
This article was downloaded by: [71.188.120.248] On: 31 October 2014, At: 16:02
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Tutorials in Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Clearing the Jungle of Stochastic Optimization
Warren B. Powell

To cite this entry: Warren B. Powell. Clearing the Jungle of Stochastic Optimization. In INFORMS Tutorials in Operations
Research. Published online: 27 Oct 2014; 109-137.
http://dx.doi.org/10.1287/educ.2014.0128

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2014, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/educ.2014.0128
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMS 2014 c© 2014 INFORMS | isbn 978-0-9843378-5-9

http://dx.doi.org/10.1287/educ.2014.0128

Clearing the Jungle of Stochastic Optimization

Warren B. Powell
Department of Operations Research and Financial Engineering, Princeton University, Princeton,
New Jersey 08544, powell@princeton.edu

Abstract Whereas deterministic optimization enjoys an almost universally accepted canonical
form, stochastic optimization is a jungle of competing notational systems and algorithmic
strategies. This is especially problematic in the context of sequential (multistage)
stochastic optimization problems, which is the focus of our presentation. In this
article, we place a variety of competing strategies into a common framework, which
makes it easier to see the close relationship between communities such as stochastic
programming, (approximate) dynamic programming, simulation, and stochastic search.
What have previously been viewed as competing approaches (e.g., simulation versus
optimization, stochastic programming versus dynamic programming) can be reduced to
four fundamental classes of policies that are evaluated in a simulation-based setting we
call the base model. The result is a single coherent framework that encompasses all of
these methods, which can often be combined to create powerful hybrid policies to
address complex problems.

Keywords stochastic optimization; stochastic programming; approximate dynamic programming;
reinforcement learning

1. Introduction

Arguably one of the most familiar pieces of mathematics in operations research (and certainly
in optimization) is the linear program, almost always written in its canonical form (see, e.g.,
Vanderbei [66])

min
x

cx (1)

subject to Ax= b, (2)

x≥ 0. (3)

Often we are solving problems over time (the focus of this paper). If our problem is
deterministic, we would rewrite (1)–(3) as

min
x0,...,xT

T∑
t=0

ctxt (4)

subject to A0x0 = b0, (5)

Atxt−Bt−1xt−1 = bt, t= 1, . . . , T, (6)

xt ≥ 0, t= 0, . . . , T. (7)

First introduced by Kantorovich in 1939 and then by Koopmans, linear programming was
made famous by Dantzig with the introduction of the simplex method (a nice review of the
history is given in Dorfman [18]), which transformed Equations (1)–(3) (or (4)–(7)) from a
mathematical statement to a powerful tool for solving a wide range of problems. Although
Dantzig is most often credited with inventing the simplex method, the canonical form of a

109

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

powell@princeton.edu

Powell: Clearing the Jungle of Stochastic Optimization
110 Tutorials in Operations Research, c© 2014 INFORMS

linear program is widely used (especially for integer programs) even when the simplex method
is not used. The language of Equations (1)–(3) is spoken around the world, by academics and
industrial practitioners alike.

Now consider what happens when we introduce a random variable, especially for multiperiod
problems that require solving a sequence of decision problems interspersed with the revelation
of new information. Suddenly, the academic community starts speaking a dozen languages,
which can quickly become arcane. It is hard to read more than a handful of papers without
running into terms such as admissible policies, Ft-measurability, sigma-algebras, and filtrations.
Not familiar with these terms? Pity you. You may not have what it takes to work in the
rarefied world of stochastic optimization.

But wait . . .we all seem to make decisions over time, every day, in the presence of all sorts
of uncertainties. Think about the last time you took cash out of an ATM machine, chose a
path through a set of city streets, made an investment, or tried a new restaurant. Companies
invest in new projects, design products, and set pricing strategies. The health community runs
tests and prescribes medications, and scientists around the world design and run experiments
to make new discoveries. All of these are stochastic optimization problems. If this is something
we all do, all the time, why is stochastic optimization so arcane?

After floundering around the fields of stochastic optimization for 30 years, my conclusion is
that we have evolved solution strategies around specific problem classes, with vocabulary
and notation that often disguise common themes. These solution strategies evolve within
communities with names such as dynamic programming, stochastic programming, decision
theory, stochastic search, simulation optimization, stochastic control, approximate dynamic
programming, and reinforcement learning. Although these communities generally coexist fairly
peacefully, there are ongoing debates between the use of simulation versus optimization, or
stochastic programming versus dynamic programming. A helpful referee for a recent paper
(Powell et al. [44]) offered the following advice:

One of the main contributions of the paper is the demonstration of a policy-based modeling
framework for transportation problems with uncertainty. However, it could be argued that a
richer modeling framework already exists (multi-stage stochastic programming) that does not
require approximating the decision space with policies.

This quote highlights one of the more contentious debates in stochastic optimization within
the operations research community: stochastic programming or dynamic programming? It is
well known, of course, that dynamic programming suffers from the curse of dimensionality, so
there is no need to learn this field if you want to work on real problems. Even I concluded this
in the 1980s while looking for methods to solve stochastic fleet management problems. But 20
years later, I finally cracked these problems with successful systems that are planning driver
fleets for one of the largest truckload carriers in the country (Simão et al. [59]) and planning
locomotives at one of the largest railroads in the country (Bouzaiene-Ayari et al. [13]). The
same algorithmic strategy was used to solve a stochastic energy investment problem in hourly
increments over 20 years with 175,000 time periods (see Powell et al. [45]). How were these
ultra high-dimensional stochastic optimization problems solved? They were solved by dynamic
programming. However, an answer such as this perpetuates fundamental misconceptions
about stochastic programming and dynamic programming.

As a hint to where this discussion is going, by the end of this tutorial I will have made the
following points:

• A dynamic program is a sequential (and for our purposes, stochastic) decision problem.
Bellman’s optimality equation is not a dynamic program; it is (a) a way of characterizing an
optimal policy and (b) an algorithmic strategy for certain classes of dynamic programs.
• A stochastic program (for multistage problems) is, with some exceptions, a look-ahead

policy that involves solving a look-ahead model (which is itself a dynamic program) for
solving a larger dynamic program. See §5.6 for a discussion of an exception.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 111

• The optimal solution of a multistage stochastic program is (with rare exceptions) not an
optimal policy. A bound on a (multistage) stochastic program is not a bound on the quality of
the policy (again, with rare exceptions—see §5.6).
• All properly modeled dynamic programs are Markovian. So-called history-dependent

problems are simply dynamic programs with an incomplete state variable. If your system is
not Markovian, you have not properly modeled the state variable.
• With deterministic problems, we are looking for an optimal decision (or vector of

decisions). With (multistage) stochastic optimization problems, we are looking for optimal
functions (known as policies).
• In my experience, every (multistage) stochastic optimization problem can be solved using

one of four classes of policies (or hybrids formed from combinations of these four fundamental
classes). However, it is quite rare to actually find an optimal policy.

In the process of making these points, I will bring all the fields of stochastic optimization
together under a single umbrella, which I suggest should be called computational stochastic
optimization.

2. Modeling a Sequential Stochastic Optimization Problem

For many years, I was jealous of my colleagues working on deterministic integer programming
problems who would present a model (difficult, but doable) and then focus on the challenging
problem of designing efficient, high-quality algorithms. I was working on large-scale stochastic
optimization problems in transportation, but I did not enjoy the same type of roadmap to
follow when writing down a model.

Several styles have evolved to model a stochastic optimization problem (keep in mind our
focus on multiperiod, sequential problems). Below, we briefly describe two classical and
widely used modeling styles, drawn from the fields of dynamic programming and stochastic
programming. However, we are going to argue that these are not true models, but rather are
closer to algorithms (or more precisely, policies). We follow this discussion with a presentation
of what we feel is the correct way to model a sequential decision process (that is, a dynamic
program), using a format that is actually quite familiar in control theory.

2.1. A Dynamic Programming Model

If the idea is to solve a problem with dynamic programming, many authors start by writing
down the canonical form of Bellman’s equation:

Vt(St) = min
a∈A

(
C(St, a) + γ

∑
s′∈S

p(s′ | St, a)Vt+1(s′)

)
, (8)

where

St = the state at time t,
a= the (typically discrete) action in set A,

C(St, a) = the cost of being in state St and taking action a,
γ = fixed discount factor,

p(s′ | s, a) = the probability of transitioning to state St+1 = s′ if we are in state St = s and
take action a,

Vt(s) = the value of being in state St = s at time t and following the optimal policy from
t onward.

This is the format introduced by Bellman [6] and popularized by many authors (such as
Puterman [46], the last of a long line of books on Markov decision processes). The format
is elegant and has enabled a rich theoretical tradition. A well-known concept in dynamic

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
112 Tutorials in Operations Research, c© 2014 INFORMS

programming is that of a policy that is typically denoted π, where π(s) gives the action that
should be taken when we are in state s. The policy (at time t) might be computed using

π(s) = arg min
a∈A

(
C(s, a) + γ

∑
s′∈S

p(s′ | s, a)Vt+1(s′)

)
. (9)

Here, we are using the standard notation π(s) for policy, where Equation (9) would produce
the optimal policy (if we could compute it). The most difficult challenge with Markov decision
processes is that researchers often assume that states are discrete and that value functions
and policies use lookup table representations. This sharply limits its applicability to relatively
small problems. Below, we modify this notation so that we use “π” in a more practical way.

2.2. A Stochastic Programming “Model”

The stochastic programming community often models a stochastic programming model as
follows:

min
xt, (xt′ (ω), t<t′≤t+H),∀ω∈Ωt

(
ctxt +

∑
ω∈Ωt

p(ω)

t+H∑
t′=t+1

ct′(ω)xt′(ω)

)
. (10)

Here, ω is called a scenario drawn from a sampled set Ωt generated for the problem we are
solving at time t (many authors prefer “s” for scenario, but ω is widely used and avoids the
conflict with standard notation for state). If we have a random sample, the probability of
scenario ω might be p(ω) = 1/|Ωt|. We make one decision xt for time t, but then we have to
make a decision xt′(ω) for each scenario ω in the future. Note that we are writing the problem
as if we are sitting at time t, to be consistent with our dynamic program above.

The constraints are tricky to write out. We start with the time t constraints, which we
might write as

Atxt = bt, (11)

xt ≥ 0. (12)

We then have to write out constraints for time periods t′ > t, which have to be written for
each scenario ω. These might be written as

At′(ω)xt′(ω)−Bt′−1(ω)xt′−1(ω) = bt′(ω) ∀ω ∈Ωt, (13)

xt′(ω)≥ 0 ∀ω ∈Ωt. (14)

Note that we require that xt = xt(ω), a condition that is often imposed as a nonanticipativity
constraint.

Although this format is by far the most common, it is important to note that we have
modeled the problem as if we make a single decision at time t (represented by xt), then see a
scenario ω that describes all the random information over the planning horizon t+ 1, . . . , t+H .
Once this information is revealed, we then choose xt+1, . . . , xt+H . In reality, we choose xt,
then see the information Wt+1, then we would choose xt+1, after which we see Wt+2, and
so on. The model given by Equations (10)–(14) is known as a two-stage approximation;
it is widely used simply because the multistage version is completely intractable for most
applications (even when we use Monte Carlo sampling). In a nutshell, scenario trees have their
own curse of dimensionality, which is actually worse than the one suffered by traditional
dynamic programs because the entire history is captured.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 113

2.3. The Five Elements of a Sequential Decision Problem

What is known as a “dynamic programming model” (Equation (8)) or the “stochastic
programming model” (Equations (10)–(14)) is not actually a model; they are actually
classes of policies for solving dynamic programs. Bellman’s equations, in particular, are like
complementary slackness conditions for a linear program. It is not a model, but rather is
similar to the optimality conditions for a dynamic program. Clearly, we need a canonical
model for sequential (multistage) stochastic decision problems that parallels our deterministic
optimization model given by (4)–(7). This sequential decision problem is, in fact, a dynamic
program, which is a problem that we want to solve by finding the best policy.

There are five fundamental elements to any sequential stochastic optimization problem:

• State St. This represents what we know (more precisely, what we need to know) at time
t before we make a decision (more on this below).
• Actions. Depending on the community, these might be discrete actions a, continuous

controls u, or decisions x (which are typically vectors, and might be continuous, integer or a
mixture). Later, we defer to the choice of how a decision is made, but we assume that we will
design a policy π. Dynamic programmers will write a policy as π(s) returning an action a (or
u or x), but this leaves open the question of what π(s) looks like computationally. For this
reason, we adopt a different notation. If our decision is action at, we designate the policy
as the function Aπt (St) (or Aπ(St) if our policy is stationary). If we are using decision xt, we
use the function Xπ

t (St). We assume that our policy produces feasible actions (say, xt ∈Xt),
where the feasible region Xt might be a system of linear equations that depends on the
state St.
• Exogenous information Wt. Starting at time 0, we observe exogenous information (prices,

demands, equipment breakdowns) as the sequence W1,W2, We use the convention that
any variable indexed by t is known at time t. This means that states, actions (decisions), and
information evolve as follows:

(S0, x0,W1, S1, x1,W2, . . . , St, xt,Wt+1, . . . , ST).

An important concept is the post-decision state, which we write as Sxt (or Sat if we are using
action a), which is the information in the system immediately after we make a decision (see
Powell [42, Chap. 4] for a thorough discussion of post-decision state variables). Introducing
the post-decision state in our sequence gives us

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 ,W2, . . . , St, xt, S

x
t ,Wt+1, . . . , ST).

If the information process evolves exogenously, independently of current states and actions
(true for many, but not all, problems), it is convenient to let ω be a sample realization of the
random variables W1,W2, . . . ,WT . We then let Ω be the set of all possible realizations. For
some models, it is useful to represent the history of the process ht at time t as

ht = (W1, . . . ,Wt). (15)

To allow for the possibility that states and/or actions do affect the information process, some
will model ω as the sequence of states and actions (referred to as the induced stochastic
process in Puterman [46]), or the sequence comprising the initial state, followed by all xt′ and
Wt′ for t′ = 1, . . . , t. Our presentation assumes the information process is purely exogenous, so
we use the representation of history in (15).
• The transition function. We write this as St+1 = SM (St, xt,Wt+1), where SM (·) has

been referred to as the system model, plant model, transfer function, or just model, but we
refer to it as the transition function, consisting of the equations that describe the evolution of
the system from t to t+ 1. The transition function may include (controllable) systems of
linear equations such as those shown in Equation (6). However, it may also represent the

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
114 Tutorials in Operations Research, c© 2014 INFORMS

exogenous evolution of prices, weather, and customer demands. For example, let pt be the
price of electricity, and let p̂t+1 be the exogenous change in the price between t and t+ 1 (p̂t
would be an element of Wt); we could write

pt+1 = pt + p̂t+1,

or, if we want p̂t+1 to be the relative change, we might write

pt+1 = pt(1 + p̂t+1).

This would be an example of a transition function for an exogenous information process such
as prices.
• The objective function. We assume we are given a cost/reward/utility function that we

refer to generically as the contribution function, which may depend on the state St and the
action xt, so we write it as C(St, xt). In some settings, it also depends on the new information
Wt+1, in which case we would write it as C(St, xt,Wt+1), which means it is random at time t.
The engineering controls community and the computer science community often deal with
“model-free” problems where the transition function is unknown and Wt+1 is not observable,
but where the cost depends on the downstream state St+1, in which case the contribution
would be written C(St, xt, St+1), which is also random at time t.

The objective requires finding the policy that minimizes expected costs, which is written

min
π∈Π

Eπ
T∑
t=0

C(St,X
π
t (St)), (16)

where St+1 = SM (St, xt,Wt+1), and where the expectation is over all possible sequences
W1,W2, . . . ,WT , which may depend on the actions taken. The notation Eπ allows for the
possibility that the exogenous information might depend on prior actions (something that is
not allowed in traditional stochastic programming models). The goal here is to find the best
policy, which means that we are looking for the best function for making a decision.

This leaves open the computational question: How in the world do we search over some
abstract space of policies? Answering this question is at the heart of this chapter. We are
going to argue that researchers using different approaches (dynamic programming, stochastic
programming, simulation) get around this problem by adopting a specific class of policies.

There is growing interest in replacing the expectation with various risk measures, which
introduces the issue of nonadditivity (see Ruszczyński [49] and Shapiro et al. [57] and for
thorough discussions). For example, we might replace (16) with

min
π∈Π

Qα

T∑
t=0

C(St,X
π
t (St)), (17)

where Qα(W) is the α-quantile of the random variable W (feel free to substitute your favorite
risk measure here; see Rockafellar and Uryasev [47]). Alternatively, we might use a robust
objective that uses

min
π∈Π

max
W∈W

T∑
t=0

C(St,X
π
t (St)), (18)

where the maximum over W ∈W refers to a search over random variables within an uncertainty
set W (Bandi and Bertsimas [2]) that defines a set of “worst-case” values. We might replace
the set W ∈W with ω ∈Ω to be consistent with our notation. See Beyer and Sendhoff [9] and
Ben-Tal et al. [7] for further discussions of robust optimization.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 115

It is useful to stop and compare our stochastic model with our deterministic model, which
we gave previously as (4)–(7). Our stochastic objective function, given by Equation (16),
should be compared to its deterministic counterpart, Equation (4). The linking Equation (6)
can be written as

Atxt =Rt, (19)

Rt = bt +Bt−1xt−1. (20)

If we let St =Rt, we see that Equation (6), in the form of Equations (19) and (20), represents
the transition function St = SM (St−1, xt−1, ·). Obviously, there is no deterministic counterpart
to the exogenous information process.

This representation brings out the fundamental distinction between deterministic and
stochastic optimization (for sequential decision problems). In deterministic optimization, we
are looking for the best decisions (see (4)). In stochastic optimization, we are looking for
the best policy (see (16)), which is the same as searching over a class of functions. The
operations research community is quite skilled at solving for high-dimensional vectors of
decision variables, but searching over functions is a less familiar concept. This is going to need
some work.

We would like to refer to our representation of states, actions, exogenous information,
transition function, and objective function as “the model.” However, in the discussion below
we are going to introduce the concept of the look-ahead model, which is also widely referred
to in the literature as “the model.” For this reason, we need to make a distinction between
the problem we are trying to solve (the model) and any approximations that we may use
for the sole purpose of making a decision (“the policy”), which often involves solving an
approximate model.

For this reason, we suggest referring to our representation of the problem as the base model,
and we propose to use the objective function (16) (or (17) or (18)) as the expression that
represents our base model, since all the other elements of the model are implied by this single
equation. The base model, of course, represents an approximation of some real (“true”)
problem, but these approximations are the purview of the modeler. Our job, as algorithms
specialists, is to do the best we can to solve the base model, producing the highest-quality
policy that solves (16) (or (17) or (18)). It is not our job to question simplifications made in
the formulation of the base model, but it is our responsibility to challenge approximations
that might affect the performance of policies when evaluated in terms of the objective function
for the base model (whatever we choose that to be).

This style of modeling problems has not been used in operations research (or computer
science) but is widely used in the engineering controls community (but even popular control
theory texts such as Lewis et al. [33] do not articulate the elements of a model as we have).
The Markov decision process community prefers to assume that the one-step transition matrix
(used in Equation (8)) is given (see Puterman [46], for example). Although it can, in principle,
be computed from the transition function and distributional information on the exogenous
information variable Wt, it is simply not computable for the vast majority of applications.
The transition function is widely used in stochastic programming, but without using the term
or the notation (for those familiar with stochastic programming, this is how scenario trees are
built).

The two dimensions of our modeling framework that are least understood are the state
variable and the concept of searching over policies in the objective function. For this reason,
we deal with these topics in more depth.

3. What Is a State Variable?

State variables appear to be a concept that everyone understands but cannot provide a
definition. Bellman [6, p. 81] offers that “. . .we have a physical system characterized at any

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
116 Tutorials in Operations Research, c© 2014 INFORMS

Figure 1. (a) Deterministic network for a traveler moving from node 1 to node 11 with known arc
costs. (b) Stochastic network, where arc costs are revealed as the traveler arrives to a node.

1074

3 6

5

1

9.2
3.6 13.5

12.7

15.9

8.1

12.6

17.4
(a)

(b)

15.9

8.4

4.5 2.3

11

5.7

9.6

8.9 7.3

16.5
4 7

3 6 9

52 8

5.7

20.2
10

8

10.2

11.8

9.7

2

1 119

stage by a small set of parameters, the state variables.” Puterman [46] introduces state
variables as follows: “At each decision epoch, the system occupies a state.” (Italics are in
the original manuscripts.) Wikipedia1 (in 2013) suggests, “A state variable is one of the
set of variables that are used to describe the mathematical ‘state’ of a dynamical system.”
(Using the word you are trying to define in the definition is a red flag that you do not have a
definition.) Other top experts have suggested that the state variable cannot be defined, or
they say they have simply given up. I think we can do better.

The graphs in Figure 1 help to illustrate the definition of a state variable. In panel (a), we
show a deterministic graph where a traveler has to get from node 1 to node 11. The traveler is
currently at node 6. Let Nt be the node number of the traveler after t link traversals (t= 2 in
the example). There seems to be a consensus that the correct answer is

St =Nt = 6.

Note that we exclude from our state variable all data that are not changing (the arc costs are
all assumed to be deterministic). Some will insist that the state variable should include the
history (that is, nodes 1 and 3), but for this model, this information is not relevant.

Next assume that we have a stochastic graph, where the probability distribution of the cost
of traversing each arc is known, as depicted in Figure 1, panel (b). However, assume that if
the traveler arrives to node i, he is able to see the actual cost ĉij for each link (i, j) out of
node i. Again, there seems to be broad agreement that the correct answer is

St = (Nt, (ĉNt,·)) = (6, (10.2,9.7,11.8)),

where (ĉNt,·) represents the costs on all the links out of node Nt. Although our first example
illustrates a physical state (the location of our traveler), this second example illustrates that
the state also includes the state of information (the costs out of the node).

1 Wikipedia. Accessed July 20, 2014, http://en.wikipedia.org/wiki/State Variable.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 117

For our final example, we introduce the twist that there are left-hand turn penalties for our
stochastic network in Figure 1, panel (b). Now what is the state variable? In the previous
example, we saw that we need to include all the information we need to make a decision. In
this example, we need to know the previous node, that is, Nt−1. With this information, we
can tell if the link from our current node Nt = 6 to node 5 is a left-hand turn or not. So, our
state variable in this setting would be

St = (Nt, (ĉNt,·),Nt−1) = (6, (10.2,9.7,11.8),3).

If we need Nt and Nt−1, what about the other nodes we have visited? For the same reason
that we did not include the complete path in our first example, we do not need node Nt−2

(and earlier) in this example simply because they are not needed. This situation would change
if we introduced a requirement that our path contain no cycles, in which case we would have
to retain the entire path as we progress.

There is an astonishing lack of agreement in the definition of a state variable. This question
was posed to a workshop of attendees from computer science and operations research. Two
themes emerged from the responses. The first (popular with the computer scientists) was that
a state variable should be a sufficient statistic, a term drawn from the statistics community
(which has its own definition for this term). The second was that a state variable should be
parsimonious. The concepts of sufficiency and parsimony (said differently, necessary and
sufficient) are completely consistent with the state descriptions given above.

I would conclude from all of these discussions that a state variable should include all the
information we need, but only the information we need. But to do what? In Powell [42],
I offer the following definition.

Definition 3.1. A state variable is the minimally dimensioned function of history that is
necessary and sufficient to compute the decision function, the transition function, and the
contribution function.

It is useful to divide state variables into three broad classes:

• Physical (or resource state) Rt. We typically use “resource state” to describe the status
of people, equipment, products, money, and energy (how much and where). We might use the
term “physical state” to describe the attributes of a physical resource (e.g., the location and
velocity of an aircraft, the position of the arms of a robot, the temperature of a chemical).
• Information state It. This includes other information such as information about weather,

the costs out of a node, or the elapsed time since the last customer arrived to a queue.
• The knowledge (or belief) state Kt. This comes in the form of a series of distributions

about unobservable parameters. For example, this might be the demand for a product at
a particular price or the travel time on a path through an unfamiliar city. The knowledge
state arises in communities that use names such as partially observable Markov decision
processes, multiarmed bandit problems (Gittins et al. [21]), and optimal learning (Powell and
Ryzhov [43]). We only include these distributions in our state variable if they are changing as we
collect more information (hence the reason we excluded them in our network example above).

Mathematically, the information state It should include information about resources Rt, and
the knowledge state Kt should include everything, as illustrated in Figure 2. However, whether
a piece of data is classified as part of the physical/resource state or the information state is not
relevant. We make the distinction only because it seems to help people think about a problem.
For example, many people fall in the trap of equating “state” with “physical state.” We find it
is useful to make a distinction between data (which we list under physical state or information
state) and probability distributions, which we categorize under knowledge state.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
118 Tutorials in Operations Research, c© 2014 INFORMS

Figure 2. Illustration of the growing sets of state variables, where the information state includes
physical state variables while the knowledge state includes everything.

Rt
Resource/physical state

It
Information state

Kt
Knowledge/belief state

Another way to envision the state variable is summing up the contributions while following
some policy, which we might write as

Fπ0 (S0) = E
{ T∑
t′=0

C(St′ ,X
π
t′(St′))

∣∣∣∣ S0

}
,

which is computed given our initial state S0. We assume states are related by St+1 =
SM (St,X

π
t (St),Wt+1), and the sequence W1,W2, . . . ,WT follows a sample path ω ∈Ω. Now

assume we want to do the same computation starting at time t, which we would write as

Fπt (St) = E
{ T∑
t′=t

C(St′ ,X
π
t′(St′))

∣∣∣∣ St}. (21)

(Note to probabilists: throughout our presentation, we use the convention that the conditional
expectation E{· | St} means the expectation over the probability space (Ωt,Ft,Pt), where Ωt
is the set of outcomes constructed given we are in a known state St (which is not random
at time t), and where Ft is the sigma-algebra on Ωt, and Pt is the conditional probability
measure given that we are in state St.)

We can, of course, write this as

Fπt (St) = C(St,X
π
t (St)) + E

{ T∑
t′=t+1

C(St′ ,X
π
t′(St′))

∣∣∣∣ St} (22)

= C(St,X
π
t (St)) + E{Fπt+1(St+1) | St}. (23)

Now it is apparent that St (or in the case of (23), St+1) has to carry all the information
needed to compute Ft(St) (or Ft+1(St+1)). We have to include in St all the information
needed to compute the policy Xπ

t′(St′), the contribution function C(St′ ,X
π
t′(St′)), and the

transition function SM (St′ ,X
π
t′(St′),Wt′+1) for all t′ = t, . . . , T . Not surprisingly, we see no

need to include any information in St that is not needed to compute any of these functions.
Although the principles behind this definition seem to have broad support, they carry

implications that run against conventional thinking in the operations research community.
First, there is no such thing as a non-Markovian system, because any properly modeled
state variable includes all the information needed to model the forward trajectory of the
system (yes, even G/G/1 queues are Markovian when properly modeled). (Systems with
unobservable states are more subtle—our experience is that these can be handled by using
probability distributions to represent what we know about an unobservable state.) Second,
the oft-repeated statement that “any system can be made Markovian by adding enough
variables” needs to be replaced with the response “if your system is not Markovian, you do
not have a complete state variable, and if you can add information to make the system
Markovian, then you should!”

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 119

Finally, there is a surprisingly widespread tendency to assume that state variables have to
be discrete, and if they are multidimensional, the curse of dimensionality kicks in, which
means they are not useful. We note that (1) state variables do not have to be discrete, (2) it
is not necessary to use lookup representations for functions, and most important (3) it is
important to separate the process of modeling a problem from the design of a strategy for
identifying an effective policy. Model your problem first with a generic policy Xπ

t (St), and
then go looking for a policy (as we do below).

It is time to teach our students what a state variable is, so that they learn how to properly
model dynamic systems.

4. Designing Policies

Far more difficult than understanding a state variable is understanding what in the world
we mean by “searching for a policy.” This is the type of statement that is easy to say
mathematically but seems on the surface to have no basis in practical computation. Perhaps
this was the reaction to Kantorovich’s statement of a linear program, and the reason why
linear programming became so exciting after Dantzig introduced the simplex algorithm.
Dantzig made Kantorovich’s linear program meaningful.

First, we need a definition of a policy.

Definition 4.1. A policy is a mapping from a state to a feasible action. Any mapping.

Mathematically, we can think of an arbitrarily complex array of functions, but no one
knows how to calculate these functions. Imagine, for example, that our action is a vector x
that might include thousands of continuous and integer variables that have to satisfy a large
set of linear constraints. How are we going to find a function that accomplishes this? This
section is devoted to this question.

4.1. The Four Classes of Policies

I would argue that rather than devise some dramatic breakthrough in functional approximations,
all we have to do is to look at the wide array of tools that have already been used in different
applications. In my own tour through the jungle of stochastic optimization, I have found four
fundamental classes of policies, which I call PFAs, CFAs, VFAs, and look-ahead policies.

• Policy function approximations (PFAs). A policy function approximation represents
some analytic function that does not involve solving an optimization problem. A PFA might
be a lookup table (“turn left at a particular intersection” or “move the knight when the
chessboard is in a particular state”), a rule (“sell if the price goes above θ”), or a parametric
model such as

Xπ(St | θ) = θ0 + θ1St + θ2S
2
t . (24)

Another example of a PFA is an (s,S) inventory model: order product when the inventory is
below s to bring it up to S. The engineering controls community often uses neural networks
to represent a policy. Many simulation models contain imbedded decisions (e.g., how to route
a job in a job shop) that are governed by simple rules (we would call these policy function
approximations).
• Optimizing a cost function approximation (CFA). There are problems where a simple

myopic policy can produce good (in rare cases optimal) results. A myopic policy would
be written

Xπ
t (St | θ) = arg min

x∈Xt

C(St, x).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
120 Tutorials in Operations Research, c© 2014 INFORMS

Not surprisingly, this would rarely work well in practice. However, there are problems where a
slightly modified cost function might work quite well. One class of approximations looks like

Xπ
t (St | θ) = arg min

x∈Xt

(
C(St, x) +

∑
f∈F

θfφf (St, x)

)
. (25)

Here, (φf (St, x))f∈F is a set of basis functions (as they are known in the approximate dynamic
programming community) that might be of the form Stx, Stx

2, x, x2, which serves as a type
of correction term. However, there are other problems where we make direct changes to the
cost function itself, or perhaps the constraints (e.g., imposing a minimum inventory level). We
can represent this class of policies more broadly by writing

Xπ
t (St | θ) = arg min

x∈Xt

C̄π(St, x | θ), (26)

where C̄πt (St, x | θ) is some sort of parametric approximation. Here, we would let π carry
the information about the structure of the approximation (such as the basis functions in
Equation (25)), and we let θ capture all tunable parameters.

We have written the CFA in terms of costs over a single time period, but as we point out
below, it is very common to use hybrids, and we may combine the concept of a CFA with a
look-ahead policy.
• Policies that depend on a value function approximation (VFA). These are the policies

most often associated with dynamic programming and are written as

Xπ
t (St | θ) = arg min

x∈Xt

(
C(St, x) + E{V̄t+1(St+1 | θ) | St}

)
, (27)

where St+1 = SM (St, xt,Wt+1). Since expectations can be notoriously hard to compute
(imagine if our random variable Wt has, say, 100 dimensions), we can use the device of the
post-decision state variable (the state immediately after a decision has been made but before
any new information has arrived). Let Sxt be the post-decision state, which means it is a
deterministic function of xt. This allows us to write

Xπ
t (St | θ) = arg min

x∈Xt

(
C(St, x) + V̄t(S

x
t | θ)

)
. (28)

In both (27) and (28), we have to create an approximation of the value function. Again,
we assume that the index π captures the structure of the function, as well as any tunable
parameters represented by θ. For example, a popular approximation is linear regression.
Assume that someone has devised a series of explanatory variables (“basis functions”) φf (Sxt)
for f ∈F . Then we can write

Xπ
t (St | θ) = arg min

x∈Xt

(
C(St, x) +

∑
f∈F

θfφf (Sxt)

)
. (29)

Here, the index π carries the information that we are using a linear architecture for the value
function, the set of basis functions, as well as the coefficients θ used in the linear model. We
note that although (25) and (29) look similar, the mechanisms for fitting the regression
coefficients are completely different, and it is unlikely that we would use the same basis
functions. In (29), we are trying to approximate the future contributions given that we are
in state St; in (25), we are just computing an adjustment term, which is unlikely to bear
any relationship to future contributions (note that in (25), we would not include any basis
functions that are not a function of x).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 121

• Look-ahead policies. The simplest look-ahead policy involves optimizing over a horizon H
deterministically. Let x̃tt′ represent the decision variables (this might be a vector) for time t′

in the look-ahead model that has been triggered at time t. Variables with tildes represent
the look-ahead model, so we do not confuse them with the base model. A deterministic
look-ahead policy might be written

Xπ
t (St | θ) = arg min

x̃tt,...,x̃t,t+H

t+H∑
t′=t

C(S̃tt′ , x̃tt′). (30)

Normally, we optimize over the horizon (t, . . . , t+H) but only implement the first decision,
so Xπ

t (St | θ) = x̃tt. All variables in the look-ahead model are indexed by (tt′), where t
represents when the decision is being made (and therefore its information content), and t′ is
when the decision impacts the physical system. The look-ahead variables (with tildes) may
capture various approximations; for example, our base model may step forward in five-minute
increments, whereas the look-ahead model may uses hourly increments so it is easier to solve.
Here, the parameter θ captures all the parameters that determine the formulation of the
look-ahead model (including choices such as the planning horizon).

We might also use a stochastic look-ahead model

min
x̃tt, (x̃tt′ (ω̃), t<t′≤t+H),∀ ω̃∈Ω̃t

(
c̃ttx̃tt +

∑
ω̃∈Ω̃t

p(ω̃)

t+H∑
t′=t+1

c̃tt′(ω̃)x̃tt′(ω̃)

)
. (31)

In this case, θ captures parameters such as the number of information stages and the
number of samples per stage (this community refers to the elements of Ω̃t as scenarios). An
“information stage” consists of revealing information, followed by making decisions that use
this information. We need to construct a look-ahead stochastic process, captured by the
set Ω̃t, to differentiate stochastic scenarios in the look-ahead model from the sample path
ω ∈Ω that we might be following in the base model (we suggest using “sample path” to
describe the evolution of information in the base model, and “scenario” to represent the
evolution of information in the look-ahead model). The choice of the number of stages and the
construction of the set Ω̃t represent important decisions in the design of the look-ahead model,
which we parameterize by θ.

We note that a stochastic look-ahead model is the strategy favored by the stochastic
programming community. Equation (31) can be described as a direct solution of the look-ahead
model, which is to say that we explicitly optimize over all decisions, for each scenario ω̃ ∈ Ω̃t,
all at the same time. It is also possible to solve the look-ahead model using value functions,
producing a policy that looks like

Xπ
t (St | θ) = arg min

xtt∈Xt

(C(Stt, xtt) + E{Ṽt, t+1(S̃t, t+1) | St}), (32)

where Ṽt, t+1(S̃t, t+1) might be an exact (or nearly exact) estimate of the value of being in
state S̃t, t+1 of the (approximate) look-ahead model. We emphasize that look-ahead models
are almost always approximations of the true model; we might use aggregation, discretization,
and/or Monte Carlo sampling along with a limited horizon to reduce the true model to
something tractable. For sequential convex optimization problems, it is possible to use Benders’
cuts, a strategy that has become known as stochastic dual decomposition programming (SDDP)
(see Pereira and Pinto [39] and Shapiro et al. [58]).

We need to acknowledge that there are some problems where optimal policies can be found:
(s,S) policies are optimal for a special class of inventory problem; myopic policies are optimal
for portfolio problems without transaction costs; exact value functions can be found for
problems with small, discrete action spaces; and there are some problems where a look-ahead

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
122 Tutorials in Operations Research, c© 2014 INFORMS

Figure 3. Approximating convex functions using piecewise linear, separable approximations (a) and
multidimensional Benders’ cuts (b).

(a) (b)

policy is optimal. However, we use the term “function approximation” for three of the four
classes of policies because we feel that the vast majority of real applications will not produce
an optimal policy.

In addition to these four fundamental classes of policies, we can also create hybrids by
mixing and matching. For example, we might use a look-ahead policy with a value function at
the end of the look-ahead horizon. Another powerful strategy is to combine a low-dimensional
policy function approximation (say, “maintain 10 units of type A blood in inventory”) as a
goal in a larger, higher-dimensional optimization problem (see Defourny et al. [17]). Cost
function approximations, which include any modification of costs or constraints to achieve a
more robust policy, are often combined with a look-ahead policy so that uncertainty in
forecasts can be accommodated. For example, we might solve a deterministic approximation of
a multiperiod inventory problem but impose lower bounds on inventories to handle uncertainty.
These lower bounds represent the tunable parameters of the CFA.

4.2. Approximating Functions

Three of our four policies require some sort of functional approximation: policy function
approximations, cost function approximations, and value function approximations. There is a
wide range of methods for approximating functions, although the most popular can be divided
into three classes: lookup tables, parametric, and nonparametric (see Hastie et al. [22] for a
thorough review of statistical learning methods). For example, in the field of Markov decision
processes, the use of policies based on value functions represented by lookup tables is not an
approximation under ideal circumstances. However, since lookup table representations do not
scale, most applications require some sort of parametric model (not necessarily linear). Indeed,
the habit of equating “Markov decision processes” with lookup table representations of value
functions is the reason why so many have dismissed “dynamic programming” because of the
curse of dimensionality. However, there is absolutely no need to insist on using lookup tables,
and this has made it possible for approximate dynamic programming to produce practical
solutions to some truly large-scale applications (e.g., Bouzaiene-Ayari et al. [13] and Simão
et al. [59]).

An important class of problems in operations research involves convex optimization
models, which frequently arise in the context of resource allocation. Figure 3 illustrates two
(nonparametric) methods for approximating convex functions: piecewise linear, separable
approximations (a) (see Powell [42, Chap. 13]), and multidimensional Benders’ cuts (b) (see
Birge and Louveaux [11] and Shapiro et al. [57]). An extensive literature on exploiting these
approximation methods for resource allocation problems is beyond the scope of our discussion.

4.3. Evaluating a Policy

It would be nice if we could simply compute the objective function in Equation (16), but
situations where we can compute the expectation exactly are quite rare. For this reason, we

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 123

generally depend on using Monte Carlo simulation to get a statistical estimate of the value of
a policy (see Shapiro [56] for a nice introduction to Monte Carlo sampling methods in the
context of stochastic optimization). Let ω represent a sample realization of the sequence
(W1,W2, . . . ,WT). A single simulation of a policy would be written

Fπ(ω) =

T∑
t=0

C(St(ω),Xπ
t (St(ω))).

If T is large enough, we might feel that this is a reasonable estimate of the value of a policy π,
but more often we are going to compute an average using

F̄π =
1

N

N∑
n=0

Fπ(ωn). (33)

If we are simulating a policy Xπ(St) based on value function approximations, we might write
our VFA as

V̄ πt (St | θ) =
∑
f∈F

θfφ
π
f (St).

There are different strategies for estimating the regression coefficients θ. If we are using
adaptive learning (common in approximate dynamic programming), the policy at iteration n
would be given by

Xπ
t (St | θn−1) = arg min

xt

(
C(St, xt) +

∑
f∈F

θn−1
f φf (St)

)
.

Note that during iteration n, we might use estimates θn−1 obtained from iterations n− 1 and
earlier.

Considerable attention has been devoted to the problem of choosing samples carefully.
Römisch and Heitsch [24] describes methods for generating scenario trees focusing on the
construction of look-ahead models. Bayraksan and Morton [4, 5] provide a nice discussion of
assessing solution quality using Monte Carlo methods for stochastic optimization.

4.4. Searching for the Best Policy

We can now put meaning to the statement “search over policies” (or “find the best function”)
implied by the objective function in Equation (16). The label π on our policy Xπ

t (St) carries
two types of information:

Categorical information, which describes the type of policy (PFA, CFA, VFA, and look
ahead), and would also have to specify the specific structure of a function approximation:
lookup table, parametric, or nonparametric (for example). If parametric (which is the most
common), the categorical information would have to describe the particular structure (e.g.,
the set of basis functions in a linear approximation).

Tunable parameters, which we refer to as θ, might be the regression parameters of a linear
model, the planning horizon in a look-ahead policy, and the number of samples in a
scenario tree.

Let p∈P represent a class of policies, and let θ ∈Θp be the set of values that θ can take
when using policy p. So, πp = (p, θ) for p∈P and θ ∈Θp. For a particular class of policies
p∈P , we have to solve a stochastic search problem to find the best θ ∈Θp, which we write as

min
θ∈Θp

F̄π
p

(θ) =
1

N

T∑
t=0

C(St(ω
n),Xπp

t (St(ω
n) | θ)). (34)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
124 Tutorials in Operations Research, c© 2014 INFORMS

This problem has to be solved for each of a (hopefully small) class of policies P chosen by the
designer.

The literature for solving stochastic search problems is quite deep, spanning stochastic
search (e.g., Chang et al. [15], Spall [60]), stochastic programming (Birge and Louveaux [11],
Shapiro et al. [57]), ranking and selection (Barr and Rizvi [3], Boesel et al. [12]), sample
average approximation (Kleywegt et al. [31]), simulation optimization (Andradóttir and
Prudius [1], Chick and Gans [16], Chick et al. [23], Fu et al. [20], Hong and Nelson [27],
Swisher et al. [62]), and optimal learning (see the review of many techniques in Powell and
Ryzhov [43]). Algorithms vary depending on the answers to the following questions (to name
a few):

• Is the objective function convex in θ?
• Can we compute derivatives (for continuous, tunable parameters)?
• Are we simulating policies in the computer (off-line), or are we observing policies as they

are being used in the field (online)?
• Can the objective function be quickly computed, or is it time consuming and/or expensive?
• Is the dimensionality of θ small (three or less) or larger?

5. Look-ahead Policies

By far the most complex policy to model is a look-ahead policy, which solves the original
model by building a series of (typically) approximate models known as look-ahead models.
A look-ahead model to be solved at time t is typically formulated over a horizon t, . . . , t+H,
and is used to determine what to do at time t, given by xt. Once we implement xt, we observe
the transition from state St to St+1 and repeat the process. Look-ahead policies are often
referred to as rolling/receding horizon procedures, or model predictive control. It is not
unusual for authors to formulate a look-ahead model without actually writing down the base
model, which is often referred to as a “simulator.”

But not everyone is using a look-ahead model, which means it is not always clear whether
the authors are solving the base model or a look-ahead model. Imagine that we are trying to
model a business problem over a horizon spanning time periods 0 up to 100. Is the intent
to determine what to do at time 0? Or are we modeling a system over a planning horizon to
assess the impact of various parameters and business rules? If we have a business simulator,
then we will need to make decisions at every time t within our simulation horizon t= 0, . . . , T ,
which we typically need to repeat for different sample outcomes. In a look-ahead model, we
also need to make decisions over our planning horizon t′ = t, . . . , t+H, but the decisions we
make at time periods t′ > t are purely for the purpose of making a better decision at time t.

5.1. An Optimal Policy Using the Base Model

We begin our discussion by noting that we can characterize an optimal policy using the
function

X∗t (St) = arg min
xt

(
C(St, xt) + min

π∈Π
E
{ T∑
t′=t+1

C(St′ ,X
π
t′(St′))

∣∣∣∣ St}), (35)

where St+1 = SM (St, xt,Wt+1). What we are doing is finding the best action now given the
impact of that action on the rest of the horizon using the base model. Note that we did not
say that we could compute this policy, but it is a starting point.

The imbedded optimization over policies can look mysterious, so many use an equivalent
formulation, which is written

X∗t (St) = arg min
xt

(
C(St, xt) + min

(xt′ (ω), t<t′≤T),∀ω∈Ωt

E
{ T∑
t′=t+1

C(St′ , xt′(ω))

∣∣∣∣ St}). (36)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 125

Instead of writing a policy Xπ
t′(St′), we are writing xt′(ω), which means that the decision at

time t′ depends on the sample path that we are following. The problem is that when we
specify ω, it means we are identifying the entire sample path, from t= 0 up to t= T , which is
like being able to know the future.

To make this valid, we have to impose a condition that means that xt′(ω) cannot “see” into
the future (a condition that is satisfied when we use our policy Xπ

t′(St′)). One way to do
this is to write xt′(ht′), expressing the dependence of xt′ on the history of the information
process (see Equation (15)). The problem is that since ht′ is typically continuous (and
multidimensional), xt′(ht′) is effectively a continuous function that is the decision we would
make if our history is ht′ (in other words, a policy); it is pretty to write, but hard to compute.

Both (35) and (36) are look-ahead policies that use the base model. Both require computing
not only the decision that determines what we do now (at time t) but also policies for every
time period in the future. This is equivalent to computing decisions for every state and for
every time period in the future. The problem, of course, is that we usually cannot compute
any of these policies, leading us to consider approximate look-ahead models.

5.2. Building an Approximate Look-ahead Model

To overcome the complexity of solving the exact model, we create what is called a look-ahead
model, which is an approximation of the base model, which is easier to solve. To distinguish
our look-ahead model from the base model, we are going to put tildes on all the variables. In
addition, we use two time indices. Thus, the decision x̃tt′ is a decision determined while
solving the look-ahead model at time t, with a decision that will be implemented at time t′

within the look-ahead model.
There are several strategies that are typically used to simplify look-ahead models:

Limiting the horizon. We may reduce the horizon from (t,T) to (t, t+H), where H is a
suitable short horizon that is chosen to capture important behaviors. For example, we
might want to model water reservoir management over a 10-year period, but a look-ahead
policy that extends one year might be enough to produce high-quality decisions. We can
then simulate our policy to produce forecasts of flows over all 10 years.

Stage aggregation. A stage represents the process of revealing information followed by the
need to make a decision. A common approximation is a two-stage formulation (see Figure 4,
panel (a)), where we make a decision xt, then observe all future events (until t+H), and
then make all remaining decisions. A more accurate formulation is a multistage model,
depicted in Figure 4, panel (b), but these can be computationally very expensive.

Outcome aggregation or sampling. Instead of using the full set of outcomes Ω (which is often
infinite), we can use Monte Carlo sampling to choose a small set of possible outcomes
that start at time t (assuming we are in state Snt during the nth simulation through the
horizon) through the end of our horizon t+H . We refer to this as Ω̃nt to capture that it is
constructed for the decision problem at time t while in state Snt . The simplest model in this
class is a deterministic look ahead, which uses a single point estimate.

Discretization. Time, states, and decisions may all be discretized in a way that makes the
resulting model computationally tractable. In some cases, this may result in a Markov
decision process that may be solved exactly using backward dynamic programming (see
Puterman [46]). Because the discretization generally depends on the current state St, this
model will have to be solved all over again after we make the transition from t to t+ 1.

Dimensionality reduction. We may ignore some variables in our look-ahead model as a form
of simplification. For example, a forecast of weather or future prices can add a number
of dimensions to the state variable. Whereas we have to track these in the base model
(including the evolution of these forecasts), we can hold them fixed in the look-ahead model
and then ignore them in the state variable (these become latent variables).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
126 Tutorials in Operations Research, c© 2014 INFORMS

Figure 4. Illustration of (a) a two-stage scenario tree and (b) a multistage scenario tree.

x0 W1 x1, x2, ..., xT

�N

�1

�2

(a) (b)

5.3. A Deterministic Look-ahead Model

A simple deterministic look-ahead model simply uses point forecasts of all exogenous variables,
giving us

XLA−D,n
t (St) = arg min

xt

(
C(St, xt) +

t+H∑
t′=t+1

C(S̃tt′ , x̃tt′)

)
, (37)

where S̃t, t′+1 = SM (S̃tt′ , x̃tt′ , W̄tt′), and where W̄tt′ = E{Wtt′ | St} is a forecast of Wt′ made
at time t. These models are often referred to as rolling horizon procedures or model predictive
control, but these terms can also be applied to stochastic approximations of the look-ahead
model. However, deterministic approximations are most widely used in practice.

5.4. A Stochastic Look-ahead Model

A stochastic look-ahead model can be created using our sampled set of outcomes Ω̃nt , giving
us a stochastic look-ahead policy

XLA−SP,n
t (Snt)

= arg min
xt

(
C(Snt , xt) + min

(x̃tt′ (ω̃), t<t′≤t+H),∀ ω̃∈Ω̃n
t

Ẽ
n
{ t+H∑
t′=t+1

C(S̃tt′ , x̃tt′(ω̃))

∣∣∣∣ St}). (38)

When computing this policy, we start in a particular state Snt (in the state space of the base
model), but then step forward in time using

S̃t, t+1 = SM (Snt , xt, W̃t, t+1(ω̃)),

S̃t, t′+1 = SM (S̃tt′ , x̃tt′ , W̃t, t′+1(ω̃)), t′ = t+ 1, . . . , T − 1.

In (38), the expectation Ẽ
n{· | St} is over the sampled outcomes in Ω̃nt , which is constructed

given that we are in state Snt . To help visualize these transitions, it is often the case that we
have a resource variable R̃tt′ = (R̃tt′i)i∈I (e.g., how many units of blood we have on hand of
type i at time t′), where we would typically write the transition as

R̃t, t′+1(ω̃) = Ãtt′ x̃tt′(ω̃) + R̂t, t′+1(ω̃),

where R̂t, t′+1(ω̃) represents a sample realization of blood donations between t′ and t′+ 1 in
our look-ahead model. In addition, we might have one or more information variables Ĩtt′ , such
as temperature (in an energy problem) or a market price. These might evolve according to

Ĩt, t′+1(ω̃) = Ĩtt′(ω̃) + Ît, t′+1(ω̃),

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 127

where Ît, t′+1(ω̃) is a sample realization of the change in our information variables. The
evolution of the information variables is captured in the scenario tree (Figure 4, panel (a)
or (b)), and that of the resource variables is captured in the constraints for x̃tt′ .

Now we have an expression that is computable, although it might be computationally
expensive. Indeed, it is often the case that the optimization problem in (38) is so large that
we have to turn to decomposition methods that solve the problem within a tolerance (see
Birge and Louveaux [11] and Rockafellar and Wets [48]). However, our notation now makes it
clear that we are solving a look-ahead model. Bounds on the performance of a look-ahead
model do not translate to bounds on the performance of the policy in terms of its ability to
minimize the base objective function (16).

An alternative approach is to approximate the future using a value function approximation,
giving us a VFA-based policy that looks like

XVFA, n
t (St) = arg min

xt

(
C(St, xt) + E

{
V̄ n−1
t+1 (St+1) | St, xt

})
, (39)

where

V̄ n−1
t+1 (St+1)≈min

π∈Π
E
{ T∑
t′=t+1

C(St′ ,X
π
t′(St′))

∣∣∣∣ St+1

}
.

Here, we are using some sort of functional approximation V̄ n−1
t+1 (St+1), which has been

estimated using information collected during earlier iterations (that is why it is indexed n− 1).
What is important here is that we are approximating the base model, not the look-ahead
model. If we have access to a convenient post-decision state Sxt , we can drop the expectation
and use

XVFA, n
t (St) = arg min

xt

(
C(St, xt) + V̄ n−1

t (Sxt)
)
, (40)

where the post-decision value function approximation (40) is different than the predecision
value function approximation in (39).

We note that once we have the value function approximations V̄t(St) (or V̄t(S
x
t)) for

t = 0, . . . , T , we have a complete policy for the base model, where we assume that the
approximation V̄t(St) gives us a value for every possible state (which means we have a
decision for every possible state). By contrast, the look-ahead policy XLA−SP,n

t (St) works
only for a particular state St at time t. In the process of solving the stochastic look-ahead
policy, we produce a series of decisions x̃tt′(S̃tt′) that can be interpreted as a policy within
the look-ahead model. But because it is only for a small sample of states S̃tt′ (that is, the
states that appear in the scenario tree), this policy cannot be used again as we step forward
in time. As a result, if we make a decision xt =XLA−SP,n

t (St) and then step forward to
St+1 = SM (St, xt,Wt+1(ω)), we have to solve (38) from scratch.

The need to recompute the look-ahead model is not limited to deterministic approximations
or approximations of stochastic models through scenario trees. We might solve the look-ahead
model using a value function, as we did previously in Equation (32), repeated here for
convenience:

Xπ
t (St) = arg min

xtt∈Xt

(
C(Stt, xtt) + E

{
Ṽt, t+1(S̃t, t+1) | St

})
. (41)

Here, we might assume that Ṽt, t+1(S̃t, t+1) is an exact estimate of the downstream value of
being in state S̃t, t+1 when solving our simplified look-ahead model (that is why we have a
tilde over the V). Because the look-ahead model typically involves information available at
time t, when we make a decision at time t and step forward in time (in the real process), we
generally have to start all over again from scratch. This is not the case when we use a value
function approximation V̄t(St) that is an approximation of the downstream value in the
base model.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
128 Tutorials in Operations Research, c© 2014 INFORMS

Figure 5. Illustration of rolling horizon procedure, using a stochastic model of the future (from
Powell et al. [44]).

The real process The real process

t + 2t + 1t t

. . . .

Fo
re

ca
st

 o
f

th
e

fu
tu

re

Fo
re

ca
st

 o
f

th
e

fu
tu

re

. . . .

t + 2 t + 3t + 1

5.5. Evaluating a Look-ahead Policy

The correct way to evaluate a look-ahead policy (or any policy) is in the context of the
objective function for the base model given in (16). Figure 5 illustrates the process of solving
a stochastic look-ahead model using scenario trees, then stepping forward in time to simulate
the performance of our look-ahead policy. As of this writing, there is a lot of work evaluating
the quality of the solution of a look-ahead model (which can be quite hard to solve) but
very little evaluating the performance of a look-ahead policy in terms of its ability to solve
the base model (see, for example, Bayraksan and Morton [5], Mak et al. [34], Philpott and
Guan [41] and Rockafellar and Wets [48]).

Considerably more attention has been given to this topic in the engineering controls
community under the umbrella of model predictive control, but this work assumes a particular
structure to the problem that generally does not apply in operations research (see Camacho
and Bordons [14] for a good introduction to model predictive control and Lewis et al. [33] for
a modern introduction to approximate dynamic programming and optimal control).

It has been our experience that although many researchers in stochastic programming
understand that a stochastic program should be evaluated in a “simulator,” there is a fairly
widespread lack of appreciation that the simulator is actually a way of approximating the
objective function (16), which is the real problem we are trying to solve (see Defourny
et al. [17], McCusker et al. [37], Mulvey et al. [38], Takriti et al. [63], van der Weijde and
Hobbs [65] for a few examples). For example, Ben-Tal et al. [8] propose a policy using a robust
(min-max) look-ahead policy, which they then evaluate by averaging a series of simulations,
which means using the objective in (16) (see Ben-Tal et al. [8, §4.3]). The lack of consistency
between the objective function in the simulator (the base model) and that used in the
look-ahead model reflect, in our view, a fairly widespread misunderstanding that the simulator
is actually the stochastic analog of the objective function (4) used in deterministic models.

5.6. Comments

The distinction between base models and look-ahead models has not entered the literature, so
care has to be used when deciding if a researcher is solving the base model or just a look-ahead
model. It is our experience that the vast majority of papers using stochastic programming for
multistage problems are using look-ahead policies (see, for example, Dupačová et al. [19],
Jacobs et al. [28], Jin et al. [29], Takriti et al. [63], Wallace and Fleten [67]). This means that
after implementing the first-period decision and stepping forward in time, the problem has to
be solved again with a new set of scenario trees.

But this is not always the case. Shapiro et al. [58] formulate and solve a 120-period
stochastic program (we would call it a dynamic program) using Benders’ cuts (a form of value
function approximation) for an application that does not require the use of a scenario tree.
This strategy has come to be known as the stochastic dual decomposition procedure (or SDDP,
first introduced by Pereira and Pinto [39]). Although this could be viewed as a 120-period

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 129

look-ahead model, it is perfectly reasonable to define the 120-period stochastic program as the
base model. This is possible because after he solves his 120-period problem, he has a series of
Benders’ cuts that defines a policy for every state, for every time period. This is possible
because he makes an assumption known in this community as intertemporal independence,
which means that after making a decision, the information process refreshes itself and does not
retain history (intertemporal independence simply means that we can ignore the information
process in the post-decision state). As a result, it is only necessary to compute one set of cuts
for every time period, rather than one for every node in a scenario tree. However, SDDP
requires approximating the underlying information process using a finite (and small) set
of sample realizations; the bounds on the quality of the solution are only bounds for this
approximate problem (see Philpott and Guan [41, §2] and Shapiro et al. [58, §3.1]).

Our own work (Topaloglu and Powell [64], Powell et al. [45], Simão et al. [59] for example)
also uses value functions that are approximations of the base model, over the entire horizon.
In both sets of research, once the value functions (Benders’ cuts in Shapiro et al. [58] and Sen
and Zhou [53]) have been estimated, they can be used not just to determine the first-period
decision, but all decisions over the horizon. These are examples of algorithms that are solving
the base model rather than a look-ahead model.

Scenario trees always imply a look-ahead policy, because stepping forward in the base
model will almost invariably put us in a state that is not represented in the scenario tree.
Sen and Zhou [53] introduce multistage stochastic decomposition (MSD) building on the
breakthrough of stochastic decomposition for two-stage problems (Higle and Sen [25]). The
MSD algorithm generates scenarios that asymptotically cover the entire state space, but any
practical implementation (which is limited to a finite number of samples) would still require
reoptimizing after stepping forward in time, since it is unlikely that we would have sampled
the state that we actually transitioned to.

Even with these simplifications, optimal solutions of the look-ahead model may still be
quite difficult, and a substantial literature has grown around the problem of solving stochastic
look-ahead models (Birge and Louveaux [11], Higle and Sen [26], King and Wallace [30],
Rockafellar and Wets [48], Römisch and Heitsch [24]). Often, exact solutions to even a
simplified stochastic model are not achievable, so considerable attention has been given to
estimating bounds. But it is important to realize the following:

• An optimal solution to a look-ahead model is, with rare exceptions, not an optimal policy.
• A bound on a look-ahead model is not a bound on the performance of the resulting

policy (with rare exceptions, such as Shapiro et al. [58]).

For an in-depth treatment of the properties of look-ahead policies, see the work of Sethi
(see Bhaskaran and Sethi [10], Sethi and Bhaskaran [54], and Sethi and Haurie [55]). Not
surprisingly, this literature is restricted to very simple problems.

This is a good time to return to the comment of the helpful referee who felt that multistage
stochastic programming offered a richer framework than dynamic programming. The comment
ignores the idea that the stochastic program is actually a look-ahead policy for solving a
dynamic program, and that what we care most about is the performance of the policy for
solving the base model (that is, Equation (34)) rather than how well we solve the look-ahead
model (Equation (31)). This comment also ignores the fact that the look-ahead model is itself
a dynamic program (no matter how it is solved), and many in the stochastic programming
community even use value function approximations (in the form of Benders’ cuts) to solve the
look-ahead model (see Jacobs et al. [28] and Shapiro et al. [57] for examples). We feel that
placing stochastic programming within the broader framework of dynamic programming
separates the look-ahead model from the base model (which is usually ignored). In addition, it
helps to build bridges to other communities (especially simulation) but raises new research
questions, such as the performance of stochastic programming as a policy rather than the
value of the look-ahead objective function.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
130 Tutorials in Operations Research, c© 2014 INFORMS

6. Direct Policy Search vs. Bellman Error Minimization

Look-ahead policies represent powerful approximations for many problems and are especially
popular for more complex problems. However, there are problems where it is possible to
compute optimal policies, and these can serve as useful benchmarks for approximate policies
such as CFAs (estimated using direct policy search) and policies based on VFAs (estimated
using Bellman error minimization).

Consider a policy given by

Xπ
t (St | θ) = arg min

x∈Xt

(
C(St, x) + γ

∑
f∈F

θfφf (Sxt)

)
. (42)

We now face a choice between two methods for choosing θ: Bellman error minimization
(which produces a value function approximation) or direct policy search (which gives
us a cost function approximation). In this section, we are going to compare a series of
strategies for estimating CFA- and VFA-based policies using a relatively simple energy storage
application.

With direct policy search, we choose θ by solving Equation (34) using any of a range of
stochastic search methods (see Maxwell et al. [36, §5.4] for an example). If we use Bellman
error minimization, we need to create estimates of the value of being in a state St and then use
these estimates to update our value function approximation. One method, approximate value
iteration, computes estimates v̂nt (in iteration n) of the value of starting in some state Snt
using

v̂nt = min
x∈Xt

(
C(Snt , x) + V̄ n−1

t (Sx,nt)
)
,

where Sx,nt is the post-decision state given that we are in state Snt and take action x.
A second method involves defining our policy using (42) and then simulating this policy

from time t until the end of the horizon following sample path ωn using

v̂nt =

T∑
t′=t

C
(
Snt′ ,X

π(Snt′ | θn−1)
)
,

where St′+1 = SM (Snt′ , x
n
t′ ,Wt′+1(ωn)). This is the foundation of approximate policy iteration,

originally derived as back propagation in the early work of Paul Werbos (Werbos [68, 69, 70]),
who introduced the idea of backward differentiation. It is beyond the scope of our presentation
to discuss the merits of these two approaches (see Powell [42, Chapters 9 and 10]), but the
key idea is to create an observation (or set of observations) of the value of being in a state
and then use these observations to obtain θn.

To provide a hint into the performance of these different methods, we have been running a
series of experiments on a relatively simple set of energy storage problems (some infinite
horizon, others finite horizon), which we are able to solve optimally, providing a benchmark.
Although this is just one class of applications, the results are consistent with our experiences
on other problems. Here are the algorithms we have run:

(1) A simple myopic policy (minimizes real-time costs now without regard to the future).
(2) Basic least squares approximate policy iteration described in Lagoudakis and Parr [32].
(3) Least squares approximate policy iteration using instrumental variables (or projected

Bellman error minimization), also described in Lagoudakis and Parr [32] and implemented in
Scott et al. [52].

(4) Direct policy search, using the same basis functions used in the testing with least
squares policy iteration (Scott et al. [52], using Scott et al. [51] to do the stochastic search).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 131

(5) Approximate value iteration with a backward pass (known as TD(1) in the reinforcement
learning community (Sutton and Barto [61]) or back propagation in the controls community
(Werbos [70])), but using a piecewise linear value function (in the energy resource variable),
which maintains concavity (see Salas and Powell [50]).

(6) Approximate policy iteration (API)—Pham [40] evaluated API using linear models,
support vector regression, Gaussian process regression, tree regression, kernel regression, and
a local parametric method on a library of test problems with optimal solutions.

The first four problems were run on a steady state (infinite horizon) problem, whereas the
rest were all run on a finite horizon, time-dependent set of problems. Optimal policies were
found using classical value iteration to within 1% of optimality (with a discount factor of
0.9999, given the very small time steps). Optimal policies were calculated by discretizing the
problems and solving them using classical (model-based) backward dynamic programming.
These data sets were also evaluated by Pham [40], who tested a range of learning algorithms
using approximate policy iteration.

Figure 6 shows the results of the first four experiments, all scaled as a percentage of the
optimal. The runs using direct policy search were almost all over 90% of optimality, whereas
the runs using least squares policy iteration, which is based on Bellman error minimization,
were much worse. By contrast, the runs using approximate value iteration but exploiting
concavity all consistently produced results over 99% of optimality on the finite horizon
problems (Salas and Powell [50]).

These observations need to be accompanied by a few caveats. The use of the piecewise linear
value function approximation (used in Salas and Powell [50]) scales well to time-dependent
problems with hundreds or thousands of storage devices and hundreds to thousands of time
periods but cannot handle more than one or two “state of the world” variables that might
capture information about weather, prices, and demands. Direct policy search works well
when searching over a small number of parameters (say, two or three) but would not scale to
a time dependent problem where the parameters vary over time (the VFA-based approach had
no trouble with many time periods).

Figure 6. The performance of a series of approximation algorithms relative to the optimal solution
for 20 benchmark storage problems.

Note. These include a myopic policy, a basic form of least squares approximate policy iteration, least squares
approximate policy iteration using instrumental variables (IVAPI), and direct policy search using the same
structure for the policy (from Scott et al. [52]).

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
132 Tutorials in Operations Research, c© 2014 INFORMS

From this work (and related computational experience), we have been drawing the following
conclusions:

• Bellman error minimization works extremely well when we exploited convexity (Salas and
Powell [50]) but surprisingly poorly (e.g., around 70% of optimal) using simple, quadratic
basis functions (which appeared to provide very reasonable estimates of the value function).
Higher-order basis functions performed even worse.
• Policy search using the same structure of policy (same basis functions) performed very

well (around 95% of optimal). However, this is limited to low-dimensional parameter vectors,
which exclude problems where the regression vector θ is a function of time.
• Approximate value iteration when exploiting convexity works best of all (over 98% of

optimal), but it depends on our ability to approximate the value of multiple storage devices
independently using low-dimensional lookup tables where convexity is maintained (in the
controllable dimension). Without convexity, we have had no success with either approximate
value iteration or its close cousin, Q-learning (see Sutton and Barto [61]).
• A deterministic look-ahead policy underperformed approximate value iteration but

performed as well as policy search (approximately 95%–99% of optimal). The look-ahead
policy did not require any training but would require more computation compared to using a
value function once the VFA has been fitted.
• Approximate policy iteration worked adequately. Our best results on the storage problems,

using support vector regression, might get over 80% of optimal (sometimes to 90%) after
10 policy iterations (each iteration required several thousand policy simulations). However,
support vector regression is not well suited to recursive estimation, needed in algorithms such
as approximate value iteration.

One conclusion that emerged consistently from these results was that the presence of an
optimal benchmark provided tremendous insights into the quality of the solution. It was
only through these benchmarks that we were able to see that many of these apparently
sophisticated algorithms actually work quite poorly, even on a relatively simple problem class
such as energy storage (we would never have been able to get optimal benchmarks on more
complex problems). We have been able to get near-optimal solutions using value iteration, but
only when we could exploit structure such as convexity or concavity, and only when using
a lookup table representation, which clearly limits the scalability of these approaches to
additional state variables. We were never able to get high-quality solutions using linear
models using approximate value iteration (this was not a surprise, given known theory) or
approximate policy iteration (this was more of a surprise).

We note in closing this discussion that a number of authors have recognized that you can
“tune the value function” for a policy such as (29) using direct policy search (see Maxwell
et al. [35] for a good example of this). However, if you are choosing θ to tune the policy in
(29), we would argue that the regression term

∑
f∈F θfφf (Sx) is no longer an approximate

value function, since we are not fitting the approximation to the value of being in a state.
If you are using policy search, we would argue that you are using a cost function

approximation, where the CFA policy is given by

XCFA(St | θ) = arg min
xt

C̄π(St, xt | θ)

= arg min
xt

(
C(St, xt) +

∑
f∈F

θfφf (Sxt)

)
. (43)

When we do direct policy search, there is no reason to include any basis functions that are not
a function of xt, since terms that do not depend on xt are simply constants in the argmin in
Equation (43). In our energy storage example, we used basis functions such as Stxt, xt,
and x2

t . Thus, there is no reason to expect the correction term (involving the basis functions)
to approximate in any way the downstream value of being in state Sxt .

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 133

Our belief is that cost function approximations are widely used in engineering practice, but
without being identified as such. The storage example described in this setting represents an
instance of a problem where a CFA (constructed using a simple, additive correction term)
works extremely well. We suspect that there is no shortage of common sense approaches that
can be used to make a policy based on solving some deterministic model work better. We offer
that the construction of these approximations is exactly analogous to the steps involved in
constructing value function approximations or policy function approximations. All that
has been missing is the idea that this strategy should be recognized as a completely valid
approach.

7. How Do We Choose a Policy?

Instead of making choices such as stochastic programming, dynamic programming, or
simulation, we would like to ask readers to pose their choice as between look-ahead
policies, policies based on value function approximations, or policy function approximations.
Deterministic look-ahead policies that have been tweaked to produce more robust solutions
(such as introducing safety stocks or reserve capacities) should be viewed as look-ahead
cost function approximations. Cost function approximations are widely used in practice
but are generally dismissed as some sort of heuristic compared with more elegant and
“sophisticated” policies based on stochastic look aheads (stochastic programming) or value
function approximations (approximate dynamic programming). We would argue that all of
these methods are, in the end, approximations that have to be tested, and there is no reason
to believe a priori that one will be better than another on a specific problem.

The reality is that with rare exceptions, all of these classes of policies are almost guaranteed
to be suboptimal. There is no a priori reason why a cost function approximation, policy
function approximation, policy based on value function approximation, or a look ahead that
provides an optimal solution to an approximate model, should be better than all the rest.
Each class of policy offers specific features that could produce superior results for a specific
problem class.

So how to choose? Based on our experience, the following comments might provide guidance:

• Policy function approximations work best for low-dimensional actions, where the structure
of the policy is fairly obvious; (s,S) inventories are an easy example. Another is that we
might want to sell a stock when its price goes above a particular price. Policy function
approximations can also work well when the policy is a relatively smooth surface, allowing it
to be approximated perhaps by a linear function (known in the literature as “affine policies”)
or locally linear functions.
• Cost function approximations, which are typically variations of deterministic models,

work best when a deterministic model works well and when the impact of uncertainty is easy
to recognize. It may be easy to see, for example, that we should provide a buffer stock to
protect against supply chain disruptions. Cost function approximations can be particularly
attractive when the decision xt is multidimensional, since we can typically solve a CFA-based
policy using a mathematical programming algorithm designed to handle constraints.
• Value function approximations are particularly useful when the value of the future

given a state is easy to approximate. When solving multidimensional resource allocation
problems, keep in mind that the value function only needs to communicate the marginal value,
not the value of being in a state. Also, the issue of value functions has nothing to do with
size (we have used value function approximations on very high-dimensional applications
in transportation with state variables with 10,000 dimensions or more). Large problems
can be easily approximated using separable approximations. The real issue is nonseparable
interactions. These are easy to capture in a look-ahead model but are hard to approximate
using a statistical model.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
134 Tutorials in Operations Research, c© 2014 INFORMS

• Look-ahead policies are particularly useful for time-dependent problems, and especially if
there is a forecast available that evolves over time. The parameters of a stochastic look-ahead
model (e.g., the number of scenarios in a scenario tree, the number of stages, the horizon)
should always be tested in a simulator that is able to compare the performance of different
policies. Also, a stochastic look-ahead model should always be compared to the performance
of a deterministic look-ahead model. Just because the underlying problem is stochastic does
not mean that a deterministic look-ahead model will not work.

Hybrid policies can be particularly valuable. Instead of building a look-ahead policy over a
long horizon H, we can use a shorter horizon but then introduce a simple value function
approximation at the end. Cost function approximations over planning horizons can make a
deterministic approximation more robust. Finally, you can tune a high-dimensional myopic
policy (e.g., assigning drivers to loads or machines to tasks) with low-order policy function
approximations (“assign team drivers to long loads”) by adding the low-order policy functions
as bonus or penalty terms to the objective function.

We hope this discussion has helped to place stochastic programming, dynamic programming,
and simulation (using policy function approximations) in a common framework. Over time,
these terms have evolved close associations with specific classes of policies (look-ahead policies,
value functions, and policy function approximations, respectively). It is for this reason that we
suggest a new name, computational stochastic optimization, as an umbrella for all of these
fields (and more).

Acknowledgments

The author warmly acknowledges the helpful comments of the two reviewers and managing editor.
This research was supported by the National Science Foundation [Grant CMMI-0856153].

References
[1] S. Andradóttir and A. A. Prudius. Adaptive random search for continuous simulation optimization.

Naval Research Logistics 57(6):583–604, 2010.

[2] C. Bandi and D. J. Bertsimas. Tractable stochastic analysis in high dimensions via robust
optimization. Mathematical Programming Series B 134(1):23–70, 2012.

[3] D. R. Barr and M. H. Rizvi. An introduction to ranking and selection procedures. Journal of
American Statistical Association 61(315):640–646, 1966.

[4] G. Bayraksan and D. P. Morton. Assessing solution quality in stochastic programs. Mathematical
Programming Series B 108(2–3):495–514, 2006.

[5] G. Bayraksan and D. P. Morton. Assessing solution quality in stochastic programs via sampling.
M. R. Oskoorouchi, ed. Tutorials in Operations Research. INFORMS, Hanover, MD, 102–122,
2009.

[6] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[7] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press,
Princeton, NJ, 2009.

[8] A. Ben-Tal, B. Golany, A. Nemirovski, and J.-P. Vial. Retailer-supplier flexible commitments
contracts: A robust optimization approach. Manufacturing & Service Operations Management
7(3):248–271, 2005.

[9] H. Beyer and B. Sendhoff. Robust optimization—A comprehensive survey. Computer Methods in
Applied Mechanics and Engineering 196(33–34):3190–3218, 2007.

[10] S. Bhaskaran and S. P. Sethi. Decision and forecast horizons in a stochastic environment:
A survey. Optimal Control Applications and Methods 8(3):201–217, 1987.

[11] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming, 2nd ed., Springer, New
York, 2011.

[12] J. Boesel, B. L. Nelson, and S. H. Kim. Using ranking and selection to “clean up” after simulation
optimization. Operations Research 51(5):814–825, 2003.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 135

[13] B. Bouzaiene-Ayari, C. Cheng, S. Das, R. Fiorillo, and W. B. Powell. From single commodity to
multiattribute models for locomotive optimization: A comparison of integer programming and
approximate dynamic programming. Transportation Sci., ePub ahead of print July 28, 2014,
http://dx.doi.org/10.1287/trsc.2014.0536.

[14] E. Camacho and C. Bordons. Model Predictive Control. Springer, London, 2004.

[15] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus. Simulation-Based Algorithms for Markov
Decision Processes. Springer, Berlin, 2007.

[16] S. E. Chick and N. Gans. Economic analysis of simulation selection problems. Management
Science 55(3):421–437, 2009.

[17] B. Defourny, D. Ernst, and L. Wehenkel. Scenario trees and policy selection for multistage
stochastic programming using machine learning. INFORMS Journal on Computing 25(3):488–501,
2013.

[18] R. Dorfman. The discovery of linear programming. Annals of the History of Computing
6(3):283–295, 1984.

[19] J. Dupačová, G. Consigli, and S. Wallace. Scenarios for multistage stochastic programs. Annals
of Operations Research 100(1–4):25–53, 2000.

[20] M. C. Fu, F. Glover, and J. April. Simulation optimization: A review, new developments, and
applications. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, J. A. Joines, eds., Proceedings of the
37th Conference on Winter Simulation, IEEE, Piscataway, NJ, 83–95, 2005.

[21] J. Gittins, K. Glazebrook, and R. R. Weber. Multi-Armed Bandit Allocation Indices. John
Wiley & Sons, Chichester, UK, 2011.

[22] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference and Prediction. Springer, New York, 2009.

[23] D. He, S. E. Chick, and C.-H. Chen. Opportunity cost and OCBA selection procedures in
ordinal optimization for a fixed number of alternative systems. IEEE Transactions on Systems
Man and Cybernetics Part C 37(5):951–961, 2007.

[24] H. Heitsch and W. Römisch. Scenario tree modeling for multistage stochastic programs.
Mathematical Programming 118(2):371–406, 2009.

[25] J. Higle and S. Sen. Stochastic decomposition: An algorithm for two-stage linear programs with
recourse. Mathematics of Operations Research 16(3):650–669, 1991.

[26] J. Higle and S. Sen. Stochastic Decomposition: A Statistical Method for Large Scale Stochastic
Linear Programming. Kluwer Academic Publishers, Boston, 1996.

[27] L. Hong and B. L. Nelson. A framework for locally convergent random-search algorithms for
discrete optimization via simulation. ACM Transactions on Modeling and Computer Simulation
17(4):1–22, 2007.

[28] J. Jacobs, G. Freeman, J. Grygier, D. P. Morton, G. Schultz, K. Staschus, and J. Stedinger.
SOCRATES: A system for scheduling hydroelectric generation under uncertainty. Annals of
Operational Research 59(1):99–133, 1995.

[29] S. Jin, S. Ryan, J. Watson, and D. Woodruff. Modeling and solving a large-scale generation
expansion planning problem under uncertainty. Energy Systems 2(3–4):209–242, 2011.

[30] A. J. King and S. Wallace. Modeling with Stochastic Programming. Springer-Verlag, New York,
2012.

[31] A. J. Kleywegt, A. Shapiro, and T. Homem-de-Mello. The sample average approximation method
for stochastic discrete optimization. SIAM Journal on Optimization 12(2):479–502, 2002.

[32] M. Lagoudakis and R. Parr. Least-squares policy iteration. Journal of Machine Learning
Research 4:1107–1149, 2003.

[33] F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal Control, 3rd ed. John Wiley & Sons, Hoboken,
NJ, 2012.

[34] W.-K. Mak, D. P. Morton, and R. Wood. Monte Carlo bounding techniques for determining
solution quality in stochastic programs. Operations Research Letters 24(1–2):47–56, 1999.

[35] M. S. Maxwell, S. G. Henderson, and H. Topaloglu. Tuning approximate dynamic programming
policies for ambulance redeployment via direct search. Stochastic Systems 3(2):322–361, 2013.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

http://dx.doi.org/10.1287/trsc.2014.0536

Powell: Clearing the Jungle of Stochastic Optimization
136 Tutorials in Operations Research, c© 2014 INFORMS

[36] M. S. Maxwell, M. Restrepo, S. G. Henderson, and H. Topaloglu. Approximate dynamic
programming for ambulance redeployment. INFORMS Journal on Computing 22(2):266–281,
2010.

[37] S. A. McCusker, B. F. Hobbs, and Y. Ji. Distributed utility planning using probabilistic
production costing and generalized Benders decomposition. IEEE Transactions on Power
Systems 17(2):497–505, 2002.

[38] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust optimization of large-scale systems.
Operations Research 43(2):264–281, 1995.

[39] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied to energy
planning. Mathematical Programming 52(2):359–375, 1991.

[40] T. Pham. Experiments with approximate policy iteration. Ph.D. thesis, Princeton University,
Princeton, NJ, 2013.

[41] A. Philpott and Z. Guan. On the convergence of stochastic dual dynamic programming and
related methods. Operations Research Letters 36(4):450–455, 2008.

[42] W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality,
2nd ed. John Wiley & Sons, Hoboken, NJ, 2011.

[43] W. B. Powell and I. O. Ryzhov. Optimal Learning. John Wiley & Sons, Hoboken, NJ, 2012.

[44] W. B. Powell, H. P. Simão, and B. Bouzaiene-Ayari. Approximate dynamic programming
in transportation and logistics: A unified framework. EURO Journal on Transportation and
Logistics 1(3):237–284, 2012.

[45] W. B. Powell, A. George, H. P. Simão, W. R. Scott, A. D. Lamont, and J. Stewart. SMART:
A stochastic multiscale model for the analysis of energy resources, technology, and policy.
INFORMS Journal on Computing 24(4):665–682, 2012.

[46] M. L. Puterman. Markov Decision Processes, 2nd ed. John Wiley & Sons, Hoboken, NJ, 2005.

[47] R. T. Rockafellar and S. Uryasev. The fundamental risk quadrangle in risk management,
optimization, and statistical estimation. Surveys in Operations Research and Management
Science 18(1):33–53, 2013.

[48] R. T. Rockafellar and R. J.-B. Wets. Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of Operations Research 16(1):119–147, 1991.

[49] A. Ruszczyński. Risk-averse dynamic programming for Markov decision processes. Mathematical
Programming 125(2):235–261, 2010.

[50] D. F. Salas and W. B. Powell. Benchmarking a scalable approximate dynamic programming
algorithm for stochastic control of multidimensional energy storage problems. Technical Report
2004, Department of Operations Research and Financial Engineering, Princeton University,
Princeton, NJ, 2013.

[51] W. R. Scott, P. Frazier, and W. B. Powell. The correlated knowledge gradient for simulation
optimization of continuous parameters using Gaussian process regression. SIAM Journal on
Optimization 21(3):996–1026, 2011.

[52] W. R. Scott, W. B. Powell, and S. Moazeni. Least squares policy iteration with instrumental
variables vs. direct policy search: Comparison against optimal benchmarks using energy storage.
Technical report, Dept. of Operations Research and Financial Engineering, Princeton University,
Princeton, NJ, 2013.

[53] S. Sen and Z. Zhou. Multistage stochastic decomposition: A bridge between stochastic
programming and approximate dynamic programming. SIAM Journal on Optimization 24(1):
127–153, 2014.

[54] S. P. Sethi and S. Bhaskaran. Conditions for the existence of decision horizons for discounted
problems in a stochastic environment. Operations Research Letters 4(2):61–64, 1985.

[55] S. P. Sethi and A. Haurie. Decision and forecast horizons, agreeable plans, and the maximum
principle for infinite horizon control problem. Operations Research Letters 3(5):261–265, 1984.

[56] A. Shapiro. Monte Carlo sampling methods. A. Ruszczyński and A. Shapiro, eds. Stochastic
Programming, Handbook in Operations Research & Management Science, Vol. 10. North-Holland,
Amsterdam, 353–425, 2003.

[57] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming: Modeling
and Theory. SIAM, Philadelphia, 2009.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Powell: Clearing the Jungle of Stochastic Optimization
Tutorials in Operations Research, c© 2014 INFORMS 137

[58] A. Shapiro, W. Tekaya, J. Paulo da Costa, and M. F. Pereira. Risk neutral and risk averse
stochastic dual dynamic programming method. European Journal of Operational Research
224(2):375–391, 2013.

[59] H. P. Simão, J. Day, A. R. George, T. Gifford, J. Nienow, and W. B. Powell. An approxi-
mate dynamic programming algorithm for large-scale fleet management: A case application.
Transportation Science 43(2):178–197, 2009.

[60] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation, Simulation and
Control. John Wiley & Sons, Hoboken, NJ, 2003.

[61] R. S. Sutton and A. G. Barto. Reinforcement Learning, Vol. 35. MIT Press, Cambridge, MA,
1998.

[62] J. R. Swisher, P. D. Hyden, S. H. Jacobson, and L. W. Schruben. A survey of simulation
optimization techniques and procedures. Proceedings of the Winter Simulation Conference,
119–128, IEEE, Piscataway, NJ, 2000.

[63] S. Takriti, J. R. Birge, and E. Long. A stochastic model for the unit commitment problem.
IEEE Transactions on Power Systems 11(3):1497–1508, 1996.

[64] H. Topaloglu and W. B. Powell. Dynamic-programming approximations for stochastic time-staged
integer multicommodity-flow problems. INFORMS Journal on Computing 18(1):31–42, 2006.

[65] A. H. van der Weijde and B. F. Hobbs. The economics of planning electricity transmission to
accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of
disregarding uncertainty. Energy Economics 34(6):2089–2101, 2012.

[66] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer Academic Publishers,
Boston, 1996.

[67] S. W. Wallace and S.-E. Fleten. Stochastic programming models in energy. A. Ruszczyński and
A. Shapiro, eds. Stochastic Programming, Vol. 10. Elsevier Science B.V., Amsterdam, 637–677,
2003.

[68] P. J. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences.
Ph.D. thesis, Harvard University, Cambridge, MA, 1974.

[69] P. J. Werbos. Backpropagation and neurocontrol: A review and prospectus. International Joint
Conference on Neutal Networks, 209–216, IEEE, Piscataway, NJ, 1989.

[70] P. J. Werbos. Approximate dynamic programming for real-time control and neural modelling.
D. J. White and D. A. Sofge, eds. Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive
Approaches, 493–525, 1992.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

71
.1

88
.1

20
.2

48
]

on
 3

1
O

ct
ob

er
 2

01
4,

 a
t 1

6:
02

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

