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We consider a class of multistage stochastic programming problems that can be formulated as
networks with random arc capacities. Large problems have proved intractable using exact
methods and hence various approximations have been proposed, ranging from approximating
the recourse function to sampling a small number of scenarios to capture future uncertainties.
We explore the use of specialized recourse strategies that are not as general as network
recourse but nonetheless capture some of the important tradeoffs. These new recourse strate-
gles allow us to develop approximations to the recourse function that can be used to solve
problems with thousands of random variables. Given these approximations, classical opti-
mization methods can be used. The concept of hierarchical recourse is introduced and used to
synthesize and generalize earlier notions of nodal recourse and cyclic recourse.

Stochastic programming represents a powerful
framework for formulating dynamic optimization
problems in the presence of forecasting uncertain-
ties. Such problems arise in transportation in the
form of dynamic fleet management, dynamic vehi-
cle routing and logistics. In these problems, we are
faced with the problem of routing vehicles or man-
aging a fleet in the face of uncertain future de-
mands. For example, we may have to decide
whether to hold vehicles in a particular region in
anticipation of future demands, or reposition them
empty to another region where there is more poten-
tial. Problems in logistics require making produc-
tion and inventory planning decisions in the face of
uncertain future demands. Stated formally, these
problems often result in large scale stochastic pro-
gramming problems that are computationally in-
tractable.

The prototypical (two-stage) stochastic program-
ming problem is often written as:

minc’x + Q(x) (1)

subject to Ax = b, x > 0, where Q(x) is the ex-
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pected recourse function, defined by:
Q(x) = E, min{qTy|Wy = ¢ — Tx,y > 0} (2)
y

Here, x and y represent, respectively, first and
second stage decisions and ¢ is a vector of random
variables. ¢ and g are cost vectors, and T and W
determine the effect of first stage decisions on sec-
ond stage constraints (7" is generally referred to as
the technology matrix, and W is the recourse ma-
trix). Decisions must be made in the first stage,
after which the random vector ¢ is realized, at
which time we are allowed to find the optimal y in
the second stage. Our ability to respond to the
random variables is defined as the recourse, and
Q(x) captures the effects of this recourse. In the
applications that we consider, the optimization
problems require solving network problems, and
hence this is called & problem with network re-
course. Section 1 reviews specific problems that
arise in transportation and logistics that can be
formulated within this framework. _

The difficulty with problem (1) is that @(x) can-
not be written analytically as a function of x. We
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have to solve a network problem for every realiza-
tion of ¢ in the second stage. This process usually
makes finding @ analytically intractable. Trans-
portation often exhibits random vectors ¢ with high
dimensionality, creating an exponentially large
number of outcomes.

In recent years, several approaches have been
developed with tremendous promise in terms of
being able to provide at least good approximations
to these large problems. This is particularly true in
the case of problems such as networks which offer
special structure. Even stronger results can be ob-
tained for special types of networks such as trans-
portation problems or transportation networks with
random arc capacities. In this research we consider
a specific set of stochastic network problems that
arise in transportation and logistics that can be
formulated as a network with random arc capaci-
ties. In all cases, these problems can be written as
either a two or N-stage stochastic program with
network recourse. We then propose a range of more
restrictive recourse strategies that approximate
network recourse but which are analytically more
tractable. Thus, we might define an approximate
function Q(x|¢) which satisfies:

Q(x€) > Qx| &)

where Q(x|¢) is obtained by heuristically optimiz-
ing the conditional recourse function Q(x|¢). The
goal is to find a heuristic so that @(x|¢) reasonably
approximates @(x|£), and exhibits sufficient struc-
ture so that its expectation can be easily found. If
this is possible, then we may replace the general
recourse function @(x) with an approximation that
would allow problem (SP) to be solved using classi-
cal means. The specific approach used in this paper
is to explore recourse strategies that are simpler
than network recourse that allow the recourse
problem (1) to be solved in an analytically tractable
way.

There is an extensive literature on bounds and
approximations to stochastic programs (see, for ex-
ample, the excellent review by BIRGE and WETs!)).
One approach involves sampling a small number of
scenarios that describe future possible outcomes.
Using these scenarios, a much larger optimization
problem is formulated which recognizes these dif-
ferent outcomes, but forces the model to recom-
mend a single decision for the first stage (a process
known as scenario aggregation). In practice, the
resulting optimization problem can be extremely
large, and any network structure that might exist
in the original problem is lost. VAN SLYKE and
WETs??! propose an outer linearization scheme for
solving this problem. More recently, ROCKAFELLAR

and WETs?3! propose a decomposition scheme that
may be computationally attractive for large prob-
lems with many scenarios. This approach is partic-
ularly well suited in strategic planning applications
where future uncertainties are often represented
using a small set of scenarios, but it raises an
important issue for problems where the number of
scenarios may be extremely large. At this time,
there has been very little theoretical or experimen-
tal work analyzing the effects of these sampling
problems, but recent research on importance sam-
pling®! may offer some key insights into this prob-
lem.

A second approach involves developing approxi-
mations to the recourse function. Simple recourse is
one such approximation, whereby complex, multi-
variate expectations are reduced to a series of ex-
pectations involving a single variable. In some ap-
plications such as the newsboy problem, simple
recourse is an exact model, where the penalties for
providing too many or too few newspapers are de-
termined by the parameters of the problem (such as
the salvage value of a newspaper or the estimated
cost of lost demand). However, simple recourse can
be used to approximate more general stochastic
programs. BIRGE and WETS!*! use ray approxima-
tions to estimate overage and underage penalties
for general stochastic programs, replacing them
with approximate simple recourse problems. The
overage and underage penalties are found by per-
turbing, in both directions, each random variable
individually Gf there are m random variables, this
requires solving 2m linear programs, one for each
random variable perturbed in both the positive and
negative directions). This idea is further general-
ized in BIRGE and WETS,?! which solves the
stochastic program by perturbing the random vec-
tors in m dimensions simultaneously, instead of
one at a time. As with the ray approximations, 2m
optimization problems are solved (as opposed to
other methods that require a number of problems
to be solved that is exponential in the number of
random variables). However, general perturbation
vectors (rather than unit vectors) create signifi-
cantly greater computational requirements. BIRGE®!
indicates how this approach can be extended to
multistage problems.

WALLACE?8] introduces a piecewise-linear upper
bound for stochastic programs with network re-
course. This method involves identifying cycles in a
network with random arc capacities, and then cal-
culating the effect random perturbations in the
upper bounds have on the flow in each cycle. In
order to perform these calculations efficiently, how-
ever, it is necessary to introduce some strong



approximations that have the effect of inducing
separability among the random variables in the
recourse function. This concept is extended in BIRGE
and WALLACE®! to general linear programs. It is
important to emphasize, however, that this work
has focussed on developing computable bounds on
the recourse function for a given set of first stage
decisions, as opposed to calculating functions which
approximate the recourse function. Just the same,
the insights behind this work may assist in the
development of better approximations.

BEALE et al!!! suggest a response surface meth-
odology where the recourse function is replaced
with a simple quadratic or exponential approxima-
tion involving a few parameters. These parameters
are fitted statistically using observations derived
from repeated sampling. An entirely different ap-
proach is based on the idea of stochastic gradients
where gradients of the recourse function are sam-
pled and then used to identify search directions
(see ERMOLIEV!! ! and RuszczyNski'?!). These meth-
ods have the advantage of proven convergence
properties, but do not take advantage of the struc-
ture of the problem.

The research in this paper considers a specific set
of stochastic programs that arises in both logistics
and carrier operations. The work draws on prior
research in the area by the authors (FRANTZESKAKIS
and PoweLL('® 4) and WALLACE?®! where special
recourse strategies were found to yield analytically
tractable approximations to the recourse function.
These approximations allow large scale stochastic
programming problems to be solved using standard
techniques. The effect is not unlike using simple
recourse to approximate more general stochastic
programs. The idea is to replace the minimization
problem in (2) with a simpler optimization problem
which allows the expected recourse function Q(x)
to be written analytically as a function of x. For
example, FRANTZESKAKIS and POWELL'? introduced
the notion of nodal recourse and showed how, for
transportation networks with random arc capaci-
ties, the transportation problem could be replaced
with a much simpler optimization problem that
vields a good approximation of the recourse func-
tion. The limitation of this work is that it only
applies to a very special class of stochastic net-
works.

In this paper, we introduce a much broader set of
nodal recourse strategies, and show how these fit
into a more general class of recourse strategies we
call hierarchical recourse. All of these are special
cases of network recourse, but they introduce sim-
plifications that either provide useful approxima-
tions to gxpected recourse functions, or at least
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provide efficient bounds (along the same lines as
WALLACE.?®1) The objective of this research is to
introduce and explore these special recourse strate-
gies and to show how more accurate approxima-
tions can be developed.

We begin in section 1 by reviewing three particu-
lar types of stochastic programs that serve as a
basis for discussion. Section 2 outlines the basic
strategy for approximating recourse functions by
using restricted recourse strategies. Next, section 3
discusses a recently developed class of restricted
recourse strategies known as nodal recourse which
have been proven effective for dynamic transporta-
tion problems with random arc capacities. Finally,
section 4 introduces a general class of recourse
strategies referred to here as hierarchical strate-
gies. The goal here is not to present specific new
algorithms but rather to present a fresh perspective
on recourse strategies that may lead to new bounds
and approximations.

1. STOCHASTIC PROGRAMMING PROBLEMS

THERE 18, of course, an extremely wide variety of
stochastic programming formulations, each exhibit-
ing its own special structure. For the purpose of our
presentation, three closely related problems are
presented which serve as a basis for discussion for
recourse strategies. The first is a two-stage trans-
portation problem with random demands. The sec-
ond is an N-stage transportation-type problem
(each stage involves a bipartite graph) with random
arc capacities. The third is a general N-stage dy-
namic (transshipment) network with random arc
capacities. We begin the presentation with a brief
discussion of notation and the basic framework we
are working in. At the end of the section we discuss
some of the contexts in which each of these situa-
tions may arise in practice.

1.1. Notation

We consider stochastic, dynamic network prob-
lems which involve determining flows between dif-
ferent points in space and time. We refer to points
in space as cities, which may refer to regions, ter-
minals, warehouses or ports. Flows between cities
are assumed to move forward in time. Let R be the
set of cities and ¢ = 1, 2,..., P be the time periods
where P is the planning horizon. We do not con-
sider issues associated with the truncation of the
planning horizon. For a given city i € R, we denote
a node in the network by (i,t), representing a
particular city at a point in time ¢. If ¢;; is the
travel time (in units of time periods) from city i to
city j, then we denote the link from (i, ¢) to (j,¢ +
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t;;) by (i,t,j). In some instances, we allow the
travel time between cities to be zero.

Decision variables are denoted by x;,(¢) which
gives the flow from city i to city j in time period ¢.
The argument (¢) is used to denote the stage in
which a variable is determined. S,(¢) is used to
denote the flow through node (i, ¢) determined by
decisions made before time period ¢. R,/(t) repre-
sents the exogenous demands placed on the net-
work, representing flows entering or leaving the
network at (i, t).

An important concept in stochastic programming
is the notion of a stage. Random variables in a
given stage are all realized at the same time, and
after those in any previous stage. A stage may
consist of multiple time periods, but we assume
each stage consists of a single time period, and use
the terms time period and stage interchangeably.

1.2. The Two-Stage Stochastic
Transportation Problem

Perhaps the most widely formulated stochastic
programming problem is the two-stage transporta-
tion problem. An initial vector of supplies R(1)
must be allocated from one set of cities to another
(we will use the same sets of cities for supplies and
demands, but clearly it is possible that some cities
may serve as supply points and other cities may
serve as demand points). We have to move flow
from supplies to demands in the first stage, prior to
realizing demands in the second stage. Once de-
mands are realized, we may again allocate flow
from city to city. The formulation includes the situ-
ation where the set of cities can be divided into
plants, warehouses and customers. Supplies origi-
nate only at plants, and can only be shipped to
warehouses in the first period. In the second period,
goods may be moved from warehouses to markets.
For notational simplicity, we use one set of cities in
all periods.

This problem is given by:

min c¢fx(1) + Q(S(1)) 3)
x(1), S(D)

subject to:
Y,er*; () =R,(1) VieR (3a)
ZieRxU(l) -S8(1=0 VieR (3b)
x,,(1)>0 Vi,jeR  (3¢c)

where Q(S(1)) is the expected recourse function
defined by:

Q(S(1)) = E,, [ Q(S(1), £(2)] (4)

and where Q(S(1), £(2) is defined by:
Q(S(1), £(2)) = mincTx(2) (5)

x(2)

subject to:
Zjenxij(Z) =S,(1) VieR (5a)
Y, n*r(2 > §(2) VjeR (5b)
x,{2) >0 Vi,jeR (5¢)

Here and throughout the paper, the decision vari-
able x(2) for the conditional recourse function
Q(S(1), £(2)) is assumed to be conditional on £(2).
Within the conditional recourse function, we choose
x(2) after £(2) is realized. It is generally apparent
when this is the case, so we do not explicitly write
the dependency of x(2) on £(2).

Equation (5a) constrains the flow out of region i
in the second time period to the total flow coming
into this region from the first period. Equation (5b)
is the demand constraint, which requires that the
total flow into region j meets or exceeds the market
demand for that region. Note that here and in the
remainder of the paper, we use x(2) within the
conditional recourse problem Q(S(1), £(2)) without
explicitly indexing x(2) by the realization of £(2).
Thus, we have to choose a vector x(2) for each
realization of £(2).

This problem can be visualized using the network
in Figure 1. In this figure, each node is identified by
the city and stage. Thus, cities 1 through 4 are
represented at the beginning of stage 1, and then

Fig. 1. Two-stage stochastic transportation problem with net-
work recourse.



twice within stage 2 (before and after the trans-
portation decision has been made). In the first stage,
we solve a one-sided transportation problem with
supplies R(1) at the beginning of the period but no
particular demands at the end of the period, and no
a priori knowledge of the demands £(2) at the end
of the second period. Flows x(1) in the first period
create supplies S(1) at the beginning of the second
period. For a given set of supplies S(1), we must
now solve a second transportation problem for a
given realization of the demands £(2).

One difficulty with (3) is that it may not be
feasible for a given vector £(2). This situation can
be avoided by modifying the problem to allow for
underage or overage with a (possibly high) penalty.

1.3. N-Stage Transportation Problems With
Random Arc Capacities

The second problem is the N-stage stochastic
transportation problem with random arc capacities
depicted in Figure 2. This problem arises in dy-
namic fleet management, where the limit on the
number of vehicles that can move loaded between
two regions is limited by a forecasted (and therefore
uncertain) demand. These demands are modeled as
random arc capacities (see POWELL2?). As before,
each node is identified by the city it represents. We
assume that the entire set of cities is replicated
over time. This is stated as:

min G(x(1)) = c¢Tx(1) + Q(S(1)) (6)
x(1), S(1)

subject to:
Y% =R() VicR (6a)
Zkenxkj(l)—Sj(1)=0 VieR (6b)

(D=0 Vi,jeR (6¢)
;1) <u;(1) Vi,jeR (6d)

where

Q(S(t — 1)) = E,,[Q(S(t - 1), £(1)]
t=2,...,P (N

The function @(S(¢ — 1)) is the recourse function
and is defined by the following recursion:

Q(S(t — 1), (1)) = min () x(t) + Q(S(t))
x(1), S()
(8)
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Stage 1 Slage 2

R, (1) >

R, =
=2 R,®

RN =

C“ﬂ) '"rm cost = Cil(l)
O——‘——O bound = w1 = & ()

Fig. 2. N-stage dynamic network with random arc capacities.

subject to:
Yer%i () =St -1 +R(t) VieR
(8a)
Y, gkx, (&) —S()=0 VjeR (8b)
xij(t) >0 Vi,jeR (8¢c)

(1) <£,(5) Vi,jeR (8D

The recursion (7)-(8d) is defined over the planning
horizon t = 2,3,..., P with

Q(S(P)) =0 (8e)

In this problem, flows must be moved in stage ¢ in
anticipation of future events. There are no demands
at any nodes, and hence flow does not leave the
network at any point. Instead, there are random
arc capacities in each stage.

1.4. General N-Stage Networks With Random
Arc Capacities

The last and most general class of problems is
the N-stage general network problem with random
arc capacities, depicted in Figure 3. The problem is
similar to (6) with the addition of flow conservation
constraints at transshipment nodes within each pe-
riod. In this figure, the same 12 cities are replicated
in each stage. However, a city might represent a
plant, warehouse or customer.

Notationally, the problem can be described in a
similar fashion to the stochastic transportation
problem with random arc capacities. We assume, as
before, that each time period represents a stage
and that a general network connects the cities
within a stage. The important characteristic is that
all the random variables within a stage are realized
simultaneously, and the network within each stage
has a relatively general structure. Unlike the other
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Stage 1

CC“ ® ,ull(t) :

cost = c"(t)
bound = u“(f) = n‘;"(f)

Fig. 3. N-stage dynamic network, with transshipment networks in each stage.

two models, we now need to distinguish between
flows within a stage and flows between stages.
Define:

x,;;(t,t') = flow from city i in stage ¢ to city j in

stage t', where we assume ¢’ > t)

In this context we use S,;(¢) as the flow into city i
from decisions made in stages ¢t and earlier, which
can be moved in period ¢ + 1. Let x(¢) be the vector
of link flows originating in stage ¢ to stages ¢,¢ +
1,..., and let c(¢) be the corresponding vector of
link costs. Then the problem can be stated as:

min c(1)7x(1) + Q(S(1)) (9)
x(1),S(1)

subject to:
Yot Ljer¥i(Lt)
- Y, w1, D=R() VieR (9a)
Z[enxij(1,2) -S(1)=0 VjeR (9b)
x;;(1) <u;;(1) Vi,jeR (9¢c)
x;(1)>0 Vi,jeER (9d)

The expected recourse function is given by:

Q(S(t — 1)) = E;,[Q(S(t — 1), £(1))]

where
Q(S(t — 1), £(t)) = min c() x(t) + Q(S(2))
x(8), S(¢)
(10)
subject to:

Zt';z Zjeinj(t’ t') - Zkekai(t’ t)

=R()+8,(t—1) VieR (10a)

Yo Lierxi e+ 1)
~-S(t)=0 VjeR (10b)
x,(t) <g(t) Vi,jeR (10c¢)
x () >0 Vi,jeR (10d)

Equation (10a) defines the flow conservation con-
straint for each node within a stage. Note that we
use the supply vector S, (¢ — 1) to summarize in-
puts from previous stages. Equation (10b) is the
definitignal constraint for S(¢).

It should be apparent that problem (3), in addi-
tion to (6), can also be modeled as a network with
random arc capacities by using standard network
tricks, as depicted in Figure 4. Here, stage 2 has
been modified by the addition of a supersink with
links from each demand node into the super sink.
This new network can be viewed as one where the
second stage is broken into two time periods. The
first of these, time period 2, is similar to time
period 1, and consists only of a deterministic trans-



Stage 1 Stage 2

cost= T,

w—pp-  Demand
and Are bound = §,(2)

+
- =»~  Overflow Arc ©95t= G;
bound =

Fig. 4. Two-stage stochastic transportation problem, modeled
as a network with random arc capacities.

portation problem. The third time period consists of
demand arcs and overflow arcs. The upper bound
on a demand arc out of city i is the random vari-
able £,(2), which in (3) was the market demand.
However, in (3) we were constrained to satisfy the
market demand, whereas here we assume there is
a revenue associated with the market demand
(given as a negative cost) which is high enough to
encourage the optimization to satisfy some or all of
the demand. Thus if:

r; = revenue derived from satisfying the

demand in city i

then we would put a cost of —r;, on the demand
arcs out of city 7 (it is common to include not only
the cost of lost revenue but also a penalty for
unsatisfied demand). The coefficient on an overflow
arc is the cost of having excess supply minus any
salvage value. Note that the network representa-
tion depicted in Figure 4 overcomes one limitation
of the classical two-stage stochastic optimization
problem, namely that the optimization in (4) is
potentially infeasible.

Figure 4 models the two-stage stochastic trans-
portation problem as a network with random arc
capacities. It is important to note that the network
in Figure 4 is more similar to the general problem
(9) than it is to the stochastic transportation prob-
lem with random arc capacities (6). Specifically, (6)
has the property that the links with random arc
capacities are directly incident to the nodes into
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which flow is supplied. In Figure 4, flow enters
stage two at cities 1-4 at the beginning of the
stage, but the random arc capacities are on links
that are emanating from cities 1-4 at the end of the
stage.

1.5. Applications

The generic two-stage stochastic transportation
problem (3) exists more as an abstract model than
as a true engineering application, but the classical
uses of this model are generally obvious. For exam-
ple, an automobile importer will distribute a batch
of cars among a group of dealers in the region based
on forecasted demand (this is the first stage prob-
lem). After customer demands for a particular class
of car are realized, dealers may move cars between
themselves to better satisfy these known demands.
In another instance, goods are moved from plant to
warehouse and then, as demands are realized,
moved from warehouse to the customer. Large ap-
pliance manufacturers often work in this mode,
where customer demands are satisfied from a ware-
house as opposed to providing inventory at individ-
ual stores. This allows the final movement of appli-
ances from warehouse to market to be done after
the demands are known.

Transportation networks with random arc capac-
ities (9) have been used in the formulation of the
stochastic dynamic vehicle allocation problem. The
decision variables x, (¢) represent the flow of vehi-
cles from i to j in period ¢t. The random arc capaci-
ties & ,(t) are used to model the market demand
from i to j in period f{. In the dynamic vehicle
allocation problem we distinguish between two
types of movements: loaded movements, which pro-
duce a negative cost (actually a positive profit) and
are restricted by ¢;;(¢), and empty movements which
move at a positive cost and have no upper bound.
Note that the formulation (9) implies travel times
between cities of one period. There is no need to
make this assumption and the discussions that
follow do not require this assumption.

Instances of dynamic fleet management problems
arise in truckload trucking, rail and container traf-
fic, as well as (one-way) auto and truck rental. In
trucking, it is common to represent each day as a
different stage, where decisions must be made one
day in anticipation of, but without actually know-
ing, future demands. The problem is often formu-
lated over perhaps a 7-14-day planning horizon, so
that decisions made today take into account possi-
ble downstream activities. For example, the deci-
sion to accept a load from Chicago to Phoenix must
take into account that once the truck arrives in
Phoenix, it may have to move empty to Los Angeles
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before picking up a load back to the east cost. If the
model is trying to decide between this load and
another one going to Cleveland (a much shorter
distance) it is necessary to compare the two options
over the same length planning horizon.

By contrast, international container applications
are more effectively modeled on a week-by-week
basis, since ships typically depart from a port on a
weekly schedule. However, decisions made one week
may have to anticipate demands over the next 4 to
6 weeks, given the long distances involved. Thus,
the decision to move a container empty from Tokyo
to Chicago may require anticipating market de-
mands out of Chicago 4 weeks into the future.

The transportation problem with random arc ca-
pacities exhibits a special property of a bipartite
network within each stage, where decisions must
be made regarding the amount of flow from one
node to the next, and where the random variables
appear as arc capacities on links out of the supply
nodes. A problem as simple as (3), however, does
not exhibit this property and hence the concept
cannot be used. The N-stage network with random
arc capacities, (9), is introduced as a much more
general model that would arise in situations where,
within a stage, multiple moves over a transship-
ment network can be made after all the random
variables within the stage have been realized. Us-
ing standard network tricks, a broad range of
stochastic network problems can be formulated in
this way.

2. A STRATEGY FOR APPROXIMATING
RECOURSE FUNCTIONS

THE challenge of stochastic programming problems
is the analytical intractability of the recourse func-
tion, where an optimization problem is contained
within an expectation. Notwithstanding the diffi-
culty of solving this problem for a particular set of
first stage decisions x(1), we would like ideally like
to find recourse functions expressed directly as a
function of x(1). This goal is generally difficult
because of the number of dimensions of both the
decision vector x(#) and the random vector £(¢),
combined with the property that Q(x, £) is typi-
cally a nonseparable function of both variables.
The development of an approximate recourse
function requires two steps. First, the imbedded
optimization within the recourse function must be
replaced with a much simpler search procedure.
Second, the probabilistic structure of the resulting
optimal solution, conditioned on the random vector
&, must possess sufficient structure so that taking
its expectation is computationally tractable. We
propose to pursue this approach by replacing the

imbedded optimization with a restricted optimiza-
tion problem that is easier to solve. Thus, instead of
using full network recourse (which implies the solu-
tion of a network optimization problem within the
expectation), we would use restricted recourse
strategies that would approximate a network opti-
mization problem. However, the simple identifica-
tion of a restricted recourse strategy that is easy to
solve is not enough. The resulting solution must
also exhibit sufficient structure to allow the expec-
tation to be taken easily.

If we are to develop a functional approximation
to the expected network recourse function, it is
necessary to make assumptions about the structure
of the approximation. In our case, the most natural
structure is to assume that the function is separa-
ble in the vector S(1). Thus, we would like to find:

Q(S() = G(S(1)) = ¥, Q,(S,(1)) (1D

The problem now is to develop approximations
Qj(S (1)) which capture the marginal effects of
changing S(1). If a separable approximation proves
accurate, then the original optimization problem
can be solved as a pure network with possibly
nonlinear (or piecewise linear) costs. While it is
possible that more complex recourse functions may
prove necessary, the attractiveness of solving the
combined problem as a pure network (as long as
the first stage problem is a pure network) is enough
to motivate this line of investigation.

The basic strategy for developing the approxima-
tions @,(S(1)) is as follows. For a fixed vector S(1),
we wish to parametrically change S,(1) over the
range 0,1,..., n, where n is a suitably chosen max-
imum value. We wish to then find g,(s) = @,(s) —
Qj(s — 1), which gives the expected incremental
value of the s unit of flow. If we denote ij(s,,?)
the optimal expected flows in the second stage,
given a vector of input flows S(1) with the j'!
element equal to s, then g/(s) = cT[JEj(s,Z) — &(s
-1,2).

The biggest challenge in developing an approxi-
mation to the recourse function is the complex in-
teractigns between the random variables as a result
of the optimization. For this reason, it is likely we
will need to combine the use of restricted recourse
strategies with other approximations .

The development of separable approximations re-
quires simplifying the imbedded optimization
within the recourse function so that the expectation
can be handled easily. The goal is to be able to
estimate the marginal impact of increasing s in
Qj(s) for integer values of s over a specified range.
This can be viewed as optimizing the assignment



of each incremental unit of flow given the assign-
ment of the first s units of flow. The nonseparabil-
ity of Q(s), however, combined with the often diffi-
cult probabilistic structure of the problem, requires
the use of various approximations to simplify the
problem. Several methods can be used, sometimes
in combination, to achieve this, including:

1) relaxation methods,
2) linearization approximations, ]
3) probabilistic decomposition (variable splitting).

Relaxation methods induce separability by un-
bundling decisions when key constraints are elimi-
nated. Linearization approximations represent a
different mechanism that achieves the same affect,
by replacing certain nonlinear functions with linear
ones. Linearization has proved useful in the solu-
tion of multistage stochastic programs. Probabilis-
tic decomposition reduces or eliminates interactions
by redefining the random variables in such a way
s0 as to reduce or eliminate interactions between
them.

The next section reviews a specific set of re-
stricted recourse strategies for stochastic networks,
with an emphasis on stochastic transportation
problems with random arc capacities (6). After this,
section 4 introduces a new class of recourse strate-
gies that are more amenable to general networks.

3. APPROXIMATE RECOURSE STRATEGIES FOR
STOCHASTIC NETWORKS

IN this section, we focus on a family of restricted
recourse strategies that make the expectation of
the recourse function analytically tractable. Our
focus is on transportation problems with random
arc capacities (6).

We begin by reviewing simple recourse in some
depth because it is often used in the research litera-
ture, due to its analytical simplicity. Our presenta-
tion looks at simple recourse as an approximation
of network recourse. Next we discuss null recourse
and nodal recourse which successively generalize
simple recourse for certain applications. Nodal re-
course is the first interesting example of a re-
stricted recourse strategy, but it is highly special-
ized to a particular network structure. We close the
section with a presentation of a new set of strate-
gies which represent variations of extended nodal
recourse, which illustrates both the potential and
the pitfalls of this approach.

3.1. Simple Recourse

Simple recourse arises in a number of settings
where there is effectively no recourse once the ran-
dom vector is realized, aside from incurring penal-
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ties. Simple recourse can also be used in more
complex problems to simplify the interaction be-
tween the expectation and the imbedded optimiza-
tion problem within the recourse function. The heart
of simple recourse is the inclusion of a set of re-
course variables which absorb the effects of ran-
domness and therefore eliminate the interactions
between random variables. For example, consider
the expected recourse function for the two stage
stochastic transportation problem.

The classical stochastic transportation problem
in (3)-(5) can be approximated using simple re-
course by replacing the constraint ., x, (2) = £(2)
with

xii(2) + x;(2) - x;(2) = §L(2) (12)
£, (2 =0 i+j (13)

where x(2) and x;;(2) are the recourse variables,
representing, respectively, overage or underage,
which are given by:

x7(2) = max[ x,;,(2) — £(2),0] (14)
x:l(2) = max[ §1(2) - xii(2)’ 0] (15)

Let ¢,(¢) and g, ;(¢) be the coefficients of x,(¢) and
x;{(t). In the transportation problem, ¢ is the
salvage value of excess supply while ¢~ is typically
a penalty for unsatisfied demand. In other applica-
tions, however, the recourse variables can take on
very different interpretations. The effect of simple
recourse in this context is to force the problem to
satisfy the random demand ¢; in period 2 with the
flow sent to city i in time period 1, as illustrated in
Figure 5. Adding the recourse variables to the ob-

Stage 1 Stage 2

(D> te

~@:> £

@:> &3(2)

Ot

Fig. 5. Stochastic transportation problem with simple re-
course.
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jective function gives:
D(S(D), £(2) = X ¢;;S, (D)
+ 2 .g/ max[S;(1) - £(2),0]

+ Y ,q; max[ £(2) - S,(1),0]
(16)

which is the optimal solution of (16) parameterized
by S(1) and £(2). The right-hand side of (16) is a
separable function of £, and hence it is fairly easy
to take expectations of ®(S(1), £(2)). If £(2) is a
continuous (discrete) random variable then ®(S(1))
= E,[®(S(1), £(2))] becomes a nonlinear (piecewise
linear), separable function of x(1).

It is unlikely that anyone would actually use
simple recourse to solve a transportation problem
with network recourse. The development does illus-
trate, however, how a restricted recourse strategy
(achieved by the addition of the recourse variables)
can simplify the development of the expected re-
course function.

For networks with random arc capacities, the
notion of simple recourse can be given a somewhat
richer interpretation. Constraints (12)—(13) force
flows from i to j,i #J to equal zero. These con-
straints can be replaced with

x,(8) + x;;(8) — 2/ (8) = £,(¢) an
Again

x;(t) = max[xl-j(?.) - §ij(2),0] (18)

x;;(t) = max| §,,(2) — x,,(2),0] (19)

The assumption is made that x, (t) must be chosen
prior to knowing ¢,,(¢) while x;(¢) and x;(¢) must
be “optimized” for a given realization of &, (¢) (these
optimal solutions are given in (18) and (19)).

The recourse variables can be given simple inter-
pretations. x~(¢) is interpreted as lost demand and
can be assigned a penalty ¢q~. x*(¢#) can be inter-
preted as a nonrevenue producing movement of
flow. In the dynamic vehicle allocation problem,
x;(t) represents moving vehicles empty as a result
of insufficient demand. Thus x,(¢) is the total
number of vehicles allocated to move from i to j in
period ¢, with x,(¢) — x/,(#) moving “loaded” (pro-
ducing revenue, with ¢, (t) < 0) and x;(¢) moving
“empty” (at a positive cost). Most important is the
implicit assumption that x, (¢) must be chosen prior
to knowing ¢,,(¢). This can be visualized as break-
ing stage ¢ into two stages, ¢ and ¢, where x(¢) is
chosen in stage ¢, while x*(¢#') and x~(¢') are cho-
sen in stage t. Since x*(#) and x~(¢) do not
appear in any constraints for stages other than ¢,

let ¢(x; (1)) be the expected recourse function for
stage t', given by:

&(x;()) = Egijm[qi‘jx[j(t) + qi*jx;rj(t)] (20)

where x7(t) and x (t) are given by (18)-(19).
& x (t)) is a separable, nonlinear convex function in
x,(t). Adding these imbedded recourse functions to
the problem (6) with simple recourse may be writ-
ten:

min G(x(1) = (1" x(1) + B(S(1) (21)
x(1), S(1)

subject to (6a)—(6d) with
(S(1)) = E , p[®(S(), £t + D) (22)
where

D(S(), £(¢ + 1)) = min Y Y e (8)x;;(t)

x(¢), S(2)

+ ¢,(x,,(8)) + Q(S(t)) (23)

subject to:
Yer*i()=8(G-1 VieR (23a)
Zieinj(t) =S8,(¢t) VjeR (23b)
x,;(t) >0 Vi,jeR (23¢)

Note that (23)-(23c) is no longer a function of £(#),
having been incorporated into ¢, (x;(¢)). Thus
®D(S(2)) = #(S(2), £(t + 1)), implying we may re-
write (21)—(23) as a single optimization problem:

min ¥ o) x(t) + B(x(t)  (24)
x(1),..., x(P)

subject to (23a)—(23c). Constraints (23a) and (23b)
can be combined to eliminate S,(¢), producing a
single flow conservation constraint. This problem is
now a classical convex, nonlinear network flow
problem which can be solved using standard tech-
niques (see, for example, KENNINGTON and HELGA-
SON.[15])

The purpose of this section has been to review
simple recourse strategies in the context of two
important, related problems. For the two stage
stochagtic transportation problem, it is shown that
simple recourse is equivalent to simply eliminating
the network options in the second stage. For the
N-stage network with random arc capacities, sim-
ple recourse is equivalent to splitting each stage
into two stages, where the first half-stage sets the
flow variables while the second stage sets the re-
course variables. As long as flow is allowed to ex-
ceed an arc bound, at a cost (representing a nonrev-
enue-producing movement of flow), the resulting
problem is a deterministic nonlinear network.



The real purpose of simple recourse is to replace
a complex, nonseparable recourse function with a
simpler, separable one. Simple recourse accom-
plishes this via exceptionally strong assumptions,
producing models that are unlikely to succeed in
most practical applications (where network re-
course is the appropriate model). In the remainder
of this paper, we review alternative recourse strate-
gies that produce computationally feasible algo-
rithms without the strong assumptions required by
simple recourse.

3.2. Null Recourse

For problem (6), simple recourse can be viewed as
replacing each link with flow x;(#) with two links
carrying flow x, (¢) — x/,(¢) and x(t), respectively.
If & j(t) <x; j(t), flow is pushed in response from
the primary arc onto the overflow arc. In the con-
text of the dynamic vehicle allocation problem, this
is equivalent to saying that if a vehicle cannot move
loaded over a link, it will move empty anyway. It is
generally the case that g} < qu, meaning that hold-
ing flow in a city (on the overflow arc) may be much
less expensive than the overflow cost for a link
moving to another city j. A more efficient strategy,
then, might be to let the overflow fall onto the
(unbounded) inventory link. Null recourse can be
illustrated as shown in Figure 6 as a process
whereby flow “spills” from a bounded link onto an
inventory link. The total “spilled” flow on the in-
ventory link, x/(¢), is given by:

xi(t) = ¥, cpmax| x;;(8) — £;(¢),0] (25)
The original recourse function:
Q(S(t — 1)) = Eg(t)[ljlcl(itl)l Zien }:jenxij(t)cij]
subject to:
Ycr®i(t) =8, VieR(-1)
x; () <§;(t) Vi,jeR
can be replaced by the null recourse approximation:
QUS(t — 1), x(¢))
= E; )| L ,cp Ljenmin(x;;(2), £;(0)e;;
+ ZieR ZjeRmax(xij(t) - §ij(t):0)qz'+i]

The imbedded optimization is handled by the
recourse variables, leaving a problem that is still a
function of x(%), but outside of the expectation. The
expectation is now fairly simple, leaving a nonlin-
ear function of x(¢) which can be optimized using
standard methods.
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Fig. 6. Illustration of the null recourse strategy, with over-
flow spilling to the inventory link.

Now, the total flow moving from i to jis x,;(¢) —
x;(t), which is a random variable. This implies that
S(2) is a random vector, making a three (or more)
stage problem extremely difficult to solve exactly.
The nested expectations and optimizations implicit
in (6)—(8) make N-stage problems computationally
intracable. POWELL (!*! presents an approximation
whereby the random variables S/(¢), i =1,...,R
are treated as independent with approximate dis-
tributions fit around the mean and variance of each
random variable. This approach produces a nonlin-
ear programming problem that can be solved effi-
ciently.

Null recourse is a slightly more realistic strategy
than simple recourse, but still represents a very
strong assumption compared to full network re-
course. The next section further generalizes null
recourse.

3.3. Nodal Recourse

Simple and null recourse are both policies where
realizations of the random vector £(¢) are handled
by using an overflow option. An overflow option is a
simple example of a hierarchical recourse strategy,
where we try to put flow on one link but, if it is
restricted by a random capacity, specify that any
excess be put on a specified overflow link. This
constitutes a two-level hierarchy (for each link).
Most importantly, these strategies are examples of
replacing a difficult optimization problem with a
much more restrictive one which simplifies taking
the expectation of the recourse function.

Nodal recourse generalizes both simple and null
recourse by providing for multiple overflow options,
which can be viewed as a multilevel hierarchy. The
concept of nodal recourse is developed in the con-
text of problem (9), and does not extend easily to
more general stochastic networks. It does, however,
illustrate another example of a restrictive recourse
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strategy which allows a recourse function to be
solved directly.

Let 8,(t) denote the hierarchy of options for flow
out of region { at time ¢, where:

8:(2) = {8,,(8), 8;5(8),..., 8;x(t)}

In this vector, §;,(¢) is the n™ option for a unit of
flow, which is used if the first n — 1 options are
unavailable. Throughout this section we use N to
denote the number of options available in any given
list. An option represents the ability to move over a
link, and the nodal recourse vector captures the
ability to spill from one link to the next. However,
eventually it is necessary to provide an overflow
option to guarantee feasibility. Let:

A,;(¢) = symbol representing the option to move
over the link (i, ¢, ;)

E,(¢t) = symbol representing the option to move
over the overflow arc for link (i, ¢, j)

The move over the link (i, ¢, ) occurs at a cost
c;(t), while the overflow option carries a penalty
+

q; j(t). A simple nodal recourse strategy might be:
Sl(t) = {Ail(T)’ Ai2(t), Ai4(t), Elg(t)}

This policy would read: “move over the link from i
to 1, if possible; otherwise, move over the link from
i to 2, if possible; otherwise, move from i to 4, if
possible; otherwise, overflow from : to 3.” The
spilling process from one link to the next is illus-
trated in Figure 7.

The optimization problem posed by simple nodal
recourse involves finding a suitable permutation of
options in the vector §,(¢). One simple method for
solving this is to find a set of values w,,(¢) where:
w;,(t) = conditional marginal value of a unit of
flow using the n® option out of (i, ¢).

S0 $GK

FOUE0)

Fig. 7. Illustration of the nodal recourse strategy, with flow
spilling from one link to the next out of a given node.

One scheme for calculating these values is:

win(t)

¢, (t) + pi(t + Dif the n'® option is to
move over link (i, ¢, j)

q;;(t) + p;(t + Dif the n'® option is to
move over the overflow

where pi(t + 1) is an estimate of the marginal
value of another unit of flow to (j,¢ + 1). The op-
tion vector §,(¢) should now be chosen so that:

wil(t) < wiz(t) < < wiN(t) (26)

Nodal recourse is the first interesting example of a
strategy we call hierarchical recourse, which is dis-
cussed more thoroughly in section 4. Here, we rank
a set of options over which flow can be moved using
some criterion, and then we incrementally add flow,
moving down the list of options as specified in the
traversal list 5,(¢). The probability the 2" unit of
flow moves over a given option depends on the
amount of capacity jointly available for all the op-
tions after the first 2 — 1 units of flow have been
assigned. To determine these probabilities let:

U,,(t) = capacity of the n" option.
£.(t) if8,(1) =4,
=Y _ J ©7)
*® if tf[n(t) = Eij

Ul(t) :{[Jil(t), caey [JlN(t)}
Y,2(¢) =flow allocated to the n® option after &
units of flow have been moved through
node (i, t)
YE() ={YA(@),..., YA®)
V,,(t) =available capacity on the n™® option after
k units of flow have been assigned
=U.(t) = YEOVE® =(VE@),...,VE@)

Now let

d* (t) =probability the 2 unit of flow is
dispatched on the n* option
- =Prob[}],_ Vi) =00 Vi) > 0]

(28)

Thus the kth unit of flow is dispatched on the n'
option if there is capacity remaining on the n'h
option but no capacity on the first n — 1 options.
The critical quantity here is the residual capacity,
V:(t), which gives the amount of capacity remain-
ing after £ units of flow have been assigned. It is
the complexity of the probabilistic structure of this



vector that makes many problems intractable, forc-
ing the use of recourse strategies that have special
structure.

The general use of restricted recourse strategies
to develop approximations of recourse functions ap-
pears to be relatively new. The notion of nodal
recourse was first introduced by POWELLP*®! for the
stochastic, dynamic vehicle allocation problem.
More recently, FRANTZESKAKIS and POWELL!?! show
how nodal recourse can be used to approximate the
recourse function Q(S(2)) as a separable, piecewise
linear function, allowing (6) to be solved as a pure
network. The key to nodal recourse is that realiza-
tions of random arc capacities for arcs incident to
node (7, ¢) control the movement of flow out of node
(,t). This approach is particularly well suited to
dynamic transportation problems with the form of
problem (6).

Nodal recourse is a classical example of a re-
stricted recourse strategy where the imbedded opti-
mization within the recourse function is forced to
consider a narrower set of options. Thus, instead of
considering all possible solutions to a network prob-
lem, we constrain ourselves to the set of permissi-
ble flows allowed by our restricted set of recourse
strategies. Since we are constraining our search,
our approximate recourse function will produce
higher overall costs. The goal is to find a set of
recourse strategies that yields a good approxima-
tion of the actual recourse strategy but still allows
the expected recourse function to be expressed di-
rectly as a function of its arguments.

Nodal recourse is well suited to problems such as
(6), which involves bipartite networks in each stage.
Especially important is the property that links with
random capacities are incident to the nodes at the
beginning of each stage. For these problems, we
need to find a suitable permutation of the option
vector 5,(¢) for each city i that minimizes costs for
periods (stages) t,t + 1,..., P. A second problem is
showing that for a given option vector 8(¢), we can
express @Q(S(¢t — 1)) as a function of the vector
S(t — 1). This can be accomplished by replacing the
expected recourse function Q(S(t)) for period ¢ + 1
with a linear approximation. This linearization ap-
proximation serves to decouple the choice of the
option vector §,(t) for each city ¢ (inducing separa-
bility) and greatly simplifies the calculation of
Q(S(t — 1)).

3.4. Extensions of Nodal Recourse

The notion of using a restricted set of recourse
strategies to develop approximate recourse func-
tions offers the possibility of addressing more dif-
ficult problems. In addition, we would like to
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improve on the accuracy of the approximation pro-
vided by simple nodal recourse. In this section, we
propose several extensions to nodal recourse, in-
cluding generalized nodal recourse, partitioned
nodal recourse, and extended nodal recourse. Like
nodal recourse, these policies are all restricted to
problems like (6). However, their description illus-
trates how different approximations may be built.
The presentation begins with generalized nodal re-
course, which illustrates how apparently simple
heuristics for optimizing the problem can lead to
intractable solutions from the perspective of taking
expectations.

An obvious limitation of nodal recourse is that it
imposes the restriction that every unit of flow
through node (i, t) is dispatched with the same
policy vector 8,(¢). An extension, referred to here as
generalized nodal recourse, uses a different policy
8%(t) for the &' unit of flow. The motivation is that
the marginal value of a unit of flow in region i,
time ¢t + 1 declines with each unit of flow, suggest-
ing that a declining set of values p*(¢ + 1) should
be used for the k™ unit of flow instead of the
constant values used in simple nodal recourse.

The complication with generalized nodal recourse
is that it is very difficult to calculate the dispatch
probabilities d#(¢) when the nodal recourse vectors
8%(t) are not the same for all k. To see the diffi-
culty, assume:

Sil(t) = {A12 ’ A13: A14’ EIZ}
6i2(t) = {A14y A13’ A127 EIZ}

For policy 62(¢) above, A, is now a lower ranked
option but for the first unit of flow was a higher
ranked option, destroying the probabilistic struc-
ture of the residual capacities. Thus, we have to be
careful that a restricted recourse strategy exhibits
enough structure to allow the expectation to be
found easily.

This problem is avoided using a policy termed
partitioned nodal recourse. Divide the options A,
j=1,..., R into mutually exclusive sets. Then, we
define restricted option policy vectors, 8{/(¢) which
must draw from one of these sets. For example, we
might have:

6i(1)(t) = {A127 A15: EIZ}
(Siz(t) = {A14, Au, A165 EIZ}
6i3(t) = {A17, A137 E14}

Now, we would set 6/(¢t) = 6{(¢) for some . The
resulting policy structure would be very easy to
analyze probabilistically, as long as we remain
within a single stage.



16 / W. P. POWELL AND L. F. FRANTZESKAKIS

Note that simple and null recourse strategies can
be viewed as extreme examples of partitioned nodal
recourse. Simple recourse uses policy vectors of the
form:

8H(t) = 80(2)
= {AU, Eij}
while null recourse uses:
85(t) = 8
={A,,,E;}

i1} 4
For both simple and null recourse, we have the
problem of deciding in what order to sequence the
policy vectors 5{"(¢).

A different approach to avoiding the difficulties of
generalized nodal recourse is to use extended nodal
recourse, which works as follows. In nodal recourse,
each option may appear only once in the policy
vector, and the capacity of each option is defined by
U(t) in (27). Assume now that we allow options to
appear multiple times, such as:

Bie(t) = {A14, Ayg, Ay, Eqp, Ay, By, El2}

Associated with this extended option vector are
extended option capacities:

Ug (1) = (US(1), U (1), Us(8), U5 (2),
Us(8), U (1), U ()

These new option capacities will, in general, be
random variables, and may be built in a variety of
ways. To produce a computationally tractable pro-
cedure, the random variables should be indepen-
dent. Also, the last option should be an infinite
capacity overflow option to insure feasibility.

Extended nodal recourse creates the effect of dis-
tributing flow among a broader range of options.
Simple nodal recourse can produce an extreme so-
lution if a large amount of flow is pushed over a
link with a large upper bound (or onto the highest
ranked overflow option). Furthermore, if an effec-
tive strategy can be developed to calculate the ca-
pacities US(¢), then the resulting policy is computa-
tionally very easy.

4. HIERARCHICAL RECOURSE STRATEGIES

NODAL recourse, and its various extensions, is fun-
damentally a policy which induces separability in
the recourse function for stage ¢, Q(S(t)), by re-
stricting possible choices to a prespecified option
vector. The approach is well suited to problem (6),
but is limited in its application to other problems,
since the approach defines a recourse strategy at a

node dependent on the random capacities of links
incident to that node. To see the limitation of this
approach, consider using the policy on the classical
two-stage stochastic transportation problem. Refer-
ring to Figure 4, note that the links emanating
from nodes at the beginning of stage 2 are un-
bounded, implying that ¢;(2) = < for these links.
Because the arcs with random capacities are re-
moved one link away, the nodal recourse policy at
the beginning of the stage is ineffective. Further-
more, applying nodal recourse to the nodes from
which these random links do emanate is equivalent
to simple recourse since there is only one link out of
each node. This relatively extreme behavior carries
forward to general stochastic network problems
with random arc capacities.

Nodal recourse has two fundamental shortcom-
ings:

1) Information about the expected behavior of stage
(¢ + 1), given S,(¢) and policies §,(¢), needs to be
communicated back to stage ¢ (the linearization
of the recourse function at time ¢ destroys this).

ii) Information about realizations of random vari-
ables on downstream links within stage ¢ needs
to be communicated back to links at the begin-
ning of the stage.

We begin by addressing issue (i) above in the
context of a two-stage general network with ran-
dom arc capacities. Section 4.1 reviews an idea
originated by WALLACE®®], which was used to de-
velop piecewise linear bounds for stochastic net-
works. This section introduces the notion of cyclic
recourse which is represented as a special case of
what are referred to here as hierarchical recourse
strategies. Sections 4.2 and 4.3 then present differ-
ent types of hierarchical recourse strategies for
dynamic, acyclic networks.

4.1. Cyclic Recourse

In WALLACE,?® a simple approach is presented
which can be used to develop piecewise linear
bounds for general networks with random arc ca-
pacities. Consider the sample network shown in
Figure 8a which represents the second stage of a
two-stage general network with random arc capaci-
ties. Let G = (N, A} represent the graph and let
L = | Al be the number of links. We begin by solving
(9) using Q(S(1)) = Q(S(1), £°(2)), where we are
fixing the market demands to a constant vector
£9%2) (for example, we might use £°%(2) = E[ £(2)).
Let x%2) be the optimal flows for this problem,
where these flows must of course satisfy (6a-d).
Now define z(2) = x(2) — x%2) to be the changes in
the flows in the second stage relative to the base
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(a)

O

(b)

Fig. 8. (a) Sample second-stage transshipment network. (b) Decomposition of second-stage network into cycles.
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solution. The general recourse function may now be
written as:

V(£(2) = n1(i21)10T(z(2) + x%(2)) (29)

subject to:
2,22 =0 YjeR (29a)
2,/(2) < §;(2) —x)(2) Vi,jeR (29b)
2,/(2) > —x)(2) Vi,jeR (29¢)

Any flow vector for the network in Figure 8a can be
decomposed into a set of cycles shown in Figure 8b.
Let d'® be the L-dimensional incidence vector giv-
ing the links in the m™ cycle, and let M be the set
of cycles (we do not assume that all the cycles in
the network have been enumerated). Finally let
B,, = cTd™ be the cycle cost, and let F, be a
scalar random variable denoting the cycle flow. We
can let x™ = F _d™ be the set of link flows in-
duced by cycle d'™.

The problem is in finding the cycle flows x!™
taking into account the potentially complex interac-
tions that may exist among the cycles.

WALLACE solved this problem as follows. First,
assume that the cycles are ordered so that

By <By< - < By (30)

Since cycle 1 has the most negative reduced cost,
we give it the highest priority for receiving flow
(that is, the top of the hierarchy). Now assume that
the random variables ¢;; satisfy

0< &, <& (31)
and let
£ = min{£7e*|d(™ = 1} (32)

Thus ¢ is the smallest maximum upper bound
of all the links in cycle m, implying

0<F, <¢m (33)

Consider another link appearing in the highest
priority cycle with upper bound ¢;; with a distribu-
tion as shown in Figure 9a. We can create a new
random variable

£D = min{¢,, £V} (34)

which is the highest possible binding capacity for
link (i, j) for cycle 1. Now let 5(1) =¢&; — &8 Dbe
the slack capacity. The distributions of &P and £
are depicted in figures 9b and 9c. Note that 5

and & £(0) are complementary random variables in

that they satisfy
(em-epé) -0 @

Thus, keeping in mind that £}’ and éi(j” are not
independent, we note that

£, ~ £ + £ (36)

Equation (36) implies that this approximation is
equivalent to splitting link (i, j) into two links,
where the first link has upper bound ¢\’ and is
devoted solely to cycle 1. The other link contains
the residual capacity £, which may now be allo-
cated to cycle 2 (let ¢/? = 0 if cycle 2 does not use
this link). Applying this procedure for each cycle in
order, and for all links within each cycle, produces
a new network where none of the cycles interact,
illustrated in Figure 10. Now it is quite easy to find
the expected flows around the network, giving us at
least a bound on Q.

We call this method cyclic recourse because real-
izations of random variables are handled by push-
ing flow around a cycle. The recourse available to
handle a specific realization of ¢ is to move flow
around prespecified cycles in a fixed order. Further-
more, we place this particular solution approach
into a class of recourse strategies we call hierarchi-
cal recourse strategies because we rank each cyclic
response using (30) and greedily allocate capacity
based on this rule. Finally, we simplified the calcu-
lation of the expected flows using a particular vari-
able splitting technique that decomposed random
variables into summable parts. Variable splitting is
a special case of a class of procedures we refer to as
probabilistic decomposition, whose function is only
to simplify certain difficult probability calculations.

Note that it is not necessary that all the cycles of
a network be enumerated. Any subset will provide
a valid bound, although more complete sets will
produce tighter bounds. A variety of strategies can
be used to find cycles. One suggested by WALLACE is
to solve (29) with ¢ = ¢™%*, with optimal flows
x™e* Now we may find a conformal realization of
x™%* (ROCKAFELLAR??!) which decomposes x™** into
a (nonunique) set of cycle flows.

Whiile WALLACE’s approach is a powerful and cre-
ative concept, under certain circumstances it pro-
duces very weak bounds (FRANTZESKAKIS and
PoweLLl ) More importantly, from the perspective
of this paper, it falls short of realizing the full
potential of the approach. First, a single conformal
realization of a vector of link flows is likely to
produce a relatively small number of cycles. Several
procedures could be used to generate a wider range
of cycles (for example, solve ¥(¢) for many realiza-



P(E’ii)
0.8 -
0.6+
(1)
Pl E,‘ ij ) 0.4

0.2 4

0.0

(c}

Fig. 9. (a) Distribution of a random arc capacity for an arc
which shares two cycles. The maximum possible flow on the first
cycle is 3. (b) Distribution of the capacity allocated to the first
cycle, bounded by 3. (c¢) Distribution of the residual capacity for
the second cycle.

tions of ¢ and accumulate the cycles produced by
each set of conformal realizations). Using this larger
set M of cycles, again rank them using (30), creat-
ing a hierarchical set of cyclic recourse policies.
Now, assign flow to the highest ranked cycle. Next,
put as much flow on the second ranked cycle, tak-
ing into account the residual capacity from the first

cycle. If &7 is the residual capacity after cycles
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1,...,m — 1 have been assigned, then realizations
of &7 are accounted for by changes in flows on
cycles strictly lower in the hierarchy.

The problem of working out the distributions of
the link capacities &7 after m cycles have been
assigned is a separate (albeit nontrivial) issue. The
variable splitting approach used by WALLACE is a
highly restrictive approach which can result in very
weak bounds. For example, it is likely that the
highest ranked cycle on a link will take all the
capacity of that link, leaving no residual capacity
for lower ranked cycles. FRANTZESKAKIS and
PoweLL!'*! present alternative approaches which
are computationally efficient with significantly bet-
ter results. The important issue is the notion of a
predefined set of cycles which have a fixed hiearar-
chy which determines the order in which each cycle
is given the opportunity to receive flow.

This approach is used by WALLACE to provide a
bound for the recourse function for a given vector
S(2). This bound does not provide a tool that would
help with optimizing (9) since it does not yield an
approximation of the recourse function. The concept
of cyclic recourse, however, is a powerful one be-
cause it provides a far more flexible and realistic
model of the true recourse function. Below, we ex-
tend this concept to develop procedures that can be
used to actually optimize (9).

4.2. Path Recourse

For acyclic networks (which are more typical of
true dynamic models) it is more natural to think of
paths rather than cycles. Consider, for example, the
network shown in Figure 1la, representing the
second stage of a general network with random arc
capacities. This network may be at least partially
decomposed into a set of paths from the initial
nodes (with supplies S(2)) to a supersink. A sample
of such paths is depicted in Figure 11b. A variety of
schemes can be formulated to develop this list of
paths. Let d™ be the arc-length incidence vector
denoting path m, and let 8,, = c’d™ be the cost of
each path (we use the same notation as for cyclic
recourse because the concepts are not fundamen-
tally different). Ranking the paths from least to
most cost, we now have another hierarchical re-
course strategy. As with cyclic recourse, we again
have a difficult probability problem determining
the expected flow on each path (the difficulty is
that we need to know the distribution of the resid-
ual capacity after the first m — 1 paths have been
assigned). However, this is a separate task and
different schemes can be devised to simplify these
calculations. For example, we can use variable
splitting to ensure that the path capacities are
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—__ CYCLE1
--- CYCLE2
-------- CYCLE 3

Fig. 10. Decomposition of network into three cycles over split
links to eliminate bundling of the cycle flows.

independent random variables. Alternatively, if the
problem has the structure of a transportation prob-
lem, then path recourse is equivalent to nodal re-
course, which has a very simple probabilistic struc-
ture. As long as we can work out the probabilistic
structure of the residual capacities on the paths, we
can find expected path flows (which provides a
bound on the recourse function) and, possibly, an
approximation to the recourse function itself.

Path recourse can be viewed as a different form
of cyclic recourse, since we can form a cycle with
any path by simply adding the inventory links. In
this interpretation, flow added to a path represents
flow subtracted from an inventory link. In cyclic
recourse, flow conservation is maintained at all
nodes, which means the concept is only useful for
developing bounds on the recourse function for a
fixed first stage vector x(1). Path recourse, how-
ever, can be used to approximate the recourse func-
tion Q(S(1)) by incrementally increasing S,;(1) for a
particular region i. Path recourse is used to approx-
imately optimize how this incremental unit of flow
is routed over the network in the second stage. This
process can be used to build a convex, separable
approximation of @(S(1)) which can then be used in
the optimization of the first stage problem.

4.3. Stochastic Path Recourse

Hierarchical cyclic and path recourse are effec-
tive concepts for a two-stage program but do not
extend to N stages. Figure 12a depicts stages 1
through 4 of a four-stage network with random arc
capacities. Assume that we wish to decompose this
into paths such as that depicted in Figure 12b.

Let F, be the flow on this path, and let £, £2,
£3 and £* be the upper bounds on the first four

O '®) PATH 1.
O O O
O O
@) PATH 2.
O O O
O
O O PATH 3.
O

(b}

Fig. 11. (a) Transshipment network for the second stage of a
two-stage problem. (b) Decomposition of second stage into path
flows.

links of the path, as shown. £ is the realization of
the demand in the first stage. Then we might ex-
pect the flow on the path to be given by:

F, = min{£', £2,¢%, ¢4} (37)
However, this expression implies that the flow on
the first leg of the path must anticipate the bounds
on the second and third legs which fall in later
stages, thus violating the nonranticipativity condi-
tion of stochastic programming. Decisions made in
period ¢t can use only distributional information
about later periods.



®

Fig. 12. (a) Three-stage stochastic network. (b) Single path
through three-stage network. (¢) Path splitting through a multi-
stage network, showing multiple trajectories.

To circumvent this problem, we introduce
stochastic path recourse, which decouples each stage
in the following way. We begin by choosing a single
path through stage 1 (in the case of the network in
Figure 12a, this path is comprised of a single link,
but in a more general network may move through
several transshipment points). Let R™(1) be the
vector of supplies we are trying to push over the
m'™ path in period 1, where ), R™(1) = R(1), the
initial input vector (if the single path departs from

RESTRICTED RECOURSE STRATEGIES ,/ 21

city i, then RT(1) = 0 for j # i). Now let S™(1) be
the vector of supplies created for stage 2 as a result
of flows moving over the m™ path in stage 2. We
next have to push S™(1) units of flow over paths in
stage 2, which means we must have a range of
options available in period 2, as well as in all later
periods (we are not allowed to let realizations of
link capacities in period 2 to affect the flows in
period 1). We may choose a set of possible paths in
period 2 which will then be hierarchically ranked,
and flow will then be allocated to each of these
paths in order. For the network in Figure 12a, this
process is equivalent to nodal recourse (since each
path is one link long). The resulting “stochastic
path” is illustrated in Figure 12c. Note that this is
a single path, and the cost of the path requires
assigning probabilities to the possible paths in later
stages. Again let 8, be a measure of the value of
path m over all N stages. We would like g, to be
the expected cost of the path, but at this point we
are unable to calculate the probability each link
will be used since it depends on the other flows in
the network. We could calculate path probabilities
on an empty network, so that 8, would be the
expected value of a path if it receives the first unit
of flow, but it is only an approximate measure of
the value of a path for subsequent units of flow.
Alternatively, B8,, might be the cost of the path in
stage 1 plus an approximate value of another unit
of flow at the appropriate node at the beginning of
stage 2.

After a set of stochastic paths are enumerated,
they are ranked on the basis of B,, and flow is
assigned to each path in order. In general, we will
not be able to calculate the expected flow using
each path because the probabilistic structure of the
residual capacities after m — 1 units of flow have
been assigned will be very complex. However, we
may be able to impose restrictions on the structure
of the stochastic paths, similar to those used in the
various nodal recourse strategies. For example, the
various schemes for ranking options in nodal re-
course, whereby outbound links are kept in the
same order for each additional unit of flow, repre-
sent a mechanism for simplifying these calcula-
tions.

A final remark on stochastic path recourse is
suggested by Figure 12¢. It is possible, under cer-
tain stationarity assumptions, that the path stage
vector, S™(t), may possess a limiting distribution
as t — . If this is the case, then it may be possible
to eliminate the need to specify a fixed forecast
horizon N, thereby avoiding classical truncation
€rrors.
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4.4. Using Hierarchical Recourse
in Optimization

The work by WALLACE[®! as well as many others
(Dura'%, BIRGE and WALLACE'®)) is oriented toward
providing bounds for the recourse function Q(S(2))
but does not directly address the problem of opti-
mizing the original problem (3, 6, or 9). For this
purpose, one approach is to develop an approxima-
tion of Q(S(2)) which can then be used with classi-
cal optimization techniques. Simple recourse strate-
gies easily yield analytical expressions. FRANTZES-
KakiS and PowELL!'?! show how nodal recourse can
be used to develop a separable, piecewise linear
approximation of @(S(2)), yielding an equivalent
network formulation of the original optimization
problem.

Stochastic path recourse can be used to directly
optimize the network by incrementally loading the
network with flow, providing what may be an effec-
tive heuristic for solving large stochastic programs.
The approach is a kind of stochastic generalization
of the BUsacker and GOweN!"! procedure for solv-
ing minimum cost flow problems, whereby flows are
incrementally added to least-cost flow augmenting
paths in a network.

5. SUMMARY

THE PURPOSE of this paper has been to expose a new
class of restricted recourse strategies that may be
used to solve stochastic dynamic networks. The goal
of this research is to develop approximations of the
recourse function that may be used to directly solve
the original optimization problem subject to re-
course. Up to now, simple recourse has been the
primary mechanism for accomplishing this, whereas
other research has focussed primarily on bounds for
the recourse function. These restricted recourse
strategies can be used to develop bounds (as was
done by WALLACE28]), but the real value is in devel-
oping approximations of the recourse function which
allows the first stage problem to be solved in a
simple and straightforward manner.
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