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Abstract. In this paper, we present a provably convergent algorithm for computing the quantile of a random variable that

does not require storing all of the sample realizations. We then present an algorithm for optimizing the quantile of a random

function which may be characterized by a heavy-tailed distribution where the expectation is not defined. The algorithm is

illustrated in the context of electricity trading in the presence of storage, where electricity prices are known to be heavy-tailed

with infinite variance.
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1. Introduction. For the past several decades, academic research in stochastic control and opti-

mization has been focused mainly on maximizing or minimizing the expectation of a random process

([12],[17],[19],[28],[29]). A separate line of research has focused on worst-case outcomes under the umbrella

of robust optimization [3]. However, when we are dealing with a non-stationary and complex or heavy-tailed

system, the expectation is diffi cult or impossible to compute and it is very often not meaningful to even try to

approximate the expectation. In those cases, it is rational to optimize our policy based on quantiles, which

are zeroth order statistics derived directly from the probability distribution. The cumulative distribution

function (CDF) and the inverse CDF, also known as the quantile function, can almost always be computed

in a practical manner. Optimizing expectations is especially diffi cult in various financial markets including

equities, commodities, and electricity markets, many of which are notorious for being non-stationary and

extremely volatile and heavy-tailed ([2], [4], [5], [8]). For example, daily volatilities of 20-30% are common

in electricity markets while the equity market also exhibits occasional heavy-tailed crashes as happened re-

cently during the 1987 meltdown, the LTCM crisis in 1998, the dot-com bubble burst in 2001, and of course,

during the 2008 financial meltdown.

A heavy-tailed distribution is defined by its structure of the decline in probabilities for large deviations.

In a heavy-tailed environment, the usual statistical tools at our disposal can be tricked into producing

erroneous results from observations of data in a finite sample and jumping to wrong conclusions. For

example, suppose we want to compute the variance from a finite number of i.i.d. samples whose underlying
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distribution is heavy-tailed such that the second and higher-order moments are not finite. If we use the

standard empirical formula for computing the variance, we will get “a number,” thus giving the illusion of

finiteness, but they typically show a high level of instability and grows steadily as we add more and more

samples [35]. In this paper, we present a framework for optimizing the median or any other quantile of a

stochastic process and show how it can be applied to optimizing a trading policy in the electricity markets.

Since the quantile function always exists and is relatively stable even in a highly volatile and non-stationary

environment, optimizing the quantile is a robust procedure, and almost always a reasonable thing to do in a

complex, volatile, and heavy-tailed environment or in a situation where the worst-case scenario is unknown

or too extreme.

For the past decade, many countries have deregulated their electricity markets. Electricity prices in

deregulated markets are known to be very volatile and as a result participants in those markets face large

risks. Recently, there has been a growing interest among electricity market participants about the possibility

of using storage devices to mitigate the effect of the volatilities in electricity prices. However, storage devices

have capacity limits and significant conversion losses, and it is unclear how one should use a storage device

to maximize its value. Fortunately, unlike stock prices, it is well-known that electricity prices in deregulated

markets exhibit reversion to the long-term “average,” allowing us to make directional bets ([6], [7], [22],

[27], [32]). The value of a storage device is determined by how good we are at making such bets - buying

electricity when we believe the price will go up and selling electricity when we believe the price will go down.

When using a storage device, we automatically lose 10-30% of the energy through conversion losses. The

conversion loss can be seen as a transaction cost, and hence the storage is valuable only if the price process

is volatile enough so that we can sell at a price that is suffi ciently higher than the price we buy to make up

for the loss due to conversion.

The statistics community has long recognized that in the context of linear regression, minimizing the

mean-squared or absolute-value error is an arbitrary choice. For certain applications, minimizing some

quantile of the error terms instead can be a viable alternative. This approach is generally referred to as

quantile regression, which minimizes the empirical expectation of a loss function on a given finite sample

set via deterministic optimization. A comprehensive review of quantile regression and the relevant literature

can be found in [18]. Meanwhile, the signal processing community has recognized that when the data is

non-stationary and highly volatile, applying median filters [1] using order statistics yields better results than

applying traditional filters based on minimizing empirical expectations.

The method described in this paper is different from the ones described in [18] or [1]. Instead of

applying order statistics and deterministic algorithms on a given data set, we use an adaptation of the
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recursive algorithm pioneered by Robbins and Monro [31]. In addition, while algorithms for estimating

quantiles require storing the history of observations, our adaptation performs quantile optimization without

this requirement, making our implementation much more compact. The main contribution of this paper is

the development of an algorithm which avoids the need to store the history of our process, as well as the

requirement that an expectation exists, by replacing the stochastic gradient with the asymmetric signum

function. Unlike the stochastic approximation algorithms that are derived from Robbins and Monro [31],

we do not assume that the expectation of the random variable or random function exists. Our algorithm

is applicable to heavy-tailed random variables and random functions whose mean and variance are not

necessarily well-defined.

This paper is organized as follows. In §2, we present a provably convergent algorithm that allows us

to find any quantile of a random variable. In §3, we present a framework for optimizing the quantile of a

random function. In §4, we apply our quantile optimization method to trading electricity in the spot market

in the presence of storage. In §5, we compare the trading strategy for maximum profit based on quantiles

to the standard trading policy based on the hour of the day. In §6, we summarize our conclusions.

2. Computing the Quantile of a Random Variable. In this section, we provide a simple, provably

convergent algorithm that allows us to compute the quantile of a random variable without storing the history

of observations. Assume X1, X2, ... are i.i.d. and continuous random variables where Xn is Fn-measurable,

−∞ < Xn <∞,

and

qα := inf {b ∈ R : P [Xi ≤ b] ≥ α} , ∀n ≥ 1,

for some α ∈ (0, 1) . We do not assume that E [Xn] exists. For example, (Xn)n>1 can be i.i.d. Cauchy

random variables. Given Fn, the most common and straightforward method for approximating qα is to

sort (Xi)1≤i≤n in increasing order and pick the nα
th smallest number. However, in order to find the exact

quantile using this method, we need an infinite amount of memory to store all (Xi)1≤i≤n as n→∞, which

is not practical. We present an algorithm that only requires us to store one estimate of the quantile at any

given time and show that it converges to the true quantile as n→∞.

Theorem 2.1. Let Y0 ∈ R be some finite number and

Yn = Yn−1 − γn−1sgnα (Yn−1 −Xn) ,
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where

sgnα(u) =

 1− α, if u ≥ 0,

−α, if u < 0,

is the asymmetric signum function and the stochastic stepsize γn ≥ 0 satisfies

∞∑
n=0

γn =∞ a.s.

and

∞∑
n=0

(γn)
2
<∞ a.s.

Then,

lim
n→∞

Yn
a.s.
= qα.

Proof : We know that Yn is Fn-measurable and

(Yn − qα)
2

= (Yn−1 − qα)
2 − 2γn−1 (Yn−1 − qα) · sgn (Yn−1 −Xn) +

(
γn−1

)2
λn,

where

λn := sgn2
α (Yn−1 −Xn)

and hence 0 ≤ λn ≤ 1. Since

E [sgnα (Yn−1 −Xn) | Fn−1] = (1− α)P [Xn ≤ Yn−1 | Fn−1]− αP [Xn > Yn−1 | Fn−1]

= (1− α)P [Xn ≤ Yn−1 | Fn−1]− α (1− P [Xn ≤ Yn−1 | Fn−1])

= P [Xn ≤ Yn−1 | Fn−1]− α

≤ 0 if and only if Yn−1 ≤ qα,

we know that

E [(Yn−1 − qα) sgnα (Yn−1 − qα) | Fn−1] ≥ 0. (2.1)

Therefore,

E
[
(Yn − qα)

2 | Fn−1

]
≤ (Yn−1 − qα)

2
+
(
γn−1

)2
, ∀n ≥ 1. (2.2)

Next, define

Wn := (Yn − qα)
2

+

∞∑
m=n

(γm)
2
, ∀n ∈ N+. (2.3)
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Then, from (2.2),

E [Wn+1 | Fn] ≤Wn, ∀n ∈ N+,

showing that (Wn)n≥1 is a positive supermartingale. Then, by the martingale convergence theorem,

lim
n→∞

(Yn − qα)
2

= lim
n→∞

Wn
a.s.
= W∞, (2.4)

where

0 ≤W∞ <∞.

Moreover, since

0 ≤ E [Wn | F0] ≤W0 <∞, ∀n ∈ N+,

by the dominated convergence theorem,

E [W∞ | F0] = E
[

lim
N→∞

WN | F0

]
= lim
N→∞

E [WN | F0] . (2.5)

Define

βn−1,n := E [(Yn−1 − qα) · sgnα (Yn−1 −Xn) | Fn−1] .

From (2.1), βn−1,n ≥ 0, and hence

β0,n = E [(Yn−1 − qα) · sgnα (Yn−1 −Xn) | F0]

= E [E [(Yn−1 − qα) · sgnα (Yn−1 −Xn) | Fn−1] | F0]

= E
[
βn−1,n | F0

]
≥ 0.

Next, from (2.3),

WN − (Y0 − qα)
2

= (YN − qα)
2 − (Y0 − qα)

2
+

∞∑
m=N

(γm)
2

=

N∑
n=1

{
(Yn − qα)

2 − (Yn−1 − qα)
2
}

+

∞∑
m=N

(γm)
2

= −2

N∑
n=1

γn−1 (Yn−1 − qα) · sgnα (Yn−1 −Xn) +

N∑
n=1

(
γn−1

)2
λn +

∞∑
m=N

(γm)
2
.
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Therefore, from (2.5),

E [W∞ | F0]− (Y0 − qα)
2

= lim
N→∞

E
[
WN − (Y0 − qα)

2 | F0

]
=

N∑
n=1

(
γn−1

)2
λn +

∞∑
m=N

(γm)
2

−2 lim
N→∞

N∑
n=1

γn−1E [(Yn−1 − qα) · sgnα (Yn−1 −Xn) | F0]

=

N∑
n=1

(
γn−1

)2
λn +

∞∑
m=N

(γm)
2 − 2

∞∑
n=1

γn−1β0,n.

Since the left-hand side is finite and
N∑
n=1

(
γn−1

)2
λn +

∞∑
m=N

(γm)
2 ≤

∞∑
n=1

(γm)
2
<∞,

we must have
∞∑
n=1

γn−1β0,n <∞.

Since β0,n ≥ 0 and
∞∑
n=1

γn−1 >∞,

we must have

lim
n→∞

β0,n = lim
n→∞

E
[
βn−1,n | F0

]
= 0.

However, since βn−1,n is a non-negative random variable, the expectation of it is zero if and only if βn−1,n

goes to 0 with probability 1 as n→∞. In other words,

lim
n→∞

βn−1,n = lim
n→∞

(Yn−1 − qα)E [sgnα (Yn−1 −Xn) | Fn−1]
a.s.
= 0.

Since

E [sgnα (Yn−1 −Xn) | Fn−1] = 0

if and only if Yn−1 = qα,

lim
n→∞

Yn
a.s.
= qα.

�.

3. Optimizing the Quantile of a Random Function. In this section, we show how to optimize the

quantile of a sub-differentiable function. We show that a monotonicity condition in a random function and

its derivative with respect to a sample realization allows us to optimize the quantile of the random function

using a simple, provably convergent algorithm. We also show that the well-known newsvendor problem has

the aforementioned monotonicity.
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3.1. Monotonicity Assumptions. Let Ω be the set of all possible outcomes and let Θ ⊆ R be a

compact control space. We start by defining our control variable θ ∈ Θ as a scalar for a clear and concise

presentation of our concepts and the proof of convergence for our algorithm. Then, we generalize our process

to the vector-valued case. Let F : Θ × Ω 7→ R be a function such that F (θ, ω) is convex and continuous

with respect to θ ∈ Θ for all fixed ω ∈ Ω. We also assume that F (θ, ω) is differentiable with respect to

θ ∈ Θ almost everywhere. For example, F (θ, ω) may be piecewise-linear with respect to θ ∈ Θ with a finite

number of break-points for all fixed ω ∈ Ω. Let F (θ) denote the random variable whose specific sample

realization is F (θ, ω) . Also, let Qα denote the operator such that for any random variable X,

QαX = inf {b ∈ R : P [X ≤ b] ≥ α}

gives the α-quantile of the random variableX. The following propositions show the monotonicity assumptions

that allow us to interchange the subgradient ∂
∂θ and the quantile operator Qα.

Proposition 3.1. Assume

F (θ, ω1) ≤ F (θ, ω2) if and only if
∂

∂θ
F (θ, ω1) ≤ ∂

∂θ
F (θ, ω2) , (3.1)

∀ω1, ω2 ∈ Ω and ∀θ ∈ Θ. Then,

Qα
∂

∂θ
F (θ) =

∂

∂θ
QαF (θ) , ∀θ ∈ Θ.

Proposition 3.2. Assume

F (θ, ω1) ≤ F (θ, ω2) if and only if
∂

∂θ
F (θ, ω1) ≥ ∂

∂θ
F (θ, ω2) , (3.2)

∀ω1, ω2 ∈ Ω and ∀θ ∈ Θ. Then,

Q1−α
∂

∂θ
F (θ) =

∂

∂θ
QαF (θ) , ∀θ ∈ Θ.

Proof: For some fixed θ ∈ Θ, let ω∗ ∈ Ω be the sample realization such that

QαF (θ) = F (θ, ω∗) ,

and let

A := {ω ∈ Ω | F (θ, ω) ≤ F (θ, ω∗)}

and

B := {ω ∈ Ω | F (θ, ω) > F (θ, ω∗)} .
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Then, if (3.1) holds,

∂

∂θ
F (θ, ω1) ≤ ∂

∂θ
F (θ, ω∗) <

∂

∂θ
F (θ, ω2) , ∀ω1 ∈ A, ω2 ∈ B,

and hence

Qα
∂

∂θ
F (θ) =

∂

∂θ
F (θ, ω∗) =

∂

∂θ
QαF (θ) .

On the other hand, if (3.2) holds,

∂

∂θ
F (θ, ω1) ≥ ∂

∂θ
F (θ, ω∗) >

∂

∂θ
F (θ, ω2) , ∀ω1 ∈ A, ω2 ∈ B,

and hence

Q1−α
∂

∂θ
F (θ) =

∂

∂θ
F (θ, ω∗) =

∂

∂θ
QαF (θ) .

�

We can illustrate Proposition 3.2 through the following example. Suppose Θ = [0, 1] and

F (θ) = (1− θ)U, ∀θ ∈ Θ,

where U ∼ U (0, 1) is a uniform random variable. Then, ∀ω1, ω2 ∈ Ω and ∀θ ∈ Θ,

F (θ, ω1) = (1− θ)U (ω1) ≤ (1− θ)U (ω2) = F (θ, ω2)

if and only if U (ω1) ≤ U (ω2) , and thus

∂

∂θ
F (θ, ω1) = −U (ω1) ≥ −U (ω2) =

∂

∂θ
F (θ, ω2) ,

satisfying (3.2). Next, QαF (θ) = α (1− θ) and hence

∂

∂θ
QαF (θ) = −α, ∀0 < α < 1.

On the other hand,

∂

∂θ
F (θ) = −U and hence Q1−α

∂

∂θ
F (θ) = −α,

satisfying Proposition 3.2.

Note that the classical stochastic gradient algorithm that allows us to optimize the expectation of a

function works because the expectation operator is interchangeable with the differential operator as long as

the expectation is finite. We do not need to satisfy this condition when optimizing quantiles. Our goal is

to develop an algorithm that is analogous to the classical stochastic gradient algorithm that allows us to

optimize the quantile of a function.
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3.2. Quantile Optimization. We begin by stating the algorithm for quantile optimization and proving

its convergence.

Theorem 3.3. Define

θα := argmin
θ∈Θ

Qα F (θ) .

For some n ∈ N+ and θn−1 ∈ Θ, let Fn (θn−1) be the Fn-measurable random variable whose distribution is

that of F (θn−1) . Denote

F ′n (θn−1) :=
∂

∂θ
Fn (θ, ω) |θ=θn−1 .

Let θ0 ∈ Θ and

θn =

 θn−1 − γn−1sgnα (F ′n (θn−1)) , if (3.1) holds for F (θ)

θn−1 − γn−1sgn1−α (F ′n (θn−1)) , if (3.2) holds for F (θ)
, ∀n ∈ N+,

where the stochastic stepsize γn ≥ 0 satisfies

∞∑
n=0

γn =∞ a.s. (3.3)

and

∞∑
n=0

(γn)
2
<∞ a.s. (3.4)

Then,

lim
n→∞

θn
a.s.
= θα.

Proof: Assume (3.1) holds and let θ0 ∈ Θ and

θn = θn−1 − γn−1sgnα (F ′n (θn−1)) .

Then,

(θn − θα)
2

= (θn−1 − θα)
2 − 2γn−1 (θn−1 − θα) · sgnα (F ′n (θn−1)) +

(
γn−1

)2
λn,

where

λαn := sgn2
α (F ′n (θn−1)) .

From assumption (3.1), if θn−1 ≤ θα,

QαF
′
n (θn−1) =

∂

∂θ
QαF (θ) |θ=θn−1 ≤ 0
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and if θn−1 > θα,

QαF
′
n (θn−1) =

∂

∂θ
QαF (θ) |θ=θn−1 > 0.

Therefore,

E [sgnα (F ′n (θn−1)) | Fn−1] = (1− α)P [F ′n (θn−1) ≥ 0 | Fn−1]− αP [F ′n (θn−1) < 0 | Fn−1]

= (1− α)P [F ′n (θn−1) ≥ 0 | Fn−1]− α (1− P [F ′n (θn−1) ≥ 0 | Fn−1])

= P [F ′n (θn−1) ≥ 0 | Fn−1]− α

≤ 0 if and only if θn−1 ≤ θα,

and hence

E [(θn−1 − θα) · sgnα (F ′n (θn−1)) | Fn−1] ≥ 0.

Then,

E
[
(θn − θα)

2 | Fn−1

]
≤ (θn−1 − θα)

2
+
(
γn−1

)2
, ∀n ≥ 1.

Using the same proof technique used in section §2, we can show that

lim
n→∞

θn
a.s.
= θα.

Similarly, if assumption (3.2) holds instead, we can let θ0 ∈ Θ and

θn = θn−1 − γn−1sgn1−α (F ′n (θn−1)) .

Then,

(θn − θα)
2

= (θn−1 − θα)
2 − 2γn−1 (θn−1 − θα) · sgn1−α (F ′n (θn−1)) +

(
γn−1

)2
λn,

where

λ1−α
n := sgn2

1−α (F ′n (θn−1)) .

Under assumption (3.2), if θn−1 ≤ θα,

Q1−αF
′
n (θn−1) =

∂

∂θ
QαF (θ) |θ=θn−1 ≤ 0

and if θn−1 > θα,

Q1−αF
′
n (θn−1) =

∂

∂θ
QαF (θ) |θ=θn−1 > 0.
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Therefore,

E [sgn1−α (F ′n (θn−1)) | Fn−1] = αP [F ′n (θn−1) ≥ 0 | Fn−1]− (1− α)P [F ′n (θn−1) < 0 | Fn−1]

= αP [F ′n (θn−1) ≥ 0 | Fn−1]− (1− α) (1− P [F ′n (θn−1) ≥ 0 | Fn−1])

= P [F ′n (θn−1) ≥ 0 | Fn−1]− (1− α)

≤ 0 if and only if θn−1 ≤ θα,

and hence

E [(θn−1 − θα) · sgn1−α (F ′n (θn−1)) | Fn−1] ≥ 0.

Again,

E
[
(θn − θα)

2 | Fn−1

]
≤ (θn−1 − θα)

2
+
(
γn−1

)2
, ∀n ≥ 1,

and we can show that

lim
n→∞

θn
a.s.
= θα.

�

While we have shown the proof for scalar θ, the algorithm can be readily extended to the multivari-

able case as long as the monotonicity assumption holds in each of the variables and corresponding partial

derivatives. For a simple illustration, suppose F
(−→
θ , ω

)
is convex in

−→
θ =

(
θ1, θ2, ..., θm

)
∈ Θ for some

m-dimensional compact space Θ ∈ Rm and fixed ω ∈ Ω.

Theorem 3.4. For each 1 ≤ i ≤ m, assume that either

∂

∂θi
F
(−→
θ , ω1

)
≤ ∂

∂θi
F
(−→
θ , ω2

)
if and only if F

(−→
θ , ω1

)
≤ F

(−→
θ , ω2

)
(3.5)

holds true or

∂

∂θi
F
(−→
θ , ω1

)
≥ ∂

∂θi
F
(−→
θ , ω2

)
if and only if F

(−→
θ , ω1

)
≤ F

(−→
θ , ω2

)
(3.6)

holds true, ∀ω1, ω2 ∈ Ω and ∀−→θ ∈ Θ. For some n ∈ N+ and θn−1 ∈ Θ, let Fn
(−→
θ n−1

)
be the Fn-measurable

random variable whose distribution is that of F
(−→
θ n−1

)
. Then, if we let

−→
θ 0 =

(
θ1

0, θ
2
0, ..., θ

m
0

)
for some

−→
θ 0 ∈ Θ

and

θin =

 θin−1 − γin−1sgnα

(
∂
∂θi

Fn

(−→
θ
)
|−→
θ =
−→
θ n−1

)
, if (3.5) holds true,

θin−1 − γin−1sgn1−α

(
∂
∂θi

Fn

(−→
θ
)
|−→
θ =
−→
θ n−1

)
, if (3.6) holds true,
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while the stochastic stepsizes γin ≥ 0 satisfy

∞∑
n=0

γin =∞ a.s.

and

∞∑
n=0

(
γin
)2
<∞ a.s,

∀1 ≤ i ≤ m, then

lim
n→∞

−→
θ n

a.s.
=
−→
θ α.

where

−→
θ α = argmin

−→
θ ∈Θ

Qα F
(−→
θ
)
.

3.3. Initialization and the Scaling of Stepsizes. We have shown that the algorithm for finding

some quantile of a random variable and optimizing some quantile of a random function converges as long

as the stepsize γn ≥ 0 satisfies (3.3) and (3.4). Extensive study on various stepsizes for optimizing the

expectation of a random function has been done. A comprehensive review of the literature can be found in

[9] and [28]. The typical approach for finding the optimal stepsizes in the case of optimizing expectations is

as follows. Suppose (Xi)1≤i≤n are i.i.d random variables with finite variance and we want to find the best

stepsizes
(
γi−1

)
1≤i≤n that gives the best estimate for the E [Xi] . Then, the mean-squared error

min
γ0,...,γn

E

(
n∑
i=1

γi−1Xi − E [Xi]

)2

is minimized when γn−1 = 1
n , ∀n. When (Xi)1≤i≤n are not i.i.d, different stepsizes can give better results.

However, when computing quantiles using asymmetric signum functions, it is diffi cult to determine what

the optimal stepsizes should be even for the i.i.d case because it is unclear what we should try to minimize.

We cannot minimize the expectation or variance in a heavy-tailed environment. Thus, instead of trying

to identify stepsizes that are optimal in some sense, we present an ad-hoc method for practical use. Let

(Xi)1≤i≤n be i.i.d random variables and assume we want to compute some α-quantile. However, suppose

the α-quantile of Xi is 106, for example. Then, if we use the following algorithm

Yn = Yn−1 − γn−1sgnα (Yn−1 −Xn) ,

with Y0 = 0 and γn−1 = 1
n , it will take prohibitively long for the algorithm to give us a reasonable estimate.

Thus, finding a reasonable initialization point Y0 and stepsizes γn−1 is critical. We propose initially taking
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sample realizations (Xi)1≤i≤k for some small k and sorting it in increasing order and pick the kα
th smallest

number and let it be Y0. Next, we let

γn−1 :=
σ

n
(3.7)

where

σ :=

(
.75-quantile of the set (Xi)1≤i≤k

)
−
(
.25-quantile of the set (Xi)1≤i≤k

)
2

is a scaling factor.

For the quantile optimization problem, first pick (θm)1≤m≤M evenly dividing the compact space Θ for

some small M. For each θm, we can generate (Fi (θm))1≤i≤k to find an approximation to the α-quantile of

F (θm) . Then, we let our initialization point θ0 be the one that gives the minimum α-quantile. That is,

initialization requires generatingM×k samples. Next, we let the stepsize to be given by equation (3.7) where

we replace Xi with Fi (θ0) . When optimizing expectations using the standard Robbins-Monro algorithm,

the scaling factor has to strike a balance between the units of θ ∈ Θ and the scale of the stochastic gradient,

which can be highly volatile, ranging between large negative values and large positive values. However, when

optimizing the quantile using our algorithm, the stepsizes have to be scaled based on θ alone. If we have a

rough idea of where the optimal θ may fall, we can scale the stepsize accordingly.

3.4. Newsvendor Problem. To develop an understanding of the properties of the algorithm, we begin

by illustrating it in the context of a simple newsvendor problem ([26]). Given a random demand D ∈ R+,

we usually want to compute the optimal stocking quantity θ ∈ R+ that maximizes the expected profit

G (θ) := E [pmin {θ,D}]− cθ

where p > 0 is the unit price, c > 0 is the unit cost, and p > c. For this simple problem, the optimal solution

θ∗ = Q p−c
p
D

is the p−cp -quantile of the random variableD, which can be computed using the algorithm shown in section §2.

However, instead of maximizing the expected profit, suppose a manager wants to maximize some α-quantile

of the profit

qα := Qα [pmin {θ,D} − cθ] .

This is equivalent to minimizing

q1−α := Q1−α [cθ − pmin {θ,D}] .
13



Let Ω be the set of all possible outcomes. For each ω ∈ Ω, let D (ω) be the sample realization of the demand

and denote

F (θ, ω) : = cθ − pmin {θ,D (ω)}

=

 θ (c− p) , if θ ≤ D (ω) ,

cθ − pD (ω) , if θ > D (ω) .

Then,

∂

∂θ
F (θ, ω) =

 c− p, if θ ≤ D (ω) ,

c, if θ > D (ω) .

Next, ∀ω1, ω2 ∈ Ω and ∀θ ∈ R+, we know that F (θ, ω1) ≤ F (θ, ω2) if and only if D (ω1) ≥ D (ω2) , which

again is true if and only if

∂

∂θ
F (θ, ω1) ≤ ∂

∂θ
F (θ, ω2) .

Let (Dn)n≥1 be i.i.d random variables. If we let θ0 = 0 and

θn = θn−1 −
1

n
sgnα (F ′n (θn−1))

=

 θn−1 + α
n , if θn−1 ≤ Dn

θn−1 − 1−α
n , if θn−1 > Dn

(3.8)

where Dn is Fn-measurable, then

lim
n→∞

θn
a.s.
= argmax

θ∈R+
Qα [pmin {θ,D} − cθ] ,

from Theorem 3.3. This implies

argmax
θ∈R+

Qα [pmin {θ,D} − cθ] = QαD.

For illustration, suppose p = 10, c = 1, and (Dn)n≥1 is i.i.d with pareto distribution whose tail index is

1/2:

P [Dn ≤ y] =

 1−
(

1
y

)1/2

, if y ≥ 1

0, if y < 1

for all n ≥ 1. For given θ ≥ 1, the expected profit is

E [pmin {θ,Dn}]− cθ = E [10 min {θ,Dn}]− θ

= 5

θ∫
y=1

y−1/2dy + 10θP [Dn > θ]− θ

= 10y1/2|θy=1 + 10θ1/2 − θ

= 20θ1/2 − 10− θ.
14



Then, we obtain a maximum expected profit of 90 if

θ∗ = Q p−c
p
Dn = Q 9

10
Dn = 100.

However, while θ∗ = 100 maximizes the expected profit, the risk that we lose a lot of money is very high.

For our newsvendor example, the probability that we lose at least $50 while following our optimal policy is

given by

P [pmin {θ∗, Dn} − cθ∗ ≤ −50] = P [10 min {100, Dn} ≤ 50] = P [D ≤ 5] = 1−
(

1

5

)1/2

≈ .55.

A policy that has a 55% chance of losing 50% or more of the initial investment of 100 is a disastrous policy

even if the expected return on investment is 90%. In a heavy-tailed environment, focusing on the expected

profit leads one to take on imprudent risks. The above policy has only a 30% chance of making a profit of

10% return or more. Instead of trying to maximize the expectation, suppose we want to maximize some

quantile. Since

argmax
θ∈R+

Qα [pmin {θ,Dn} − cθ] = QαDn =
1

(1− α)
2 ,

we maximize the median profit if θ∗ = 4. Then, the median profit is 36 while the expected profit is 26 and

the minimum amount of profit we can make is 6. That is, we have a 100% chance of making more than 150%

profit on the initial investment and our expected return on investment is 650%. The median return on our

investment is 900%. Again, when θ∗ = 4, we have a 50% chance of making a profit of 36 or more, while we

only have a 30% chance of making a profit of 10 or more when θ∗ = 100. In fact, θ∗ = 100 maximizes the

0.9-quantile of the profit. This example illustrates that it is not always reasonable to try to maximize the

expectation even when we can compute the expectation. The merit of the more conservative policy derived

from quantile optimization become even more conspicuous if we conduct independent experiments multiple

times and observe what happens to the cumulative profit. Let

Ui = 10 min {100, Di} − 100

be the profit of a business that follows the expectation-maximizing policy (θ∗ = 100) at the ith iteration.

Let

Vn =

n∑
i=1

Ui

be the cumulative profit of a business after the nth iteration. Left plot on the Figure 3.1 shows ten different

sample paths of Vn as well as their average.
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Fig. 3.1. Cumulative profit obtained by following the expectation-maximizing policy (left) and by following the median-

maximizing policy (right), for ten sample paths

Next, let

Xi = 10 min {4, Di} − 4

be the profit of a business that follows the median-maximizing policy (θ∗ = 4) at the ith iteration. Let

Yn =

n∑
i=1

Xi

be the cumulative profit. Right plot on the Figure 3.1 shows several different sample paths following the

median-maximization policy. By comparing the two plots, we can see that while Vn grows a lot more faster

than Yn and thus much more profitable on average, it is much more volatile than Yn. We can observe how

risky the expectation-maximizing policy can be; one sample path of Vn reaches below -$700 after the 11th

iteration, implying that the business would have gone bankrupt if it did not have initial capital in excess of

$600.

For the above example, we happened to know the closed-form expression for the quantiles, but there

are many applications where we do not have a formula in a closed-form. Often, we do not even know which

distribution we are sampling from. In such cases, we must rely on the algorithm (3.8). Figure 3.2 shows the

convergence of the algorithm (3.8) for α = 0.5, 0.684, and 0.8, where θn → 4, 10, and 25, respectively. The

horizontal axis is shown in the logarithmic scale. Table 3.1 shows the expected profit and the probability

of loss for different quantiles.
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Fig. 3.2. Convergence of θn when α = 0.5, 0.684, and 0.8

θ∗
Expected

Profit

Probability of

Loss

α = 0.5 4 36 0

α = 0.684 10 43.2 0

α = 0.8 25 65 0.37

α = 0.9 100 90 0.68
Table 3.1

Optimizing the quantile of the profit for the newsvendor problem

4. Trading Electricity in the Presence of Storage. Trading on the electricity spot market in-

troduces the challenge of dealing with spot prices which are well-known to be heavy tailed ([2],[4],[8]). In

this section, we show how quantile optimization can be used to derive a trading strategy in the presence

of storage. At each time t, we sign a contract and determine whether to buy or sell electricity during the

time interval [t, t+ 1). We propose a trading strategy and a performance metric that can be assumed to be

approximately i.i.d, thus allowing us to apply our quantile optimization algorithm. We use electricity spot

market price data from Ercot and PJM West Hub. Ercot is a utility that covers most of Texas. PJM West
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covers the Chicago metropolitan area. Ercot and PJM represent competitive electricity markets where the

price is settled by the market based on the supply and the demand in real time. The electricity price in

Ercot is particularly volatile because of the significant role wind energy plays in the market. While demand

for electricity is always random, reliance on intermittent energy such as wind or solar makes the supply side

of the equation random as well, thus making a large mismatch between supply and demand more likely,

resulting in violent price swings.

4.1. Model. Throughout this section, we assume the amount of electricity we can deliver to the market

by discharging our storage for a one hour period is one megawatt-hour. We assume that the round-trip

effi ciency of our storage is 0 < ρ < 1. ρ is between .65 and .80 for most of the commercially available storage

devices [33]. We must import 1/ρ megawatt-hours of electricity when charging our storage device for every

megawatt-hour of energy that we want to release. Throughout this section, we assume it takes 8 hours to

fully charge or discharge our storage device. Thus, our storage capacity is 8 megawatt-hours. Moreover,

we assume that our storage capacity is suffi ciently small compared to the overall market so that we can

always discharge our storage and sell one-megawatt-hour of electricity to the market and we can always buy

one-megawatt-hour of electricity and charge our storage if we choose to do so.

State Variables

Let t ∈ N+ be a discrete time index corresponding to the decision epoch.

Rt = discretized storage level at time t. Rt ∈ {0, 1, 2, ..., 8} ,∀t. One unit of storage corresponds to one

megawatt-hour of energy.

pt = price of electricity per megawatt-hour traded during the time interval [t, t+ 1) ,∀t.

When we discharge our storage one unit to sell one megawatt-hour of electricity, we earn pt. When we

buy electricity to charge our storage, we are buying 1/ρ megawatt-hour of electricity, thus we have to pay

pt/ρ.

ht = the electricity price history over the last 99 hours = (pt′)t−99≤t′≤t . The history ht is needed to

compute the quantile of the price process.

St = (Rt, ht) = state of the system at time t.

Decision (Action) Variable

xt = decision that tells us to discharge (sell), hold, or charge (buy) our storage at time t. xt ∈ X (Rt)

where

X (Rt) =


{0, 1} , if Rt = 0,

{−1, 0, 1} , if 0 < Rt < 8,

{−1, 0} , if Rt = 8,
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is the feasible set for the decision variable. xt = −1 indicates discharge, xt = 0 indicates hold, and xt = 1

indicates charge.

Exogenous Process

p̂t = pt − pt−1 = random variable that captures the evolution of the price process (pt)t≥0.

Let Ω be the set of all possible outcomes and let F be a σ-algebra on the set, with filtrations Ft generated

by the information given up to time t :

Ft = σ (S0, x0, p̂1, S1, x1, p̂2, S2, x2, ..., p̂t, St, xt) .

P is the probability measure on the measure space (Ω,F) . We have defined the state of our system at time

t as all variables that are Ft-measurable and needed to compute our decision at time t.

Storage Transition Function

Rt+1 = Rt + xt. (4.1)

If xt = 1, we import electricity from the market and store it with some conversion factor ρ. That is, we

purchase 1/ρ megawatt-hours of electricity from the market, but it only fills up one megawatt-hour worth

of electricity in our storage due to the conversion loss. If xt = −1, the potential energy in the storage is

converted into electricity with a conversion factor of 1, and sold to the market.

4.2. Electricity Price Behavior. At time t, let p(i)
t denote the order statistics of the past hundred

hours of data (pt′)t−99≤t′≤t sorted in increasing order:

p
(1)
t ≤ p

(2)
t ≤ ... ≤ p

(100)
t .

Then, let

qt := min
{
b ∈ {1, 2, ..., 100} : p

(b)
t ≥ pt

}
(4.2)

be the index of pt in the order statistics. For the hourly electricity spot market price from Texas Ercot and

PJM West Hub,

P [qt ≤ b] ≈
b

100
, ∀b ∈ {1, 2, ..., 100} . (4.3)

Next, Table 4.1 shows the behavior of the electricity price for Texas Ercot. One can see that for lower

values of qt, the probability that the price will increase grows, and vice versa. The results are similar for

prices for the PJM West hub, as shown in Table 4.2. This is because we may assume that the electricity
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b = 10 20 30 40 50 60 70 80 90

P
[
pt+1 ≥ 1

0.7pt | qt ≤ b
]

= .41 .30 .24 .20 .17 .15 .14 .13 .12

P
[
pt+1 ≥ 1

0.75pt | qt ≤ b
]

= .44 .33 .27 .23 .20 .18 .16 .15 .14

P
[
pt+1 ≥ 1

0.8pt | qt ≤ b
]

= .47 .37 .32 .28 .25 .22 .21 .19 .18

P
[
pt+1 ≥ 1

0.9pt | qt ≤ b
]

= .55 .47 .44 .40 .38 .35 .33 .32 .30

P [pt+1 ≤ pt | qt > b] = .52 .53 .54 .56 .57 .59 .62 .66 .74
Table 4.1

Dependence of electricity price behavior on qt for Texas Ercot

b = 10 20 30 40 50 60 70 80 90

P
[
pt+1 ≥ 1

0.7pt | qt ≤ b
]

= .173 .132 .121 .119 .115 .110 .106 .102 .098

P
[
pt+1 ≥ 1

0.75pt | qt ≤ b
]

= .211 .174 .153 .151 .148 .144 .139 .134 .129

P
[
pt+1 ≥ 1

0.8pt | qt ≤ b
]

= .249 .205 .193 .191 .190 .186 .181 .176 .171

P
[
pt+1 ≥ 1

0.9pt | qt ≤ b
]

= .393 .339 .323 .320 .317 .310 .304 .297 .289

P [pt+1 ≤ pt | qt > b] = .52 .54 .55 .56 .58 .60 .65 .72 .83
Table 4.2

Dependence of electricity price behavior on qt for PJM West Hub

price is median-reverting, as shown in [16]. According to [16], the electricity price is heavy-tailed and non-

stationary so that the empirical mean cannot be used to characterize the behavior of the price. Instead of

using standard Gaussian jump-diffusion processes with mean-reversion, [16] shows that the price behavior

is more appropriately modelled as being median-reverting with an underlying heavy-tailed process. Thus,

if the current price level is at the higher end of the prices realized in the past one hundred hours, we know

there is a high probability that the price will go down due to the median-reversion, and vice versa.

4.3. A Robust Trading Policy. We believe that a robust policy for trading electricity is a policy

whose performance is consistent across different sample paths of the price process. The policy optimized

based on past data should remain optimal going into the future. In other words, if we have a parameterized

policy, the parameters that were optimal for year 2008 and the parameters that were optimal for year 2009

should be almost identical. This implies that by the end of the year 2008, we would know what policy we

will use to trade in year 2009 and we would know that the policy will perform well. Our goal is to devise a

robust trading policy that utilizes the fact that electricity price is median-reverting, as shown in the previous

section.
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In prior research, we have shown that the electricity price is heavy-tailed [16], which implies that our

trading policy should only depend on zeroth-order statistics, i.e., the quantile function. Since we do not

want to have negative exposure to heavy-tailed price movements, we must always buy low and sell high,

which is possible because the price process is median-reverting.

In the previous section, we have shown that we can ascertain how high or low the current price level is

by comparing it to the percentile constructed from the order statistics. Given a set of potential quantiles

1 ≤ θL ≤ 50 and 51 ≤ θH ≤ 100, our policy is

Xπ
t (St) =


1, if Rt < 8 and qt ≤ θL

−1, if Rt > 0 and qt ≥ θH

0, otherwise

. (4.4)

where

π :=
(
θL, θH

)
.

θL determines when to buy electricity. Of course, the lower the threshold θL, the higher the probability that

the price will increase by more than a factor of 1/ρ, as shown in Table 4.1 and Table 4.2. On the other

hand, for smaller values of θL, we will buy electricity less frequently and thus we will have less opportunity

to make money, as implied from (4.3). Similarly, the higher the threshold θH , the higher the probability

that the price will decrease, but we will be able to sell electricity less frequently, reducing the opportunities

to make money.

Proposition 4.1. Given Ft, define

Ft+1

(
θL, θH , ω

)
=


θL ·

(
pt+1 − 1

ρpt

)
(ω) , if qt ≤ θLt

0, if θL < qt < θH(
100− θH

)
· (pt − pt+1) (ω) , if θH ≤ qt

(4.5)

to be our objective function. Note that

P
[
qt ≤ θL

]
≈ θL

100
and P

[
qt ≥ θH

]
≈ 100− θH

100
,

as shown in (4.3). Then, θL satisfies the monotonicity condition (3.1) while θH satisfies (3.2).

Proof: Let Ft+1

(
θL, θH

)
denote the random variable of which specific sample realization is

Ft+1

(
θL, θH , ω

)
. Then, for ∀ω ∈ Ω, Ft+1

(
θL, θH , ω

)
is a concave function of

(
θL, θH

)
.When θL ≥ qt,

we buy electricity and hence we would make a profit (in a mark-to-market sense) if pt+1− 1
ρpt ≥ 0 and have

a loss if pt+1 − 1
ρpt < 0. When θH ≤ qt, we would have correctly sold electricity if pt+1 − pt ≤ 0, and incur a

loss in opportunity cost if pt+1 − pt ≥ 0.
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Next, we know that

∂

∂θL
Ft+1

(
θL, θH , ω

)
=


(
pt+1 − 1

ρpt

)
(ω) , if qt ≤ θLt ,

0, else.

and

∂

∂θH
Ft+1

(
θL, θH , ω

)
=

 (pt+1 − pt) (ω) , if θH ≤ qt,

0, else.

For some ω1, ω2 ∈ Ω,

Ft+1

(
θL, θH , ω1

)
≤ Ft+1

(
θL, θH , ω2

)
if and only if one of the following three conditions hold:

1. qt ≤ θL and
(
pt+1 − 1

ρpt

) (
ω1
)
≤
(
pt+1 − 1

ρpt

) (
ω2
)

2. θL < qt < θH

3. θH ≤ qt and (pt+1 − pt)
(
ω1
)
≤ (pt+1 − pt)

(
ω2
)
,

These conditions hold true if and only if

∂

∂θL
Ft+1

(
θL, θH , ω1

)
≤ ∂

∂θL
Ft+1

(
θL, θH , ω2

)
and

∂

∂θH
Ft+1

(
θL, θH , ω1

)
≥ ∂

∂θH
Ft+1

(
θL, θH , ω2

)
.

Therefore, θL satisfies (3.1) while θH satisfies (3.2). �

Then, our goal is to compute
(
θL∗, θH∗

)
such that(

θL∗, θH∗
)

:= argmax
1≤θL≤50,50<θH<100

Qα Ft+1

(
θL, θH

)
,

which can be achieved through the following algorithm

θLt =

 θLt−1 − 1
t (1− α) , if qt−1 ≤ θLt−1 and pt <

1
ρpt−1

θLt−1 + 1
tα, else

(4.6)

and

θHt =

 θHt−1 − 1
tα, if θHt−1 ≤ qt−1 and pt < pt−1

θHt−1 + 1
t (1− α) , else

. (4.7)

While we have proved that the above algorithm will converge if
(
FLt
)
t≥1

are i.i.d,
(
FLt
)
t≥1

computed

from real price data is not likely to be i.i.d. Real data is almost never i.i.d, and we must numerically test if

the above algorithm shows a reasonable path of convergence towards a reasonable answer.
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Fig. 4.1. θLt computed from (4.6) as t→∞, for α = 0.5 and ρ = 0.7

α = 0.3 α = 0.4 α = 0.5

ρ = 0.7 36.2 43.6 49.4

ρ = 0.75 37.1 44.6 50.5

ρ = 0.8 39.0 46.3 51.6
Table 4.3

θL computed from PJM West Hub Data

Figure 4.1 shows the rate of convergence for the algorithm (4.6) for the Texas Ercot data. The

horizontal axis uses the logarithmic scale. We can see that the algorithm converges in about one thousand

iterations. Table 4.3 shows θL computed from the above algorithm using PJM West hub price data for

different quantile parameters α and round-trip conversion factor ρ. The lower the value of ρ, the greater

the conversion loss, and hence our decision to buy must be more conservative, leading to a lower θL. And

of course, a larger value of α leads to more risk taking and hence higher θL. We show results for α ≤ 0.5

because for larger α, we end up with policies that take too much risk and buy electricity too readily and

end up not making a reasonable amount of profit. Similarly, Table 4.4 shows θL computed from the above

algorithm using Texas Ercot price data. Next, Table 4.5 shows θH computed from PJM West and Texas

Ercot data for some α ≤ 0.6. For α > 0.6, we end up with policies that take too much risk and sell our

electricity too easily and end up not making a reasonable amount of profit.
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α = 0.3 α = 0.4 α = 0.5

ρ = 0.7 32.6 39.6 46.0

ρ = 0.75 33.7 40.8 47.2

ρ = 0.8 35.5 42.2 49.0
Table 4.4

θL computed from Texas Ercot Data

α = 0.3 α = 0.4 α = 0.5 α = 0.6

PJM West 87.9 75.2 62.4 50.1

Texas Ercot 85.4 72.1 59.7 45.5
Table 4.5

θH computed from Texas Ercot and PJM West Data

5. Maximum Profit Trading Policy. In the previous section, we have shown how to compute θL

and θH based on our risk-appetite determined by α. If we want to find out exactly how much risk we would

have had to accept in the past to maximize our profit, we can first find θL and θH that maximizes the

cumulative profit

C
(
θL, θH

)
:= −

T∑
t=0

ptxt,

through deterministic search. Then, α that is closest to producing the above to θL and θH tells us what

the necessary risk-appetite should have been for us to have maximized our profit. Assuming ρ = .75, for

year 2006, when the median price of the year was $47.1 in Texas Ercot, θL = 39 and θH = 71 would have

given us the highest profit of $7.6 per hour, and these correspond to α ≈ 0.36. In other words, we should

have been fairly conservative in controlling the probability of losses in order to maximize our profit. This is

because the heavy-tailed spikes in the electricity prices have a disproportionate impact on profits and losses.

Instead of trading often and trying to make a profit as often as possible, we must be patient and wait long

enough for large price deviations to occur. These large deviations actually occur often enough so that we

can eventually get a good price for buying and selling electricity at a good profit. For year 2007, when the

median price of the year was $48.3, θL = 36 and θH = 68 would have been optimal, giving us a profit of

$7.2 per hour. This again corresponds to about α ≈ 0.36. Thus, even though the electricity price is highly

volatile and non-stationary with wildly differing price distributions over time, the risk-appetite that would

have been optimal for year 2006 was still optimal for year 2007. Results are similar for year 2008 and 2009

and for the data from PJM West hub. The trading policy based on optimizing the quantiles is truly robust
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year median price optimal (θL, θH) optimal profit last year’s (θL, θH) profit

2007 $48.3 (36, 68) $7.2/hour (39, 71) $7.1/hour

2008 $48.7 (39, 68) $17.0/hour (36, 68) $16.8/hour

2009 $23.5 (39, 69) $6.3/hour (39, 68) $6.2/hour
Table 5.1

Performance of quantile based trading policy in Ercot

- it is not sensitive to the particular sample paths of data. This is because the policy captures the core

characteristics of the data. The hourly electricity spot price is median-reverting and heavy-tailed.

Table 5.1 shows the performance of the above trading policy from year 2007 to 2009 in Ercot. We can

see that the difference between the profit we can make using the optimal parameters
(
θL, θH

)
and the profit

we can make using the parameters computed from the previous year’s data, is negligible, implying that the

quantile-based trading policy is robust.

6. Conclusion. In this paper, we have presented a simple, provably convergent algorithm for optimizing

the quantile of a random function. The algorithm follows the spirit of Robbins and Monro [31], and does

not require us to store and sort the data. In the real world, we must often deal with non-stationary and

heavy-tailed data. In that case, a policy based on higher-order statistics such as the expectation and the

variance can be unstable at best or enormously risky, as we have shown with our example of newsvendor

problem. We also showed that in the electricity spot market, a simple trading policy based on quantile

optimization is robust and generate good profit.
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