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We consider a Bayesian ranking and selection problem with independent normal rewards and a correlated
multivariate normal belief on the mean values of these rewards. Because this formulation of the rank-

ing and selection problem models dependence between alternatives’ mean values, algorithms may use this
dependence to perform efficiently even when the number of alternatives is very large. We propose a fully
sequential sampling policy called the knowledge-gradient policy, which is provably optimal in some special
cases and has bounded suboptimality in all others. We then demonstrate how this policy may be applied to
efficiently maximize a continuous function on a continuous domain while constrained to a fixed number of
noisy measurements.
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1. Introduction
Consider the following problem: We are confronted
with a collection of alternatives and asked to choose
one from among them. It may be convenient to think
of these alternatives as possible configurations of an
assembly line, different temperature settings for a
chemical production process, or different drugs for
treating a disease. The chosen alternative will return
a reward according to its merit, but these rewards are
unknown, and so it is unclear which alternative to
choose. Before choosing, however, we have the oppor-
tunity to measure some of the alternatives. As mea-
surements have a cost, we are only allowed a limited
number, and our strategy should allocate these mea-
surements across the alternatives in such a way as
to maximize the information gained and the reward
obtained. Measurements are typically noisy, and so
a single alternative may merit more than one mea-
surement. This problem is known as the ranking and
selection (R&S) problem.
The R&S problem is ubiquitous in application. Con-

sider the following short list of examples chosen from
the long list that could be enumerated:
• We wish to choose the dosage level for a drug

with the median aggregate response in patients. This
dosage level is desirable because it achieves the pos-
itive effect of the drug while minimizing side effects.
Similarly, we might wish to find the dosage level
maximizing some utility function that is increasing
in positive drug response and decreasing in negative
drug response. The set of dosage levels from which to

choose is finite because only finitely many amounts
of a drug can be easily distributed and administered
to patients.
• We wish to select the fastest path through a net-

work subject to traffic delays by sampling travel times
through it. This network might be a data network
through which we would like to transmit packets of
data, or a network of roads through which we would
like to route vehicles.
• In the early stages of drug discovery, pharmaceu-

tical companies often perform robotically automated
tests in which chemical compounds are screened for
effectiveness against a particular disease. These tests,
in which surviving diseased and nondiseased cells
are counted after exposure to a compound, are per-
formed on a large number of chemical compounds
from which a small number of candidates will be
selected.
• We wish to measure heat or pollution at discrete

points in a continuous medium to ascertain which of
the finitely many discrete locations have the highest
levels.
Common to these examples is the characteristic of

dependence, by which we mean that when we mea-
sure one alternative, we learn something about the
others. In the drug dosage example, drug response is
generally increasing in dosage. In the network exam-
ple, each congested link slows travel times along all
paths that share it. In the drug development exam-
ple, chemically related compounds often have simi-
lar effects. In the pollution example, pollution levels
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at nearby locations are correlated. In this article,
we introduce a fully sequential sampling technique
called the correlated knowledge-gradient (KG) policy,
which takes advantage of this dependence in the prior
belief to improve sampling efficiency.
Although each of the examples has correlation in

the belief, we will assume that any measurement errors
are independent. This may require additional assump-
tions in some of the examples. For example, in the
continuous medium and network path examples, we
assume that measurements are taken sufficiently far
apart from each other in time that measurement noise
can be assumed independent. In the drug discovery
example, we assume that there are no confounding
factors such as a time-varying laboratory temperature
that would induce correlated measurement noise.
The R&S and experimental design literature has

devoted the most attention to our problem class
(see Bechhofer et al. 1995 for a comprehensive treat-
ment of R&S, and Fu 2002 and Swisher et al. 2003
for a review of R&S within the simulation com-
munity). Within this literature, the techniques that
most successfully exploit dependence are variance-
reduction techniques for simulation (Law and Kelton
2000), which include control variates (Nelson and
Staum 2006) and common random numbers (Kim and
Nelson 2001). Although both variance-reduction tech-
niques and the correlated KG policy we describe here
exploit dependence to improve efficiency, the depen-
dencies they exploit are different in kind. Variance-
reduction techniques use dependence in the noise,
while we use dependence between the true values of
different alternatives under a Bayesian prior. Many
applications admit one form of dependence without
admitting the other. Other applications admit both,
and although it is possible to exploit them both simul-
taneously, we do not treat that case here.
The use of a Bayesian framework for R&S is

well established, beginning with Raiffa and Schlaifer
(1968), who consider deterministic designs for max-
imizing the expected value of the chosen alterna-
tive under an independent normally distributed prior.
Several approximate sequential and two-stage poli-
cies exist for maximizing a quality measure applied
to the chosen alternative, beginning with Gupta and
Miescke (1996), and continuing with two distinct fam-
ilies of policies: the optimal computing budget allo-
cation (OCBA) (Chen et al. 1996, 2000; He et al. 2007)
and value of information procedures (VIP) (Chick and
Inoue 2001b, Chick et al. 2007). Computational exper-
iments (Inoue et al. 1999, Branke et al. 2007) and the-
oretical results (Frazier et al. 2008) demonstrate that
these policies perform very well, and their sequential
nature allows them to achieve even greater efficiency
than could a deterministic or two-staged policy (Chen
et al. 2006).

Although OCBA- and VIP-based policies for ex-
ploiting common random numbers have also been
introduced in Chick and Inoue (2001a) and Fu et al.
(2007), to our knowledge, no work has been done
within the R&S literature to exploit the dependence
inherent in our prior belief about the values of related
alternatives. For example, in the drug discovery exam-
ple described above, we believe that similar chemi-
cals are likely to have similar effects. Our prior should
embody this belief.
Contrasting their rarity within R&S, correlated

Bayesian priors have appeared frequently within
Bayesian global optimization, modeling belief in the
similarity of continuous functions at nearby points.
Bayesian global optimization, which began with Kush-
ner (1964) and was recently reviewed in Sasena (2002)
and Kleijnen (2009), uses a Gaussian process prior to
model belief about an unknown function, and then
chooses experiments to most efficiently optimize that
function. Algorithms often evaluate the desirability
of potential measurements via a one-step Bayesian
analysis and then choose to perform a measurement
whose desirability is maximal, or nearly maximal.
We will use a similar approach but for the general
class of multivariate normal priors on a finite number
of alternatives.
In this article, we adopt a theoretical framework and

one-step analysis introduced for a one-dimensional
continuous domain with Wiener process prior by
Mockus (1972) (see Mockus et al. 1978 for a description
in English), and for the finite-domain discrete inde-
pendent normal means case by Gupta and Miescke
(1996). The independent normal means case was ana-
lyzed further by Frazier et al. (2008) and extended
to the unknown variance case by Chick et al. (2007).
In the one-step analysis used, one computes the sam-
pling decision that would be optimal if one were
allowed to take only one additional sample, and then
samples according to this decision in general. We
call this the “knowledge-gradient” approach, and the
resulting sampling policy the “knowledge-gradient
policy.” The resulting policy has also been called a
Bayes one-step policy by Mockus et al. (1978) and a
myopic policy by Chick et al. (2007).
Such policies operate by greedily acquiring as much

information as possible with each measurement, and
they work well to the extent to which this greed does
not interfere with information acquisition over longer
timescales. One may also compare KG policies for
R&S to coordinate ascent methods for optimization,
since KG policies choose the measurement that would
be best under the assumption that no other alterna-
tives will be measured, and coordinate optimization
methods optimize each coordinate under the assump-
tion that no other coordinates will be optimized.
Both KG and coordinate optimization methods work
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well when the immediate benefits realized by their
decisions are in harmony with long-term progress.
Although the KG approach does not work well in
all information-collection problems, and should be
applied with care (see Chen et al. 2006 for a perfect
information R&S problem for which a myopic policy
required modification to perform well), it has been
successfully applied to at least two other R&S prob-
lems (Frazier et al. 2008, Frazier and Powell 2008) and
promises to produce a class of principled yet flexible
algorithms for information collection.
Whereas previous knowledge-gradient, Bayes one-

step, and myopic approaches assumed either an inde-
pendent normal or one-dimensional Wiener process
prior on the alternatives’ true means, we assume a
general multivariate normal prior on a finite number
of alternatives. Different statistical models and priors
lead to different KG policies, and although the theo-
retical foundations leading to this KG policy and its
progenitors are similar, the resulting policies are quite
different. In comparison with the independent poli-
cies, the correlated KG policy is more computation-
ally intensive, requiring O�M2 log�M�� computations
to reach a sampling decision where M is the number
of alternatives; the independent policy requires only
O�M�, but the correlated KG policy often requires
dramatically fewer samples to achieve the same level
of accuracy. In comparison with the one-dimensional
Wiener process prior policy of Mockus (1972), the cor-
related KG policy is also more computationally inten-
sive, but can handle more general finite alternative
correlation structures, including but not limited to
other kinds of one- and multidimensional discretized
correlation structures.
We begin our discussion of the KG policy in detail

in §2 by making explicit the correlated prior and asso-
ciated model, and then, in §3, computing the KG pol-
icy that results from this prior. We then generalize
to the correlated normal case three theoretical results
that were first shown for the independent normal case
in Frazier et al. (2008): The KG policy is optimal by
construction when there is only one measurement left
to make; the KG policy is convergent, in the sense that
it always eventually discovers the best alternative if
allowed enough measurements; and the suboptimal-
ity of the KG policy is bounded in the finite-sample
case. Finally, in §4, we apply the correlated KG pol-
icy to the maximization of a random function in noisy
and noise-free environments, which is a problem pre-
viously considered by the Bayesian global optimiza-
tion literature. We compare the correlated KG policy
to two recent Bayesian global optimization methods,
efficient global optimization, or EGO (Jones et al.
1998), for use in the noise-free case, and sequential
kriging optimization, or SKO (Huang et al. 2006), for
use in the noisy case. We show that KG performs as

well or better than the other methods in almost every
situation tested, with a small improvement detected
in the noise-free (EGO) case and larger improvements
seen in the noisy (SKO) case.

2. Model
Suppose that we have a collection of M distinct alter-
natives, and that samples from alternative i are nor-
mally and independently distributed with unknown
mean �i and known variance �i. We will write �
to indicate the column vector ��1� 	 	 	 � �M�′. We will
further assume, in accordance with our Bayesian
approach, that our belief about � is distributed accord-
ing to a multivariate normal prior with mean vec-
tor 
0 and positive semidefinite covariance matrix �0,

�∼� �
0��0�	 (1)

Consider a sequence of N sampling decisions,
x0�x1� 	 	 	 � xN−1. The measurement decision xn selects
an alternative to sample at time n from the set
�1� 	 	 	 �M�. The measurement error �n+1 ∼ � �0��xn�
is independent conditionally on xn, and the resulting
sample observation is �yn+1 = �xn + �n+1. Conditioned
on � and xn, the sample has conditional distribution
�yn+1 ∼ � ��xn��xn�. Note that our assumption that the
errors �1� 	 	 	 � �N are independent differentiates our
model from one that would be used for common ran-
dom numbers. Instead, we introduce correlation by
allowing a nondiagonal covariance matrix, �0.
We may think of � as having been chosen randomly

at the initial time 0, unknown to the experimenter but
according to the prior distribution (1), and then fixed
for the duration of the sampling sequence. Through
sampling, the experimenter is given the opportunity
to better learn what value � has taken.
We define a filtration �� n� wherein � n is the

�-algebra generated by the samples observed by
time n and the identities of their originating alter-
natives. That is, � n is the �-algebra generated
by x0� �y1�x1� �y2� 	 	 	 � xn−1� �yn. We write Ɛn to indi-
cate Ɛ�· �� n�, the conditional expectation taken with
respect to � n, and then define 
n �= Ɛn��� and �n �=
Cov�� �� n�. Conditionally on � n, our posterior predic-
tive belief for � is multivariate normal with mean vec-
tor 
n and covariance matrix �n. Further discussion of
the way in which 
n and �n are obtained as functions
of 
n−1, �n−1, �yn, and xn−1 can be found in §2.1.
Intuitively we view the learning that occurs from

sampling as a narrowing of the conditional predic-
tive distribution � �
n��n� for �, and as the tendency
of 
n, the center of the predictive distribution for �,
to move toward � as n increases. In fact, we will later
see that, subject to certain conditions, 
n converges
to � almost surely as n increases to infinity.
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After exhausting the allotment of N opportunities
to sample, we will suppose that the experimenter will
be asked to choose one of the alternatives 1� 	 	 	 �M
and given a reward equal to the true mean �i∗ of
the chosen alternative i∗. We assume an experimenter
who desires maximizing expected reward, and such
a risk-neutral decision maker will choose the alterna-
tive with largest expected value according to the pos-
terior predictive distribution �∼� �
N ��N �. That is,
the experimenter will choose an alternative from
the set argmaxi 


N
i , attaining a corresponding con-

ditional expected reward maxi 
Ni . Note that a risk-
averse experimenter would penalize variance and
might make a different choice. We do not consider
risk aversion here.
We assume that the experimenter controls the ex-

perimental design, that is, the choice of measurement
decisions x0�x1� 	 	 	 � xN−1. We allow the experimenter
to make these decisions sequentially, in that xn is
allowed to depend upon samples observed by time n.
We write this requirement as xn ∈ � n. Note that we
have chosen our indexing so that random variables
measurable with respect to the filtration at time n are
indexed by an n in the superscript.
We define � to be the set of experimental designs,

or measurement policies, satisfying our sequential
requirement. That is, � �= ��x0� 	 	 	 � xN−1�� xn ∈ � n�.
We will often write � = �x0� 	 	 	 � xN−1� to be a generic
element of �, and we will write Ɛ� to indicate the
expectation taken when the measurement policy is
fixed to �. The goal of our experimenter is to choose
a measurement policy maximizing expected reward,
and this can be written as

sup
�∈�

Ɛ�
[
max
i

Ni

]
	 (2)

2.1. Updating Equations
Since the prior on � is multivariate normal and all
samples are normally distributed, each of the poste-
riors on � will be multivariate normal as well. After
each sample is observed, we may obtain a poste-
rior distribution on � as a function of xn, �yn+1, and
the prior distribution specified by 
n and �n. The
posterior distribution is specified by 
n+1 and �n+1;
so to understand the relationship between the poste-
rior and the prior, it is enough to write 
n+1 and �n+1

as functions of xn, �yn+1, 
n, and �n.
Temporarily supposing that our covariance matrix

�n is nonsingular, we may use Bayes’ law and com-
plete the square (see, e.g., Gelman et al. 2004) to write


n+1 =�n+1���n�−1
n+ ��xn�−1 �yn+1exn�� (3)

�n+1 = ���n�−1+ ��xn�−1exn�exn�′�−1� (4)

where ex is a column M-vector of 0s with a single 1
at index x, and ′ indicates matrix transposition. Note

that the new mean is found by a weighted sum of the
prior mean and the measurement value, where the
weighting is done according to the inverse variance.
Also note that �n+1 is measurable with respect to � n

rather than merely � n+1.
We may rewrite the formula (4) using the Sherman-

Woodbury matrix identity (see, e.g., Golub and
Van Loan 1996) to obtain a recursion for �n+1 that does
not require matrix inversion. We can then substitute
this new expression for �n+1 into (3) to obtain a new
recursion for 
n+1 as well. Taking x=xn temporarily
to simplify subscripts, the recursions obtained are


n+1 =
n+ �yn+1−
nx
�x +�nxx

�nex� (5)

�n+1 =�n− �
nexe

′
x�

n

�x +�nxx
	 (6)

The formulas (5) and (6) hold even when �n is pos-
itive semidefinite and not necessarily invertible, even
though the formulas (3) and (4) hold only when �n is
positive-definite.
We will now obtain a third version of the updating

equation for 
n+1, which will be useful later when
considering the pair �
n��n� as a stochastic process
in a dynamic programming context. Toward this end,
let us define a vector-valued function �� as

�����x� �= �ex√
�x +�xx

	 (7)

We will later write ��i���x� to indicate the component
e′i�����x� of the vector �����x�.
By noting that Var��yn+1−
n �� n�=Var��xn+�n+1 �� n�

= �xn + �nxnxn , and defining random variables �Zn�Nn=1
by Zn+1 �= ��yn+1 − 
n�/√Var��yn+1−
n �� n�, we can
rewrite (5) as


n+1 =
n+ ����n�xn�Zn+1	 (8)

The random variable Zn+1 is standard normal when
conditioned on � n, and so we can view �
n+1� as
a stochastic process with Gaussian increments given
by (8). This implies that, conditioned on � n, 
n+1 is
a Gaussian random vector with mean vector 
n and
covariance matrix ����n�xn������n�xn��′. The expres-
sion (8) will be useful when computing conditional
expectations of functions of 
n+1 conditioned on � n

because it will allow computing these expectations in
terms of the normal distribution.
We conclude this discussion by noting that the

update (6) for �n+1 may also be rewritten in terms of
�� by

�n+1=�n−����n�xn������n�xn��′ =�n−Cov�
n+1 �� n�	

This expression may be interpreted by thinking of
the covariance matrix �n as representing our “uncer-
tainty” about � at time n. The measurement xn and its
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result �yn+1 removes some of this uncertainty, and in
doing so alters our point estimate of � from 
n to 
n+1.
The quantity of uncertainty removed from �n, which
the expression shows is Cov�
n+1 �� n�, is equal to the
amount of uncertainty added to 
n.

2.2. Dynamic Programming Formulation
We will analyze this R&S problem within a dynamic
programming framework. We begin by defining our
state space. As a multivariate random variable, the
distribution of � under our belief at any point in
time n is completely described by its mean vector 
n

and its covariance matrix �n. Thus we define our state
space � to be the cross-product of �M , in which 
n

takes its values, and the space of positive semidefinite
matrices, in which �n takes its values. We also define
the random variable Sn �= �
n��n� and call it our state
at time n.
We now define a sequence of value functions �V n�n,

one for each time n. We define V n� � �→�,

V n�s� �= sup
�∈�

Ɛ�
[
max
i

Ni � Sn = s

]
for every s ∈�	

The terminal value function V N may be computed
directly from this definition by noting that maxi 
Ni
is � N -measurable, and thus the expectation does not
depend on �. The resulting expression is

V N �s�= max
x∈�1�			�M�


x for every s = �
��� ∈�	

The dynamic programming principle tells us that the
value function at any other time 0 ≤ n < N is given
recursively by

V n�s�= max
x∈�1�			�M�

Ɛ�V n+1�Sn+1� � Sn = s� xn = x�
for every s ∈�	 (9)

We define the Q-factors, Qn� �× �1� 	 	 	 �M� �→�, as

Qn�s�x� �= Ɛ�V n+1�Sn+1� � Sn = s� xn = x�
for every s ∈�	

We may think of Qn�s�x� as giving the value of
being in state s at time n, sampling from alterna-
tive x, and then behaving optimally afterward. For
a Markovian policy �, we denote by X��n� � �→
�1� 	 	 	 �M� the function that satisfies X��n�Sn� = xn
almost surely under �� , which is the probability mea-
sure induced by �, and call this function the decision
function for �. A policy is said to be stationary if there
exists a single function X�� � �→ �1� 	 	 	 �M� such that
X��Sn� = xn almost surely under �� . We define the
value of a measurement policy � ∈� as

V ��n�s� �= Ɛ��V N �SN � � Sn = s� for every s ∈�.

A policy � is said to be optimal if V n�s�= V ��n�s� for
every s ∈ � and n ≤ N . The dynamic programming
principle tells us that any policy �∗ whose measure-
ment decisions satisfy

X�
∗�n�s� ∈ argmax

x∈�1�			�M�
Qn�s� x�

for every s ∈�� n <N� and x ∈ �1� 	 	 	 �M�� (10)

is optimal.
In some cases, when discussing the effect of varying

the number N of measurements allowed, we make
the dependence on N explicit by using the notation
V 0�· "N� to denote the optimal value function at time
0 when the problem’s terminal time is N . Similarly,
V ��0�· "N� denotes the value function of policy � at
time 0 when the terminal time is N .

3. Knowledge Gradient
We define the KG policy �KG to be the stationary
policy that chooses its measurement decisions accord-
ing to

XKG�s�∈argmax
x

Ɛn

[
max
i

n+1i �Sn=s�xn=x

]
−max

i

ni �

(11)
with ties broken by choosing the alternative with the
smallest index. Note that maxi 
ni is the value that we
would receive were we to stop immediately, and so
�maxi 


n+1
i �− �maxi 
ni � is in some sense the incremen-

tal random value of the measurement made at time n.
Thinking of this incremental change as a gradient, we
give the policy described the name “knowledge gra-
dient” because it maximizes the expectation of this
gradient. This is the same general form of the knowl-
edge gradient that appears in Frazier et al. (2008) and
may be used together with an independent normal
prior to derive the �R1� 	 	 	 �R1� policy in Gupta and
Miescke (1996). It may also be used together with a
Wiener process prior to derive the one-step Bayes pol-
icy in Mockus et al. (1978).
Note that we write XKG rather than the more cum-

bersome X�KG . We will also write V KG�n rather than
V �

KG�n to indicate the value function for the KG policy
at time n. We immediately note the following remarks
concerning the one-step optimality of this policy.
Remark 1. When N = 1, the KG policy satisfies

condition (10) and is thus optimal.
Remark 2. Consider any stationary policy � and

suppose that it is optimal when N = 1. Then its deci-
sion function X� must satisfy (10) and hence must
also satisfy (11). The policy � is then the same as the
KG policy, except possibly in the way it breaks ties
in (11). In this sense, the KG policy is the only sta-
tionary myopically optimal policy.
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The KG policy (11) was calculated in Gupta and
Miescke (1996), and again more explicitly in Frazier
et al. (2008), under the assumption that �0 is diago-
nal. In this case the components of � are independent
under the prior and under all subsequent posteriors.
It was shown that in this case,

XKG�Sn� ∈ argmax
x

��x��n�x�f
(−�
nx −maxi �=x 
ni �

��x��n�x�
)

if �n is diagonal� (12)

where the function f is given by f �z� �= &�z�+ z'�z�,
with & as the normal probability density function
and ' as the normal cumulative distribution func-
tion. Furthermore, if �n is diagonal, then ��x��n�x�=
�nxx/

√
�x +�nxx.

In general, one may model a problem with a corre-
lated prior, i.e., one in which �0 is not diagonal, but
then adjust the model by removing all nondiagonal
components, keeping only diag��0�. This allows us to
use the formula (12), which we will see is easier to
compute than the general case (11). We will also see,
however, that the additional computational complex-
ity incurred by computing (11) for nondiagonal �n is
rewarded by increased per-measurement efficiency.

3.1. Computation
We may use our knowledge of the multivariate nor-
mal distribution to compute an explicit formula for
the KG policy’s measurement decisions in the general
case that �n is not diagonal. The definition of the KG
policy (11) may be rewritten as

XKG�Sn�

= argmax
x

Ɛ
[
max
i

ni +��i��n�xn�Zn+1 �Sn�xn=x

]
−max

i

ni

= argmax
x

h�
n� ����n�x��� (13)

where h� �M × �M → � is defined by h�a� b� =
Ɛ�maxi ai+biZ�−maxi ai, where a and b are any deter-
ministic vectors, and Z is a one-dimensional standard
normal random variable. We will provide an algo-
rithm for computing this function h as a generic func-
tion of any vectors a and b. This will allow us to
compute the KG policy at any time n by substituting

n for a and ����n�x� for b with each possible choice
of x ∈ �1� 	 	 	 �M�, and then choosing the x that makes
h�
n� ����n�x�� largest.
Consider the function h with generic vector argu-

ments a and b, and note that h�a� b� does not depend
on the ordering of the components, so that h�ã� b̃� =
h�a� b�, where i and j are two alternatives, ã is a but
with the components ai and aj flipped, and b̃ is b but
with the components bi and bj flipped. Thus we may
assume without loss of generality that the alternatives

are ordered so that b1 ≤ b2 ≤ · · · ≤ bM . Furthermore,
if there are two alternatives i, j with bi = bj and ai ≤ aj ,
h�a� b� will be unchanged if we remove alternative i
from both a and b. Thus we may assume without loss
of generality that the ordering in b is strict so b1 <
b2 < · · ·< bM . This ordering allows us to make several
remarks concerning the lines z �→ ai+biz, of which we
have one for each i= 1� 	 	 	 �M .

Remark 3. Let z and w be real numbers and let i
and j be elements of �1� 	 	 	 �M� with z <w and i < j .
Then, since bj − bi > 0, we have

�ai+ biw�− �aj + bjw�
= �ai− aj�−w�bj − bi� < �ai− aj�− z�bj − bi�
= �ai+ biz�− �aj + bjz��

and thus, if ai+ biz≤ aj + bjz, then ai+ biw < aj + bjw.
This remark shows that the relative ordering of the

lines z �→ ai + biz, i = 1� 	 	 	 �M , changes in a particu-
lar fashion as z increases. Taking this line of thought
further, let us define a function g� � �→ �1� 	 	 	 �M� by
g�z� �=max�argmaxi ai + biz�. This function g tells us
which component i ∈ �1� 	 	 	 �M� is maximal, in the
sense that its corresponding line ai+biz has the largest
value of all the lines when evaluated at the particu-
lar point z ∈�. We break ties by choosing the largest
index.
With this definition, if i is an element of �1� 	 	 	 �M�

and z < w are real numbers such that i < g�z�, then
the component g�z� satisfies ai + biz ≤ ag�z� + bg�z�z,
and Remark 3 implies that ai + biw < ag�z� + bg�z�w.
Thus, i �= g�w�. Since this is true for any i < g�z�, we
have shown that g�w� ≥ g�z�, and thus g is a non-
decreasing function. Additionally, g is obtained by
taking the maximum index in the argmax set and
so is itself right-continuous. Combining these facts,
that g is nondecreasing and right-continuous, we see
that there must exist a nondecreasing sequence �ci�Mi=0
of extended real numbers such that g�z� = i iff z ∈
�ci−1� ci�. Note that c0 =−� and cM =+�.
Observe further that if an alternative i is such that

ci = ci−1, then g�z� = i iff z ∈ �ci−1� ci� = � implies
that g�z� can never equal i. Such an alternative is
always less than or equal to another alternative, and
we say that it is dominated. We define a set A con-
taining only the undominated alternatives, A �= �i ∈
�1� 	 	 	 �M�� ci > ci−1�. We will call the set A the accep-
tance set.
One algorithm for computing the sequence �ci�

and the set A is Algorithm 1, which has compu-
tational complexity O�M�. The algorithm may be
understood as belonging to the class of scan-line
algorithms (see, e.g., Preparata and Shamos 1985),
whose member algorithms all share the character-
istic of scanning in one dimension without back-
tracking and performing operations when certain
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structures are encountered during the scan. In the
case of Algorithm 1, it keeps counters i and j , which
it increments as it scans, and performs an operation
whenever it encounters an intersection between lines
z �→ aj + bjz and z �→ ai+1 + bi+1z. The details of the
algorithm’s derivation and computational complex-
ity are given in the Online Supplement (available at
http://joc.pubs.informs.org/ecompanion.html).

Algorithm 1. Calculate the vector c and the set A.
Require: Inputs a and b, with b in strictly
increasing order.

Ensure: c and A are such that i ∈A and
z ∈ �ci−1� ci� ⇐⇒ g�z�= i.
1: c0 ←−�, c1 ←+�, A← �1�
2: for i= 1 to M − 1 do
3: ci+1 ←+�,
4: repeat
5: j←A�end�A��
6: cj ← �aj − ai+1�/�bi+1− bj�.
7: if length�A� �= 1 and cj ≤ ck, where

k=A�end�A�− 1� then
8: A←A�1� 	 	 	 � end�A�− 1�
9: loopdone← false
10: else
11: loopdone← true
12: end if
13: until loopdone
14: A← �A� i+ 1�
15: end for

We now compute h�a� b� using the identity
maxi ai+biz= ag�z�+bg�z�z, recalling that the function g
is fully specified by the sequence �ci� and the set A
as computed by Algorithm 1. Since maxi ai + biz =
maxi∈A ai + biz for all z ∈ �, alternatives outside A
do not affect the computation of h�a� b�, and we may
suppose without loss of generality that these alterna-
tives have been removed from the vectors a, b, and c.
To compute h, we could use the identity h�a� b� =∑M
j=1 aj��g�Z� = j� + bjƐ�Z1�g�Z�=j�� and then calcu-

late ��g�Z� = j� = ��Z ∈ �cj−1� cj �� and Ɛ�Z1�g�Z�=j�� =
Ɛ�Z1�Z∈�cj−1� cj ���, but this leads to an expression that,
while correct, is sometimes numerically unstable.
Instead, we write ag�Z� + bg�Z�Z as the telescop-

ing sum

ag�0�+ bg�0�Z+
[g�Z�−1∑
i=g�0�

�ai+1− ai�+ �bi+1− bi�Z
]

+
[g�0�−1∑
i=g�Z�

�ai− ai+1�+ �bi− bi+1�Z
]
�

where only the first sum has terms if Z ≥ 0 and only
the second sum has terms if Z < 0.

We then apply the identity ai+1 − ai =−�bi+1 − bi�ci
and alter the sums using indicator functions to rewrite
the telescoping sum as

ag�0�+ bg�0�Z+
[ M−1∑
i=g�0�

�bi+1− bi��−ci+Z�1�g�Z�>i�
]

+
[g�0�−1∑
i=1
�bi+1− bi��ci−Z�1�g�Z�≤i�

]
	

Note that �−ci + Z�1�g�Z�>i� = �−ci + Z�+ and
�ci − Z�1�g�Z�≤i� = �ci − Z�+ with z+ =max�0� z� being
the positive part of z. Noting that ag�0� =maxi ai, we
can then evaluate h�a� b� as

h�a� b� = Ɛ�ag�Z�+ bg�Z�Z− ag�0��

=
[ M−1∑
i=g�0�

�bi+1− bi�Ɛ��−ci+Z�+�
]

+
[g�0�−1∑
i=1
�bi+1− bi�Ɛ��ci−Z�+�

]

=
M−1∑
i=1
�bi+1− bi�Ɛ��−�ci� +Z�+�

=
M−1∑
i=1
�bi+1− bi�f �−�ci��� (14)

where the function f is given as above in terms of
the normal cdf and pdf as f �z�= &�z�+ z'�z�. In the
third line we have used that i ≥ g�0� implies ci ≥ 0
and i < g�0� implies ci < 0, and that Z is equal in dis-
tribution to −Z. In the fourth line we have evaluated
the expectation using integration by parts.
In avoiding rounding errors in implementation, the

expression (14) has the advantage of being a sum of
positive terms, rather than involving subtraction of
terms approximately equal in magnitude. Its accuracy
can be further improved by evaluating the logarithm
of each term as log�bi+1 − bi� + log&�ci� + log�1 −
�ci�R��ci���, where R�s� = '�−s�/&�s� is Mills’ ratio.
One can then evaluate logh�a� b� from these terms
using the identity log

∑
i exp�di� = log�maxj dj � +

log
∑
i exp�di−maxj dj �. To evaluate log�1−�ci�R��ci���

accurately for large values of �ci�, we use the function
log1p available in most numerical software packages,
and an asymptotic approximation to Mills’ ratio such
as R��ci��≈ �ci�/�c2i +1�, which is based on the bounds
�ci�/�c2i + 1�≤R��ci��≤ 1/�ci� (Gordon 1941).
In summary, one computes the KG policy by first

computing the sequence �ci� and the set A using Algo-
rithm 1, then dropping the alternatives that are not
in A and using (14) to compute h�a� b�. The complete
algorithm for doing so is given in Algorithm 2.
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Algorithm 2. KnowledgeGradient�
n��n�.
Require: Inputs 
n and �n.
Ensure: x∗ =XKG�
n��n�
1: for x= 1 to M do
2: a←
n, b← ����n�x�.
3: Sort the sequence of pairs �ai� bi�Mi=1

so that the bi are in nondecreasing order
and ties in b are broken so that ai ≤ ai+1
if bi = bi+1.

4: for i= 1 to M − 1 do
5: if bi = bi+1 then
6: Remove entry i from the sequence

�ai� bi�
M
i=1.

7: end if
8: end for
9: Use Algorithm 1 to compute c and A

from a and b.
10: a← a�A�, b← b�A�, c← �c�A��+��,

M← length�A�.
11: 3← log

(∑M−1
i=1 �bi+1− bi�f �−�ci��

)
12: if x= 1 or 3 > 3∗ then
13: 3∗ ← 3, x∗ ← x
14: end if
15: end for

To analyze the computational complexity of Algo-
rithm 2, we note that the loop executes M times,
and that within that loop, the step with the largest
computational complexity is the sort in Step 3 with
complexity O�M logM�. Therefore the algorithm has
computational complexity O�M2 logM�.

3.2. Optimality and Convergence Results
The KG policy exhibits several optimality and con-
vergence properties. We only state and briefly discuss
these properties here, leaving proofs and further dis-
cussion to the Online Supplement. First, as shown in
Remark 1, the KG policy is optimal by construction
when N = 1. Second, in the limit as N →�, the sub-
optimality gap of the KG policy shrinks to 0. Third, for
1<N <�, we provide a bound on the suboptimality
gap of the KG policy. These results extend optimality
results proved in Frazier et al. (2008) for independent
normal priors. Because the prior lacks independence,
the proofs of convergence and bounded finite sample
suboptimality are more involved, and the statements
of the theorems themselves are somewhat different
than in the independent case.
The second optimality result, that the suboptimality

of the KG policy shrinks to 0 as N →�, is given in
the following theorem.

Theorem 4. For each s ∈ �, limN→�V 0�s"N � =
limN→�V KG�0�s"N �.

We refer to this property as asymptotic optimal-
ity of the KG policy, since it shows that the values

of KG and optimal policies are asymptotically identi-
cal. It should be emphasized that this use of the term
“asymptotic optimality” does not refer to the asymp-
totic rate of convergence, but only to the asymptotic
equality between the two value functions. Theorem 4
is essentially a convergence result, since both the KG
policy and the optimal policy achieve their asymptotic
values limN→�V 0�s"N � by exploring often enough
to learn perfectly which alternative is best. In other
words, our posterior belief about which alternative is
best converges to one in which the best alternative is
known perfectly.
While convergence and hence asymptotic optimal-

ity is generally easy to prove for simple nonadaptive
policies such as equal allocation, it is usually more
difficult to prove for adaptive policies. Since nonadap-
tive policies such as equal allocation usually perform
badly in the finite-sample case, the value of prov-
ing convergence under the KG policy lies in KG’s
adaptive nature, and in KG’s good finite-sample per-
formance in numerical experiments (see §4). By itself,
convergence is not sufficient evidence to use a par-
ticular policy in an application, but when a policy
has other good properties, convergence provides extra
reassurance that it may be a good choice. We prove
and discuss Theorem 4 further in §A.2 of the Online
Supplement.
The third optimality result, which provides a gen-

eral bound on suboptimality in the cases 1<N <�
not covered by the first two optimality results, is given
by the following theorem. This bound is tight for small
N and loosens as N increases. It uses the notation
������ · �� to indicate maxx� i� j ��i���x�− ��j���x�.
Theorem 5.

V n�Sn�−V KG�n�Sn�≤ �1/√2��· max
xn� 			� xN−2

N−1∑
k=n+1

�����k� · ��	

A proof of this theorem is given in §A.3 of the
Online Supplement.

4. Numerical Experiments
To illustrate the application of the KG policy, we con-
sider the problem of maximizing a continuous func-
tion over a compact subset of �d. We will suppose that
noisy evaluations of the function may be obtained
from some “black box,” but that each evaluation has
a cost, and so we should try to minimize the num-
ber of evaluations needed. This problem appears in
many applications: finding the optimal dosage of a
drug, finding the temperature and pressure that maxi-
mize the yield of a chemical process, pricing a product
through a limited number of test markets, or finding
aircraft design parameters that provide the best per-
formance in a computer simulation. The problem is
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particularly well studied in the context in which the
function is evaluated by running a time-consuming
simulation, as in the last of these examples, where it
is known as simulation optimization. When the prob-
lem is accompanied by a modeling decision to place a
Bayesian prior belief on the unknown function �, it is
further known as Bayesian global optimization.
Bayesian global optimization is a well-developed

approach, dating to the seminal work of Kushner
(1964). Because it is so well developed and contains
several well-regarded algorithms, it offers a meaning-
ful and competitive arena for assessing the KG pol-
icy’s performance. We will compare the KG policy
against two recent Bayesian global optimization meth-
ods that compare well with other global optimiza-
tion methods: EGO and SKO. Both algorithms were
designed for use with a continuous domain but can be
easily adapted to the discretized version of the prob-
lem treated here.
The modeling approach generally used in Bayesian

global optimization is to suppose that the unknown
function � is a realization from a Gaussian process.
Wiener process priors, a special case of the Gaussian
process prior, were common in early work on Bayesian
global optimization, being used by techniques intro-
duced in Kushner (1964) and Mockus (1972). The
Wiener process in one dimension is computationally
convenient both because of an independence prop-
erty under the posterior probability measure and
because the maximum of the posterior mean is always
achieved by a previously measured point. Later work
(see Stuckman 1988; Mockus 1989, 1994) extended
these two methods to multiple dimensions while con-
tinuing to use the Wiener process prior.
The paths of the Wiener process are nowhere-

differentiable with probability 1, which can cause dif-
ficulty when using it as a prior belief for smooth
functions. A more general class of Gaussian processes
has been used for estimating mineral concentrations
within the geostatistics community since the 1960s
under the name kriging (see Cressie 1993 for a com-
prehensive treatment, and Currin et al. 1991, Kennedy
and O’Hagan 2001 for a Bayesian interpretation), and
it was this more general class of priors that was advo-
cated for use by Sacks et al. (1989) and others. The
EGO algorithm uses this more general class of pri-
ors. EGO assumes the absence of measurement noise
but was extended to the noisy case by Williams et al.
(2000), and then later by Huang et al. (2006), which
introduced the SKO algorithm. To maintain compu-
tational efficiency, EGO and its descendants assume
that the point with the largest posterior mean is one of
those that was previously measured; while true under
the Wiener process prior, this assumption is not true
with a general Gaussian process prior.

The class of Gaussian process priors is parameter-
ized by the choice of a mean function with domain �d,
and a covariance function with domain �d × �d.
Under a Gaussian process prior so parameterized,
the prior belief on the vector ���i1�� 	 	 	 � ��iK�� for any
fixed finite collection of points i1� 	 	 	 � iK is given by
a multivariate normal distribution whose mean vec-
tor and covariance matrix are given by evaluating
the mean function at each of the K points and the
covariance function at each pair of points. If there
are known trends in the data, then the mean func-
tion may be chosen to reflect this, but otherwise it
is often taken to be identically 0, as in the experi-
ments described here. The class of Gaussian process
priors used in practice is usually restricted further by
choosing the covariance function from some finite-
dimensional family of functions. In our experiments
we use the class of power exponential covariance
functions, under which, for any two points i and j ,

Cov���i�� ��j��= 5exp
{
−

d∑
k=1
6k�ik− jk�2

}
� (15)

where 61� 	 	 	 �6d > 0 and 5 > 0 are hyperparame-
ters chosen to reflect our belief. Since Var���i�� = 5,
we choose 5 to represent our confidence that � is
close overall to our chosen mean function. We may
even take the limit as 5→� to obtain an improper
prior that does not depend upon the mean function.
The hyperparameter 6k should be chosen to reflect
how quickly we believe � changes as we move in
dimension k, with larger values of 6k suggesting more
rapid change. This class of covariance functions pro-
duces Gaussian process priors whose paths are con-
tinuous and differentiable with probability 1 and for
this reason is often used for modeling smooth random
functions.
In practice, one is often unsure about which hyper-

parameters are best, particularly about the smooth-
ness parameters 61� 	 	 	 �6d. This ambivalence may be
accommodated by placing a second-level prior on the
hyperparameters. In this hierarchical setting, infer-
ence with the full posterior is often computation-
ally intractable; so instead, the maximum a posteriori
(MAP) estimate of the hyperparameters is used by
first maximizing the posterior likelihood of the data
across the hyperparameters and then proceeding as if
our posterior belief were concentrated entirely on the
values attaining the maximum. If the prior is taken
to be uniform on the hyperparameters, then the MAP
estimate is identical to the maximum likelihood esti-
mation (MLE). This is the approach we apply here.
Whereas usual approaches to Bayesian global opti-

mization generally assume a continuous domain,
the knowledge-gradient approach described herein
requires discretizing it. We choose some positive inte-
ger L and discretize the domain via a mesh with
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L pieces in each dimension, obtaining M = Ld total
points. Our task is then to discover the point i in this
mesh that maximizes ��i�.
We now describe in greater detail the algorithms

against which we will compare KG: EGO and SKO.
The EGO algorithm is designed for the case when
there is no measurement noise. It proceeds by assign-
ing to each potential measurement point an “expected
improvement” (EI) given by

EI�x� = Ɛn

[
max

(
��xn��max

k<n
��xk�

) ∣∣∣xn = x]
−max

k<n
��xk�� (16)

and then measuring the x with the largest value of
EI�x�. In the version of the problem with a continuous
domain, the above formula may be used to compute
EI�x� for any given value of x, and then a global opti-
mization algorithm such as the Nelder-Mead simplex
search is used to search for the x that maximizes EI�x�.
In our discretized version of the problem, EGO sim-
ply evaluates EI�x� at each of the finitely many points
and measures a point attaining the maximum. If there
is more than one point attaining the maximum, then
EGO chooses uniformly at random among them.
In the calculation (16) of EI�x�, the termmaxk<n ��xk�

is the value of the best point we have measured by
time n, and is � n-measurable in light of the assump-
tion of no measurement noise. The term ��xn� is the
value of the point that we are about to measure and
is � n+1-measurable. Thus EI�x� is exactly the expected
value of measuring at xn = x and then choosing as
implementation decision the best among the points
x0� 	 	 	 � xn. This quantity is quite similar to the fac-
tor QN−1�Sn"x� used by the KG policy to make its
decisions, except that QN−1�Sn"x� does not restrict
its potential implementation decisions to those points
measured previously. Generally speaking, the points
maximizing EI�x� and QN−1�Sn"x� are frequently dis-
tinct from one another, but they are also often close
together, and so KG and EGO policies often perform
similarly in those noise-free cases in which EGO can
be used.
SKO is a generalization of the EGO policy to the case

of nonzero measurement noise. It operates at time n
by first considering a utility function, u�x� = 
n�x�−
c
√
�nxx, and maximizing this over the points already

measured to obtain an “effective best point,” x∗∗ ∈
argmaxxk�k<n u�x

k�. Then, when considering whether
to measure at some candidate point x, it calculates an
augmented expected improvement function,

EI�x� = Ɛn�max�

n+1�x�−
n�x∗∗��0� � xn = x�

·
(
1−

√
�x

�nxx +�x

)
	 (17)

The first term is essentially the expected improve-
ment over implementing at x∗∗, and the second term
is added to suggest more measurement in unexplored
regions of the domain. As �x goes to 0, the second
term goes to 1 and x∗∗ goes to argmaxxk�k<n 


n
xk
, and

so the augmented expected improvement in (17) goes
to the noise-free expected improvement in (16). In this
limit, SKO behaves identically to EGO.
KG is similar to EGO and SKO in that all three do

some type of one-step analysis considering the change
in the expected value of the best implementation deci-
sion before and after the measurement, but KG is
essentially different from EGO and SKO in its under-
standing that measuring at a point xn can cause the
best posterior implementation decision to be at some
entirely new location not equal to any previously mea-
sured point. We illustrate this in Figure 1, where we
show two posterior beliefs and the decision process
of KG and EGO in each. In the first situation (two
left panels), EGO prefers to measure at a point that is
very close to previous measurements. EGO prefers
this location because it has a large mean in com-
parison with the unexplored region of the function’s
domain. The unexplored region also has value to EGO
but not as much as does the region with large mean,
as displayed by the plot of expected improvement.
In contrast, KG prefers to measure in the unexplored

region. When calculating the value of measuring in
this region, both KG and EGO include the potential
benefit of learning that the measured point is bet-
ter than the previous best point. KG, however, also
includes a more subtle benefit: measurement in the
unexplored region will alter the location of the poste-
rior maximum even if the point measured is not found
to be better than the previous best point. If the mea-
surement reveals the point to be worse than expected,
this will shift the maximum to the left of where it was
previously, and if the measurement reveals the point to
be even a small amount better than expected, this will
shift the maximum to the right. This shifting left and
right also carries with it shifting up and down, and a
positive net benefit. This added benefit is enough to
convince KG to measure in the unexplored region.
Such differences in measurement decision between

EGO and KG tend to cause relatively small differences
in their expected performances, as demonstrated in
our second set of experiments to be discussed below,
with one reason pictured in the two right panels of
Figure 1. Here, we see the belief state resulting from
the measurement advocated by EGO in the left panel.
Now both KG and EGO agree, with the point of
their agreement being close to where KG wanted to
measure originally. This situation, with KG and EGO
choosing similar measurements, is common.
The differences between SKO and KG have as ori-

gin KG’s inclusion of extra considerations into its cal-
culation, but they also include SKO’s inclusion of an
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Figure 1 Comparison of EGO EI with KG Factor, and Their Associated Measurement Decisions Under Two Different Beliefs
Notes. Upper plots display the posterior belief at two different points in time, with time n = 4 on the left and n = 5 on the right. The prior mean is plotted
as a solid line, with two standard deviations above and below plotted as dotted lines. Previous measurements are circles. The n = 5 belief is obtained by
beginning with n = 4 and taking the EGO decision. Lower plots display EGO’s expected improvement quantity and KG’s improvement factor Ɛn�maxi �

n+1
i �

xn = x�−maxi �n
i for the corresponding belief above. The alternative that each policy would measure is marked with a square, with disagreement at n= 4 but

agreement at n= 5.

extra exploration term in its calculation. The benefits
provided by SKO’s explicit exploration term appear
to be provided implicitly by KG’s full one-step anal-
ysis, and their difference in expected performance
tends to be greater than is the difference between KG
and EGO. This is demonstrated in our experiments
below.
When estimating the hyperparameters from previ-

ous observations using the MLE and at the same time
measuring according to a policy that depends upon
the hyperparameters like KG, EGO, or SKO, it is neces-
sary to initially sample according to some other design
to obtain a reasonable estimate of the hyperparame-
ters, and then to switch over to the hyperparameter-
dependent policy. When the measurement noise is
zero, Jones et al. (1998) recommend using an initial
Latin hypercube design with 10 times the number
of dimension measurements. When the measurement
noise is unknown, Huang et al. (2006) recommend
using the same Latin hypercube design with the same
number of measurements followed by two additional
measurements at the previously measured locations
with the two best outcomes. We followed these rec-
ommendations in the experiments described here.

In our first set of experiments, pictured in Fig-
ure 2, we generated three one-dimensional random
functions labeled a, b, and c, and discretized them into
M = 80 points each. The three functions were drawn
from Gaussian process priors with mean 0 and power
exponential covariance matrices with 5= 1/2 and 61
equal to 100/�M − 1�2, 16/�M − 1�2, and 4/�M − 1�2,
respectively. With each truth, experiments were per-
formed with normally distributed noise with stan-
dard deviations of 0	1 and 0	2. We compared KG with
SKO, both with correlated priors, and also with KG
under an independent noninformative prior.
With both correlated KG and SKO algorithms we

used an initial design of 12 points as described above
to obtain an initial MAP estimate of the hyperparam-
eters, updating this MAP estimate with each sample
taken. With the independent KG algorithm, we began
with a noninformative prior in which the prior proba-
bility distribution on �i was uniform over �, resulting
in a first stage of sizeM = 80 in which each alternative
was measured once in random order. Each combina-
tion of truth, noise variance, and policy was replicated
between 860 and 1,100 times, and the opportunity cost
was recorded as a function of iteration n. Opportunity
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Figure 2 Comparison of Correlated KG (CKG), SKO, and Independent KG (IKG) on Three Functions Drawn from Gaussian Process Priors
Notes. CKG and SKO policies estimated hyperparameters adaptively with an initial stage of 22 measurements. IKG used an independent noninformative prior.
The top row shows the three functions tested, and the middle and bottom rows show policy performance at noise variances �0�1	2 and �0�2	2, respectively.
Each policy performance plot shows the log10 of expected opportunity cost (OC) versus iteration. Standard errors were too small to be plotted. The maximum
in each plot of � log10�estimated OC± 2× stderr	− log10�estimated OC	� over all three policies is, from left to right, 0�17
 0�12
 0�12 for the second row and
0�09
 0�07
 0�12 for the third row.

cost is here defined as �maxi �i� − �i∗ , with i∗ being
given by i∗ ∈ argmaxxk�k<n Yxk during the first stage
when the hyperparameters have not yet been esti-
mated, and i∗ ∈ argmaxx 
nx after the first stage. After
the first stage, opportunity cost is the difference
between the best implementation decision given per-
fect knowledge and the best implementation decision
given the knowledge collected by the policy by time n.
The base-10 logarithm of the sample average of

the opportunity costs observed over all the replica-
tions is plotted against iteration in Figure 2 for each
choice of truth and noise variance. Sampled oppor-
tunity costs from batches of 25 replications were
averaged together to obtain approximately normally
distributed estimates of expected opportunity cost,
and their sample deviations were used to estimate the
error in the plotted lines, but the resulting error esti-
mates were too small to be graphed. Instead, we state
them in the caption to Figure 2.
The figure shows that correlated KG outperformed

SKO in each of the six situations tested, and at the
final measurement (n= 200) the expected opportunity
cost incurred by SKO was as much as 4	4 times larger
than that incurred by KG. For the truths a, b, and c,
respectively, the ratio of opportunity costs at the final
measurement was 4	4, 2	1, and 1	3 when the measure-
ment variance was �0	1�2, and 2	4, 2	0, and 1	9 when
the measurement variance was �0	2�2.

The figure also shows that both SKO and corre-
lated KG outperformed independent KG, often by a
significant margin. The independent KG policy was
shown in Frazier et al. (2008) to perform well in com-
parison with other R&S policies on problems with
independent beliefs, and so this relative performance
should be seen as a function of the correlation present
in the prior and is likely to be evidenced by other
R&S policies assuming independent beliefs such as
OCBA and VIP. Indeed, these results show that there
is often great benefit to using correlations in the prior
when the problem encourages it. The margin between
independent KG and the other policies is largest for
truth c because it has the largest correlation across the
domain. Generally, the advantage of including corre-
lations in the prior increases as the underlying func-
tion becomes more strongly correlated. In particular,
had we chosen a finer discretization level but used
the same truths, independent KG would have suf-
fered while the performance of correlated KG and
SKO would have been relatively unaffected.
In our second set of experiments, pictured in Fig-

ure 3, we compare EGO and CKG. In the previous set
of experiments we also examined KG and EGO per-
formance with no measurement noise but found no
statistically significant difference between them with
the number of replications we performed. Indeed,
without measurement noise, the test problems were
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Figure 3 Comparison of KG with EGO on 26,000 One-Dimensional
Functions Drawn from a Gaussian Process Prior with
Parameters �= 1/2, 
1 = 1/64, and L= 200

Notes. The plot shows the difference in expected opportunity cost (OC)
between the two polices, with a positive difference indicating that KG per-
formed better.

easy enough that the best point was discovered dur-
ing the first stage of measurements where there is
no difference between the two policies. This second
set of experiments was designed with this similarity
in mind to be as sensitive as possible to differences
in the measurement policies. Instead of estimating
expected opportunity cost for a single true function �,
we generated 26�000 one-dimensional functions from
a Gaussian process prior, simulated each policy
on each function, and averaged them together to
obtain expected opportunity cost under the prior. The
Gaussian process prior had mean identically 0 and
power exponential covariance function with 5= 1/2
and 61 = 1/64, and discretization level L= 200. Also,
instead of using a large first stage to adaptively
estimate the hyperparameters, we restricted the first
stage to a single uniformly distributed measurement,
and we allowed the measurement policies to use the
true hyperparameter values rather than the MAP esti-
mate. The results, in Figure 3, show that the differ-
ence between the policies was quite small but still
statistically significant, with KG performing better
than EGO, and with the biggest improvement in the
early iterations.
In our third and final set of experiments, pictured

in Figure 4, we compared KG with SKO on several
standard test functions with measurement variance
�0	1�2. These test functions are the six-hump camel-
back function from Branin (1972), a “tilted” version
of the Branin function from Huang et al. (2006), and
the Hartman-3 function from Hartman (1973). Their
functional forms, discretization levels, and domains
are given in the table in Figure 4. These functions
are traditionally minimized, and we do so in these
numerical experiments by maximizing their negative.
In all three tests, the algorithms performed sim-

ilarly in the first stage. Then, on the tilted Branin

and Hartman-3 functions, both KG and SKO rapidly
improved their opportunity cost as the first stage
ended, and both their implementation and measure-
ment decisions became free to range across the entire
domain. KG was able to maintain this rapid improve-
ment for a longer time, achieving a lower opportu-
nity cost by approximately iteration 30 in the tilted
Branin example and by approximately iteration 40
in the Hartman-3 example. KG then maintained this
advantage through the increasing iterations.
On the six-hump camelback function, both SKO

and KG algorithms suffered an initial increase in
opportunity cost after the first stage in which the
belief acquired by the Latin hypercube sampling com-
bined with the Gaussian process prior led them to
believe that the function was better at a point far from
where they had measured previously, when in fact
this belief was incorrect. Both policies quickly recov-
ered, but SKO initially recovered more quickly than
KG, outperforming it until approximately iteration 45.
This may be because SKO has a greater tendency
toward measuring the alternative that it would like
to implement (i.e., the alternative that has the largest
posterior mean), and this helps to correct posterior
beliefs that are incorrect in the manner described. By
iteration 45, KG had recovered completely and was
reducing its opportunity cost more rapidly. In the
larger iterations, KG outperformed SKO.
Across these three sets of experiments, we found

that KG performed well in comparison with SKO and
EGO, performing as well or better than these two
other policies in every situation tested except on the
early iterations of the six-hump camelback test func-
tion in the second set of experiments. That KG per-
formed well in comparison to these other Bayesian
global optimization methods should not be surprising,
since it is derived along similar lines but with a more
complete account of the effect of a single measure-
ment. This improved performance comes at the cost of
increased complexity, however. KG requires the cross-
terms of the correlation matrix and in its current form
requires discretizing the domain. These complications
can dramatically increase the computational complex-
ity of the algorithm, particularly if the discretization
needs to be fine. Nevertheless, if the cost of each mea-
surement is large enough, then the computational cost
of computing the KG policy will be dwarfed by the
cost of measurement, and any improvement in mea-
surement efficiency will be worthwhile.

5. Conclusion
In this article we presented a policy for sequential
correlated multivariate normal Bayesian R&S, gener-
alizing the policy presented in Gupta and Miescke
(1996) and Frazier et al. (2008), which required that
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Name Functional form, domain and discretization level (L) Source

Six-hump camelback f �x�= 4x21 − 2	1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42 , Branin (1972)

with x ∈ �−1	6�2	4�× �−0	8�1	2� and L= 30.

Tilted Branin f �x�=
(
x2 −

5	1
4�2

x21 +
5
�
x1 − 6

)2

+ 10
(
1− 1

8�

)
cos�x1�+ 10+ 1

2
x1, Huang et al. (2006),

with x ∈ �−5	10�× �0�15� and L= 30. modified from
Branin (1972)

Hartman-3 f �x�=−
4∑
i=1
ci exp

(
−

3∑
j=1
6ij �xj − pij �2

)
, where Hartman (1973)

6=




3 10 30

0	1 10 35

3 10 30

0	1 10 35


 � c=




1

1	2

3

3	2


 � p=




0	3689 0	1170 0	2673

0	4699 0	4387 0	7470

0	1091 0	8732 0	5547

0	03815 0	5743 0	8828


,

with x ∈ �0�1�3 and L= 10.
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Figure 4 Comparison of KG with SKO on Three Standard Test Functions
Notes. Both policies estimated hyperparameters adaptively with an initial stage of 10× dimension+ 2 measurements. Plots show the log10 of the expected
opportunity cost (OC) versus iteration n at measurement variance �0�1	2 for three functions: six-hump camelback (left); tilted Branin (center); and Hartman-3
(right). Lines are plotted for each policy at log10�estimated OC± 2× stderr	.

alternatives be independent under the prior, and gen-
eralizing the policy presented in Mockus (1972) that
required the prior to be a one-dimensional Wiener
process. We proved optimality of the general pol-
icy in certain special cases and proved that it has
bounded suboptimality in the remaining cases. The
policy may be used effectively in applications with
large numbers of alternatives for which the only
way to achieve an efficient solution is by utilizing
the dependence between alternatives, and its sequen-
tial nature allows greater efficiency by concentrating
later measurements on alternatives revealed by ear-
lier measurements to be among the best. Its discrete
nature allows an exact calculation of the knowledge-
gradient, avoiding the approximations used by other
Bayesian global optimization techniques such as EGO
and SKO, and leading to improved performance in
the cases tested.
In closing, we would like to suggest that the method

we have pursued for solving the general multivariate

normal sequential Bayesian R&S problem can also be
applied to other sequential Bayesian R&S problems.
Once a problem is formulated in the Bayesian frame-
work, the only further requirement for applying a KG
approach is that the quantity argmaxx Ɛn�maxi 


n+1
i �,

as in (11), should be calculable exactly or approxi-
mately in an efficient manner. For example, one could
assume a different prior, e.g., a hierachical multivari-
ate normal prior whose variances are themselves ran-
dom. One might also consider objectives other than
the expected value of the selected alternative, such as
the expected risk-averse utility of the selected alterna-
tive, or square deviation from a desired target level.
In addition, an adaptive stopping rule could be used
rather than a fixed sampling budget. With these and
other variations in mind, we believe that the tech-
nique of posing R&S problems within a Bayesian
framework and then calculating a KG policy appro-
priate for that framework promises practical results
for a wide variety of applications.
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