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Abstract— We derive a one-period look-ahead policy for
online subset selection problems, where learning about one
subset also gives us information about other subsets. We show
that the resulting decision rule is easily computable, and present
experimental evidence that the policy is competitive against
other online learning policies.

I. INTRODUCTION

Suppose that we have a finite set of objects, each with
an unknown effectiveness or reward, and we must choose
the best possible subset of these objects. The objects may
interact in unknown ways, so it may be beneficial to leave
some out, or to include certain specific combinations. We
are allowed to make NN sequential measurements, each of
which allows us to observe a sample realization of the reward
of a subset, which can then be used to learn about the
effectiveness of different subsets. Our objective is to allocate
these measurements in order to maximize the total reward of
all subsets that we measure. Crucially, we allow our beliefs
about the unknown rewards to be correlated, which makes
it so that one measurement may affect our beliefs about
many different subsets. Correlated beliefs are not handled by
the traditional bandit literature, but are central in the subset
selection problem.

The problem of allocating experiments is important when
we wish to find the best subset, but have relatively few
measurements to work with. Furthermore, we specifically
deal with online problems in this paper, where we are
interested not only in finding the best subset, but also in
maximizing the total reward collected over the entire time
horizon. Let us give several motivating examples in which
this distinction is important:

1) Energy management. We are installing sets of energy-
saving technologies (e.g. insulation, solar panels, tinted
windows) in large buildings. Different technologies
interact in an unknown way that can only be measured
by actually implementing portfolios of technologies
and measuring their combined performance, that is, the
percent reduction in heating costs. We maximize total
cost reduction over all buildings.

2) Clinical trials. We are testing experimental drug treat-
ments on groups of human patients. One treatment
consists of multiple drugs, so our beliefs about two
treatments are correlated if the treatments have at least
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one drug in common. We are interested in the well-
being of the patients as well as in finding the best
treatment, so we maximize the total benefit to all
patients tested.

3) Sports. We have a set of players, and we can choose

a different subset to play each game, with the goal
of finding the most effective team. The effectiveness
of a team depends on interactions between individual
players, so we must play a game with one subset in
order to gauge its effectiveness. We maximize the total
number of games won in the season.
These problems can be viewed using the language of multi-
armed bandit problems, where each subset is an individual
“alternative” with an unknown reward, and we maximize the
total reward collected across all measurements. In particular,
[7] describes a measurement policy (which we refer to as
“Gittins indices”) that is asymptotically optimal as N — oo
for the case where the rewards are discounted over time.
Furthermore, there are certain general heuristics (descriptions
can be found e.g. in [15]) that can be applied to broad
classes of optimal learning problems, including multi-armed
bandits: the interval estimation policy by [11], the Boltzmann
exploration policy, pure exploitation, and so on. The work
by [17] presents empirical comparisons of some policies in
certain settings.

However, neither the Gittins policy, nor any of the general
heuristics mentioned above, is designed to handle correlated
prior beliefs. The correlated case has been studied by [14],
but this work relies on the assumption of binomial rewards.
Yet, the ability to handle correlated beliefs is of great
practical significance because it arises in any subset selection
problem. In our motivating examples, the alternatives are
correlated because they have common elements (common
technologies, common drugs, common players). Essentially
any problem where we must choose a representative set of
objects poses a potential application. Economic applications
can be found in [10], and applications to statistics are
extensively discussed by [13].

Our analysis is motivated by the knowledge gradient (KG)
concept, developed by [9] and further analyzed by [6] and
[2] for the ranking and selection problem. This problem is
the offline version of the multi-armed bandit problem: we
must find the best of M alternatives with unknown rewards,
given N chances to learn about them first, with no regard for
the outcomes of the measurements beyond the information
we get from them. The KG policy for ranking and selection
chooses the measurement that yields the greatest expected
single-period improvement in the estimate of the best reward.
It is optimal for N =1 and N — oo, and performs well in
practice for other values of IN. More recently, [6] extended



the KG concept to the ranking and selection problem with
correlated priors, and [2] extended it to the case of unknown
measurement noise.

The knowledge gradient has the practical advantage of
being easily computable, in contrast with the difficult cal-
culations required for Gittins indices. The computation of
Gittins indices has been discussed by [12] and [4]. An LP-
based computational method is available in [1], however it
is founded on a Markov decision process framework, in
which the prior beliefs about the alternatives are discrete,
whereas our problem has continuous, Gaussian priors. For
our problem, an approximation for Gittins indices can be
found in [18], but it is less accurate for small time horizons
and large discount factors. However, experimental work by
[16] suggests that the online KG policy is competitive against
the Gittins policy even when the Gittins indices are known
exactly.

In this paper, we begin with a mathematical model for
an undiscounted multi-armed bandit problem, and derive
the online KG policy for this setting. Then, we extend it
to the correlated setting most relevant to subset selection.
We compare the online KG policy against existing learning
policies in an undiscounted, finite-horizon setting with cor-
related priors, motivated by the energy management problem
described above. The experiments demonstrate that the KG
policy is comparable to, or even outperforms, these other
policies across many instances of the energy management
problem.

II. MATHEMATICAL MODEL FOR LEARNING

We begin by considering a traditional multi-armed bandit
problem. Suppose that there are M objects or alternatives. In
every time step, we can choose any alternative to measure.
If we measure alternative x, we observe a random reward
fie ~ N (pz,02). The measurement error o2 is known, and
we use the notation 3. = o2 to denote the measurement
precision. For every alternative z, the true expected reward

pz is unknown, but we believe that p, ~ A (,ug, (02)2)
Thus, our prior beliefs about alternative = are completely
characterized by p0 and o¥. In the multi-armed bandit
setting, our beliefs about the alternatives are independent,
that is, measuring = allows us to learn only about x. We
shall add correlations in Section III-C.

The random observations we make while measuring grad-
ually improve our beliefs about the alternatives. We let F"
be the sigma-algebra generated by our choices of the first n
objects to measure, as well as the random observations we
made of their rewards. We say that something happens “at
time n” if it happens after we have made exactly n obser-
vations, and we use the notation E™ to denote the expected
value given F". Then, we can define pu = E"u, to be
our beliefs about p, after making exactly n measurements.
Similarly, (07)* = Var (u® | F™) represents the accuracy
of our beliefs about u, at time n. We use the notation

B = (02)72 to denote the time-n precision of our beliefs.

Thus, at time n, we believe that y, ~ A (/L;f, (a")z). If 2"

x

is the alternative we choose to measure at time n, our beliefs
after that measurement will be updated using Bayes’ rule:
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Because our beliefs about the rewards are independent, we
only update one set of beliefs in each time step, correspond-
ing to the object we have chosen. The precision of our beliefs
is updated as follows:

ﬂnJrl_{ ﬁ:"‘ﬁa x=z"
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We can define (57)° = Var (21| F™) to be the condi-
tional variance of our beliefs after the next measurement,
viewed from before the measurement. It can be shown that
this quantity is simply the variance reduction in our beliefs
about z that we achieve by measuring z, that is,

or = (om)? = (o).

It is known, e.g. from [3], that the conditional distribution
of untl given F* is N (ug, (52)2). In other words, given
F™, we can write

@
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where Z is standard Gaussian. Thus, viewed from the point
of view of time n, the (n + 1)st measurement is not expected
to change our beliefs.

We now define the knowledge state s™ = (u™, c™), where
w = (ut, ..., uh) and o™ = (o7, ...,0%). Because p! and
oy completely characterize our beliefs about alternative x
at time n, it follows that s™ completely characterizes our
beliefs about all the alternatives at time n. We can write
st = KM (s, 2", p7F'), where the transition function
KM is described by (1) and (2). For notational convenience,
we can suppress the dependence on i/ 1 when we write
KM but it is important to remember that the transition
function is stochastic.

In online problems, we collect rewards as we measure
them. We assume that we are allowed to make /N measure-
ments, followed by one final reward at time NN. Then, our

objective is to choose a measurement policy 7 that achieves

N
sup E™ ) fixmn (sn)- 3)

i n=0

A policy 7 can be thought of as a collection of decision rules
X™" for = 0,..., N. The decision rule X™" is a random
function mapping an outcome w and a knowledge state s™ to
a point in the set of alternatives {1, ..., M}. We assume that
X™™ is measurable with respect to F", that is, the decision
rule for time n is allowed to observe the outcomes of the
first n measurements.

The value of following a measurement policy m, starting
in knowledge state s™ at time n, is given by Bellman’s



equation for dynamic programming (used in an optimal
learning context by [3]):

T (Sn) _ M;L('ﬂ,n,(sn,) + |EnV7r,n+1 (Sn+1> (4)
ymN (SN) = ma_xxui,v. (5)

At time N, we can collect only one more reward, so we
should simply choose the alternative that looks the best given
everything we have learned, because there are no longer any
future decisions that might benefit from learning. At time
n < N, we collect an immediate reward for the object we
choose to measure, plus an expected downstream reward for
future measurements. The best possible measurement policy
satisfies a similar equation

V*,n (Sn) — max,u;l + |EnVrr,n+1 (8n+1)

VRN (sM) = maxpl)

xT
with the only difference being that it always chooses the best
possible measurement, the one that maximizes the sum of
the immediate and downstream rewards. Of course, viewed
at time n, the knowledge state s”*! evolves stochastically
from s™ via the transition function K.

III. THE KNOWLEDGE GRADIENT POLICY

We extend the knowledge gradient concept developed by
[5] for the ranking and selection problem to the multi-armed
bandit setting. We define the knowledge gradient policy to
be the policy that will make an optimal allocation if we have
only one measurement left. Finally, we incorporate discount
factors and correlated beliefs into the policy, thus allowing
us to solve subset selection problems.

A. Derivation

Suppose that we have made n measurements, reached the
knowledge state s™, and then stopped learning entirely. That
is, we are still allowed to collect rewards after time n, but
we are not allowed to use these rewards to update our beliefs
using (1) and (2), and s" = s™ for all n’ > n. Then, the best
possible policy is the empirical Bayesian policy of always
choosing the alternative that looks the best based on the most
recent information. Under these conditions, the expected total
reward obtained by the empirical Bayesian policy after time
n is

VEBn (s = (N —n+1) maz}xuz. (6)

If we cannot learn any more information, but we can still
collect N —n + 1 more rewards, we should always choose
the alternative that looks the best given everything that we
were able to learn up to time n.

The knowledge gradient concept, first introduced by [8]
and [9], and later developed by [5], can be stated as “choos-
ing the measurement that would be optimal if it were our last
chance to learn.” Suppose now that we are at time n, with
N —n~+1 rewards left to collect, but only the (n + 1)st reward
can be used to update our beliefs. That is, s" = sn*+ for all
n’ > n+ 1. Then, we need to make one decision about what
to measure at time n, and we will switch to the empirical

Bayesian policy starting at time n+ 1. The KG decision rule
that follows from this assumption is

XKGn (s") = argmax uly + E"Y BB+l (s"'H) )

If ties occur, they can be broken by randomly choosing one
of the alternatives that achieve the maximum.

The expectation on the right-hand side of (7) can be
written as

|En VE'B,n+1 (SnJrl)

(N —n) E" max p/;t
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(N =n) (max g ) + (N = n)vESn (8

where the computation of E" max, ,u:f L comes from [5].
The quantity 5% is called the knowledge gradient of

xT
alternative x at time n, and is defined by

KG, 1
yEGn — gr (rriz}x pt — max ﬂ;‘,) , ©)

where [E} observes all the information known at time n, as
well as the choice to measure = at time n. The knowledge
gradient can be computed exactly using the formula

yEGn =5 f ( ) (10)

where f (z) = 2® (2) + ¢ (z) and ¢, P are the pdf and cdf of
the standard Gaussian distribution. We know from [9] and
[5] that (9) and (10) are equivalent in this problem, and
that 5 is always positive. The term “knowledge gradient”
arises from (9), where the quantity %" is written as a
difference.

It is now easy to see that (7) can be rewritten as

n n
Hy — MaXgr £y Lo
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XKG,n KG,n

(s") = argmax puly + (N —n) v, (11)
The term (N — n)max, ul in (8) is dropped because it
does not depend on the choice of = and thus does not affect
which z achieves the maximum in (7). The value of this
policy follows from (4) and is given by

VKG',n (Sn) _ HJSL(KG,H(SH) + |E7LVKG,n+1 (5n+1) )

Thus, instead of choosing the alternative that appears to
be the best, the KG policy adds an uncertainty bonus of
(N —n)vEG" o the most recent beliefs 7, and chooses
the alternative that maximizes this sum. The knowledge
gradient is given extra weight in the early stages, when n
is small compared to /N. In this way, the KG policy finds a
balance between exploitation (measuring alternatives that are
known to be good) and exploration (measuring alternatives
that might be good), with the uncertainty bonus representing
the value of exploration. The form of the decision rule in
(11) is common in optimal learning algorithms. Many other
learning policies involve similar computations, but define the
uncertainty bonus in different ways. In our case, it represents
the value of learning one more time.



The KG policy is optimal for N = 1. This follows from
the fact that, for any N,

V*’N71 (SNfl) — VKG,N*l (SNfl) ,

which is shown in [16]. This suggests that the policy given
by (11) is the correct extension of the KG concept to the
multi-armed bandit problem, as all KG policies derived thus
far for offline problems share the property of being optimal
for N = 1. It is also shown in [16] that

pn < VKG,n (8) . VEB,n (S) § o
for all times n and knowledge states s, where
b = max (ul + (N —n) vEE™) — max p!?
x xr
1 [(N=n)(N-n+1) n
maxao...
V2 2 a

Because b > 0, it follows that VEE:" is a lower bound
on VEGm Furthermore, because VEBm represents the best
value that can be obtained if learning stops at time n, the
difference VX" —V/EB:n is precisely the value of learning,
starting at time n, under the online KG policy.

B. Discount factors
We now replace (3) with the discounted objective function

N
sup [E” Z Y px o (sm)
a n=0
where v € (0,1) is a given parameter. The knowledge
gradient policy for this problem is derived in the same way
as in the previous section. First, in the discounted setting,

VEBm (gn) = -

max 4.
1—~ AX fly
Repeating the calculation of (7) for the discounted case, we
arrive at

N—n
1 -7 KGn
Vg

XEGn (s") = arg max pu + T (12)

where VfG*” is as in (10). If we take N — oo, we obtain

the infinite-horizon discounted KG rule

XKGJL Y KG,n

(s") = argmax pr + TV (13)
Both (12) and (13) look similar to (11), with a different
multiplier in front of the knowledge gradient. The value of
the KG policy in the discounted setting is

VKG,n (Sn) _ N}KG‘AL(Sn) + - IE’VLVKG,n+1 (Sn+1) ]

In [16], it is shown that the infinite-horizon, discounted KG
policy converges almost surely. That is, if N — oo, only one
alternative will be measured infinitely often by the KG policy.
This alternative will not necessarily be the best alternative.
However, the Gittins index policy, which is known to be
optimal in the discounted infinite-horizon setting, does not
necessarily converge to the best alternative either. Due to
the discount factor, early measurements are more important

than later ones, so it is more important for a policy to learn
well early on than to converge to the optimal alternative far
in the future. The work by [16] contains an experimental
comparison of the infinite-horizon, discounted KG policy to
the optimal Gittins policy in a problem where the Gittins
indices are known exactly, and the results suggest that KG
is competitive against the optimal policy.

C. Correlated beliefs

We now return to the undiscounted setting, and the objec-
tive function from (3). However, we now assume a covariance
structure on our prior beliefs about the different alternatives.
We now have a multivariate normal prior distribution on
the vector = (w1, ..., upr) of true rewards. Initially, we
assume that y ~ N (/LO,ZO) where p° is a vector of our
beliefs about the true rewards, and X9 is an M x M matrix
representing the covariance structure of our beliefs about the
true rewards. As before, if we choose to measure alternative x
at time n, we observe a random reward A7 ~ N (pig, 02).
After n measurements, our beliefs about the mean rewards
are expressed by a vector ;™ and a matrix X", representing
the conditional expectation and conditional covariance matrix
of the true rewards given F".

The updating equations, given by (1) and (2) in the
uncorrelated case, now become

pttto= Mgne N (14)
02+ X% *
T
USSR i i (15)
0%+ X020 n

where ™ is the alternative chosen at time n, and e, » is a
vector with 1 at index n and zeros everywhere else. Observe
that, in the correlated setting, a single measurement leads
us to update the entire vector u™, not just one component
as before. The conditional distribution of p"*! given F™ is
given by the vector equation

lunJrl — lun 4 &corr,n (xn) . Z

where Z is standard Gaussian and
Y"eyn
Vo2 + X

The value of the empirical Bayesian policy, which we
follow if we are unable to continue learning after time n,
is still given by (6). The derivation of the online KG policy
remains the same as in Section III-A, and we arrive at a
decision rule

&COT‘T,H (x'n> _

XKGOn (sn) = argmax p” + (N — n) KGO (16)

where

yEGCn — gn (m@x ptt — max /ﬂ}) 17
as before. However, the right-hand side of (17) is more

difficult to compute than the analogous expression in (9).



From the work by [6], it is known that

M-—1

ST () = 5 (@) £ (— ey )

y=1

KGCmn __
Vy =

where the alternatives have been sorted in order of increasing
55‘”“”, f is the same as in Section III-A, and the numbers
¢y are such that y = argmax, pl, + o5, " (z) - z for z €
[cy—1,c¢y), With ties broken by the largest-index rule. The
work by [6] also gives an efficient algorithm for computing
1K GC exactly, and can be used to solve the decision problem
in (16). If we introduce a discount factor into the problem,
the decision rule becomes as in (12) or (13), with v5&¢
instead of vX¢.

IV. COMPUTATIONAL EXPERIMENTS

The correlated-prior setting is well-suited to the problem
of subset selection. We used the problem of energy portfolio
selection to obtain realistic initial parameters for experiments
comparing online KG to other learning policies. On average,
online KG is significantly better than all the policies tested.
Some policies tend to outperform KG by a small margin
more frequently, however they can be very sensitive to the
initial parameters, and are extremely unreliable a sizable
proportion of the time.

A. Background and setup of experiments

Suppose that we are remodeling buildings to be more
energy-efficient. We have a number of energy-saving tech-
nologies at our disposal, and we can combine multiple
technologies into portfolios. The reward of a portfolio is
the percentage by which it reduces heating costs for the
building in which it is installed. The effectiveness of several
technologies is not additive, so the point of interest is the
effectiveness of the entire energy portfolio. Research done
by the US Department of Energy suggests that a possible
range for such a value is the interval [15,45] (measured in
percentage points).

We consider a setting in which there are seven different
energy-saving technologies (e.g. insulation, solar panels,
energy-saving light bulbs, tinted windows that reduce solar
heat, energy-efficient appliances, extra thermostats for more
precise temperature control, sealant for air leaks), and we
must choose a portfolio of three of them. Thus, there are 35
possible alternatives in our problem, and our beliefs about
their rewards are correlated because the same technologies
may appear in multiple portfolios. We have N + 1 buildings
which we can allocate to different portfolios. Our objective
is to maximize the sum of the heating cost reductions over
all groups, with no discount factor. This objective function
balances the need to find the best portfolio with concern for
the outcome of each installation. It is expensive to install
even one portfolio, so we would like to have good results in
as many experiments as possible.

In order to test a learning policy, we must first assume
a truth, then evaluate the ability of the policy to find that
truth. For this reason, the starting data for our experiments

was randomly generated, using the context of energy man-
agement to provide realistic numbers. Because our beliefs are
correlated, we used the mathematical framework in Section
III-C, and the updating equations (14) and (15) in all of our
experiments. The initial data for one experiment consists of
a vector p to represent the true rewards of all the portfolios,
a prior (uo, EO) to represent our beliefs about them, and a
measurement error o2. We generated 100 problems in all.

For each problem, we first generated the prior means u°
from a uniform distribution on the interval [15,45]. The
initial variances were set to be 7.52, to roughly indicate that
the true values were in that same interval. These numbers
represent our beliefs about the range in which the true values
are likely to fall. The correlation coefficient of two portfolios
was set to be O,% or %, depending on whether the portfolios
had 0, 1 or 2 technologies in common. The measurement
error 0'3 was chosen to be 50, to reflect a situation where
the effectiveness of a treatment varies fairly widely over
different buildings. The true rewards 1 were generated from
a multivariate Gaussian distribution with mean vector ;° and
covariance matrix X9, that is, they were drawn from the
prior. This represents a situation in which we already have
a reasonably good idea about the portfolios, and our prior
beliefs are on average accurate.

We ran each measurement policy 10* times on each
problem, always with a measurement budget of N = 25.
For each policy, we observed the average opportunity cost
per reward collected, defined as

N

1
- ZMX?\'JL(SH)
N +1 =

C™ = max u, —
x

for a generic policy 7. The policies were compared by taking
the difference of their opportunity costs. For policies 1, 72,

N
Z (quwl,n(sn) - ,UJX’TZv"(s")) (18)

n=0

1

™ - O™ = ———
N+1

is precisely the amount by which m; outperformed (or
underperformed) o on average in a single measurement. The
10* sample paths were divided into groups of 500 in order to
obtain approximately normal samples of average opportunity
cost and the standard errors of those averages. The standard
error of the difference in (18) is the square root of the sum
of the squared standard errors of C™, C™. Five policies
were tested overall; we briefly describe the implementation
of each.

Independent and correlated online KG (KG/KGC). The
independent and correlated online KG policies are defined
by the decision rules (11) and (16), respectively. The KGC
policy was implemented using the algorithm from [6].

Gittins indices (Gitt). The Gittins decision rule, designed
for discounted infinite-horizon problems, can be written as

XGitt,’n (19)

(s™) =argmaxpul +o.-T'(0,7),

where T'(0,~) is the Gittins index based on the accuracy
of our current beliefs about an alternative and the discount
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Fig. 1. Histograms of the sampled difference in opportunity cost for KG
vs. other policies.

factor -y. We can use the fact that (o )2 ~ Nn, where N i
the number of times alternative x has been visited up to and
including time n, to avoid having to compute Gittins indices
for arbitrary ;. Then, (19) becomes

X Gittn (s") = argmax u} + 0. - T'(N2,5).
xT

The Gittins policy is not designed for undiscounted, finite-
horizon problems. Therefore, we view it as a heuristic, with
a tunable parameter in the form of the discount factor +.

Even with the simplification allowed by the use of N,
Gittins indices are typically very difficult to compute. Exact
values are available only for a few values of ~ in [7]. In order
to allow us to tune the discount factor and consider values
of v for which the exact values are unknown, one can use
the approximation from [18]. Define a function

5 s<0.2
0.49 — 0.11s™2 02<s<1
U(s)={ 0.63—0265"2 1<s<5
0.77 — 0.57s™ 2 5<s5<15
(2log s — loglog s — log 167r)7% s> 15
Now let s = ——1— and define
nlogy
1 0.583n~1
TEB (5, ) = —fo iU
=) S
0 5837f1
TUB (, _ \/>
(n,7) T N
Finally, take the Gittins index to be
1
r (TL, 7) ~ 5 (FLB (71, ’7) + FUB (TL, 7)) .

This approximation will perform very well for any value of
v, as long as n is high enough. However, it can be inaccurate
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Fig. 2. Histograms of the sampled difference in opportunity cost for KGC
vs. other policies.

for low values of n and high values of ~. In our experiments,
we found that the approximation worked best for v ~ 0.9.

Interval estimation (IE). The IE decision rule, created by
[11], is given by

X1Emn (7)) = argmax,uz + VI, Za)2,

where 2, /2 is a tunable parameter. We found that the perfor-
mance of IE was extremely sensitive to the choice of tuning
parameter. Low values of the parameter, e.g2. z,/2 = 0.25,
yielded good performance on many problems, but extremely
bad performance on a significant proportion of problems.
Larger values, €.g. z,/2 = 1.25, gave better performance in
these bad cases, but worse performance in the good cases. We
compromised by setting 2,2 = 0.75, which still gave good
performance on most problems, while somewhat mitigating
the worst outliers.

Pure exploitation (Exp). This decision rule is given by
XEzpm (gn) = argmax, p”. It has no uncertainty bonus
and no tunable parameters.

B. Results

For each relevant comparison of two policies, we obtained
100 samples of the difference in (18). Table I gives the means
and average standard errors of our estimates of (18) across
the 100 problems we generated, for N = 25.

Figures 1 and 2 show the distribution of the sampled
differences. The label on each histogram names the two
policies that were compared and gives the number of times
the first policy outperformed the second. Bars to the right
of zero indicate that the first policy outperformed the second
policy, and bars to the left of zero indicate the converse. For
example, “KG-Gitt: 68/100” means that the independent on-
line KG policy outperformed the Gittins heuristic in 68/100



Mean | Avg. SE
KG-Gitt 0.0545 0.0200
KGC-Gitt || 0.0747 | 0.0200
KG-IE 0.1601 0.0205
KGC-IE 0.1802 | 0.0204
KG-Exp 0.9284 | 0.0220
KGC-Exp || 0.9486 | 0.0220
KGC-KG 0.0202 | 0.0198
TABLE I

MEANS AND STANDARD ERRORS FOR THE EXPERIMENTS.

experiments, and bars to the right of zero in this histogram
represent those experiments where KG performed better.

We see that KG and KGC outperform the Gittins policy
about 70% of the time. Furthermore, KGC outperforms KG
63/100 times. The additional improvement brought on by
correlated KG is, on average, small. KGC does not bring
about a substantial improvement over KG. However, com-
parisons involving KGC tend to have greater positive tails
than those of KG, so the correlated policy gives consistently
better performance across many problems.

The IE policy actually outperforms the KG policy more
than half the time, though usually by a small margin.
However, there is a substantial minority of experiments
where, under the KG policy, every measurement achieves an
additional average reduction in heating cost of as much as
5% over the IE policy. This is a noticeable difference in our
problem context. Pure exploitation exhibits similar behaviour.
It is usually similar to the KG policy, but occasionally shows
very large positive tails.

These widely varying results are due to the relationship of
the truth to the prior in this experiment. Because we generate
the truth from the prior, on average, the alternative that has
the highest prior actually tends to be the true best alternative.
When this occurs, IE and pure exploitation tend to perform
extremely well, because both will choose the best alternative
in the first measurement. However, when the alternative with
the highest prior is not the true best alternative, such mistakes
of the prior tend to cause very poor performance of IE and
pure exploitation. Thus, although pure exploitation and IE
behave very well in many cases, we argue that these policies
are unreliable because they are prone to very bad errors.

It is also interesting to examine how much exploration is
performed by each policy. For each problem we generated,
we computed the number of distinct alternatives measured by
each policy, averaged over 10* sample paths. The global aver-
ages, over 100 problems, are given in Table II. We see that, in

Policy || No. Explored

KG 3.9370

KGC 3.6872

Gitt 5.0813

1IE 3.1387

Exp 2.1295
TABLE II

NUMBER OF DISTINCT ALTERNATIVES EXPLORED BY EACH POLICY.

25 measurements, every policy tends to explore at most five
different alternatives. Unsurprisingly, pure exploitation does
the least exploration, because it has no uncertainty bonus
and no incentive to measure anything that doesn’t seem to
be the best. The KG policy does more exploration than IE
and pure exploitation, which helps it obtain better results in
those cases where the prior is inaccurate.

The KGC policy does slightly less exploration than KG.
This is also unsurprising, as KGC takes correlations into
account when making decisions, and thus can have a more
informed picture of the future than independent KG. Finally,
the Gittins policy does the most exploration, but its relatively
poor performance against KG suggests that this is too much.
Thus, the KG policy balances exploration and exploitation
in a way that is better equipped to deal with mistakes in the
prior.

V. CONCLUSION

We have proposed an easily computable decision rule for
online learning problems. The KG policy proves to be versa-
tile in a situation when we have a finite measurement budget,
normally distributed priors, and normal sampling errors with
known variance. Variations of the basic KG decision rule
cover both undiscounted and discounted, finite- and infinite-
horizon problems, and can also accommodate correlated
priors. This last ability makes the KG rule attractive for
subset selection problems, where the priors have an extensive
correlation structure. We compared the KG policy to several
other measurement policies in a realistic subset-selection
setting. The KG policy is either comparable to, or better than,
the other policies tested, and strikes a good balance between
exploration and exploitation. We believe that the KG policy
is useful for online learning applications because of its ease
of use and reliability.
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