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1. Introduction. We consider a class of multistage problems called the lagged asset acquisition problem.
An integer amount xt of a single asset is purchased at time t, t = 0� � � � � T − 1, to be used to satisfy a demand
that occurs only at a fixed time T . The price Pt that we pay to acquire assets at time t follows a Markov process.
In most practical applications, the price trends upward, but downward fluctuations create buying opportunities.
We do not realize the demand �D until time T , at which point we receive a random revenue r̂ multiplied by the
smaller of �D and the total we have ordered up to this point. In our problem, xt is a scalar quantity and can only
depend on the prices P0� � � � � Pt . The goal is to determine x0� � � � � xT−1 that maximizes

Ɛ

[T−1∑
t=0
	−Ptxt
+ r̂min

(
�D�

T−1∑
t=0
xt

)]
� (1)

This problem arises in a number of settings. An energy company may be purchasing futures contracts for oil
or gas to lock in a lower price now. Companies purchasing expensive equipment (aircraft, locomotives, power
transformers) can often pay less if they place orders for further in the future. Shipping companies purchase space
on container ships for a year or more in advance to guarantee space. All of these decisions are made before
knowing the true demand, the prices, and the revenues in the future.
Our problem could be solved using classical backward dynamic programming, but two issues might prevent

it. First, we may not know the probability distribution of prices, demands, and revenues. There has been an
increasing interest in solving stochastic optimization problems using a distribution-free, nonparametric approach.
Distribution-free revenue management and multiproduct pricing application can be found in van Ryzin and
McGill [27] and Rusmevichientong et al. [18], respectively. A single-period newsvendor problem and its multi-
period extension, when the demand distribution is unknown, are considered in Levi et al. [14]. They established
bounds on the number of samples required to guarantee that with high probability, the expected cost of the
sampling-based policies is arbitrarily close to the optimal policy. Second, even though the state variable only has
two dimensions (price and quantity, which we assume are discrete), our state space can still be quite large. In §7,
we report on experiments where the state space has as many as 16 million possible values. If we assume the
probability distributions are known, exact solutions using classical methods require up to 6.7 hours to compute.
Even with one-dimensional state spaces, the cardinality of the state space may still lead to prohibitive com-
putational requirements. In the context of a single-item stochastic lot-sizing problem with known distribution,
Halman et al. [11] develops approximation algorithms to deal with it. They also prove that finding an optimal
policy is NP-hard.
The goal of this paper is to prove convergence of an algorithm that proceeds by solving problems of the form

xnt = argmax
x∈
0� � � � �Mt�

−Pnt x+ �V n−1t 	Pnt �R
n
t−1+ x
�
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where Rnt = Rnt−1 + xnt captures cumulative past purchases, �V n−1t 	Pnt �R
n
t 
 is an approximation to the dynamic

programming optimal value function, Pnt is a sample realization of the price we must pay for purchases at time t,
and Mt is a known natural number.
Our algorithm and its convergence proof rely on the fact that both the optimal and the approximated value

functions �V nt 	Pt�Rt
 are piecewise linear and concave in the asset dimension with break points on the integers.
If we define 	F n−1t� Pnt �R

n
t−1
� �→�, where

	F n−1t� Pnt �R
n
t−1
	x
=−Pnt x+ �V n−1t 	Pnt �R

n
t−1+ x
� (2)

then the slopes of 	F n−1t� Pnt �R
n
t−1
	x
 to the left and right of xnt (which is an integer break point of 	F n−1t� Pnt �R

n
t−1
	x
) are

used to update �V n−1t−1 obtaining �V nt−1. As we can see from Equation (2), the slopes used to update �V n−1t−1 both
depend on the sample information given by Pnt and on �V n−1t , which at iteration n is only an approximation of
future profits. As a result, the slopes are biased, causing complications in the convergence proof.
The convergence proof requires that the price process Pnt has finite support. However, this assumption is not

restrictive, as a Markovian discrete process can be obtained from a Markovian continuous process if the original
probability distribution is adjusted accordingly to reflect a chosen discretization/truncation scheme. Nevertheless,
for theoretical purposes, the discretization increment can be arbitrarily fine. We must note that for an actual
implementation of our algorithm we are able to use a continuous price process because we follow sample paths
(discretization occurs only in the representation of the value functions).
The dependence on sample information and on the approximation of the value function in the future is common

in approximate dynamic programming algorithms (see Bertsekas and Tsitsiklis [4], Sutton and Barto [22]),
where an approximation of the future is used to make decisions now, stepping forward in time. The use of
separable, piecewise linear approximations has already proven effective on very difficult classes of stochastic
resource allocation problems (see Godfrey and Powell [10], Topaloglu and Powell [24]), but as of this writing
there are no convergence results for multistage problems.
Our proof technique combines ideas from the field of approximate dynamic programming (notably, Bertsekas

and Tsitsiklis [4]) as well as the proof of the SPAR algorithm (successive projective approximation routine) in
Powell et al. [16]. Our algorithm is modeled after the SPAR algorithm, which is presented in the context of a
two-stage problem. The result is a rare instance of a provably convergent approximate dynamic programming
algorithm that uses pure exploitation, which is to say that the decision xnt that we make now (based on the
value function approximation �V n−1t ) determines the state we visit at t + 1. Current proofs of convergence for
approximate dynamic programming algorithms such as Q-learning (Tsitsiklis [26], Jaakkola et al. [13]) and
optimistic policy iteration (Tsitsiklis [25]) require that we visit states (and possibly actions) infinitely often. A
convergence proof for a real time dynamic programming (RTDP) (Barto et al. [3]) algorithm that considers a
pure exploitation scheme is provided in Bertsekas and Tsitsiklis [4, Proposition 5.3 and 5.4], but it assumes that
the initial value function approximations are optimistic in the sense that they are smaller (for a minimization
problem) than the optimal ones. It also assumes that the distribution of the random variables are known. We
make no such assumptions, but it is important to emphasize that our result depends on the concavity of the
objective function.
There are a number of competing approaches to this problem. Because our problem requires integer solutions,

we can use any of a vast range of approximate dynamic programming algorithms (Bertsekas and Tsitsiklis [4]),
but these lack provable convergence without forcing the algorithm to sample states and actions infinitely often.
It should be noted, though, that there is a family of provably convergent algorithms (Singh et al. [21]) that
performs decaying exploration schemes and is more likely to achieve better rates of convergence than algorithms
where the exploration selection is employed in a more simplistic way. Boltzmann and �-greedy exploration
are part of this family of algorithms. From the field of stochastic programming, there are several flavors of
Bender’s decomposition that can be used (Van Slyke and Wets [28], Higle and Sen [12], Chen and Powell [6]).
However, these methods will not handle the random price issue. Another powerful technique is sample average
approximation (SAA) (Shapiro [19]), which relies on generating random samples outside of the optimization
problems and then solving the corresponding deterministic problems using an appropriate optimization algorithm.
Numerical experiments with the SAA approach applied to problems where an integer solution is required can
be found in Ahmed and Shapiro [2].
The contributions of the paper are that (a) we propose an approximate dynamic programming algorithm (which

avoids the need to enumerate the state space) for the lagged asset acquisition problem; (b) we prove convergence
of the algorithm, which is complicated by the fact that it uses pure exploitation and a projection operation that
enforces concavity of the approximate value function at each iteration; and (c) we show empirically how the
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rate of convergence of our algorithm compares to the rate of convergence of other approximation methods such
as RTDP and �-greedy.
This paper is organized as follows: Section 2 defines the problem and the corresponding dynamic programming

model. Section 3 describes the algorithmic strategy. Section 4 introduces notation and assumptions for the
convergence analysis. Section 5 presents a sketch of the convergence proofs and §6 provides the full proofs.
Finally, §7 provides some experimental comparisons against the optimal policy and other approaches and §8
presents the conclusions.

2. Problem formulation and model. In this section, we give a precise description of the problem considered
in this paper as well as the assumptions. We also provide the dynamic programming model associated with the
problem and identify the structural properties that are exploited in our proof.
The problem is to determine, in each time period t = 0� � � � � T −1, how much should be purchased of a given

asset to meet a positive discrete integer random demand �D at time T . A strictly positive price Pt is charged for
each unit of asset purchased at t and a strictly positive bounded random reward r̂ is received for each unit of
satisfied demand.
We denote by xt the amount purchased at each period and we require that xt ∈ 
0� � � � �Mt�, where Mt is a

known natural number. Moreover, xt only relies on information available up until time period t. The price process
P = 	P0� � � � � PT−1
 is a Markov process independent of the asset level, with finite support � =�0×· · ·×�T−1.
The objective is to maximize the expected profit, given by Equation (1).
The decision xt at each period t depends both on the current unit price of the asset and on the amount of

assets purchased up until time t − 1 (inclusive), which is denoted by Rt−1. We note that xt suffices to depend
only on the current price and asset level because the price process is Markov, the immediate rewards do not
depend on the past history, and past purchase decisions cannot be modified. We assume that R−1 = 0. Clearly,
Rt = Rt−1+ xt , for t = 0� � � � � T − 1. Note that RT−1 denotes the total number of assets acquired over all time
periods, which is used to satisfy demand �D at T . We have that both the demand �D and the reward r̂ might be
correlated and dependent on the final price PT−1. However, they must be independent of the asset level RT−1.
In fact, given the final price PT−1, the demand and the reward are independent of the complete past, implying
that they are independent of the intermediate asset levels as well.
The problem can be formulated as a dynamic program. For t = 0� � � � � T −2, the optimality equations V ∗

t � �t×
�0�Bt�→�, where Bt =

∑t
i=0Mi, are given by

V ∗
t 	P �R
= Ɛ

[
max

xt+1∈
0� � � � �Mt+1�
−Pt+1xt+1+V ∗

t+1	Pt+1�R+ xt+1

∣∣∣Pt = P]�

For t = T − 1, V ∗
T−1� �T−1× �0�BT−1�→� is given by:

V ∗
T−1	P�R
= Ɛ

[
r̂min	 �D�R
 � PT−1 = P

]
�

We point out that the initial decision x0 is the optimal solution of the optimization problem

max
x∈
0� � � � �M0�

−P0x+V ∗
0 	P0� x
�

as R−1 = 0. Moreover, P0 is known at zero, so no randomness/expectations are involved in the decision-making
process.
The state variable at time t is given by St = 	Pt�Rt
. We let S = 	S0� � � � � ST−1
 be our state vector and

� = �0 × · · · ×�T−1 be the state space, where �̄t = �t × 
0� � � � �Bt�. We are slightly abusing notation here
because the time period t should also be included in the definition of the state variable, as the information
necessary for the system to move forward is given by St combined with t. Therefore, the state vector and the
state space are in fact 		S0�0
� � � � � 	ST−1� T − 1

 and ⋃T−1

t=0 �t × 
t�, respectively.
Note that we are using a postdecision state variable, which is the state of the system after the decision xt is

taken (see Powell [15, Chapter 4] for a complete discussion). Postdecision states lead to an inversion of the opti-
mization/expectation order in the value function formula. This inversion allows for more effective computational
strategies.
We can show that the optimal value functions are concave and piecewise linear with integer break points

in the asset dimension. Therefore, for t = 0� � � � � T − 1 and P ∈ �t , the value function V
∗
t 	P � ·
 can be iden-

tified uniquely by its decreasing slopes 	v∗t 	P �1
� � � � � v
∗
t 	P �Bt

, where v

∗
t 	P � i
 = V ∗

t 	P � i
 − V ∗
t 	P � i − 1
,

i= 1� � � � �Bt . Moreover, if R is an integer, the optimal decision
x∗t = argmax

0≤x≤Mt
−Ptx+V ∗

t 	Pt�R+ x
� t = 0� � � � � T − 1
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is an integer without having to enforce integrality. We disregard the values at V ∗
t 	P �0
 because the optimal

decisions x∗t+1 do not change when V
∗
t 	P � ·
 is shifted by a constant. In order to simplify notation, let �̄t =

�t × 
1� � � � �Bt� and �̄ = �̄0× · · · × �̄T−1. Note that �̄t is obtained from �t by excluding the pairs 	P�0
 for
all P ∈�t .
We close the section by summarizing the important properties of the optimal value functions and their slopes

that are used throughout the paper. The proof is shown in Appendix B.

Proposition 2.1. The optimal value functions are piecewise linear, with integer break points and concave in
the asset dimension. Moreover, for t = 0� � � � � T − 1 and 	P�R
 ∈ �̄t , the optimal slope v

∗
t 	P �R
= V ∗

t 	P �R
−
V ∗
t 	P �R− 1
 is given by�

v∗t 	P �R
 = Ɛ
[
max	min	Pt+1� v

∗
t+1	Pt+1�R

� v

∗
t+1	Pt+1�R+Mt+1

 � Pt = P

]
1
t<T−1�

+ Ɛ
[
r̂1
 �D≥R� � PT−1 = P

]
1
t=T−1�� (3)

Thus, v∗t 	P �R
 is bounded between zero and max r̂ , which is the maximum of the support for the reward r̂ .
Furthermore, 	v∗t 	P �1
� � � � � v

∗
t 	P �Bt

 ∈�t , where

�t =
{
v ∈�Bt � v1 ≤max r̂ � vBt ≥ 0� vR+1 ≤ vR for R= 1� � � � �Bt − 1

}
�

3. Algorithmic strategy. Our approach to the problem consists of learning the optimal decision given the
time period, the amount of assets already available, and the current price. However, the objective is to learn the
optimal decision only for asset levels that can be generated by an optimal policy.
Figure 1 describes the ADP-lagged algorithm, a modified version of the SPAR algorithm (Powell et al. [16]).

The algorithm starts with initial piecewise linear value function approximations �V 0 represented by their slopes v̄0.
As discussed in the previous section, optimal decisions depend only on the slopes of the value functions, thus
the algorithm only deals with the slopes instead of the value functions themselves. The initial approximation of
the slopes are only required to be decreasing and bounded between zero and max r̂ .
At each iteration n and time t, a decision xnt is made. This decision is optimal with respect to the sample

realization of the price sequence up to time t, the asset level Rnt−1, and the current approximation of the slopes v̄
n−1
t .

It will bring the system to the new asset level Rnt =Rnt−1+ xnt .
Just after this transition, a sample realization of the slopes of �V n−1t to the left and right of 	Pnt �R

n
t 
 is observed.

These samples, denoted by v̂nt+1	R
n
t 
 and v̂

n
t+1	R

n
t +1
, are used to update the slope approximations v̄n−1t 	Pnt �R

n
t 


and v̄n−1t 	Pnt �R
n
t +1
. After that, a projection operation ��� Pnt �R

n
t
is performed in case a violation of the concavity

property occurs. For completeness, we assume that Rn−1 = 0 for all n. We also assume that �V nt 	P�0
= 0 for all
prices P ∈�t .
We denote by St = 	Pt�Rt
 a general state at time t. Snt = 	Pnt �Rnt 
 represents the actual state visited by the

algorithm at iteration n and time t. Moreover, 
Snt �n≥0 = 
	Pnt �Rnt 
�n≥0 is the sequence of states generated by
the algorithm. The same notation holds for the decisions xt , x

n
t , and 
x

n
t �n≥0.

The algorithm also generates the 
v̄n�n≥0 sequences, that is, the sequences of slopes of the value function
approximations. It is important to realize that there is one sequence 
v̄nt 	P�R
�n≥0 for each time t < T and
	P�R
 ∈ �̄t . The notation 
v̄

n�n≥0 represents the family of all such sequences.

Step 0(i). Pick v̄0t 	P �R
 ∈ �0�max r̂] for all t and 	P�R
 to be monotone decreasing in R.
Step 0(ii). Set Rn−1 = 0 for all n≥ 0.
Step 0(iii). Set n= 1.
Step 1. Sample the price sequence Pn = 	Pn0 � � � � � P nT−1
, the demand �Dn, and reward r̂ n.
Step 2. Do for t = 0� � � � � T − 1:

Step 2(a). xnt = argmax0≤x≤Mt −Pnt x+ �V n−1t 	P nt �R
n
t−1+ x
.

Step 2(b). Rnt =Rnt−1+ xnt .
Step 2(c). Observe v̂nt+1	R

n
t 
 and v̂

n
t+1	R

n
t + 1
 according to Equation (4).

Step 2(d). For 	P�R
 ∈ �̄t ,

znt 	P�R
=
{
	1−�nt 
v̄n−1t 	P �R
+�nt v̂nt+1	R
� if P = Pnt , R ∈ 
Rnt �Rnt + 1�
v̄n−1t 	P �R
� else

Step 2(e). v̄nt =��� Pnt �R
n
t
	znt 
. See Equation (5) for the details.

Step 3. Increase n by one and go to Step 1.

Figure 1. ADP-lagged algorithm.
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Remember that for 	P�R
 ∈ �̄t , the optimal slope is given by Equation (3). A sample slope is obtained
by replacing the expectation in Equation (3) by a sample realization and by replacing v∗t+1 by its current
approximation. Therefore, the sample slope for R= 1� � � � �Bt is given by

v̂nt+1	R
=max
(
min	Pnt+1� v̄

n−1
t+1 	P

n
t+1�R

� v̄

n−1
t+1 	P

n
t+1�R+Mt+1


)
1
t<T−1�+ r̂ n1
R≤�Dn�1
t=T−1�� (4)

where Mt+1 is the upper bound on the decision xt+1. We do not define the sample slopes v̂nt+1	0
 and v̂
n
t+1	Bt+1
,

as they are not needed in the update process. Note that for all t, v̂nt+1	R
≥ v̂nt+1	R+ 1
 because the projection
operation guarantees that v̄n−1t+1 is monotone decreasing in the asset dimension. Thus, min	P

n
t+1� v̄

n−1
t+1 	P

n
t+1�R

≥

min	Pnt+1� v̄
n−1
t+1 	P

n
t+1�R+ 1

 and v̄n−1t+1 	P

n
t+1�R+Mt+1
≥ v̄n−1t+1 	P

n
t+1�R+ 1+Mt+1
. When t = T − 1, the sample

slope does not depend on a current slope approximation, as is the case for t < T − 1. This fact is important for
the convergence analysis of the algorithm because it implies that v̂nt+1	R
 is an unbiased estimator of v

∗
t+1	P�R


for t = T − 1, though it is generally biased for t < T − 1.
The sample slopes are used to update the approximation slopes v̄n−1t through a temporary slope vector znt .

This step requires the use of a stepsize rule, denoted by �nt , where �
n
t is a scalar between zero and one and

can depend only on information that became available up until iteration n and time t. We make the standard
assumptions that

∑�
n=1�

n
t =� and

∑�
n=1	�

n
t 

2 ≤ B <� almost surely, where B is a constant.

The projection operator ��� Pnt �R
n
t
maps the vector znt that may not be monotone decreasing in the asset

dimension (the concavity property) into another vector v̄nt such that for P ∈ �t , v̄
n
t 	P
 = 	v̄nt 	P�1
� � � � �

v̄nt 	P�Bt

 ∈ �t . In this paper, we consider the level projection operator (introduced in Topaloglu and
Powell [23]). It imposes concavity by simply forcing the violating slopes to be equal to the newly updated ones.
For 	P�R
 ∈ �̄t , the operator is given by:

��� Pnt �R
n
t
	z
	P�R
=




z	Pnt �R
n
t 
� if P = Pnt , R≤Rnt , z	P�R
≤ z	Pnt �Rnt 


z	Pnt �R
n
t + 1
� if P = Pnt , R≥Rnt + 1, z	P�R
≥ z	Pnt �Rnt + 1


z	P�R
� otherwise.

(5)

Figure 2 helps us visualize one iteration n of the algorithm at time t. After the algorithm has sampled the
price sequence, demand, and reward, and has made the decisions up until time t − 1, the current price is Pnt
and the total amount of assets purchased so far is Rnt−1. Based on the slope approximation v̄

n−1
t , the algorithm

determines the amount of assets xnt to acquire at time t and samples the slopes at R
n
t = Rnt−1 + xnt and Rnt + 1

as illustrated in Figure 2(a). After the current slope approximations are updated using the sampled slopes, a
violation of the concavity property may occur as shown in Figure 2(b). In this case, the projection operation
��� Pnt �R

n
t
is performed and concavity is restored as in Figure 2(c).

The decision xnt maximizes the function 	F n−1t� Pnt �R
n
t−1
	x
=−Pnt x+ �V n−1t 	Pnt �R

n
t−1+x
, where for each 	P�R
 ∈ �̄t ,

we have that �V n−1t 	P �R
=∑R
i=1 v̄

n−1
t 	P � i
, as we have assumed that �V n−1t 	P �0
= 0. Because v̄n−1t is monotone

decreasing in the asset dimension, 	F n−1t� Pnt �R
n
t−1
	x
≤ 	F n−1t� Pnt �R

n
t−1
	x+ 1
 is equivalent to v̄n−1t 	Pnt �R

n
t−1 + x+ 1
≥ Pnt .

Hence, the solution of the unconstrained optimization problem is characterized by

v̄n−1t 	Pnt �R
n
t−1+ x
≥ Pnt � v̄n−1t 	Pnt �R

n
t−1+ x+ 1
≤ Pnt � (6)

Because of 0 ≤ x ≤Mt , it may happen that no such solution exists. If vn−1t 	Pnt �R
n
t−1
 ≤ Pnt then the optimal

decision is equal to zero. On the other hand, if vn−1t 	Pnt �R
n
t−1+Mt+1
≥ Pnt , then the optimal decision is equal

to the upper bound Mt .

4. Theoretical conditions and assumptions. We start this section pointing out that the sequence of states

Snt �n≥0 = 
	Pnt �Rnt 
�n≥0 and the sequence of decisions 
xnt �n≥0 generated by the algorithm have at least one
accumulation point as the price sequence has finite support and the decisions are integer and bounded, which
implies that the resource sequence has finite support as well.
Let �̄ ∗

t be the set of all states that are either equal to an accumulation point 	P
∗
t �R

∗
t 
 of 
	P

n
t �R

n
t 
�n≥0 or are

equal to 	P ∗
t �R

∗
t + 1
. Moreover, we only consider accumulation points 	P ∗

t �R
∗
t 
 such that R

∗
t > 0 and R

∗
t < Bt .

The slope sequences 
v̄n�n≥0 also have an accumulation point, as the set �t (defined in Proposition 2.1)
is compact and the projection operation guarantees for all iterations n and prices P ∈ �t that v̄

n
t 	P
 =

	v̄nt 	P�1
� � � � � v̄
n
t 	P�Bt

 ∈�t .

Let 	 �� ��
 be our probability space. Define the sigma algebra

� = !{	Pnt � xnt � �Dn� r̂n
� n≥ 1� t = 0� � � � � T − 1}�
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v̂ n
t+1– v̂ n
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vt
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n, Rt
n)

zt
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n, Rt
n)

zt
n(Pt

n, Rt
n)

Exact

x

Rn
t–1 Rn

t

Pt
n

Pt
n

Pt
n

x

Concavity violation Exact

x

Exact

Slopes of Vt
n–1(Pt

n)

(a) Current approximate function, optimal decision, and sampled slopes

(b) Temporary approximate function with violation of concavity

(c) Level projection operation: Updated approximate function with concavity restored

F
n–

1
(x

)
t,

P
n ,R

n –1
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n–
1

(x
)

t,
P

n ,R
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F
n–

1
(x
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P
n ,R

n –1
t

t

xn
t

Slopes of Vt
n(Pt

n)

Slopes of zt
n(Pt

n)

Figure 2. Iteration n of the algorithm at time t.

Moreover, let, for n ≥ 1, � n
T = !
	Pmt′ � x

m
t′ � �Dm� r̂m
� m ≤ n� t′ = 0� � � � � T − 1� and, for t < T , � n

t =
!	
	Pmt′ � x

m
t′ � �Dm� r̂m
� m< n� t′ = 0� � � � � T −1�∪
	Pnt′ � xnt′
� t′ = 0� � � � � t�
. Clearly, � n

t ⊂� n
t+1 and �

n
T ⊂� n+1

0 .
Furthermore, given the initial slopes v̄0t 	P �R
, we have that R

n
0 and �

n
0 are in � n

0 while for 0< t < T , v̂
n
t 	R
,

znt−1	P�R
, v̄
n
t−1	P�R
, R

n
t , and �

n
t are all in � n

t . Finally, �Dn, r̂ n, v̂nT 	R
, znT−1	P�R
, and v̄nT−1	P�R
 are in � n
T .

We introduce the random index 	N , which is used to indicate when an iteration of the algorithm is large
enough for convergence analysis purposes. Let 	N be the smallest integer such that for all t ∈ 
0� � � � � T − 1�,
	 	P� 	R
 ∈�t , P ∈�t+1, and x ∈ 
0� � � � �Mt+1�, it holds that:
Condition 1 (C1). If

∑�
n=1 1
	Rnt � Pnt+1� xnt+1
=	 	R�P�x
� <� a.s., then

∑�
n= 	N 1
	Rnt � Pnt+1� xnt+1
=	R�P�x
� = 0 a.s.;

Condition 2 (C2). If
∑�
n=1 1
v̄n−1t+1 	P� 	R+1
<P�Pnt = 	P�Rnt = 	R� <� a.s., then

∑�
n= 	N 1
v̄n−1t+1 	P� 	R+1
<P�Pnt = 	P�Rnt = 	R� = 0 a.s.;

Condition 3 (C3). If
∑�
n=1 1
v̄n−1t+1 	P� 	R+1
>P�Pnt = 	P�Rnt = 	R� <� a.s., then

∑�
n= 	N 1
v̄n−1t+1 	P� 	R+1
>P�Pnt = 	P�Rnt = 	R� = 0 a.s.
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Because �t and �t+1 are finite sets, we have that 	N has to satisfy a finite number of constraints, thus it is
trivial to see that 	N is finite almost surely. Moreover, from (C1), we see that all states (actions) visited (taken)
by the algorithm after iteration 	N are accumulation points of the sequence of states (actions) generated by the
algorithm.
Even though the results of the next lemma are only required later in the paper, its proof nicely illustrates the

use of the elements just defined: the random set �̄ ∗
t , the sigma algebra � n

t , and the random index 	N . Hence,
we choose to do it now rather than later. The proof relies on an extended version of the Borel-Cantelli lemma
as described in Breiman [5, Corollary 5.29] and in Singh et al. [21, Lemma 3].

Lemma 4.1. Pick 	 	P� 	R
 ∈ �̄t . Also pick P ∈ �t+1 such that �
Pt+1 = P � Pt = 	P� > 0. On the event that
	P� 	R
 � �̄ ∗

t+1,
∑�
n= 	N 1
v̄n−1t+1 	P� 	R+1
<P�Pnt = 	P�Rnt = 	R� = 0 almost surely. Moreover, let 	R∗ = sup
R� 	 	P� 	R�P�R
 ∈


	Pnt �R
n
t � P

n
t+1�R

n
t+1
�n≥1 and 	P�R
 ∈ �̄ ∗

t+1�� On the event that 	P� 	R + Mt+1
 � �̄ ∗
t+1, it holds that∑�

n= 	N 1
v̄n−1t+1 	P� 	R∗+1
<P�Pnt = 	P�Rnt = 	R� = 0 almost surely.
Proof. Fix 	 	P� 	R
 ∈ �̄t and P ∈�t+1 such that �
Pt+1 = P � Pt = 	P� > 0. Let � = 
n ∈	� v̄n−1t+1 	P� 	R+ 1
 <

P�Pnt = 	P�Rnt = 	R� and suppose that �
'� �� 	'
� = �� > 0. Define the event Ant+1 = 
Pnt+1 = P� and the set
�̄ = � ∩ 
n ∈ 	� P nt+1 = P�. Clearly, Ant+1 ∈ � n

t+1. Moreover, �
A
n
t+1 � � n

t � = �
Ant+1 � Pnt � and �
Ant+1 � Pnt =
	P� > 0. Thus, 
'� �� 	'
� = �� is contained in the event 
'� ∑�

n=1 �
A
n
t+1�Pnt �	'
 = ��. By the extended

version of the Borel-Cantelli lemma (Breiman [5, Corollary 5.29]),{
'�

�∑
n=1

�
Ant+1 � Pnt �	'
=�
}
= 
'� ' ∈Ant+1 for infinitely many n’s��

implying that ��̄ � = � almost surely whenever �� � = �. Pick ' ∈  and n̄ ∈ �̄ 	'
 such that n̄ ≥ 	N	'
.
Assume that 	P� 	R
 � �̄ ∗

t+1	'
. Given the decision characterization (6) of the optimization problem solved at
each iteration of the algorithm, we have that xn̄t+1	'
 = 0 and Rn̄t+1	'
 = 	R, leading to the contradiction that
	P� 	R
 ∈ �̄ ∗

t+1	'
, as all states visited by the algorithm at t + 1 after iteration 	N	'
 are elements of �̄ ∗
t+1	'
.

Therefore, on 
	P� 	R
 � �̄ ∗
t+1�, �� � <� almost surely and from (C2) in the definition of 	N , it follows that∑�

n= 	N 1
v̄n−1t+1 	P� 	R+1
<P�Pnt = 	P�Rnt = 	R� = 0 almost surely.
Let 	R∗ = sup
R� 	 	P� 	R�P�R
 ∈ 
	Pnt �Rnt � Pnt+1�Rnt+1
�n≥1 and 	P�R
 ∈ �̄ ∗

t+1� and define � ∗ = 
n ∈ 	�
v̄n−1t+1 	P� 	R∗ + 1
 > P�Pnt = 	P�Rnt = 	R�. As before, suppose that �
'� �� ∗	'
� = �� > 0. It holds that

'� �� ∗	'
� =�� is contained in the event 
'� ∑�

m=1 �
A
n
t+1�Pnt �	'
=�� and the extended version of the Borel-

Cantelli lemma tells us that ��̄ ∗� = � almost surely whenever �� ∗� = �, where �̄ ∗ =� ∗ ∩ 
n ∈	� P nt+1 = P�.
Pick ' ∈  and n̄ ∈ �̄ ∗	'
 such that n̄ ≥ 	N	'
. Assume that 	P� 	R+Mt+1
 � �̄ ∗

t+1	'
. As the decisions are
bounded by Mt+1, we have that 	R ≤ 	R∗ < 	R+Mt+1. Again, given the decision characterization, we have that
xn̄t+1	'
 > 	R∗ − 	R and thus Rn̄t+1	'
 > 	R∗. Because Rn̄t+1	'
 is an element of the set for which 	R∗ is supposed to
be the supremum, we get our contradiction. Therefore, on 
	P� 	R+Mt+1
 � �̄ ∗

t+1�, �� ∗�<� and from (C3) in
the definition of 	N , it follows that ∑�

n= 	N 1
v̄n−1t+1 	P� 	R∗+1
>P�Pnt = 	P�Rnt = 	R� = 0 almost surely. �

For 	P�R
 ∈ �̄t , we present the sets of iterations �
−
t 	P �R
 and �

+
t 	P �R
. These sets keep track of the effects

produced by the projection operation. Let � −
t 	P �R
 (�

+
t 	P �R
) be the set of iterations in which the unprojected

slope corresponding to state 	P�R
 was too small (large) and had to be increased (decreased) by the projection
operation. Formally,

� −
t 	P �R
 = 
n ∈	� znt 	P�R
 < v̄

n
t 	P�R
�

� +
t 	P �R
 = 
n ∈	� znt 	P�R
 > v̄

n
t 	P�R
��

For example, based on Figure 2(c),

n ∈� −
t 	P

n
t �R

n
t − 1
 and n ∈� +

t 	P
n
t �R

n
t + 2
�

We now introduce the sets of states ��−
t and ��+

t . The states in ��−
t ( ��+

t ) are the ones for which the projection
operation decreased (increased) or kept the same the corresponding unprojected slopes infinitely often, that is,
for 	P�R
 ∈ �̄ ∗

t , �
−
t 	P �R
 (�

+
t 	P �R
) is finite if and only if 	P�R
 ∈ ��−

t 	
��+
t 
. That is,

��−
t = 
	P�R
 ∈ �̄ ∗

t � z
n
t 	P�R
≥ v̄nt 	P�R
 for all n≥ 	N�

��+
t = 
	P�R
 ∈ �̄ ∗

t � z
n
t 	P�R
≤ v̄nt 	P�R
 for all n≥ 	N��
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Finally, we impose precisely the conditions that must be satisfied by the stepsizes �nt used to update the value
function approximations. For t < T , the stepsizes satisfy the following conditions:

�nt ∈ 	0�1� and �nt ∈� n
t � (7)

�∑
n=0
	�nt 


2 ≤ B <� a.s.� (8)

where B is a constant. We also require that

�∑
n=0
�nt 1
Pnt =P∗�Rnt =R∗� =� a.s.� (9)

where 	P ∗�R∗
 is an accumulation point of the sequence 
	Pnt �R
n
t 
�n≥0.

For example, the stepsize rule �nt = 1/	N	Pnt �Rnt 
+ 1
 satisfies conditions (7)–(9), where N	Pnt �Rnt 
 is the
number of visits to state 	Pnt �R

n
t 
 up until iteration n.

For ease of notation in the next sections, we define a new stepsize sequence �̄nt based on the previous one.
For t < T and 	P�R
 ∈�t , let

�̄nt 	P�R
= �nt 	1
P=Pnt �R=Rnt �+ 1
P=Pnt �R=Rnt +1�
�
Note that though �nt is a scalar, �̄

n
t is a vector with arguments 	P�R
 ∈�t .

Based on the assumptions (7)–(9), we can trivially prove that �̄nt 	P�R
 ∈ �0�1� is � n
t -measurable and, on


	 	P ∗� 	R∗
 ∈ �̄ ∗
t �, �∑

n=0
�̄nt 	 	P ∗� 	R∗
2 ≤ B a.s. and

�∑
n=0
�̄nt 	 	P ∗� 	R∗
=� a.s. (10)

Furthermore, for all positive integers N ,

�∏
n=N
	1− �̄nt 	 	P ∗� 	R∗

= 0 a.s. (11)

The proof for Equation (11) follows directly from the fact that log	1+ x
≤ x.
As a final remark, we can easily see that v̂nt 	R
, z

n
t 	P�R
, and v̄

n
t 	P�R
 are bounded by zero and max r̂ for

all iterations n, because the initial approximations are bounded by zero and max r̂ and the stepsizes are between
zero and one.

5. Sketch of convergence analysis. We introduce the convergence results we want to prove and sketch the
proofs, summarizing the steps that will be used. The full proofs are given in §6.
We are after two main convergence results. The first one is, for each t < T and on 
	 	P ∗� 	R∗
 ∈ �̄ ∗

t �,

v̄nt 	 	P ∗� 	R∗
→ v∗t 	 	P ∗� 	R∗
 a.s. (12)

The second result is, on the event that 	R∗
t−1� P

∗
t � x

∗
t 
 is an accumulation point of the sequence 
	R

n
t−1� P

n
t � x

n
t 
�n≥0,

x∗t = argmax
0≤x≤Mt

−P ∗
t x+V ∗

t 	P
∗
t �R

∗
t−1+ x
 a.s., (13)

where V ∗
t is the optimal value function.

We use a pointwise argument in all the proofs of almost sure convergence presented in this paper. Thus, we
disregard zero-measure events on an as-needed basis.
Equation (13) shows that indeed the algorithm has learned the optimal decision for all states that can be

reached by an optimal policy, even if there are two or more recurrent classes of states. It is easy to see this
implication. Starting with t = 0, we have by assumption that R∗

−1 = 0, as Rn−1 = 0 for all iterations of the
algorithm. Moreover, all prices in �0 are accumulation points of 
P

n
0 �n≥0. Thus, Equation (13) tells us that the

accumulation points x∗0 of the sequence 
x
n
0� along the iterations with initial price P

∗
0 are in fact an optimal policy

for period zero when the price is P ∗
0 . This implies that all accumulation points R

∗
0 = x∗0 of 
Rn0�n≥0 are asset levels

that can be reached by an optimal policy. By the same token, for t = 1, every price in �1 is an accumulation
point of 
Pn1 �n≥0. Hence, the second result tells us that the accumulation points x

∗
1 of the sequence 
x

n
1� along

iterations with 	Rn0� P
n
1 
= 	R∗

0� P
∗
1 
 are indeed an optimal policy for period one when the asset level is R

∗
0 and
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the price is P ∗
1 . As before, the accumulation points R

∗
1 =R∗

0+x∗1 of 
Rn1�n≥0 are asset levels that can be reached
by an optimal policy. The same reasoning can be applied for t = 2� � � � � T − 1.
The main idea to achieve Equation (12) is to define for each t < T and 	P�R
 ∈ �̄t (introduced in §2)

deterministic sequences 
Lkt 	P�R
�k≥0 and 
U
k
t 	P�R
�k≥0 that are provably convergent to v

∗
t 	P �R
 and then

prove, for all k≥ 0 and n big enough, that
Lkt 	 	P ∗� 	R∗
≤ vnt 	 	P ∗� 	R∗
≤Ukt 	 	P ∗� 	R∗
 a.s. on 
	 	P ∗� 	R∗
 ∈ �̄ ∗

t �. (14)

Establishing these inequalities is nontrivial and draws on a proof technique in Bertsekas and Tsitsiklis [4, §4.3.6]
(B&T). In our proof, however, we have to handle two significant differences. First, our algorithm uses a pure
exploitation strategy whereas B&T assumed that all states are visited infinitely often. Second, we introduce a
projection operator to maintain concavity of the approximation. This is not the case in B&T who assume a pure
lookup table representation.
To establish Equation (14), we introduce the dynamic programming operator H associated with the asset

acquisition problem and the deterministic bounding sequences 
Lk�k≥0 and 
U k�k≥0. It is noteworthy that these
sequences are completely independent of the algorithm. We also define four stochastic sequences, 
s̄n−�n≥0,

s̄n+�n≥0, 
l̄

n�n≥0, and 
ūn�n≥0, which do depend on the iterations of the algorithm. The first two sequences are
called stochastic noise sequences and the last two sequences are called stochastic bounding sequences.
All these elements are combined to prove Equation (14), where the concavity of the value functions plays a

major role. Roughly speaking, using properties of the operator H , Lemma 4.1, and concavity, we prove

	HLk
t	P
n
t �R

n
t 
≤ 	Hv̄n−1
t	Pnt �Rnt 
≤ 	HUk
t	Pnt �Rnt 
 a.s.,

	HLk
t	P
n
t �R

n
t + 1
≤ 	Hv̄n−1
t	Pnt �Rnt + 1
≤ 	HUk
t	Pnt �Rnt + 1
 a.s.

These inequalities enable us to prove that

v̄n−1t 	P̃ ∗� R̃∗
≤ ūn−1t 	P̃ ∗� R̃∗
+ s̄n−1t− 	P̃
∗� R̃∗
 a.s. on 
	P̃ ∗� R̃∗
 ∈ ��−

t ��

v̄n−1t 	P̃ ∗� R̃∗
≥ l̄n−1t 	P̃ ∗� R̃∗
− s̄n−1t+ 	P̃
∗� R̃∗
 a.s. on 
	P̃ ∗� R̃∗
 ∈ ��+

t ��

Then, convergence to zero of the noise sequences (a convex combination property of the stochastic bounding
sequences and concavity) gives us

v̄n−1t 	P̃ ∗� R̃∗
≤Ukt 	P̃ ∗� R̃∗
 a.s. on 
	P̃ ∗� R̃∗
 ∈ ��−
t �,

v̄n−1t 	P̃ ∗� R̃∗
≥ Lkt 	P̃ ∗� R̃∗
 a.s. on 
	P̃ ∗� R̃∗
 ∈ ��+
t �.

Finally, concavity plays a role again and we obtain Equation (14).
The optimality of the decisions with respect to the optimal value functions represented by Equation (13), is a

byproduct of the convergence of the approximate slopes. It is discussed in detail in the next section.

6. Convergence analysis. We present formally the dynamic operator H and the deterministic bounding
sequences 
U k�k≥0 and 
Lk�k≥0 in §6.1. After that, in §6.2, we state and prove our main theorem, the almost
sure convergence of the approximate slopes to the optimal slopes. As part of the proof, we define the stochastic
sequences and state technical lemmas as they are needed. To focus on the main ideas of the theorem proof, the
proofs of the lemmas will be deferred to Appendix B. Finally, in §6.3, we prove the almost-sure convergence
to the optimal decisions.

6.1. The operator H and the bounding sequences. We start by defining the dynamic programming oper-
ator H that maps a vector v into a new vector Hv according to the formula

	Hv
t	P�R
= Ɛ�max	min	Pt+1� vt+1	Pt+1�R

� vt+1	Pt+1�R+Mt+1

1
t<T−1�+ r̂1
R≤�D�1
t=T−1� � Pt = P� (15)

for t = 0� � � � � T − 1 and 	P�R
 ∈ �̄t .
The following properties can be easily proved.
(i) H has a unique fixed point v∗, where v∗ is the vector of slopes of the optimal value functions.
(ii) H is monotone, that is, if v≤ ṽ componentwise, then Hv≤Hṽ.
(iii) Hv−/e≤H	v−/e
≤H	v+/e
≤Hv+/e, where / is a positive constant and e is a vector with all

components equal to one. The inequalities are considered componentwise.
(iv) H is continuous.
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We introduce the deterministic bounding sequences 
U k�k≥0 and 
Lk�k≥0 and establish three important prop-
erties. When we refer to the sequence 
U k�k≥0 without mentioning the time index t and the state 	P�R
 ∈ �̄t ,
we are referring to the family of sequences 
U kt 	P�R
�k≥0, one for each time t < T and state 	P�R
. The same
is true with the other deterministic sequence 
Lk�k≥0.
Let

U 0 = v∗ + r̂∗e and Uk+1 = U
k+HUk
2

� k≥ 0� (16)

L0 = v∗ − r̂∗e and Lk+1 = L
k+HLk
2

� k≥ 0� (17)

where r̂∗ = max'∈ r̂	'
 is well-defined because r̂ is a positive bounded random variable that represents the
reward.
Note that just like the slopes v∗, for all k≥ 0, Lk and Uk are both monotone decreasing in the asset dimension.

In the next lemma, the inequality signs applies to all time index t and states 	P�R
.

Lemma 6.1. The sequences 
U k�k≥0 and 
Lk�k≥0 satisfy

HUk ≤Uk+1 ≤Uk (18)

HLk ≥ Lk+1 ≥ Lk (19)

and both converge to v∗. Furthermore, Uk > v∗ and Lk < v∗ for all k≥ 0.
Proof. The proof of inequalities (18) and (19) as well as the proof of convergence of the sequences to v∗ is

given in Bertsekas and Tsitsiklis [4, Lemmas 4.5 and 4.6]. They just require the above-mentioned four properties
of operator H .
In order to show that Lk < v∗ for all k≥ 0, we begin by analyzing LkT−1. By definition of H , for all 	P�R
 ∈

�̄T−1, 	HLk
T−1	P�R
= v∗T−1	P�R
 for all k≥ 0. We also have that L0T−1	P�R
= v∗T−1	P�R
− r̂∗ < v∗T−1	P�R
.
Thus, L1T−1	P�R
 < v

∗
T−1	P�R
 and an induction argument on k shows that L

k
T−1	P�R
 < v

∗
T−1	P�R
 for all

k≥ 0.
Now, assume that Lkt+1	P�R
 < v

∗
t+1	P�R
 for all k≥ 0 and 	P�R
 ∈ �̄t+1. We prove 	HLk
t	P�R
≤ v∗t 	P �R


for t when t = 0� � � � � T − 2. We have, for 	P�R
 ∈ �̄t ,

	HLk
t	P�R
 = Ɛ�max	min	Pt+1�Lt+1	Pt+1�R

�Lt+1	Pt+1�R+Mt+1

 � Pt = P�
≤ Ɛ�max	min	Pt+1� v

∗
t+1	Pt+1�R

� v

∗
t+1	Pt+1�R+Mt+1

 � Pt = P�= v∗t 	P �R
�

Furthermore, L0t 	P �R
 = v∗t 	P �R
 − r̂∗ < v∗t 	P �R
, which implies L1t 	P �R
 < v∗t 	P �R
. Again, an induction
argument on k shows that Lkt 	P�R
 < v

∗
t 	P �R
 for all k ≥ 0. The proof for Uk follows by a symmetrical

argument. �

6.2. Convergence of v̄nt 	 	P ∗� 	R∗
. We prove almost-sure convergence of the slopes of the approximate func-
tions to the slopes of the optimal ones on the event 
	 	P ∗� 	R∗
 ∈ �̄ ∗

t �. In the process, we present the noise and the
bounding stochastic sequences. We also introduce three technical lemmas. Their proofs are given in Appendix B.
We assume for integers k ≥ 0, iterations n ≥ 0 and all possible states 	P�R
 that v∗T 	P�R
 = UkT 	P�R
 =
LkT 	P�R
= v̄nT 	P�R
= 0, as we only need to learn the slopes up until time period T − 1.
Theorem 6.1. Assume the stepsize conditions (7)–(9). Fix t ∈ 
0� � � � � T � and k ≥ 0. Then, there exists an

almost surely finite random index N ∗� k
t such that for all 	 	P ∗� 	R∗
 ∈ �̄t , on the event that 
n≥N ∗� k

t � 	 	P ∗� 	R∗
 ∈ �̄ ∗
t �,

it holds that
Lkt 	 	P ∗� 	R∗
≤ v̄n−1t 	 	P ∗� 	R∗
≤Ukt 	 	P ∗� 	R∗
 a.s. (20)

Therefore, on 
	 	P ∗� 	R∗
 ∈ �̄ ∗
t �,

v̄nt 	 	P ∗� 	R∗
→ v∗t 	 	P ∗� 	R∗
 a.s. (21)

Proof. We show the result for each element in the sample space fixing ' ∈ . The proof of the theorem
is by backward induction on t. The base case is t = T . For any state 	P�R
 ∈ �̄t , integers k ≥ 0 and n ≥ 0,
it holds that v∗T 	P�R
= UkT 	P�R
= LkT 	P�R
= v̄nT 	P�R
= 0. Therefore, the inequalities in Equation (20) are
trivial for t = T , all k≥ 0, and 	P�R
 ∈ �̄t . Thus, for a fixed k, we can pick for example N

∗� k
T = 	N , where 	N as
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defined in §4 is an almost surely finite random index that denotes when an iteration of the algorithm is large
enough for convergence analysis purposes.
The backward induction proof is completed when we prove, for all k ≥ 0, that Equation (20) holds for

t = T −1� � � � �0. Given the induction hypothesis for t+1, the proof for time period t is divided into two parts.
First, for a fixed k ≥ 0, we prove that there exists an almost surely finite random index Nkt such that for all
states 	 	P ∗� 	R∗
 ∈ �̄t ,

v̄n−1t 	 	P ∗� 	R∗
≤Ukt 	 	P ∗� 	R∗
� a.s. on 
n≥Nkt � 	 	P ∗� 	R∗
 ∈ ��−
t �� (22)

v̄n−1t 	 	P ∗� 	R∗
≥ Lkt 	 	P ∗� 	R∗
� a.s. on 
n≥Nkt � 	 	P ∗� 	R∗
 ∈ ��+
t �� (23)

The proof is by induction on k. Note that it only applies to states in the sets ��−
t and ��+

t .
Then, again for time period t, we show that the upper and the lower bounds also hold for states in �̄ ∗

t \ ��−
t

and �̄ ∗
t \ ��+

t , respectively. We prove for a fixed k ≥ 0 and state 	 	P ∗� 	R∗
 ∈ �̄t the existence of random indices
Nk�ut 	 	P ∗� 	R∗
 and Nk� lt 	 	P ∗� 	R∗
 such that

v̄n−1t 	 	P ∗� 	R∗
≤Ukt 	 	P ∗� 	R∗
� a.s. on 
n≥Nk�ut 	 	P ∗� 	R∗
� 	 	P ∗� 	R∗
 ∈ �̄ ∗
t \ ��−

t �

v̄n−1t 	 	P ∗� 	R∗
≥ Lkt 	 	P ∗� 	R∗
� a.s. on 
n≥Nk� lt 	 	P ∗� 	R∗
� 	 	P ∗� 	R∗
 ∈ �̄ ∗
t \ ��+

t ��

Therefore, Parts 1 and 2 are put together when we take N ∗� k
t to be the maximum element of the set{

Nkt � max
	 	P∗� 	R∗
∈�̄ ∗

t \ ��−
t

N k�ut 	 	P ∗� 	R∗
� max
	 	P∗� 	R∗
∈�̄ ∗

t \ ��+
t

N k� lt 	 	P ∗� 	R∗

}
�

proving that Equation (20) is true on 
n≥ N ∗� k
t � 	 	P ∗� 	R∗
 ∈ �̄ ∗

t �. Figure 3 shows the relationship between the
sets of states.
We emphasize that the proof of the theorem consists of two loops. The outside loop is the backward induction

on t, where the base case is t = T . The inside loop is, for a fixed t, the forward induction on k in the proof of
Part 1, where the base case is k= 0. Of course, the proof of Part 2 is also contained in the induction on t. We
also want to point out that though the indices Nkt and N

∗� k
t are independent of the state, the indices Nk�ut 	 	P ∗� 	R∗


and Nk� lt 	 	P ∗� 	R∗
 as indicated by the notation are state dependent.
We start the backward induction on t. Pick ' ∈ . We omit the dependence of the random elements on ' for

compactness. Remember that the base case t = T is trivial and we pick N ∗� k
T = 	N . We also pick, for convenience,

NkT = 	N .
Induction Hypothesis. Fix t ∈ 
0� � � � � T − 1�. For each k ≥ 0, assume the existence of integers Nkt+1 and

N ∗� k
t+1 such that, for all 	 	P ∗� 	R∗
 ∈ �̄t+1 and n ≥ Nkt+1, Equations (22) and (23) are true when 	P̃ ∗� R̃∗
 is an
element of ��−

t+1 and ��+
t+1, respectively. Moreover, when n ≥ N ∗� k

t+1 , the inequalities in Equation (20) hold true
for all states 	 	P ∗� 	R∗
 ∈ �̄ ∗

t+1.
(i) Part 1 of the induction hypothesis proof.
Assuming the induction hypothesis on t + 1, we prove for time period t, a fixed k ≥ 0 and any state

	P̃ ∗� R̃∗
 ∈ �̄t , the existence of an integer N
k
t such that for n≥Nkt , inequalities (22) and (23) are true. The proof

is by forward induction on k.

St
–

St
+

St
*

St

St

~ ~

Figure 3. Relationship between the sets of states.
Notes. St : Full state space. S̄t : State space minus 	P�0
 pairs. S̄

∗
t : Accumulation point 	P

∗�R∗
 or 	P ∗�R∗ +1
 of 
	Pn�Rn
�. S̃−t : Corre-
sponding slope is increased finitely often due to projection operation. S̃+t : Corresponding slope is decreased finitely often due to projection
operation.
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We start with k= 0. For every 	P̃ ∗� R̃∗
 ∈ �̄t , 0≤ v∗t 	P̃ ∗� R̃∗
≤ r̂∗ implying, by definition, that U 0
t 	P̃

∗� R̃∗
≥ r̂∗
and L0t 	P̃

∗� R̃∗
 ≤ 0. Therefore, Equations (22) and (23) are satisfied for all n ≥ 1 because we know that
v̄n−1t 	P̃ ∗� R̃∗
 is bounded by zero and r̂∗ for all iterations. Thus, N 0

t =max	1�N ∗�0
t+1
=N ∗�0

t+1 .
The induction hypothesis on k assumes that there exists Nkt such that for all n≥Nkt , Equations (22) and (23)

are true. Note that we can always make Nkt larger than N
∗� k
t+1 , thus we assume that N

k
t ≥ N ∗� k

t+1 . The next step is
the proof for k+ 1, i.e., we prove that there exists an integer Nk+1t such that for all 	P̃ ∗� R̃∗
 ∈ �̄t

v̄n−1t 	P̃ ∗� R̃∗
≤Uk+1t 	P̃ ∗� R̃∗
� if n≥Nk+1t and 	P̃ ∗� R̃∗
 ∈ ��−
t �

v̄n−1t 	P̃ ∗� R̃∗
≥ Lk+1t 	P̃ ∗� R̃∗
� if n≥Nk+1t and 	P̃ ∗� R̃∗
 ∈ ��+
t �

Before we move on, we depart from our pointwise argument in order to define the stochastic noise sequences
and state a lemma describing an important property of these sequences. We start defining ŝnt+1− and ŝ

n
t+1+ to be

the error incurred by observing a sample slope. For R= 1� � � � �Bt ,
ŝnt+1−	R
= v̂nt+1	R
− 	Hv̄n−1
t	Pnt �R
 and ŝnt+1+	R
=−ŝnt+1−	R
�

Using ŝnt+1− and ŝ
n
t+1+, we also define the stochastic noise sequences 
s̄

n
t−�n≥0 and 
s̄

n
t+�n≥0. For 	P�R
 ∈ �̄t ,

s̄nt−	P�R
= 0 and s̄nt+	P�R
= 0 on 
n <Nkt ��

and, on 
n≥Nkt �,
s̄nt−	P�R
=max	0� 	1− �̄nt 	P�R

s̄n−1t− 	P�R
+ �̄nt 	P�R
ŝnt+1−	Rnt 1
R≤Rnt �+ 	Rnt + 1
1
R>Rnt �


s̄nt+	P�R
=max	0� 	1− �̄nt 	P�R

s̄n−1t+ 	P�R
+ �̄nt 	P�R
ŝnt+1+	Rnt 1
R≤Rnt �+ 	Rnt + 1
1
R>Rnt �

�

Remember that �̄nt 	P�R
= 0, except when 	P�R
 ∈ 
	Pnt �Rnt 
� 	Pnt �Rnt + 1
�.
The sample slopes are defined in a way such that

Ɛ�ŝnt+1−	R
 �� n
t �= 0� (24)

This conditional expectation expresses the condition that the sample slopes are unbiased. This property, together
with the martingale convergence theorem and the boundedness of both the sample slopes and the approximate
slopes, is crucial for proving that the noise introduced by the observation of the sample slopes, which replace
the observation of true expectations, goes to zero as the number of iterations of the algorithm goes to infinity.
This is stated in the next lemma.

Lemma 6.2. Pick a state 	 	P ∗� 	R∗
 ∈ �̄t . Then, on 
	 	P ∗� 	R∗
 ∈ �̄ ∗
t �,


s̄nt−	 	P ∗� 	R∗
�n≥0 → 0 and 
s̄nt+	 	P ∗� 	R∗
�n≥0 → 0 a.s. (25)

Proof of Lemma 6.2. The proof is given in Appendix B. �

Returning to our pointwise argument where we have fixed ' ∈ , we use the convention that the minimum
of an empty set is +�. Let

1kL =min
{
	HLk
t	P̃

∗� R̃∗
−Lkt 	P̃ ∗� R̃∗

4

� 	P̃ ∗� R̃∗
 ∈ ��+
t � 	HL

k
t	P̃
∗� R̃∗
 > Lkt 	P̃

∗� R̃∗

}
�

If 1kL <+�, we define an integer NL ≥Nkt to be such that
NL−1∏
m=Nkt

	1− �̄mt 	P̃ ∗� R̃∗

≤ 1/4 and s̄n−1t+ 	P̃
∗� R̃∗
≤ 1kL (26)

for all n≥ NL and states 	P̃ ∗� R̃∗
 ∈ ��+
t . Such an NL exists because both Equation (11) and Equation (25) are

true. If 1kL =+�, then for all states 	P̃ ∗� R̃∗
 ∈ ��+
t , 	HL

k
t	P̃
∗� R̃∗
= Lkt 	P̃ ∗� R̃∗
 because Equation (19) tells

us that HLk ≥ Lk. Thus, Lk+1t 	P̃ ∗� R̃∗
= Lkt 	P̃ ∗� R̃∗
 and we define the integer NL to be equal to Nkt .
We can apply a symmetric reasoning to determine 1kU and NU . We just need to consider the deterministic

bounding sequence 
U k�k≥0, the set ��−
t , and the noise sequence 
s̄

n
t−�n≥0 instead of 
L

k�k≥0, ��+
t , and 
s̄

n
t+�n≥0,

respectively.
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Finally, let Nk+1t = max	NL�NU �N ∗� k+1
t+1 
. We pick a state 	P̃ ∗� R̃∗
 ∈ �̄t and assume that 	P̃

∗� R̃∗
 ∈ ��+
t . If

Lk+1t 	P̃ ∗� R̃∗
= Lkt 	P̃ ∗� R̃∗
, then inequality Lk+1t 	P̃ ∗� R̃∗
≤ v̄n−1t 	P̃ ∗� R̃∗
 follows from the induction hypothesis.
We therefore concentrate on the case where Lk+1t 	P̃ ∗� R̃∗
 > Lkt 	P̃

∗� R̃∗
.
First, we depart one more time from the pointwise argument to introduce the stochastic bounding sequences


l̄nt �n≥0 and 
ū
n
t �n≥0. We also state a lemma combining these sequences with the stochastic noise sequences. For

each 	P�R
 ∈ �̄t , we have

l̄nt 	P�R
= Lkt 	P�R
 and ūnt 	P�R
=Ukt 	P�R
 on 
n <Nkt �,

and on 
n≥Nkt �,
l̄nt 	P�R
= 	1− �̄nt 	P�R

l̄n−1t 	P �R
+ �̄nt 	P�R
	HLk
t	P�R

ūnt 	P�R
= 	1− �̄nt 	P�R

ūn−1t 	P �R
+ �̄nt 	P�R
	HUk
t	P�R
�

The next lemma states that the stochastic bounding and noise sequences can be used to provide a bound for the
approximate slopes as follows.

Lemma 6.3. On 
n≥Nkt �,
	HLk
t	P

n
t �R

n
t 
≤ 	Hv̄n−1
t	Pnt �Rnt 
≤ 	HUk
t	Pnt �Rnt 
 a.s. on 
Rnt > 0�

	HLk
t	P
n
t �R

n
t + 1
≤ 	Hv̄n−1
t	Pnt �Rnt + 1
≤ 	HUk
t	Pnt �Rnt + 1
 a.s. on 
Rnt <Mt��

Moreover, again on 
n≥Nkt �,
v̄n−1t 	P̃ ∗� R̃∗
≤ ūn−1t 	P̃ ∗� R̃∗
+ s̄n−1t− 	P̃

∗� R̃∗
 a.s. on 
	P̃ ∗� R̃∗
 ∈ ��−
t �� (27)

v̄n−1t 	P̃ ∗� R̃∗
≥ l̄n−1t 	P̃ ∗� R̃∗
− s̄n−1t+ 	P̃
∗� R̃∗
 a.s. on 
	P̃ ∗� R̃∗
 ∈ ��+

t �� (28)

Proof of Lemma 6.3. The proof is given in Appendix B. �

Back to our fixed ', a simple inductive argument proves that ūnt 	P�R
 is a convex combination of U
k
t 	P�R


and 	HUk
t	P�R
, and l̄
n
t 	P�R
 is a convex combination of L

k
t 	P�R
 and 	HL

k
t	P�R
. Therefore, we can
write, with b̃n−1t =∏n−1

m=Nkt 	1− �̄mt 	P̃ ∗� R̃∗

,

l̄n−1t 	P̃ ∗� R̃∗
= b̃n−1t Lkt 	P̃
∗� R̃∗
+ 	1− b̃n−1t 
	HLk
t	P̃

∗� R̃∗
�

For n ≥ Nk+1t ≥ NL ≥ Nkt , we have b̃n−1t ≤ 1/4. Moreover, Lkt 	P̃ ∗� R̃∗
 ≤ 	HLk
t	P̃ ∗� R̃∗
. Thus, using Equa-
tion (17) and the definition of 1kL, we obtain

l̄n−1t 	P̃ ∗� R̃∗
 ≥ 1
4L

k
t 	P̃

∗� R̃∗
+ 3
4 	HL

k
t	P̃
∗� R̃∗


= 1
2L

k
t 	P̃

∗� R̃∗
+ 1
2 	HL

k
t	P̃
∗� R̃∗
+ 1

4 		HL
k
t	P̃

∗� R̃∗
−Lkt 	P̃ ∗� R̃∗



≥ Lk+1t 	P̃ ∗� R̃∗
+ 1kL� (29)

We point out that we are concentrating on the case where Lk+1t 	P̃ ∗� R̃∗
 > Lkt 	P̃
∗� R̃∗
, implying that 1kL <� as

argued when 1kL was defined. Combining Equations (28) and (29), we obtain, for all n≥Nk+1t ≥NL ≥Nkt ,
v̄n−1t 	P̃ ∗� R̃∗
≥ Lk+1t 	P̃ ∗� R̃∗
+ 1kL− s̄n−1t+ 	P̃

∗� R̃∗


≥ Lk+1t 	P̃ ∗� R̃∗
+ 1kL− 1kL
= Lk+1t 	P̃ ∗� R̃∗
�

where the last inequality follows from Equation (26).
To finish the proof of Part 1 of the induction hypothesis, we pick a state 	P̃ ∗� R̃∗
 ∈ �̄t and assume that

	P̃ ∗� R̃∗
 ∈ ��−
t . The reasoning for U

k+1
t 	P̃ ∗� R̃∗
 is symmetrical to that for Lk+1t 	P̃ ∗� R̃∗
, which completes our

induction. Thus, we have proved that, for all k≥ 0, there exists Nkt such that (22) and (23) hold for all n≥Nkt .
This concludes the first part of the proof.
(ii) Part 2 of the induction hypothesis proof.
We continue to consider ' picked in the beginning of the proof of the Theorem 6.1. In this part, we take care

of the states 	 	P ∗� 	R∗
 ∈ �̄ ∗
t \ ��−

t and 	 	P ∗� 	R∗
 ∈ �̄ ∗
t \ ��+

t . In contrast to Part 1, the proof technique here is not by
forward induction on k.
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A discussion about the projection operation is in order, as this part of the proof is all about states for which
the projection operation decreased or increased the corresponding approximate slopes infinitely often.
Remember that at iteration n time period t, we observe the sample slopes v̂nt+1	R

n
t 
 and v̂

n
t+1	R

n
t + 1
 and

it is always the case that v̂nt+1	R
n
t 
 ≥ v̂nt+1	Rnt + 1
, implying that the resulting temporary slope znt 	Pnt �Rnt 
 is

bigger than znt 	P
n
t �R

n
t + 1
. Therefore, according to our projection operator, the updated slopes v̄nt 	Pnt �Rnt 
 and

v̄nt 	P
n
t �R

n
t +1
 are always equal to znt 	Pnt �Rnt 
 and znt 	Pnt �Rnt +1
, respectively. Because of our stepsize rule, the

slopes corresponding to 	Pnt �R
n
t 
 and 	P

n
t �R

n
t + 1
 are the only ones updated because of a direct observation of

samples slopes at iteration n time period t. All the other slopes are modified only if a violation of the monotone
decreasing property occurs. Therefore, the slopes corresponding to states with price Pt ∈�t different than P

n
t ,

no matter the asset level R = 1� � � � �Bt , remain the same at iteration n time period t, that is, v̄
n−1
t 	Pt�R
 =

znt 	Pt�R
= v̄nt 	Pt�R
. On the other hand, it is always the case that the temporary slopes corresponding to states
with price Pnt and asset levels smaller than R

n
t can only be increased by the projection operation. If necessary,

they are increased to be equal to v̄nt 	P
n
t �R

n
t 
. Similarly, the temporary slopes corresponding to states with price

Pnt and asset levels greater than R
n
t +1 can only be decreased by the projection operation. If necessary, they are

decreased to be equal to v̄nt 	P
n
t �R

n
t + 1
 (see Figure 2(c)).

Keeping the previous discussion in mind, we can argue that ��+
t is a nonempty set. It is easy to see that for

each 	P ∗ ∈�t , if R
Min is the minimum asset level such that 	 	P ∗�RMin
 is an accumulation point of 
	Pnt �R

n
t 
�n≥0,

then the slope corresponding to 	 	P ∗�RMin
 could only be decreased by the projection operation a finite number of
iterations, as a decreasing requirement could only be originated from an asset level smaller than RMin. However,
no state with price 	P ∗ and asset level smaller than RMin is visited by the algorithm after iteration 	N because
only accumulation points are visited after 	N . We thus have that 	 	P ∗�RMin
 is an element of the set ��+

t . Along
the same lines, we can show that ��−

t is also a nonempty set.
On that note, if we pick a state 	 	P ∗� 	R∗
 ∈ �̄t and assume that 	 	P ∗� 	R∗
 ∈ �̄ ∗

t \ ��+
t , then there exists another

state 	 	P ∗� R̃∗
+
 where R̃

∗
+ is the maximum asset level smaller than 	R∗ such that 	 	P ∗� R̃∗

+
 ∈ ��+
t . It could be the

case that 	 	P ∗� R̃∗
+
 = 	 	P ∗�RMin
. Moreover, we show next that for all asset levels R such that R̃∗

+ < R ≤ 	R∗,
we have that �� +

t 	 	P ∗�R
� =�. Figure 4 illustrates the situation. A symmetrical property holds if we assume that
	 	P ∗� 	R∗
 ∈ �̄ ∗

t \ ��−
t .

The argument goes as follows. For any state 	P�R
 ∈ �̄t , remember that �
+
t 	P �R
 = 
n ∈ 	� znt 	P�R
 >

v̄nt 	P�R
�. As discussed in §4, the sets ��+
t and � +

t 	P �R
 share the following relationship. Assuming that
	P�R
 ∈ �̄ ∗

t , then �� +
t 	P �R
� = � if and only if the state 	P�R
 is not an element of ��+

t . Because we have
assumed that 	 	P ∗� 	R∗
 ∈ �̄ ∗

t \ ��+
t , we have that �� +

t 	 	P ∗� 	R∗
� =�. If R̃∗
+ = 	R∗ −1, we are done. If R̃∗

+ < 	R∗ −1,
we have to consider two cases, namely, 	 	P ∗� 	R∗ − 1
 ∈ �̄ ∗

t and 	 	P ∗� 	R∗ − 1
 � �̄ ∗
t . For the first case, we have

that �� +
t 	 	P ∗� 	R∗ − 1
� =� from the fact that this state is not an element of ��+

t . For the second case, because
	 	P ∗� 	R∗ − 1
 is not an element of �̄ ∗

t , its corresponding slope is never updated due to a direct observation of
sample slopes for n≥ 	N , by the definition of 	N . Moreover, every time the slope of 	 	P ∗� 	R∗
 is decreased due to
a projection (which is coming from the left), the slope of 	 	P ∗� 	R∗ − 1
 has to be decreased as well. Therefore,
� +
t 	 	P ∗� 	R∗
 ∩ 
n ≥ 	N�⊆ � +

t 	 	P ∗� 	R∗ − 1
 ∩ 
n ≥ 	N�, implying that �� +
t 	 	P ∗� 	R∗ − 1
� = �. We then apply the

same reasoning for states 	 	P ∗� 	R∗ − 2
� � � � � 	 	P ∗� R̃∗
+ + 1
, obtaining that the corresponding sets of iterations

have an infinite number of elements.
We introduce a lemma that is the key element for the proof of Part 2, once again going away from the

pointwise argument.

P*

v t* (
P

* ,
R

)

t
+~

t
*

RMin

R+
*

R* R

| t
+(P*, R*–2)| =

| t
+(P*, R*–1)| =

| t
+(P*, R*)| = +

~

Figure 4. Optimal slopes and the corresponding � +
t sets.
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Lemma 6.4. For a given time period t, fix k ≥ 0 and a state 	P�R
 ∈ �̄t . If there exists a random index
Nk� lt 	P�R
 such that v̄

n−1
t 	P �R
≥ Lkt 	P�R
 on 
n≥Nk� lt 	P�R
� �� +

t 	P �R+1
� =��, then there exists another
random index Nk� lt 	P�R+ 1
 such that v̄n−1t 	P �R+ 1
≥ Lkt 	P�R+ 1
 on 
n≥Nk� lt 	P�R+ 1
�.
Similarly, if there exists a random index Nk�ut 	P�R
 such that v̄n−1t 	P �R
 ≤ Ukt 	P�R
 on 
n ≥

Nk�ut 	P�R
� �� −
t 	P �R − 1
� = ��, then there exists another random index Nk�ut 	P�R − 1
 such that

v̄n−1t 	P �R− 1
≤Ukt 	P�R− 1
 on 
n≥Nk�ut 	P�R− 1
�.
Proof of Lemma 6.4. The proof is given in Appendix B. �

Using the properties of the projection operator, we return to the proof of Part 2 and to our fixed '. Pick
k ≥ 0 and a state 	 	P ∗� 	R∗
 ∈ �̄t . We assume that 	 	P ∗� 	R∗
 ∈ �̄ ∗

t \ ��+
t . Consider the state 	 	P ∗� R̃∗

+
 where R̃
∗
+ is

the maximum asset level smaller than 	R∗ such that 	 	P ∗� R̃∗
+
 ∈ ��+

t . Clearly, this state satisfies the condition
of Lemma 6.4 with Nk� lt 	 	P ∗� R̃∗

+
 = Nkt (from Part 1 of the proof of Theorem 6.1). Thus, we can apply this
lemma in order to obtain an integer Nk� l	 	P ∗� R̃∗

+ + 1
 such that Lkt 	 	P ∗� R̃∗
+ + 1
 ≤ v̄n−1t 	 	P ∗� R̃∗

+ + 1
, for all
n≥Nk� lt 	 	P ∗� R̃∗

+ + 1
.
After that, we use Lemma 6.4 again, this time considering state 	 	P ∗� R̃∗

+ + 1
. Note that the first application
of Lemma 6.4 gave us the integer Nk� lt 	 	P ∗� R̃∗

+ + 1
 necessary to fulfill the conditions of this second usage of
the lemma. We repeat the same reasoning, applying Lemma 6.4 successively to the states 	 	P ∗� R̃∗

+ + 2
� � � � �
	 	P ∗� 	R∗ − 1
. In the end, we obtain an integer Nk� lt 	 	P ∗� 	R∗
 such that Lkt 	 	P ∗� 	R∗
 ≤ v̄n−1t 	 	P ∗� 	R∗
 for all n ≥
Nk� lt 	 	P ∗� 	R∗
. Figure 5 illustrates this process.
Similarly, if we assume that 	 	P ∗� 	R∗
 ∈ �̄ ∗

t \ ��−
t , by successive applications of the second part of Lemma 6.4

we obtain an integer Nk�ut 	 	P ∗� 	R∗
 such that v̄n−1t 	 	P ∗� 	R∗
 ≤ Ukt 	 	P ∗� 	R∗
 for all n ≥ Nk�ut 	 	P ∗� 	R∗
, concluding
Part 2 of the proof.
Finally, if we consider:

N ∗� k
t =max

{
Nkt � max

	 	P∗� 	R∗
∈�̄ ∗
t \ ��−

t

N k�ut 	 	P ∗� 	R∗
� max
	 	P∗� 	R∗
∈�̄ ∗

t \ ��+
t

N k� lt 	 	P ∗� 	R∗

}
�

then Equation (20) holds for all states 	 	P ∗� 	R∗
 ∈ �̄ ∗
t and n≥N ∗� k

t , concluding the induction on t. �

6.3. Optimality of the decisions. We are ready to prove Equation (13), the second convergence result.

Theorem 6.2. Assume the conditions of Theorem 1 are satisfied. For t = 0� � � � � T − 1, on the event that
	v̄∗�R∗

t−1� P
∗
t � x

∗
t 
 is an accumulation point of the sequence 
	v̄

n−1�Rnt−1� P
n
t � x

n
t 
�n≥1 generated by the algorithm,

x∗t is almost surely an optimal solution of

max
0≤x≤Mt

−P ∗
t x+V ∗

t 	P
∗
t �R

∗
t−1+ x
� (30)

|�t
+(P*, R+

* +1)| = ∞

R+
* ∈�t

*∩�t
+

for n ≥ Nk(P*, R+
* ) = Nt

k |�t
+(P*, R+

* + 2)| = ∞ |�t
+(P*, R*)| = ∞

vt
n–1(P*, R+

* ) ≥ Lt
k(P*, R+

*)
~ ~

~ ~
R* ∈�t

*\�t
+~~

for n ≥ Nk(P*, R+
* +1)

Lemma 6.4 → vt
n–1(P*, R+

* +1) ≥ Lt
k(P*, R+

* +1)
~

~

~

for n ≥ Nk(P*, R+
* +1)

Lemma 6.4 → vt
n–1(P*, R+

* +1) ≥ Lt
k(P*, R+

* +1)
~

~

~

for n ≥ Nk(P*, R+
* +1)

Lemma 6.4 → vt
n–1(P*, R+

* +1) ≥ Lt
k(P*, R+

* +1)
~

~

~

R+
* +1

~
R+

* +2
= R*–1

Projection property

Figure 5. Successive applications of Lemma 6.4.
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Proof. Fix ' ∈  . As before, the dependence on ' is omitted. At each iteration n and time t of the
algorithm, the decision xnt is optimal with respect to the price P

n
t , the current asset level R

n
t−1, and the value

function approximation for price Pnt , which is piecewise linear with integer break points and is represented by
its slopes v̄nt 	P

n
t �1
� � � � � v̄

n
t 	P

n
t �Bt
. Therefore, it follows that either −Pnt + v̄nt 	Pnt �Rnt−1 + xnt 
≥ 0 and −Pnt +

v̄nt 	P
n
t �R

n
t−1+ xnt + 1
≤ 0 or

−Pnt + v̄nt 	Pnt �Rnt−1
≤ 0� if xnt = 0�
−Pnt + v̄nt 	Pnt �Rnt−1+Mt + 1
≥ 0� if xnt =Mt�

Then, by passing to the limit, we can conclude that each accumulation point 	v̄∗�R∗
t−1� P

∗
t � x

∗
t 
 of the sequence


	v̄n−1�Rnt−1� P
n
t � x

n
t 
�n≥1 satisfies either −P ∗

t + v̄∗t 	P ∗
t �R

∗
t−1+ x∗t 
≥ 0 and −P ∗

t + v̄∗t 	P ∗
t �R

∗
t−1+ x∗t + 1
≤ 0 or

−P ∗
t + v̄∗t 	P ∗

t �R
∗
t−1
≤ 0� if x∗t = 0�

−P ∗
t + v̄∗t 	P ∗

t �R
∗
t−1+Mt + 1
≥ 0� if x∗t =Mt�

Because states 	P ∗
t �R

∗
t−1+ x∗t 
 and 	P ∗

t �R
∗
t−1+ x∗t + 1
 are elements of �̄ ∗

t , it follows from Theorem 6.1 that

v̄∗t 	P
∗
t �R

∗
t−1+ x∗t 
= v∗t 	P ∗

t �R
∗
t−1+ x∗t 
 and v̄∗t 	P

∗
t �R

∗
t−1+ x∗t + 1
= v∗t 	P ∗

t �R
∗
t−1+ x∗t + 1
�

This fact, combined with the given characterization of the accumulation points 	v̄∗�R∗
t−1� P

∗
t � x

∗
t 
, is sufficient to

conclude the proof. �

7. Experimental results. The purpose of this section is to analyse and compare empirically the rate of
convergence of our approach with the rate of convergence of other convergent Monte Carlo-based algorithms.
We would like to emphasize that the main contribution of the paper is the convergence analysis of the ADP-
lagged algorithm. Therefore, our intention is not to perform a comprehensive experimental study but rather to
provide an illustration of the various aspects that can influence the rate of convergence.
We start by giving a brief description of each approach to which we compare our algorithm. In a batch mode

Monte Carlo-based value iteration algorithm (batch), at each iteration n once a sample for the price process,
reward, and demand is gathered, we sample slopes at all possible asset levels R and use this information to
update the corresponding slopes for the observed sampled prices Pn = 	Pn0 � � � � � PnT−1
. That is, Steps 2(c) and
2(d) of the algorithm described in Figure 1 are replaced by
Step 2(c). Observe v̂nt+1	R
 according to Equation (4) for all R such that 	P

n
t �R
 ∈ �̄t .

Step 2(d). For 	P�R
 ∈ �̄t ,

znt 	P�R
= �	1−�nt 
v̄n−1t 	P �R
+�nt v̂nt+1	R
�1
P=Pnt �+ v̄n−1t 	P �R
1
P �=Pnt ��

Applying this method, which is synchronous in the sense that all the slopes for the observed prices are updated
at once, we want to measure the tradeoff between a synchronous (batch) and an asynchronous approach (our
algorithm). Our method is asynchronous in the sense that only two slopes are updated at each iteration n and
time t (it can be more if a violation of concavity occurs).
Using a real time dynamic programming (RTDP) approach (Barto et al. [3]), expected values are computed

instead of using sample observations. That is, Step 2(c) of the algorithm described in Figure 1 is replaced by:
Step 2(c). Observe v̂nt+1	R

n
t 
 and v̂

n
t+1	R

n
t + 1
 according to:

v̂nt+1	R
= Ɛ
[
max	min	Pt+1� v̄

n−1
t+1 	Pt+1�R

� v̄

n−1
t+1 	Pt+1�R+Mt+1

1
t<T−1�+ r̂ n1
R≤�Dn�1
t=T−1� � Pnt = P

]
� (31)

When we compare the computational results of this method to the computational results of our approach, we
are observing the tradeoff between more information given by the expectation versus the time spent to do this
operation.
A very popular approach in the approximate dynamic literature is Q-learning (Watkins and Dayan [29],

Abounadi et al. [1], Rummery and Niranjan [17], Even-Dar and Mansour [9], Cybenko et al. [7], Tsitsiklis [26],
Duff [8]), which, like our algorithm is also often used as a model-free algorithmic strategy. However, its state
space, namely, � ×
 , where 
 is our action space, makes this approach impractical for our problem class.
Therefore, instead of implementing a Q-learning approach, we consider an algorithm that only stores the state
after the decision is made and samples all possible actions using a decaying exploration scheme called �-greedy.
This decaying approach is fully described in Singh et al. [21]. The authors prove its convergence to an optimal
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Table 1. Instances description− T = 10 and Mt =M = 400− discretization= 0�1.

Instances State space Initial price Reward r̂ Demand �D Price proc.

1 580�000 Constant 20 U	50�60
 DiscU	180�250
 RW
2 580�000 Constant 20 U	50�60
 Poisson(200) RW

3 4�114�800 1.7 ∗U	1�12
 PT−1 ∗U	1�03�1�15
 Poisson(250) MR
4 4�114�800 1.7 ∗U	1�12
 PT−1 ∗U	1�03�1�15
 DiscU	180�220
 MR

5 1�608�000 Constant 40 Constant 25 Poisson(300) GBM
6 1�608�000 Constant 45 Constant 15 DiscU	225�375
 GBM

policy and show that each decision is executed infinitely often in every state that is visited infinitely often.
Furthermore, as the number of iterations goes to infinity, the decisions are optimal with respect to the current
approximation. We want to see how our pure exploitation approach compares to a decaying exploration one.
In our implementation, we define �	P�R
 to be equal to a/N	P�R
, where a ∈ 	0�1
 and N	P�R
 is the

number of visits to state 	P�R
. We replace Step 2(a) of the algorithm described in Figure 1 by:
Step 2(a). Sample a random variable û from a continuous uniform 	0�1
 distribution.

xnt =



Follows a discrete uniform distribution 	0�Mt
� if û < �	Pnt �R

n
t−1


argmax
0≤x≤Mt

−Pnt x+ �V n−1t 	Pnt �R
n
t−1+ x
� otherwise.

We have experimented with values of a ranging from 0�1 to 0�9 with 0�1 increments. Although our convergence
proof applies to the case a= 0 (no exploration), we found that we obtained the best results with a= 0�5 and,
therefore, we used this value for all the experimental work in this section. We also observe that epsilon greedy is
a fairly simple form of exploration because it ignores the value of visiting a state (see Powell [15, Chapter 10],
for a fairly in-depth discussion of these issues). Because the central contribution of this paper is the convergence
proof, the results in this section are primarily illustrative and are not intended to represent the best possible
implementation of ADP for this problem class.
We note that the projection operation is in effect for all the approaches. Enforcing concavity is not a very

time-consuming operation and it both accelerates convergence and guarantees that the optimal solution xnt at
each iteration is unique and easy to compute using the characterization given by Equation (6).
The instances considered in the experiments are described in Table 1. Problems were randomly generated

using different distributions for the rewards r̂ and initial prices P0. Moreover, both discrete uniform (DiscU) and
Poisson demand distributions with different parameters were used.
We also created different price processes, namely, random walk (RW), mean reversion (MR), and geometric

Brownian motion (GBM), all of which are described below. These processes are unbounded and continuous yet
we require, in order to prove convergence of the algorithm, our state space to be bounded and finite. Therefore,
the processes are truncated from above and below, and they are discretized. However, except for the RTDP
method, all the Monte Carlo-based algorithms (including ours) may use continuous prices, with the discretization
occurring only in the value function approximation. Because the RTDP method requires the computation of
expected values to determine the slopes, the distribution of the price process has to be adjusted to reflect the
truncation levels and the discretization increments under consideration, transforming the original Markovian
continuous processes into Markovian discrete processes.
For all instances, the number of time periods considered is 10. That is, the random demand �D and the random

reward r̂ are observed at T = 10. Furthermore, the upper bound on the decision quantity xt , for t = 0� � � � � T −1,
is set to Mt =M = 400. Table 1 also conveys the size of the state space of each instance when the price process,
for all instances, is discretized using a 0�1 increment.
Next, we give the details of the different price processes. The random walk price process is given by Pt =

Pt−1 + �Pt , where the price increment �Pt has a normal distribution with mean 4= 0�02 and standard deviation
! = 1�5. The mean reversion price process is given by Pt = Pt−1 + �Pt + 0�5	Bt − Pt−1
, where �Pt is uniformly
distributed between 0�9 and 1�2, and B0 = 1�7 	U	1�12
 and Bt = Bt−1 	U	0�9�1�2
, where 	U is the mean of the
corresponding uniform distribution. Finally, the geometric Brownian motion process is given by Pt = Pt−1e �Pt ,
where �Pt is normally distributed with mean 4= 0�0125 and standard deviation ! = 0�087.
It is easy to see that when the random walk and the geometric Brownian motion are considered, the slopes

v∗t 	P �R
 given by Equation (3) are monotone increasing in the price dimension. Therefore, for all the different
methods and instances 1, 2, 5, and 6, this property is going to be imposed in order to speed up the rate of
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convergence. The monotone increasing property is obtained by induction on t. We prove for the random walk
process (instances 1 and 2). A similar reasoning can be applied to instances 5 and 6. The base case t = T − 1
is trivial as, for 	P�R
 ∈ �̄T−1, v∗T−1	P�R
= Ɛ�r̂1
 �D≥R��, i.e., the optimal slopes at T − 1 are independent of the
price. The induction hypothesis assumes, given an asset level R, that the optimal slopes at t+ 1 are monotone
increasing in the price dimension. Pick 	 	P�R
 ∈ �̄t and 	P̃ �R
 ∈ �̄t such that 	P ≥ P̃ . Also fix ' ∈ . Clearly,
	P + �Pt+1	'
 ≥ P̃ + �Pt+1	'
 and from the induction hypothesis, v∗t+1	 	P + �Pt+1	'
�R
 ≥ v∗t+1	P̃ + �Pt+1	'
�R
.
Hence,

min	 	P + �Pt+1	'
� v∗t+1	 	P + �Pt+1	'
�R

≥min	P̃ + �Pt+1	'
� v∗t+1	P̃ + �Pt+1	'
�R

�
It also holds that v∗t+1	 	P + �Pt+1	'
�R+Mt+1
≥ v∗t+1	P̃ + �Pt+1	'
�R+Mt+1
. Therefore,

max	min	 	P + �Pt+1	'
� v∗t+1	 	P + �Pt+1	'
�R

� v∗t+1	 	P + �Pt+1	'
�R+Mt+1


≥max	min	P̃ + �Pt+1	'
� v∗t+1	P̃ + �Pt+1	'
�R

� v∗t+1	P̃ + �Pt+1	'
�R+Mt+1

�

proving, by the definition of the optimal slopes, that v∗t 	 	P�R
≥ v∗t 	P̃ �R
.
The experiments were run as follows. Using the underlying distributions (given in Table 1), we computed an

optimal policy using backward dynamic programming, assuming the prices were discretized to the nearest 0�01.
We next randomly generated 50 sets � i, i = 1� � � � �50, where each set � i consisted of 2× 106 sample paths.
These sets were used to train and update the value functions of the approximation algorithms.
To evaluate the policies, for each instance we randomly generated a set � of 800 sample paths. For ' ∈ � ,

the profit obtained following the optimal policy is given by

F ∗	'
=
T−1∑
t=0

−Pt	'
X∗
t 	'
+ r̂ 	'
min	 �DT 	'
�RT−1	'

�

where X∗
t 	'
 is the decision determined by the optimal policy (computed exactly using backward dynamic

programming) at time t for sample path '. Hence, the sample mean profit produced by the optimal policy is
given by:

	F ∗ = 1
800

∑
'∈� 
F ∗	'
�

Similarly, for ' ∈ � , the profit obtained following an approximate policy is given by

�F n� i	'
=
T−1∑
t=0

−Pt	'
�Xn� it 	'
+ r̂ 	'
min	 �D	'
�RT−1	'

�

where �Xn� it 	'
 is the decision determined by the approximate policy after n iterations of the corresponding
approximation algorithm using training set � i. Next, these values are averaged to obtain

F n	'
= 1
50

50∑
i=1

�F n� i	'
�

Thus, the sample mean profit produced by the approximation algorithm is given by

	F n = 1
800

∑
'∈� 
F n	'
�

Finally, we determine the percentage distance from optimal (in other words, the error incurred by the approx-
imation approach) according to

/n = � 	F ∗ − 	F n�
	F ∗ × 100� (32)

Figure 6 illustrates the rate of convergence of the different approximation methods considered in the paper
as a function of the number of iterations (Figure 6(a)) and CPU time (Figure 6(b)). The latter only conveys the
results up until the time taken by our algorithm (ADP lagged) to reach 105 iterations. Even though Figure 6
refers to instance 1, it reflects the behavior of the methods for the other instances as well.
It is more intuitive to think that a decaying exploration strategy can achieve better rates of convergence than

a pure exploitation one. However, Figure 6 shows us that this is not the case for the lagged asset acquisition
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Figure 6. Instance 1—% away from optimal objective value.

problem. This might be explained by the fact that in our problem the decision might take 400 different values
and the exploration steps, especially in the initial iterations, may lead the algorithm to parts of the state space
that add little value to the problem of finding an optimal policy. Thus, instead of accelerating convergence, the
exploration is in fact slowing it down. Moreover, even though the �-greedy strategy mimics greedy choices in
the limit, with problem instances that have a state space size ranging in the order of 105 to 107, the algorithm
is far from reaching limiting behavior after 105 (as in Figure 6) or even 2× 106 iterations (as in Table 2).
Table 2 shows the time (in seconds) to compute the optimal policy and the time it took each method to be

10%�1%� � � � �10−3% away from the optimal policy. All methods were limited to 2 million iterations.
Note that instances 3 and 4 did not reach the 10−2% level. This is due to the fact that these instances use the

mean reversion price process, and the monotone increasing property of the slopes in the price dimension does
not apply to this process. Hence, this property could not be imposed in order to speed up convergence.
Table 2 also conveys that the computational time for the batch approach is much higher than the computa-

tional time of the ADP-lagged approach. It follows that even though the batch method makes better use of the
information in each sample realization, the overhead of computing all the slopes at each iteration offsets any
benefits. The same is true for the RTDP approach. More information given by the expectation instead of a sam-
ple realization does not result in an improvement in the solutions in a competitive amount of time. As pointed
out by Figure 6, the common exploitation versus exploration tradeoff has a simple answer for the lagged asset
acquisition problem, as the pure exploitation approaches (ours and RTDP) clearly outperformed the �-greedy
method, a decaying exploration approach.
We finish this section pointing out that when we compare the computational time spent to obtain the exact

solution and the computational time spent by each approximate method, we can infer that despite the fact that we
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Table 2. Time in seconds to reach the given percentage of the exact solution. All methods were limited to 2× 106 iterations.
Quality of solutions is determined by /n defined in Equation (32).

Percent away from optimal objective function

Instance Method 101 100 10−1 10−2 10−3

1 ADP lagged 0�25 0�25 1�62 14�83
Exact time Batch 0�27 0�27 2�39 30�02
6,923.03 secs RTDP 0�81 0�81 2�65

�-greedy 0�13 0�13 16�05

2 ADP lagged 0�26 0�26 0�26 6�66
Exact time Batch 0�21 0�21 0�21
6,842.21 secs RTDP 0�81 0�81 0�81 20�36

�-greedy 0�14 0�26 16�61

3 ADP lagged 3�69 29�72 460�79
Exact time Batch 5�921�77
7,658.94 secs RTDP 21�88 30�7

�-greedy 4�29

4 ADP lagged 3�46 20�62 691�25
Exact time Batch 11�816�34
7,548.53 secs RTDP 20�96 29�38

�-greedy 4�27

5 ADP lagged 10�53 17�12 27�77 46�83 216�48
Exact time Batch 129 194�13
24,149.52 secs RTDP 406�34 677�7 812�85 812�85 948�04

�-greedy 4�19 42�45

6 ADP lagged 0�34 4�9 9�52 206�47 236�63
Exact time Batch 12�46 31�93
10,766.61 secs RTDP 9�18 376�77 376�77 564�38

�-greedy 0�26 6�22

are dealing with a scalar decision, instances of this problem class can easily run into very large state spaces. We
can also infer that our ADP-lagged algorithm would be a reasonable method of choice even when the distribution
of the random variables are known and we are able to use standard dynamic programming techniques, as the
ADP-lagged approach gives very accurate policies quite quickly.

8. Conclusions. We proposed an approximate dynamic programming algorithm to solve the lagged asset
acquisition problem. Our algorithm is a sample-based method that uses a pure exploitation scheme at every
iteration. The idea is to construct piecewise linear value function approximations, learning their slopes only
for certain portions of the state space, which is determined by the algorithm itself. Because the optimal value
functions associated with the problem are concave, the algorithm enforces the concavity of the approximations
at every iteration through a projection operation.
We prove that the algorithm converges to an optimal policy almost surely. The proof builds on the ideas in

Bertsekas and Tsitsiklis [4] as well as in Powell et al. [16], although the former proves convergence only if
all states are visited infinitely often and the latter deals only with two-stage problems. The RTDP method is
another example of a pure exploitation algorithm that converges to an optimal policy, although it relies on the
fact that expected values are computed at each iteration (instead of using just sample realizations) and the initial
approximations are optimistic.
The computational experiments illustrate some issues about our problem class and the rate of convergence

of the algorithms. First, they show that even though our problem has only two dimensions, obtaining exact
solutions (even when the distributions are known) is computationally very expensive. Second, they show that the
ADP-lagged algorithm provides very high-quality solutions in a reasonable amount of time, demonstrating that
our algorithm can handle continuous prices because only the value functions have to be discretized, not the price
process itself. Finally, for the instances considered, we can infer that a pure exploitation scheme accelerates the
rate of convergence because both our algorithm and the RTDP approach outperformed the �-greedy approach.
We can also infer that using more information either through the computation of expected values (RTDP) or
the observation of more sample slopes at a time (batch) does not justify the increased computational time per
iteration, as our algorithm still provided better convergence rates. The results also support the idea that the more
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structure the faster the convergence, as the rate of convergence for the instances where the monotone increasing
property of the slopes in the price dimension did not apply (instances 3 and 4) was slower compared to the
other instances.

Appendix A. Summary of elements. Below is a brief summary of notation to assist with reading the
proofs. For each random element, we provide its measurability.
• Filtrations
� = !
	Pnt � xnt � �Dn� r̂n
� n≥ 1� t = 0� � � � � T − 1�.
� n
T = !
	Pmt′ � xmt′ � �Dm� r̂m
� m≤ n� t′ = 0� � � � � T − 1�.

� n
t = !	
	Pmt′ � xmt′ � �Dm� r̂m
� m< n� t′ = 0� � � � � T − 1�∪ 
	Pnt′ � xnt′
� t′ = 0� � � � � t�
.

� n
t ⊂ · · · ⊂� n

T ⊂� n+1
0 ⊂ · · · ⊂� n+1

t ⊂ · · · ⊂� .
• Exogenous information

Pnt ∈� n

t �
T−1
t=0 : Markovian price process. Strictly positive, has finite support, and is independent of the asset

level.
�Dn ∈� n

T : demand. Positive, discrete, might be dependent on P
n
T−1 and r̂

n.
r̂ n ∈� n

T : reward. Strictly positive, bounded, might be dependent on P
n
T−1 and �Dn.

• Decision and state variables
xnt ∈� n

t : order quantity. Integer valued, 0≤ xnt ≤Mt (deterministic bound).
	Pnt �R

n
t 
 ∈� n

t : price and asset quantity (integer, 0≤Rnt ≤ Bt =
∑t
i=0Mt).

�t: finite support set of Pt .
• Value function (concave piecewise linear with integer break points)
V ∗
t 	P �R
: optimal value function at 	P�R
.�V nt 	P�R
=

∑R
i=1 v̄

n
t 	P� i
 ∈� n

t+1: value function approximation at 	P�R
. We assume that �V nt 	P�0
= 0.
• Slopes (monotone decreasing in R and bounded)
v∗t 	P �R
: slope of the optimal value function at 	P�R
.
znt 	P�R
 ∈� n

t+1: unprojected slope of the value function approximation at 	P�R
.
v̄nt 	P�R
 ∈� n

t+1: slope of the value function approximation at 	P�R
.
v̄∗t 	P �R
 ∈� : accumulation point of 
v̄nt 	P�R
�n≥0.
v̂nt 	R
 ∈� n

t : sample slope at R.
• Stepsizes (bounded by zero and one, sum is +�, sum of the squares is <+�)
�nt ∈� n

t and �̄
n
t 	P�R
= �nt 	1
P=Pnt �R=Rnt �+ 1
P=Pnt �R=Rnt +1�
.• Set of iterations (due to the projection operation)

� −
t 	P �R
 ∈� : iterations in which the unprojected slope at 	P�R
 was increased.

� +
t 	P �R
 ∈� : iterations in which the unprojected slope at 	P�R
 was decreased.

• Set of states
�t: state space.
�̄t: �t minus the 	Pt�0
 pairs.
�̄ ∗
t ∈� : accumulation points 	P ∗

t �R
∗
t 
 or 	P

∗
t �R

∗
t + 1
 of 
	Pnt �Rnt 
�n≥0.��−

t ∈� : states in which the projection had not increased the unprojected slopes infinitely often (i.o.).
��+
t ∈� : states in which the projection had not decreased the unprojected slopes i.o.

• Dynamic programming operator H
• Deterministic bounding sequences 
Lkt 	P�R
�k≥0 and 
U kt 	P�R
�k≥0
• Error variables ŝnt+1− ∈� n

t+1 and ŝ
n
t+1+ ∈� n

t+1
• Stochastic noise sequences 
s̄nt−	P�R
�n≥0 and 
s̄nt+	P�R
�n≥0
• Stochastic bounding sequences 
l̄nt 	P�R
�n≥0 and 
ūnt 	P�R
�n≥0

Appendix B. Proofs. We start with the proof of Proposition 2.1, then we present the proofs for the lemmas
of the convergence analysis section.
Proof of Proposition 2.1. An induction argument is used. First, we show for time T − 1 and 	P�R
 ∈

�̄T−1 that v∗T−1	P�R
 is indeed equal to Equation (3). We also show, for any y ∈ 	0�1
, that V ∗
T−1	P�R+ y
=

V ∗
T−1	P�R
+ yv∗T−1	P�R+ 1
. Finally, we argue that v∗T−1	P�R
≤ v∗T−1	P�R− 1
. Fix 	P�R
 ∈ �̄T−1. We have
that

v∗T−1	P�R
= Ɛ
[
r̂min	 �D�R
− r̂min	 �D�R− 1
 � PT−1 = P

]= Ɛ
[
r̂1
 �D≥R� � PT−1 = P

]
�
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It is obvious that Ɛ�r̂1
 �D≥R� � PT−1 = P�≤ Ɛ�r̂1
 �D≥R−1� � PT−1 = P�, thus v∗T−1	P�R
≤ v∗T−1	P�R− 1
. Moreover,
for y ∈ 	0�1
,

V ∗
T−1	P�R+ y
 = Ɛ

[
r̂min	 �D�R+ y
 � PT−1 = P

]
= Ɛ

[
r̂ �D1
 �D≤R+y�+ 	R+ y
r̂1
 �D>R+y� � PT−1 = P

]
= Ɛ

[
r̂ �D1
 �D≤R�+ 	R+ y
r̂1
 �D≥R+1� � PT−1 = P

]
= Ɛ

[
r̂min	 �D�R
+ yr̂1
 �D≥R+1� � PT−1 = P

]
= V ∗

T−1	P�R
+ yv∗T−1	P�R+ 1
�
where the transition from the second to the third line follows from the fact that �D and R are integer valued.
Now assume for t + 1 that the optimal value functions are piecewise linear, with integer break points and

concave in the asset dimension. Moreover, v∗t+1	P�R
 is given by Equation (3). We shall prove that the same
claims are true for t, where t is any time period between 0 and T −2. Fix 	P�R
 ∈ �̄t . We have that v

∗
t 	P �R
=

V ∗
t 	P �R
−V ∗

t 	P �R− 1
, where
V ∗
t 	P �R
= Ɛ

[−Pt+1x∗t+1+V ∗
t+1	Pt+1�R+ x∗t+1
 � Pt = P

]
� (B.1)

V ∗
t 	P �R− 1
= Ɛ

[−Pt+1y∗t+1+V ∗
t+1	Pt+1�R− 1+ y∗t+1
 � Pt = P

]
� (B.2)

and x∗t+1 and y
∗
t+1 are defined by

x∗t+1 = argmax
0≤x≤Mt+1

−Pt+1x+V ∗
t+1	Pt+1�R+ x
�

y∗t+1 = argmax
0≤x≤Mt+1

−Pt+1x+V ∗
t+1	Pt+1�R− 1+ x
�

We have that the optimal decision x∗t+1 is the maximum element of the set


0≤ x≤Mt+1� −Pt+1+ v∗t+1	Pt+1�R+ x
≥ 0� −Pt+1+ v∗t+1	Pt+1�R+ x+ 1
≤ 0��
If the set is empty, then x∗t+1 = 0, if −Pt+1 + v∗t+1	Pt+1�R + 1
 ≤ 0. Moreover, x∗t+1 = Mt+1, if −Pt+1 +
v∗t+1	Pt+1�R+Mt+1+ 1
≥ 0. The same applies for the optimal decision y∗t+1.
Define the random variable v̂t+1	R
=max	min	Pt+1� v∗t+1	Pt+1�R

� v∗t+1	Pt+1�R+Mt+1

. We want to show

that v∗t 	P �R
= Ɛ�v̂t+1	R
 � Pt = P�. Pick Pt+1 ∈�t+1 such that �
Pt+1 � Pt = P� > 0. We have to consider three
cases.
Case 1. x∗t+1 = y∗t+1 = 0. In this case, due to definition of x∗t+1 and the induction hypothesis, Pt+1 ≥

v∗t+1	Pt+1�R
≥ v∗t+1	Pt+1�R+Mt+1
. Therefore, v̂t+1	R
= v∗t+1	Pt+1�R
.
Case 2. y∗t+1 = x∗t+1+ 1<Mt+1. In this case, v̂t+1	R
= Pt+1, because:

Pt+1 ≤ v∗t+1	Pt+1�R
 and Pt+1 ≥ v∗t+1	Pt+1�R+ x∗t+1+ 1
≥ v∗t+1	Pt+1�R+Mt+1+ 1
�
Case 3. x∗t+1 = y∗t+1 = Mt+1. In this case, Pt+1 ≤ v∗t+1	Pt+1�R
 and Pt+1 ≤ v∗t+1	Pt+1�R + Mt+1
. Hence,

v̂t+1	R
 = v∗t+1	Pt+1�R + Mt+1
. For each case, if we substitute x∗t+1 and y∗t+1 into −Pt+1	x∗t+1 − y∗t+1
 +
V ∗
t+1	Pt+1�R+ x∗t+1
− V ∗

t+1	Pt+1�R− 1+ y∗t+1
, we get that this expression is equal to v̂t+1	R
. Thus, we have
proved that v∗t 	P �R
 is equal to Equation (3). Clearly, as the induction hypothesis tells us that v

∗
t+1	Pt+1�R
≤

v∗t+1	Pt+1�R− 1
, it follows that v∗t 	P �R
≤ v∗t 	P �R− 1
.
We finish the proof showing for y ∈ 	0�1
 that V ∗

t 	P �R+ y
= V ∗
t 	P �R
+ yv∗t 	P �R+ 1
. Again, we have to

consider three cases:
Case 1. x∗t+1 = 0. In this case, Pt+1 ≥ v∗t+1	Pt+1�R + 1
 ≥ v∗t+1	Pt+1�R + 1 +Mt+1
. Thus, because of the

induction hypothesis and definition of v̂t+1	R+ 1
,
max

0≤x≤Mt+1
−Pt+1x+V ∗

t+1	Pt+1�R+ y+ x
 = V ∗
t+1	Pt+1�R+ y
= V ∗

t+1	Pt+1�R
+ yv∗t+1	Pt+1�R+ 1

= −Pt+1x∗t+1+V ∗

t+1	Pt+1�R+ x∗t+1
+ yv̂t+1	R+ 1
�
Case 2. x∗t+1 ∈ 
1� � � � �Mt+1 − 1�. In this case, v̂t+1	R + 1
 = Pt+1 because Pt+1 ≤ v∗t+1	Pt+1�R + 1
 and

Pt+1 ≥ v∗t+1	Pt+1�R+Mt+1+ 1
. Hence,
max

0≤x≤Mt+1
−Pt+1x+V ∗

t+1	Pt+1�R+ y+ x
 = −Pt+1	x∗t+1− y
+V ∗
t+1	Pt+1�R+ x∗t+1


= −Pt+1x∗t+1+V ∗
t+1	Pt+1�R+ x∗t+1
+ yv̂t+1	R+ 1
�
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Case 3. x∗t+1 =Mt+1. In this case, Pt+1 ≤ v∗t+1	Pt+1�R+Mt+1 + 1
. Therefore, v̂t+1	R+ 1
 = v∗t+1	Pt+1�R+
Mt+1+ 1
 and

max
0≤x≤Mt+1

−Pt+1Mt+1+V ∗
t+1	Pt+1�R+ y+Mt+1
=−Pt+1	x∗t+1− y
+V ∗

t+1	Pt+1�R+ x∗t+1

=−Pt+1Mt+1+V ∗

t+1	Pt+1�R+Mt+1
+ yv∗t+1	Pt+1�R+Mt+1+ 1

=−Pt+1x∗t+1+V ∗

t+1	Pt+1�R+ x∗t+1
+ yv̂t+1	R+ 1
�
Because by definition, V ∗

t 	P �R+ y
 = Ɛ�max0≤x≤Mt+1 −Pt+1x + V ∗
t+1	Pt+1�R+ y + x
 � Pt = P�, we use Equa-

tion (B.1) and v∗t 	P �R+ 1
= Ɛ�v̂t+1	R+ 1
 � Pt = P� to finish the proof. �

Each lemma assumes all the conditions imposed and all the results obtained before its statement in the proof
of Theorem 6.1. To improve the comprehension of each proof, all the assumptions are presented beforehand.
Proof of Lemma 6.2.
Assumptions. Assume stepsize conditions (7)–(9).
Fix 	 	P ∗� 	R∗
 ∈ �̄t and ' ∈ . Omitting the dependence on ', we assume that 	 	P ∗� 	R∗
 ∈ �̄ ∗

t . We prove the
convergence to zero of the sequence 
s̄nt−	 	P ∗� 	R∗
�n≥0. The proof for 
s̄nt+	 	P ∗� 	R∗
�n≥0 is symmetrical. To simplify
notation, let s̄nt−	 	P ∗� 	R∗
 be denoted by s̄∗� nt and �̄nt 	 	P ∗� 	R∗
 be denoted by �̄∗� n

t . Furthermore, let

7̂nt+1 = ŝnt+1−	Rnt 1
 	R∗≤Rnt �+ 	Rnt + 1
1
 	R∗>Rnt �
�
We have, for n≥ 1,

	s̄∗� nt 

2 ≤ [

	1− �̄∗� n
t 
s̄

∗� n−1
t + �̄∗� n

t 7̂
n
t+1

]2 = 	s̄∗� n−1t 
2− 2�̄∗� n
t 	s̄

∗� n−1
t 
2+Ant � (B.3)

where Ant = 2�̄∗� n
t s̄

∗� n−1
t 7̂nt+1+ 	�̄∗� n

t 

2	7̂nt+1− s̄∗� n−1t 
2. We want to show that:

�∑
n=1
Ant = 2

�∑
n=1
�̄∗� n
t s̄

∗� n−1
t 7̂nt+1+

�∑
n=1
	�̄∗� n
t 


2	7̂nt+1− s̄∗� n−1t 
2 <��

It is trivial to see that both s̄∗� n−1t and 7̂nt+1 are bounded. Thus, 	7̂
n
t+1− s̄∗� n−1t 
2 is bounded and Equation (8)

tells us that �∑
n=1
	�̄∗� n
t 


2	7̂nt+1− s̄∗� n−1t 
2 <�� (B.4)

Define a new sequence 
gnt+1�n≥0, where g
0
t+1 = 0 and gnt+1 =

∑n
m=1 �̄

∗�m
t s̄∗�m−1t 7̂mt+1. We can easily check

that 
gnt+1�n≥0 is a � n
T -martingale bounded in L

2. Measurability is obvious. The martingale equality follows
from repeated conditioning and the unbiasedness property. Finally, the L2-boundedness and consequentially
the integrability can be obtained by noticing that 	gnt+1


2 = 	gn−1t+1 

2+ 2gn−1t+1 �̄

∗� n
t s̄

∗� n−1
t 7̂nt+1+ 	�̄∗� n

t 

2	s̄∗� n−1t 7̂nt+1


2.
From the martingale equality and boundedness of s̄∗� n−1t and 7̂nt+1, we get

Ɛ�	gnt+1

2 �� n−1

T �≤ 	gn−1t+1 

2+CƐ�	�̄∗� n

t 

2 �� n−1

T ��

where C is a constant. Hence, taking expectations and repeating the process, we obtain from the stepsize
assumption (8) and Ɛ�	g0t+1


2�= 0,

Ɛ�	gnt+1

2�≤ Ɛ�	gn−1t+1 


2�+CƐ�	�̄∗� n
t 


2�≤ Ɛ�	g0t+1

2�+C

n∑
m=1

Ɛ�	�̄∗�m
t 
2� <��

Therefore, the L2-bounded martingale convergence theorem (Shiryaev [20, p. 510]) tells us that

−�<
�∑
n=1
�̄∗� n
t s̄

∗� n−1
t 7̂nt+1 <�� (B.5)

Inequalities (B.4) and (B.5) show us that −�<∑�
n=1A

n
t <�, and so it is valid to write

Ant =
�∑
m=n
Amt −

�∑
m=n+1

Amt �
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Therefore, as −2�̄∗� n
t 	s̄

∗� n−1
t 
2 < 0, inequality (B.3) can be rewritten as

	s̄∗� nt 

2+

�∑
m=n+1

Amt ≤ 	s̄∗� n−1t 
2+
�∑
m=n
Amt � (B.6)

Thus, the sequence 
	s̄∗� n−1t 
2 +∑�
m=n A

m
t �n≥1 is nonincreasing and bounded from below as �∑�

m=1A
m
t � <�.

Hence, it is convergent. Moreover, as
∑�
m=n A

m
t → 0 when n→�, we can conclude that 
s̄∗� nt �n≥0 converges.

Finally, as inequality (B.3) holds for all n≥ 1, it yields
	s̄∗� nt 


2 ≤ 	s̄∗� n−1t 
2− 2�̄∗� n
t 	s̄

∗� n−1
t 
2+Ant

≤ 	s̄∗� n−2t 
2− 2�̄∗� n−1
t 	s̄∗� n−2t 
2+An−1t − 2�̄∗� n

t 	s̄
∗� n−1
t 
2+Ant

���

≤ −2
n∑
m=1
�̄∗�m
t 	s̄∗�m−1t 
2+

n∑
m=1
Amt �

Passing to the limits, we obtain

lim sup
n→�

	s̄∗� nt 

2+ 2

n∑
m=1
�̄∗�m
t 	s̄∗�m−1t 
2 ≤ lim sup

n→�

n∑
m=1
Amt <��

This implies, together with the convergence of 
s̄∗� nt �n≥0, that
∑�
m=1 �̄

∗�m
t 	s̄∗�m−1t 
2 < �. On the other hand,

stepsize assumption (9) tells us that
∑�
m=1 �̄

∗�m
t =�. Hence, there must exist a subsequence of 
s̄∗� nt �n≥0 that

converges to zero. Therefore, as every subsequence of a convergent sequence converges to its limit, it follows
that 
s̄∗� nt �n≥0 converges to zero. �

Proof of Lemma 6.3. The proof is divided into two parts.
(i) Part 1.
Proof of inequalities

	HLk
t	P
n
t �R

n
t 
≤ 	Hv̄n−1
t	Pnt �Rnt 
≤ 	HUk
t	Pnt �Rnt 
� a.s. on 
Rnt > 0� (B.7)

	HLk
t	P
n
t �R

n
t + 1
≤ 	Hv̄n−1
t	Pnt �Rnt + 1
≤ 	HUk
t	Pnt �Rnt + 1
� a.s. on 
Rnt <Mt� (B.8)

on the event that 
n≥Nkt �.
Assumptions. If t = T −1, Equations (B.7) and (B.8) hold trivially with equality without any assumptions, as

	HLk
T−1	P�R
= 	Hv̄n−1
T−1	P�R
= 	HUk
T−1	P�R
= Ɛ�r̂1
R≤�D� � PT−1 = P�, for all 	P�R
 ∈ �̄T−1. Given
t ∈ 
0� � � � � T − 2� and k ≥ 0, assume for all states 	 	P ∗� 	R∗
 ∈ �̄t+1 the existence of a random index Nkt ≥ 	N
such that

Lkt+1	 	P ∗� 	R∗
≤ v̄n−1t+1 	 	P ∗� 	R∗
≤Ukt+1	 	P ∗� 	R∗
 a.s. (B.9)

on 
n≥Nkt � 	 	P ∗� 	R∗
 ∈ �̄ ∗
t+1�. Note that this assumption is possible because the proof of Theorem 1 is done in

a backward fashion.
We prove the inequalities in Equation (B.7). The ones in Equation (B.8) are handled in a similar way.
Pick t ∈ 
0� � � � � T −2�, k≥ 0, and n≥ 0. Fix ' ∈ . Omitting the dependence on ', assume that n≥Nkt ≥ 	N .

Let 	 	P� 	R
= 	Pnt �Rnt 
 and assume that 	R> 0. We pick P ∈�t+1 such that �
Pt+1 = P � Pt = 	P� > 0. We want
to show that

min	P�Lkt+1	P� 	R

≤min	P� v̄n−1t+1 	P� 	R

≤min	P�U kt+1	P� 	R

�
We need to consider two cases.
Case 1. 	P� 	R
 ∈ �̄ ∗

t+1. In this case, Equation (B.9) holds for 	P� 	R
. Thus, it is straightforward to see that the
inequalities we are trying to prove are true for this case.
Case 2. 	P� 	R
� �̄ ∗

t+1. The first statement of Lemma 4.1 applies for this case and we have that
�∑
m= 	N

1
v̄m−1t+1 	P� 	R+1
<P�Pmt = 	P�Rmt = 	R� = 0�

As n ≥ Nkt ≥ 	N , we have that v̄n−1t+1 	P� 	R
 ≥ v̄n−1t+1 	P� 	R + 1
 ≥ P and 	P�Rnt+1
 is an accumulation point
of 
Pmt+1�R

m
t+1�m≥0. Thus, 	P�R

n
t+1
 ∈ �̄ ∗

t+1 and Equation (B.9) holds for 	P�Rnt+1
, implying that P ≤
Ukt+1	P�R

n
t+1
≤Ukt+1	P� 	R
 due to the monotone decreasing property of Ukt+1. We conclude that

min	P�Lkt+1	P� 	R

≤min	P� v̄n−1t+1 	P� 	R

=min	P�U kt+1	P� 	R

= P�
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To simplify the notation, we use h̄t+1	P�Lk
, h̄t+1	P� v̄n−1
 and h̄t+1	P�U k
 to denote min	P�Lkt+1	P� 	R

,
min	P� v̄n−1t+1 	P� 	R

, and min	P�U kt+1	P� 	R

, respectively. Note that, for instance, 	HLk
t	 	P� 	R
 =
Ɛ�max	h̄t+1	Pt+1�Lk
�Lkt+1	Pt+1� 	R+Mt+1

 � Pt = 	P�. We finalize the proof showing that:

max
(
h̄t+1	P�L

k
�Lkt+1	P� 	R+Mt+1

) ≤ max

(
h̄t+1	P� v̄

n−1
� v̄n−1t+1 	P� 	R+Mt+1

)

≤ max
(
h̄t+1	P�U

k
�U kt+1	P� 	R+Mt+1

)
� (B.10)

As before, we have to consider two cases. If 	P� 	R+Mt+1
 ∈ �̄ ∗
t+1, then Equation (B.9) holds for 	P� 	R+Mt+1


and Equation (B.10) is straightforward. On the other hand, if 	P� 	R+Mt+1
� �̄ ∗
t+1, the second part of Lemma 4.1

applies. Hence,
∑�
m= 	N 1
v̄m−1t+1 	P� 	R∗+1
>P�Pmt = 	P�Rmt = 	R� = 0. As n≥ Nkt ≥ 	N , we have in particular that v̄n−1t+1 	P� 	R∗ +

1
≤ P . Therefore, as 	R< 	R∗ +1≤ 	R+Mt+1, it follows that v̄n−1t+1 	P� 	R+Mt+1
≤ v̄n−1t+1 	P� 	R∗ +1
≤ P , implying
that

max	h̄t+1	P� v̄
n−1
� v̄n−1t+1 	P� 	R+Mt+1

= P ≤max	h̄t+1	P�U k
�U kt+1	P� 	R+Mt+1



because we have proved before that h̄t+1	P� v̄n−1
 = h̄t+1	P�U k
 = P . We also have that Equation (B.9)
applies to 	P� 	R∗ + 1
, thus Lkt+1	P� 	R + Mt+1
 ≤ Lkt+1	P� 	R∗ + 1
 ≤ v̄nt+1	P� 	R∗ + 1
 ≤ P , implying that
max	h̄t+1	P�Lk
�Lkt+1	P� 	R+Mt+1

≤ P , as h̄t+1	P�Lk
≤ P as well. We conclude that Equation (B.10) also
holds for this case.
Therefore, we have that

Ɛ�max	min	Pt+1�L
k
t+1	Pt+1�R

n
t 

�L

k
t+1	Pt+1�R

n
t +Mt+1

 �� n

t �

≤ Ɛ�max	min	Pt+1� v̄
n−1
t+1 	Pt+1�R

n
t 

� v̄

n−1
t+1 	Pt+1�R

n
t +Mt+1

 �� n

t �

≤ Ɛ�max	min	Pt+1�U
k
t+1	Pt+1�R

n
t 

�U

k
t+1	Pt+1�R

n
t +Mt+1

 �� n

t �

and by definition of the mapping H , we have proved Equation (B.7).
(ii) Part 2.
Proof of inequalities

v̄n−1t 	P̃ ∗� R̃∗
≤ ūn−1t 	P̃ ∗� R̃∗
+ s̄n−1t− 	P̃
∗� R̃∗
 a.s. on 
	P̃ ∗� R̃∗
 ∈ ��−

t � (B.11)

v̄n−1t 	P̃ ∗� R̃∗
≥ l̄n−1t 	P̃ ∗� R̃∗
− s̄n−1t+ 	P̃
∗� R̃∗
 a.s. on 
	P̃ ∗� R̃∗
 ∈ ��+

t � (B.12)

on the event that 
n≥Nkt �.
Assumptions. Given t = 0� � � � � T −1, k≥ 0 and index Nkt , assume on 
n≥Nkt � that Equations (22) and (23)

hold true. Note that this assumption is feasible because Lemma 6.3 was stated after the induction hypothesis
on k in the proof of Part 1 of Theorem 6.1. In fact, the role of this lemma is to assist in proving the existence
of Nk+1t such that Equations (22) and (23) are true when k+ 1 is considered.
We prove Equation (B.12). The inequality in Equation (B.11) can be proved using a symmetrical argument.

The proof is by induction on n.
Pick 	P̃ ∗� R̃∗
 ∈ �̄t . We fix ' ∈ and omit the dependence on '. Assume that 	P̃ ∗� R̃∗
 ∈ ��+

t . The proof for
the base case n=Nkt is immediate from the fact that s̄N

k
t −1
t+ 	P̃ ∗� R̃∗
= 0, l̄N kt −1t 	P̃ ∗� R̃∗
= Lkt 	P̃ ∗� R̃∗
 and by the

assumption that Equation (23) holds true for n≥Nkt . Now suppose Equation (B.12) is true for a given n≥Nkt
and we need to prove that v̄nt 	P̃

∗� R̃∗
≥ l̄nt 	P̃ ∗� R̃∗
− s̄nt+	P̃ ∗� R̃∗
.
To simplify the notation, let �̄nt 	P̃

∗� R̃∗
 be denoted by �̃nt and v̄
n
t 	P̃

∗� R̃∗
 be denoted by ṽnt . We use the same
shorthand notation for znt 	P̃

∗� R̃∗
, l̄nt 	P̃
∗� R̃∗
, and s̄nt+	P̃

∗� R̃∗
.
Remember that by the construction of ��+

t , the set of iterations �
+
t 	P̃

∗� R̃∗
 is finite and for all n≥Nkt ≥ 	N ,
v̄nt 	P̃

∗� R̃∗
≥ znt 	P̃ ∗� R̃∗
. Also 	Pnt �R
n
t 
 is the state visited by the algorithm at iteration n and time period t. We

consider three different cases.
Case 1. P̃ ∗ = Pnt and R̃∗ =Rnt .

In this case, 	P̃ ∗� R̃∗
 is the state being visited by the algorithm at iteration n at time t. Thus,

ṽnt ≥ z̃nt = 	1− �̃nt 
ṽn−1t + �̃nt v̂nt+1	Rnt 

≥ 	1− �̃nt 
	l̃n−1t − s̃n−1t+ 
+ �̃nt v̂nt+1	Rnt 
− �̃nt 	Hv̄n−1
t	Pnt �Rnt 
+ �̃nt 	Hv̄n−1
t	Pnt �Rnt 
 (B.13)

≥ 	1− �̃nt 
	l̃n−1t − s̃n−1t+ 
− �̃nt ŝnt+1+	Rnt 
+ �̃nt 	HLk
t	Pnt �Rnt 
 (B.14)

= l̃nt −
(
	1− �̃nt 
s̃n−1t+ + �̃nt ŝnt+1+	Rnt 


)
(B.15)

≥ l̃nt −
(
max	0� 	1− �̃nt 
s̃n−1t+ + �̃nt ŝnt+1+	Rnt 



)
= l̃nt − s̃nt+� (B.16)
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The first inequality is a result of the construction of set ��+
t and Equation (B.13) is due to the induction

hypothesis. As n ≥ Nkt , inequality (B.7) explains Equation (B.14). Finally, Equations (B.15) and (B.16) come
from the definition of the stochastic sequences l̃nt and s̃

n
t+, respectively.

Case 2. P̃ ∗ = Pnt and R̃∗ =Rnt + 1.
This case is analogous to the previous one, except that we use the sample slope v̂nt+1	R

n
t +1
 instead of v̂nt+1	Rnt 
.

We also consider the 	Pnt �R
n
t + 1
 component instead of 	Pnt �Rnt 
. Moreover, inequality (B.8) instead of Equa-

tion (B.7) is used to explain the inequality corresponding to Equation (B.14).
Case 3. Else.

Here, the state 	P̃ ∗� R̃∗
 is not being updated at iteration n at time t due to a direct observation of sample slopes.
Then, �̃nt = 0 and, hence,

l̃nt = l̃n−1t and s̃nt+ = s̃n−1t+ �

Therefore, from the construction of set ��+
t and the induction hypothesis,

ṽnt ≥ z̃nt = ṽn−1t ≥ l̃n−1t − s̃n−1t+ = l̃nt − s̃nt+� �

Proof of Lemma 6.4.
Assumptions. Assume stepsize conditions (7)–(9). Moreover, for given t ∈ 
0� � � � � T − 1�, k ≥ 0, and

index Nkt , assume for an iteration n that inequalities (B.7) and (B.8) hold true on 
n≥Nkt �.
We prove the first statement. The second one is symmetrical.
Fix ' ∈  and omit the dependence of the random elements on w. Given t ∈ 
0� � � � � T − 1�, k ≥ 0 and

state 	P�R
 ∈ �̄t , if �� +
t 	P �R+ 1
� = �, assume there exists an index Nk� lt 	P�R
 such that for all iterations

n≥Nk� lt 	P�R
, it holds that v̄n−1t 	P �R
≥ Lkt 	P�R
.
We start by showing that there exists an index Nk�st 	P�R+ 1
 such that v̄n−1t 	P �R+ 1
 ≥ Lkt 	P�R+ 1
−

s̄n−1t+ 	P�R+ 1
 for all n≥ Nk�st 	P�R+ 1
. Then, we show for all � > 0 that there is an integer Nk��t 	P�R+ 1

such that v̄n−1t 	P �R+ 1
≥ Lkt 	P�R+ 1
− � for all n≥ Nk��t 	P�R+ 1
. Finally, using these results, we prove
the existence of an integer Nk� lt 	P�R+ 1
 such that v̄n−1t 	P �R+ 1
≥ Lkt 	P�R+ 1
 for all n≥Nk� lt 	P�R+ 1
.
Let Nk�st 	P�R + 1
 = min
n ∈ � +

t 	P �R + 1
� n ≥ Nk� lt 	P�R
� + 1. Because �� +
t 	P �R + 1
� is infinite,

Nk�st 	P�R+ 1
 is well-defined. Note that as Nk�st 	P�R + 1
 − 1 ∈ � +
t 	P �R + 1
, the slope corresponding to

state 	P�R+ 1
 was decreased at iteration Nk�st 	P�R+ 1
− 1 and time period t. Hence, v̄N k� st 	P�R+1
−1
t 	P �R
=

v̄
N k� st 	P�R+1
−1
t 	P �R+1
. Redefine the noise sequence 
s̄mt+	P�R+1
�m≥0 introduced in the proof of Theorem 6.1
using Nk�st 	P�R+ 1
 instead of Nkt .
We prove that v̄n−1t 	P �R+ 1
≥ Lkt 	P�R+ 1
− s̄n−1t+ 	P�R+ 1
 for all n≥Nk�st 	P�R+ 1
 by induction on n.

For the base case n=Nk�st 	P�R+1
, from our choice of the index Nk�st 	P�R+1
 and the monotone decreasing
property of Lkt , we have that:

v̄n−1t 	P �R+ 1
= v̄n−1t 	P �R
≥ Lkt 	P�R
≥ Lkt 	P�R+ 1
= Lkt 	P�R+ 1
− s̄n−1t+ 	P�R+ 1
�
Now, we suppose for a given n>Nk�st 	P�R+ 1
 that v̄n−1t 	P �R+ 1
≥ Lkt 	P�R+ 1
− s̄n−1t+ 	P�R+ 1
. We shall
prove that v̄nt 	P�R+ 1
≥ Lkt 	P�R+ 1
− s̄nt+	P�R+ 1
. We consider two cases.
Case 1. n ∈� +

t 	P �R+ 1
.
In this case, a projection operation took place at iteration n. This fact and the monotone decreasing property of
Lk give us

v̄nt 	P�R+ 1
= v̄nt 	P�R
≥ Lkt 	P�R
≥ Lkt 	P�R+ 1
≥ Lkt 	P�R+ 1
− s̄nt+	P�R+ 1
�
Case 2. n�� +

t 	P �R+ 1
.
The analysis of this case is analogous to the proof of inequality (B.12) of Lemma 6.3. The difference is that
we consider Lkt 	P�R + 1
 instead of l̄nt 	P�R + 1
. Therefore, as in Lemma 6.3, we break it down to three
possibilities:

Case 2(i). P = Pnt and R+ 1=Rnt .
In this case, 	P�R + 1
 is the state being visited by the algorithm at iteration n and time t, implying that
�̄nt 	P�R+ 1
= �nt . Thus,

v̄nt 	P�R+ 1
 ≥ znt 	P�R+ 1
= 	1−�nt 
v̄n−1t 	P �R+ 1
+�nt v̂nt+1	Rnt 

≥ 	1−�nt 
	Lkt 	P�R+ 1
− s̄n−1t+ 	P�R+ 1

+�nt v̂nt+1	Rnt 


−�nt 	Hv̄n−1
t	P�Rnt 
+�nt 	Hv̄n−1
t	P�Rnt 
 (B.17)
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≥ 	1−�nt 

(
Lkt 	P�R+ 1
− s̄n−1t+ 	P�R+ 1
)

−�nt ŝnt+1+	Rnt 
+�nt 	HLk
t	P�Rnt 
 (B.18)

≥ Lkt 	P�R+ 1
− (
	1−�nt 
s̄n−1t+ 	P�R+ 1
+�nt ŝnt+1+	Rnt 


)
(B.19)

≥ Lkt 	P�R+ 1
− (
max	0� 	1−�nt 
s̄n−1t+ 	P�R+ 1
+�nt ŝnt+1+	Rnt 



)
= Lkt 	P�R+ 1
− s̄nt+	P�R+ 1
� (B.20)

The first inequality is a result of the fact that n�� +
t 	P �R+1
, meaning that the slope was not decreased due to

a projection iteration. The induction hypothesis explains Equation (B.17) while the definition of ŝnt+1+	R
n
t 
 and

inequality (B.7) explain Equation (B.18). Finally, Equation (B.19) is due to Equation (19), and Equation (B.20)
comes from the definition of the stochastic sequence 
s̄mt+	P�R+ 1
�m≥0.

Case 2(ii). P = Pnt and R+ 1=Rnt + 1.
Similar to the previous case, we have that �̄nt 	P�R+1
= �nt . The rest of the analysis is analogous to the previous
one, except that we use the sample slope v̂nt+1	R

n
t +1
 instead of v̂nt+1	Rnt 
. We also consider 	Hv̄n−1
t	P�Rnt +1


instead of 	Hv̄n−1
t	P�Rnt 
. We use Equation (B.8) instead of Equation (B.7) to justify the inequality equivalent
to Equation (B.18).

Case 2(iii). Else.
Here, the state 	P�R+ 1
 is not being updated at iteration n and time t due to a direct observation of sample
slopes. Then, znt 	P�R+ 1
= v̄n−1t 	P �R+ 1
 and s̄nt+	P�R+ 1
= s̄n−1t+ 	P�R+ 1
. Moreover, from the induction
hypothesis and from the fact that n�� +

t 	P �R+ 1
,
v̄nt 	P�R+ 1
 ≥ znt 	P�R+ 1
= v̄n−1t 	P �R+ 1
≥ Lkt 	P�R+ 1
− s̄n−1t+ 	P�R+ 1


= Lkt 	P�R+ 1
− s̄nt+	P�R+ 1
�
Hence, we have proved that for all k ≥ 0, there exists an integer Nk�st 	P�R+ 1
 such that v̄n−1t 	P �R+ 1
≥

Lkt 	P�R+ 1
− s̄n−1t+ 	P�R+ 1
 for all n≥Nk�st 	P�R+ 1
�
Pick � > 0. We move on to show the existence of an integer Nk��t 	P�R + 1
 such that v̄n−1t 	P �R + 1
 ≥

Lkt 	P�R+1
−� for all n≥Nk��t 	P�R+1
. We consider two cases: (i) 	P�R+1
 ∈ �̄ ∗
t and (ii) 	P�R+1
� �̄ ∗

t .
For the first case, Lemma 6.2 tells us that 
s̄nt+	P�R+ 1
�n≥0 goes to zero. Then, there exists N� > 0 such that
s̄nt+	P�R+ 1
 < � for all n ≥ N�. Therefore, we just need to choose Nk��t 	P�R+ 1
 = max	N k� st 	P�R+ 1
�
N �
. For the second case, �̄nt 	P�R + 1
 = 0 for all n ≥ Nk�st 	P�R + 1
 and s̄N

k� s
t 	P�R+1
−1
t+ 	P�R + 1
 = 0.

Thus, s̄nt+	P�R + 1
 = s̄N k� st 	P�R+1
−1
t+ 	P�R + 1
 = 0 for all n ≥ Nk�st 	P�R + 1
 and we just have to choose

Nk��t 	P�R+ 1
=Nk�st 	P�R+ 1
.
We are ready to conclude the proof. For that matter, we use the result of the previous paragraph. Let � =

v∗t 	P �R + 1
 − Lkt 	P�R + 1
 > 0. Because 
Lkt 	P�R + 1
�k≥0 increases to v∗t 	P �R + 1
, there exists k′ > k
such that v∗t 	P �R+ 1
− Lk′t 	P �R+ 1
 < �/2. Thus, Lk′t 	P �R+ 1
− Lkt 	P�R+ 1
 > �/2 and the result of the
previous paragraph tells us that there exists Nk

′� �/2
t 	P �R+ 1
 such that v̄n−1t 	P �R+ 1
≥ Lk′t 	P �R+ 1
− �/2>

Lkt 	P�R + 1
 + �/2 − �/2 = Lkt 	P�R + 1
 for all n ≥ Nk′� �/2t 	P �R + 1
. Therefore, we just need to choose
Nk� lt 	P�R+ 1
=Nk′� �/2t 	P �R+ 1
 and we have proved that for all k≥ 0, there exists Nk� lt 	P�R+ 1
 such that
v̄n−1t 	P �R+ 1
≥ Lkt 	P�R+ 1
 for all n≥Nk� lt 	P�R+ 1
. �
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