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Abstract

We propose a sequential learning policy for noisy discrete global optimization and ranking
and selection (R&S) problems with high-dimensional sparse belief functions, where there
are hundreds or even thousands of features, but only a small portion of these features
contain explanatory power. Our problem setting, motivated by the experimental sciences,
arises where we have to choose which experiment to run next. Here the experiments are
time-consuming and expensive. We derive a knowledge gradient policy for sparse linear
models (KGSpLin) with group Lasso penalty. This policy is a unique and novel hybrid
of Bayesian R&S with frequentist learning. Particularly, our method naturally combines
a B-spline basis of finite order and approximates the nonparametric additive model and
functional ANOVA model. Theoretically, we provide the estimation error bounds of the
posterior mean estimate and the functional estimate. Controlled experiments on both
synthetic and real data for identifying the accessibility of an RNA molecule show that
the algorithm efficiently learns the correct set of nonzero parameters. Also it outperforms
several other policies.

Keywords: sequential decision analysis, sparse additive model, ranking and selection,
knowledge gradient, functional ANOVA model

1. Introduction

The ranking and selection (R&S) problem arises when we are trying to find the best of a set
of competing alternatives through a process of sequentially testing different choices, which
we have to evaluate using noisy measurements. Specifically, we are maximizing an unknown
function µx : x ∈ X 7→ R, where X is a finite set with M < ∞ alternatives. We have the
ability to sequentially choose a set of measurements to estimate. Our goal is to select the
best alternative when the finite budget is exhausted. The experiments are time-consuming
and expensive. Also, we assume that the objective function µ cannot be written in closed
form and does not have easily available derivatives. This problem arises in applications such
as simulation optimization, medical diagnostics, and the design of business processes. In
such applications, the number of underlying parameters might be quite large; for example,
we might have to choose a series of parameters to design a new material which might involve
temperature, pressure, concentration, and choice of component materials such as catalysts.
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Our work is motivated by learning the accessibility patterns of an RNA molecule known
as the Tetrahymena Group I intron (gI intron), which has been widely used as an RNA
folding model (Cech et al., 1981). Experimentally, such accessibility patterns can be inferred
from fluorescence measurements obtained from the iRS3 by using various complementary
probes designed a priori to target a region within the gI intron (Sowa et al., 2014). Here
the dimension of the problem is equal to the length of the RNA molecule (∼ 400). The
objective function µx captures the amount of accessibility (or fluorescence) of each targeted
probe sequence. We use a thermo-kinetic model (Reyes et al., 2014; Li et al., 2015) which
represents µx as a linear function of the coefficients representing the accessibility of each
nucleotide. However, not all sites are accessible, so we believe our model will be relatively
sparse. A more detailed description of the thermo-kinetic model and more algorithms are
included in our paper Li et al. (2015).

For these applications, we propose the following sparse linear model:

µx = α1x1 + α2x2 + · · ·+ αmxm, (1)

where x := [x1, . . . , xm]T is the design vector, and α := [α1, . . . , αm]T is the linear coefficient
vector. Our problem setting assumes that m can be several hundred or in the thousands,
but only a small portion of the components of α are nonzero. More generally, we could
consider group sparsity structure; that is, the coefficients can be divided into several known
groups, and those within each group are either all zero or all nonzero.

The early R&S literature assumes a lookup table belief model (Frazier et al., 2008,
2009). Recent research has used a linear belief model, making it possible to represent many
thousands or even millions of alternatives using a low-dimensional model (Negoescu et al.,
2011). However, these problems typically involve learning models characterized by low-
dimensional parameter vectors (for example, up to a few dozen parameters). Also, there is
no sparsity structure assumption on the coefficient α.

In our work we consider problems where the coefficient vector α can have hundreds or
even thousands of components. However, we assume that most of the components of α are
zero. Sparsity is a feature present in a plethora of natural as well as man-made systems.
In such optimal learning problems, we are confronted with two challenges. First, we need
to design an efficient experimental policy to search for the best alternative to maximize µx
based on the belief model. Second, learning the underlying sparsity structure will produce
a more parsimonious model which will streamline the experimental work and simplify the
ultimate design problem.

This paper tackles the two challenges by first deriving a knowledge gradient policy for
sparse linear models (KGSpLin). The knowledge gradient (KG), first proposed by Frazier
et al. (2008), is a learning policy that maximizes the marginal value of information from
each expensive experiment. In the sparse belief setting, we introduce a random indicator
variable ζ and maintain a Beta-Bernoulli conjugate prior to model our belief about which
variables should be included in or dropped from the model. Based on this, we show later
in the paper that our KGSpLin algorithm can be approximately computed by a weighted
sum over the KG values of all possible low-dimensional beliefs. KGSpLin then naturally
generalizes to the KG for sparse additive models (KGSpAM). Here µx =

∑p
j=1 fj(xj). The

fjs are one-dimensional scalar functions, many of which are zero. After approximating the
individual fj with B-splines of finite order, this belief model also results in the same form
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as (1). Additionally, in the broader class of models known as multivariate splines functional
ANOVA models (Wahba, 1990; Wahba et al., 1995; Gu, 2002), tensor product B-splines can
be adopted. KGSpAM can also be used in this model.

Second, for the learning procedure, our algorithm adopts the frequentist homotopy re-
cursive approach for group Lasso with `1,∞ penalty (Chen and Hero, 2012). Then we directly
use these sequential estimates to update the Bayesian model, not only learning the values
of the linear coefficients, but also the probabilities of whether each feature is in or not. In
a nutshell, our work is a novel and unique hybrid of Bayesian R&S with the frequentist
learning approach.

Theoretically, we prove the estimation consistency. That is, the estimate converges to the
truth when given enough measurements, under some appropriate assumptions. Specifically,
we show that the mean of the posterior coefficient estimate converges to the truth at the
same rate as that of the Lasso estimates. Besides, we also show that the recovered sparsity
set is rate consistent. That is, the cardinality of the recovered sparsity pattern can be
bounded by the true sparse cardinality with a constant factor.

The remainder of the paper is organized as follows. In Section 2 we give a brief overview
of the relevant literature. Section 3 formulates the R&S model in a Bayesian setting and
establishes the notation used in this paper. It also highlights the knowledge gradient using
both a lookup table and a linear, non-sparse belief model. Section 4 is devoted to a de-
tailed description of the Bayesian sparse linear model and the KGSpLin policy. Section 5
generalizes the algorithm to a nonparametric sparse additive belief model (KGSpAM) and
also SS-ANOVA. Theoretical results are presented in Section 6, which shows the estima-
tion error bounds and the recovered sparsity set bounds for both the coefficient estimates
and the functional estimates. In Section 7, we test the algorithms in a series of controlled
experiments, including the experiments on an actual dataset drawn from identifying the
accessibility of the RNA molecule gI intron.

2. Literature

There has been a substantial literature on the general problem of finding the maximum
of an unknown function where we rely on making noisy measurements to actively make
experimental decisions. These problems have been studied in different communities, which
refer to the problems under names such as: Bayesian optimization (Brochu et al., 2010),
experimental design (Robbins, 1985), multi-armed bandits (Auer et al., 2002), optimal
learning (Powell and Ryzhov, 2012), and reinforcement learning (Sutton and Barto, 1998).

Spall (2005) provides a thorough review of the literature that traces its roots to stochastic
approximation methods. However, these methods require lots of measurements to find
maxima precisely, which is unrealistic when measurements are very expensive. Our problem
originates from the R&S literature, which has been considered by many authors under four
distinct mathematical formulations. We specifically consider the Bayesian formulation, for
which early work dates to Raiffa and Schlaifer (1968). The other mathematical formulations
are the indifference-zone formulation (Bechhofer et al., 1995); the optimal computing budget
allocation, or OCBA (Chen, 2010; Chen et al., 2012b); and the large-deviations approach
(Glynn and Juneja, 2004).
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In the Bayesian formulation, this R&S problem has received considerable attention
under the umbrella of optimal learning (Powell and Ryzhov, 2012). In this work, there are
three major classes of function approximation methods: look-up tables, parametric models,
and nonparametric models. Gupta and Miescke (1996) introduce the idea of selecting an
alternative based on the marginal value of information. Frazier et al. (2008) extend the idea
under the name knowledge gradient using a Bayesian approach which estimates the value of
measuring an alternative by the predictive distributions of the means, where it shows that
the policy is myopically optimal by construction and asymptotically optimal. The knowledge
gradient using a lookup table belief model approximates the function in a discrete way,
without any underlying explicit structural assumption, for both uncorrelated and correlated
alternatives (Frazier et al., 2008, 2009). Another closely related idea can be found in
Chick and Inoue (2001), where samples are allocated to maximize an approximation of
the expected value of information. Negoescu et al. (2011) introduce the use of a parametric
belief model, making it possible to solve problems with thousands of alternatives. For
nonparametric beliefs, Mes et al. (2011) propose a hierarchical aggregation technique using
the common features shared by alternatives to learn about many alternatives from even a
single measurement, while Barut and Powell (2013) estimate the belief function using kernel
regression and aggregation of kernels.

However, all the methods above are restricted to problems of moderate dimension, typ-
ically up to about 10. There are applications with hundreds or even thousands of features.
In such settings, the above methods become inefficient or even infeasible, since the efficiency
often depends exponentially on the dimension of the domain. This “curse of dimensionality”
is notoriously hard and is regarded as one of the holy grails of the field. To advance the
state of the art, there have been several other efforts to scale different algorithms to deal
with high-dimensional models. For linear bandits, Carpentier and Munos (2012) propose
a compressed sensing strategy to attack problems with a high degree of sparsity. Chen
et al. (2012a) use a two stage strategy for optimization and variable selection of high-
dimensional Gaussian processes. Djolonga et al. (2013) propose an algorithm, leveraging
low-rank matrix recovery techniques to learn the underlying low-dimensional space and ap-
plying Gaussian process upper confidence sampling for optimization of the function. Wang
et al. (2013) adopt random embeddings to optimize high-dimensional functions with low
intrinsic dimensionality.

Additionally, outside of the Bayesian framework, there is another line of research on
sparse online learning, in which an algorithm is faced with a collection of noisy options
of unknown values, and has the opportunity to test these options sequentially. In the
online learning literature, an algorithm is measured according to the cumulative value of
the options engaged, while in our problem we only need to select the best one at the end of
experiments. Another difference is that, rather than value, researchers often consider the
regret, which is the loss of the alternative identified as best, compared with the optimal
decision given perfect information. Cumulative value/regret is appropriate in dynamic
settings such as maximizing the cumulative rewards (learning while doing), while terminal
value/regret fits in settings such as finding the best route in a transportation network (learn
then do). Moreover, most of the algorithms in online learning are based on stochastic
gradient/subgradient descent method. The key idea to induce sparsity is to introduce some
regularizer in the gradient mapping (Duchi and Singer, 2009; Langford et al., 2009; Xiao,
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2010; Lin et al., 2011; Chen et al., 2012b; Ghadimi and Lan, 2012). However, a major
problem with these methods is that while the intermediate solutions are sparse, the final
solution may not be exactly sparse because it is usually obtained by taking the average of
the intermediate solutions.

Additive models were first proposed by Friedman and Stuetzle (1981) as a class of non-
parametric regression models and have received more attention over the decades (Hastie
and Tibshirani, 1990). In high-dimensional statistics, there has been much work on estima-
tion, prediction, and model selection for penalized methods on additive model (Zhang et al.,
2004; Lin and Zhang, 2006; Ravikumar et al., 2009; Fan et al., 2011; Guedj and Alquier,
2013). In optimal learning problems, it is also natural to consider sparsity structure, not
only because nature itself is parsimonious, but also because simple models and processing
with minimal degrees of freedom are attractive from an implementation perspective. Most
of the previous work on sparse additive models studies them in a batch setting, but here
we study it in an active learning setting, where not only observations come in recursively,
but also we get to actively choose which alternative to measure.

3. Notation and Preliminaries

In this section, we briefly review the Bayesian R&S and the KG policy with a lookup table
belief model and a linear, non-sparse belief model. We start by introducing some notation:
Let M = [Mij ] ∈ Ra×d, and v = [v1, . . . . , vd]

T ∈ Rd. We denote vI to be the subvector of v
whose entries are indexed by a set I. We also denote MI,J to be the submatrix of M whose
rows are indexed by I and columns are indexed by J . For I = J , we simply denote it by
MI or MJ . Let MI∗ and M∗J be the submatrix of M with rows indexed by I, and the
submatrix of M with columns indexed by J . Let supp(v) := {j : vj 6= 0}. For 0 < p <∞,
we define the `0, `p, `∞ vector norms as

‖v‖0 := card(supp(v)), ‖v‖p := (
d∑
i=1

|vi|p)1/p, and ‖v‖∞ := max
1≤i≤d

|vi|.

For a matrix M, we define the Frobenius norm as: ‖M‖F := (
∑a

i=1

∑d
j=1 |Mij |2)1/2 and

the `p norm to be: ‖M‖p = max‖v‖p=1 ‖Mv‖p. For any square matrix M, let Λmax(M)
and Λmin(M) be the largest eigenvalue and the smallest eigenvalue of M. For a summary
of most symbols we use, please refer to Table 3 in Appendix A.

3.1 The Bayesian Model for Ranking and Selection

We first review the Bayesian R&S with both a lookup table belief model and a non-sparse,
linear belief model. The unknown function is denoted by µx : x ∈ X 7→ R, where X is a
finite set with M alternatives. We have a finite measurement budget of N . Our goal is to
sequentially decide which alternatives to measure so that when we exhaust our budget, we
have maximized our ability to find the best alternative using our estimated belief model.
Let µ = [µ1, . . . , µM ]T . Under this setting, the number of alternatives M can be extremely
large relative to the measurement budget N .
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For a lookup table belief model (Frazier et al., 2008, 2009), we assume µ follows a
multivariate normal distribution:

µ ∼ N (θ,Σ). (2)

Now suppose we have a sequence of measurement decisions, x0, x1, . . . , xN−1 to learn about
these alternatives, where xi ∈ X , for i = 0, . . . , N − 1. At time n, if we measure alternative
x, we observe

yn+1
x = µx + εn+1

x ,

where εn+1
x is the random measurement noise and εn+1

x ∼ N (0, σ2
ε ). Here we assume σε is

known.
Initially, assume we have a multivariate normal prior distribution on µ,

µ ∼ N (θ0,Σ0).

Additionally, because decisions are made sequentially, xn is only allowed to depend on
the outcomes of the sampling decisions x0, x1, . . . , xn−1. Throughout the paper, the ran-
dom variable indexed by n in the superscript is measurable with respect to the filtration
Fn, which is defined as the σ-algebra generated by all of the observations up to time n,
{(x0, y1

x0), (x1, y2
x1), . . . , (xn−1, ynxn−1)}. Following this definition, we denote θn := E[µ|Fn],

and Σn := Var[µ|Fn]. It means conditionally on Fn, our posterior belief distribution on µ
is multivariate normal with mean θn and covariance matrix Σn. When the measurement
budget of N is exhausted, our goal is to find the optimal alternative, so the final decision is

xN = argmax
x∈X

θNx .

We define Π to be the set of all possible policies satisfying our sequential requirement; that
is, Π := {[x0, . . . , xN−1] : xn ∈ Fn}. Let Eπ indicate the expectation over both the noisy
outcomes and the truth µ while the sampling policy is fixed to π ∈ Π. After exhausting
the budget of N measurements, we select the alternative with the highest posterior mean.
Our goal is to choose a measurement policy maximizing the expected reward, which can be
written as

sup
π∈Π

Eπ
[
max
x∈X

θNx

]
.

We work in the Bayesian setting to sequentially update the estimates of the alternatives. At
time n, suppose we select xn = x and observe yx; we can compute the n+ 1 time posterior
distribution with the following Bayesian updating equations (Gelman et al., 2003):

θn+1 = θn +
yn+1
x − θnx
σ2
ε + Σn

xx

Σnex, (3)

Σn+1 = Σn − Σnexe
T
xΣn

σ2
ε + Σn

xx

,

where ex is the standard basis vector with one indexed by x and zeros elsewhere.
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If the number of alternatives is quite large, the above representation becomes clumsy.
Thus if the underlying belief model has some structure, then we could take advantage of this
structure to represent the model and simplify the computation. In a simple case, if µ has a
linear form or can be written as a basis expansion, we can make it easier by maintaining a
belief on the coefficients instead of the alternatives.

Based on this idea, Negoescu et al. (2011) further extend this nonparametric, lookup
table belief to a parametric belief using a linear model. Now we assume the truth µ can be
represented as a linear combination of a set of parameters, that is, µ = Xα. Here α ∈ Rm
is the coefficient vector, and X ∈ RM×m is the design matrix, where each row is a feature
vector corresponding to a particular experiment (or an alternative). (Notice that we use X
to denote the design matrix including all the possible finite alternatives. Later in the paper
the design matrix Xn includes all the sequential decisions up to time n.) If we assume
α ∼ N (ϑ,Σϑ), this induces a normal distribution on µ via the linear transformation,

µ ∼ N (Xϑ,XΣϑXT ).

At time n, if we measure alternative xn = x, we can update ϑn+1 and Σϑ,n+1 recursively
via recursive least squares (see Powell and Ryzhov, 2012, P.187),

ϑn+1 = ϑn +
ε̂n+1

γn
Σϑ,nxn,

Σϑ,n+1 = Σϑ,n − 1

γn
(Σϑ,nxn(xn)TΣϑ,n),

where ε̂n+1 = yn+1 − (ϑn)Txn, and γn = σ2
ε + (xn)TΣϑ,nxn.

The linear model allows us to represent the alternatives in a compact format since the
dimension of the parameters is usually much smaller than the number of the alternatives.
For example, if we have a problem with thousands of alternatives (which easily happens
if x is multidimensional), then Σn would have thousands of rows and columns, which can
be very cumbersome. By contrast, the linear model allows us to maintain the parameter
covariance matrix Σϑ,n, which is dimensioned by the size of the parameter vector ϑ.

3.2 The Knowledge Gradient Policy

In this section, we briefly review the knowledge gradient (KG) for both the lookup table
belief model and the linear, non-sparse belief model. KG is a fully sequential sampling
policy for learning the values of the alternatives. Each time it chooses the alternative that
can maximize the expected incremental value. If we represent the state of knowledge at
time n as: Sn := (θn,Σn), then the corresponding value of being in state Sn at time n is

V n(Sn) = max
x′∈X

θnx′ .

The knowledge gradient policy is to choose the alternative that can maximize the KG value,
which is defined as:

vKG,n
x = E(V n+1(Sn+1(x))− V n(Sn)|Sn, xn = x)

= E(max
x′∈X

θn+1
x′ |Sn, xn = x)−max

x′∈X
θnx′
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and

xKG,n = argmax
x′∈X

vKG,n
x′ .

Here the calculation of the expectation can generally be computationally intractable. How-
ever, for the lookup table and linear belief models described in Section 3.1, Frazier et al.
(2009) propose an algorithm to exactly compute the KG values. We briefly describe the
algorithm in the following.

We can rearrange equation (3) as the time n conditional distribution of θn+1, namely,

θn+1 = θn + σ̃(Σn, xn)Zn+1, (4)

where

σ̃(Σn, x) =
Σnex√
σ2
ε + Σn

xx

, (5)

Zn+1 =
(yn+1
x − θnx)√

Var[yn+1
x − θnx |Fn]

.

It is easy to see that Zn+1 is standard normal when conditioned on Fn (Frazier et al., 2008).
Then we substitute equation (4) into the KG formula,

vKG,n
x = E(max

x′∈X
θnx′ + σ̃x′(Σ

n, xn)Zn+1|Sn, xn = x)−max
x′∈X

θnx′

= h(θn, σ̃(Σn, x)), (6)

where σ̃(Σn, x) is a vector-valued function defined in (5), and σ̃x′(Σ
n, xn) indicates the

component eTx′σ̃(Σn, xn) of the vector σ̃(Σn, xn). Here h(a, b) = E[maxi ai+ biZ]−maxi ai
is a generic function of any vectors a and b of the same dimension, and Z is a standard
normal random variable.

The expectation can be computed as the point-wise maximum of the affine functions
ai + biZ with an algorithm of complexity O(M2log(M)). It works as follows. First the
algorithm sorts the sequence of pairs (ai, bi) such that the bis are in nondecreasing order,
and ties in bis are broken by removing the pair (ai, bi) when bi = bi+1 and ai ≤ ai+1. Next,
all pairs (ai, bi) that are dominated by the other pairs, that is, ai + biZ ≤ maxj 6=i aj + bjZ
for all values of Z, are removed. Thus the knowledge gradient can be computed using

vKG
x = h(a, b) =

∑
i=1,...,M̃

(̃bi+1 − b̃i)f
(
−
∣∣∣∣∣ ãi − ãi+1

b̃i+1 − b̃i

∣∣∣∣∣
)
,

where f(z) = φ(z) + zΦ(z). Here φ(z) and Φ(z) are the normal density and cumulative
distribution functions respectively. ã and b̃ are the new vectors after sorting a and b and
dropping off the redundant components and are of dimension M̃ .

For the knowledge gradient with linear models (KGLin), we can substitute (θn,Σn)
with (Xϑ,XΣϑXT ) into (6) and compute the KGLin value. In addition, we never need to
compute the full matrix XΣϑXT . We only need to compute a row of this matrix.
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4. Knowledge Gradient for Sparse Linear Models with `1,∞ Group Lasso

In this section, we derive an extension of KG policy with a high-dimensional sparse linear
model called the knowledge gradient with sparse linear models (KGSpLin). We begin by
establishing the Bayesian framework. Then we derive the new KG policy and describe the
algorithm which combines the sparse estimation with group Lasso penalty.

Following the notation for linear models, we have µ = Xα, where α ∈ Rm,µ ∈ RM are
random variables, and X ∈ RM×m is the design matrix. Our problem setting is that m can
become relatively large, and α is sparse in the sense that only a few components are nonzero.
However, unlike the sparsity assumption in classical frequentist statistics, we assume the
sparsity structure is random; that is, the indicator variable of which one is selected or not is
a random vector. More generally, we consider a group-wise sparse pattern. We now assume
there exists some known group structure in α. Let {Gj}pj=1 be the group partition of the
index set G = {1, . . . ,m}, that is,

∪pj=1Gj = G, Gj ∩ G′j = ∅ if j 6= j′,

and αGj is a subvector of α indexed by Gj . Let ζ = [ζ1, . . . , ζp]
T ∈ Rp be the group indicator

random variable of α,

ζj =

{
1 if αGj 6= 0
0 if αGj = 0

, for j = 1, . . . , p.

Additionally, α is assumed to be sparse in the following sense,

α|ζ ∼ N (ϑ,Σϑ). (7)

Let S = {j : ζj = 1}. Thus, without loss of generality, conditioning on ζ, we can permute
the elements of α to create the following partition,

αT = [(αS)T ,0],

where αS ∼ N (ϑS ,Σ
ϑ
S). So ϑ and Σϑ can be correspondingly partitioned

ϑ =

[
ϑS
0

]
, Σϑ =

[
Σϑ
S 0

0 0

]
.

Here we make a critical assumption on the distribution of α. Let us assume that
conditioning on ζ = 1, α has the following distribution: α|ζ = 1 ∼ N (ϑ,Σϑ). Then for
any other ζ′, the conditional distribution of α on ζ′ is normal with mean θS′ and covariance
Σθ
S′ . Here S ′ = {j : ζ ′j = 1}. This means that we can write all the conditional distributions

of α through an index set S characterized by ζ. So in the following we use both ζ and S
as indices. Therefore, through all the updatings, we just need to maintain the mean and
covariance matrix on ζ = 1.

Now we briefly recall and summarize the random variables in this Bayesian model. The
underlying unknown value of alternative x is denoted by µx and parametrized by α. Here
α follows a “mixture” normal distribution by (7) and ζj follows a Bernoulli distribution.
Both α and ζ are randomly fixed at the beginning of the measurement process. At time
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n, ζn and ϑn give us the best estimate of α. (Σϑ,n
S )−1 is the precision with which we

make this estimate. One may think of ζ and α as fixed and of ζn and ϑnS as converging

toward ζ and α, while some norm of the precision matrix (Σϑ,n
S )−1 is converging to infinity

under some appropriate sampling strategy. It is also appropriate, however, to fix ζn and
ϑnS and think of ζ and α as unknown quantities. Furthermore, from this perspective, the
randomness of ζ and α does not imply they must be chosen from Bernoulli and mixture
normal distribution respectively, but instead it only quantifies our uncertain knowledge of
ζ and α adopted when they were first chosen.

4.1 Knowledge Gradient Policy for Sparse Linear Models

Before deriving the sparse knowledge gradient algorithm, let us describe the Bayesian model
at time n. To get a Bayesian update, we can maintain Beta-Bernoulli conjugate priors on
each component of ζ. At time n, we have the following Bayesian model, for j, j′ = 1, . . . , p,

α|ζn = 1 ∼ N (ϑn,Σϑ,n), (8)

ζnj |pnj ∼ Bernoulli(pnj ), (9)

ζnj ⊥ ζnj′ , for j 6= j′, (10)

pnj |ξnj , ηnj ∼ Beta(ξnj , η
n
j ), . (11)

where pnj is the probability of the jth group of features being in the model, and (ξnj , η
n
j )

are the shape parameters for the Beta distribution of pnj . For different groups j and j′,
we assume that ζnj and ζnj′ are independent. At time n, the prior ζn is a discrete random

variable. Let ζn,1, . . . , ζn,Nζ be all the possible realizations of ζn, and P(ζn = ζn,k) =
pn,k, k = 1, . . . , Nζ .

For the following computation of the expectation in KGSpLin, we need to make two
approximations. First, we need to approximate the distribution of (ζn+1,pn+1) by that of
(ζn,pn). This is because the change of the sparsity belief depends on the next observation
and the Lasso algorithm, and thus can be very complicated to model. Therefore, by the
Law of Total Expectation, the KGSpLin value can be computed by:

vKG,n
x = E(V n+1(Sn+1(x))− V n(Sn)|Sn, xn = x)

= Eα,ε,ζn+1,pn+1(max
x′∈X

θn+1
x′ |Sn, xn = x)−max

x′∈X
θnx′

≈ EpnEζn|pnEα,ε|ζn,pn(max
x′∈X

θn+1
x′ |Sn, xn = x, ζn,pn)−max

x′∈X
θnx′

=

Nζ∑
k=1

Epn(pn,k)h(an,k, bn,k)

=

Nζ∑
k=1

∏
{j:ζn,kj =1}

ξnj
ξnj + ηnj

∏
{j:ζn,kj =0}

ηnj
ξnj + ηnj

h(an,k, bn,k) (12)

where

an,k = X∗ζn,kϑ
n
ζn,k ,

bn,k = σ̃(X∗ζn,kΣ
n,ϑ
ζn,k

(X∗ζn,k)T , x),
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and

h(a, b) := E[max
i
ai + biZ]−max

i
ai,

is the function defined in Section 3.2 and thus can be computed.
The second approximation is required to assist with computing the expectation over

ζ. Note that conditioning on each sample realization of ζn, the KGSpLin calculation is
identical with that of KGLin. Therefore we have shown that the KGSpLin value is a
weighted summation over all the possible sample realizations of ζn. The weights Epn(pn,k)
are computed by the independent Beta distributions on all the pnj ’s. Additionally, if Nζ
takes its largest possible value, that is Nζ = 2p, we can re-sort the weights and approximate
the knowledge gradient value by only computing the ones with the highest probabilities.
In Section 7, we can see that that we do not lose much by making these approximations.
The KGSpLin value still serves as a reasonable sampling criterion based on the value of
information.

4.2 Bayesian Update

At time n we have the Bayesian model described in (8)-(11). Parallel with that, we use
Lasso as a “solver” to generate estimates of linear coefficients as well as the sparsity pattern.
The `1,∞ group Lasso estimator after n observations is given by

β̂n = argmin
β∈Rm

1

2

n∑
i=1

[(xi−1)Tβ − yi]2 + λn‖β‖1,∞, (13)

where (yi,xi−1) ∈ R × Rm, i = 1, . . . , n are the n observations, λn is the regularization
parameter, and ‖β‖1,∞ :=

∑p
j=1 ‖βGj‖∞. When each group contains only one coefficient,

the regularization takes the `1 norm. Then this regularized version with least squares loss is
Lasso (least absolute shrinkage and selection operator)(Tibshirani, 1996). It is well known
that Lasso leads to solutions that are sparse and therefore achieves model selection. If we
consider a more general group sparsity system, which is composed of a few nonoverlap-
ping clusters of nonzero coefficients, `1,∞ group Lasso penalty can be used to encourage
correlations within groups and achieve sparsity at a group level.

Here when we get a new measurement, we recursively solve the Lasso problem based on
the homotopy algorithm proposed in Chen and Hero (2012). This algorithm is an exact up-
date of the `1,∞ group Lasso solutions when one additional observation is achieved. (For the
recursive homotopy algorithm for Lasso, one can refer to Garrigues and El Ghaoui (2008).)
Each update minimizes a convex but nondifferentiable function optimization problem. This
algorithm has been demonstrated to have lower implementation complexity than the direct
group Lasso solvers. It also fits the recursive setting in optimal learning. Refer to Appendix
B for a more detailed description of this algorithm.

At time n, when KGSpLin gives us the current measurement decision xn, we sample
the value of µ at xn and get a noisy measurement yn+1. If we let ϑ̂n be the Lasso solution
at time n, then we use this new sample (xn, yn+1) to update the Lasso estimate from ϑ̂n

to ϑ̂n+1. Next, we need to sample a covariance matrix Σ̂ϑ,n corresponding to this Lasso
estimate to represent our uncertainty of the Lasso estimate. This can be Monte Carlo

11
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simulated from the first order optimality condition of the optimization problem (13), for
which we present the details later in this Section. Let ϑ̂n+1

S be the nonzero part of ϑ̂n+1.

Once we have the updated Lasso estimates of ϑ̂n+1
S and Σ̂ϑ,n+1

S , we can use the following
heuristic updating scheme for a Beta-Bernoulli model and a Gaussian-Gaussian model. Let
Pn := {j : ϑ̂nGj 6= 0}. The updating equations are given by:

Σϑ,n+1
S =

[
(Σϑ,n
S )−1 + (Σ̂ϑ,n+1

S )−1
]−1

, (14)

ϑn+1
S = Σϑ,n+1

S

[
(Σϑ,n
S )−1ϑnS + (Σ̂ϑ,n+1

S )−1ϑ̂n+1
S

]
, (15)

ξn+1
j = ξnj + 1, ηn+1

j = ηnj , for j ∈ Pn+1, (16)

ξn+1
j = ξnj , η

n+1
j = ηnj + 1, for j /∈ Pn+1. (17)

Here (14)(15) are the updating equations for a Gaussian-Gaussian model, and (16)(17) are
the updating equations for a Beta-Bernoulli model. The frequencies of “in” and “out”
are essentially denoted by (ξj , ηj) and updated recursively via Lasso estimates. In order
to better clarify this Bayesian model and the updating scheme, we illustrate the updating
(14)-(17) in Figure 1.

Now we present the technique to approximately sample the covariance matrix Σ̂ϑ,n+1
S

from the first order optimality condition in problem (13). We begin with a series of set
definitions. Figure 2 provides an illustrative example. Let us divide the entire group index
into P and Q respectively, where P contains active groups and Q is the complement. For
each active group j ∈ P, we partition the group into two parts: Aj with maximum absolute
values and Bj with the rest of the values. That is

Aj = argmax
k∈Gj

|βk|, Bj = Gj −Aj , j ∈ P.

The set A and B are defined as the union of the Aj and Bj sets, respectively,

A = ∪j∈PAj , B = ∪j∈PBj .

Finally, we define

C = ∪j∈QGj , Cj = Gj ∩ C.

The `1,∞ group Lasso problem (13) can also be written as

βn = argmin
β∈Rm

1

2
βTRn−1β − βTrn + λn‖β‖1,∞, (18)

where Rn−1 =
∑n

i=1 x
i−1(xi−1)T , rn =

∑n
i=1 x

i−1yi. This optimization problem is convex
and nonsmooth since the `1,∞ norm is nondifferentiable. Here there is a global minimum
at β if and only if the subdifferential of the objective function at β contains the 0-vector.
The optimality conditions for (18) are given by

Rn−1β − rn + λnz = 0, z ∈ ∂‖β‖1,∞. (19)

12
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Figure 1: Illustration of the Bayesian model and the heuristic updating scheme for a Beta-
Bernoulli model and a Gaussian-Gaussian model. A nine-element coefficient vec-
tor α are divided into four groups. The prior at time n includes the mean estimate
ϑn with bar plots representing the standard deviations and the frequencies esti-
mates (ξnj , η

n
j ) of “in” and “out”. Combining with the Lasso estimate ϑ̂n+1 results

in the posterior. On active sets G1 and G3, the coefficients are updated according
to (14)-(15), and ξnj are added by one. On inactive sets G2 and G4, the coefficients
remain unchanged, and ηnj are added by one.
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G1 G2 G3 G4 G5

P Q

A B C

Figure 2: Illustration of the partitioning of a 20 element coefficient vector β into five groups
of four indices. The sets P and Q contains the active groups and the inactive
groups, respectively. Within each of the two active groups the coefficients with
maximal absolute values are denoted by the black color.

We also have that z ∈ ∂‖β‖1,∞ if and only if z satisfies the following conditions,

‖zAj‖1 = 1, j ∈ P, (20)

sgn(zAj ) = sgn(βAj ), j ∈ P, (21)

zB = 0, (22)

‖zCj‖1 ≤ 1, j ∈ Q,

where A,B, C,P, and Q are β-dependent sets defined above. For notational convenience we
leave out the time variable n in the set notation. As βC = 0, (19) implies that

Rn−1
S βS − rnS + λnzS = 0, (23)

Rn−1
CS βS − rnC + λnzC = 0.

If Rn−1
S is invertible, then the solution is unique, and we can rewrite (23) as

βS = (Rn−1
S )−1(rnS − λnzS). (24)

Let Xn−1 ∈ Rn×m be the design matrix containing all the historical decisions up to time
n− 1, which is defined as

(Xn−1)T := [x0,x1, · · · ,xn−1],

and

Yn := [y1, . . . , yn]T .

Then (24) is equivalent to

βS =
[
(Xn−1
∗S )TXn−1

∗S
]−1 [

(Xn−1
∗S )TYn − λnzS

]
. (25)
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Let Mn−1
S =

[
(Xn−1
∗S )TXn−1

∗S
]−1

. Since the elements of Yn are independent, and Cov(Yn) =
σ2
ε I, (25) gives us

Cov(βS)(n) = Mn−1
S σ2

ε + (λn)2Mn−1
S Cov(zS)(n)Mn−1

S . (26)

By definition, Σ̂ϑ,n
S := Cov(βS)(n). If we replace n with n + 1, (26) provides us with the

equation

Σ̂ϑ,n+1
S = Mn

Sσ
2
ε + (λn+1)2Mn

SCov(zS)(n+1)Mn
S . (27)

One should note that we can not directly compute Σ̂ϑ,n+1
S from the right hand side of

(27), since zS is also a random variable dependent on ϑ̂n+1
S . But assuming that ϑ̂n+1

S
should not be far from ϑnS , one can sample a set of random variables from the distribu-

tion N (ϑnS ,Σ
ϑ,n
S ) and then sample the subgradients according to the equations (20), (21),

and (22), so Cov(zS)(n+1) can be estimated from the sample covariance matrix estimator

Ĉov(zS)(n+1). Additionally, to make this estimator stable in theory, we need to make sure

that all the eigenvalues of Ĉov(zS)(n+1) are bounded away from 0 and infinity. Heuristically,
we first define a matrix space M(Cmin, Cmax) as

M(Cmin, Cmax) = {M : Cmin ≤ Λmin(M) ≤ Λmax(M) ≤ Cmax}.

Then we can project Ĉov(zS)(n+1) intoM(Cmin, Cmax) and find a solution C̃ov(zS)(n+1) to
the following convex optimization problem

C̃ov(zS)(n+1) = argmin
M∈M(Cmin,Cmax)

‖Ĉov(zS)(n+1) −M‖F . (28)

Empirically we can use a surrogate projection procedure that computes a singular value
decomposition of Ĉov(zS)(n+1) and truncates all the eigenvalues to be within the interval

[Cmin, Cmax]. Therefore we can approximately estimate Σ̂ϑ,n+1
S by

Σ̃ϑ,n+1
S = Mn

Sσ
2
ε + (λn+1)2Mn

SC̃ov(zS)n+1Mn
S . (29)

Now we have all the ingredients for the knowledge gradient policy for sparse linear model
(KGSpLin). We outline it in Algorithm 1.

Algorithm 1 The Knowledge Gradient Algorithm for Sparse Linear Models (KGSpLin)

Input: ϑ0,Σϑ,0, {ξ0
j , η

0
j }pj=1,X, N, σε, {λi}Ni=1.

Output: ϑN ,Σϑ,N , {ξNj , ηNj }pj=1.

for n = 0 : N − 1 do

1. Compute KGSpLin by (12): xn = argmax vKG,nx ;
2. Lasso homotopy update:1 ϑ̂n, (xn, yn+1) ∈ Rm × R, λn, λn+1 → ϑ̂n+1;

3. Monte Carlo Simulation: approximately estimate Σ̂ϑ,n+1
S by Σ̃ϑ,n+1

S in (29);
4. Bayesian update to: ϑn+1,Σϑ,n+1, {ξn+1

j , ηn+1
j }pj=1 by (14)-(17).

end

1. In practice, we often begin with some historical observations. Thus in the first iteration the Lasso
estimator can be obtained from the historical dataset.
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5. Knowledge Gradient for Sparse Additive Models

As we have the sparse knowledge gradient algorithm with `1,∞ group Lasso, we can gen-
eralize the knowlege gradient for sparse linear model to a nonparametric sparse additive
model. This can be done by approximating the nonparametric smooth function by finite
order spline Basis. In this section, we first describe the knowledge gradient for a sparse
additive model, then we generalize it to the multivariate functional ANOVA model through
tensor product splines.

5.1 Sparse Additive Modeling

In the additive model, µ = [µ1, . . . , µM ]T ∈ RM , X = [Xij ] ∈ RM×p is the design matrix,
and

µi = f(Xi∗) = ςi +

p∑
j=1

fj(Xij), for i = 1, . . . ,M, (30)

where the fjs are one-dimensional smooth component functions, one for each covariate, and
ς = [ς1, . . . , ςM ]T is the residual term. For simplicity and identification purposes, we assume
ς = 0 and

∫
fj(xj) dxj = 0 for each j. When fj(x) = αjx, this simply reduces to the linear

model in Section 4. In a high-dimensional setting, where p may be relatively large, we
assume most of the fjs are zero.

If the truth µ takes the nonparametric additive form as in (30), similarly, we let the
choice of which fj is selected or not be random. Let ζ = [ζ1, . . . , ζp]

T ∈ Rp be the random
indicator variable of fj ’s, that is,

ζj =

{
1 if fj 6= 0
0 if fj = 0

, for j = 1, . . . , p.

First, let us approximate each functional component in (30) through one-dimensional
splines. Without loss of generality, suppose that all elements of X take values in [0, 1]. Let
0 = τ0 < τ1 < · · · < τK < τK+1 = 1 be a partition of [0, 1] into K + 1 subintervals. Let
Sl be the space of polynomial splines of order l (or degree l − 1) consisting of functions h
satisfying:

(1) the restriction of h to each subinterval is a polynomial of degree l − 1;

(2) for l ≥ 2 and 0 ≤ l′ ≤ l − 2, h is l′ times continuously differentiable on [0, 1].

This definition is phrased after Stone (1985), which is a descriptive version of Definition
4.1 in Schumaker (1981, P.108). Under suitable smoothness assumptions, the fj ’s can be

well approximated by functions in Slj . Specifically, let f̃j ∈ Slj be the estimate of fj .

Furthermore, for each f̃j , there exists a normalized B-spline basis {φjk(x), 1 ≤ k ≤ dj} for
Slj , where dj = K + lj (Schumaker, 1981). If we let αj• = [αj1, . . . , αjdj ] be the coefficients

of f̃j projected onto Slj , then for any f̃j ∈ Slj , we can write

f̃j(x) =

dj∑
k=1

αjkφjk(x), for 1 ≤ j ≤ p. (31)
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Then let α = [α1•, . . . ,αp•]. We assume that α takes the conditional distribution

α|ζ ∼ N (ϑ,Σϑ),

and also has the sparsity structure as described in Section 4. Then at time n, we also have
the estimate f̂nj from group Lasso based on one-dimensional splines. More Specifically, for

each f̂nj ∈ Slj , let ϑ̂nj• = [ϑ̂nj1, . . . , ϑ̂
n
jdj

] be the coefficients of f̂nj , and let ϑ̂n = [ϑ̂n1•, . . . , ϑ̂
n
p•].

Accordingly, in the batch setting, where we already have n samples (xi−1, yi) ∈ Rp×R, i =
1, . . . , n, one can get ϑ̂n by solving the following penalized least squares problem

ϑ̂n = argmin
ϑ∈Rm

1

2

n∑
i=1

yi − p∑
j=1

dj∑
k=1

ϑjkφjk(x
i−1
j )

2

+ λn
p∑
j=1

‖ϑj•‖∞, (32)

where λn is the tuning parameter. Optimization problem (32) is essentially an `1,∞ group
Lasso optimization problem. The parameter p is the number of groups, and the group
sparse solution on ϑ̂ would lead to a sparse solution on fj ’s. Therefore, we can also derive
the knowledge gradient policy and Bayesian updating formulae as in Section 4. Here we let
fnj be the Bayesian estimate of fj at time n, that is,

fnj (x) =

dj∑
k=1

ϑnjkφjk(x), for 1 ≤ j ≤ p.

We outline the knowledge gradient algorithm for sparse additive models (KGSpAM) in
Algorithm 2.

Algorithm 2 The Knowledge Gradient Algorithm for Sparse Additive Models (KGSpAM)

Input:2 ϑ0,Σϑ,0, {ξ0
j , η

0
j }pj=1,X, N, σε, {λi}Ni=1, {φjk}

dj ,p
k=1,j=1, {τj}K+1

j=0

Output: {fNj }pj=1,ϑ
N ,Σϑ,N , {ξNj , ηNj }pj=1.

for n = 0 : N − 1 do

1. Compute KGSpAM by (12):: xn = argmax vKG,nx ;
2. Lasso homotopy update: ϑ̂n, (φjk(x

n
j ), yn+1) ∈ Rm × R, λn, λn+1 → ϑ̂n+1;

3. Monte Carlo Simulation: approximately estimate Σ̂ϑ,n+1 by Σ̃ϑ,n+1
S in (29);

4. Bayesian update to: {fn+1
j }pj=1,ϑ

n+1,Σϑ,n+1, {ξn+1
j , ηn+1

j }pj=1.

end

5.2 Tensor Product Smoothing Splines Functional ANOVA

If the regression functions in (30) can also take bivariate or even multivariate functions, this
model is known as the smoothing spline analysis of variance (SS-ANOVA) model (Wahba,
1990; Wahba et al., 1995; Gu, 2002). In SS-ANOVA, we write

µi = f(Xi∗) = ςi +

p∑
j=1

fj(Xij) +
∑
j<k

fjk(Xij , Xik) + · · · , (33)

2. The prior mean and covariance matrix can also be obtained by some priors on fj ’s.
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where fj ’s are the main effects components, fjk’s are the two-factor interaction components,
and so on. ς is the residual term. Similar as before, we assume ς = 0,

∫
fj(xj) dxj = 0 for

each j,
∫∫

fjk(xj , xk) dxjdxk = 0 for each j, k, and so on. This model is also called functional
ANOVA. The sequence is usually truncated somewhere to enhance interpretability. This
SS-ANOVA generalizes the popular additive model in Section 5.1 and provides a general
framework for nonparametric multivariate function estimation, thus has been widely studied
in the past decades.

As we approximate each fj by Slj , under certain smoothness assumptions, fjk can be
well approximated by the tensor product space Slj ⊗ Slk defined by

Slj ⊗ Slk : = {hjhk : for all hj ∈ Slj , hk ∈ Slk}

= {
dj∑
r=1

dk∑
q=1

crqφjrφkq : for all crq ∈ R}.

Let

φjrkq(xj , xk) := φjr(xj)φkq(xk), for 1 ≤ r ≤ dj , 1 ≤ q ≤ dk,
then these are the basis functions for djdk dimensional tensor product space Slj ⊗Slk . This
can also be generalized to multi-factor interaction components. Therefore, similarly, we
can write all the functional components in (33) as basis expansion forms. Then we can
generalize the sparse knowledge gradient algorithm to SS-ANOVA models.

6. Theoretical Results

In this section we show the convergence results of the Bayesian posterior mean estimate ϑn

in Algorithm 1 as well as of the functional estimate fn in Algorithm 2. First, in Lemma 3,
we present the asymptotic selection and estimation properties of `1,∞ group Lasso in high-
dimensional settings when the number of groups p exceeds the sample size n. Specifically, we
provide sufficient conditions under which the group Lasso is rate consistent, which means
the cardinality of the selected sparsity pattern is on the same order as that of the true
sparsity pattern. Also, we show the estimation error bound of group Lasso.

Based on these results, we assume that we begin with some historical observations, and
the initial fixed design matrix satisfies the sparse Riesz condition (SRC) (Zhang and Huang,
2008), which is a form of restricted eigenvalue (RE) condition that limits the range of the
eigenvalues of the covariance matrices of all subsets of a fixed number of covariates. (We
refer to Van De Geer et al. (2009) for an extensive discussion of different types of restricted
eigenvalue conditions.) If we have such a “warm” start, we can show that the Bayesian
posterior estimation error is bounded as in Theorem 7. The theorem actually shows that
the posterior can converge to the truth at the same rate as that of group Lasso. Besides,
based on this error bound, we can also show the estimation error bound of the functional
estimate as in Theorem 10. Note that these error bounds are proved on the intersection
S̄ of the support set Sn from the group Lasso estimator. But we can also show that S̄ is
on the same order with the true support set S∗. Additionally, all these theorems establish
asymptotic bounds on estimation errors. Since the KG policy is proved to be myopically
optimal in Frazier et al. (2009), this lends a strong guarantee that the algorithm will work
well for finite budgets.
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6.1 Linear Coefficient Error Bound

Let εn = [ε1, . . . , εn]T be the measurement noise vector, so we have Yn := Xn−1ϑ + εn.
Then, we define the maximum group size d̄ := maxj=1,...,p dj . Recall that m =

∑p
j=1 dj . Let

Sn = {j : ϑ̂nGj 6= 0} be the estimated group support from the current Lasso estimator. Let

S∗ be the true support, that is S∗ = {j : ϑGj 6= 0}. Also, let s∗ = |S∗| be the cardinality of
S∗.

Before proving the estimation error bound, let us first introduce the selection and esti-
mation properties of `1,∞ group Lasso in Lemma 3. Our presentation needs the following
assumptions.

Assumption 1 For any n, the random noise errors ε1, . . . , εn are independent and identi-

cally distributed as N (0, σ2
ε ), that is, ε1, . . . , εn

i.i.d.∼ N (0, σ2
ε ).

Assumption 2 The design matrix Xn−1 satisfies the sparse Riesz condition (SRC) with
rank r and spectrum bounds 0 < c∗ < c∗ <∞ if

c∗‖ν‖22 ≤
‖Xn−1
∗S ν‖22
n

≤ c∗‖ν‖22, ∀S with r = |S| and ν ∈ R
∑
j∈S dj . (34)

We refer to this condition as SRC (r, c∗, c
∗).

Both assumptions can be reasonably expected to hold in practice. Assumption 1 is on the
distribution of random noise. We let ΣX,n−1 := 1

n(Xn−1)TXn−1 be the sample covariance
matrix of the historical n observations. The SRC in Assumption 2 assumes the eigenvalues
of the sample covariance matrix ΣX,n−1

S = 1
n(Xn−1

∗S )TXn−1
∗S are inside the interval [c∗, c

∗]
when the size of S is no greater than r. The quantities c∗ and c∗ are considered as sparse
minimum and maximum eigenvalues (Donoho, 2006; Meinshausen and Yu, 2009). When
the number of groups exceeds the number of observations (p > n), there are potentially
many models fitting the same data. However there is a certain uniqueness among such
models under sparsity constraints. Under the SRC, all sets of r design vectors are linearly
independent for a certain given rank r. One can refer to Zhang and Huang (2008) to see
some sufficient conditions for the sparse Riesz condition to hold for both deterministic and
random design matrices X. We can show the selection and estimation consistency of `1,∞
group Lasso under these conditions if the penalty level λn is set to the following asymptotic
order.

Additionally, we define ĉ = c∗/c∗. We consider the Lasso path for

λ∗ ≡ 2σε

√
8(1 + c0)rĉc∗d̄2n log(m ∨ an), (35)

with c0 ≥ 0 and an ≥ 0 satisfying pd̄/(m ∨ an)1+c0 ≈ 0. For large p, this means that

λ∗ ∼ O(
√
d̄2n logm) with an = 0. Then we can prove the following lemma. The technical

details of the proof are based on Zhang and Huang (2008) and Wei and Huang (2010) and
can be found in Appendix C.

Lemma 3 Suppose Assumptions 1 and 2 are satisfied. Let {c∗, c∗, r, c0} be fixed. Let 1 ≤
n ≤ p → ∞. If we solve the group Lasso given in (13) with λn = λ∗ defined as (35), then
the following properties hold with probability converging to 1:
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(1) |Sn| ≤ C1|S∗| for some finite positive constant C1 defined as C1 := 2 + 4ĉ;

(2) Any optimal solution β̂n to (13) satisfies the following error bound

‖β̂n − β‖22 ≤
C2σ

2
ε s
∗d̄2 logm

n
,

for some positive constant C2 depending only on {c∗, c∗, r, c0}.

Remark 4 Oracle inequalities and variable selection properties for the Lasso have been es-
tablished under a variety of different assumptions on the design matrix; see Yuan and Lin
(2006); Bunea et al. (2007); Liu and Zhang (2008); Zhang and Huang (2008); Bickel et al.
(2009); Lounici et al. (2011) and references therein. Zhao and Yu (2006); Zou (2006) show
that the irrepresentable condition is almost necessary and sufficient for Lasso to exactly se-
lect the true model. However, the irrepresentable condition is somewhat restrictive. Lemma
3, which is based on the result of Zhang and Huang (2008) and Wei and Huang (2010),
relies on the SRC and proves the rate consistency of `1,∞ group Lasso, that is the selected
model is of the correct order of sparsity. Such similar results are also shown in Belloni and
Chernozhukov (2011, 2013); Lounici et al. (2011) based on other types of RE conditions.

As one can see from the updating equations in (14) and (15), the posterior mean estimate
ϑn+1
S is the weighted sum of the prior ϑnS and the current Lasso estimate ϑ̂n+1

S . If the Lasso
estimate has the `2 estimation bound as described in Lemma 3, the posterior estimate should
also have a similar bound under certain conditions of the weighted covariance matrix. One
should note that both the mean and covariance are updated on some support S from the
current Lasso estimate. Thus we will work on a sequence of Lasso solutions and prove the
bound on the intersection support set as large enough samples are made. Also note that
in order to use the bound in Lemma 3, we need to make sure that assumptions 1 and 2
are satisfied for every Lasso problem in such a sequence. Assumption 1 is easy to satisfy.
To show all the design matrices of the sequential Lasso problems satisfy Assumption 2, we
work from a “warm” start at time N ′. The following proposition actually verifies that if
the design matrix at time N ′ satisfies Assumption 2, then the following ones should also
satisfy the SRC, only with different sparse minimum and maximum eigenvalues. To verify
this, we need the following assumption.

Assumption 5 For any n, there exists some constant B > 0 such that ‖xn‖22 ≤ B.

This assumption requires that each design xn is chosen within an l2-ball in Rm. Note that
in the SRC, it is easy to prove that ‖Xn−1

∗S ν‖22/(n‖ν‖22) is automatically bounded above by
B under Assumption 5. So without loss of generality, we assume that c∗ ≤ B, which would
result in a sharper bound in Assumption 2. Then the following proposition proves that
if the intial design matrix XN ′−1 satisfies the SRC, then all the following design matrices
satisfy the SRC with looser spectrum bounds.

Proposition 6 Let Assumption 5 be satisfied. In addition, assume for some large enough
N ′, the design matrix XN ′−1 satisfies the SRC (r, c∗, c

∗). Then, for all N ′ < n′ ≤ cN ′, of
which c > 1 is some constant, the design matrix Xn′−1 can satisfy the SRC (r, c∗/c,B).

20



Knowledge Gradient For Sparse Additive Models

Thus we have all the ingredients to prove the following theorem of the `2 error bound
of the Bayesian posterior mean estimator.

Theorem 7 Assume that Assumptions 1 and 5 are satisfied. Suppose we begin with N ′

historical observations and the fixed design matrix XN ′−1 satisfies the SRC (C3s
∗, c∗, c

∗),
where C3 is a positive constant defined below. Let c∗, c

∗, c0, s
∗, and B be fixed, and S̄ :=⋂n

n′=N ′ Sn
′
. If we solve the Lasso given in (13) with λn = λ∗, then for some large enough n

satisfying cN ′ ≤ n ≤ c̄N ′ and 1 < c ≤ c̄ being fixed constants, the following properties hold
with probability converging to 1 as n→∞:

(1) |S̄| ≤ C3|S∗| for some finite positive constant C3 := 2 + 4c̄B/c∗;

(2) Any posterior estimate ϑn from Algorithm 1 satisfies

‖ϑnS̄ − ϑS̄‖22 ≤
C4σ

2
ε s
∗d̄2 logm

n
,

for some positive constant C4 depending only on c∗, c
∗, c0, c, c̄, B, and [Cmin, Cmax].

To prove the selection and estimation consistency results, we need to assume that we
have a “warm” start of N ′ historical observations. We believe that this assumption is valid
in some applications we have seen. For example, in the RNA problem (illustrated in Section
7.2), we do have some initial samples to give us a sense of how sparse the model is. Based
on this, we can prove that the posterior can converge to the truth at the same rate as that
of `1,∞ group Lasso as shown in Lemma 3. This result is satisfied for some large n in the
interval [cN ′, c̄N ′] with 1 < c ≤ c̄ being fixed constants, and with high probability. Here
this probability can converge to 1 as n→∞ as one can see from the proof in Appendix C.
Additionally, similar to Lemma 3, we only prove that the posterior is rate consistent. It is
unknown if S̄ ⊆ S∗ or S̄ ⊇ S∗.

Remark 8 Note here we use `1,∞ group Lasso instead of `1,2 group Lasso. This is because
the homotopy algorithm for recursive `1,∞ group Lasso largely reduces the computational
complexity, but we do not have such results for `1,2 group Lasso. However for `1,2 group

Lasso, the bound takes the form ‖β̂n−β‖22 - s∗d̄ logm
n , which is minimax optimal. As one can

see, the error term for `1,∞ group Lasso s∗d̄2 logm
n is larger by a factor of d̄, which corresponds

to the amount by which an `∞-ball in d̄ dimensions is larger than the corresponding `2-ball.
Therefore, we do not achieve the minimax optimal rate as in `1,2 group Lasso. Thus using
`1,∞ group Lasso instead of `1,2 group Lasso is actually a tradeoff between computational
complexity and statistical estimation.

6.2 Functional Estimate Error Bound

Based on the results in Section 6.1, we can also get the error bound for the functional
estimate of Algorithm 2 in Section 5.1. To show this error bound, let us introduce more
definitions and assumptions.

Let β be a nonnegative integer, and let δ ∈ [0, 1] be such that q = β + δ > 0.5, and
L ∈ (0,∞). Let H(q, L) denote the collection of functions h on [0,1] whose βth derivative,
h(β), exists and satisfies the Hölder condition with exponent δ,

|h(β)(t′)− h(β)(t)| ≤ L|t′ − t|δ, for 0 ≤ t, t′ ≤ 1.
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Whenever the integral exists, for a function h on [0, 1], denote its ‖ · ‖2 norm by

‖h‖2 :=

√∫ 1

0
h2(x)dx,

Additionally, for any S ⊆ {1, . . . , p}, we define

‖hS‖22 :=
∑
j∈S
‖hj‖22.

To prove the functional estimation error bound, we assume the true functions belong to this
function class with smoothness parameter q = 2.

Assumption 9 fj ∈ H(2, L) for 1 ≤ j ≤ p.
Also note here we have the new design matrix Xn−1 on the basis φjk. Let Ψn−1

j be

the n × dj matrix Ψj(i, k) = ψjk(x
i−1
j ), where ψjk is the orthonormal B-spline basis. Let

Ψn−1 := [Ψn−1
1 , . . . ,Ψn−1

p ]. Based on this and Theorem 7, we have the following theorem
of the functional estimation error bound.

Theorem 10 Assume that Assumptions 1 and 9 are satisfied. Similar to Assumption 5,
let
∑

j,k ψ
2
jk(x

n
j ) ≤ B for any n,. Suppose we begin with N ′ historical observations and the

fixed design matrix ΨN ′−1 satisfies the SRC (C3s
∗, c∗, c

∗). Let c∗, c
∗, c0, s

∗, and B be fixed,
d̄ = O(n1/6), and S̄ :=

⋂n
n′=N ′ Sn

′
. If we solve the Lasso given in (32) with λn = λ∗, then

for some large enough n satisfying cN ′ ≤ n ≤ c̄N ′ and 1 < c ≤ c̄ being fixed constants, the
following properties hold with probability converging to 1 as n→∞:

(1) |S̄| ≤ C3|S∗| for some finite positive constant C3 := 2 + 4c̄B/c∗;

(2) Any posterior estimate fn from Algorithm 2 satisfies

‖fnS̄ − fS̄‖22 ≤
C5σ

2
ε s
∗ logm

n2/3
,

for some positive constant C5 depending only on c∗, c
∗, c0, c, c̄, B, and [Cmin, Cmax].

Remark 11 Note that Assumption 2 is usually assumed to be valid in the settings with
i.i.d. samples. However, in our problem setting, the sampling decisions are chosen by the
KG algorithm, and thus can generally be highly dependent. To this end, in Theorems 7 and
10, we assume that we begin with N ′ historical samples and only assume the fixed design
matrix XN ′−1 satisfies Assumption 2. Therefore, our results are only based on this “warm”
start, without putting any i.i.d. assumptions on the samples.

7. Simulations

In this section we present the results of the experiments. In Section 7.1, we investigate the
empirical performance of KGSpLin and KGSpAM on several different experimental settings.
In Section 7.2, the application problem for identifying the accessibility region of the RNA
molecule gI intron is briefly described. We illustrate how the KGSpLin policy is used to
guide the experiments and present its empirical performance.
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7.1 Controlled Experiments

In this section, we test KGSpLin and KGSpAM in controlled experiments. Three other poli-
cies are compared against our policies: exploration, where an alternative is chosen randomly
at each time; exploitation, which chooses an alternative that has the maximum value in µ
according to the current belief distribution; and KGLin, which is the KG policy with linear
belief, using recursive least squares for updating the estimates (Negoescu et al., 2011). To
better compare different policies, the updating scheme for both exploration and exploitation
is the same as that of KGSpLin and KGSpAM presented in Section 4.2.

In all the experiments presented in this paper, we repeatedly sample the truth α from
some Gaussian distribution, while the sparsity pattern is known and fixed. We compare
different policies to see how well we are discovering the values of α and the underlying spar-
sity patterns. Also, throughout all the simulations, we always start with non-informative
priors of the sparsity structures. That is, ξ0

j = η0
j = 1, for j = 1, . . . , p.

In the first set of experiments, we focus on the comparison of KGSpLin with other
policies using a relatively large measurement budget N = 200. We generate a linear model
with m = 100 predictors, in ten groups of ten. The last 80 predictors all have coefficients
of zero. The coefficients of the first 2 groups, that is 20 predictors, are randomly sampled
from a normal distribution with means from 11 to 30 respectively, with each standard
deviation of 30% of the mean. Specifically, we let µ =

∑m
j=1 αjxj + ε with ε ∼ N (0, σ2

ε ).

For j = 1, . . . , 20, let αj be independently drawn from N (ϑj ,Σ
ϑ
jj), where ϑj = j + 10,

and Σϑjj = (0.3ϑj)
2. For j = 21, . . . , 100, let αj = 0. The prior is also independently

sampled. For the nonzero parts, the prior is sampled from the same distribution as α; for
the zero parts, the prior is sampled with ϑ0

j = mean(ϑ) and Σϑ,0jj = (0.3mean(ϑ))2. Then
we uniformly sample M = 100 alternatives from [0, 1]m.

To quantitatively measure the performance of different policies, we consider a quantita-
tive metric called opportunity cost (OC), which is defined as the difference in the true value
between the best option and the option chosen according to the policy’s posterior belief
distribution, that is

OC(n) = µ(x∗)− µ(xn,∗).

For illustrative purposes, we compare the percentage OC with respect to the optimal value,
defined as

OC%(n) =
µ(x∗)− µ(xn,∗)

µ(x∗)
.

This normalization better illustrates how far in percentage we are from the optimal and
provides a unit-free representation of a policy’s performance. By taking the average per-
centage OC over several replications, we can estimate the policy’s average performance in
practice. As to the tunable parameter λn, theoretical results in Section 6 show that λ
should be increasing with iteration number. For simplification, we carefully tune λn to be
piecewise linearly increasing with respect to measurement n.

Figure 3 shows the log of the averaged OC% and the normalized estimation error of
ϑ (the `2 error divided by m) over 300 replications using well chosen tuning parameter
sequences with low and high measurement noises. The standard deviations of the measure-
ment noise are respectively 5% and 30% of the expected range of the truth.
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Figure 3: (a)(b) and (c)(d) compares exploration, exploitation, KGLin, and KGSpLin by
showing the averaged OC% and normalized estimation errors over 300 runs under
low measurement noise (5% range of the truth) and high measurement noise (30%
range of the truth).

From Figure 3(a)(b) we can see that during the first several iterations, KGSpLin behaves
comparable with pure exploration, because Lasso takes several iterations to identify the key
features. However, after 10 ∼ 20 measurements when the true sparsity pattern becomes
detectable, KGSpLin far outperforms KGLin, exploitation, and pure exploration. This is
because Lasso gives a rather precise estimate of the sparse linear coefficients given enough
samples. So the algorithm mainly updates the beliefs on the key features based on these
Lasso estimators, leading to more precise estimates of the model. Figure 3(c)(d) show that
KGSpLin outperforms the other polices in estimating the linear coefficients. Even if at
the initial stage, Lasso still finds low-dimensional models that can better approximate the
true model compared with other techniques. In light of this, it is interesting to see how

24



Knowledge Gradient For Sparse Additive Models

KGSpLin compares with KGLin on data which is not sparse. Refer to Appendix D to see
more empirical results.

In the second set of experiments, to further compare KGSpLin with KGLin, we use
test functions that have higher degrees of sparsity (that is, more irrelevant dimensions in
the feature space), with a relatively small measurement budget N = 50. We take several
standard low-dimensional test functions and hide them in a m = 200-dimensional space.
Note all the test functions chosen here can be written as linear expansions with respect to
basis functions of x. This means the test functions of 3, 6, 4, and 18 dimensions are embeded
in a 200-dimensional space. These functions were designed to be minimized, so both policies
are applied to the negative of the functions. We uniformly sample M = 400 alternatives
from the feasible regions. The detailed configurations of these test functions are shown in
Table 1 below. We include the mathematical forms of these four test functions. We also
illustrate the distributions to sample the truths α ∼ N (ϑ,Σϑ) and the distributions of
the priors α ∼ N (ϑ0,Σϑ,0). For all the four test functions, the covariance matrices Σϑ

are sampled as: Σϑjj = (0.3ϑj)
2 for ϑj 6= 0, and Σϑjk = 0 otherwise. The prior covariance

matrices Σϑ,0 are sampled as: Σϑ,0jj = (0.3ϑ0
j )

2 for ϑj 6= 0, Σϑ,0jj = (0.3mean(ϑ0))2 for

ϑj = 0, and Σϑ,0jk = 0 otherwise.

Test function Mean

Matyas ϑ = [−0.26,−0.26, 0.48, 0, . . . , 0]

µ(x) = 0.26(x21 + x22)− 0.48x1x2, ϑ0 = [−0.18,−0.34, 0.3, 0, . . . , 0]

X = [−10, 10]2

Six-hump Camel ϑ = [−4, 2.1,−1/3,−1, 4,−4, 0, . . . , 0]

µ(x) = (4− 2.1x21 + x41/3)x21 ϑ0 = [−3.2, 1.5,−0.1,−1.5, 4.5,−3.6, 0, . . . , 0]

+x1x2 + (−4 + 4x22)x22,

X = [−3, 3]× [−2, 2]

Bohachevsky ϑ = [−1,−2, 0.3, 0.4, 0, . . . , 0]

µ(x) = x21 + 2x22 + 0.7− ϑ0 = [−0.6,−2.4, 0.1, 0.8, 0, . . . , 0]

0.3 cos(3πx1)− 0.4 cos(4πx2),

X = [−100, 100]2

Trid ϑ = [−1, . . . ,−1︸ ︷︷ ︸
6

2, . . . , 2︸ ︷︷ ︸
6

, 1, . . . , 1︸ ︷︷ ︸
5

,−6, 0, . . . , 0]

µ(x) =
∑d
i=1(xi − 1)2 −

∑d
i=2 xixi−1, ϑ0 = [−0.6, . . . ,−0.6︸ ︷︷ ︸

6

, 2.3, . . . , 2.3︸ ︷︷ ︸
6

, 1.5, . . . , 1.5︸ ︷︷ ︸
5

,−4, 0, . . . , 0]

d = 6,X = [−36, 36]6

Table 1: Detailed configurations for test functions.

We compare the performance of KGLin and KGSpLin on these four different test func-
tions. Each policy is run 500 times with the specified amount of observation noise. Table
2 gives the sample means, medians, and standard deviations of the opportunity cost after
N = 50 iterations of each policy. We bold and underline the smaller values. The results are
given for different levels of noise. The standard deviation of the normally distributed noise
σε is chosen to be 1%, 10%, and 20% of the range of µ.
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KGSpLin KGLin

Test function σε E(OC) σ(OC) Median E(OC) σ(OC) Median

Matyas 1 .0104 .0256 .0071 .0284 .0157 .0244

X = [−10, 10]2 10 .2772 .1960 .0125 .3451 .1166 0.3781

20 .7658 .8423 .3997 1.7155 .3208 1.5627

Six-hump Camel 1 .0023 .0019 .0000 .0117 .8097 .0000

X = [−3, 3]× [−2, 2] 10 .0895 .6332 .0000 .1293 .6098 .0000

20 .4922 .2159 .0215 .6183 .2696 0.0306

Bohachevsky 1 .0746 .0249 .0035 .0853 .0370 .0013

X = [−100, 100]2 10 .3585 2.5349 .2876 .5611 2.7056 .2993

20 1.8224 3.2300 1.5578 1.9668 3.696 1.7008

Trid 1 2.1422 1.4011 1.1843 2.7092 1.5331 1.3036

d = 6,X = [−36, 36]6 10 9.8196 3.8757 8.9874 9.9787 4.2098 8.2282

20 15.7164 4.0201 14.9040 16.8911 4.5881 15.4959

Table 2: Quantitative comparison for KGSpLin and KGLin on standard test functions.

From Table 2, we can see that for all the four test functions, KGSpLin outperforms
KGLin in having smaller means of opportunity cost. However, in some cases, KGLin per-
forms better or competitively by having smaller medians. This is because in some of these
simulations, it takes longer for Lasso to identify the true support, which results in higher
opportunity costs at the initial samplings. Additionally, because of this, the margins of
these two algorithms for Bohachevsky and Trid functions are relatively small, especially
considering we are using a relatively small number of budget. However, if we compare the
performance of KGSpLin and KGLin excluding the initial 10 measurements, we can see
that KGSpLin does significantly better than KGLin (See Table 4 in Appendix D).

Furthermore, we now test KGSpAM policy on the following SS-ANOVA model with
p = 100 and four relevant variables,

µi = f12(Xi1, Xi2) +

5∑
j=3

fj(Xij) + εi, εi ∼ N (0, σε);

the relevant component functions are given by

f12(x1, x2) = 2x2
1 − 1.05x4

1 +
x6

1

6
+ x1x2 + x2

2, (36)

f3(x) = 2 sin(2πx), (37)

f4(x) = 8(x− 0.5)2, (38)

f5(x) = 2 exp(−3x), (39)

where the first component function f12 in (36) is known as the Three-hump camel function.
We plot the true Three-hump camel function in Figure 4(a), while the key part is shown in
Figure 4(b). For f12, we use B-splines tensor product space S4⊗S4 to approximate it. The
knot sequences are equally spaced on [−5, 5]2 with K = 4 (the number of subintervals for
each dimension is K + 1 = 5). The remaining three relevant components are approximated
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using B-splines with order l = 4 and equally spaced knot sequences on [0, 1] with K = 4.
The alternatives are uniformly sampled on the domain with M = 400 and the measurement
budget N is 30. The standard deviation of measurement noise σε is set to 20% of the
expected range of the truth µ.

Three-Hump Camel Function 

(a)

Three-Hump Camel Function 

(b)

Figure 4: (a) shows the negative Three-hump camel function on its recommended input
domain. (b) shows only a portion of this domain, to allow for easier viewing of
the function’s key characteristics. The function has one global maximum and two
other local maxima.

Then we run KGSpAM policy on a p = 100-dimensional space. To better visualize
its performance, we plot the starting prior and estimated function of negative f12 on its
key region after the initial 10 and 30 observations as shown in Figure 5. Comparing these
estimates with the true function shown in Figure 4, we can see see that the policy has done
a good job estimating the lower key regions of the function as desired after 10 observations,
and it identifies the areas of the three maxima after 30 observations. For the remaining
three relevant functional components in (37), (38), and (39), we plot the prior, truth, and
final estimates of KGLin and KGSpAM in Figure 6. Finally, we run 300 replications and
plot the averaged OC% and the normalized estimation error in Figure 7.
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(a) (b) (c)

µ0

Figure 5: (a) shows the prior of negative Three-hump camel function on its key region. (b)
and (c) show the estimates of negative Three-hump camel function on its key
region after 10 and 30 observations respectively.
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Figure 6: (a)(b)(c) The prior, truth, and final estimate of the sparse additive model in (37)-
(39) comparing KGLin and KGSpAM after N = 30 observations. The standard
deviation of measurement noise 20% of the expected range of the truth.
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(a) Average OC% with noise sd 20% (b) Normalized error with noise sd 20%
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Figure 7: (a)(b) compares KGSpAM and KGLin by showing the averaged OC% and nor-
malized estimation errors over 300 runs under 20% measurement noise level.

7.2 Application to RNA Data

An important step in health research requires learning the structure of RNA molecules to
improve our understanding of how different drugs might behave in humans. This application
addresses the problem of determining the accessibility patterns of an RNA molecule known
as the Tetrahymena Group I intron (gI intron). Determining these accessibility patterns is
difficult to do in silico, as they depend on the complicated folding of the molecule known as
the intron’s tertiary structure (Vazquez-Anderson and Contreras, 2013). Experimentally,
such accessibility patterns can be inferred from fluorescence measurements obtained from
the iRS3 by using various complementary probes designed a priori to target a region within
the gI intron (Sowa et al., 2014). By fixing the size of the probe, we can view the selection
of the probe and the target region that maximize the fluorescent signal as a key step in
identifying the accessibility patterns of the molecule. See our parallel paper Li et al. (2015)
for a more detailed description of the problem and more simulation results.
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Followed by the thermo-kinetic model, the amount of accessibility (fluorescence signal)
µ has a linear relationship with respect to the coefficients representing the accessibility of
each nucleotides. Also, most of the coefficients are zero, thus we have a sparse linear model.
Alternatives (testing probe sequences) with a number of M = 91 are selected by the domain
experts. The number of dimensions is the length of the molecule, which is m = 414. In the
following experiments, we take a subsequence of the molecule (from site 95 to 251) with
m = 157 to better visualize the results. The prior data is the in-vitro DMS footprinting data
published in Russell et al. (2006). The true coefficient vector is simulated by both vertically
perturbing (normally deviated with sd = 20%) and horizontally shifting (uniformly shifted
20 ∼ 50 sites) the prior in-vitro DMS footprinting data.

First, we illustrate how KGSpLin policy works under a measurement noise of 30%.
For one such simulated truth, we depict the KGSpLin value initially, after one and two
measurements, respectively in Figure 8. For these figures, we only include those probes with
KGSpLin values above the mean to better visualize the KGSpLin scores. As indicated by
the arrows, for the probes with the largest KGSpLin scores, the KGSpLin scores drop after
they have been measured. As we only plot those with KGSpLin scores above average, some
probes with high KGSpLin scores in Figure 8(a) have the scores dropped below average after
being measured and are therefore not shown in Figure 8(b). This observation is consistent
with our intuition of KGSpLin as a measure of the value of information, and thus we can
use this policy as a guideline to pick the next experiments.
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Figure 8: KGSpLin values before and after 1 and 2 measurements with noise ratio of 30%.
(A subsequence of the RNA molecule is selected from site 95 to 251. Each bar is
a potential range of a probe.)

Finally, for one simulated truth, we also plot the estimates of the accessibility profiles
(coefficients) after 20, 30, 40, 50 measurements with a noise ratio of 30% in Figure 9. As
one can see, after 20 measurements, the estimate is still closer to the prior than the truth.
After 30 measurements, we have discovered many of the accessible regions. After 40 mea-
surements, we have not only discovered the location of the accessible regions, but obtained
good estimates for the actual accessibility value. And after 50 measurements, our estimate
closely matches the truth.
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Figure 9: Accessibility profile estimate by the KGSpLin algorithm after 20, 30, 40, and 50
measurements with noise ratio of 30%.

8. Conclusion

In this paper, we extend the KG policy to high-dimensional linear belief. Then this can
be naturally generalized to the nonparametric additive beliefs, if we approximate each in-
dividual smooth function with B-splines of finite order. It is a novel hybrid of Bayesian
R&S with the frequentist learning approach. Parallel with the Bayesian model, the policies
use the frequentist recursive Lasso approach to generate estimates and update the Bayesian
model. Empirically, both KGSpLin and KGSpAM greatly reduce the measurement budget
effort and perform significantly better than several other policies in high-dimensional set-
tings. In addition, these policies are easy to implement and fast to compute. Theoretically,
we prove that our policies are consistent. That is, the estimates can converge to the truth
when given enough measurements. This also guarantees the convergence to the global op-
timal alternative. All these advantages make them reasonable alternatives to other policies
for high-dimensional applications with sparse structure. Despite the advances, the conver-
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gence theory requires a number of structural assumptions, suggesting that future research
should look to identify algorithms that work with more general model structures in high
dimensions.
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Appendix A.

Refer to Table 3.

Appendix B. The Homotopy Algorithm for Recursive `1,∞ Group Lasso

In this Appendix, we briefly describe the recursive homotopy algorithm to exactly update
the `1,∞ Lasso solutions, which is used in Algorithms 1 and 2. The homotopy algorithm for
recursive Lasso is proposed in Garrigues and El Ghaoui (2008). Based on this result, Chen
and Hero (2012) propose the following homotopy algorithm for recursive `1,∞ group Lasso.

Recall that we let β̂n be the solution to the Lasso with n observations, that is

β̂n = argmin
β∈Rm

1

2

n∑
i=1

[
(xi−1)Tβ − yi

]2
+ λn‖β‖1,∞.

We are given the next observation (yn+1,xn) ∈ R×Rm. The algorithm computes the next es-
timate β̂n+1 via the following optimization problem. Recall that Rn−1 :=

∑n
i=1 x

i−1(xi−1)T ,
rn :=

∑n
i=1 x

i−1yi. Let us define a function

u(t, λ) = argmin
β∈Rm

1

2
βT (Rn−1 + txn(xn)T )β − βT (rn + txnyn+1) + λ‖β‖1,∞.

It is easy to see that β̂n = u(0, λn), and β̂n+1 = u(1, λn+1). The homotopy algorithm
computes a path from β̂n to β̂n+1 in two steps:

(1) Fix t = 0, vary the regularization parameter from λn to λn+1 with t = 0. This
amounts to computing the regularization path between λn and λn+1 using the homo-
topy methods such as the iCap algorithm done in Zhao et al. (2009). This solution
path is piecewise linear.

(2) Fix λ and calculate the solution path between u(0, λn+1) and u(1, λn+1) using the
homotopy approach. This is derived by proving that the solution path is piecewise
smooth in t. The algorithm computes the next “transition point” at which active
groups and solution signs change, and updates the solution until t reaches 1.
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Variable Description

X Set of alternatives

M Number of alternatives

N Number of measurements budget

µx Unknown mean of alternative x

σε Known standard deviation of measurement noise

µ Column vector (µ1, . . . , µM )T

xi/xi Sampling decision at time i (vector or scalar index)

εn+1
x Measurement error of alternative xn

yn+1 Sampling observation from measuring alternative xn

θn, Σn Mean and Covariance of prior distribution on µ at time n

Sn State variable, defined as the pair (θn,Σn)

vKG,n
x Knowledge gradient value for alternative x at time n

α Vector of linear coefficients

m Number of features

X Design matrix including all the possible finite experimental designs

ϑn,Σϑ,n Mean of covariance of posterior distribution on α after n measurements

λn Regularization parameter for Lasso at time n

p Number of nonoverlapping groups for features

G,Gj Group index

dj Number of features in the jth group, dj = |Gj |
ζn Prior of ζ at time n

pnj Parameter of Bernoulli distribution on ζnj
(ξnj , η

n
j ) Set of shape parameters of Beta distribution on pnj

ϑ̂n Lasso estimate at time n

(ϑ̂nS , Σ̂
ϑ,n
S ) Mean and covariance matrix estimator from Lasso solution at time n

Pn Index of selected groups from Lasso estimate at time n

P Active group index set

Q Inactive group index set

Aj Index set in the jth group with maximum absolute values

Bj Index set in the jth group except for Aj
fj Smooth function of the jth feature

K Number of interior knots for one-dimensional splines

Slj Space of polynomial spline of order lj
φjk k-th B-spline basis function for Slj
αjk Coefficient for fj on basis function φjk
fjk Two-factor interaction component in the SS-ANOVA model

φjrkq rq-th B-spline basis function for Slj ⊗ Slk
d̄ Maximum group size

Xn−1 Design matrix with rows of x0, . . . ,xn−1

q Smoothness parameter of the Hölder class H
s∗ Cardinality of the true group set, s∗ = |S∗|

Table 3: Table of Notation
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Appendix C. Proofs

In the Appendix, we present the detailed proofs of all the technical results.

C.1 Proof of Lemma 3

The basic idea of the proof in Lemma 3 follows that in the proof of the rate consistency of
the Lasso in Zhang and Huang (2008) and the rate consistency of the `1,2 group Lasso in
Wei and Huang (2010). However, there are some differences in the characterization of the
solution via the KKT conditions and in the constraint needed for the penalty level. In the
following we provide a sketch of the proof, especially highlighting the technical differences.

Let us begin by introducing some notation which will be used in the proof. For now
let us leave out the superscript n to simplify notation. Let ΣX

SjSk = XT
SjXSk/n. Let

{k : ‖β̂Gk‖∞ > 0} ⊆ S1 ⊂ {k : XT
∗Gk(Y − Xβ̂) = λzGk} ∪ S∗, where zGk ∈ ∂‖β̂Gk‖1,∞.

Set S2 = {1, . . . , p} \ S1, S0 = {1, . . . , p} \ S∗, S3 = S1 \ S0, S4 = S1 ∩ S0, S5 = S2 \ S0,
S6 = S1 ∩ S0. Thus we have S1 = S3 ∪ S4, S3 ∩ S4 = ∅, S2 = S5 ∪ S6, S5 ∩ S6 = ∅. Let
|Si| =

∑
k∈Si dk, N(Si) = #{k : k ∈ Si}, i = 1, . . . , 6, and s1 = N(S1). Recall that d̄ is the

maximum group size. Now we let d be the minimum group size, that is d := minj=1,...,p dj .
(1) The proof of part (1) consists of three steps. Step 1 proves some inequalities related

to s1. Step 2 translates the results of Step 1 into upper bounds for |S|. Step 3 completes
the proof by showing the probability of the event in Step 2 converging to 1.

Since β̂ is the solution of (13), by the KKT condition,{
XT
∗Gk(Y −Xβ̂) = λzGk , ∀‖β̂Gk‖∞ > 0,

−λ ≤ ‖XT
∗Gk(Y −Xβ̂)‖1 ≤ λ ∀‖β̂Gk‖∞ = 0.

We then have (ΣX
S1)−1QS1/n = (βS1 − β̂S1) + (ΣX

S1)−1ΣX
S1S2βS2 + (ΣX

S1)−1XT
S1ε/n, and

nΣX
S2S2βS2−nΣX

S2S1(ΣX
S1)−1ΣX

S1S2βS2 ≤ CS2−XT
S2ε−ΣX

S2S1(ΣX
S1)−1QS1+ΣX

S2S1(ΣX
S1)−1XT

S1ε,

where QSi = [QT
k1
, . . . ,QT

ksi
]T ∈ R|Si|, Qki = λqki , qk = XT

∗Gk(Y − Xβ̂)/λ, CSi =

[CT
k1
, . . . ,CT

ksi
]T ∈ R|Si|, Cki = I(‖β̂ki‖2 = 0)edki×1, all the elements of matrix edki×1

equal 1 and ki ∈ Si.
Step 1. Define

V1j =
1√
n

(ΣX
S1)−1/2RT

Sj1QSj , for j=1,3,4, wk = (I−P1)XSkβSk , for k = 2, . . . , 6, (40)

where RSkj is the matrix representing the selection of variables in Sk from Sj . By the
definition of V1j in (40) and Lemma 1 in Zhang and Huang (2008) (It is easy to prove the
Lemma is still true for group Lasso with `1,∞ penalty),

‖V14‖2 =
‖(ΣX

S1)−1/2RT
S41QS4‖2√

n
≥
‖RT
S41QS4‖2√
nc∗(|S1|)

≥
λ
∑

k∈S4 ‖qk‖1√
nc∗(|S1|)N(S4)

≥ λ
√
s1 − s∗√
nc∗(|S1|)

.

That is ‖V14‖22 ≥ λ(s1 − s∗)/nc∗(|S1|). . From the KKT conditions, we have

VT
14(V13 + V14) ≤ QT

S4RS41(ΣX
S1)−1ΣX

S1S2βS2 +
QT
S4RS41(ΣX

S1)−1XT
∗S1ε

n
+ λ

∑
k∈S4

‖βk‖1,

‖w2‖22 ≤ −wT
2 ε−QT

S1(ΣX
S1)−1ΣX

S1S2βS2 + βTS2CS2 .
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Define u = (XS1(ΣX
S1)−1RT

S41QS4/n−w2)/‖XS1(ΣX
S1)−1RT

S41QS4/n−w2‖2, it follows that

‖V14‖22 + ‖w2‖22 ≤ (‖V14‖2 + ‖P1XS2βS2‖2)( λ2N(S3)
nc∗(‖S1‖))1/2 + λ‖βS5‖2

+(‖V14‖22 + ‖w2‖22)1/2uT ε. (41)

Step 2. Define B2
1 = λ2s∗/(nc∗(|S1|)) and B2

2 = λ2s∗/(nc∗(|S0| ∨ |S1|)). In this step,
we consider the event |uT ε|2 ≤ (|S1| ∨ d)B2

1/(4s
∗d̄). Suppose that the set S1 contains all

the large βk 6= 0. From (41), we have ‖V14‖22 ≤ B2
1 + 4B2

2 , so we have

(s1 − s∗)+ ≤ s∗‖V14‖2
B2

1

≤ s∗ +
4s∗c∗(|S1|)
c∗(|S1|)

. (42)

Step 3. Letting c∗(Sm) = c∗, c
∗(Sm) = c∗, for N(Sm) ≤ r, we have

s1 ≤ N(S1 ∪ S5) ≤ r, |uT ε|2 ≤ (|S1| ∨ d)λ2

4d̄nc∗(|S1|)
(43)

Since ĉ = c∗/c∗, (42) gives us that s1 ≤ (2 + 4ĉ)s∗ when λ ≥ λ∗, which implies the result of
part (1). Define

x∗s ≡ max
|S|=s

max
‖USk‖1=1,k=1,...,s

∣∣∣∣εT XS(XT
SXS)−1Q̄S − (I−PS)Xβ

‖XS(XT
SXS)−1Q̄S − (I−PS)Xβ‖2

∣∣∣∣ , (44)

for |S| = s1 = s ≥ 0, Q̄S = [Q̄T
S1 , . . . , Q̄

T
Ss ]

T , where Q̄T
Sk = λUSk , ‖USk‖1 = 1. Let AS =

X∗S(XT
SXS)−1, where X∗k = λXk for k ∈ S. For a given S, let Zlj = (0, . . . , 0, 1, 0, . . . , 0)

be the |S| × 1 vector with the jth element in the lth group being 1. Then, US =∑
l∈S
∑dl

j=1 uljZlj and
∑dl

j=1 |ulj | = 1. By the SRC, ‖ASUS‖22 ≥ λ2s/(nc∗(|S|)d̄). De-
fine z = smaxl,j ‖ASZlj‖2/(ASUS), then by the definition of AS and the SRC, we know

z ≤
√
d̄ĉs.

Thus by (44), we have

x∗s ≤ max
|S|=s

max
l,j

{∣∣∣∣εT ASZlj
‖ASZlj‖2

∣∣∣∣ s‖ASZlj‖2‖ASUS‖2
+

∣∣∣∣ εT (I−PS)Xβ

‖(I−PS)Xβ‖2

∣∣∣∣} .
If we define Ωs′ = {(U, ε) : x∗s ≤ σε

√
8(1 + c0)z2((sd) ∨ d) log(m ∨ an),∀s ≥ s′}, then

(X, ε) ∈ Ωs′ ⇒ |uT ε|2 ≤ (x∗s)
2 ≤ (|S1| ∨ d)λ2

4d̄nc∗
, for N(S1) ≥ s′ ≥ 0.

By the definition of x∗s, it is less than the maximum of
(
p
s

)∑
k∈S dk normal variables with

mean 0 and variance σ2
ε z

2
ε , plus the maximum of

(
p
s

)
normal variables with mean 0 and

variances σ2
ε . It follows that P{(X, ε) ∈ Ωs′} → 1 when (43) holds. This completes the

sketch of the proof of Lemma 3 part (1).
(2) Consider the case when {c∗, c∗, c0} are fixed. Let S1 = {k : ‖β̂k‖∞ > 0 or k /∈ S0}.

Define v1 = XS1(β̂S1−βS1) and g1 = XT
S1(Y−Xβ̂). We then have ‖v1‖22 ≥ c∗n‖β̂S1−βS1‖22,

(β̂S1 − βS1)Tg1 = vT1 (Xβ −XS1βS1 + ε)− ‖v1‖22 and ‖g1‖∞ ≤ max
k,‖β̂k‖∞>0

‖λẑk‖∞ = λ.

Therefore, ‖v1‖2 ≤ ‖PS1ε‖2 + λ
√
N(S1)/(nc∗). Since ‖PS1ε‖2 ≤ 2σε

√
N(S1) logm with
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probability converging to 1 under the normality assumption, ‖X(β̂ − β)‖2 ≤ ‖PS1ε‖2 +
λ
√
N(S1)/(nc∗). We then have

(
∑
k∈S1

‖β̂k − βk‖22)1/2 ≤ ‖v1‖2√
nc∗
≤ 1√

nc∗
(2σε

√
N(S1) logm+

√
C1ĉB1).

It then follows that

‖β̂ − β‖2 ≤
1√
nc∗

(2σε
√
C1s∗ logm+

√
C1ĉB1). (45)

Then the result of part (2) follows by substituting the B1 = λ
√
s∗/(nc∗) and λ = λ∗ into

(45). This completes the sketch of the proof of Lemma 3 part (2).

C.2 Proof of Proposition 6

Let us define ΣX,n−1 be the sample covariance matrix, that is ΣX,n−1 = (Xn−1)TXn−1

n . For

any N ′ < n′ ≤ cN ′, let us divide the design matrix Xn′−1,

Xn′−1 =

[
XN ′−1

X+

]
.

We need to prove Xn′−1 satisfies condition SRC (r, c∗/c,B). Note that XN ′−1 satisfies the
SRC (r, c∗, c

∗) is equivalent to

c∗ ≤ Λmin(ΣX,N ′−1
S ) ≤ Λmax(ΣX,N ′−1

S ) ≤ c∗, ∀S with r = |S| and ν ∈ R
∑
j∈S dj .

Then we have that for ∀S with r = |S|

ΣX,n′−1
S =

(Xn′−1
∗S )TXn′−1

∗S
n′

=
(XN ′−1
∗S )TXN ′−1

∗S + (X+
∗S)TX+

∗S
n′

=
N ′ΣX,N ′−1

S + (X+
∗S)TX+

∗S
n′

.

This implies that

Λmin(ΣX,n′−1
S ) ≥ N ′

n′
Λmin(ΣX,N ′−1

S ) ≥ c∗
c
, (46)

and

Λmax(ΣX,n′−1
S ) ≤ N ′

n′
Λmax(ΣX,N ′−1

S ) +
1

n′
Λmax[(X+

∗S)TX+
∗S ].

Since

(X+
∗S)TX+

∗S = xN
′
S (xN

′
S )T + xN

′+1
S (xN

′+1
S )T + · · ·+ xn′−1

S (xn
′−1
S )T ,
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and

Λmax[xnS(xnS)T ] = ‖xnS‖22 ≤ B, ∀n,

we can get that

Λmax(ΣX,n′−1
S ) ≤ N ′

n′
c∗ +

n′ −N ′
n′

B ≤ max(c∗, B) = B. (47)

Combining (46) and (47) completes the proof.

C.3 Proof of Theorem 7

We begin with the proof of part (1).
Theorem 7 assumes that XN ′−1 satisfies the SRC(C3s

∗, c∗, c
∗). By Proposition 6, we

know that for all cN ′ ≤ n′ ≤ c̄N ′, the design matrix Xn′−1 can satisfy the SRC(C3s
∗, c∗/c̄, B).

Thus the result of part (1) directly follows from part(1) of Lemma 3.
We now proceed to prove part (2). Throughout the proof, we let c∗, c

∗, c0, c, c̄, and B be

fixed. We also let the bounds [Cmin, Cmax] for truncating the eigenvalues of Ĉov(zS)(n+1) be
fixed positive constants, so in the following, the Cis are some positive constants depending
only on these quantities. Let S̄ :=

⋂n
n′=N ′ Sn

′
. In both Algorithm 1 and Algorithm 2, we

approximately estimate Σ̂ϑ,n
S by Σ̃ϑ,n

S , then from updating formulae in (15) and (14), we
have

ϑnS̄ = Σϑ,n
S̄

[
(Σϑ,N ′−1
S̄ )−1ϑN

′−1
S̄ + [(Σ̃ϑ,N ′

SN′ )−1]S̄ϑ̂
N ′

S̄ + · · ·+ [(Σ̃ϑ,n
Sn )−1]S̄ϑ̂

n
S̄

]
,

Σϑ,n
S̄ =

[
(Σϑ,N ′−1
S̄ )−1 + [(Σ̃ϑ,N ′

SN′ )−1]S̄ + · · ·+ [(Σ̃ϑ,n
Sn )−1]S̄

]−1
.

Then if we define

δn
′

S̄ := ϑn
′

S̄ − ϑS̄
δ̂n
′

S̄ := ϑ̂n
′

S̄ − ϑS̄ ,

for all N ′ − 1 ≤ n′ ≤ n to simplify notation, we have

δnS̄ = Σϑ,n
S̄

[
(Σϑ,N ′−1
S̄ )−1δN

′−1
S̄ + [(Σ̃ϑ,N ′

SN′ )−1]S̄ δ̂
N ′

S̄ + · · ·+ [(Σ̃ϑ,n
Sn )−1]S̄ δ̂

n
S̄

]
.

This gives us the following bound on δnS̄ ,

‖δnS̄‖2 ≤ ‖Σ
ϑ,n
S̄ ‖2

[
‖(Σϑ,N ′−1

S̄ )−1‖2‖δN
′−1
S̄ ‖2 + ‖[(Σ̃ϑ,N ′

SN′ )−1]S̄‖2‖δ̂N
′

S̄ ‖2+

· · · +‖[(Σ̃ϑ,n
Sn )−1]S̄‖2‖δ̂nS̄‖2

]
.

We now proceed to bound each of the quantities. For now let n′ be an index satisfying
N ′ ≤ n′ ≤ n. As we suppose the design matrix for the Lasso solution ϑ̂N

′
S satisfies the SRC

(C3s
∗, c∗, c

∗), by Proposition 6 and Lemma 3, if we choose λn
′

= λ∗ and

λn
′

= O(d̄
√
n′ logm), (48)
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then there exists some constant C6 such that

‖δ̂n′S̄ ‖2 ≤ C6σεd̄

√
s∗ logm

n′
, for all cN ′ ≤ n′ ≤ n, (49)

with probability converging to 1. We know from (29) that Σ̃ϑ,n′

Sn′ is computed by:

Σ̃ϑ,n′

Sn′ = Mn′−1
Sn′ σ

2
ε + (λn

′
)2Mn′−1

Sn′ C̃ov(zSn′ )
n′Mn′−1

Sn′ ,

where

Mn′−1
Sn′ =

[
(Xn′−1
∗Sn′ )

TXn′−1
∗Sn′

]−1
.

The SRC(C3s
∗, c∗, c

∗) gives us

Λmax(MN ′−1
S ) ≤ 1

N ′c∗
<∞,

Λmin(MN ′−1
S ) ≥ 1

N ′c∗
> 0,

for any S with |S| = C3s
∗. Therefore, since |Sn′ | ≤ C3s

∗, which is proved in part (1), by
Proposition 6, we can show that for all N ′ ≤ n′ ≤ n, there exist positive constants C7 and
C8, such that

Λmax(Mn′−1
Sn′ ) ≤ C7

n′
<∞, (50)

Λmin(Mn′−1
Sn′ ) ≥ C8

n′
> 0. (51)

It is not hard to prove

Λmin(MN) ≥ Λmin(M)Λmin(N)

for any positive semidefinite matrices M and N, so using Weyl’s inequality in matrix theory,
(28), and (51), we have the following bound,

‖[(Σ̃ϑ,n′

Sn′ )−1]S̄‖2 ≤ ‖(Σ̃ϑ,n′

Sn′ )−1‖2 = Λ−1
min(Σ̃ϑ,n′

Sn′ )

≤ 1

Λmin(σ2
εM

n′−1
Sn′ ) + (λn′)2ΛminC̃ov(zSn′ )

n′Λ2
min(Mn′−1

Sn′ )

≤ C9n
′

σ2
ε d̄

2 logm
, (52)

for some constant C9. Similarly, by (48), (50), and (28), we can also get

‖Σ̃ϑ,n′

Sn′ ‖2 = Λmax(Σ̃ϑ,n′

Sn′ )

≤ σ2
εΛmax(Mn′−1

Sn′ ) + (λn
′
)2ΛmaxC̃ov(zSn′ )

n′Λ2
max(Mn′−1

Sn′ )

≤ C10
σ2
ε d̄

2 logm

n′
,
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for some constant C10. Thus, for the posterior covariance matrix, we have

‖Σϑ,n
S̄ ‖2 = Λ−1

min

[
(Σϑ,N ′−1
S̄ )−1 + [(Σ̃ϑ,N ′

SN′ )−1]S̄ + · · ·+ [(Σ̃ϑ,n
Sn )−1]S̄

]
≤ 1

Λmin

[
[(Σ̃ϑ,N ′

SN′ )−1]S̄

]
+ · · ·Λmin

[
(Σ̃ϑ,n
Sn )−1

]
S̄

=
1

Λ−1
max(Σ̃ϑ,N ′

SN′ ) + · · ·Λ−1
max(Σ̃ϑ,n

Sn )

≤ 2C10σ
2
ε d̄

2 logm

(N ′ + n)(n−N ′ + 1)

≤ C11σ
2
ε d̄

2 logm

n2
, (53)

for some constant C11. If we let

∆S̄(N ′) = ‖(Σϑ,N ′−1
S̄ )−1‖2‖δN

′−1
S̄ ‖2,

then combining (49),(52), and (53) gives us the following bound on δnS̄

‖δnS̄‖2 ≤ C11σ
2
ε d̄

2 logm

n2

(
∆S̄(N ′) +

n∑
n′=N ′

C6C9

√
s∗n′

σεd̄
√

logm

)

≤ C12σεd̄
√
s∗ logm√
n

+
C11σ

2
ε d̄

2 logm∆S̄(N ′)

n2
, (54)

for some constant C12. After dropping off the higher order term, (54) is equivalent to

‖ϑnS̄ − ϑS̄‖22 ≤
C4σ

2
ε s
∗d̄2 logm

n
,

and thus completes the proof.

C.4 Proof of Theorem 10

By definition of fj , 1 ≤ j ≤ p, part (1) follows from part (2) of Theorem 7 directly. Now

consider part (2). We denote f̃∗j as

f̃∗j (x) =

dj∑
k=1

ϑjkψjk(x), for 1 ≤ j ≤ p.

We also have

fnj (x) =

dj∑
k=1

ϑnjkψjk(x), for 1 ≤ j ≤ p.
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Since ψjk is the orthonormal basis, we have

‖fnj − f̃∗j ‖22 ≤ ‖ϑnj∗ − ϑj∗‖22.

Also by Assumption 9 and Lemma 8 in Stone (1986), taking q = 2, we have

‖f̃∗j − fj‖2 ≤ C13d
−2q
j = C13d

−4
j ,

where C13 is some fixed positive constant. Thus by the result of Theorem 7, we have

‖fnS̄ − fS̄‖2 ≤
C4σ

2
ε s
∗d̄2 logm

n
+
C13

d̄4
.

Note that choosing d̄ = O(n1/6) would not change the rate in equation (54), so we have the
following bound

‖fnS̄ − fS̄‖22 ≤
C5σ

2
ε s
∗ logm

n2/3
.

Appendix D. More Empirical Results

In this Section, we show some more detailed empirical results.

KGSpLin KGLin

Test function σε E(OC) σ(OC) Median E(OC) σ(OC) Median

Matyas 1 .0082 .0231 .0068 .0263 .0146 .0238

X = [−10, 10]2 10 .1764 .1927 .0103 .3084 .1132 0.3636

20 .5893 .8283 .2530 1.5475 .3102 1.2859

Six-hump Camel 1 .0016 .0017 .0000 .0106 .6775 .0000

X = [−3, 3]× [−2, 2] 10 .0750 .6283 .0000 .1138 .5273 .0000

20 .3282 .2031 .0187 .5836 .2537 0.0285

Bohachevsky 1 .0513 .0187 .0010 .0787 .0341 .0012

X = [−100, 100]2 10 .2359 2.0965 .2166 .4174 2.5327 .2732

20 1.2406 2.8345 1.2084 1.8940 3.4507 1.6287

Trid 1 1.7328 1.2806 0.8685 2.4271 1.4716 1.1243

d = 6,X = [−36, 36]6 10 7.2585 3.4074 7.0487 9.1764 4.0085 7.8952

20 10.1484 3.8105 9.9850 14.1521 4.2179 13.9403

Table 4: Quantitative comparison for KGSpLin and KGLin on standard test functions ex-
cluding the initial 10 measurements.

First, we compare KGSpLin with KGLin on data which is not sparse. Here we consider
a similar model as used in the first set of experiments in Section 7.1. In the non-sparse
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setting, we only take the nonzero dimension of the function. That is we let µ =
∑m

j=1 αjxj+ε

with ε ∼ N (0, σ2
ε ). Here m = 20. For j = 1, . . . ,m, let αj be independently drawn from

N (ϑj ,Σ
ϑ
jj), where ϑj = j + 10, and Σϑjj = (2ϑj)

2. The prior is also independently sampled
from the same distribution. The difference is that here we take larger standard deviations
so that the sampled truth is significantly different from the prior. In this way, we can better
visualize the performance of different algorithms as more observations are made. Then we
uniformly sample M = 100 alternatives from [0, 1]m. For KGSpLin, the tuning parameter
λn is chosen to be a relatively small number 10−2 and remains fixed as n becomes large. As
before, figure 10 shows the log of the averaged OC% and the normalized estimation error
of ϑ over 300 replications with low and high measurement noise. The standard deviations
of the measurement noise are respectively 5% and 30% of the expected range of the truth.
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Figure 10: (a)(b) and (c)(d) compares exploration, exploitation, KGLin, and KGSpLin for
a non-sparse model by showing the averaged OC% and normalized estimation
errors over 300 runs under low measurement noise (5% range of the truth) and
high measurement noise (30% range of the truth).
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As one can see from Figure 10, in the non-sparse setting, KGSpLin does not make
erroneous conclusions of sparsity with a relatively small value of λ. KGSpLin performs
competitively with KGLin in both the opportunity cost and estimation error. For this set
of experiments, we can see that there is almost no loss even if we make approximations in
the KG computation as well as the Bayesian update as describe in Section 4.

Second, for the experiments of comparing KGSpLin and KGLin on canonical test func-
tions, Table 4 gives the sample means, sample standard deviations and sample medians of
the opportunity cost without the first 10 iterations for each policy. One can see that given
some initial samples to identify the true suppport, KGSpLin does significantly better than
KGLin for all the test functions.
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