
Approximate Dynamic Programming in Transportation and

Logistics: A Unified Framework

Warren B. Powell, Hugo P. Simao and Belgacem Bouzaiene-Ayari

Department of Operations Research and Financial Engineering
Princeton University, Princeton, NJ 08544

European J. of Transportation and Logistics, Vol. 1, No. 3, pp. 237-
284 (2012). DOI 10.1007/s13676-012-0015-8.

September 12, 2012

Abstract

Deterministic optimization has enjoyed a rich place in transportation and logistics, where it repre-
sents a mature field with established modeling and algorithmic strategies. By contrast, sequential
stochastic optimization models (dynamic programs) have been plagued by the lack of a common mod-
eling framework, and by algorithmic strategies that just do not seem to scale to real-world problems
in transportation. This paper is designed as a tutorial of the modeling and algorithmic framework of
approximate dynamic programming, however our perspective on approximate dynamic programming
is relatively new, and the approach is new to the transportation research community. We present a
simple yet precise modeling framework that makes it possible to integrate most algorithmic strategies
into four fundamental classes of policies, the design of which represent approximate solutions to these
dynamic programs. The paper then uses problems in transportation and logistics to indicate settings
in which each of the four classes of policies represent a natural solution strategy, highlighting the
fact that the design of effective policies for these complex problems will remain an exciting area of
research for many years. Along the way, we provide a link between dynamic programming, stochastic
programming and stochastic search.

The transportation science community has long recognized the power of mathematical program-

ming. Indeed, problems in transportation and logistics served as the original motivating application

for much of the early work in math programming (Dantzig (1951), Ferguson & Dantzig (1955)). At

the same time, while George Dantzig has received considerable (and well-deserved) recognition for

introducing the simplex algorithm, it can be argued that his greatest contribution was establishing

the fundamental modeling framework which is widely written as

min
x
cTx, (1)

subject to

Ax = b, (2)

x ≤ u, (3)

x ≥ 0. (4)

Of course, the need for integrality constraints created a long and highly successful search for general

purpose tools for solving integer programs, but there are many problems that still require the use

of metaheuristics to obtain effective algorithms (Taillard et al. (1997), Le Bouthillier & Crainic

(2005), Braysy & Gendreau (2005)). Regardless of the algorithmic strategy, however, this community

uniformly uses Dantzig’s fundamental modeling framework given by equations (1) - (4), which has

become a unifying language that allows people to share and compare algorithmic strategies. As of this

writing, the transportation science community has developed considerable maturity in translating

complex operational problems in transportation and logistics into this modeling framework.

The situation changes dramatically when we introduce uncertainty. From the beginning, Dantzig

recognized the need to capture uncertainty in his work on aircraft scheduling (Dantzig & Ferguson

(1956)), which helped to motivate the emerging field of stochastic programming. But stochastic

programming has become just one of a family of algorithmic strategies in a sea of research that is

characterized by a relative lack of standard notational systems. At around the same time, Bellman

developed his seminal work on dynamic programming (Bellman (1957)), producing modeling and

algorithmic strategies that appeared to have no overlap whatsoever with Dantzig’s early work on

stochastic programming.

The lack of a common modeling framework has complicated the process of understanding and

comparing algorithmic strategies. As of this writing, researchers do not even agree on what objective

1

function is being evaluated. In a deterministic problem, if solutions x1 and x2 both satisfy the

constraints (2)-(4), then x1 is better than x2 if cx1 < cx2. The situation in stochastic optimization

is much more subtle.

Our interest is primarily in sequential optimization problems, otherwise known as dynamic pro-

grams. Deterministic versions of these problems might be written

min
x0,...,xT

T∑
t=0

ctxt (5)

subject to

Atxt −Bt−1xt−1 = bt, (6)

xt ≤ ut, (7)

xt ≥ 0. (8)

Problems of this form have been called “dynamic” in the past, but we prefer the term “time-

dependent.” Now consider what happens when we introduce uncertainty. For example, we may have

to deal with random demands, random travel times, and equipment failures. Bellman introduced the

term dynamic program to refer to problems in which information evolves over time, to distinguish it

from Dantzig’s term “math program” which was gaining popularity at the time. Bellman introduced

his now famous optimality equation

Vt(St) = min
a∈A

(
C(St, a) + γ

∑
s′∈S

P (s′|St, a)Vt+1(s′)

)
. (9)

Equation (9) became synonymous with the new field of dynamic programming. Unfortunately,

equation (9) is not a dynamic program in the same way that equations (1)-(4) represent a math

program. Equation (9) is a method for solving a dynamic program, just as the simplex algorithm

is a way of solving a linear program. This subtle but important distinction has contributed to the

confusion that surround stochastic versions of sequential optimization problems.

One goal of this paper is to unify the many modeling and algorithmic strategies that have emerged

in stochastic optimization, focusing on the contextual domain of operational problems in transporta-

tion and logistics. It is not enough, however, to simply create a modeling framework. Dantzig’s

contribution of the simplex algorithm was to show that the framework in (1) - (4) produces a solv-

able model. Just as a family of algorithmic strategies have emerged around equations (1)-(4) for

2

deterministic optimization problems, we provide a compact framework for describing a very broad

class of computable algorithmic strategies for stochastic optimization problems, illustrated using

specific applications in transportation. Just as we have learned to identify the strategies that are

most likely to work on a specific integer programming problem, we hope to help identify the best

algorithmic strategies for stochastic optimization problems arising in transportation.

This paper is designed as a tutorial, but in the process we are going to present a fresh perspective

of how different stochastic optimization problems in transportation can be presented with a compact,

elegant modeling framework. Our framework is based on classical ideas in control theory, but is not

familiar to the transportation science community. The purpose of the paper is not to argue for a

particular algorithmic strategy, since we believe that problems in transportation are so diverse that

no single strategy will work for all problems. However, we do argue that the universe of algorithms

can be reduced to four fundamental classes of policies. In the paper, we present problems that are

suited to each of these four classes, and then demonstrate how more complex problems can be solved

using hybrids.

We begin our presentation with a description of how to model stochastic, dynamic programs in

section 1. While the transportation science community enjoys considerable maturity in the modeling

of deterministic math programming models, there is a wide diversity of modeling strategies when

we make the transition to stochastic, dynamic programs. Section 2 then describes four fundamental

classes of policies that have been used to solve different problem classes. We next use a variety of

problems from transportation and logistics to illustrate each of these policies. These include stochas-

tic shortest path problems (section 4); different classes of inventory problems, including spatially

distributed problems that arise in fleet management (section 5); the load matching problem of truck-

load trucking (section 6); and a version of the dynamic vehicle routing problem (section 7), which

we use as an example of a genuinely hard problem which remains an active area of research. Sec-

tion 8 discusses some general guidelines for choosing a policy, and section 9 makes some concluding

remarks.

1 Modeling

We cannot have a productive discussion about algorithms for solving a model until we can agree

on how to model a problem. While our community has developed considerable skill and maturity

3

in modeling deterministic optimization problems, we lack a consensus on how to model stochastic

optimization problems. Complicating the situation is the tendency to model a problem with an

algorithmic strategy in mind. We prefer a modeling style, similar to that used in deterministic math

programming, where the representation of the problem is separate from the choice of algorithmic

strategy.

There are five fundamental elements of any sequential (multistage) stochastic optimization model:

states, actions, exogenous information, the transition function and the objective function (see Powell

(2011)[Chapter 5], available at http://adp.princeton.edu). We specifically avoid any discussion of

how to make a decision, which is addressed in section 2 on policies. Our presentation of these

elements is somewhat high level. The best way to understand how to use them is by example, and

we do this in the remainder of the paper.

It is important to recognize that while we use the vocabulary of dynamic programming, our rep-

resentation is conceptually the same as a stochastic programming model, as long as it is not confused

with a stochastic programming algorithm. It is beyond the scope of this paper to establish the rela-

tionship between the notational conventions of dynamic programming and stochastic programming,

but we do wish to emphasize that while the terminology and notation may be different, the models

are conceptually equivalent. The bigger difference lies in the algorithmic strategies used for solving

the dynamic program. Below, we show that that theses differences are simply different classes of

policies, and should really be viewed as part of a larger family.

1.1 The state variable

The academic community has had a surprisingly difficult time defining a state variable. Bellman’s

seminal text introduced a state variable with “... we have a physical system characterized at any

stage by a small set of parameters, the state variables” (Bellman (1957), p. 81). Puterman’s more

modern introduction to dynamic programming introduces state variables with “At each decision

epoch, the system occupies a state” (Puterman (2005), p. 18). We prefer the definition offered in

Powell (2011):

Definition 1.1 The state variable St is the minimally dimensioned function of history that is nec-

essary and sufficient to compute the decision function, the transition function, and the cost function.

4

In other words, the state variable is all the information you need (and only the information you need)

to model the problem from any given point in time onward. However, even with a definition such

as this, it takes time to learn how to identify the information that makes up a state variable. The

applications that we address in the rest of the paper serve as an initial set of examples.

There are three categories of state variables:

• The resource state Rt - It can also be convenient to call this the physical state, but “resource

state” works well in transportation and logistics. This describes the location of trucks, trains

and planes, the amount of inventory on hand, the status of drivers, pilots and equipment

operators, and the set of all customer requests or demands (passengers to be moved, loads of

freight, requests for product).

• The information state It - This includes information other than resources (which technically

is a form of information) that is needed to make a decision, compute the transition function

or compute the cost/contribution function. The information state might include prices and

weather.

• The knowledge state Kt - Also known as the belief state, the knowledge state arises when there

is uncertainty about distributions of random variables, where observations of random variables

from exogenous sources may change our distribution of belief about a random variable. For

example, the time to traversing a link in a network may be random; we may not know the

distribution of these times, but we have an estimate. The time that we observe by traversing

the link may be used to update our belief about the probability distribution of times.

We primarily focus on problems which involve the management of resources. For this reason, there

are many problems where Rt is the only state variable. More often, we encounter problems with

information that is not a resource (such as prices) which we include in It. Below, we also illustrate

applications where the knowledge state Kt comes into play. When this is the case, we write our state

variable as St = (Rt, It,Kt).

In transportation, there are many applications which involve what are called lagged processes

which capture the fact that we may know something now (at time t) about the future (at time

5

t′ > t). Examples include

Dtt′ = A demand to be served at time t′ that is known at time t,

fDtt′ = A forecast of demand at time t′ that we make at time t,

Rtt′ = A resource (such as a truck, locomotive, aircraft or pilot) that is known at time t to
be available at time t′. Often, t′ would be known as the estimated time of arrival in
the context of equipment that is moving and will arrive at time t′,

xtt′ = A decision (say, to assign a driver to pick up a delivery) made at time t to be
implemented at time t′.

We refer to this as “(t, t′)” notation, and it is easy to see that there are numerous applications in

transportation. We will often write these variables as vectors, as in Dt = (Dtt′)t′≥t.

Later in the paper, we are going to take advantage of a concept known as a post-decision state

(see Powell (2011)[Chapter 4] for a more thorough discussion of post-decision states). This is the

state of the system immediately after we have made a decision, but before any new information has

arrived. As a result, this is measured at time t, so we designate it by Sxt (or Sat if we are using action

a). For example, imagine an inventory problem where Rt is the amount of inventory at time t, xt is

an order that arrives instantaneously, and D̂t+1 is the demand that occurs between t and t+ 1. We

might write the evolution of the inventory using

Rt+1 = max{0, Rt + xt − D̂t+1}.

The post-decision resource state for this problem is given by Rxt = Rt + xt. If we sell our product at

a price pt that evolves according to pt+1 = pt + p̂t+1, then our post-decision state Sxt = (Rxt , pt). The

concept of the post-decision state appears to be particularly useful in the context of transportation

and logistics.

1.2 The decision variable

We find it useful to use two notational systems for decision variables. We use xt primarily to represent

decisions in the form of vectors, while we let at represent scalar, discrete actions. Discrete, scalar

actions arise when we are making decisions about a single driver, a single truck or a single aircraft.

Both problem classes are important, in some cases at the same time. Some algorithmic strategies in

stochastic optimization are specifically designed for discrete action spaces (without any assumption

of convexity), while others are well suited for vector valued actions.

6

When modeling a problem, it is important to define decision variables and how they impact the

problem. However, we do not address the issue of how to make decisions, other than to define a

decision function which we denote Xπ(St) for making decisions xt, or Aπ(St) for actions at. The

decision function Xπ(St) (or Aπ(St)) is known in the dynamic programming community as a policy,

which is a rule for mapping states St to actions xt (or at). We use the index π to indicate the type

of function, and possibly any parameters it may depend on. Thus, in an inventory problem we may

use the policy to order production if Rt < q, in which case we order Xπ(Rt) = Q − Rt. This is a

(q,Q) policy (the literature refers to them as (s, S) policies) which is parameterized by q and Q. In

this setting, π to designate the structure of the policy (“order up to”), and the parameters (q,Q).

We let Π be the set of all policies (or all policies in a class). Later, we describe policies based on

deterministic rolling horizon procedures or stochastic programming.

We assume that our policy chooses decisions based on the information available in St, which can

only be a function of the initial state and any information that has arrived prior to time t (along

with decisions that have been made prior to that time). We also assume that xt = Xπ(St) is feasible

with respect to any constraints at time t such as flow conservation, upper bounds and nonnegativity.

We let Xt be the feasible region at time t, and assume that Xπ(St) ∈ Xt. Typically Xt depends on

the information in St; we express this dependence by indexing the feasible region by time t.

1.3 Exogenous information

Exogenous information refers to random variables, which we can view as information that becomes

available over time from some exogenous source (customers, weather, markets, or more mundane

sources such as equipment failures). Modeling exogenous information requires the careful handling

of time. Most deterministic (time dependent) models treat time as discrete, and model all events

as happening at discrete points in time. When we make the transition to stochastic models, it is

important to distinguish the modeling of the flow of information from the flow of physical resources.

We have found that it is useful to think of decisions as occurring in discrete time, while information

arrives in continuous time. The first decision instant is t = 0. We denote the information arriving

in continuous time using

Wt = New information that first becomes available between t− 1 and t.

Note that our time-indexing means that W1 represents the information arriving between t = 0 and

7

t = 1. This also means that any variable indexed by time t is known deterministically at time t (this

is not entirely standard in the stochastic optimization community). Often, we will need to represent

specific random variables such as prices and demands, and for this purpose we use “hat” notation,

as in p̂t and D̂t. We would write a simple inventory problem using

Rt+1 = max{0, Rt + xt − D̂t+1}. (10)

At time t, Rt is known and the decision xt is assumed to be computed using information known at

time t. The demand D̂t+1 is random at time t, but is known at time t+ 1.

Many papers in stochastic optimization will introduce an additional bit of formalism that typically

reads as follows. Let ω represent a sample path (W1,W2, . . . ,Wt, . . .), in which case Wt(ω) is a sample

realization of information that first became available between t − 1 and t. Let Ω be the set of all

outcomes of the entire sequence W1, . . . ,Wt, . . ., and let F be the sigma-algebra on Ω that defines all

possible events (F is the set of all subsets of Ω). Also let Ft be the set of all events determined by the

information available up to time t (sometimes written as σ(W1, . . . ,Wt), which is the sigma-algebra

generated by (W1, . . . ,Wt)). We note that Ft ⊆ Ft+1, which means that Ft is a filtration. Finally, let

P be the probability measure on (Ω,F). We now have a formal probability space (Ω,F ,P). When

a function such as our policy depends only on information available up to time t, we say that Xπ is

Ft-measurable. This also means that it is an admissible policy, filtered policy or that the policy is

nonanticipative.

This type of formalism is not necessary for a proper stochastic model, but since it is widely used

in the theory community, it helps readers to understand what it means.

1.4 Transition function

The transition function describes how the state variable evolves over time. We write it generically

as

St+1 = SM (St, xt,Wt+1). (11)

This function is known across communities as the state model, state equation, system model, plant

model or just model. It describes the evolution of resources, information and, where appropriate, the

knowledge state. The evolution of resources can usually be written as a system of linear equations,

8

as in

Rt+1 = Btxt + R̂t+1, (12)

where R̂t+1 represents exogenous changes to inventory such as donations of blood, equipment failures

and delays due to weather. Note that instead of writing constraints as we did in equation (6), we

would break them into two sets of equations, as in

Atxt = Rt, (13)

Rt+1 −Btxt = R̂t+1. (14)

These equations are handled very differently in a stochastic model. Equation (13) helps to define

the feasible region Xt, while (14) helps to define the transition equation.

Exogenous information often evolves independently of decisions. Thus, the price of a product

may evolve according to

pt+1 = pt + p̂t+1.

We might also have situations where the state is simply revealed, rather than being defined by some

equation. So, if D̂t is the demand that becomes known at time t, we could treat it as an exogenous

random variable.

It is useful to think of the transition function SM (·) as a composition of a resource transition

function and an information transition function, which we can represent as SM (·) = (SR(·), SI(·)).

The resource transition function might be written

Rt+1 = SR(Rt, xt,Wt+1)

= Btxt + R̂t+1.

The information transition function for this simple problem would be given by

pt+1 = SI(It, xt,Wt+1)

= pt + p̂t+1.

9

Note that the information transition function may be quite complex (this is a fairly trivial example),

while the resource transition function generally has to be represented as a system of linear equations.

The important idea is that the system of linear equations, quite familiar to the operations research

community, is just a form of transition function, but one that is only used for the resource vector.

1.5 Objective function

We finally come to the objective function. Let

C(St, xt) = The cost (if minimizing) or contribution (if maximizing) if we are in state St and
make decision xt.

It is standard in dynamic programming to explicitly write the potential dependence of the cost on

the state variable, which allows us to model situations when cost parameters evolve randomly over

time. Some authors will write the cost function as Ct(St, xt). This should only be used if the function

depends on time, rather than depending on data (in St) that is a function of time.

We are now ready to write out our objective function. Note that we cannot write our objective

as we did in equation (5), where we are optimizing over (x0, x1, . . . , xt, . . .). The problem is that

xt, for t > 0, is a random variable at time 0. It is precisely this distinction that makes stochastic

optimization so difficult. We overcome this problem by replacing the optimization over decisions, xt,

with an optimization over policies, which we write as

min
π∈Π

Eπ
T∑
t=0

C(St, X
π(St)). (15)

The objective function (15) requires a few words of explanation. First, the expectation can be

thought of as an average over all the outcomes in Ω. Assume for the moment that there is a discrete

set of outcomes ω, where each occurs with probability p(ω). We might generate this set of discrete

outcomes through Monte Carlo simulations, where p(ω) = 1
N if we generate N equally likely samples

in Ω. In this case, we would write (15) as

min
π∈Π

1

N

N∑
n=1

T∑
t=0

C
(
St(ω

n), Xπ(St(ω
n))
)
. (16)

Note that we have written the expectation in (15) as if it depends on the policy π. This is required

if a decision might change the distribution of random events. For example, a truckload carrier

10

will create new demands by having a truck in a region, and random travel times will increase in a

network if we flow a lot of traffic over a link. If random events are not affected by decisions, then

we would replace Eπ with E. If random events are influenced by the policy, then the sample path

(W1(ω), . . . ,Wt(ω), . . . ,) has to be generated sequentially as decisions are made.

We make the point here that equation (15), combined with the transition function and a model

of the exogenous information process (which defines the meaning of the expectation), is a dynamic

program. Many authors equate Bellman’s equation with dynamic programming. Bellman’s optimal-

ity equation is a way of solving a dynamic program, comparable to the simplex algorithm for linear

programs. This distinction is important, because it is often confused in the literature.

We note that in virtually any practical problem, the expectation in (15) cannot be computed

exactly. For this reason, it is common to resort to Monte Carlo simulation, as we do in equation

(16). For this reason, we often need to depend on noisy observations of the function

F π(S0, ω) =

T∑
t=0

C(St(ω), Xπ(St(ω))).

Finally, the most difficult challenge, of course, is to perform the search over policies π. Bellman’s

breakthrough was to point out that equation (9) characterized an optimal policy. This equation can

generally be solved for problems with small, discrete state spaces, but this covers a very small class of

problems in transportation (shortest path problems over networks is a nice example). It is precisely

for this reason that the literature has fragmented into a range of different algorithmic strategies.

While we hope to help organize this literature in the discussion below, our primary goal is to frame

the discussion around the objective function in (15). For example, if there are two policies, π1 and

π2, we can compare them by computing

F̄ π =
1

N

N∑
n=1

T∑
t=0

C(St(ω
n), Xπ(St(ω

n))),

for π = π1 and π = π2. Of course, we are limited to making statistical arguments about the

performance of each policy. However, we now have a way of comparing policies that is agnostic

toward any particular algorithmic strategy.

While the deterministic optimization community has had tremendous success solving linear, non-

linear and even integer programs to optimality, we suspect that finding optimal policies will remain

11

a kind of holy grail for the vast majority of real problems in transportation and logistics. Most of

the time, we will be comparing policies which hope to approximate an optimal policy in some way.

This, then, is the essence of approximate dynamic programming.

2 Policies

Stochastic optimization problems arise in many settings, and as a result a wide range of algorithmic

strategies have evolved from communities with names such as Markov decision processes, stochastic

programming, stochastic search, simulation optimization, reinforcement learning, approximate dy-

namic programming and optimal control. A number of competing algorithms have evolved within

each of these subcommunities. Perhaps it is no wonder that stochastic optimization can seem like

a jungle, lacking the elegance of a common modeling framework that has long been enjoyed by the

deterministic optimization community.

Our experience across all these communities is that the vast majority of strategies for sequential

stochastic optimization problems can be organized around four fundamental classes of policies:

• Myopic cost function approximations - A myopic policy is of the form

XM (St) = arg min
xt∈Xt

C(St, xt).

In some settings, we can modify the problem to get better results over time, either by modifying

the cost function itself, or possibly by modifying the constraints. We can represent this using

XCFA(St) = arg min
xt∈Xπt (θ)

Cπ(St, xt|θ).

where θ represents any tunable parameters needed to adjust the function.

• Lookahead policies - A lookahead policy optimizes over more than one time period into the

future, for the purpose of making better decisions now. The most common version is to

approximate the future deterministically and solve the deterministic optimization problem

XLA−Det
t (St) = arg min

xt

(
ctxtt +

t+H∑
t′=t+1

ct′xtt′

)
, (17)

where arg minxt optimizes over the entire vector xtt, . . . , xtt′ , . . . , xt,t+H over a planning hori-

zon H, but the decision function XLA−Det
t (St) captures only xtt. Of course, this has to be

12

solved subject to constraints such as those in (6)-(8). This is referred to as a rolling horizon

procedure (operations research), receding horizon procedure (computer science) or model pre-

dictive control (control theory). Since there is considerable interest in explicitly accounting for

uncertainty when we make a decision, we might solve a problem of the form

XLA−SP
t (St) = arg min

xt

ctxtt +
∑
ω̃∈Ω̃t

p(ω̃)
t+H∑
t′=t+1

ct′(ω̃)xtt′(ω̃)

 . (18)

Here, Ω̃t represents a subset of random outcomes over the interval t to t + H. Equation (18)

is a classical two-stage stochastic programming formulation, where we first choose xtt, then

observe ω (which might be a sequence of random variables over time periods t+ 1, . . . , t+H),

and then choose xtt′(ω). Other types of lookahead policies go under names such as tree search,

decision trees and roll-out policies (Bertsekas & Castanon (1999)).

• Policy function approximations - PFAs are used when the structure of the policy Xπ(St) (or

more likely Aπ(St)) seems obvious. A PFA is an analytic function that returns an action given a

state, without solving an imbedded optimization problem. One example is our (q,Q) inventory

re-ordering policy which we can write

Aπ(Rt) =

{
0 If Rt ≥ q,
Q−Rt If Rt < q.

(19)

A second example is our fleet sizing strategy. We let at be the decision that sets the fleet size,

where we could consider using the formula

Aπ(St) = θ0 + θ1(Average speed) + θ2(Ton-miles).

This is, in fact, precisely the policy that was used at one point by a major railroad in the U.S.

Finally, we might dispatch a shuttle bus when it has been waiting more than M minutes, or if

there are more than P people on board.

• Policies based on value function approximations - VFA policies are based on Bellman’s equation,

and have the form

Xπ(St) = arg min
xt∈Xt

(
C(St, xt) + E{V̄t+1(St+1)|St}

)
, (20)

where we have used the expectation form of Bellman’s equation (we replace the one-step tran-

sition matrix in (9) with an equivalent expectation). We may eliminate the expectation by

13

using the post-decision state, giving us

Xπ(St) = arg min
xt∈Xt

(
C(St, xt) + V̄ x

t (Sxt)
)
. (21)

For compactness, we are writing our policies Xπ(St) as if the function does not depend on time (but

it depends on St which does depend on time). There are many applications in transportation where

policies are time-dependent. If the function depends on time, then it is appropriate to write Xπ
t (St).

Of course, it is possible to use hybrids. We might use a lookahead policy over a relatively small

horizon T , and then use a value function approximation. In dynamic programming, an algorithmic

strategy known as actor-critic algorithms use actions based on value function approximations to train

a policy function approximation.

Of these four classes of policies, only pure lookahead policies do not use any form of functional

approximation (which is part of their appeal). Functional approximations come in three basic flavors:

• Lookup tables - This requires that for each discrete state s, we have a table that specifies an

action A(s) or a value V̄ (s). With lookup tables, there is a parameter (the action or the value)

for each state.

• Parametric models - For a policy function approximation, this would include (q,Q) inventory

policies, or our decision to adjust our fleet size based on a regression model. For value function

approximations, it is very common to write these as linear models of the form

V̄ (s|θ) =
∑
f∈F

θfφf (s), (22)

where φf (s) is a feature (this can be any function of the state), F is the set of features and

θf , f ∈ F is the set of regression parameters. Neural networks have also been very popular

for continuous problems that arise in engineering, but are less familiar to the transportation

community. A neural network is a form of statistical model that can be thought of as a

sophisticated regression equation that can be used to approximate the value of being in a state

as a function of the state (see Haykin (1999) for an in-depth introduction, or chapter 3 of

Bertsekas & Tsitsiklis (1996) for a discussion of neural networks in dynamic programming).

• Nonparametric models - There is a small but growing literature proposing to use nonparametric

statistics to approximate policy functions or value functions. Nonparametric methods have

14

attracted the most attention in the context of value function approximations. Popular methods

include kernel regression and support vector machines (or support vector regression).

In addition, we may use powerful hybrid strategies such as semi-parametric methods which fit para-

metric models around local regions of the function (see Hastie et al. (2009) for a nice overview of

statistical learning methods).

We now have a fairly rich toolbox for designing approximate policies to produce practical solutions

for very complex dynamic programs arising in transportation and logistics. The challenge is learning

how to recognize which policy is best for a particular situation. We are going to use applications

from transportation and logistics to illustration situations which are best suited for each of these

policies. First, however, we are going to take a brief tour into the communities that work under the

names of stochastic search and stochastic programming to demonstrate the close ties between all

these communities.

3 Linking with other communities

Dynamic programming has long been treated as an independent field, distinct from fields such as

stochastic search and stochastic programming. Careful examination reveals that these communities

are all quite close, separated primarily by notation and terminology. We begin by showing the

connection between stochastic search and dynamic programming, and then provide a step by step

bridge from Bellman’s optimality equation to the most popular tools in stochastic programming. We

note that this section can be skipped without loss of continuity.

3.1 From stochastic search to dynamic programming

Problems in stochastic search are typically written

min
x

EF (x,W), (23)

where x is a deterministic set of parameters and W is a random variable. Stochastic search has

been viewed as distinctly different from sequential decision problems (dynamic programs) because

decisions xt in sequential problems are random variables in the future. However, this is not the right

way to look at them. In a dynamic program, the optimization problem is (in most cases) a search

15

for a deterministic policy, as shown in equation (15). We might write

F π(S0) = EF π(S0,W) = E
T∑
t=0

C(St, X
π
t (St)),

where St+1 = SM (St, X
π
t (St),Wt+1). The optimization problem is then

min
π

EF π(S0,W). (24)

The search for the best policy, then, is exactly analogous to the search for the best parameters x in

(23).

This perspective opens up a powerful set of tools for solving dynamic programs. For example,

imagine that we have a policy given by

XV FA
t (St|θ) = arg min

xt∈Xt

C(St, xt) +
∑
f∈F

θfφf (Sxt)

 .

While there is a substantial literature that tries to estimate θ using Bellman error minimization (so

that V̄ (St) predicts the value of being in a state), growing attention has been given to the idea of

directly searching for the best value of θ to minimize costs. This is the same as solving equation (24)

with π = θ.

We can view the search over policies as a search over discrete categories of policies, as well as a

search over continuous parameters (such as θ) that characterize the policy. For the vast majority of

problems we are interested in, we cannot compute the expectation and instead have to depend on

Monte Carlo sampling. The field of stochastic search has contributed a wide range of algorithms for

dealing with these issues (see Spall (2003)), and researchers in dynamic programming will come to

depend on these tools.

3.2 From dynamic programming to stochastic programming

The separation of dynamic programming and stochastic programming has been created in part be-

cause of differences in problem classes, and a misunderstanding of the meaning of a dynamic program.

We begin by noting that a dynamic program is a sequential (and for our purposes, stochastic) decision

process. Bellman’s equation (used in both dynamic programming and stochastic programming) is a)

16

a mathematical characterization of an optimal policy and b) one of four potential types of policies

(listed in section 2). Second, (multistage) stochastic programming is both a model of a sequential

decision problem (that is, a dynamic program), as well as a class of algorithmic strategies. The

stochastic programming community universally uses one of two algorithmic approaches: lookahead

policies (as given by equation (18)), and value function approximations of a lookahead model. With

the latter strategy, the value function is approximated using a piecewise linear function created using

Benders’ cuts, although other approximation strategies are possible.

Our presentation is going to be a step-by-step tour from a classical statement of Bellman’s equa-

tion (widely equated with dynamic programming), ending with two popular algorithmic strategies

used in stochastic programming: lookahead policies and value function approximations. We start

with discrete state and action spaces, and end with potentially high-dimensional vectors describ-

ing allocations of resources. In the process, we are going to link the standard notation of dynamic

programming and stochastic programming, as well as highlight differences in perspectives.

We begin with the familiar statement of Bellman’s equation (Puterman (1994))

V (s) = min
a∈A

(
C(s, a) + γ

∑
s′∈S

P (s′|s, a)V (s′)
)
.

This formulation applies to stationary, infinite horizon problems, and generally assumes that states

s and actions a are discrete. Most problems in transportation are better modeled as time-dependent

problems, which would be written

Vt(St) = min
at∈At

(
C(St, at) + γ

∑
s′∈S

P (St+1 = s′|St, at)Vt+1(s′)
)
. (25)

where St+1 = SM (St, at,Wt+1). A more natural form is to replace the one-step transition matrix

(which we could never possibly compute) with an expectation

Vt(St) = min
at∈At

(
C(St, at) + γE{Vt+1(St+1)|St}

)
. (26)

Here, we can interpret the expectation as a sum (or integral) over the random variable Wt+1, but we

can also interpret it as a conditional expectation over the entire set ω ∈ Ω representing observations

of W1,W2, . . . ,WT (this is the perspective of the probability community). In this case, to be accurate

we need to also index the expectation by the policy π since this influences the event that we are in

17

a particular state St. We can avoid this by viewing the expectation as a sum over all outcomes of

Wt+1, . . . ,WT , given that we start in state St. There is an implicit assumption that we are using an

optimal policy from time t+ 1 onward.

Of course, we cannot compute the expectation for most problems in practice. We now use the

fact that the value function is the sum of all future costs. We are going to briefly assume that we

can fix the policy represented by Aπt (St) (we are going to assume that our policy is time-dependent),

and we are going to avoid for the moment the issue of how to compute this policy. This gives us

V π
t (St) = min

at∈At

(
C(St, at) + E

{
T∑

t′=t+1

γt
′−tC(St′ , A

π
t′(St′))

∣∣∣∣∣St
})

. (27)

We can not compute the expectation, so we approximate it by replacing it with an average over a

set of sample paths given by the set Ω̂. We also use this opportunity to make the transition from

scalar actions a to vector decisions x, which is more useful in transportation and logistics. For the

moment, we will assume xt is given by a yet-to-be determined function (policy) Xπ(St) which returns

a feasible vector xt ∈ Xt. This gives us

V̄ π
t (St) = min

xt∈Xt

C(St, xt) +
1

|Ω̂|

∑
ω∈Ω̂

T∑
t′=t+1

γt
′−tC(St′(ω), Xπ

t′(St′(ω)))

 . (28)

We have replaced V π
t (St) with V̄ π

t (St) to indicate that we are now computing a statistical estimate.

We can compute V̄ π
t (St) by simulating our policy Xπ

t′(St′) over time periods t + 1, . . . , T for each

sample path ω.

At this point we have specified a model and have an expression for the approximate value of

a policy, but we have not touched on the problem of how to compute the policy. The stochastic

programming community uses two classes of policies: a stochastic lookahead policy which explicitly

optimizes over a horizon t, . . . , t+H, and a policy based on a value function approximation (but still

limited to a lookahead horizon). These are described below.

3.2.1 Stochastic programming as a lookahead policy

We start by creating what we will call a lookahead model by constructing Ω̂ in a particular way.

We first point out that the state St′ consists of two components: the resource state Rt′ that is

controlled by our decisions xt, . . . , xt′−1, and the exogenous information that we have been calling

18

It′ . In stochastic programming, it is common practice to view the exogenous information state as

the entire history. This means that our history up to time t′ consists of

htt′ = (Wt+1,Wt+2, . . . ,Wt′).

Our state at time t′ (given that we are starting at time t) is then given by St′ = (Rt′ , htt′). Technically

we should index the state as Stt′ , but we are going to make the indexing on time t implicit.

It is important to generate the samples in Ω̂ in the form of a scenario tree. Imagine that we

have generated a specific history ht′ (dropping the index t). This is called a node in the scenario

tree, and from this node (this history), we can generate multiple sample paths by sampling multiple

realizations of Wt′+1 that may depend on the history ht′ . Each of these histories map to a specific

outcome ω ∈ Ω̂, but there may be multiple outcomes that match a particular history up to time t′.

Let Ht′(ht′) be the set of outcomes ω ∈ Ω̂ where the partial sequence (Wt+1(ω),Wt+2(ω), . . . ,Wt′(ω))

matches ht′ .

We are going to make decisions xt′ that depend on the information available at time t′. Imagine

that we are at a node in the scenario tree corresponding to a particular history ht′ . To get to time

t′, we would have had to have made a sequence of decisions xt, . . . , xt′−1. This history of decisions,

combined with the new information R̂t, brings us to the new resource variable Rt′ . Thus, our state

variable is now given by St′ = (Rt′ , ht′) = (xt′−1, ht′) (we assume that Rt′ is completely determined

by xt′−1 and ht′).

We now have the notational machinery to solve equation (28) for the optimal policy for our

lookahead model. We are going to use the fact that the resource state variables Rt′ are all linked

by a set of linear equations. We do not care how the information state variables ht′ are linked as

long as we can enumerate all the histories independent of prior decisions. However, it is important

to recognize that the information variables (the histories) are linked through a transition function

which is implicit in the process for generating scenario trees. This allows us to optimize over all the

decisions xt and xt′(ω), t′ > t, ω ∈ Ω as one large linear (and possibly integer) program:

V̄t(St) = min
xt

C(St, xt) +
1

|Ω̂|

∑
ω∈Ω̂

min
xt+1(ω),...,xT (ω)

T∑
t′=t+1

γt
′−tC(St′(ω), xt′(ht′(ω)))

 . (29)

The key insight in stochastic programming (when we are using a lookahead policy) is recognizing

that if we generate the information states in the form of the histories ht′(ω) in advance, the decisions

19

xt′(ht′) are linked through the resource transition function Rt′ = Bt′−1xt′−1 + R̂t′ , and therefore are

implicitly a function of Rt′ (which means we could have written the decisions as xt′(St′)). As a result,

equation (29) can be solved as a single large, deterministic linear (or integer) program. This allows

us to avoid designing an explicit policy Xπ
t′(St′). This is conceptually the same as solving a decision

tree (with discrete actions a), but can be used when decisions are vectors.

We have to recognize that Ω̂ is the set of all histories that we have sampled, where an element

ω ∈ Ω̂ refers to an entire history from t to T . Then, we can interpret xt′(ω) as xt′(ht′(ω)) as the

decision that depends on the history ht′ produced by the sample path ω. To illustrate, imagine that

we are solving a problem for time periods t, t + 1 and t + 2, where we generate 10 observations of

Wt+1 and, for each of these, 10 more outcomes for Wt+2. This means that we have 100 elements in

Ω̂. However, we have to choose a single vector xt, 10 vectors xt+1 and 100 vectors xt+2.

An alternative way of interpreting equation (29), however, is to write xt′(ω) explicitly as a function

of ω, without inserting the interpretation that it only depends on the history up to time t′. This

interpretation is notationally cleaner, and also represents what the field of stochastic programming

actually does. However, it then introduces an important complication. If we index xt′(ω) on ω, then

this is the same as indexing it on the entire history from t to T , which means we are allowing the

decision to see into the future.

To handle this, we first make one last modification to our objective function by writing it in the

form

V̄t(St) =
1

|Ω̂|

∑
ω∈Ω̂

min
xt(ω),...,xT (ω)

T∑
t′=t

γt
′−tC(St′(ω), xt′(ht′(ω))). (30)

We need to solve this optimization subject to the constraints for t′ > t and all ω ∈ Ω̂,

Atxt(ω) = bt, (31)

xt(ω) ≥ 0, (32)

At′(ω)xt′(ω)−Bt′−1(ω)xt′−1(ω) = bt′(ω), (33)

xt′(ω) ≥ 0. (34)

All we have done here is to include xt (the “here and now” decision) in the summation over all

the scenarios ω. Returning to our little example with three time periods, we now have three sets of

20

decisions xt, xt+1 and xt+2 with 100 outcomes, creating 300 vectors that we have to choose. If we

solved this problem without any further changes, it would be like solving 100 deterministic problems,

where each set of vectors (xt, xt+1, xt+2) depends on ω. To implement this solution we have to know

the entire future before choosing xt. This is an example of an inadmissible policy (alternatively, we

might say that the solution is anticipative because it is allowed to anticipate the future).

The stochastic programming community fixes this problem in the following way. We do not want

to have two different decisions for xt′ for two different outcomes ω that share the same history up to

time t′. So we can introduce the constraint

xt′(ω)− x̄t′(ht′) = 0, ∀ω ∈ Ht′(ht′). (35)

Here, x̄t′(ht′) is a new set of variables where there is one variable for each history, subject to con-

straints that depend on Rt′ which depends on the prior decisions. Equation (35) is known as a

nonanticipativity constraint because it requires each xt′(ω) for all ω ∈ Ht′(ht′) (that is, the set of all

outcomes that share a common history) to be the same. Note that if t = t′, there is only a single

history ht (determined by the state St that we are in at time t).

Equation (30), then, is optimizing over all policies in the set of lookup table policies by choosing

the best vector xt′ for each history ht′ . The key feature (when dealing with vector-valued decisions) is

that the optimization problem defined by (30)-(34), along with the nonanticipativity equation (35),

is a linear program (integrality constraints may also be included). The only problem is that for many

applications, it is an extremely large linear (or integer) program. For this reason, it is common to

simplify the scenario tree by limiting the number of times that information can be revealed. In fact,

a popular strategy is to assume that after making the initial decision xt, the information over the

entire remainder of the horizon is revealed, which means that the vector xt+1 is allowed to see Wt′

for t′ > t+ 1. This is a form of cheating (peeking into the future), but we tolerate it because we are

not actually going to implement the decisions xt′ for t′ > t.

Instead of using equation (28) as the value of a policy, we can modify it slightly to take the form

of a lookahead policy with the form

XLA−SP
t (St) = arg min

xtt,...,xt,t+H

t+H∑
t′=t

γt
′−tC(St′(ω), xt′(ht′(ω))). (36)

where xtt, . . . , xt,t+H = (xtt(ω), . . . , xt,t+H(ω)), ∀ω ∈ Ω̂. The optimization problem needs to be solved

21

subject to (31)-(34) and the nonanticipativity constraints (35). We have written our lookahead policy

as spanning a planning horizon from t to t + H instead of T since there are many problems where

T may be hundreds or thousands of time periods into the future, but where we can obtain good

decisions by planning over a shorter horizon. We assume that the arg min in (36) returns only xt.

In practice, computing this policy can be computationally very demanding. It is because of this

computational challenge that a substantial community has evolved to solve this problem (see, for

example, Rockafellar & Wets (1991), Birge & Louveaux (1997) and Romisch & Heitsch (2009)).

However, it is also important to recognize that even an optimal solution to (36) does not constitute

an optimal policy, in part because of the truncated planning horizon H and also because of the need

to use a sampled scenario tree. Solving the lookahead model optimally does not translate to an

optimal policy of the original problem.

3.2.2 Stochastic programming using a value function approximation

As a result of the computational demands of solving lookahead models directly, the stochastic pro-

gramming community has long recognized that there there is an alternative strategy based on ap-

proximations of value functions (known as recourse functions in stochastic programming). Using the

notational system in Shapiro et al. (2009), the strategy starts by writing

Qt(xt−1, ξ[t]) = min
xt

(
ctxt + E{Qt+1(xt, ξ[t+1])|ξ[t]}

)
. (37)

Now we just have to translate the notation back to ours. Qt is called the recourse function, but this is

just different terminology and notation for our value function Vt. ξ[t] is the history of the exogenous

information process up to time t (which we refer to as ht). The resource vector Rt is a function of xt−1

and, if we have an exogenous component such as R̂t (as in equation (12)), then it also depends on Wt

(which is contained in ξ[t]). This means that the state variable is given by St = (Rt, ht) = (xt−1, ξ[t]).

We note that it is mathematically equivalent to use xt−1 instead of Rt, but in most applications Rt

is lower dimensional than xt−1 and would be more effective computationally as a state variable.

We still face the challenge of optimizing (over a vector-valued decision xt) the imbedded expec-

tation of the unknown function Qt+1(xt, ξ[t+1]). It is possible to show that (37) can be replaced

with

Qt(xt−1, ξ[t]) = min
xt∈Xt,v

(
ctxt + v

)
, (38)

22

where

v ≥ αkt (ξ[t]) + βkt (ξ[t])xt, for k = 1, . . . ,K, (39)

and where Xt captures the feasible region for xt (such as equations (31)-(32)). Here, equation (39) is

generated by solving the dual problem for time t + 1, which means that K depends on the number

of iterations that have been executed. We note that in the stochastic programming community,

equation (39) would be written

v ≥ αkt+1(ξ[t]) + βkt+1(ξ[t])xt, for k = 1, . . . ,K, (40)

where α and β are now indexed by t + 1 instead of t. The style in equation (39) is consistent with

our indexing where any variable indexed by t can be computed at time t. The style in equation

(40) is used to communicate that the cuts are approximating the recourse function at time t + 1,

although it is really more accurate to say that it is approximating the recourse function around the

post-decision state at time t given by E{Qt+1(xt, ξ[t+1])|ξ[t]} = V x
t (Sxt) = V x

t (Rxt , ht) = V x
t (xt−1, ht).

A rich history has grown within the stochastic programming community around the use of Ben-

ders’ cuts. Important references include Higle & Sen (1991), Kall & Wallace (1994), Higle & Sen

(1996), Birge & Louveaux (1997), and Shapiro et al. (2009). This literature has established conver-

gence results that show that the solution converges to the optimal solution of the lookahead model

(not to be confused with the optimal policy of the original problem).

The “cuts” represent a form of nonparametric value function approximation that takes advantage

of the convexity of the value function. The vector xt in equation (39) can be replaced by Rxt , the

post-decision resource vector (sometimes dramatically reducing its dimensionality). These cuts are

also indexed by ht = ξ[t], which means that our value function approximation depends on the full

post-decision state vector Sxt = (Rxt , ht) = (Rxt , It), which consists of the resource vector after we

make a decision, and the current (but not the future) information state.

Using this value function approximation, we can write the policy as

Xπ
t (St) = arg min

xt∈Xt,v

(
ctxt + v

)
, (41)

subject to equation (39). Here, the index π refers not only to the structure of the policy, but also

the cuts themselves.

23

Benders’ cuts have attracted considerable attention in the operations research community, al-

though there appear to be rate of convergence issues when the dimensionality of the resource variable

Rt grows (Powell et al. (2004)). Another approximation strategy is a value function that is linear in

the resource variable, as in

V̄t(St) = min
xt∈Xt

(
ctxt +

∑
i

v̄tiR
x
ti

)
, (42)

where Rxt is the post-decision resource vector produced by xt (this can be written in the general form

Rxt = Btxt). A third approximation is a value function that is piecewise linear but separable in Rxt ,

as in

Vt(St) = min
xt∈Xt

(
ctxt +

∑
i

V̄ti(R
x
ti)
)
. (43)

Note that the approximations v̄ti and V̄ti(Rti) are not indexed by the history ht (although we could

introduce this), making these methods computationally much more compact, but with a loss in

optimality proofs (which we would lose anyway as a result of the use of linear or piecewise linear,

separable approximations). However, these techniques have proven useful in industrial problems with

hundreds or thousands of time periods (stages), which could never be tackled using scenario trees

(see Simao et al. (2009) and Topaloglu & Powell (2006) for illustrations).

There is a critical difference in how the stochastic programming community uses value function

approximations (such as equations (41)-(39)) versus the strategies used by the approximation dy-

namic programming community (such as equations (42) or (43)). The issue is not the use of Benders’

cuts vs linear or piecewise linear, separable approximations. The difference is the dependence on

scenario trees. By indexing the cuts on the scenario tree, the stochastic programming community is

designing an algorithm that optimizes the lookahead model rather than the full model. By contrast,

the ADP community will train their value functions on the full model. The SP community hopes that

near-optimal solutions to the lookahead model (defined in terms of the scenario tree) will produce

good solutions for the full model. The ADP community can, in special cases, obtain optimal policies

to the full model, but for most applications limitations in machine learning limit the accuracy of the

value function approximations.

24

4 Shortest path problems

Imagine that we have a graph where we have to get from an origin o to a destination d over a graph

where the cost to traverse arc (i, j) is given by cij . It is well known that we can find a shortest path

using Bellman’s optimality equation

Vt(i) = min
a∈Ai

(
cia + Vt+1(a)

)
,

where Ai is the set of nodes j that are incident to node i, and the action a is one of these nodes.

What makes dynamic programming work so well in this setting is that the state space, the set of

nodes, is quite manageable.

Imagine now that the costs cij are stochastic where, prior to traversing a link, we know only the

distribution of the costs. Let ĉij be the random variable representing the actual cost of traversing (i, j)

with expectation cij = Eĉij . This problem is no more complicated than our original deterministic

problem, since we would plan our path using the expectations.

Finally, let’s imagine that when we arrive at node i, we get to see the realization of the costs ĉij

on links out of node i, where the costs may be continuous. This problem is suddenly quite different.

First, our state variable has changed from the node where we are located, to the node along with

the observed costs. Let Rt be the node where we are located after t transitions (this is the state of

our resource), and let It = (ĉr,j)j∈Ar be the costs on links incident to the node r = Rt (we think of

this as information we need to make a decision). Our state variable is then given by St = (Rt, It).

When we think of the size of our state space, this problem is dramatically more complex.

We can overcome this complication using our post-decision state variable. If we are at node i

and decide to go to node j, our post-decision state is the state immediately after we have made this

decision (which is to say, our intended destination j), but before we actually traverse to node j. This

means that we have not observed the costs on arcs incident to node j. As a result, we can think of

the post-decision state Sat at time t as the node where we would be at time t + 1 but without the

information that would be revealed at time t+ 1.

Assume that we are traversing the path repeatedly. On iteration n at time t, we are in state

Snt = (Rnt , I
n
t). Let r = Rnt and let the costs ĉnra be contained in Int . Using the post-decision state

25

variable, we can write Bellman’s equations using

Vt(S
n
t) = min

a∈Ar

(
ĉnra + V a

t (Sat)
)
, (44)

V a
t (St) = E{Vt+1(St+1)|St}, (45)

where the post-decision state is given by Sat = a. Equation (44) is deterministic, and the post-

decision state space for Sat is small, making (44) relatively easy to compute. The problem is that

we may have trouble finding the expectation in equation (45). We can get around this by replacing

V a
t (s) with a statistical approximation. Imagine that we are at a particular state Snt where Rnt = i

and where ĉnij for j ∈ Ai are known. Let

v̂nt (i) = min
j∈Ai

(
ĉnij + V̄ n−1

t+1 (j)
)

(46)

be a sample realization of the value of being in state Snt , which means we are at node i at time t,

observing the costs ĉnij . We could also say that this is a sample realization of the value of being in the

pre-decision state Sat−1 = i (at time t − 1, we have made the decision to go to node i, but have not

yet arrived at node i). We now use this to update our estimate of the value of being in the previous

post-decision state Sat−1 using

V̄ n
t−1(Sa,nt−1) = (1− αn−1)V̄ n−1

t−1 (Sa,nt−1) + αn−1v̂
n
t (i), (47)

where i = Rnt and 0 < αn−1 ≤ 1 is a stepsize.

An alternative strategy would be to use the actions from solving (46) to produce an entire

sequence of actions (say, out to an end of horizon T). Let the sequence of states generated by the

actions from this policy be denoted by (Sn0 , a
n
0 , S

n
1 , a

n
1 , . . . , S

N
T). Now, compute v̂nt (i) using

v̂nt =
T∑
t′=t

C(Snt′ , a
n
t′) + V̄ n

T+1(ST+1). (48)

This is accomplished using a simple backward traversal. We might assume that V̄ n
T+1(ST+1) = 0,

but we include this last term just in case.

These ideas here are presented using the setting of discrete action spaces, which are useful if we

are routing, for example, a single vehicle around a network. For problems involving, say, fleets of

26

vehicles, we can use similar ideas if we think of v̂nt as the marginal value of additional resources (see

Simao et al. (2009) for an illustration in the setting of managing fleets of drivers).

This simple example has allowed us to provide our first illustration of approximate dynamic

programming based on a value function approximation (using a lookup table), taking advantage of

the post-decision state. Unfortunately, we have not yet created an algorithm that computes the best

path. One strategy is to loop over all the nodes in the network, computing (46) and then (47) to

update the approximate values at every state. For deterministic problems, we would say that such

an algorithm is hopelessly inefficient but at least it would work. When we depend on Monte Carlo

samples of costs, such an algorithm is not guaranteed to provide the optimal path, even in the limit.

There is a slightly different algorithm which is computationally even clumsier, but at least we

get a convergence proof. It has been developed in the reinforcement learning community under the

name “Q-learning” and it proceeds by iteratively estimating Q-factors which are estimates of the

value of being in a state s (that is, sitting at a node) and taking an action a (corresponding to a

link). Assume we choose at iteration n a state-action pair (sn, an). The updates are computed using

q̂n(sn, an) = C(sn, an) + γmin
a′

Q̄n−1(sn+1, a′), (49)

Q̄n(sn, an) = (1− αn−1)Q̄n−1(sn, an) + αn−1q̂
n(sn, an).. (50)

Here, sn+1 is a downstream state that is randomly sampled given the current state sn and action an.

Note that sn must be a pre-decision state, so for our stochastic shortest path application, it would

have to include the vector of costs. The algorithm is provably convergent (Tsitsiklis (1994)), but it

is also known to be impractically slow.

The algorithm we would like to use (and which we will use later), works as follows. Imagine that

we could start with an initial set of approximations V̄ 0(i) for each node i, and then use the action

selected in equation (46) to determine the next link to traverse. We can use this idea to simulate

our way through the network, a process that is practical regardless of the complexity of the state

variable. This process would then have to be repeated a number of times, with the hope that we

would learn the shortest path.

If we could compute the expectation exactly, and if we start with optimistic estimates of the

value of being at each node, this algorithm actually works (in its deterministic form, this is called

the A* algorithm (Pearl (1984)), and was later re-introduced under the name “real-time dynamic

27

programming” (Barto et al. (1995))). But when we depend on Monte Carlo sampling, this simple,

elegant strategy fails in this setting. The reason is widely known as the “exploration vs. exploitation”

problem (see Powell (2011)[Chapter 12] and Powell & Ryzhov (2012)). We do not learn about a state

unless we visit it. If our estimate of the cost generated from a state is too high, we might not visit it

and would therefore never realize that the cost is incorrect. For problems with small action spaces, it

is common to introduce an exploration policy where we might choose an action just to try it. Even

with small action spaces, such algorithms will work only when there is some form of generalized

learning, where visiting one state teaches us something about other states (we have an example of

this in section 6 for the setting of a single truck). For vector-valued decisions, these exploration

policies would never work.

However, there are problems where this strategy works beautifully, one being inventory problems

which we review next. It is going to be important for us to understand when this powerful idea

works, and when it does not.

5 Inventory problems

Inventory problems are fundamental to operational planning in transportation and logistics, ranging

from classical applications in retail management to decisions about the size of trailer pools at truck

terminals or the number of locomotives or jets that railroads or airlines should own. Shipping

companies need to solve inventory problems to determine how many containers to keep at a port or

to plan advance purchases of capacity on container ships. Inventory problems are also at the heart

of fleet management problems faced in trucking, rail and shipping.

5.1 A basic model

We use this problem to illustrate the five components of a model of a dynamic program. Assume

that we are managing the trailer pool of containers at a port. We receive a revenue pt for serving

demands Dt at time t. We can order new trailers moved into the terminal for a cost ct. In addition,

the trailer pool changes randomly due to the need to move loads out of the port, or from trailers

pulling loads into the port. Unsatisfied demands are lost. We model this problem as follows:

• State variable - Let Rt be the number of trailers on hand at the end of day t. Assume that

the price pt+1 depends on the price pt, but that the costs ct are independent and identically

28

distributed, as are the demands Dt. Our state variable is then St = (Rt, Dt, pt, ct).

• Decision variable - Let xt be the number of trailers that we request to be moved empty into

(xt > 0) or out of (xt < 0) the yard, at a unit cost ct.

• Exogenous information - Let p̂t be the change in the price between t− 1 and t (that becomes

known at time t), and let D̂t be the demands that become learned at time t (equivalently,

between t− 1 and t) to be served at time t or later. Also assume that ĉt is revealed at time t.

Finally, let R̂t capture changes in the trailer inventory due to the movement of loaded trailers

into the port (R̂t > 0) or out of the port (R̂t < 0). Our exogenous information process is given

by Wt = (D̂t, R̂t, p̂t, ĉt). Finally, we note that the costs ĉt increase when we need to order more

trailers, since we have to get them from more distant locations, which means that the random

variables depend on our decisions (and hence the policy).

• Transition function - Our state variables evolve according to

Rt+1 = Rt + xt + R̂t+1,

Dt+1 = D̂t+1,

pt+1 = pt + p̂t+1,

ct+1 = ĉt+1.

Note that Dt+1 and ct+1 do not depend on history, so we assume that these are simply revealed.

We observe the change in prices (rather than just the new price) so that we can demonstrate

the dependence on history (the random variable p̂t+1 may depend on pt). Finally, Rt+1 is

governed by both a decision as well as exogenous inputs.

• Objective function - Let Xπ(St) represent our decision function (policy), and let C(St, xt) be

the cost incurred during time period t. Our objective function is then given by

min
π

Eπ
T∑
t=0

γtC(St, X
π(St)).

We note that while the pre-decision state variable St has four dimensions, the post-decision state

Sxt = (Rxt , pt), where Rxt = Rt + xt, has only two dimensions.

29

5.2 Solution based on Bellman’s equation

Inventory problems represent an ideal setting for illustrating the power of Bellman’s optimality

equation. Assume that we discretize St = (Rt, Dt, pt, ct) into a reasonable number of potential

states. We can use Bellman’s equation to characterize an optimal policy, given by

V (St) = min
x∈X

(
C(St, x) + γE{V (St+1)|St}

)
. (51)

where St+1 = SM (St, x,Wt+1) and the expectation is over the random variable Wt+1. Interestingly,

the dynamic programming community has focused far more attention on the infinite horizon problem.

A classical strategy is an algorithm known as value iteration, which starts with an estimate V 0(s)

for the value of being in each state s ∈ S, and then produces updates using

V n(s) = min
x∈X

(
C(s, x) + γE{V n−1(s′)|s}

)
, (52)

where V n(s) is computed for each state s ∈ S. This strategy is also known as exact value iteration,

in contrast with the update described in equations (46)-(47), which is known as approximate value

iteration. We note that exact value iteration enjoys a rigorous convergence theory, while approximate

value iteration only works with special structure. Fortunately, convexity happens to be a powerful

property that allows approximate value iteration to work.

Using this strategy, we can state our policy using the value function as

Xπ(s) = arg min
x∈X

(
C(S, x) + γE{V (s′)|s}

)
, (53)

which is a function that we can execute on the fly (that is, given a state s and value function V (s′),

we can solve (53) to obtain an action). Alternatively, we can execute (53) for each state s, determine

the action and store it in a matrix that we can call Xπ(s), where π is the optimal policy. While

these policies are mathematically equivalent, they are computationally quite different. We would

refer to the policy in (53) as a policy based on a value function approximation (even with exact value

iteration, the value function is never truly exact), while storing the matrix Xπ(s) is a policy function

approximation using a lookup table representation.

30

5.3 Policy search

We feel that we can use a policy such as a rule that we place an order when the inventory Rt is

less than a parameter q, and we order enough to take the inventory up to Q. This is a form of

policy function approximation, using a parametric policy. We can find the best values for q and Q

by solving

min
(q,Q)

F (q,Q) = Eπ
T∑
t=0

C(St, X
π(St|q,Q)). (54)

This problem can be solved using the techniques of stochastic search (see Spall (2003) for a thorough

review, and Powell (2011)[Chapter 7] for stochastic search in the context of dynamic programs).

In practice, it is often the case that problems are nonstationary, reflecting time-of-day or day-

of-week patterns. If this is the case, we might want to use a vector (qt, Qt), which means we now

have two parameters for each time period. Such a problem is much harder, especially if we do not

have access to derivative information. Interestingly, value function approximations can be adapted to

handle time dependent problems quite easily. In Powell et al. (2011), value function approximations

are used to solve an inventory problem with 175,000 time periods.

5.4 Exploiting convexity

Another strategy is to develop a value function approximation that exploits the fact that for many

(although not all) inventory problems, the value function is convex in the inventory Rt. Assume that

we are going to represent the value function using a piecewise linear approximation, where v̄n(r)

is an estimate of the slope of V (R) after n observations for R = r. Our optimization problem at

iteration n would then look like

Ṽ n
t (Rt) = min

x∈X

(
C(Rnt , x) + γ

Rmax∑
r=0

v̄n−1
t (r)yr

)
, (55)

where
∑Rmax

r=0 yr = Rt+x = Rxt is the amount of inventory after our decision (the post-decision state

variable). Now let

v̂nt = Ṽ n
t (Rnt + 1)− Ṽ n

t (Rnt) (56)

31

Step 0. Initialization:

Step 0a. Initialize an approximation for the value function V̄ 0
t (Sat) for all post-decision states Sat , t =

{0, 1, . . . , T}.
Step 0b. Set n = 1.

Step 0c. Initialize Sa,10 .

Step 1. Choose a sample path ωn.

Step 2. Do for t = 0, 1, . . . , T :

Step 2a: Let

xnt = arg min
x∈X

(
C(Rnt , x) + γ

Rmax∑
r=0

v̄n−1
t (r)yr

)
(58)

where
∑Rmax

r=0 yr = Rt + x = Rxt . Compute v̂nt using

v̂nt = Ṽ nt (Rnt + 1)− Ṽ nt (Rnt)

Step 2b. Use v̂nt to update V̄ nt−1 while maintaining convexity.

Step 2c. Sample Dn
t+1 = Dt+1(ωn) and compute the next state using

Rnt+1 = max{0, Rnt + xnt − D̂n
t+1}.

Step 3. Increment n. If n ≤ N go to Step 1.

Step 4. Return the value functions (V̄ nt)Tt=1.

Figure 1: Approximate value iteration for an inventory problem.

be an estimate of the slope of the value function when Rt = Rnt . We can use this to update our

estimate of the slope at r = Rnt for the value function approximation at the previous, post-decision

state variable Rx,nt−1 using

v̄nt−1(Rx,nt−1) = (1− αn−1)v̄n−1
t−1 (Rx,nt−1) + αn−1v̂

n
t . (57)

We have one last hurdle. If the value function is convex, then we would have that v̄nt (r+ 1) ≥ v̄nt (r).

While this may be true for v̄n−1
t (r), it may no longer be true after the update from equation (57),

because of the noise in v̂nt . If we lose convexity, there are a number of ways to restore it (Powell &

Godfrey (2001), Powell et al. (2004), Powell (2011)[Chapter 13]). Maintaining convexity accelerates

convergence, and later we will exploit it when our actions become vectors.

This problem can be solved using approximate value iteration, as depicted in figure 1. Here, we

use our approximation of the value function to choose an action, and we use information from this

decision problem, in the form of the slope v̂nt , to update the slope of the value function around the

previous, post-decision state variable.

Now we have to pause and observe: This is exactly the algorithm that we wanted to use for the

stochastic shortest path problem, but we claimed it would not work. Here, we claim it does work.

32

Furthermore, it can be proven to produce an asymptotically optimal solution, and it works very well

in practice (with a caveat). Powell & Simao (2009) use this strategy in the planning of high-value

spare parts for a manufacturer of regional aircraft. This work considered hundreds of spare parts,

including parts that ranged from demands of several per day to truly high value spare parts (wings,

engines) which were only used for instances of extremely rare failures. Such parts might be required

once every two or three years. Since the system had to be modeled in daily time steps (to model

parts with much higher demands), the result was a system that exhibited hundreds of time periods

between demands.

Approximate value iteration is especially practical for problems in transportation and logistics,

since it is basically a simulator, which scales very well in industrial applications. However, we have

to be aware that we are caught in this tension between problems where it works extremely well (such

as our inventory problem) and where it does not work at all (our stochastic shortest path problem).

Perhaps it is not surprising that convexity is the critical property. We have had success with this

algorithmic strategy in a number of fleet management problems (Godfrey & Powell (2002), Topaloglu

& Powell (2006), Powell & Topaloglu (2005), Powell et al. (2012a)), but all of these are convex.

If we encounter the situation with very infrequent demands, the strategy above simply would not

work, because the backward communication of the value of having inventory is too slow. We can

overcome this by doing a full forward pass, followed by a backward traversal, not unlike what we saw

in our shortest path problem in equation (48). The only difference is that we would have to compute

marginal values during this backward pass. However, it highlights how easily the same problem can

do well with one algorithm for one set of parameters (high demands) and very poorly with another

set of parameters (low demands).

5.5 Approximating value functions with basis functions

Yet another strategy that we could use is to replace the value function with a linear regression model,

as we suggested in equation (22). If we use approximate value iteration, we would compute a sample

estimate of the value of being in state Snt using

v̂nt = min
x∈X

(
C(Snt , x) + γ

∑
f∈F

θn−1
tf φf (Sxt)

)
, (59)

33

where as before, Sxt is the post-decision state variable that depends deterministically on Snt and the

action x. We might use as basis functions:

φ1(Sxt) = 1,

φ2(Sxt) = Rxt ,

φ3(Sxt) = (Rxt)2,

φ4(Sxt) = pt,

φ5(Sxt) = p2
t ,

φ6(Sxt) = ptR
x
t .

As always occurs with parametric models, designing the basis functions is an art form that has to

be exercised with care.

We can use the observation v̂nt to update our estimate of the regression parameters θn−1 using

recursive least squares (Hastie et al. (2009), Powell (2011)[Chapter 7]). This strategy has attracted

considerable attention as a potential method for solving the curses of dimensionality (Bertsekas &

Tsitsiklis (1996), Tsitsiklis & Roy (1996)), but convergence proofs require highly restrictive assump-

tions, and the algorithmic strategy has been known to diverge, or to simply produce very poor

solutions. The difficulty is that it is very hard to evaluate the solution quality without a benchmark.

5.6 A deterministic lookahead policy

Now consider a slight variation on our inventory problem. Imagine that we are managing the inven-

tory of trailers at a truck terminal for a parcel service company. We are going to complicate our

problem by introducing the very real dimension that major shippers such as a large big-box retailer

may run sales, requiring dozens of trucks on a particular day. These sales are planned, and are

communicated to trucking companies so they can plan accordingly. Incorporating this information

produces a forecast fDtt′ made on day t of the demand for trailers on day t′.

A forecast represents information that has to go into the state variable, including the post-decision

state variable. For example, if we are given a vector fDt = (fDtt′)t′≥t, we might expect it to evolve

over time according to

fDt+1,t′ = fDtt′ + f̂Dt+1,t′ ,

34

where f̂Dt+1,t′ would capture updates to forecasts (e.g. the retailer may revise their estimates of

the number of trailers upward or downward as they get close to the sale). For this reason, the

post-decision state now becomes

Sxt = (Rxt , pt, f
D
t).

Suddenly, our inventory problem has made the transition from a state variable with a relatively

small number of discrete states (the different values of Rxt and pt), to one where we have added

the vector of forecasts fDt with an exponential explosion in the number of states (the forecasts fDt

along with the price pt belong to the information state It). As of this writing, we are not aware of

an effective way to solve this problem using policy function approximations (such as (q,Q) policies)

or value function approximations. The problem is that the value function V x
t (Sxt) in this setting is

surprisingly complex; it is just not that easy to create an accurate approximation that would reflect

the impact of the vector of demand forecasts on the solution.

Practitioners would normally solve problems in this class using a lookahead policy. The most

common strategy is to use a deterministic model of the future, where we would solve

XDLA(St) = arg min
xt

(
cttxtt +

t+H∑
t′=t+1

ctt′xtt′

)
, (60)

subject to constraints for t′ = t, . . . , t+H:

Att′xtt′ −Bt,t′−1xt,t′−1 = Rtt′ , (61)

Dtt′xtt′ ≤ fDtt′ , (62)

xtt′ ≤ utt′ , (63)

xtt′ ≥ 0. (64)

Here, equation (61) might capture flow conservation, while (62) models the effect of customer de-

mands on the system (we cannot receive money for moving a load twice). Let x∗t = (x∗tt′)t′≥t be

the optimal solution to (60). Normally, we only retain x∗tt to execute now, while x∗t,t+1, . . . , x
∗
t,t+H

represents a plan of future decisions that will be updated as new information arrives.

Deterministic lookahead policies are widely used in engineering practice. These are known as

rolling horizon procedures, receding horizon procedures and, in engineering, model predictive control.

35

Figure 2: Illustration of rolling horizon procedure, using a deterministic model of the future.

The “problem” with this approach is that they ignore the possibility that the future is likely to be

different than our deterministic forecast, and we would like to consider this when making a decision

now. The hard part is understanding when a “stochastic model” adds value.

We have to first emphasize that even if we are using a deterministic lookahead policy, we are still

using a stochastic model. After all, we can simulate the policy XDLA(St) in a stochastic simulator,

as depicted in figure 2. It is very important to recognize that there are two models in this process:

the real model, which we represent using St+1 = SM (St, xt,Wt+1) where xt = XDLA(St) and where

outcomes of Wt are drawn from Ω, and an approximate model that we use purely for the purpose of

planning. For this purpose, it is useful to create a new process that we describe using the state variable

S̃t, decision variable x̃t, information process W̃t and transition function S̃t+1 = S̃M (S̃t, x̃t, W̃t+1). For

obvious reasons, we refer to this as the “tilde process” which describes the within-policy model.

We can introduce a range of approximations in our within-policy model. We might use an

aggregated state variable, and we would normally let Ω̃ be a small set of samples from Ω. When we use

a deterministic model of the future, we are approximating the random variables (Wt,Wt+1, . . . ,Wt+H)

with a series of point forecasts (W̄tt, W̄t,t+1, . . . , W̄t,t+H) which include, for example, our demand

forecasts fDt . We no longer have the dynamics of the evolution of demands and prices, and our

transition function is now reduced to a system of linear equations such as those represented by

equation (61). Below, we illustrate policies that introduce other types of approximations.

5.7 A modified deterministic lookahead policy

While deterministic lookahead policies are simple and practical, often there is a desire to make

decisions now that capture the fact that the future will not match the forecast. Some refer to

these policies as robust, although this is a term that is interpreted in very specific ways by different

36

communities. Another term is anticipatory, recognizing that this could refer to any nonmyopic policy.

A simple way to capture uncertainty is to simply introduce tunable parameters that make the

adjustments that would be needed to handle uncertainty. For inventory problems, a common strategy

to handle uncertainty in demands is to introduce buffer stocks, or to replace the expected demand

forecast fDtt′ with a quantile (we may decide it is better to aim at the 70th percentile). So, we might

replace equation (62) with

Dtt′xtt′ ≤ fDtt′ + θ.

We might use a single scalar buffer θ, or we could make it time dependent by using θt′ , or a function

of how far we are forecasting into the future, as in θt′−t. An alternative is to replace the point forecast

fDtt′ with a quantile fDtt′(θ) which is the value that satisfies

P[Dtt′ ≤ fDtt′(θ)] = θ.

We can represent either policy using the function XDLA(St|θ), where θ is now a tunable param-

eter. We perform the tuning by solving the stochastic optimization problem

min
θ
FDLA(θ) = Eπ

T∑
t=0

C(St, X
DLA(St|θ)). (65)

This problem is identical to our original objective function in equation (15). All that we have done

is replace the generic search over policies π ∈ Π with a search over θ, which parameterizes a policy.

This is simply different notation representing the same thing.

5.8 A lookahead policy based on stochastic programming

Our modified rolling horizon policy is a way of adapting to the effect of uncertainty. While this may

work quite well for specific problems, we may be left wondering if there is an even better solution.

For this reason, a substantial community has evolved under the umbrella of stochastic programming

which attempts to approximate the future while simultaneously capturing the effect of uncertainty.

The easiest way to visualize solving the full stochastic program is to create a decision tree, which

explicitly models the sequence of decisions and information. These are hopelessly intractable for the

high-dimensional problems that arise in transportation.

37

Mon Tue Wed Thur Fri Sat

0.3

0.4

0.3

Low
demand

High
demand

Mon Tue Wed Thur Fri Sat

(a) (b)

Figure 3: Illustration of a scenario tree based on a discretized distribution (a), and Monte Carlo
samples (b).

An alternative strategy is to create a scenario tree of just the random events. For our simple

inventory problem, assume we have a single random variable (demand), and that we can discretize

the demand into three outcomes: higher than normal, normal, and lower than normal. We can create

a tree of all these possible outcomes over the next five days, as depicted in figure 3(a). It is easy

to see that the tree grows quickly, and this idea would never scale if we had more than one random

variable (we might have a vector of demand types, along with random prices and costs).

An alternative strategy is to use Monte Carlo sampling, which we have depicted in 3(b). Here,

we would use a set of samples Ω̃ of our information process, where we can control how many samples

we want to use to represent the different types of outcomes of the random variables. The important

feature here, however, is that we can have any number of random variables; we just have to limit

how many samples we use.

Not surprisingly, even this strategy can produce an extremely large scenario tree as the number

of time periods (stages) grow. For this reason, it is common practice to use a reasonable number of

samples in the first period, and then sharply limit the number of samples in later periods, with the

idea that these periods are less important. In fact, many authors take this idea one step further and

simply model the entire future as one stage. So, we may represent time periods (1, ..., T) as a single

stage which is realized all at the same time. This means we have to make a decision x0 without

knowing what might happen in the future. However, x1, . . . , xT are then chosen knowing the entire

38

Figure 4: Illustration of rolling horizon procedure, using a stochastic model of the future.

future W1, . . . ,WT . This is known as a two-stage approximation, and is written mathematically as

XSP (St|θ) = arg min
xt

cttxtt +
∑
ω̃∈Ω̃

p(ω̃)

t+H∑
t′=t+1

ctt′(ω̃)xtt′(ω̃)

 , (66)

subject to constraints for time t:

Attxtt = Rtt, (67)

Dttxtt ≤ fDtt , (68)

xtt ≤ utt, (69)

xtt ≥ 0, (70)

and constraints for t′ = t+ 1, . . . , t+H and each sample path ω̃ ∈ Ω̃:

Att′(ω̃)xtt′(ω̃)−Bt,t′−1(ω̃)xt,t′−1(ω̃) = Rtt′(ω̃), (71)

Dtt′(ω̃)xtt′(ω̃) ≤ fDtt′(ω̃), (72)

xtt′(ω̃) ≤ utt′(ω̃), (73)

xtt′(ω̃) ≥ 0. (74)

As with our modified deterministic lookahead policy, we have written our stochastic programming

policy as a function of a parameter vector θ. In this setting, θ might represent the parameters that

determine how the scenario tree is constructed. We can then simulate the policy XSP (St|θ) just as

we simulated XDLA(St|θ) in equation (65) which, in principle, could be used to tune the parameter

vector θ. Figure 4 illustrates the process of executing our stochastic programming policy on a rolling

horizon basis.

39

The stochastic programming policy represents the clearest illustration of two models of a pro-

cess: the “within-policy” model where we represent the future in an approximate way, purely for

the purpose of making a decision, and the real process. In many applications, the real process is

something that is experienced with the actual passage of time in a physical system. However, our

real process can be a computer simulation, but one that uses a much higher level of detail than

the within-policy model. At a minimum, in the real process we would experience the full range of

random outcomes, in sharp contrast with the highly stylized representation of the future used in our

scenario tree (depicted in figure 3(b)).

6 Fleet management problems

We now make the transition to managing large fleets of vehicles in the context of truckload trucking.

In the U.S. (and this seems to be a phenomenon unique to the U.S.) there are companies dedicated

to the movement of full truckloads. The three largest megacarriers in the U.S. manage fleets with

over 15,000 drivers. The problem is to determine which driver to assign to each load at a point in

time, capturing the fact that decisions now have an impact on the future. We start with the problem

of managing a single truck.

6.1 Optimizing a single truck

Assume that we are managing a single truck at location i ∈ I. When the truck arrives at i, he is

offered a set of loads represented by D̂tij where D̂tij = 1 if there is a load that the driver can move

from i to j starting at time t. The truck may choose to reject all the loads and remain where he is

until time t+ 1. Any loads that have not been moved at time t are assumed taken by other drivers.

This problem is very similar to our stochastic shortest path problem. We can write the state

variable as St = (Lt, D̂t), where Lt is the current location of the truck and D̂t is the vector indicating

the loads available to be moved from his current location to other cities. The vector of loads D̂t

plays a role that is very similar to the random costs in our stochastic shortest path problem. This

problem can be easily solved using Bellman’s equation if we exploit the post-decision state variable.

Now let’s see what happens when we make a subtle change to the problem. Instead of managing

a truck characterized only by its location within a set I, assume that there is a driver in the

truck. This complicates our resource incredibly, since the driver is now characterized by a vector

40

rt = (rt1, rt2, . . . , rtK), where the elements rtk include location, equipment status, fuel level, estimated

time of arrival, driver type, driver domicile, the number of days the driver has been on the road, and

an eight-dimensional vector capturing how many hours the driver worked each of the last eight days

(see Simao et al. (2009) for a complete description).

With this new formulation, instead of a driver being at location Lt (of which there may be

hundreds or thousands, depending on how we discretize space), he is instead in a state rt, where the

number of possible values that rt can take on is on the order of 1020. When we solved our shortest

path problem, we made the implicit assumption that we could loop over all the nodes in the network

performing elementary calculations. This is not possible if the number of nodes is equal to 1020.

We have to circumvent this problem by replacing our lookup table which estimates the value

of being at a node in our network with a statistical approximation of the value of a driver having

attribute rt. A powerful way of doing this is to estimate the value of a driver at different levels of

aggregation. Let V̄ g(r) be an estimate of the value of a driver with attribute r using aggregation

level g. For example, we might have an estimate of the value of a driver at location i as one (very

coarse) level of aggregation. More disaggregate estimates might include a joint estimate of location

and driver domicile. We can then write our estimate of the value of a driver with attribute r as

V̄ (r) =
∑
g∈G

wg(r)V̄ g(r), (75)

where G is our set of different aggregation levels, and wg(r) is the weight we put on the gth level

of aggregation for a driver with attribute r. For more details, see (George et al. (2008), Powell

(2011)[Chapter 7]). As with the shortest path problem, we encounter the issue of exploration vs.

exploitation, although this is mitigated somewhat if we use the hierarchical aggregation strategy in

equation (75), since we can observe the value of a driver with attribute r and use this to simultane-

ously improve our estimate of drivers with other attributes. Mes et al. (2011) presents an algorithmic

strategy called the knowledge gradient (Powell & Ryzhov (2012)) as a potential strategy for solving

the exploration-exploitation problem more explicitly. However, as of this writing, the identification

of policies to solve the exploration-exploitation problem in this setting remains a very active area of

research.

41

6.2 Load matching using a myopic policy

We now make the transition to large fleets of vehicles. Let Rtr be the number of drivers with attribute

vector r (when r is complex, the number of drivers is usually 0 and sometimes 1). Also let Dtb = 1 if

there is a load with attribute vector b, which includes attributes such as origin, destination, pickup

window, delivery window and other attributes such as whether the load requires special equipment.

Also let crb be the cost of assigning a driver with attribute r to a load with attribute b. In this

formulation, the revenue from covering the load is used as a negative cost.

This is a rare example of a problem where a myopic policy works reasonably well. This requires

solving an assignment problem of the form

XM (St) = arg min
xt

∑
r∈R

∑
b∈B

crbxtrb, (76)

subject to

∑
b∈B

xtrb ≤ Rtr, (77)∑
r∈R

xtrb ≤ Dtb, (78)

xtrb ≥ 0. (79)

While myopic policies work well in practice, this decision function suffers from several limitations.

Below, we use a myopic cost function approximation to overcome a problem that arises when we

do not cover a load now, and delay it to some point in the future. Then, we use a value function

approximation to allow our assignments to look into the future.

6.3 Load matching using a myopic cost function approximation

Imagine a load that has been delayed several hours, just because there are other loads that are closer

and therefore cost less to cover. The customer may tolerate a delay of a few hours, but after this we

are starting to face a serious service failure.

An easy way to overcome this problem is to introduce a bonus to cover a load. Let τtb be the

number of time periods that our load with attribute b has been delayed (the delay would actually

42

be one of the attributes). We might solve this problem using the modified policy

XCFA(St|θ) = arg min
∑
r∈R

∑
b∈B

(crb − θτtb)xtrb, (80)

= arg min
∑
r∈R

∑
b∈B

Cπ(St, xt|θ). (81)

We refer to Cπ(St, xt|θ) =
∑

r∈R
∑

b∈B(crb − θτtb)xtrb as a myopic cost function approximation. As

before, θ is a tunable parameter which can be optimized through repeated simulations of the policy

XCFA(St|θ).

6.4 Load matching using value function approximations

This same problem can also be solved using value function approximations to address the limitation

that we are ignoring the impact of assigning a particular type of driver to a load. For example, the

closest driver to a load headed to New York City (on the east coast of the U.S.) may find that there

are no loads available out of New York that would allow the driver to get him back to his home in

Chicago (in the middle of the country).

We can solve this problem using the same approximation strategy that we used to solve our single

driver problem in section 6.1. Assume that we first compute r′ = RM (r, b) which is the attribute

vector produced if we assign a driver with attribute vector r to a load with attribute vector b. Using

our approximation of the value of a driver in the future, we would then solve

XV FA
t (St) = arg min

∑
r∈R

∑
b∈B

(
crb + V̄t(R

M (r, b))
)
xtrb, (82)

subject to constraints (77)-(79). For this problem, rather than compute v̂nt as the contribution of

assigning a driver to a load plus the downstream value (as we did in our stochastic shortest path

problem in equation (46)), we use the dual variable for the driver assignment constraint given by

equation (77). We note that in the domain of resource allocation problems, it is quite common to

learn slopes of the cost function rather than its value.

This algorithmic strategy has been implemented very successfully for a major truckload carrier,

as described in Simao et al. (2009) and Simao et al. (2010). This work uses the same approximate

value iteration strategy described in figure 1, which allows us to execute the policy as a simple

simulator, learning as we go. There is one issue that deserves some discussion. We made the point in

43

section 6.1 when we developed a model to optimize a single truck driver that we had to address the

exploration-exploitation problem, which is an active area of research. While it is possible to design

explicit exploration policies for a single driver, these strategies are not scalable to vector-valued

actions. How were we able to circumvent this issue when we made the transition to working with

large fleets? The answer is simple; when modeling thousands of drivers, the dynamics of the system

forces a certain amount of natural exploration.

6.5 Managing fleets of vehicles

We can extend our problem one more time for applications where we are managing fleets of trailers

or containers. This is just like managing a fleet of truck drivers, but now the attribute vector r is

much simpler, typically consisting of the location of the equipment and the equipment type. The

difference between managing fleets of drivers and fleets of vehicles is that drivers are complex, which

means that the value of the resource variable Rtr is typically 0 or 1. When the attribute vector

is simple, such as the number of refrigerated trailers at a location, Rtr can be dozens to hundreds.

This problem is more like a spatial inventory problem, whereas load matching is more like a dynamic

routing and scheduling problem.

The problem of managing fleets of vehicles (rather than drivers) has received considerable atten-

tion from the literature. Reviews of this problem class can be found in Crainic & Gendreau (1993),

Crainic & Laporte (1997) and Powell et al. (1995). The most common models used in industry are

myopic (see Gorman et al. (2011) for a summary of car distribution models at two major railroads)

or they use a deterministic lookahead (rolling horizon) policy (Joborn et al. (2004)). A number of

authors have experimented with various approximations of stochastic models (Jordan & Turnquist

(1983), List et al. (2003), Powell & Topaloglu (2006), Lam et al. (2007)). Powell & Topaloglu (2005)

describes an actual implementation of a model at Norfolk Southern for empty car distribution using a

policy based on value function approximations; Powell et al. (2012b) describes a model for locomotive

management that was also implemented at Norfolk Southern that also uses value function approxi-

mations. However, the operational implementation of models that explicitly account for uncertainty

are rare.

When we managed individual drivers, we only needed to estimate the marginal value of a single

driver in the future. When we work with a more compact attribute space, we need to capture the

nonlinearity of the problem with respect to the number of vehicles in a location. We can do this

44

using basically the same strategy that we introduced in section 5.4 for our inventory problem. Let

Rxt = (Rxtr)r∈R where Rxtr is the number of vehicles with attribute r produced by making decision x

(this is our post-decision resource state vector, which ignores random arrivals, failures and delays).

To simplify our presentation a bit, we are going to assume that our only attribute is a location which

we index by i, j or k.

As we did in our inventory problem in equation (55), we are going to approximate the value of

inventories in the future using a piecewise linear, separable, convex function. The only difference is

that now we are going to index our slopes v̄n−1
tk (rk) by the location k. For this model, we divide the

decision vector xt = (xLt , x
E
t) into loaded and empty movements. To retain our minimization model,

we assume that vehicles move empty from location i to j at a cost cij while trucks moving loaded

incur a “cost” of −rij . Our policy can now be written

XV FA(St) = arg min
x∈X

∑
i,j∈I

(
cijx

E
tij − rijxDtij

)
+ γ

∑
k∈I

Rmax∑
rk=0

v̄n−1
tk (rk)yrk

 , (83)

subject to, for all i, j, k ∈ I:

∑
j∈I

(xLtij + xEtij) = Rxti, (84)

∑
i∈I

(xLtij − xEtij)−Rxtk = 0, (85)

Rmax∑
r=0

yrk −Rxtk = 0, (86)

Rt+1,i = Rxti + R̂t+1,i, (87)

xLtij ≤ Dtij , (88)

xLtij , x
E
tij , ytk ≥ 0. (89)

In this problem, the state St = (Rt, Dt) captures the distribution of vehicles in Rt, and the available

loads to be moved in Dt. Assuming unsatisfied demands are not carried to the next time period, the

post-decision state is given by Sxt = Rxt .

The objective function in equation (83) is just a multidimensional extension of our original inven-

tory problem. It helps that the optimization problem (83) - (89) is a linear program, which makes

it fairly easy to solve even for industrial scale problems. We note that while maintaining convexity

was useful for our inventory problem, it is critical here since we would like to solve the optimization

45

problem using a linear programming package. With our inventory problem, we estimated our slopes

v̂nt using numerical derivatives (as we did in equation (56)). Here, we would estimate the slopes v̂ntk

using the dual variable for the constraint (84). Note that it is very important that we compute a

dual variable for each location i. We can do this easily when the only attribute of a vehicle is its

location; we were not able to do this when matching complex drivers in section 6.4

Our formulation above can be generalized significantly by replacing location i ∈ I with attribute

r ∈ R, assuming that the size of R is not too large (if it is large, then we return to the problem

addressed in section 6.4). We need to be able to compute the dual variable v̂ntr for each r ∈ R. This

is manageable if |R| is in the thousands, and possibly tens of thousands, but no larger. With this

notation, we can handle multiple equipment types and multi-period travel times, although some care

has to be used when generalizing the problem in this way. As with our inventory problem, we can

use a simulation-based strategy similar to the algorithm described in figure 1, which is very easy to

implement and scales to industrial-strength problems.

7 Dynamic vehicle routing

All of the problems above can be viewed as just a warmup for dynamic vehicle routing, arguably one

of the hardest problems in operations research. Dynamic vehicle routing has received considerable

attention, and since we are using the setting only to illustrate the different types of policies, we

refer to Larsen (2000) and Pillac et al. (2011) for thorough reviews. Given the complexity of solving

static vehicle routing problems (Toth & Vigo (2002)), there has been considerable attention devoted

to solving sequences of deterministic problems (routing vehicles among customer requests that are

already known) quickly enough, either using partial re-optimizations or parallel computation (as

in Gendreau et al. (1999)). While such deterministic lookahead policies allow for the direct use of

existing algorithms, the research community has recognized that there is a need for algorithms that

recognize customer orders that might become known, leading to behaviors where vehicles are kept

close to groups of customers where orders are likely to arise.

A number of papers have explored policies which account for an uncertain future. Potvin et

al. (2006) and Ichoua et al. (2006) investigate classes of policy function approximations, which

introduces rules for holding trucks to allow for orders that have not yet become known (rules that

determine an action are a form of lookup table policy function approximation). Similar algorithmic

46

strategies are referred to as online algorithms which often (though not always) are implemented as

simple rules that can be easily computed in real time to react to new information as it arrives (see

Van Hentenryck et al. (2009) and Van Hentenryck & Bent (2009) for thorough discussions of online

stochastic optimization).

For complex transportation applications (such as dynamic vehicle routing), it is generally neces-

sary to plan activities into the future. The most common approach is to optimize vehicle tours over

all known customers. This is a class of rolling horizon procedure, but one that does not even use

forecasted customers (because customer orders are 0/1, it does not make sense to plan a vehicle tour

to a potential customer that might happen with probability .2). This is a fairly serious limitation,

because there may be groups of customers with no known orders at a point in time, but where it is

likely that orders within the group will arise during the day. Dispatchers know this and plan accord-

ingly, keeping trucks in a region where orders are likely to arise, without knowing which customer

will generate the order.

A strategy that overcomes this limitation is to generate scenarios of potential outcomes in the

future, just as we depicted in equations (66)-(70). This is the strategy used in Bent & Van Hentenryck

(2004) and Hvattum et al. (2006) where multiple scenarios of future customer orders are used to

improve decisions now. Recall that the policy in equation (66), denoted by XSP (St|θ), can be tuned

with different rules for how these scenarios are generated. While it is tempting to generate as many

scenarios as possible, increasing the number of scenarios produces diminishing returns. Assume, for

example, that θ controls the number of scenarios that are generated (it could also control how the

scenarios are generated). We can optimize over the scenario generation policy θ by solving

min
θ

E
T∑
t=0

C
(
St, X

SP (St|θ)
)
. (90)

Of course, this has to be done with Monte Carlo sampling, but the idea is that we evaluate our

scenario generating policy based on how well it works in simulations. This idea is recognized in Bent

& Van Hentenryck (2004) and Mercier & Van Hentenryck (2011), with additional experiments and

testing in Schilde et al. (2011) which support the effectiveness of these ideas. Of course, a stochastic

lookahead policy such as XSP (St|θ) is going to be computationally demanding (there is considerable

research accelerating the calculation of deterministic lookahead policies, as in Gendreau et al. (1999)),

motivating the continued search for robust, computable policies. We use this challenging problem

purely as a way of illustrating the potential of a hybrid policy.

47

For our discussion, we let D̂tt′i be the demand at location i, to be served at time t′ or later (but

as close to time t′ as possible) that first became known at time t. We let Dtt′i be the demands

known at time t to be served at time t′ or later at location i, that may have become known at time

t or earlier. We assume that our vehicle(s) may be re-optimized at each time t as new information

becomes available. The vector D0t′ is the set of customer orders that are known at the beginning of

the day.

If this is a pickup problem, the vehicle may need to return to the depot to drop off product if

the vehicle hits capacity; if it is a delivery problem, the vehicle may have to return to the depot to

pick up new product. We may plan a trip into the future, but we only communicate the next step to

the driver, and we may replan trips as new information becomes available. We assume that we are

dealing with a single product (this is easiest to envision with pure pickup problems, where we only

care about how much space is used). This means that the state of a truck is its location and how

much product is on the truck at time t. If I is our set of locations, let

Lti =

{
1 If there is a truck at location i at time t,

0 Otherwise,

Fti = The total amount of product on a truck at i at time t (= 0 if Lti = 0).

The state of our resources (trucks) can now be written Rt = (Lt, Ft) where Lt and Ft are vectors

over all the locations i ∈ I. This allows us to write the state variable as

St = (Rt, Dt),

where Dt = (Dtt′i)t′≥t,i∈I are the unserved demands known at time t. This representation captures

our need to model both the resources and the demands. In the past, we simplified our state variable

by exploiting the fact that the post-decision state did not include information about demands, which

allowed us to design value function approximations around the resource vector Rt. This sleight of

hand is not possible with dynamic vehicle routing.

This problem shares elements of all the problems we have discussed above, but introduces new

complications. The two aspects that seem to create the greatest difficulty is the presence of advance

information about demands in the form of the vector Dtt′ and, most problematically, that we now

have to represent both resources and demands in the state variable. In our applications above, we

were able to handle vector-valued resource variables Rt by creating value function approximations

48

that are linear (as in equation (82)), or piecewise linear separable (as in equation (83)) in the resource

variable.

A reasonable question might be: if we introduce demands in the state variable, why can’t we

consider modeling them just as additional dimensions? For example, we could have a linear coefficient

for the value of a demand, or perhaps have a nonlinear function for unserved demands. While it

would be interesting to see this strategy tested, there are some reasons why this approach is unlikely

to succeed. First, the marginal effect of an additional demand to be served in the future depends

on the specific routing of vehicles, which is highly dependent on the entire vector of demands. This

obvious fact makes it unlikely that any sort of separable approximation would be effective.

Second is the problem of mixing resources and demands (known as a two-layer resource allocation

problems in the language of Powell et al. (2001)). Separable approximations for the value of additional

resources may not be perfect, but it appears to be a surprisingly robust strategy in the settings where

it has been tested up to now. Of course the value of an additional driver at node i of our network

depends on the location of other drivers, but over time the value function approximation for one

dimension learns about the likely values of other dimensions. The same property is unlikely to be

true when we mix resources and demands. The value of a resource may be small or zero if there

are no demands to be served nearby. The value of a demand may be small or zero if there are no

vehicles nearby. But if there is a vehicle and a demand, then we gain value. The non-separability of

resources and demands seems to be difficult to ignore.

A potential policy would be to use a hybrid lookahead with value function approximation. The

idea is depicted in figure 5. Imagine that we are routing two trucks (labeled A and B), and that

at time t we have seven known customer orders, depicted by the larger circles. Assume we have

managed to calculate an approximation of the value of a truck at each customer location. We route

the truck by allowing the tour to terminate at any customer location, at which point it would incur

the cost represented by the value function approximation, or it may continue to another downstream

customer (in which case we ignore the value function at that location). Such a strategy is easily

handled using any standard routing heuristic. We would use this solution only to determine the next

customer a truck should visit, since new customer orders may become known by the time it makes

its next stop.

A possible solution is given in figure 5, which shows truck A serving customers 1, 4 and 5, and

then making its way to a customer location with no order, but which is in the midst of a number

49

A

Customer location
Known customer demand

1

2

3

4

5

B

I II

III IV

6

7

Figure 5: A possible solution routing two trucks to serve up to seven known customers, among a large
set of potential customers. The vehicle may stop at any location and receive the benefit captured by
the value function approximation (depicted as a piecewise linear function), or continue to the next
customer.

of other potential customers. The truck could have terminated at customer 5, but we presume that

it was less expensive to proceed to the uncovered customer that is in a more central location. The

dashed lines show possible trajectories of the truck after stopping in the final location; the expected

value of these subsequent assignments are approximated by the value function approximation at the

location where the vehicle stopped.

The figure also shows truck B serving customer 2 and then customer 3. The more natural tour

(barring time window constraints) would have been to serve customer 3 first, but the tour shown in

the figure captures the higher value of terminating at customer 3, which is in the midst of a cluster

of other customers, and is therefore of higher value.

Note that our planned truck tours do not cover all the customers, as neither customers 6 or 7 are

50

currently being covered. The figure illustrates that after serving customer 3, the vehicle might first

serve other customers in the region (with orders that are not yet known) and then serve customer 7.

Even though we know about customer 7 now, this order can still be captured in the value function

when the vehicle stops at customer 3. Thus, we need to consider solutions which intermingle known

and unknown customers.

A sketch of the mathematical problem works as follows. Let xkt represent the tour of vehicle k

given what we know at time t, which covers the path over as many customers as we think should

be covered given what we know at time t. We let Xπ(St) be our policy that returns these tours,

where St captures the current location of all the vehicles as well as the full vector of known customer

orders. As before, we are not going to implement the entire tour; we only implement the instruction

of what the truck should do next.

Let V̄ n−1
t (Sxt) be the (post-decision) value function approximation, computed after n− 1 simula-

tions, given what we know at time t, where Sxt is the state of the system given the tour x. As depicted

in figure 5, we are using a separable value function approximation, with a function capturing the

value of a truck if it ends its tour at each location. The policy is allowed to stop at any location and

incur the cost in the value function, or proceed to the next customer location. A tour may stop at a

location with uncovered customers; in this case, the value function would have to capture the value

of covering other known customers.

Our policy is based on value function approximations which we can write as

Ṽt(S
n
t) = min

xt

(
C(Snt , xt) + V̄t(S

x
t (Snt , xt))

)
. (91)

This optimization would have to be solved using an appropriate VRP heuristic, since these problems

typically cannot be solved exactly. It is important to realize that xt is an entire tour, and not just

the assignment of the vehicle to a single customer (as we did in our load matching example). The

post-decision state Sxt reflects the updated state of the system after taking into account the effect of

the tours of all the vehicles for as far into the future as we have planned their movement.

We might estimate the value function approximation using derivative information. There are

different ways of obtaining this information, but a brute force approach would be to use

v̂t(i, t
′) = Ṽt(St + et(i, t

′))− Ṽt(St)

51

where et(i, t
′) is a vector of 0’s with a 1 corresponding to having an additional vehicle at location i

at time t′. Of course, obtaining these derivatives may be expensive (in practice we would probably

do a local optimization around the solution obtained from solving (91)). The more difficult problem

is designing the value function itself. We might capture the value of a single vehicle at a location, or

the value of one more vehicle in one of the four aggregate quadrants. We would like to capture the

effect of uncovered customers, but one approach would be to aggregate the total number of uncovered

customers in a quadrant. The key idea here is that we capture the detailed interactions of drivers

and customers by deterministically solving a partial routing problem, and then hoping that a simpler

value function approximation will suffice to capture events farther in the future. Needless to say,

there is a lot of room for experimentation here.

8 Choosing a policy

The examples above illustrate a range of different operational problems that arise in transportation

and logistics. We have used these problems to illustrate the concept of the post-decision state

(which allows us to solve deterministic optimization problems without an imbedded expectation),

and four classes of policies: myopic cost function approximation (used in the load matching example),

lookahead policies (used for planning inventories in a time-dependent setting with forecasts, and again

in our dynamic vehicle routing problem), policy function approximations (such as (q,Q) inventory

policies), and policies based on value function approximations (which we used in our simple inventory

problem, as well as in managing fleets of vehicles). The dynamic vehicle routing problem in section

7 is a nice illustration of a complex operational problem that is likely going to require some form of

hybrid.

Each of these application settings exhibited structure that suggested a particular type of policy.

If the policy is not obvious, it is always possible to code up a set of competing policies and compare

them using the objective function in equation (15). In most cases, any algorithm will involve tunable

parameters (denoted by θ above) which will have to be optimized. Policy search covers whether

we are comparing major classes of policies (e.g. lookahead versus value function approximation) or

tuning the parameters of a policy within a particular class.

Coding and testing a policy requires a considerable amount of time, which leaves the question:

How to choose? Based on our experience, we offer the following guidelines:

52

• A myopic cost function approximation is going to work well if a myopic policy works reasonably

well. The load matching problem is a good example of a problem where myopic policies work

well, so it is not surprising that introducing some tunable parameters to overcome obvious

problems (such as delaying loads), will produce a better policy.

• Deterministic lookahead policies are going to work well when we have good information about

the future (such as forecasts of future customer requirements in a time-dependent inventory

problem). In an inventory problem, we can imbed a cost function approximation in the form of

buffer stocks to make the solution more robust. Such strategies become less obvious in appli-

cations such as our dynamic vehicle routing problem, where we cannot modify a deterministic

solution using a simple idea such as buffer stocks.

One problem with deterministic lookahead policies is that the computational complexity grows

quickly with the length of the planning horizon. In a locomotive application, we found that the

CPU times grew from a few seconds for a horizon of four hours, to over 50 hours for a horizon

of four days.

• Stochastic lookahead policies have attracted considerable attention in operations research under

the umbrella of stochastic programming. The attraction is that the optimization problem given

by equations (66) - (74) can be solved, in principle, as a single (albeit very large) linear or

integer program. It is important to realize that (66) - (74) is only a two-stage approximation of

a multistage problem, and yet, for most applications, even this problem is extremely difficult to

solve. Imagine using this for a dynamic vehicle routing problem, where we would be optimizing

vehicle tours across all scenarios. While this idea has attracted attention in the research

community (see, for example, Gendreau et al. (1995), Laporte et al. (2002)), we are not aware

of any production implementations. We suspect that stochastic programming using scenario

trees is best suited to problems with very coarse-grained noise. For example, imagine the

problem of analyzing the acquisition of container ships over a 20 year period in the presence of

uncertainty about global economies and the price of oil. Scenario trees are a good method for

representing this type of uncertainty.

• Policies based on value function approximations - Often when people refer to the use of “ap-

proximate dynamic programming” they are referring to policies based on value function ap-

proximations. There is actually a fairly simple way to assess the relative strengths of lookahead

policies over value functions. First, we write the objective functions for a deterministic looka-

53

head policy,

XDLA
t (St) = arg min

xt
cttxtt +

t+H∑
t′=t+1

ctt′xtt′︸ ︷︷ ︸
V Dt (Sxt)

, (92)

and a stochastic lookahead policy,

XSP
t (St|θ) = arg min

xt
cttxtt +

∑
ω∈Ω

p(ω)
t+H∑
t′=t+1

ctt′(ω)xtt′(ω)︸ ︷︷ ︸
V St (Sxt)

. (93)

In (92), we have labeled the portion of the objective function that applies to the future as

V D
t (Sxt) where Sxt is the state that results from the decision xtt. In (93), we have similarly

labeled the stochastic model of the future as V S
t (Sxt), where Sxt plays the same role. Now

contrast the policy that uses a value function approximation

XV FA
t (St) = arg min

xt

(
cttxtt + V̄t(S

x
t)
)
. (94)

As a general rule, equation (94) is much easier to solve than equations (92) and (93), but the

question is whether we can obtain high quality solutions. We can address this question fairly

simply. Policies based on value function approximations (equation (94)) will work well if the

functions V D
t (Sxt) or V S

t (Sxt) are not too complex. This was the case with our load matching

and fleet management problems, where linear (equation (82)) and piecewise linear separable

(equations (55) and (83)) were found to work quite well. But the situation can change quickly,

as we found when we introduced demand forecasts into our inventory problem. Suddenly, the

state variable jumped from the amount of product in inventory (or the number of trucks at

a location), to one which included the vector of forecasts. These forecasts play a role similar

to the known customer orders in our vehicle routing problem. They are easy to handle in a

lookahead policy, but make the problem much harder to approximate.

9 Concluding remarks

The goal of our presentation was to offer a range of different stochastic optimization problems

arising in transportation and logistics in a coherent, integrated framework. The transportation

community has long mastered the art and science of modeling deterministic operational problems

54

using the language of math programming. However, there is a range of styles for modeling stochastic

optimization problems, which complicates the process of understanding how different types of policies

can be used on the same problem. For this reason, we feel that the most important contribution of

this paper is the use of a common modeling framework, with a formal treatment of subtle concepts

such as state variables and policies.

From this foundation, we used carefully chosen applications to illustrate problems where different

types of policies worked well. At the same time, these problems allowed us to indicate settings where

a class of policy may not work well. We closed with a dynamic vehicle routing problem which has

attracted considerable attention, but with surprisingly little progress in terms of robust, high quality

policies for stochastic, dynamic applications. There is a wide range of issues that arise in the complex

problems in transportation and logistics. We believe that solutions to these problems will build on

the four fundamental classes of policies described here.

Acknowledgements

This research was supported in part by grant AFOSR contract FA9550-08-1-0195 and the National

Science Foundation grant CMMI-0856153.

References

Barto, A. G., Bradtke, S. J. & Singh, S. P. (1995), ‘Learning to act using real-time dynamic pro-
gramming’, Artificial Intelligence 72(1-2), 81–138.

Bellman, R. E. (1957), ‘Dynamic Programming’, Princeton University Press, Princeton, NJ.

Bent, R. W. & Van Hentenryck, P. (2004), ‘Scenario-based planning for partially dynamic vehicle
routing with stochastic customers’, Operations Research 52, 977–987.

Bertsekas, D. P. & Castanon, D. A. (1999), ‘Rollout Algorithms for Stochastic Scheduling Problems’,
J. Heuristics 5, 89–108.

Bertsekas, D. P. & Tsitsiklis, J. N. (1996), Neuro-dynamic programming, Athena Scientific, Belmont,
MA.

Birge, J. R. & Louveaux, F. (1997), Introduction to Stochastic Programming, Springer Verlag, New
York.

Braysy, O. & Gendreau, M. (2005), ‘Vehicle Routing Problem with Time Windows , Part I : Route
Construction and Local Search Algorithms’, Transportation Science 39(1), 104–118.

Crainic, T. & Gendreau, M. (1993), ‘Dynamic and stochastic models for the allocation of empty
containers’, Operations Research 41(1), 102–126.

Crainic, T. G. & Laporte, G. (1997), ‘Planning models for freight transportation’, European Journal
of Operations Research 97, 409–438.

55

Dantzig, G. B. (1951), Application of the Simplex Method to a Transportation Problem, in T. Koop-
mans, ed., ‘Activity Analysis of Production and Allocation’, John Wiley and Sons, New York,
pp. 359–373.

Dantzig, G. B. & Ferguson, A. (1956), ‘The Allocation of Aircrafts to Routes: An Example of Linear
Programming Under Uncertain Demand’, Management Science 3, 45–73.

Ferguson, A. R. & Dantzig, G. B. (1955), ‘The Problem of Routing Aircraft - A Mathematical
Solution’, Aeronautical Engineering Review 14, 51–55.

Gendreau, M., Guertin, F., Potvin, J. Y. & Taillard, E. (1999), ‘Parallel tabu search for real-time
vehicle routing and dispatching’, Transportation Science 33, 381–190.

Gendreau, M., Laporte, G. & Seguin, R. (1995), ‘An Exact Algorithm for the Vehicle Routing
Problem with Stochastic Demands and Customers’, Transportation Science 29, 143–155.

George, A., Powell, W. B. & Kulkarni, S. (2008), ‘Value Function Approximation using Multiple
Aggregation for Multiattribute Resource Management’, J. Machine Learning Research 9, 2079–
2111.

Godfrey, G. & Powell, W. B. (2002), ‘An Adaptive Dynamic Programming Algorithm for Dynamic
Fleet Management, II: Multiperiod Travel Times’, Transportation Science 36(1), 40–54.

Gorman, M., Crook, K. & Sellers, D. (2011), ‘North American freight rail industry real-time opti-
mized equipment distribution systems : State of the practice’, Transportation Research Part C
19(1), 103–114.

Hastie, T., Tibshirani, R. & Friedman, J. (2009), The elements of statistical learning: data mining,
inference and prediction, Springer, New York.

Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall.

Higle, J. & Sen, S. (1991), ‘Stochastic decomposition: An algorithm for two-stage linear programs
with recourse’, Mathematics of Operations Research 16(3), 650–669.

Higle, J. & Sen, S. (1996), Stochastic Decomposition: A Statistical Method for Large Scale Stochastic
Linear Programming, Kluwer Academic Publishers.

Hvattum, L. M., Lø kketangen, A. & Laporte, G. (2006), ‘Solving a Dynamic and Stochastic Vehicle
Routing Problem with a Sample Scenario Hedging Heuristic’, Transportation Science 40(4), 421–
438.

Ichoua, S., Gendreau, M. & Potvin, J.-Y. (2006), ‘Exploiting Knowledge about Future Demands for
Real-Time Vehicle Dispatching’, Transportation Science 40, 211–225.

Joborn, M., Crainic, T. G., Gendreau, M., Holmberg, K. & Lundgren, J. T. (2004), ‘Economies of
Scale in Empty Freight Car Distribution in Scheduled Railways’, Transportation Science 38, 121–
134.

Jordan, W. C. & Turnquist, M. A. (1983), ‘A Stochastic Dynamic Network Model for Railroad Car
Distribution’, Transportation Science 17, 123–145.

Kall, P. & Wallace, S. (1994), Stochastic programming, John Wiley & Sons.

Lam, S.-w., Lee, L.-h. & Tang, L.-c. (2007), ‘An approximate dynamic programming approach for
the empty container allocation problem’, Transportation Research 15, 265–277.

Laporte, G., Hamme, L. V. & Louveaux, F. V. (2002), ‘An integer L-shaped algorithm for the
capacitated vehicle routing problem with stochastic demands’, Operations Research 50, 415–423.

Larsen, A. (2000), The Dynamic Vehicle Routing Problem by, PhD thesis, Technical University of
Denmark.

56

Le Bouthillier, A. & Crainic, T. G. (2005), ‘A cooperative parallel meta-heuristic for the vehicle
routing problem with time windows’, Computers & Operations Research 32, 1685–1708.

List, G. F., Wood, B., Nozick, L. K., Turnquist, M. A., Jones, D. A., Kjeldgaard, E. A. & Lawton,
C. R. (2003), ‘Robust optimization for fleet planning under uncertainty’, Transportation Research
39, 209–227.

Mercier, L. & Van Hentenryck, P. (2011), ‘Amsaa : A Multistep Anticipatory Algorithm for Online
Stochastic Combinatorial Optimization’, Annals of Operations Research 184, 233–271.

Mes, M. R. K., Powell, W. B. & Frazier, P. I. (2011), ‘Hierarchical Knowledge Gradient for Sequential
Sampling’, Journal of Machine Learning Research 12, 2931–2974.

Pearl, J. (1984), Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-
Wesley.

Pillac, V., Gendreau, M., Guéret, C., Medaglia, A. & Others (2011), A Review of Dynamic Vehicle
Routing Problems.

Potvin, J., Xu, Y. & Benyahia, I. (2006), ‘Vehicle routing and scheduling with dynamic travel times’,
Computers & Operations Research 33(4), 1129–1137.

Powell, W. B. (2011), Approximate Dynamic Programming: Solving the curses of dimensionality,
2nd. edn, John Wiley & Sons, Hoboken, NJ.

Powell, W. B. & Godfrey, G. (2001), ‘An adaptive, distribution-free approximation for the newsven-
dor problem with censored demands, with applications to inventory and distribution problems’,
Management Science 47(8), 1101–1112.

Powell, W. B. & Ryzhov, I. (2012), Optimal Learning, John Wiley & Sons Inc., Hoboken, NJ.

Powell, W. B. & Simao, H. P. (2009), ‘Approximate Dynamic Programming for Management of High
Value Spare Parts’, J. of Manufacturing Technology Management 20(2), 147—-160.

Powell, W. B. & Topaloglu, H. (2005), Fleet Management, in S. Wallace & W. Ziemba, eds, ‘Appli-
cations of Stochastic Programming’, Math Programming Society - SIAM Series in Optimization,
Philadelphia, pp. 185–216.

Powell, W. B. & Topaloglu, H. (2006), ‘Dynamic-programming approximations for stochastic time-
staged integer multicommodity-flow problems’, Informs Journal on Computing 18(1), 31.

Powell, W. B., Bouzaiene-Ayari, B., Cheng, C., Fiorillo, R., Das, S. & Lawrence, C. (2012a), Strate-
gic, Tactical and Real-Time Planning of Locomotives at Nortfolk Southern using Approximate
Dynamic Programming, in ‘ASME Joint Rail Conference’, ASME, Philadelphia.

Powell, W. B., Bouzaiene-Ayari, B., Lawrence, C., Cheng, C., Das, S. & Fiorillo, R. (2012b),
JRC2012-74187, in ‘ASME Joint Rail Conference’, Philadelphia, pp. 1–10.

Powell, W. B., George, A., Lamont, A. & Stewart, J. (2011), ‘SMART: A Stochastic Multiscale
Model for the Analysis of Energy Resources, Technology and Policy’, Informs J. on Computing.

Powell, W. B., Jaillet, P. & Odoni, A. (1995), ‘Stochastic and dynamic networks and routing’, M. O.
Ball, T. L. Magnanti, C. L. Monma, G. L. Nemhauser, eds. Network Routing, Handbooks in Op-
erations Research and Management Science, Vol. 8. North-Holland, Amsterdam, The Netherlands
pp. 141–295.

Powell, W. B., Ruszczynski, A. & Topaloglu, H. (2004), ‘Learning Algorithms for Separable Ap-
proximations of Discrete Stochastic Optimization Problems’, Mathematics of Operations Research
29(4), 814–836.

Powell, W. B., Simao, H. P. & Shapiro, J. A. (2001), A representational paradigm for dynamic re-
source transformation problems, in R, in F. C. Coullard & J. Owens, H., eds, ‘Annals of Operations
Research’, J. C. Baltzer AG, pp. 231–279.

57

Puterman, M. L. (1994), Markov Decision Processes, 1st edn, Johnn Wiley and Sons, Hoboken.

Puterman, M. L. (2005), Markov Decision Processes, 2nd edn, John Wiley and Sons, Hoboken, NJ.

Rockafellar, R. T. & Wets, R. J.-b. (1991), ‘Scenarios and policy aggregation in optimization under
uncertainty’, Mathematics of Operations Research 16(1), 119–147.

Romisch, W. & Heitsch, H. (2009), ‘Scenario tree modeling for multistage stochastic programs’,
Mathematical Programming 118, 371–406.

Schilde, M., Doerner, K. F. & Hartl, R. F. (2011), ‘Computers & Operations Research Metaheuristics
for the dynamic stochastic dial-a-ride problem with expected return transports’, Computers and
Operation Research 38(12), 1719–1730.

Shapiro, A., Dentcheva, D. & Ruszczynski, A. (2009), Lectures on stochastic programming: modeling
and theory, SIAM, Philadelphia.

Simao, H. P., Day, J., George, A., Gifford, T., Powell, W. B. & Nienow, J. (2009), ‘An Approxi-
mate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application’,
Transportation Science 43(2), 178–197.

Simao, H. P., George, A., Powell, W. B., Gifford, T., Nienow, J. & Day, J. (2010), ‘Approximate
Dynamic Programming Captures Fleet Operations for Schneider National’, Interfaces 40(5), 342–
352.

Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation, Simulation and
Control, John Wiley & Sons, Hoboken, NJ.

Taillard, E., Badeau, P., Gendreau, M., Guertin, F. & Potfin, J.-Y. (1997), ‘A Tabu search heuristic
for the vehicle routing problem with soft time windows’, Transportation Science 31(2), 170–186.

Topaloglu, H. & Powell, W. B. (2006), ‘Dynamic Programming Approximations for Stochastic, Time-
Staged Integer Multicommodity Flow Problems’, Informs Journal on Computing 18, 31–42.

Toth, P. & Vigo, D., eds (2002), The Vehicle Routing Problem, Vol. 9, SIAM Monographs on Discrete
Mathematics and Applications.

Tsitsiklis, J. N. (1994), ‘Asynchronous stochastic approximation and Q-learning’, Machine Learning
16, 185–202.

Tsitsiklis, J. N. & Roy, B. (1996), ‘Feature-based methods for large scale dynamic programming’,
Machine Learning 22(1), 59–94.

Van Hentenryck, P. & Bent, R. W. (2009), Online Stochastic Combinatorial Optimization, MIT
Press, Cambridge, MA.

Van Hentenryck, P., Bent, R. W. & Upfal, E. (2009), ‘Online stochastic optimization under time
constraints’, Annals of Operations Research 177(1), 151–183.

58

