rules governing
hours of service, we would not be able to analyze the
effect of changes in the rules that limit the number of
hours a driver can be on duty to fewer than 70 hours

in eight days. Alternatively, if simplifications in the
model allowed us to overstate the productivity of a
driver, then we would not obtain a realistic estimate
of the marginal value of additional drivers of a par-
ticular type.

Accurately capturing the attributes of drivers and
loads and the rules governing how long a driver can
be on the road is not enough. To have a realistic sim-
ulation, we must closely mimic the decisions. Because
we are testing changes in policies and inputs, we
have to believe how the decisions will change under
these new inputs. For example, if we want to trust
the estimates of the marginal value of team drivers
in a location, we must believe that the model is mak-
ing realistic decisions about assigning team drivers
to longer loads. If the model starts assigning team
drivers to shorter loads, then it is making decisions
that the company would not make in practice, thus
overstating the value of team drivers.

Despite extensive academic literature on the opti-
mization of truckload carriers, we could find only a
single instance of a model that has been shown to
calibrate against actual historical performance; Simao
et al. (2009) provide a detailed technical description
of this model. The research community that works
on the development of models for freight transporta-
tion has primarily focused on optimization models in
which the goal is to outperform the decisions made
by a company.

A central tenet of our project was that a carefully
constructed optimization model would closely simulate
decisions made by the dispatchers. It is important to
emphasize that we are optimizing a utility function
that uses various bonuses and penalties to achieve
realistic behaviors, such as getting drivers home,
achieving appropriate utilization for different driver
types, and realizing on-time customer service. How-
ever, we believe that if the decisions of the dispatchers
were significantly suboptimal, our model would not
have calibrated against history. Our numerical work
showed that as the objective function improved (i.e.,
we were doing a better job looking into the future
because the model automatically optimizes at a point
in time), the model became more realistic, with no
evidence that we were outperforming the dispatch-
ers. We have to keep in mind that Schneider pio-
neered the use of optimization models for real-time
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Figure 8: We show system results compared against historical extremes for length of haul, revenue per working
unit, driver utilization, and percentage of driver time-at-home spent on weekends. See Simao et al. (2009) for

details.

dispatch. In addition, the company uses an array
of advanced decision support systems; therefore, we
view this result as gratifying rather than surprising.
Figure 8 shows comparisons we made between our
model’s results and those obtained based on historical
data. For each statistic, Schneider provided a range
based on the variability it observed on a month-to-
month basis. As the figure shows, we were able to
calibrate the model to match history for each statistic.

Capturing the Marginal Value
of Drivers

One application of the model was guiding Schneider
in its hiring of new drivers. For example, we needed
the marginal value of hiring teams who live in north-
ern Illinois. This marginal value would reflect both
the revenues of the loads that these drivers can

move and the cost of getting the drivers home. It is
important to emphasize that the marginal value of
these drivers differs greatly from the average value
of drivers with these attributes, a quantity that can
be easily calculated by tracking the paths of these
drivers over the planning horizon. The marginal
value requires that we understand how the solution
would change if we added additional drivers of a par-
ticular type.

We compared the marginal value of a driver char-
acterized by domicile and driver type as estimated
by the value-function approximations against the esti-
mates produced by adding 10 drivers of a particular
type and rerunning the system for several iterations.
Given the noise in the estimates obtained by adding
10 drivers and rerunning the system, we repeated this
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Figure 9: We show the simulated value of additional drivers compared to
estimates based on value-function approximations for 20 different types
of drivers. See Simao et al. (2009) for details.

exercise 10 times for each type of driver to obtain con-
fidence intervals (i.e., we performed a simulation).

Figure 9 shows the results of our simulation. We
note that for the 20 different estimates (representing
different combinations of driver domiciles and driver
types), in 18 instances, the value produced by the
value-function approximation fell within the 95 per-
cent confidence interval from the simulation. We view
this as a validation that the value-function approx-
imations are consistent with the estimates of the
marginal values produced through simulation. How-
ever, from a single calibration run of the system, we
obtained estimates, 7,(a), for all possible combina-
tions of driver domiciles with driver types at the
beginning of the simulation. That is, 7y(a) is an esti-
mate of the value of a driver with attribute a at time 0,
which provides an estimate of how the entire sim-
ulation should change if we add one more driver
with attribute a2 at the beginning of the simulation.
We have to compute 7,(a) for all attributes (e.g., loca-
tion, driver type, domicile) and all periods as part of
the ADP algorithm; however, for driver valuations,
we use only the estimates at the beginning of the
simulation.

Having an Impact

Schneider’s tactical planning system (TPS, as our
model has become known within the company) has
been and continues to be used for a variety of
analyses that lead to significant financial benefits

through operational policy and procedure improve-
ments, better-informed negotiating positions, and cost
reductions or avoidance. The system’s principal bene-
fit over the traditional aggregated-flow network mod-
els used previously is its capability to capture driver
and load attributes in great detail and to produce a
very realistic simulation of real-world operations. The
particular strengths of this modeling platform are that
it (1) produces good (near-optimal) solutions to com-
plex problem scenarios and (2) provides comprehen-
sive operating characteristics and statistics that can
be used to determine potential impacts and uncover
unintended consequences associated with proposed
changes within a complex transportation network.
Schneider, a company that has won the INFORMS
Prize for its widespread use of operations research,
was unable to solve the problem using standard opti-
mization or simulation modeling tools.

In the last several years, Schneider used TPS
to analyze several situations. Below, we summarize
these analyses and show their corresponding business
benefits.

* Driver time at home: Long-haul drivers are typ-
ically away from home for two to three weeks at
a time. To address driver retention, Schneider man-
agement approved a business plan to significantly
increase the amount of time drivers spend at home;
however, TPS runs showed that the plan had a poten-
tial annual negative impact of $30 million on network
operating costs, considerably outweighing the antic-
ipated benefits. Schneider used TPS to develop an
alternative strategy that provided 93 percent of the
proposed self-scheduling flexibility but incurred an
estimated annual cost impact of only $6 million.

* Driver hours-of-service rules: During the last
six years, the US Department of Transportation has
introduced several changes for driver work-schedule
constraints. Using TPS runs, Schneider was able
to substantiate and quantify the impacts of these
changes, allowing it to effectively negotiate adjust-
ments in customer billing rates and freight tender-
ing and handling procedures, and leading to margin
improvements of 2 to 3 percent.

* Setting appointments: A key challenge in the
order-booking process is determining both the timing
and flexibility of the pickup and delivery appoint-
ments. Using TPS, Schneider was able to quantify the
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impacts of different types of commitments, allowing
it to identify the best choices. This produced margin
improvements in the range of 4 to 10 percent and
reduced the number of late deliveries by more than
50 percent.

* Cross-border relay network: The Schneider
freight network includes a large number of loads that
move between the United States and Canada. Using
TPS runs, Schneider was able to design a strategy
that accomplished cross-border operations using only
Canadian drivers. This reduced the number of drivers
that crossed these borders by 91 percent, avoiding
$3.8 million in training, identification, and -certifi-
cation costs, and providing annual cost savings of
$2.3 million.

* Driver domiciles: Schneider manages over 6,000
drivers who operate its long-haul network; these
drivers must be away from home for weeks at a time.
Getting them home requires sending drivers to spe-
cific regions from which there is a good likelihood
that they can get home on time. As a by-product
of the ADP methodology, TPS provides an estimate
of the marginal value of drivers for each home domi-
cile. Schneider uses these estimates to guide its hir-
ing strategy, resulting in an estimated annual profit
improvement of $5 million.

¢ Time-window reduction: One of Schneider’s
largest customers asked for tighter time windows on
delivered freight, covering 4,500 loads per month.
When Schneider used TPS to show that it would
cost approximately $1.9 million per year to meet this
demand, the customer withdrew the request.
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