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PREFACE

The vehicle routing problem {VRP), like its well-known traveling salesman
cousin, is a fascinating problem. It is easy to describe, but difficult to solve. One
might say that such problems belong to the class of easy-NP-hard!

A further fascinating feature of vehicle routing is that the basic problem can be
extended into an untold number of variations that are not just mathematical diver-
sions; they do occur in the real-world problem-solving arena. Thus, it is no wonder
that researchers from the fields of operations research, mathematics, transportation,
and computer science, such as those who have contributed papers to this volume,
have found this problem most challenging.

Although difficult to solve in an optimizing sense, VRPs are solved in an
operational sense. The world’s economies could not operate except for the fact
that VRPs and their extensions have readily available “practical” solutions. Things
are delivered and picked up, and customer demands are more or less satisfied on
time without too much pain. But competition and the desire to improve profits
call for better solutions. To their credit, VRP researchers have not been lured to
the rocks by the siren of optimality. They recognized early that important im-
provements in vehicle routing could be made by non-optimal, directed investiga-
tions into the mathematical and computational structures that describe VRPs.
Such efforts have helped to form the theoretical field of heuristics, as well as aiding
in the development of heuristic solution procedures. The resulting heuristic algo-
rithms go way beyond the replication of how the experts run their operational
systems; these algorithms seek and find improved solutions that can be imple-
mented.

The papers in this volume not only summarize the past developments in VRP
technology, but also describe many new advances. One can only be impressed by
the abilities of the authors as they attack and resolve a diverse set of important
problems. Researchers and practitioners will find much here that is new and
rewarding.

A closing thought. The original and classical VRP can be traced back in
time many hundreds of years. It is a problem that arises every year at about this
time; that it gets solved each time has always, I am sure, amazed us all. Our
wonderment in how the solution is obtained is an unconscious force (in a psychol-
ogical sense)}, stemming from our childhood, that motivates our search for algo-
rithms to solve the VRP. The problem: How does Santa Claus do it? Santa hasa
single vehicle with finite capacity that leaves from a single depot; millions of
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The dynamic vehicle allocation problem involves managing a generally large fleet
of vehicles over time to maximize total profits. The problem is reviewed in the
context of truckload trucking with special attention given to dispatching and reposi-
tiening trucks in anticipation of forecasted futre demands. Four different metho-
dological approaches are reviewed: deterministic wansshipment networks,
stochastic/nonlinear networks, Markov decision processes and stochastic program-
ming. The methods are contrasted in terms of their formulation of the objective
function and decision variables, the degree to which actual practices can be
represented, and computational requirements. The paper provides an example of
how 2 particular problem can be approached from significantly different perspec-
tives.

1. INTRODUCTION

The dynamic vehicle allocation problem arises in industries where a fleet of vehicles must
be managed over time responding to known or forecasted demands for capacity. Motor car-
riers, railroads, container shipping lines, and auto or truck rental companies are immediate
examples of this problem. Different industries, however, exhibit unique characteristics which
Iend themselves to different modelling approximations. For this reason, the discussion here
uses truckload trucking as the industry context, although the basic concepts and algorithms are
more general. Truckload trucking is also one of the simplest of these modes and as a result
poses the least overhead in terms of industry minutiae.

Briefly, and somewhat simplistically, the problem faced by truckload motor carriers can be
described as follows. A shipper will call a carrier with a load going from city A to city B, The
carrier must deadhead a truck to the shipper where the trailer is loaded and then run to city B
where the delivery is made. The carrier must then decide what 10 do with the truck once it
arrives in B. At any peint in time, 2 truck must either be assigned to a load, repositioned empty
to a city in anticipation of loads to be called in later, or simply held at its current location. Itis
important to realize that there is no consolidation function, as typically arises in vehicle routing
preblems. This property significantly simplifies the problemn and focuses attention on the fleet
allocation side of the problem.

As with auto rental companies, truckload trucking is characterized by a high level of com-
petition in the marketplace compounded by a high degree of uncertainty regarding future
demands. Typically, 60 percent of the loads called in are for pickup the same day, implying
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that at the beginning of the day the carrier will know only 40 percent of the loads that will be
carried that day. At the same time, if a carrier does not have a truck close by when a load is
called in, that load will generally be given to a competitor. Since the largest company captures
only 1 percent of the market, shippers regularly work with several carriers. For this reason, a
carrier also has some freedom to turn down freight and as a result must learn to be selective
about the freight it carries. This process, known as load acceptance, is an important part of the

fleet management problem.

The fleet dispatching process at most truckload carriers works as follows. At any given
point in time, there will be a set of unassigned drivers and unassigned loads. Dispatchers will
typically have access to a computer terminal that might show, for example, all the loads within
80 miles of a given driver. The dispatcher must then assign the driver to one of these loads,
taking care to match equipment types. This decision i often made while the driver is waiting
on the telephone, and it is not unusual for the driver to refuse to pull a load, preferring another
load moving in a desired direction (the driver may be wying to get home). At other times, the
dispatcher may simply ask the driver to call back after 30 minutes if no load is available. Ifitis
unlikely that a load will become available in his area, the dispatcher may tell the driver to move
empty to a better location and call back when he arrives.

The process of assigning a driver to a load generally focuses on minimizing empty miles,
which is often interpreted to mean that a driver should be assigned to the nearest load for which
the driver has the correct equipment. Only one carrier, to this author’s knowledge, actually
solves a transportation problem to assign drivers to loads optimally, Separate from the
dispatching process is the planning function which determines how to reposition empty trucks.
This is a largely heuristic process where experienced planners will move trucks from traditional
surplus regions to traditional deficit regions. The difficulty is in forecasting the number of
loads yet to be booked out of a region which rmust be balanced against the profitability of loads
out of each region. For the most part, dispatchers and planners respond to activities like trucks
and loads, and have considerably more difficulty comparing the profitability of different
actions.

The last important step in fleet management is load acceptance and load solicitation. Unlike
classical vehicle routing problems, where the objective is to carry all the freight at least cost,
the highly competitive truckload market allows carriers to refuse freight occasionally which
does not appear profitable. In addition, the sales force may attempt to solicit freight to help fill
empty backhaul movements. Almost all carriers approach load acceptance and load solicitation
by tying to atmract all the freight they can and accepting everything they have the capacity to
handle. However, most carriers have a good sense that a load paying $1.30 per mile in one
direction may be good while another load paying $0.90 in a backhaul lane may be even better.
Just the same, under the philosophy that a bird in the hand is worth two in the bush, the usual
rule is to accept loads until they run out of capacity. Load solicitation, on the other hand, is a
process that varies widely among carriers. It is likely that most carriers evaluate their sales
force in terms of total sales (or, in some cases, total loads) which gives little incentive to attract
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freight in profitable lanes either on a long term or a short term basis. One carrier solves a net-
work transshipment model each night. The network model heuristically turns forecasts of
freight into fictitious loads (this process is described below) which might be accepted or
rejected. The fictitious loads which are "accepted” by the model become recommendations of
places where the sales force should solicit freight,

Fortunately from a planning perspective, most carriers actively collect and maintain all the
data that is necessary to feed an optimization model. When a shipper calls in a load, the carrier
immediately keys in the exact origin and destination of the load, its pickup time and date, its
delivery time, the equipment type required and other special handling costs. Generally, the car-
rier afready has in the computer a previously agreed on tariff for the load (which may vary
between shippers and between traffic lanes). At the same time, each driver, after dropping off a
load, calls in giving his exact location and status. This way, it is possible to calculate accu-
rately the deadhead miles from each driver to each load.

Separate from real-time data on each driver and each load, it is relatively straightforward to
develop detailed forecasts of future activities from extensive records of past activities. Gen-
erally each loaded and empty move is recorded on the computer. This is necessary since all
drivers are paid by the mile, and there are usually different rates paid for loaded and empty
moves. Thus, ecords of activities must be kept in order to pay the driver.

The dynamic vehicle allocation problem (DVA) has been studied by a number of authors.
An excellent review of this work is given by Dejax and Crainic [9]. The earliest efforts in this
ptoblem were applied to the repositioning of empty rail freight cars {Misra, [18], Ouimet, [19]
and Baker, [1]). Misra used a simple static transportation formulation, even though White and
Bomberault [30] had already formulated the dynamic vehicle allocation problem in the now
classical time-space framework. Uncertainty in demand forecasts has been incorporated by
posing the problem as a spatially separated inventory problem (Philip and Sussman, [20]).
Other contributions are reviewed during the presentation.

The primary goal of this research is to review and contrast alternative modelling and solu-
tion approaches with particular attention given to the handling of forecasting uncertainties.
This review documents a ransition from a purely network based approach to stochastic optimi-
zation techniques using Markov decision processes and other techniques. The presentation is
organized as follows. Section 2 describes deterministic formulations, covering both single
stage and dynamic models. The deterministic assumption applies to the modelling of forecast-
ing uncertainties surrounding loads that will have to be carried in the future. Section 3
describes two approaches for extending the basic network formulation to handle forecasting
uncertainties, including one formulation where flows on links arc handled explicitly as random
variables. Section 4 formulates the same problem as a Markov decision process with a very
large state space, serving primarily as an approach for developing a better understanding of the
problem structure. Section 5 combines insights from Markov decision processes and the classi-
cal network formulations to form a hybrid model that reduces to a linear network. Finally, Sec-
tion 6 provides an overview of alternative models and discusses implementation issues.
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2, DETERMINISTIC MODELS

Deterministic models have played an important historical role in the dynamic vehicle alloca-
tion problem. At the same time, while highly simplistic in the assumptions these models
impose, their inherent simplicity suggests that they will continue to serve as valuable tools in
practice. For the purposes of the discussion here deterministic models are divided between sin-
gle stage models, which simply assign trucks to loads with little or ne forecasting, and dynamic
meodels which explicidy track trucks and loads over a given planning horizon,

It is common when modelling flows over a continuum as large as the United States to divide
the country into 60 1o 100 discrete regions. Let R=/1, .., R} denote the set of regions. Then
define:

x;(t) = flow of rucks moving loaded from region i to region j, departing from i in
period ¢,

¥ &) = flow of trucks moving empty from region i to region j,

= travel time in integer time units to travel from ; to j (for simplicity, travel

i ;
times for moving loaded and empty are assumed to be equal),

i = average contribution (revenue minus direct operating cost) for pulling a load
fromi to j,

Cij = cost of moving empty fromi to j,

F; () = random variable denoting the number of loads that will be called in from i 1o
j to be picked up at time ¢,

fylty = EF;,
= expected number of forecasted loads from i to ; departing at time 1,

L; ;) = actual number of loads known at time :=0 to be available moving from 7 to ;

at time ¢,

T;(t) = number of drivers becoming available for the first time in region ; at time 1,

-l
#

length of the planning horizon.

Using this notation it is possible to describe single stage and dynamic deterministic network
maodels. '
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2.1 Single stage deterministic models

The stmplest single stage model is a transportation problem assigning available drivers to
available loads, as depicted in Figure 1. In this figure,

D;(r) = total outbound loads from region i at time ¢,
= Z;Lij(f ).
J€
E, = extra trucks needed to satisfy demand,

= mﬂx{‘,;‘ ) -1(1) .0},

Ep = extra demand needed to absorb excess trucks,

max{l_a [T:()-D:(1)1,0} .

This model does nothing more than assign available trucks to available loads and is unable to
plan for the future. Any trucks that are assigned to the dummy demand node are simply held in
the region. It is possible, of course, to simply augment the demands by adding the number of
known loads with forecasted loads, but such a model runs the risk of refusing a known load in
one region over a forecasted load in another region. This problem can be alleviated by provid-
ing very simple forecasting capabilities. Let

pi{t) = the average retumn of a truck in region  on day ¢ until the end of the planning

horizon.

The factors {p;(:)} arc termed salvage values, and a simple approach for calculating them based
on historical data is given in the appendix.

Using these salvage values, Figure 2 presents an alternative single stage dispatch model.
Here, the demand nodes for known loads have been augmented by separate nodes for fore-
casted loads. A truck repositioned empty from i to j will arrive on day #;, at which point it will
receive expected profits of p;(t;). It is necessary to bound the number of vehicles repositioned
to region j arriving on day ¢; . Let

fit) = Ek fu@®) (1)

be the total forecasted demand out of ¢. Since f,.(+) will usually be noninteger, we let £.. (1) be
the upper bound and set
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Figure 1
Single stage transportation formulation with overflow nodes

where |x] is the largest integer less than or equal 1o x and 0<y<1 is a specified parameter.
v=.5 produces conventional rounding while y= 8 tends to round more forecasts up.

The real value of simple assignment models is their ability to handle high levels of detail.
Consider the network in Figure 1 where each supply node is a single driver and each demand
node is a single load. In this case a link (i ,f) represents an assignment of driver i to load ;.
The cost coefficient ¢; would then represent the empty cost from the precise location of driver i
to the precise location of load j, thus avoiding the need to aggregate the country into regions,
In addition, if truck i represents an equipment type that is incompatible with load j, this link
would not be generated. The biggest advantage of this model, then, is its ability to incorporate
a high level of detail about a driver’s location and characteristics. This more detailed formula-
tion can also be augmented by the forecast nodes given in Figure 2, allowing the model to
recommend empty repositioning moves. The only, and major, weakness of the model is that itg
relatively simplistic representation of the downstream effects limits its ability to reposition
empties between regions accurately. Despite this weakness, however, it is quite possible that
the ability of the model to choose the best driver for a load may measurably outperform &
dispatcher’s performance in the same task, overcoming the model’s other weaknesses.

Another feature of the transportation formulation is its small size and the speed with which
it can be solved. Assume every driver and load were represented explicitly. Typical problem
sizes range from 100 to 1000 drivers being assigned to a comparable number of loads. All
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Figure 2
Single stage transportation formulation with forecast load nodes

these models use pruning rules which limit assignments of drivers to the nearest 5 to 10 loads,
giving network sizes with 500 to 10,000 links. On a large mainframe, such problems can be
optimized from scratch in a few seconds. Furthermore, these codes can be reoptimized from a
previous basis following a change in the data usually in one tenth the time.

2.2 Dynamic deterministic models

The biggest limitation of static models is the simple way in which future activities are fore-
casted. Ideally, the simple linear salvage values used to summarize the value of an additional
truck in each region should be replaced with a nonlinear, nonseparable function of the vector of
supplies in each region. A straightforward solution to this problem, which is now considered
the classical approach to the dynamic vehicle allocation problem, is to form a time-space
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diagram where each node represents a region at a particular point in time. Between any pair of
nodes are three types of links: known loads, where the cost coefficient is minus the direct con-
tribution for that foad; empty movements, with a cost equal to the region to region empty repo-
sitioning costs; and forecasted loads, with a cost coefficient equal to minus the historical aver-
age direct contribution. Typically, loaded movements between the same regions on the same
day are modelled as separate links which then would each have an upper bound of one. This
allows known loads to be modelled with more detailed information on costs, revenues and
travel times. Empty movement links of course have no upper bound.

The data requirements for a dynamic model are relatively straightforward. First is the real-
time information on loads and drivers. It is necessary to know when and where each driver will
first become available (it is not possible to take equipment types info consideration without
sacrificing the pure network structure). Next we need to know the pickup and delivery place
and time, and the contribution (revenue minus direct operating cost), of each pending load in
the system. Empty movements can be generated by calculating the average empty distance
among empty moves actually made between a given pair of regions. It is also possible 1o calcu-
late distances using the coordinates of zip codes within a region. Normally the list of possible
empty moves is restricted to moves within a given radius.

The last and most difficult input to any dynamic model are the forecasts of future loads,
represented by the f;¢:). It is beyond the scope of this discussion to discuss this step in detail,
but the essence is that the £;(r) are derived from time series forecasting models. These models
might be built from six months or more of past loads, taking into account seasonal and other
trends as well as recent activities.

Two important issues arise in the use of deterministic, dynamic network models, First, a
method must be developed for representing forecasted loads as links in the network. Second, it
is necessary to choose the length of the planning horizon and te develop a procedure for trun-
cating the network. A difficulty arises again with setting the upper bounds on the forecasted
loads. Ninety percent of the demand forecasts will normally fall between 0 and 1, with many
below .5. Three approaches may be used:

(1)"Integerize” the upper bounds using heuristic rounding rules. The upper bound
might be given by fi;()= L{;,-(r)+yJ as we did in Equation 2. yshould be chosen so
that ’afij(f) = lgkfaj(f) .

(2)Randomly sample forecasted loads by using the mean, f;(s), to fit a distribution

(such as the Poisson) and then sample from this distribution. Each randomly sam-
pled load would then be represented as a link with an upper bound of one.

(3)Use fractional upper bounds. Typically this is handled by changing the units from
trucks to tenths or hundredths of trucks.

Since the last approach produces fractional solutions, it will be necessary to "integerize” the
final solution. The second approach suffers from the randomness introduced by the sampling
process. The first approach suffers from biases introduced by the rounding process, resulting in
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significantly higher or lower forecasts.

Separate from the issue of dealing with fractional demand forecasts is the serious preblem of
truncating the planning herizon. Researchers actively applying this approach to problems in
rail and trucking have, in private conversations, reported serious distortions when the truncation
is not handled property even when reasonably long planning horizons are used. At some point
we are forcefl to ignore the future impact of a decision, and this often has an amazing ability to
ripple back to the beginning of the planning horizon. The simplest example is a network with
regions where trucks generally cannot move out loaded (such as Montana). Normally the price
to carry 4 load into such 2 region is quite high to cover the cost of the empty backhaul. Near
the end of the planning horizon, the network model will tend to push trucks into Montana to get
the high price since the cost of moving out empty is being ignored.

The deterministic, dynamic network model is simply a special example of an infinite stage
linear program. For notational simplicity assume that each time period 1, 1 =0, 1,2, ... , is one
day and that all travel times between regions are exactly one day (travel times other than one
day are easy to handle but complicate the presentation without contributing any insights). In
addition, we will aggregate over a single link all loaded flows from region / on day ¢ to region
i, where in practice we would generate different links for each known load and all forecasted
loads. To discuss the issues associated with truncation define the following:

Uy(ty = total number of loads expected to be available from i to | leaving on day ¢,
= L)+ fiile)
Si(r) = supply of trucks at i on day ¢,

= x& [xg(e=1) + yu(e-1)] + T(),

8() {510 .. Se ()}

o = a "discount” factor where o is the value of a dollar today spent in period 1.

Taking advantage of the assumption of one day travel times, we have that .gk S"(’)=‘§, T =

the fleet size, and T;(:)=0 for (> 1. This implies that the state of the system at time  is given
completely by the vector (). The problem is one of maximizing total profits over time, where
we adopt the approach of maximizing total discounted profits with a daily "discount” factor c,
The problem then is to solve the following optimization problem:

may ri:b .g;a ,.gk [ry xit)— ¢ () ] o, 3)
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subject to:
Zk [x;(0) + y;(0] = Ti(0)  wi (3a)
F€
g [xse —1) + yat - 1] = ‘Zk [x(e) + yal)) =12, »i (3b)
JE €
x;,-(t)s Uij(f) \Hl',j,l. (3C)
xp(th ¥ (1) =0 i ft. (3(1)

In practice we have to maximize profits over a given planning horizon. Equation 3 can always
be rewritten using standard dynamic programming concepts as follows:

may g Ek fk [rij x(t) — & yi(t) Jof + Wp o (S(P + 1)) Q)
x iER j€
where
Yo, (SP +1) = max ,;1 ‘g}? ,«gk [riy 22} — € yi(t) 1 of &)
subject to:
Zk [xj(P +1) + yy(P +1)] = $;(P +1) (6a)
j€
Ek [xplt 1) + ya(t -] = ;h [x(ty + yalt)] ¢=1,2,.., wi (6b)
JE =
Iﬁ(f) =< U,'j(l) i g, (GC)
i )20 wige. (6d)

The problem with (4) is that the function ¥.,1(S(F + 1)) is a very complex, nonlinear, nonsepar-
able function (¥e..() must also incorporate the effects of flow conservation constraints and
upper bounds). The challenge is to replace ¥p..(S(P + 1)) with an easier to estimate fanction
$/5.,1(S(P + 1)). This problem has been studied in a network context by Hughes and Powell [15]
based on more general work by Grinold [10, 11, 12] and Grinold and Hopkins [13]. Three
methods are reviewed briefly here, the first two resulting in simple pure network formulations
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and the last one resulting in a generalized network.

The naive approach

This approximation consists simply of
Yoo (SP+1)) = 0. (7

End effects are just ignored, generally producing serious distortions in the optimal flow pattern,

The salvage method

This method puts a price (the salvage value) on a truck left in a region at the end of the plan-
ning horizon. As before, let pi(¢) be the value of an additional vehicle in region { on day ¢,
whose calculation is described in the appendix. Then

Ppu (5P +1)) = 3, SC+DpP +1). 8

This linear approximation lends itself easily to a pure network formulation. Both the naive and
salvage approximations involve links from each node in time period P + 1 to a supersink, The
naive approach puts a cost of zero while the salvage method puts a cost of p;(P + 1) from the
node for region ;. The salvage values p.(P + 1) capture the expected contribution from period
P +1 out to the end of a second planning horizon P;. Trucks are assumed to follow historical
trajectories in the periods P +1, P +2, .., Py (this is explained more thoroughly in the appen-
dix).

A way to improve the accuracy of Wp.,;() in both the naive and salvage methods is to add
upper bounds on the flows that terminate in each region. That is

SP+D) <GP+ 1) )]

This constraint helps to mitigate somewhat the nonlinear properties of ¥, () . A common
choice of & is:

GP+1) = 1’§kf;j(P+1)+'yJ, (10)

where again yis our rounding factor.
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Deterministic transshipment networks using the salvage method to mitigate end effects is the
most widely used approach for solving dynamic vehicle allocation problems (see, for example,
Chih [7] and Shan [25]). At this time, relatively little attention has been given to developing
formal methods for calculating salvage values or evaluating their performance. The attraction
is that the problems can be efficiently solved using standard network codes. A standard prob-
lern will use 60-80 regions with a planning horizon of 10 days, resulting in a network with
20,000 1o 60,000 links which can be optimized in less than a minute on a large mainframe.

The dual equilibrium method
Assume, again for simplicity, that while there may be information about loads available for
pickup today, nothing is known about tomorrow and, in addition, the forecasts of loads avail-

able for days ¢ =1,2, .., are the same. Thus we may let:

(7)) vector of upper bounds for 1oday

U

It

vector of upper bounds for tomorrow
= U{) 122,

In Grinold’s terminology, day 0 is the transient stage and day 1 is the stattonary stage which
repeats itself indefinitely. Both the transient and stationary stages may in principle consist of
one or more days. The transient stage might reasonably consist of the first 14 days while the
first stationary stage might start on day 15 and consist of one week which repeats itself
indefinitely.

The dual equilibrium method approximates the flows in the stationary stages as all being
equal (that is, in a kind of stationary equilibrium). Using this notion, we may aggregate the
flows starting in time period 1 using:

X)) = (1-w g o ). (1

If in fact x;(1) = x;(2) = ... = x;(t) , then £;(c) = x;(1) . Next we aggregate the other network
constraints (3b), (3c) and (3d) by multiplying both sides by (1 - wya'~! and summing over all ¢,
giving:

T, [0 - o) + o fy(@)+ (1 - 0 3O+ ai(o) ] = 5 [Fedo) +Fule) ] (12
J€ 3

Xio) £ wy (13}
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Ao Fylo) 2 0 (14)

where u; = 1;(1) = u,(2) = . = ay(t).

Finally, the objective function becomes, after a few manipulations:
. s S "
pin 3 F L 0+ 155 #(0) — i@+ 1% (o)) (15)

subject to (12), (13) and (14).

The key to this approach is the realization that Equation 12 represents the constraints for a
generalized network. The graph for a two region network is depicted in Figure 3. Flows from
the transient stage are first factored down by 1-o when entering the stationary stage? Since
each stage consists of only one time period, the links in the stationary stage loop back on them-
selves, factored down by o to represent the discounting from one stage to the next. In addition,
the cost coefficients in the transient stage are factored by a/(1-w) .

The intuition behind Grinold’s dual equilibrium approach is a little difficult to follow in this
problem context. Hughes and Powell present the generalized summation method which is vir-
tually equivalent to the dual equilibrium method. This method aggregates the flows using

£oy= ):“{ e x(¢) . In it, all flows making a trangition from one period to the next are discounted

by a. The arc coefficients are unaffected. The flows on the swationary arcs can row be inter-
preted as the total discounted flows and hence the upper bounds must be factored up by
o/{1-0) . The resuling graph, shown in Figure 4, is much easier to understand intuitively
since the arcs moving from one stage to the next always carry the discount factor.

Hughes and Powell report on a set of experiments on randomly generated test networks
using discount factors ¢ of .3 and .6. A "brute force” approach was used where a large network
was generated covering N stages where N was chosen so that o¥ <.05 (resulting in networks
with ¥ =3 and 8 stages, respectively) with 2 or 7 time periods within each stage. The solution
to this brute force approach was then compared on the basis of optimal flows in the first time
period alone as well as the flows throughout the wansient stage, The results demonstrated that
the dual equilibrium and generalized summation methods significantly outperformed the naive
and salvage value methods.

What is most important about this line of research are the following observations:
(i) The assumption of a deterministic future actually complicates the problem if
end effects are handled carefully, and
(ii)forecasting uncertainties must be handled in a highly heuristic fashion
through the use of deflated "discount factors."
The Hughes and Powell experiments are limited since they do not actually simulate decision
making under uncertainty over a planning horizon. Rather, they report only on a side-by-side
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Figure 3
Generalized network for dual equilibrium method, one day per stage

comparison of flows from a single run of a network model. Second, there are several variations
to the salvage value method in terms of how the salvage values are computed and the choice of
upper bounds on the final link.

A question that often arises in the development of dynamic models is whether an accurate
model of future activities is really needed given that the model will be solved repeatedly on a
rolling horizon basis. This question must be addressed from two perspectives. First, from the
perspective of dispatching trucks, the question is an empirical one that has yet to be carefully
and rigorously investigated. Cape [6] compared a simple transportation formulation to a sto-
chastic programming heuristic described below, showing a significant improvement for the
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Figure 4

Generalized network for generalized summation method, seven days per stage

latter model. The author is continuing to investigate this issue more thoroughly. As a general
rule, good decisions today require good forecasts of future activities, even if we are not going
to carry out all of the decisions we optimize for in the future.

The second perspective which is generally ignored is that of pricing and load evaluation. An
important but fargely neglected aspect of optimization models is their ability to provide esti-
mates of the marginal value of an activity. In the context of the DVA, we might ask what is
the value of a load booked from region i, day 1 to region 7, day 3. This requires knowing the
marginal value of a truck in region j, day 3, which in turn requires that we make our best fore-
cast of what we will be doing on day 3. Our research has shown that dispatching trucks is
much easier than pricing their activities, and places much higher demands on the quality of the
optimization in the future.

The remainder of this paper reviews different approaches 1o handling uncertainty in demand
forecasts. The next section considers direct modifications to the network formulation, after
which Section 4 tumns to more classical stochastic optimization based approaches.
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3. STOCHASTIC NETWORK FORMULATIONS

The literature on stochastic formulations of the DVA is quite thin. Two approaches have
been attempted in the literature, the first resulting in a nonlinear network model with deter-
ministic flows and the second producing a network-based nonlinear math program which
represents flows as random variables. In order to build a common framework, the first
approach is termed the stochastic DVA with simple recourse while the second is the stochastic
DV A with null recourse, for reasons that are described below,

3.1 The stochastic DVA with simple recourse
Define:

z;{t) = total flow of rucks assigned to move (loaded or empty) from i 1o j departing
at time ¢,

Xt} = random variable denoting the number of loaded trucks moving from i to j at
time ¢,

¥;(t} = random variable denoting the number of empty trucks moving from i to j at
time ¢,

From the definition of z;(:). X;{r) and ¥;(t), it is clear that

X{r} = min [ z;(¢), Fi;(0) ] (16)

and

Yy = z;(0) - X (t) a7n

where Fi(r), as before, is a random variable denoting the number of loads that will be available
from ¢ to j at time ¢, The probability distribution of F;;{t) is assumed known, We wish to find
an optimal allocation of trucks {z) to maximize total expected profits over a given planning hor-
izon:

max g 2x 2 [7a BN - oy BTV (0] (18)

subject to flow conservation on the flows {z} and where E[X;(¢)] and E(¥;(r)] are derived
using (16) and (17). Note that we must still choose a planning horizon P and devise a strategy
to manage end effects, It is possible to rewrite (18) by defining a profit function gg(zy(r)} for
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each link using:
iz = E Lry Xu() — ¢ Yy() ] (19}

which produces the following objective function:

max 20 ig; ;z;! gz (1) 20

subject to flow conservaticn and nonnegativity constraints on the flows 2} . Equation (20}is a
concave, separable nonlinear network problem which is easily solved using the Frank-Wolfe
algorithm which produces a sequence of linear transshipment problems.

An equivalent formulation of the same problem, developed in Powell et al. [21] starts by
defining the following:

§i() = total flow through region i at time ¢,

() = fraction of the total supply in: at time ¢ that is to be sent to ;.

Clearly
Zii{t) = 05 - Sty wij.r. 2n

The flow conservation constraints are now written

80y = IO wi (22

S40) = 3 Os( -1 Sl -D  wif=12,. 23
Lo =1 wir=012. 24
8,020  wi,j.1. (25)

The real decision variables are the flow allocation fractions /8] , implying that we may expli-
citly incorporate constraints (22) and (23) into supply functions S;(s,6) where the vector @
reflects the fact that the supply of vehicles at ; at time ¢+ may depend on all flow allocation
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decisions made prior to 1. Now the optimization problem may be written as:

mrG© = & 3 % 8 6,0-50,0 26)

subject to (24) and (25). Equation (26) is a concave, nonseparable objective function with a
very simple constraint set. Taking advantage of the acyclic stucture of the network, simple
recursions can be developed for taking derivatives using equations of the form:

9 as;{¢ + 1)

oG 2185 (1) - Silt 9)) G
EL70 B 710 BT TON @n

and

zk 06 (r) S (] 9)) aG aSE(l:j'l) (28)

Equaticns (27) and (28) are applied recursively going backwards in time. Using this approach,
the Frank-Wolfe algorithm can be applied to (26) yielding a sequence of trivial subproblems,
Powell et al. [21] showed that solving (26) using the decision variables {6) was approximately
five times faster than solving (20) using & more classical formulation based on link flows. The
extra computational effort required to find the derivatives using (27) and (28) was more than
offset by the speed with which the linearized subproblems could be solved. Particularly
interesting is that the second formulation (26) was faster even in terms of iterations (that is,
ignoring the time required to solve each iteration), requiring 7 iterations to reach the same
objective function value the first approach required 18 iterations to reach.

Separate from the pure algorithmic issues, the use of the vector 8} as decision variables pro-
vides a cleaner statement of the modelling assumptions. Specifically, we are asked to decide, in
advance (that is, before we can see realizations of the demands Dy;{t)) the amount of flow that
will be moved from i to j at time ¢. Then, when the demands are known, we are to move as
many loads as we can. Excess vehicles move empty and excess loads are lost. The inability to
reallocate excess trucks on one link to handle excess demand on another link defines a strategy
with simple recourse and represents a very strong assumption, In the case of truckload truck-
ing, motor carriers are highly responsive to real-time conditions. It is useful to consider, how-
ever, that while this model assumes a vehicle will move empty even if there is no load avail-
able, the deterministic model further assames that the load will be available (that is, that the
forecast will come tmue). The next model represents an attempt to extend the model to provide
for a more fiexible response.
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3.2 The stochastic DVA with null recourse

The model with null recourse is defined as the sirategy where if a vehicle cannot be moved
loaded from i to j then it will simply be held until time period ¢ + 1, a kind of null response for
the vehicle. Under this assumption, it is necessary to control the flow of loaded and empty
vehicles separately. Define

ey(r) = fraction of the supply of vehicles at region : at time ; which is allocated to be
moved loaded from i to f,

B;;(t) = fraction of the supply of vehicles at region i, time : which is to be moved
empty from i o j.

In this case, the flows of loaded and empty vehicles are given by

Xt} = min[oy;t) - SAr), Fiy(e) ] (29)

Yi(t) = Bile)-S:e)  jH#i. (30}
The fractions oy(r) and B;(¢) must satisfy

,& [og;(e) + B()] = 1 (1))

where generally ou(r)=0. Let ¥;() be the flow of vehicles held at/ until ¢ + 1. This is given
by the number of vehicles that were intentionally held at i plus the overflow from links where
demand fell short of the allocated capacity. Thus

Yult) = Bule) Si(e) + Z}z Lo} - Sty — X;(0) 1. (32)
il

This simple recourse strategy implies that X,;(:) is a random variable (as is X;(r) + ¥;(z) , unlike

in the previous model), which in turn means that the supplies S;() are random. Equation 32 is
the heart of the difference between the simple recourse model and the null recourse model.
Under the simple recourse model, a truck might be "allocated” to move over a traffic lane with
30 percent probability of having a load, meaning a 70 percent probability of moving empty.
There is no chance a carrier could operate profitably under such a strategy. The null recourse
policy assumes that a truck allocated to move loaded will simply be held in a region if no load
arises, thus avoiding the cost of moving empty. This is more accurate than the simple recourse

T S
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approach but does not model the reality of possibly using a truck on one of multiple outbound
waffic lanes, thereby increasing the probability it will move loaded somewhere.

The solution approach follows very closely that used to solve (26). This model was
explored in depth by Powell [22]. This work was based in part on earlier work by Jordan [16]
and Jordan and Turnquist [17] who considered the empty car distribution problem for railroads.
While their model did not consider loaded movements, they did explicitly model stochastic
supplies and the concept behind the allocation vectors fo} and (B} , while not explicitly stated,
is implicit in their formulation.

Both the simple and null recourse models produce nonlinear programs that can be solved
fairly efficiently even for large networks. Execution times are roughly 3 to 10 times that for
comparable deterministic models (the execution time depends largely on how close to optimal-
ity the algorithm is run). Of course the models produce fractional solutions. The more serious
problem is that even the null recourse formulation is not a realistic model of actual carrier
behavior. Furthermore, while it can be optimized fairly efficiently, the null recourse model is
already alarmingly complex due to the need to handle stochastic supplies of trucks. In terms of
the mathematical formulation, there does not appear to be much rootn left for further relaxing
the assumptions and still having a workable mathematical model. For this reason, the next sec-
tion attempts to develop additional insights by formulating the problem as a classical Markov
decision process.

4. THE DVA AS A MARKOYV DECISION PROCESS

Having effectively run into a dead end with classical network formulations of the stochastic
DVA, an alternative approach is to reformulate the problem as a Markov decision process
(MDP). Here the simplifying assumptions, particularly that all travel times are one time period,
significantly ease the presentation. Assume we have a fleet of X vehicles that may be distri-
buted over R regions, and let S;(z) be the number of vehicles in region i at time . If all the
travel times between regions are one period, then S(¢) = {5,0), ... 5x(z)} completely defines the
state of the system at time ¢. The problem is now to optimize the transitions from one transi-
tion to the next to maximize the average reward per time period. That is, if R (1) is the profits

earned in the wansition from : to ¢ +1 , then we wish maximize lim ; E[ R(®)]/s . An
& i

appreciation of the structure of the problem is most easily developed for the case where the
fleet X =1 vehicle, After this, the approach is extended to the problem with X > 1. The pur-
pose of this exercise is primarily to explore the structure of the decision variables under uncer-
tainty. At the end of this section, we show how the flow splitting approach described in Section
3 can be viewed as a restricted form of the MDP structure.
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4.1 The one vehicle MDP

With one vehicle, the state vector 8¢ can also be viewed equivalently as a vector giving the
current location of the vehicle. Alternatively we may define a new state variable S()=; if the
vehicle is in region i at time . Now a transition from state i to state j is equivalent to a vehicle
moving from region ; to regien j, camning a random "reward" of &; where

rij if the movement is made loaded
Ry =
—¢;; if the movement is made empty.

The problem now is to find the structure of an optimal policy that will determine what a vehicle
will do when faced with a set of realizations on the available loads. On a given day, when afl
the toads are known, the vehicle must accept one of these loads or reject all of them and move
empty instead (holding in the region uniil the next time period is a special case of an empty
move), Define:

Ay

the decision to move loaded from i o j if a load is available, and

Ey the decision to move empty from i to ;.

For a vehicle in region i, the set of all possible actions is given by {A;;, E;, jeR =1, ..,R}. Let
4; be the set of all possible permutations of this set and let §; € &; . Thus, for a three region
problem, we might have

8 = [An A EnMLER Enl. (33)

8, is a particular policy that says the vehicle (in region 1) should move loaded from 1 1o 3, if
there is a load available, otherwise it should move loaded from 1 to 2 and, failing this, it should
move empty from 1 to 1. Since the vehicle can always do the empty option, this is the last
option that need be considered.

For a given policy & , there is a vector of rewards ¥; = [ Y, %2, ... Yo 1 » Where N =2r | that
corresponds to the reward received if a particular option is used. Thus, for the example in (33)

" we would have

N o= [(rsre —cur, —Cis €131, 34

Next, there are probabilities associated with each option. Assume the options in & are ordered
froma =1,.., 28 ,and let
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dia{(5:()) = probability the vehicle in J is dispatched con the n* option given a policy 5(:) .

These probabilities can be easily worked out if we know the probability that a loaded option is
not available {that is, the probability the number of loads from / to j is zero). Again, for the
example in (33) we might have

a(5:()) = [26 33 410003 (35)

where the first empty option receives all the remaining probabilities.

If R;(¢) is the reward eamned by a vehicle in region J at time ¢, then
EIRO1 = § 1) duBitr). (36)

Assume we are maximizing expected profits R (P) over a planning horizon of length P. Our
problem is to find a strazegy § = [5(0), 1), ..., (P )] that solves

mx g =) - P - B [R()] (37)

where =n(0) is the initial state vector, P is the matrix of transition probabilities and R{) is the
column vector of rewards for being in each state (the convention is use that probabilities are
row vectors and rewards are column vectors). The matrix P is easily derived from the dispatch
probabilities.

The MDP in (37) is normally solved through a standard dynamic programming recursion.
Let w;(r) be the optimal expected reward from time : until the end of the planning horizon

given the process is in state i.

Wit) = mgx B[Rt ] + ng piB@Y) - Wit +1). (38)

The recursion in (38) is easily solved. Let g:(n) denote the destination that is implied by the %
opiion in the vector §; , and define

Winlt) = Y (8i(1)) + Wt + 1) (39)

thus wia(t) is the reward if option » is used, taking us to region ¢:(n). We can now rewrite (38)
to be
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Wite) = max & wia0) - dn(B0). (40)
Itis not hard to see that (40) is solved optimally by choosing a vector §;(t) which satisfies

wille) = wialt) 2 .. 2 wi(t) 1)

where as before ¥ =2r . Thus we need simply to rank the options in terms of their direct con-
tribution plus optimal future earnings, thereby maximizing the probability the vehicle will be
dispatched on the most lucrative options,

This section describes an optimal algorithm for the finite planning horizon problem for a sin-
gle vehicle. Under certain conditions, as P becomes large the optimal policy in the first period
becomes independent of P (see, for example, Heyman and Sobel [14, pp. 125-138] and Bean
and Smith, [2]). Since the state space is so small, the algorithm is easily implementable. Most
importantly, the discussion provides insights into the structure of optimal policies that are used
in the design of a heuristic in Section 5. Next we consider briefly the problems in extending the
classical MDP framework to the & vehicle problem.

4.2 TheK vehicle MDP

With & vehicles the state of the system must now be given by
8¢) = {5.(t) .. S2()} (42)

where S;(t) , as before, is the number of vehicles in region i at time :.

This immediately introduces a problem in terms of the size of the state space. Let § be the
set of all possible states. It can be shown that for a problem with X vehicles and & regions that

o= (). @

For a small fleet we might have X =100 and R =50 giving I1S1=67x10% , while with a full
sized fleet with X =2000 and R =100 we get, using Stirling’s approximation (5! =108 . Even
a toy problem with ¥ =20 vehicles and R =10 gives ($1=107. Problems smaller than this are
not even interesting for testing purposes.

Aside from the size of the state space, the determination of strategies, rewards and transition
probabilities, the problem becomes significantly more complex when K > 1 . It is useful,
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nonetheless, to at least formulate the structure of a policy variable in this context. With one
vehicle, 8;(¢) represents a ranking of options to be considered by a vehicle in region ¢ at time 1.
With K vehicles, we need a policy for each vehicle in each region. Consider a system in state
s ={8; (), 82(), .. Sx (t)} and a particular region i. We would then have a policy 8,:(+) which

is identical to (33) but would apply to the k* vehicle in region i when the system is in state s,
where 0 < k <5;(:) . Now a vehicle moving from i to j no longer implies a wansition from state
i to j, and as a result the value of sending a truck from i to j, which earlier we could represent
as w, (1) (BEquation 39 above), is no longer so easily derived. This in turn takes away our
optimal policy of ranking options so that (41) is satisfied.

If the MDP could be solved, the outputs would be identical to those from a network model
in terms of instructions for the first time period. Given the deterministic supplies of trucks and
deterministic opportunities, each dispatch probability vector will be of the form 4y, (1) = [1, 0,
0, ...] since there will always be a "best” option (given the policies for the other vehicles) for
each truck, and this option will be available with probability 1. Thus there is a specific instruc-
tion for each vehicle in the first period and a much richer set of strategies in the future (these
strategies, however, are not directly implemented).

The & vehicle problem quickly gives us a very large state space, a significantly larger space
of possible policies and finally eliminates the special structure we used to determine an optimal
policy. Further research may yet reveal structure that will yield a workable algorithm, but at
this point this line of investigation does not look promising. The exercise does, however, yield
insights into the structure of the problem. The strategy vectors &, (¢) for each vehicle & in
region i with the system in state s is a relatively general mechanism for controlling the flow of
vehicles between regions. A restriction of this formulation would use a policy vector of the
form &) as given by (33). In this case, we are forcing all vehicles to be dispatched under the
same policy independent of the state or the number of vehicles in the system. Note that such a
restriction implies that all empty vehicles move in the same direction. Let di(8:()) be the pro-
bability the k* vehicle in region ¢ is dispatched on the »*% option. Let n;,(x) be the fraction of
vehicles dispatched on the »* option given that there are x = §;(¢) vehicles in the region, where

Nulx) = 5 & din(Bilr). @4

Clearly mu,(x) is a nonlinear function of x. Contrast this with the flow splitting variables {6}
or {o, B} used earlier where the fraction of flow moved over a particular option is controlled
direcily as decision variables. The comparison is illustrated in Table 1. Assume we are using a
fixed policy vector &:{1)={Ais, Aiz, Ais, Ayy, B} for all vehicles (we could also use a different
vector 8;(+) for each vehicle k). Assume that the first four dispaiwch probability vectors
di1, di3, di3 and d;4 corresponding to 5;(:) are as shown in Table 1. Using (44) the vectors n,(x)
are also calculated for x =1,2,3 and 4. Thus the fraction of vehicles dispatched loaded from
region i to region 5 is 0.10 if there is x = 1 truck in region i. This changes to 0.11if x =2, 0.16
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ifx=3 and 0.22if x =4. As one might expect, the fraction of trucks moving loaded to region
5 varies as a function of the number of trucks in the region. We may alter these probabilities by
manipulating the policy vector &:(¢) (or the individual policy vector 8u(¢) for k =1,...,4). Under
the simple recourse strategy, we may change #;s, thereby directly changing the fotal number of
trucks moving from ¢ te 5, Furthermore, this fraction is statistically independent of S,(t), the
supply of trucks in i at time . The fraction of trucks actually moving loaded is a nonlinear
function of &() which must be worked out from (16). This function, however, will be quite
different from mi(x), particularly when one compares the fraction of trucks moving loaded
somewhere as a function of x. Under the null recourse strategy, we may use s to directly con-
trol the fraction of trucks allocated to move loaded from i to 5. This fraction is also indepen-
dent of §;(¢}, although the fraction moving loaded will again be a (strictly decreasing) function
of S(:). The biggest difference between the simple and null recourse formulations and the
MDP formulation is that the latter will yield a much higher probability that a truck will move
outbound loaded to some destination.

Table 1
llustrative dispatch probabilities for a fixed policy vector §(t)
and flow fractions n;(x)

Option | Policy &i{t) | diy | 2 [ d3 | da {m®) [ [m®) [ni®)
1 Ay 05 1035 [ 015 {005 | 050 | 043 | 033 | 0.26
2 Az 04 | 050 | 045 | 030 | 040 045 045 041
3 A 01 ;012 (025|040 | 010 | 011 | 016 | 022
4 A 0000 |010 015 00 0.0 0.03 | 006
5 Ey 00| 00 (005010 00 0.0 002 | 004

It is important in the design of an efficient algorithm that the intherent network structure of
the problem be recognized. The enumeration of all possible states required by the MDP
approach loses this structure, but it does at least provide a rigorous framework for formulating
the problem. Most important is the structure of the policy variables used to handle decision
making under uncertainty, although the problem now is to determine how to optimize over the

set of possible strategies. In the next section we consider an approach that combines the basic
ideas used in the dynamic network formulation in Section 2 with the recourse structure
developed in this section.
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5. STOCHASTIC PROGRAMMING FORMULATION OF THE DVA

A somewhat different lierature has evolved under the general heading of stochastic pro-
gramming with recourse. Although this literature is addressing the same types of problems as
those solved using the MDP framework, the language and orientation is somewhat different. In
this section, we present the stochastic DVA as a stochastic programming problem with
recourse. We then show how the two time period problem (referred to in this literature as a two
stage problem) can be solved optimally as a pure network, and from this we present a simple
approximation for the r-stage problem which can also be solved as a pure network,

5.1 Background

Stochastic programming has enjoyed a fairly rich literature since the initial work by Dantzig
{8], with important recent contributions by Birge and Wets [4], Birge and Wallace [5], and
Wets [27, 28, 25], among others. Most recently Wallace [26] deals directly with stochastic pro-
gramming problems arising in networks, which forms the basis for the discussion here.

As before, let x(r) and y() be vectors of loaded and empty flows for time period r, with
cocfficient vectors r and ¢, and let F(¢) be the vector of random demands between regions. We
also let L(z) be the vector of the number of known loads moving between regions. For the dis-
cussion here let L) =0, 2 1, meaning that we only know the loads in the first time period. Qur

problem can now be stated as:

max 17 x(0) — e y{0) + @ (X.7) (43)

;‘Sk (@ + 31 = T®  vi (45a)

Ek [x(t ~1) + yilt —1)}] = é‘k [xel) + yu(6)] =112, ¥i (45b)
IS wij, {45¢)

x@0, (020 wijur. (45d)

Q& 7) gives total expected profits from time periods ¢ = 1,...P given the decisions X=x(0) and
¥=y(0) made in time period 0. @(x,7) is the recourse problem and can be stated as follows. Let
F = {F(1), F(2), .., FP)} be the random vector of all loads in the future and let 0,7 | Fy be the
conditional expected profits given F. Then ¢,y | F) is given by
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0 ®FIF) = max £ (1 x() - ¢ yi0)} (46)
subject to (45b), (45¢) and (45d), where Uy(ry=Fy(t) in 45¢, Taking expeciations gives:

Q(X¥) = Er {Q(XFIF)J]. 47

The difficulty with this approach is that the sample space for F is extremely large and each out-
come involves solving the network transshipment problem in (46). For a two stage problem
Wallace proposes replacing ¢ (x.5) with a series of cuts which would each successively produce
an improved bound.

A standard technique for solving stochastic programming problems is to use a simple
recourse strategy. To state this in more classical terms, let z;(1) = x;;(r) + y;(¢) be the total flow
fromi to j as is done in Section 3. Now replace constraint (45¢) with

2,;;(!) + Z."T(f) - Z;j(l) = F,'j(f) (483)

2t z3(e), 25(t) 2 © (48b)

where z}(¢) is the underage (the extent to which flow falls below demand) and z;;(r) is the over-
age, representing empty vehicles. Thus x;(f) = z:(r) - z7(:) and y;(r) = zz(t). In our problem
there is no penalty for underage and the overage cost is the cost of moving empties. The notion
of simple recourse is that we decide on the entire vector z(f).f =0,1,... P, and then use the
recourse variables z* and z- to respond to uncertainties, Defining the decision variables in terms
of {2}, the recourse function becomes

0 (1F) = max £aTla)-r)) - T z0) (49)

subject to (48a) and (48b). Since the vector {27 is not constrained by network constrainis, we
clearly wish to minimize z- implying that (49) is solved by

zip(t | 2i(t), Fi(@)) = max [z;(e) — Fi;(t), 0]. (50)

8i(zip(1)y = E [nip(zi{0) — 2530 — cij z7() } (51)
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where z;7(t) is now given by (50). The recourse function is then

0@ = 5% 3, sl (52)

The function g;(z;(1)) is identical to that given in (19). Combining (52) and (45) gives the
same nenlinear nerwork formulation as in (20), although the functions in the first period are
linear. In other words, stochastic programming with simple recourse in the context of the DVA
is equivalent to deciding in advance how many vehicles to send from i to j at time ¢, and then
sending that number anyway when the demand is known, incurring lost revenues or additional
costs as required.

To gain an appreciation of how poor simple recourse performs as a model, consider the fol-
lowing situation typical of a large motor carrier. Assume from a given region i that the fore-
casted number of loads to each of 50 destinations is described by a Poisson distribution with a
mean of .1 loads. If there is a single vehicle in region / and the decision is made to move it to
region j, (that is, z;=1), then the probability the vehicle will move empty is
Prob[Fi; =0]=.1%¢~1/0! = 905. In reality, the carrier might adapt a strategy to accept the best
available load. Let F; = Ek Fi; be the 1otal outbound demand. In the latter strategy the proba-

bility that the vehicle will have to move empty (or hold) is Prob[F: =0]1=5"¢~% /5! = .000056.
This swrasegy can be represented using a multiple stage formulation where the decision maker is
allowed to respond to the opportunities available to him.

In the next section we show how the two stage DVA can be solved optimally as a pure net-
work.

5.2 The two stage DVA

Remembering that each stage of the DVA is just a transportation problem, it is easy to see
that dispatching vehicles out of region  is independent of dispatching out of any other region.
Note that this is purely a consequence of the two stage model since in an » stage model the
downstream effects of disparching vehicles implies that dispatching decisions out of region
must be coordinated with those out of all other regions. The two stage problem can be
represented using (45) to (47) with P = 1.

Begin with the recourse function ¢ % ¥). The solution of (46) can be represented using the
same approach used to formulate the problem as an MDP. For trucks in region i, the optimal
policy is given by

8§:(1) = [Au, A, B, Eiy .. ] (53)
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where ry Zry, 2. 2ra, , and where we assume that the cost of holding the vehicle in the region,
ci - i§ less than the cost of moving it empty to any other region. The policy vector in (53) states
that we will use a vehicle on the available load with the highest revenue and, if none are avail-
able, the vehicle will be held in that region. Since we are only considering a two stage prob-
lem, the pelicy in (53) is clearly optimal for all vehicles in region i, whereas in the P-stage
problem we would require the much more complex formulation outlined in Section 4.2 for the
N vehicle MDP.

Given the simple structure of the second stage problem, we now need to find 0 %, . Let

5 = supply of vehicles in region i at the beginning of the second stage,
= 2 L@ + 5O 1],

0;(s;) = expected profits from vehicles dispatched out of region i given a supply of 5; .

Clearly
Q&P - 3, 6. (54)

Thus we have to find 0:(s;y . Recall that dua(8;(¢)) is the probability the k% vehicle in region i is
dispatched on the n* option, and that y,.(3:{r)} is the value of the n* option. Define

vi(B:(r)) = wvalue of the % vehicle in region i.
Then
(1) = & dan®0) - 1) (55)

and

Gi6s) = & va®i(e). (56)

Alf that s left is determining the dispatch probabilities.
Let

Fy = ?:1 Fa, (57

where Fi is the cumulative total number of loads in the best n options, 1<n <R . The event

that the k* vehicle is dispatched on the n# option is equivalent to the joint event that £,y < &
and F, 2k . Thus
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doa (Bi(1)) = Prob [Fipy < k. Fip 2 k]

= Prob [Fia-1<k] - Prob [Fi, <k ]

where the second equality follows from the identity P(AnBY=FP{4)}—P(B) when BcA. Thus
the dispatch probabilities reduce to the difference between two cumulative distributions. If a
vehicle is not dispatched on one of the first n loaded options, then it is always moved on the
first empty option which, following (53), means being "held" in region ; until the next time
period.

Having determined the recourse function, we can now consider the two stage optimization
problem, given by {45). The recourse function @ (x,¥) is separable in the variables s; and from
(56) we see that the function is piecewise linear. Thus (45) can be solved exactly as a pure net-
work as indicated in Figure 5. The two stages are easily discerned in the network. The first
stage, reflecting "known" loads and empty opportunities, forms a transportation problem and
the second stage made up of "stochastic links" represents the value of each additional vehicle in
a region.

It is useful to contrast the stochastic programming formulation with that based on Markov
decision processes. Within the research literature, it is common to use one of the two
approaches but apparently less common 1o compare the two directly. Stochastic programming
uses traditional decision variables representing flows on vehicles. It also requires at least impli-
citly enumerating all possible outcomes of the random vector F and solving a network problem
for each possible outcome 7. The computational challenge has been finding the optimal first
period flows without actually enumerating all the outcomes for the second period. The addition
of a third stage appears to make the problem completely intractable since in principle every
outcome of F in the second period still requires enumerating all possible outcomes of F in the
third stage.

The Markov decision process formulation uses policies as decision variables where a single
policy describes what decisions must be made for al! possible outcomes of F in the second
stage. Of course, a policy vector 3() is much more complex than a set of link flows x (1) and
¥{r). On the other hand, rather than enurnerating all possible outcomes of F, the MDP frame-
work requires enumerating all possible states S¢). Since multple outcomes of F can produce
the same state 8(r), the number of states is smaller (in fact, significantly so) than the number of
outcomes of F.

5.3 An approximation for the multistage DVP

This last section looks to combine ideas developed for the multistage deterministic DVA
with the approach just presented for the two stage stochastic DVA presented in the previous
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Figure 5
Pure network representation for two stage stochastic
programming formulation

section. The ideas in this section were developed in Powell [23] and are the foundation of a
vehicle dispatching system implemented at North American Van Lines (Powell er al. [24]).
The development here, however, is considerably different and serves to synthesize ideas from
dynamic networks, MDP’s and stochastic programming.

The two stage problem involves two sets of decision variables: the policy vector
8(1) = {8y(1), 8(1),..., 8z(1)} for the second stage, and flow variables x(0) and y{(0} for the first stage.
For the multistage problem, let 8{(t) = {5.1(:).5 2()...., S¢(¢)} be the state of the system given deci-
sions {x(0}, y(0)} in the first stage and policies 5(1), §(2)...., 5(:—1) up until time ¢. Let ¥ | 8()) be
the optimum expected profits from time ¢ until the end of the planning horizon given a system
starting in time ¢. Then
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PA
YIS0 = g (T 5 K dn 86 v B0

+ Egqey [P0+ 118 +10) 1 8¢), 8017 . 61)

The expectation reflects the fact that S¢+1) is a random variable, dependent on S(r) and the pol-
icy 8(1). As we did with the deterministic DVA, we would like to replace ‘W(r+1 | S(:+1)) with a
simpler approximation. As before, we will use

Y+l 180+1) = ):k Pl + DS +1). (62}

where, as before, p:(1+1) is the salvage value giving the expected value of a vehicle in region i
at time r+1 until the end of the planning horizon. Taking expectations of (62) gives

E[®@+118¢E+1)18¢),80)] = 3 PG+ D) EISi(+1)] (63}
where

E[SG+1}180))] = gk ii‘; (BT} (64

Combining (61)-(64) yields
i)
YO 1S = max {;‘Z‘k ; g‘ dan(B(e)) [1in(BUD + poon(t + 1)1 } (65)

(65) is now very similar 10 (40) With wix(t} = ¥ (80 ) + pgeo(t+1) and can be solved by choosing
8.{(r) for each region i so that (41) is satisfied. One important difference, however, is that we no
longer can guarantee that all loaded moves will be ranked above all empty moves (also, the best
empty move may not be 1o hold in a region until the next day). It is certainly intuitively more
reasonable that some empty moves would be ranked above some loaded moves, but in our logic
the highest ranked empty option within the vector &(r) is the lowest option to receive any pro-
bability. This behavior is a direct consequence of the use of the linear approximation implicit
in (62). We would like some vehicles to move empty 10 a given destination but we would like
the model to recognize that there are declining marginal returns for each additional empty vehi-
cle sent.

This problem can be mitigated heuristically. Let U;:(8(:)) be a random variable denoting the
maximum number of vehicles that we wish to allow to be used for the »* option. The choice
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of Uin{8(r)y must satisfy

Fy(t) 1if option n represents moving loaded region j
Uy =

if option n represents moving empty region j .

If » is a loaded option, then it is natural (though not necessarily optimal) to use U, = F,(t) . If
n is an empty option, one possible approximation is to use Uy = E;(r) where Ej;(r) is a random
variable denoting the historical number of empties that have been moved from i to j. This
approach has been implemented and works quite well in practice though it imposes additional
data requirements that can be hard to explain, as well as creating problems in certain siteations.

Using the random variables (U (3(:))}, it is straightforward to work out the dispatch proba-
bilities {da.(8(1))} . Let the indices, k1, k2, .. ., k2 rank the options Wi, as in (41), and let

U = g Us, (66)
similar to (57). Then the same arguments leading to (60) gives
dan(8(tY) = Prob [Uiny < k1 - Prob [Uin < k1. (67)
The problem can now be solved in. a manner similar to the two stage DVA. Let

va(8;(t)) = the value of the & vehicle in region i under policy 8;(¢)

= 8 i) - walt). (68)

The recourse function 0%y can now be approximated as a separable, piecewise linear func-
ton. Let J(S(t)) denote this approximation. Then

g Suy = p) S (69

where

&0

GiSity) = g‘ vaB;(1)) . (70
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This approximation is only useful when the state vector §(:) is known with certainty. The i
latest time period for which this is true is period : =1 . The complete optimization problem - £ 3=
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The principal goal of this paper has been to expose a range of modelling frameworks and A A A & IS T 2 = E.o _E’g g 5 ;g
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approximations. It was not possible to describe every variation, and attention was focussed on N &G @

models which recognized the dynamic nature of the problem and uncertainties in forecasting.
The large majority of the vehicle routing literature assumes a deterministic problem, and sto-
chastic routing problems incorporate uncertainty in customer demands but not in the tours.

Table 2 provides an overview of the different modelling approaches and their characteristics
in terms of problem size, ability to handle details about specific drivers and loads, and the
tesulting optimization problem and solution algorithm. Several of the models (1, 3, 4, 6,7, 9
and 10) are single commodity network flow problems which are unable to handle details about
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specific drivers and loads. These details include equipment type, the precise deadhead distance
from a driver to a load, precise time of availability of a driver and the precise pickup and
delivery times of each load. The assignment model (2) is the only network flow formulation
where individual drivers and loads are represented explicitly, allowing most details to be ircor-
porated. The key limitation is its inability to perform these assignments in the context of any
forecasting. On the other hand, the inability of network flow models to handle driver and load
details is a major impediment to their practical implementation in the real-world.

Cape [6] combined the assignment model and the network flow model into a single network
where each driver and load is explicitly represented by a node in the first time period. From a
driver node, links might extend to five or ten known loads (which are within a reasonable dis-
tance and which are compatible in terms of equipment type and driver arrival and pickup
times). In addition, there will be a link from a driver node to a node associated with the
driver’s region from the first time period, out of which forecasted opportunities are modelled.
Flow from a driver node to a known load node flow forward in time ending in a node
corresponding for the region and time period where the load terminates. Thus, details about an
individual driver and load are retained for the first assignment and are then lost as the flows
move into the future. This combined assignment/ransshipment model is represented by formu-
lations 5 and 10 in Table 2.

The last formulation, based on set partitioning, was not discussed in this paper but was
included in the table for completeness. This approach, which has received widespread attention
both in the research kterature and in practice, requires generating feasible tours for each driver
and then choosing the best set of tours so that each load is covered by one driver. This
approach allows for a very high level of detail in representing drivers and loads both in the
present as well as the future. The difficulty here is that an extremely large number of tours
must often be generated, resulting in a very large integer programming problem, generally res-
tricting their use to smaller private fleet operations. In addition, this approach does not lend
itself well 1o forecasting uncertainties.

Among the 11 formulations, the Markov decision process approach is at this time restricted
to toy problems, as would be exact N -pertod stochastic programming formulations. Aside from
the MDP approach and the set partitioning approach, which will comfortably handle fleets of
several hundred trucks, all the remaining formulations will easily handle fleets of several
thousand trucks. This is true even of the simple and nuoll recourse models, although they are
somewhat slower due to their nonlinear nature, However, the fractional solutions produced by
the nonlinear models, as well as the transshipment model with fractional forecasts, require
some method to “integerize" the solution prior to implementation,

The remainder of this section reviews implementation issues involved with DVA models in
general and the state of implementation in the indusiry. Finally, we review major research
issues still facing the dynamic vehicle allocation problem,
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6.1 Implementation of DVA models

Real-world implementations of dynamic fleet dispatching models are stil quite few, The
models are still evolving in terms of their ability to properly handle forecasting while also cop-
ing with the high level of detail that is required o manage a real operation. There are two
applications of DVA models. The first is in a batch mode which might be run once or twice a
day to determine repositioning strategies. This mode places less emphasis on specific real-time
details and instead focuses attention on the broader pattern of surpluses and deficits. The
second mode is for real-time driver dispatching, which places a very high emphasis on driver
and load details so as not to make infeasible assignments. Using a network model for real-time
driver assignments places much higher demands on the carrier’s MIS system, which must be
up-to-date at all times, and on the network model, which must be capable of detecting changes
in the drivers or loads and then reoptimizing from a previous optimal sclution within a few
seconds.

The data requirements for all the DV A models are effectively the same, with the only excep-
tion being the assignment or transportation formulations which may not require any forecast
information. Regardless of whether the model is being run in batch or real-time, a network
model requires real-time data on drivers, trucks and loads pending. In addition, there is a set of
base files which are used to forecast future activities as well as to provide information for cal-
culating empty distances. When the model is run, it is necessary first to extract the status of
each driver, including his estimated time of arrival, his destination and his equipment type (in
some applications it is necessary 1o know his domicile and recent dispatching history). If there
are different compensation rates for drivers, this will also be needed. Information about current
pending loads includes origin and destination, pickup and delivery dates, equipment restrictions
and compensation rates.

Base historical files required for forecasting include region o region average empty and
loaded distances and travel times, empty movement costs and average contribution per load.
Also needed is a set of models for forecasting loads over a 10 or 20 day planning horizon.
These models typically work on a one year base of data supplemented by recent activities. His-
torical loaded contributions (revenue minus direct operating costs) and travel times reflect
actual delivery costs {(including special handling charges and extra drop-off costs) and addi-
tional times resulting from multiple stops.

The biggest hurdle facing most carriers is the lack of an up to date MIS system that both
retaing the necessary historical data as well as being able to provide current extracts of drivers
and loads. Second to this is the traditional hesitation of management to accept help in day to
day operations. Just the same, three carriers (to this author’s knowledge) are actively using net-
work models for fleet management. The first to do so uses a dynamic transshipment model
(formulation 3 in Table 2) each night to plan general fleet movements. Then, an assignment
model is used in real-time to perform detailed assignments of drivers to loads. This application
is not reported in the research literature and no quantified estimates of impacts are available,
However, the system has been in use for over six years suggesting that management is quite
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happy with the results.

More recently, the author was involved in the installation of a package called LOADMAP,
which is an algorithm based on the N-stage stochastic programming heuristic, at North Armeri-
can Van Lines” Commercial Transport division. This implementation is described in Powell et
al. [24]. To estimate the value of the package, a& simulated game was conducted where two
teams of six dispatchers each, made up of upper management from North American Van Lines,
competed against each other. The performance of these teams was then compared to the per-
formance of the network model. The model outperformed the best of the two teams by 12 per-
cent, with 43 percent fewer refused loads (loads the carrier was unable to carry), 15 percent
fewer empty miles and 6 percent higher revenues. This package is being used by two motor
carriers and is run in batch approximately three to six times per day.

6.2 Directions for further research

The challenge facing the dynamic vehicle allocation problem is one of developing a compu-
tationally feasible algorithm which incorporates planning uncertainties. For the most part sto-
chastic considerations have been largely ignored within the vehicle routing literature. At the
same time, the stochastic optimization literatare has not progressed very far in terms of han-
dling large problems.

Some of the research directions that are of highest priority include the following:

1. We do not have a rigorons formulation of the stochastic DVA. Sections 4 and 5 of
this paper provide a foundation for the structure of the decision variables, but this
presentation needs 1o be firmed up considerably.

2. Can the special structure of the problem be exploited to provide a computationally
feasible, optimal solution to the MDP or stochastic programming formulations? The
one-vehicle MDP and the two stage stochastic program with network recourse pro-
vide glimpses of what is possible here.

3. Does a planning horizon exist, where the optimal policy for time period ¢ =0 based
on a P period horizon is optimal as P - «? Recent research in this area has esta-
blished conditions for planning horizons, and these should be investigated,

4. Can bounds be developed to evaluate the efficiency of heuristics? It is likely that a
bound for a medium to large problem will be more useful than an optimal solution

for a very small problem.

Separate from basic theoretical issues are a range of more experimental research topics. These

include:

5. The development of the software to rigorously test alternative heuristics. Research is
progressing in this area and has exposed a variety of itportant experimental design
questions,
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6. The most obvious question is, of course, how well do the different formulations actu-
ally perform in a rigorous test environment? It is possible, for example, that the sim-
ple ransportation network in Figure 2 will perform adequately. Actual performance
may easily depend on the degree of uncertainty.

APPENDIX

Both the deterministic transshipment networks and the ¥-stage stochastic programuing
heuristic make use of regional salvage values, p.(t), giving the expected net contribution of a
truck in region i at time ¢ until the end of a secondary planning horizon, P,. This can be
accomplished through a simple backward recursion. Assume we have available the followin [

&;(t) = forecasted number of trucks moving loaded from i to j at time r,

e;(t) = forecasted number of trucks moving empty from i to j at time :.

This information can be obtained in two ways. First it is possible to use six months of actnal
historical activities which are worked into a set of weekly averages. The weekly cycle is then
assumed to repeat itself indefinitely. This approach has actually been applied in practice but
suffers from some important limitations. First of course is the fact that & six month rolling
average does not necessarily forecast the future. Second, and acwally more significant, is that
from a practical perspective a carrier’s database on empty activities, e;(t), can be of low qual-
ity. Often there is no record of activities of trucks holding in a region, e;(r}, which must then
be inferred from flow conservation equations. The principal advantage of the use of historical
activities is that they represent actual activides and as such may provide a better prediction of
actual future costs and revenues,

The second method for estimating loaded and empty activities is to develop a deterministic
transshipment network model with a planning horizon P, that is substantially longer than P,.
The activities g,,(¢) and ¢;;(:) are then just the optimal loaded and empty flows off this network.
Given that integer solutions are not really necessary here, it is best to use fractional upper
bounds on the loaded movement links. The advantage of this approach is that the loaded and
especially the empty activities become true forecasts. The disadvantage is that the network is
very large, since P, >P, and P, >P,, and because the use of fractional forecasts greatly
expands the number of links required. Also, one is never sure that the network model is actu-
ally predicting future activities. Note that since this network model cannot use any salvage
values, it will be necessary to use P, > P, to mitigate truncation effects. Once the loaded and
empty activities are estimated, salvage values can be calculated as follows. Let

pPY=0 i (A1)
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Then, beginning with ¢ = P, - 1 and working backward in time, let

Pit) = 2‘1‘ 0,y - wi@) — aye) - wi(t) (A2)
JE
where
rij(Ps — tWE; if Pp~151;

wi{t} = (A3)

ri; + p,‘(f + I,',‘) ctherwise

and where w;(:) is defined similarly using the empty cost ¢; instead of the load contribution.
Note that we are allowing the travel times, «;, to differ from unity. The fractions 6;; and oy; are
the fraction of trucks moving loaded and empty, given by

%0 = e "4

and
ay(e) = ‘Ef@:a(jll ety (A-5)

Equation A.2 defines a backward recursion that is exceptionally fast and provides salvage
values that are fairly robust with respect to errors in the estimates of the activity variables.
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