
THRESHOLD RISK MEASURES PART 1: FINITE HORIZON

RICARDO A. COLLADO AND WARREN B. POWELL

Abstract. In this paper we introduce the threshold risk measures, a class of risk
measures incompatible with the coherent risk measures. In particular, the threshold
risk measures consider the risk involved in applications where being above a threshold
(for minimization problems) is considered too risky and should be avoided as much
as possible. In this paper we develop the threshold risk measures together with their
dynamic counterparts and apply these to the finite horizon dynamic programming
with risk measures model. We develop several Bellman-type recursive algorithms to
solve the finite horizon problem dynamic problem. A second part to this paper focuses
on infinite horizon problems [10].

1. Introduction

The traditional approach of optimizing the expectation in stochastic and dynamic
programs successfully introduces uncertainty of events in dynamic models but, in gen-
eral, fails to convey the element of risk that many practical problems face. During the
past 14 years researchers have developed the coherent risk measures as an alternative
to the expectation operator in traditional stochastic programs. Coherent risk measures
are consistent with the theory of risk developed for capital markets in the seminal work
by Artzner, Delbaen, Eber, and Heath [3, 4] and have a rich axiomatic theory allowing
the development of efficient methods for the solution of risk-averse programs (see for
example [2, 9, 20]). In [11, 29–32] we can find a comprehensive treatment of coherent
risk measures and risk-averse optimization including the development of multi-stage
risk-averse programs.

Recently, increased attention has been paid to dynamic measures of risk which allow
for risk-averse evaluation of streams of future costs or rewards (e.g., [5, 8, 11, 14, 16,
22, 25, 27–32]). The progression from risk-neutral to risk-averse dynamic models via
coherent risk measures follows a natural path where coherent risk measures allow the
risk evaluation of uncertain outcomes. Combining these measures with risk-neutral
dynamic programs gives rise to dynamic risk-averse optimization problems. Although
natural, this progression is by no means trivial, requiring a full decade of development
to reach the state where risk-averse dynamic models via coherent risk measures are
postulated and applied, see [1, 2, 9, 20, 21, 32]. We could say that a high point of this
research is attained at [27], where A. Ruszczyński develops risk-averse dynamic programs
for Markov decision processes utilizing a dynamic version of coherent risk measures.
In his paper, A. Ruszczyński gives solutions to finite and infinite horizon versions of
such risk-averse dynamic programs via generalizations to the Bellman equation, value
iteration and policy iteration algorithms. This work successfully establishes dynamic
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coherent risk measures as a risk-averse alternative to classical dynamic programming
for applications where coherent risk measures apply. That is, applications where the
notion of risk conveyed by coherent risk measures is meaningful, e.g. applications to
risky capital markets and portfolio optimization.

In this paper we focus on a notion of risk incompatible with coherent risk measures
and develop risk-averse dynamic models for it. In particular, we consider the risk
involved in applications where being above a fixed threshold (for minimization problems)
is considered too hazardous and should be avoided as much as possible. With this idea in
mind we develop the threshold risk measures which, simply speaking, penalize random
variables that take values above a given threshold.

To understand why the coherent risk measures are not suitable for applications in-
volving thresholds we just have to consider how coherent risk measures behave in the
face of a threshold α > 0. Let Z be an arbitrary bounded random variable and let t > 0
be such that ‖tZ‖∞ < α. For a coherent risk measure ρ to represent the risk-averse at-
titude of focusing purely on staying below the threshold α, it is essential that ρ(tZ) = 0.
Then by the properties of coherent risk measures we obtain that 0 = ρ(tZ) = tρ(Z),
and this implies that ρ(Z) = 0. In this way we can conclude that ρ(Z ′) = 0 for every
bounded random variable Z ′. This would imply that on finite probability spaces the
only risk measure that we can apply is the 0–function!

Our definition of threshold risk measures bypasses this issue while still maintaining
many of the desirable properties of coherent risk measures. We specifically retain related
versions of all the properties that according to Artzner et al. [3,4] (and most of the risk
measures community) make optimization problems based on coherent risk measures
convey an idea of risk aversion. We accomplish this by extending the definition of
coherent risk measures in a seemingly natural way. What we assumed would be a
uncomplicated extension to the theory of coherent risk measures quickly grew into a
theory of its own, due mostly to the numerous details that have to be handled when
dealing with functions of random variables. The end result being a theory of threshold
risk measures that parallels its coherent counterparts and simultaneously extends the
theory of risk in new directions.

The notion of threshold risk came to our attention while working on applications
related to electricity markets that face random spikes in the electricity spot prices.
In these applications it is important for the decision maker to avoid decision policies
where the cost outweighs the reward, i.e. the final cost is more than zero. In our
applied work we implement the theory and methods from this paper combined with
approximate dynamic programming techniques from [23] to the problem of hedging
consumers against the volatility of purchasing electricity on the spot market.

Another interesting example arises in managing heating systems in commercial build-
ings in the presence of capacity pricing policies which penalize usage above a particular
level. Some of our applied work implements models involving threshold risk measures to
these problems on managing electricity expenditures in a network of high rise buildings
in Manhattan. Both of these applications will appear in future papers where the details
of the implementations and its numerical results will be given.

We would like to point out that we are not the only ones to propose these type of
threshold risk measures as suitable measures of risk. Recently, [33] shows an approach
similar to ours to develop risk-averse dynamic models for the hydrothermal system
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operation planning of the Brazilian interconnected power system. In this study, the
authors use a specific threshold risk measure to design their risk-averse models and
methods. By restricting themselves to the application at hand, the authors avoid many
of the technical details needed to generalize the notion of threshold risk measures in a
way that it is conducive to more applications.

Our main goal in this paper is to define the class of risk measures we refer to as
threshold risk measures together with its dynamic counterparts, and bring the develop-
ment of such to the state of the art presented by A. Ruszczyński in [27]. As a result
we give a solid theoretical foundation to the use of threshold risk measures in dynamic
applications such as the ones mentioned before. To accomplish this we leverage the de-
composition method for dynamic coherent risk measures developed in [27] and extend
it to the case of threshold risk measures. In this first part of our research we focus
on finite horizon problems while a second paper extends the idea to infinite horizon
problems [10].

The paper is organized as follows. In section 2 we carefully define the controlled
Markov decision process on which we base our dynamic models. Section 3 introduces
the spaces of random outcomes that form the basis of most of our definitions. Section 4
defines threshold risk measures and presents some of its main properties including two
representation theorems that allow the development of dynamic models. In section 5 we
define the dynamic version of threshold risk measures and prove its time consistency, a
property essential to the development of dynamic programs that can be solved recur-
sively without the need to backtrack decisions. Section 6 introduces the finite horizon
risk-averse dynamic problem and a solution via a generalization of Bellman’s equation.
In this section we introduce Ruszczyński’s decomposition method and prove that to-
gether with threshold risk measures it has the properties required for the development of
the Bellman’s equation. This section also contains a reformulation of the finite horizon
problem in terms of the post decision state variable. In section 6.4 we explore the case
where the risk in our stream of decisions is incurred only at the very last step. Finally,
section 7 considers the case of static threshold risk measures and looks into choosing
via optimization methods the most robust threshold sequence for our problems.

2. A Controlled Markov Decision Process

In this section we define a controlled Markov decision process and introduce our
notation based on the presentation of [17,27]. Let (S,BS) and (A,BA) be Borel spaces.
We call S the state space and A the action space. To each state s ∈ S we associate
a set of admissible actions A(s) ⊆ A in such a way that the map s 7→ A(s) defines a
measurable multifunction. We call the multifunction A(·) an action set and define its
graph as

graph(A) = {(s, a) ∈ S ×A | a ∈ A(s)} .

Let P denote the set of probability measures on (S,BS) endowed with the usual weak
topology. A controlled kernel is a measurable function Q : graph(A)→ P. So, for every
state s ∈ S and action a ∈ A(s) the value of Q(s, a) is a probability measure on the
state space (S,BA). This can be interpreted as the probability of reaching a state given
that we are in state s and take the action a ∈ A(s), which for a Borel set B ⊆ S is
denoted by Q(B | s, a). A cost function is a measurable function c : graph(A)→ R.
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Our controlled Markov model has a state pace S, an action space A and sequences
of action sets At, controlled kernels Qt, and cost functions ct, t = 0, 1, 2, . . .. A Markov
policy (or simply a policy) is a sequence of measurable functions πt : S → A, such that
πt(s) ∈ At(s), for all s ∈ St and all t = 0, 1, 2 . . . . A Markov policy is stationary if
πt = π0, for all t = 1, 2, . . . .

In this paper we assume that the initial state s0 is fixed. This is not a big restriction
and serves to ease our exposition.

Let Π be the set of all policies. Each policy results in a cost sequence that we
could optimize. The classical finite horizon expected value problem looks for the policy
π∗ = {π∗0, . . . , π∗T−1} that minimizes the expected cost:

(2.1) min
π∈Π

E

[
T−1∑
t=0

ct (st, πt(st)) + cT (sT )

]
,

where π = (π0, . . . , πT−1) and cT : S → R is a measurable function of final cost.
The infinite version of the problem above is known as the infinite horizon discounted

expected value problem. For γ ∈ (0, 1), it looks for a policy {πt}∞t=1 that minimizes the
α-discounted expected value problem:

(2.2) min
π∈Π

E

[ ∞∑
t=0

γtct (st, πt(st))

]
,

where similar to before, π = {πt}∞t=0.
Under some reasonable assumptions both of these problems have optimal Markov

policies. The finite horizon problem (2.1) has an optimal policy that can be described by
the famous Bellman’s dynamic programming equations (see [24]). The infinite horizon
problem (2.2) has a stationary optimal policy as long as its underlying Markov process is
stationary too (see [24]). In this case the policy and value iteration algorithms converge
to an optimal stationary policy.

Our goal is to add elements of risk-aversion to problems (2.1) and (2.2) by the use of a
risk evaluation method based on threshold risk measures (to be defined in section 4). In
this paper we focus on the finite horizon problem (2.1) and in [10] we tackle the infinite
horizon problem. In the next few sections we develop the threshold risk measures and
a nested risk evaluation method based on them.

3. Spaces of Random Outcomes

In this section we define the spaces of random outcomes that we use through the rest
of the paper. Although presented in a general sense, it is useful to keep in mind that our
purpose is to give a solid foundation to the stage-wise random costs inherent in dynamic
optimization problems. The importance of properly establishing this is apparent once
we realize that it is on these random outcomes that our risk measures must act.

Let (Ω,F , P ) be a probability space with σ-algebra F and probability measure P .
For every p ∈ [1,+∞), let Lp(Ω,F , P ) be the set of P -measurable functions f : Ω→ R
whose p-th order moment is well defined, i.e.

(3.1) ‖f‖p =

(∫
Ω
|f |pdP

)1/p

<∞.
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We define L∞(Ω,F , P ) as the set of essentially bounded P -measurable functions f :
Ω→ R. For f ∈ L∞(Ω,F , P ) define

(3.2) ‖f‖∞ = inf {c ≥ 0 | |f(ω)| ≤ c for almost all ω ∈ Ω} ,
then ‖ · ‖∞ is a norm on L∞(Ω,F , P ).

Fix p ∈ [1,+∞). In this paper we restrict ourselves to the spaces of uncertain
outcomes Z := Lp(Ω,F , P ) where each element Z ∈ Z is viewed as an uncertain
outcome on (Ω,F) and is by definition a random variable with finite p-th order moment
with respect to the reference probability measure P .

For Z,Z ′ ∈ Z we denote by Z � Z ′ the pointwise partial order, meaning Z(ω) ≤
Z ′(ω) for a.e. ω ∈ Ω. In this paper the variables Z represent random costs and so we
prefer smaller realizations of it.

With each space Z := Lp(Ω,F , P ) there is an associated conjugate dual space Z∗ :=
Lq(Ω,F , P ), where q ∈ (1,+∞] is such that 1/p+ 1/q = 1. For Z ∈ Z and ζ ∈ Z∗ their
scalar product is defined as

(3.3) 〈ζ, Z〉 =

∫
Ω
ζ(ω)Z(ω)dP (ω).

For p ∈ [1,+∞) we endow the space Z = Lp(Ω,F , P ) with either its strong (norm) or
weak* topology. If p = +∞, then we endow Z = L∞(Ω,F , P ) with its weak* topology.
On the other hand, we always endow dual spaces Z∗ = Lq(Ω,F , P ) with its weak*
topology.

With these definitions Z and Z∗ are paired, locally convex Banach spaces compatible
with the scalar product (3.3). That is, every continuous linear functional on Z can be
represented as 〈ζ, ·〉, for some ζ ∈ Z∗, and every continuous linear functional on Z∗ can
be represented as 〈·, Z〉, for some Z ∈ Z, see [29].

4. Threshold Risk Measures

In this section we define a risk measure that penalizes random variables that take
values above a given threshold function (for minimization problems). Before doing this
we need to introduce a simple yet very important function on random variables.

4.1. Threshold Functions and the Nonnegative Operator. For a ∈ R, let [a]+ =
max{a, 0}. For a random variable Z ∈ Lp(Ω,F , P ), define [Z]+ as the random variable
given by [Z]+(ω) = [Z(ω)]+,∀ω ∈ Ω. We call [·]+ the nonnegative operator.

Definition 1. A threshold function is an F-measurable nonnegative random variable
α : Ω→ R+ such that α ∈ Lp(Ω,F , P ).

The properties of the nonnegative operator [·]+ are fundamental to our analysis. Here
we list all the properties of [·]+ that we use through the paper and defer the proofs to
the appendix.

Theorem 1. Let Z = Lp(Ω,F , P ) and let α ∈ Z be a threshold function. Then for
every Z,W ∈ Z, the nonnegative operator [·]+ satisfies:

(N0) Closeness: [Z − α]+ ∈ Z;
(N1) Convexity: [tZ + (1− t)W ]+ � t[Z]+ + (1− t)[W ]+, for all t ∈ [0, 1];
(N2) Monotonicity: If Z �W , then [Z]+ � [W ]+;
(N3) Positive homogeneity: If t > 0, then [tZ]+ = t[Z]+;
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(N4) Subadditivity: [Z +W ]+ � [Z]+ + [W ]+;
(N5) If t > 0, then [tZ − α]+ = t[Z − α/t]+;

We have two important properties of [·]+ to introduce.

Theorem 2. Let Z = Lp(Ω,F , P ), α ∈ Z be a threshold function, and let B ∈ F be a
random event of the probability space (Ω,F ,P). Let 1B denote the indicator function
of B. Then for every Z ∈ Z,

[1BZ − α]+ = 1B [Z − α]+ .

Theorem 3 (Linear representation of the nonnegative operator). Let Z = Lp(Ω,F , P )
and α ∈ Z be a threshold function. Then for any Z ∈ Z, the random variable [Z − α]+
can be obtained by solving the following optimization problem on random variables:

(4.1)

min
X

X

s.t. X � Z − α
X � 0, X ∈ Z.

4.2. Definition and Basic Properties of Threshold Risk Measures. In this sec-
tion we define and introduce the basic properties of threshold risk measures. Among
others, we give two representation theorems that are fundamental in the efficient eval-
uation of the risk measures. The proofs of most of these theorems are deferred to the
appendix.

A risk measure is a proper class function ρ : Z → R. By this we mean that ρ is
constant on the classes of functions which differ only on sets of P -measure zero. The
function ρ is proper in the sense that ρ(Z) > −∞ for all Z ∈ Z and its domain

dom(ρ) = {Z ∈ Z : ρ(Z) < +∞}

is nonempty. A coherent risk measure is a risk measure ρ : Z → R satisfying the
following axioms:

(A1) Convexity : ρ (tZ + (1− t)W ) ≤ tρ(Z) + (1− t)ρ(W ), for all Z,W ∈ Z and all
t ∈ [0, 1];

(A2) Monotonicity : If Z,W ∈ Z and Z �W , then ρ(Z) ≤ ρ(W );
(A3) Translation equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a;
(A4) Positive homogeneity : If t > 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).

Coherent risk measures are the basic building blocks for our theory. A thorough expo-
sition of it can be found in [32]

Definition 2. Let p ∈ [1,+∞), Z = Lp(Ω,F , P ), and let % : Z → R and ϑ : Z → R
be real-valued, lower semicontinuous coherent risk measures. Let η > 0 and α ∈ Z be
a threshold function. A risk measure of threshold α is defined by

(4.2) ρα(Z) = %(Z) + η ϑ([Z − α]+),

for every Z ∈ Z. We call η the risk factor of ρα. For the sake of simplicity we also call
this function a threshold risk measure (or TRM for short).

Let us show some examples of threshold risk measures.
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Example 1. Let η > 0, Z = L1(Ω,F , P ), and α ∈ Z be a threshold function. The
simplest threshold risk measure is the mean upper semideviation from target α given by

(4.3) ρα(Z) = E (Z) + η E ([Z − α]+) ,

for every Z ∈ Z. Despite its simplicity, the mean upper semideviation from target
appears organically in problems involving risk on electricity markets where the random
spikes in price make a priority to optimize while staying above a natural predefined
threshold function.

Example 2. Let p ≥ 1, η > 0, Z = Lp(Ω,F , P ), and α ∈ Z be a threshold function.
Define the threshold exponential risk measure by

(4.4) ραe (Z) = E(Z) + η inf
τ>0

τ lnE
(
eτ
−1[Z−α]+

)
,

for every Z ∈ Z. The threshold exponential risk measure provides an alternative to the
mean upper semideviation from target with a “heavier” weight on the risk portion of
the measure. See [32, ex. 6.17] for details.

Now we introduce the basic properties of threshold risk measures and two represen-
tation theorems. The proofs of these theorems are deferred to the appendix.

Theorem 4. Let ρα : Z → R be a threshold risk measure with threshold function α ∈ Z.
Then ρα is a real-valued, continuous and subdifferentiable risk measure on Z. Moreover,
ρα satisfies the following properties:

(T1) Convexity: ρα (tZ + (1− t)W ) ≤ tρα(Z) + (1− t)ρα(W ), for all Z,W ∈ Z and
all t ∈ [0, 1];

(T2) Monotonicity: If Z,W ∈ Z and Z �W , then ρα(Z) ≤ ρα(W );
(T3) Translation equivariance: If a ∈ R and Z ∈ Z, then ρα(Z + a) = ρα−a(Z) + a;

(T4) Positive homogeneity: If t > 0 and Z ∈ Z, then ρα(tZ) = tρα/t(Z).

Notice that in (T3) we are not requiring the random variable α − a to be nonnegative,
therefore α− a is a threshold function only when α− a � 0.

The TRM also hold some extra properties regarding its threshold functions.

Theorem 5. Let α, β ∈ Z be threshold functions. Then the threshold risk measure
satisfies the following properties:

(C1) Convexity of threshold functions: ρλα+(1−λ)β(Z) ≤ λρα(Z) + (1 − λ)ρβ(Z), for
all Z ∈ Z and all λ ∈ [0, 1];

(C2) Monotonicity of threshold functions: if α � β and Z ∈ Z, then ρα(Z) ≥ ρβ(Z).

The following representation theorem for TRM relies on the Fenchel-Moreau Theorem
(see [32, thm. 6.4, 7.7]) and the basic properties introduced in Theorem 4.

Theorem 6 (First Representation Theorem of TRM). Let (Ω,F , P ) be a sample space
with sigma algebra F and probability measure P . Let p ∈ [1,+∞), q ∈ (1,+∞] be such
that 1/p + 1/q = 1 and let Z = Lp(Ω,F , P ), Z∗ = Lq(Ω,F , P ) be a conjugate pair

of spaces. Let α ∈ Z be a threshold function and let ρα : Z → R be a threshold risk
measure with conjugate dual (ρα)∗ : Z∗ → R. Then there exists a set A such that for
every random variable Z ∈ Z:

(4.5) ρα(Z) = sup
ζ∈A
{〈ζ, Z〉 − (ρα)∗(ζ)} , ∀Z ∈ Z,
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such that

A ⊆ {ζ ∈ Z∗ | ζ � 0} .

The following theorem leverages the representation theorem of coherent risk measures
[32, thm. 6.4] and the [·]+ operator to obtain a computationally tractable representation
for TRM.

Theorem 7 (Second Representation Theorem of TRM). Let (Ω,F , P ) be a sample
space with sigma algebra F and probability measure P . Let p ∈ [1,+∞), q ∈ (1,+∞] be
such that 1/p+ 1/q = 1 and let Z = Lp(Ω,F , P ), Z∗ = Lq(Ω,F , P ) be a conjugate pair
of spaces. Let η > 0, α ∈ Z be a threshold function, and let % : Z → R, and ϑ : Z → R
be real-valued, lower semicontinuous coherent risk measures. Then the threshold risk
measure given by

ρα(Z) = %(Z) + η ϑ([Z − α]+), ∀Z ∈ Z,

can be obtained by solving the following optimization problem:

(4.6)

sup
µ,ζ

min
X
〈µ,Z〉+ η 〈ζ,X〉

s.t. X � Z − α
X � 0, X ∈ Z
µ ∈ ∂%(0), ζ ∈ ∂ϑ(0),

where the subdifferentials ∂%(0) and ∂ϑ(0) are closed convex sets of probability density
functions on Z with respect to the reference probability P .

Due to the convexity of the subdifferentials ∂%(0) and ∂ϑ(0), representation (4.6) is
a convex optimization problem with linear objective function to which we can apply
specialized techniques to efficiently obtain a solution.

Below we show the representations given by theorems 6 and 7 applied to the examples
of threshold risk measures presented before.

Example 3. Let η > 0, Z = L1(Ω,F , P ), and α ∈ Z be a threshold function. The
conjugate dual to Z is the space Z∗ = L∞(Ω,F , P ) of essentially bounded P -measurable
random variables. Consider the mean upper semideviation from target α given by

(4.7) ρα(Z) = E (Z) + η E ([Z − α]+) ,

for every Z ∈ Z.
Suppose now that the threshold function α is constant. Then

E ([Z − α]+) = sup
‖ζ‖∞≤1

E (ζ[Z − α]+)

= sup
‖ζ‖∞≤1
ζ(·)≥0

E (ζZ − αζ) ,
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therefore

(4.8)

ρα(Z) = E (Z) + η E ([Z − α]+)

= E (Z) + sup
‖ζ‖∞≤η
ζ(·)≥0

E (ζZ − αζ)

= sup
‖ζ‖∞≤η
ζ(·)≥0

{E (Z) + E (ζZ)− αE (ζ)}

= sup
‖ζ‖∞≤η
ζ(·)≥0

{〈1 + ζ, Z〉 − αE (ζ)}

= sup
ζ∈A
{〈ζ, Z〉 − αE (ζ − 1)} ,

where

(4.9) A = {ζ + 1 | ζ ∈ Z∗, ‖ζ‖∞ ≤ η, ζ � 0} .

In this way we see that first representation (4.5) holds with A given by (4.9) and
(ρα)∗(ζ) = αE [ζ − 1] , ∀ζ ∈ Z∗.

For %(Z) = E(Z) and ϑ(Z) = E(Z) it is not difficult to see that the sets ∂%(0) and
∂ϑ(0) are singletons consisting of the density with respect to the reference probability
P , i.e. the Radon-Nikodym derivative with respect to P . Denoting these densities by
µ and ζ, respectively, we get that %(Z) = 〈µ,Z〉 and ϑ(Z) = 〈ζ, Z〉, for all Z ∈ Z. We
obtain the second representation (4.6) of ρα(Z) by solving

(4.10)

min
X
〈µ,Z〉+ η〈ζ,X〉

s.t. X � Z − α
X � 0, X ∈ Z.

Suppose now that Ω is a finite probability space of n elements with vector of prob-
abilities P = (p1, . . . , pn). Then we identify Z and Z∗ with Rn, thus obtaining that
representation (4.10) is given by the following linear program:

(4.11)

min
X∈Rn

n∑
i=1

piµiZi + η
n∑
i=1

piζiXi

s.t. Xi ≥ Zi − αi, 1 ≤ i ≤ n
Xi ≥ 0, 1 ≤ i ≤ n.

Example 4. Let p ≥ 1, η > 0, Z = Lp(Ω,F , P ), and α ∈ Z be a threshold function.
Consider the threshold exponential risk measure given by

(4.12) ραe (Z) = E(Z) + η inf
τ>0

τ lnE
(
eτ
−1[Z−α]+

)
,

for every Z ∈ Z. Define coherent risk measures %(Z) = E(Z) and ϑ(Z) = infτ>0 τ lnE
(
eτ
−1Z
)

.

As seen before, the set ∂%(0) is a singleton consisting of the density µ with respect to
the reference probability P . On the other hand, [32, ex. 6.17] shows that ∂ϑ(0) ={
ζ ∈ Z∗ | E[ζW ] ≤ lnE[eW ], ∀W ∈ Z

}
. Applying the representation theorem of coher-

ent risk measures [32, thm. 6.4] to ϑ, we obtain the second representation (4.6) of ραe (Z)
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by solving

(4.13)

sup
ζ

min
X
〈µ,Z〉+ η〈ζ,X〉

s.t. E[ζW ] ≤ lnE[eW ], ∀W ∈ Z
X � Z − α
X � 0, X ∈ Z, ζ ∈ Z∗.

Suppose now that p = 1 and so Z = L1(Ω,F , P ) and Z∗ = L∞(Ω,F , P ). Let Ω be
a finite probability space of n elements with vector of probabilities P = (p1, . . . , pn).
Then we identify Z and Z∗ with Rn, thus obtaining that representation (4.13) is given
by the following linear program:

(4.14)

sup
ζ∈Rn

min
X∈Rn

n∑
i=1

piµiZi + η

n∑
i=1

piζiXi

s.t.
n∑
i=1

piζiWi ≤ lnE[eW ], ∀W ∈ Rn

Xi ≥ Zi − αi, 1 ≤ i ≤ n
Xi ≥ 0, 1 ≤ i ≤ n.

We can get around the infinitely many constraints in (4.14) by using a delayed constraint
generation method. In this method at iteration k we have {W 1, . . . ,W k} ⊂ Rn and solve
the master problem

(4.15)

sup
ζ∈Rn

min
X∈Rn

n∑
i=1

piµiZi + η

n∑
i=1

piζiXi

s.t.
n∑
i=1

piζiW
j
i ≤ lnE[eW

j
], 1 ≤ j ≤ k

Xi ≥ Zi − αi, 1 ≤ i ≤ n
Xi ≥ 0, 1 ≤ i ≤ n.

Let ζk ∈ Rn be an optimal solution of (4.15) and solve the following problem:

(4.16) max
W∈Rn

n∑
i=1

piζ
k
iWi − lnE[eW ].

We can solve (4.16) by setting f(W ) =
∑n

i=1 piζ
k
iWi − lnE[eW ] and looking at the

points where ∂f(W )/∂W = 0. If the solution to (4.16) is non positive then ζk is an
optimal solution to (4.14) and we are done. On the other hand, if the solution to (4.16)

is positive, then we pick a W k+1 such that
∑n

i=1 piζ
k
iW

k+1
i − lnE[eW

k+1
] > 0, form the

extended set {W 1, . . . ,W k,W k+1}, and iterate by solving the master problem (4.15) on
the extended set.

5. Dynamic Risk Measures, Time Consistency and Other Properties

In this section we lay out the foundation of our risk evaluation method based on
TRM. The intention is to develop the risk-measures support for models suitable for
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risk-averse sequential decision making with TRM. For an in-depth view at these topics
for coherent risk measures see [11,21,27,29,32].

In the remainder of the section we use the following definitions. Let (Ω,F ,P) be a
probability space with a filtration F0 ⊂ · · · ⊂ FT ⊂ F and an adapted sequence of ran-
dom variables Zt, t = 0, . . . , T . Define the spaces Zt = Lp(Ω,Ft,P), p ∈ [1,+∞), t =
0, . . . , T and let Zt,T = Zt × · · · × ZT . We assume that Z0 is deterministic and so

F0 = {Ω, ∅} and the space Z0 can be associated to R.
In this paper we consider random variables Z ∈ Zt as stage-wise costs. Our goal is to

define a way to evaluate the risk of the cost subsequence Zt, . . . , ZT by using threshold
risk measures. We take the first steps towards this by defining a threshold conditional
risk measure based on the TRM and the coherent conditional risk measures developed
by Ruszczyński and Shapiro in [29].

5.1. Conditional Risk Measures. In the classical setting of multistage stochastic
optimization, the main tool used to formulate the corresponding dynamic programming
equations is the concept of conditional expectation. Given two sigma algebras Ft ⊂
Ft+1, we let Ft represent our knowledge when the expectation is evaluated at time t,
and Ft+1 to represent all events under immediate future consideration. In this context,
the conditional expectation can be viewed as a linear mapping from a space of Ft+1-
measurable functions into a space of Ft-measurable functions. We use this mapping
idea to extend the concept of conditional expectation to risk measures starting with
coherent risk measures.

Definition 3. A one-step coherent conditional risk measure is a lower semicontinuous
function ρt : Zt+1 → Zt satisfying the following axioms:

(A1′) Convexity : ρt (kZ + (1− k)Z ′) � kρt(Z) + (1 − k)ρt(Z
′), for all Z,Z ′ ∈ Zt+1

and all k ∈ [0, 1];
(A2′) Monotonicity : If Z,Z ′ ∈ Zt+1 and Z � Z ′, then ρt(Z) � ρt(Z ′);
(A3′) Translation equivariance: If W ∈ Zt and Z ∈ Zt+1, then ρt(Z+W ) = ρt(Z)+W ;
(A4′) Positive homogeneity : If k ≥ 0 and Z ∈ Zt+1, then ρt(kZ) = kρt(Z).

We are ready now to extend the conditional expectation to threshold risk measures.

Definition 4. Let %t : Zt+1 → Zt and ϑt : Zt+1 → Zt be two one-step coherent
conditional risk measures. If t = 0, then ρ0 and %0 are assumed to be real-valued. Let
η > 0 and αt ∈ Zt+1 be a threshold function. We define a one-step threshold conditional
risk measure as the function ραt

t : Zt+1 → Zt given by

(5.1) ραt
t (Z) = %t(Z) + ηϑt([Z − α]+),

for every Z ∈ Zt+1.

Using conditional expectations we can obtain one-step conditional risk measures
based on the examples given before.

Example 5. Given two sigma algebras Ft ⊂ Ft+1 and corresponding spaces Zt and
Zt+1, we define the one-step conditional mean upper semideviation from target αt ∈ Zt+1

by

(5.2) ραt
t (Z) = E (Z | Ft) + η E

(
[Z − α]+

∣∣Ft) ,
for every Z ∈ Zt+1. It is easy to check that this risk measure satisfies all the axioms of
the one-step threshold conditional risk measures.
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Example 6. Given two sigma algebras Ft ⊂ Ft+1 and corresponding spaces Zt and
Zt+1, we define the one-step threshold exponential risk measure by

(5.3) ραt
e,t(Z) = E (Z | Ft) + η inf

τ>0
τ lnE

(
eτ
−1[Z−α]+

∣∣∣Ft) ,
for every Z ∈ Zt+1. It is easy to check that this risk measure satisfies all the axioms of
the one-step threshold conditional risk measures.

The following theorems show some of the basic properties of the one-step threshold
conditional risk measures. The proofs of these theorems are deferred to the appendix.

Theorem 8. Let ραt
t : Zt+1 → Zt be a one-step threshold conditional risk measure with

threshold function αt ∈ Zt+1. Then for each t = 0, . . . , T − 1, the function ραt satisfies
the following properties:

(T0′) ρα0
0 is a real-valued, lower semicontinuous and subdifferentiable risk measure;

(T1′) Convexity: ραt
t (kZ + (1− k)W ) � kραt

t (Z)+(1−k)ραt
t (W ), for all Z,W ∈ Zt+1

and all k ∈ [0, 1];
(T2′) Monotonicity: If Z,W ∈ Zt+1 and Z �W , then ραt

t (Z) � ραt
t (W );

(T3′) Translation equivariance: If W ∈ Zt and Z ∈ Zt+1, then ραt (Z + W ) =

ρα−Wt (Z) +W ;

(T4′) Positive homogeneity: If k > 0 and Z ∈ Zt+1, then ραt
t (kZ) = kρ

αt/k
t (Z).

Notice that in (T3′) we are not requiring the random variable α−W to be nonnegative,
therefore α−W is a threshold function only when α−W � 0.

The one-step threshold conditional risk measures also hold some extra properties
regarding its threshold functions.

Theorem 9. Let αt, βt ∈ Zt+1 be threshold functions. The one-step threshold condi-
tional risk measure satisfies the following properties:

(C1′) Convexity of threshold functions: ρ
λαt+(1−λ)βt
t (Z) � λραt

t (Z) + (1 − λ)ρβtt (Z),
for all Z ∈ Zt+1 and all λ ∈ [0, 1];

(C2′) Monotonicity of threshold functions: if αt ≤ βt and Z ∈ Zt+1, then ραt
t (Z) �

ρβtt (Z).

5.2. Dynamic Risk Measures. From this moment on we fix η > 0 and T ∈ N. We
consider sequences of threshold functions as elements of the set Z+

1,T = Z+
1 × · · · × Z

+
T ,

where Z+
t denotes the set of nonnegative random variables belonging to Zt, t = 1, . . . , T .

To ease our notation we use bold Greek letters to denote sequences of threshold functions
in Z+

1,T . Notice that a threshold sequence α = {αt}T−1
t=0 ∈ Z

+
1,T is such that αt ∈ Z+

t+1, for

every t = 1, . . . , T − 1. Given two threshold sequences α = {αt}T−1
t=0 and β = {βt}T−1

t=0 ,
we say that α � β if αt � βt, for every t = 0, . . . , T − 1.

Definition 5. Let α = {αt}T−1
t=0 ∈ Z

+
1,T and let {ραt

t }
T−1
t=0 be an adapted sequence

of one-step threshold conditional risk measures. A threshold dynamic risk measure

(or a dynamic risk measure for short) is a sequence of mappings
{
ραt,T

}T
t=0

, where
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ραt,T : Zt,T → Zt is given by

(5.4)

ραt,T (Zt, . . . , ZT ) = Zt+ρ
αt
t

(
Zt+1 +ρ

αt+1

t+1

(
Zt+2 + · · ·+ραT−2

T−2

(
ZT−1 +ρ

αT−1

T−1 (ZT )
)
· · ·
))

,

t = 0, . . . , T .

The following theorem states some of the most relevant properties of the mappings
defined in (5.4).

Theorem 10. Let
{
ραt,T

}T
t=0

be a threshold dynamic risk measure. Then ρα0,T is real-

valued and lower semicontinuous. In addition, the sequence of mappings
{
ραt,T

}T
t=0

satisfy the following properties:

(DR1) Convexity in Zt,T : ραt,T (kZ + (1− k)W ) � kραt,T (Z) + (1 − k)ραt,T (W ), for all

Z,W ∈ Zt,T and all k ∈ [0, 1];
(DR2) Monotonicity in Zt,T : If Z,W ∈ Zt,T and Z �W , then ραt,T (Z) � ραt,T (W );

(DR3) Convexity in threshold sequences: ρ
λα+(1−λ)β
t,T (Z) � λραt,T (Z) + (1 − λ)ρβt,T (Z),

for all Z ∈ Zt,T , all α,β ∈ Z+
1,T , and all λ ∈ [0, 1];

(DR4) Monotonicity in threshold sequences: If Z ∈ Zt,T , α,β ∈ Z+
1,T , and α � β then

ραt,T (Z) � ρβt,T (Z).

Proof. We start by showing that ρα0,T is real-valued.

ρα0,T (Z0, . . . , ZT ) = Z0 + ρα0
0

(
Z1 + ρα1

1

(
Z2 + · · ·+ ρ

αT−2

T−2

(
ZT−1 + ρ

αT−1

T−1 (ZT )
)
· · ·
))

= Z0 + ρα0
0

(
ρα1,T (Z1, . . . , ZT )

)
<∞,

where the last inequality holds because Z0 is deterministic (since F0 = {Ω, ∅}) and,
by definition, ρα0

0 is a threshold risk measure which is real-valued by Theorem 4. The
function ρα0,T is by definition a composition of lower semicontinuous functions and as
such it is a lower semicontinuous function itself.

By applying recursively the convexity and monotonicity properties (T1′)-(T2′) of the
one-step threshold conditional risk measures (Theorem 8) we can see that properties
(DR1) and (DR2) hold. Similarly, the recursive application of properties (C1′)-(C2′)
from Theorem 9, show that properties (DR3) and (DR4) hold. �

Our use of the term dynamic risk measure is based on the work presented in [7,
12, 13, 15, 25, 27]. In light of Theorem (10) we say that the threshold dynamic risk

measure
{
ραt,T

}T
t=0

is proper, lower semicontinuous, convex, and monotone. Now we

can leverage the theory and concepts already defined for dynamic risk measures to give
a solid foundation to our risk evaluation method. In the rest of this section we discuss
some important properties of threshold dynamic risk measures.
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Theorem 11. Let 0 ≤ t < r ≤ T and Z, Z̃ ∈ Zt,T be such that Zi � Z̃i, i =

t, . . . , r − 1. Then ραr,T (Zr, . . . , ZT ) � ραr,T (Z̃r, . . . , Z̃T ) implies that ραt,T (Zt, . . . , ZT ) �
ραt,T (Z̃t, . . . , Z̃T ).

Proof. By the monotonicity property of ραt,T we get that for any r that satisfies 0 ≤ t <
r ≤ T :

ραt,T (Zt, . . . , ZT ) = Zt + ρatt

(
Zt+1 + ρ

at+1

t+1

(
Zt+2 + · · ·+ ρ

ar−2

r−2

(
Zr−1 + ρ

ar−1

r−1 (ραr,T (Zr, . . . , ZT ))
)
· · ·
))

≤Zt + ρatt

(
Zt+1 + ρ

at+1

t+1

(
Zt+2 + · · ·+ ρ

ar−2

r−2

(
Zr−1 + ρ

ar−1

r−1 (ραr,T (Z̃r, . . . , Z̃T ))
)
· · ·
))

≤Z̃t + ρatt

(
Z̃t+1 + ρ

at+1

t+1

(
Z̃t+2 + · · ·+ ρ

ar−2

r−2

(
Z̃r−1 + ρ

ar−1

r−1 (ραr,T (Z̃r, . . . , Z̃T ))
)
· · ·
))

= ραt,T (Z̃t, . . . , Z̃T ).

�

We call the property described in Theorem 11 the time consistency of the dynamic

risk measure
{
ραt,T

}T
t=0

and it is adapted from similar concepts introduced in [25, 27].

Time consistency means that if the sequence Z is not more than Z̃ from time t to r− 1
and Z is perceived as less risky than Z̃ from the point of view of some future time r,
then Z is less risky than Z̃. Thanks to time consistency our dynamic risk measure does
not need to backtrack its decisions when it is computed in a recursive manner from tail
to head. This is a key property that allows the development of Bellman-type equations
for the evaluation of our threshold dynamic risk measure.

For a threshold dynamic risk measure
{
ραt,T

}T
t=0

we define a broader family of thresh-

old conditional risk measures, by setting

(5.5) ραt,r(Zt, . . . , Zr) = ραt,T (Zt, . . . , Zr, 0, . . . , 0), 0 ≤ t ≤ r ≤ T.

This extension is based on similar concepts discussed in [27] where a similar extension
is performed for coherent conditional risk measures.

Another important property of dynamic risk measures is the local property, discussed
in detail in [7, 18,19,27].

Definition 6. A threshold (or coherent) conditional risk measure ρt,r, 0 ≤ t ≤ r ≤ T ,
has the local property if for all sequences Z ∈ Zt,r and all events B ∈ Ft we have

(5.6) ρt,r(1BZ) = 1Bρt,r(Z).

We say that a threshold (or coherent) dynamic risk measure {ρt}Tt=0 has the local prop-
erty if for every 0 ≤ t < r ≤ T , the conditional risk measure ρt,r has the local property.

The local property is desired because it avoids the counterintuitive situation where
an event that does not happen at time t influences the measure of risk at a later time.
In other words, if B ∈ Ft has measure zero (i.e B does not happen at time t) then

ραt,r(1BZ) = 1Bρ
α
t,r(Z) = 0.
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It is known that coherent dynamic risk measures have the local property, see [19,27,29].
Using this result we can show that threshold dynamic risk measures also have property
(5.6).

Theorem 12. Let η > 0, {%t}Tt=0 , {ϑt}
T
t=0 be sequences of one-step coherent conditional

risk measures such that %0 and ϑ0 are real-valued, and let α = {αt}T−1
t=0 ∈ Z

+
1,T .

Let {ραt }
T−1
t=0 be the threshold dynamic risk measure obtained from the one-step thresh-

old conditional risk measures defined by ραt
t (Z) = %t(Z) + η ϑt[Z − αt]+, ∀Z ∈ Zt+1.

Then for all 0 ≤ k ≤ r ≤ T , all events B ∈ Fk, and all Z ∈ Zk,r:

ραk,r(1BZ) = 1Bρ
α
k,r(Z).

In other words, the threshold dynamic risk measure {ραt }
T−1
t=0 has the local property.

Proof. For α ∈ Z+
k , B ∈ Fk, and Z ∈ Zk+1, the threshold conditional risk measure ραk

satisfies:

ραk (1BZ) = %k (1BZ) + η ϑk
(
[1BZ − α]+

)
= %k (1BZ) + η ϑk

(
1B [Z − α]+

)
= 1B

(
%k (Z) + η ϑk

(
[Z − α]+

))
= 1Bρ

α
k (Z),

(5.7)

where in the second equality we used Theorem 2. Applying (5.7) recursively we obtain
that

ραt,r(1BZ) = 1BZt + ραt
t

(
1BZt+1 + ρ

αt+1

t+1

(
1BZt+2 + · · ·+ ρ

αr−2

r−2

(
1BZr−1 + ρ

αr−1

r−1 (1BZr)
)
· · ·
))

= 1BZt + ρatt

(
1BZt+1 + ρ

αt+1

t+1

(
1BZt+2 + · · ·+ ρ

αr−2

r−2

(
1B

[
Zr−1 + ρ

αr−1

r−1 (Zr)
] )
· · ·
))

...

= 1B

[
Zt + ραt

t

(
Zt+1 + ρ

αt+1

t+1

(
Zt+2 + · · ·+ ρ

αr−2

r−2

(
Zr−1 + ρ

αr−1

r−1 (Zr)
)
· · ·
))]

= 1Bρ
α
t,r(Z).

�

6. Finite Horizon Risk-Averse Markov Model and Bellman’s Equation

In this section we define our finite horizon risk-averse Markov model and describe a
Bellman-type equation for its recursive solution. The Bellman-type equation plays a
fundamental role in the development of efficient methods for the numerical solution of
our risk-averse Markov models. We start first by building our Markov model.

6.1. A Risk-Averse Markov Model. Fix p ∈ [1,+∞) be fixed. Consider the Markov
decision process introduced in section 2. Each policy π = {π0, . . . , πT } results in a cost
sequence Zπ0 , . . . , Z

π
T , where for each t = 0, . . . , T − 1, Zπt = ct(st, πt(st)), with ZπT =

cT (sT ). Given a policy π, we can interpret each Zπt as a random variable Zπt : S → R.
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Fix the first state s0 ∈ S and let Ω = ST+1. For each t = 0, . . . , T , let Ft be the
σ-algebra on Ω generated by policies π starting at s0 and having the same random Zπ

outcomes up to time t. We assume that the state space S is connected in the sense
that F0 = {∅,Ω}. We call F0 ⊂ · · · ⊂ FT the canonical information filtration on Ω.
Let F = FT and P be the probability measure on (Ω,F) obtained from the underlying
Markov process as described in section 2. We restrict ourselves to random variables
Zπt ∈ Lp(Ω,Ft, P ).

To simplify our exposition from now on we drop the π from the notation of the
random variable Zπt . We do this in such a way that at any moment it is clear from
context to which policy π the random variable Zt corresponds.

Let Zt = Lp(Ω,Ft, P ), t = 0, . . . , T , and consider a threshold sequence α = {αt}T−1
t=0 ∈

Z+
1,T . We evaluate the risk of a policy π by applying the threshold dynamic risk measure{
ραt,T

}T−1

t=0
to its random cost sequence Z0, . . . , ZT . By definition this is:

R(s0, π) = ρα0,T (Z0, . . . , ZT )

= Z0 + ρα0
0

(
Z1 + ρα1

1

(
Z2 + · · ·+ ρ

αT−2

T−2

(
ZT−1 + ρ

αT−1

T−1 (ZT )
)
· · ·
))

= c0(s0, π0(s0)) + ρα0
0

(
c1(s1, π1(s1)) + ρα1

1

(
c2(s2, π2(s2)) + · · ·+ ρ

αT−2

T−2

(
cT−1(sT−1, πT−1(sT−1)) + ρ

αT−1

T−1 (cT (sT ))
)
· · ·
))

,

(6.1)

where ραt
t : Zt+1 → Zt, t = 0, . . . , T − 1, is a one-step threshold conditional risk

measure. This is what brings us to the core of the difficulty in evaluating (6.1): at time
t the function ραt

t really depends on the entire history of the process up to time t, but
to have any hopes of obtaining a recursive method of solving the risk-averse dynamic
problem we should have a way to represent ραt

t as functions of S. To overcome this we
follow the decomposition method presented in [27] and construct a new conditional risk
measure that takes as argument measurable functions on the state space S instead of
the probability space Ω.

Let P0 be a fixed probability measure on (S,BS), where BS denotes the usual Borel
σ-algebra on S. Let V = Lp(S,B, P0),V∗ = Lq(S,B, P0) with p, q ∈ [1,+∞] such that
1/p+ 1/q = 1. Let V+ be the set of nonnegative random variables belonging to V. We
saw in section 3 that the spaces V,V∗ are conjugate dual paired with the scalar product

〈y, v〉 =

∫
S
y(s)v(s)dP0(s),

for all v ∈ V, y ∈ V∗. Let M⊆ V∗ be given by

(6.2) M =

{
m ∈ V∗

∣∣∣∣ ∫
S
m(s)dP0(s) = 1 and m(s′) ≥ 0, ∀s′ ∈ S

}
.

By definition each element m ∈M gives rise to a probability measure mdP0 on (S,BS)
given in reference to the fixed probability P0 and having m as its density.

In our application to dynamic programming the set V plays the role of the set of value
functions while M could be seen as the set of densities over the states arising from the
state-action pairs. The main purpose of the next few paragraphs and definitions is to
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formalize this in a way conducive to a Bellman-type equation. For this reason at this
moment we add one key assumption:

From now on we assume that the controlled kernels Qt take values in the setM.

Thus, the setM contains all the densities imposed by the state-action pairs on the state
space (S,BS).

We follow [27] and give two important definitions. For every s ∈ S, let A(s) denote
the action set of s, and let A denote the action space of the controlled Markov process
{st}Tt=0.

Definition 7. A measurable functional σ : V × V+ × S ×M → R is a threshold risk
transition mapping associated with the controlled kernel Q : graph(A)→M if

(i) For every α ∈ V+, s ∈ S, and m ∈ M, the functional v 7→ σ(v, α, s,m) is a
threshold risk measure on V with threshold function α;

(ii) For every v ∈ V, every α ∈ V+, and every measurable selection a(·) of A(·) the
function s 7→ σ(v, α, s,Q(s, a)) is an element of V.

Definition 8. A one-step threshold conditional risk measure ραt
t : Zt+1 → Zt is a

threshold Markov risk measure with respect to the controlled Markov process {st}Tt=0, if
there exist αt ∈ V+ and a threshold risk transition mapping σt : V × V+ × S ×M→ R
such that for all v ∈ V and all measurable at ∈ A(st) we have

(6.3) ραt
t (v(st+1)) = σt(v, αt, st, Qt(st, at)).

Example 7. Now we use the mean upper semideviation from target to construct a
threshold Markov risk measure. Define σt : V × V+ × S ×M→ R by

(6.4) σt(v, α, s,m) = 〈v,m〉+ η 〈(v − α)+,m〉 .

It is not difficult to see that σt is a threshold risk transition mapping. Let ραt be the
one-step conditional mean upper semideviation from target defined in example 5. The
following proposition shows that ραt is a threshold Markov risk measure associated to
σt.

Proposition 13. Let αt ∈ V+, st ∈ S, and at ∈ At(s) be a measurable selection,
t = 0, . . . , T −1. Let σt be as in (6.4) and let ραt be the one-step conditional mean upper
semideviation from target defined in example 5. Then for all v ∈ V we have:

ραt
t (v(st+1)) = σt(v, αt, st, Qt(st, at)).

Proof. Let EQt(st,at) denote the expectation with respect to the probability measure
Qt(st, at)dP0 defined by the densityQt(st, at) ∈M. Notice that by definition EQt(st,at)(v) =
E (v(st+1) |Ft ), for any v ∈ V. Then

σt(v, αt, st, Qt(st, at)) = 〈v,Qt(st, at)〉+ η 〈[v − αt]+, Qt(st, at)〉
= EQt(st,at)(v) + η EQt(st,at) ([v − αt]+)

= E (v(st+1) | Ft) + η E
(
[v(st+1)− αt]+

∣∣Ft)
= ραt

t (v(st+1)).

�
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The following theorem uses Theorem 7, i.e. the second representation theorem of
threshold risk measures, to give an easy to calculate representation for a threshold
Markov risk measure. This is key to the development of Bellman-type equations to
solve our main risk-averse problem with threshold risk measures.

Theorem 14. Consider a controlled Markov process with state space S, action space
A, action sets At, controlled kernels Qt : graph(A) → M, and cost functions ct, for
t = 0, . . . , T − 1. Let σt : V × V+ × S ×M → R, t = 0, . . . , T − 1, be threshold risk
transition mappings associated to the controlled Markov process. Moreover, suppose that
for every α ∈ V+, every s ∈ S, and every m ∈ M the functional v 7→ σt(v, α, s,m),
t = 0, . . . , T − 1, is lower semicontinuous.

Let αt ∈ V+ and ραt
t : Zt+1 → Zt, t = 0, . . . , T −1, be threshold Markov risk measures

with respect to the controlled Markov process such that

(6.5) ραt
t (v(st+1)) = σt(v, αt, st, Qt(st, at)),

for all measurable selections at ∈ A(st).
Then there exist closed convex-valued multifunctions Gt : S ×M ⇒ M×M, t =

0, . . . , T − 1, such that ραt
t (v(st+1)) is obtained by solving the following optimization

problem on random variables

(6.6)

sup
µ,ζ

min
x
〈µ, v〉+ η〈ζ, x〉

s.t. x � v − αt
x � 0, x ∈ V
(µ, ζ) ∈ Gt (st, Qt(st, at)) .

If in addition, the functional σt(·, α, s,m) is continuous, then the multifunction Gt is
bounded, t = 0, . . . , T − 1. Moreover, if p ∈ [1,+∞), then σt(·, α, s,m) is continuous
and Gt is weakly*-compact, t = 0, . . . , T − 1. In this case we can replace the “sup” in
(6.6) by the “max” operation.

Proof. Let s ∈ S and m ∈ M be a measurable selection. By assumption, the func-
tional v 7→ σt(v, α, s,m) is a lower semicontinuous threshold risk measure. Then by the
second representation theorem of TRM (i.e. Theorem 7) there are closed convex sets
G1
t (s,m), G2

t (s,m) ⊂M such that σt(v, α, s,m) is given by

(6.7)

sup
µ,ζ

min
x
〈µ, v〉+ η〈ζ, x〉

s.t. x � v − α
x � 0, x ∈ V
µ ∈ G1

t (s,m), ζ ∈ G2
t (s,m).

If in addition the functional σt(·, α, s,m) is continuous, then we can conclude that the
sets Git(s,m), i = 1, 2 are bounded. If p ∈ [1,+∞), then the convexity and mono-
tonicity properties of threshold risk measures guarantee that σt(·, α, s,m) is continuous.
Therefore Git(s,m), i = 1, 2 are weakly*-compact.

Define the functions Gt : S×M⇒M×M, t = 0, . . . , T −1 by Gt(s,m) = G1
t (s,m)×

G2
t (s,m). By the definition of threshold Markov risk measure, for any st ∈ S and any

measurable selection at ∈ A(st) we have that ραt
t (v(st+1)) = σt(v, αt, st, Q(st, at)), thus

completing the proof by applying (6.7) and the definition of Gt. �
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Definition 9. The multifunction Jt : S ×A⇒M×M given by the composition

(6.8) Jt(st, at) = Gt(st, Qt(st, at))
is called a threshold controlled multikernel associated with the controlled Markov process
{st} and the conditional threshold risk mapping ραt

t , t = 0, . . . , T − 1.

Fix αt ∈ V+, t = 0, . . . , T − 1. Let Ψt : V × graph(At) → R, t = 0, . . . , T − 1, be
defined by

(6.9) Ψt(v, st, at) = σt(v, αt, st, Q(st, at)).

The continuity property of Ψt discussed below plays a key role in the main proof for
the Bellman-type recursion of threshold risk measures.

Theorem 15. If Qt(st, ·) is continuous and Gt(st, ·) is lower semicontinuous, then the
function Ψt(v, st, ·) is lower semicontinuous.

Proof. SinceQt(st, ·) is a continuous function, the composition Jt(st, ·) = Gt(st, Qt(st, ·))
inherits the lower semicontinuity property of Gt(st, Qt(st, ·)). For every v ∈ V, define
the function ψv :M×M→ R given by

ψv(µ, ζ) = min
x
〈µ, v〉+ η〈ζ, x〉

s.t. x � v − αt
x � 0, x ∈ V.

Clearly ψv is continuous on M×M. Then by [6, thm. 1.4.16], the function

Ψt(v, st, ·) = sup
(µ,ζ)∈Gt(st,Qt(st,·))

ψv(µ, ζ)

is lower semicontinuous. �

6.2. Bellman-Type Equation for Finite Horizon Threshold Risk Measures.
With these definitions and results at hand we can state our risk-averse optimization
problem and a solution with Bellman-type equation. Fix T ≥ 1, an initial state s0 ∈ S,
and a threshold sequence α. Our main goal is to find the policy π that minimizes the
risk evaluation R(s0, π) given in (6.1). That is, we want to solve

(6.10) min
π∈Π

R(s0, π),

where Π denotes the set of admissible policies and

R(s0, π) = c0(s0, π0(s0))+ρα0
0

(
c1(s1, π1(s1))+ρα1

1

(
c2(s2, π2(s2))+· · ·+ραT−2

T−2

(
cT−1(sT−1, πT−1(sT−1))+ρ

αT−1

T−1 (cT (sT ))
)
· · ·
))

.

We call (6.10) the finite horizon threshold risk-averse problem. The following theo-
rem gives a Bellman-type equation that solves problem (6.10) for the case where our
decomposition method applies.

Theorem 16. Consider the risk-averse problem (6.10) together with all mathematical
constructions and definitions given in this section. Assume that the following conditions
are satisfied:

(i) For every s ∈ S the transition kernels Qt(s, ·), t = 0, . . . , T − 1, are continuous;
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(ii) The threshold conditional risk measures ραt
t , t = 0, . . . , T − 1 are threshold

Markov with αt ∈ V+ and such that for every s ∈ S the multifunctions Gt(s, ·)
are lower semicontinuous;

(iii) For all measurable selections at(·) ∈ At(·), the functions s 7→ ct(s, at(s)), t =
0, . . . , T − 1, and cT (·) are elements of V;

(iv) For every s ∈ S the functions ct(s, ·), t = 0, . . . , T , are lower semicontinuous;
(v) For every s ∈ S the sets At(s), t = 0, . . . , T − 1, are compact

Then problem (6.10) has an optimal solution and its optimal value v0(s0) is the
solution of the following Bellman-type equations:

(6.11) vT (s) = cT (s), s ∈ S,

(6.12) vt(s) = min
a∈At(s)

{ct(s, a) + σt (vt+1, αt, s,Qt (s, a))} , s ∈ S, t = T − 1, . . . , 0,

where for t = 0, . . . , T − 1 we have

(6.13)

σt(v, αt, s,Qt(s, a)) = sup
µ,ζ

min
x
〈µ, v〉+ η〈ζ, x〉

s.t. x � v − αt
x � 0, x ∈ V
(µ, ζ) ∈ Gt(s,Qt(s, a)).

Moreover, an optimal Markov policy π̂ = {π̂0, . . . , π̂T−1} exists and satisfies the equa-
tions:

(6.14) π̂t(s) ∈ arg min
a∈At(s)

{ct(s, a) + σt(vt+1, αt, s,Qt(s, a))}, s ∈ S, t = T − 1, . . . , 0.

Conversely, any measurable solution of equations (6.11)–(6.14) is an optimal Markov
policy π̂.

Proof. Applying the monotonicity condition (T2′) to ραt , t = 0, . . . , T − 1, problem
(6.10) can be written as:

min
π0,...,πT−1

{
c0(s0, π0(s0)) + ρα0

0

(
c1(s1, π1(s1)) + ρα1

1

(
c2(s2, π2(s2)) + · · ·

· · ·+ ρ
αT−2

T−2

(
cT−1(sT−1, πT−1(sT−1)) + ρ

αT−1

T−1 (cT (sT ))
)
· · ·
))}

= min
π0,...,πT−2

{
c0(s0, π0(s0)) + ρα0

0

(
c1(s1, π1(s1)) + ρα1

1

(
c2(s2, π2(s2)) + · · ·

· · ·+ ρ
αT−2

T−2

(
min
πT−1

[
cT−1(sT−1, πT−1(sT−1)) + ρ

αT−1

T−1 (cT (sT ))
] )
· · ·
))}

.

Let us focus now on the innermost optimization problem. By assumption the threshold
conditional risk measure ρ

αT−1

T−1 is Markov, so we can rewrite the innermost optimization
problem as follows:
(6.15)

min
πT−1

{cT−1(sT−1, πT−1(sT−1)) + σT−1 (vT , αT−1, sT−1, QT−1 (sT−1, πT−1(sT−1)))} .
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Letting aT−1 = πT−1(sT−1), we get the reformulation:

(6.16) min
aT−1

{cT−1(sT−1, aT−1) + σT−1 (vT , αT−1, sT−1, QT−1 (sT−1, aT−1))} ,

Notice that by definition and the Markov property we can view the aT−1 in (6.16)
as being an action available at state sT−1, i.e. aT−1 ∈ AT−1(sT−1). In this way the
problem becomes equivalent to the problem in (6.12) for t = T − 1 and its solution is
given by (6.14) for t = T − 1.

Assumptions (i) and (ii) allow us to apply Theorem 15 and obtain that the func-
tion σT−1 (vT , αT−1, s,QT−1 (s, ·)) is lower semicontinuous. Assumption (iv) states that
cT−1(s, ·) is lower semicontinuous too. Then the compactness of the set AT−1(s), which
is given by assumption (v), guarantee us that problem (6.12) for t = T − 1 has an
optimal solution for every s ∈ S. This optimal solution, denoted by aT−1 = π̂T−1(s) is
a measurable function of s (see [26, thm. 14.37]).

Since cT ∈ V, it follows from definition 7 that the function vT−1 is an element of V.
Therefore we can conclude that problem (6.10) is equivalent to the problem

min
π0,...,πT−2

{
c0(s0, π0(s0)) + ρα0

0

(
c1(s1, π1(s1)) + ρα1

1

(
c2(s2, π2(s2)) + · · ·

· · ·+ ρ
αT−3

T−3

(
cT−2(sT−2, πT−2(sT−2)) + ρ

αT−2

T−2 (vT−1(sT−1))
)
· · ·
))}

.

(6.17)

This is just a problem similar to (6.10) where the horizon has been decreased by one and
the terminal cost equals vT−1(sT−1). We can easily check that problem (6.17) satisfies
all the conditions of the statement of this theorem. Therefore proceeding recursively in
this way for t = T − 1, . . . , 1, we obtain the desired result. �

In view of Theorem 16 we call the functions vt, t = 0, . . . , T − 1, the risk adjusted
threshold value functions. These equations give a simple algorithm to solve finite horizon
problems.

6.3. Optimality Equations Using the Post-Decision State Variable. In order
to simplify the Bellman-type equations (6.11)–(6.14) we restate our risk-averse dynamic
programming problem using post-decision state variables. The post-decision state vari-
able is a powerful construct that represent the state of the system after we have made
a decision but just before any new exogenous information has arrived. For a thorough
exposition on the subject see [23, ch. 4].

Assume that we are under the same conditions as of Theorem 16. For any t =
0, . . . , T − 1 define the risk-adjusted value of being in state s immediately after taking
decision a ∈ A(s) by

(6.18) vat (s) = σt (vt+1, ᾱt, s,Qt(s, a)) .

Then it is easy to see that the value function vt defined in (6.12) satisfies

(6.19) vt(s) = min
a∈At(s)

{ct(s, a) + vat (s)} ,

for all s ∈ S and t = 0, . . . , T − 1. We call vat the risk-adjusted post-decision value
function. From Theorem 16 we obtain the following post-decision state Bellman-type
equations:
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Theorem 17. Consider the risk-averse problem (6.10) together with all mathematical
constructions and definitions given in this section. Assume that all the conditions of
Theorem 16 are satisfied.

Then problem (6.10) has an optimal solution and its optimal value v0(s0) is the
solution of the following post-decision Bellman-type equations:

(6.20) vT (s) = cT (s), s ∈ S,

(6.21) vt(s) = min
a∈At(s)

{ct(s, a) + vat (s)} , s ∈ S, t = T − 1, . . . , 0,

where for t = 0, . . . , T − 1 we have

(6.22) vat (s) = σt (vt+1, ᾱt, s,Qt(s, a)) .

Moreover, an optimal Markov policy π̂ = {π̂0, . . . , π̂T−1} exists and satisfies the equa-
tions:

(6.23) π̂t(s) ∈ arg min
a∈At(s)

{ct(s, a) + vat (s)}, s ∈ S, t = T − 1, . . . , 0.

Conversely, any measurable solution of equations (6.20)–(6.23) is an optimal Markov
policy π̂.

The changes in Theorem 17 seem to be minimal but are accompanied with an im-
portant shift in perspective. By focusing on the post-decision state variables our ADP
algorithms use approximations to the post-decision value functions and thus “hide”
the computationally expensive expectations with the effect of simplifying our numerical
methods. This new outlook helps us in the contest against the curse of dimensional-
ity that plagues dynamic programming problems. For an in-depth look at “pre-” and
“post-” decision states and value functions in the context of dynamic programming see
[23, ch. 4].

6.4. Evaluating Risk Only At The End. Suppose that we are not concerned with
the risk incurred on the intermediate decision steps but we do care about the risk
attained at the very last step of our finite horizon dynamic model. In some of our
applications we have seen that this attitude towards risk is quite natural given that
the cost function aggregates the demand with all the profits and losses at the terminal
time T . An example of where this come into play are the time-lagged finite horizon
problems where some of the most relevant random events are deferred to the last step,
see [23, ch. 2].

We model this case by replacing the risk factor η in the threshold conditional risk
measure by a time dependent risk factor ηt, t = 0, . . . , T − 1. It is not difficult to see
that even with this change in the risk factor all of our previous results hold. To strictly
defer the risk evaluation to the very last step we simply have to require that ηt = 0 for
all t = 0, . . . , T − 2. With this in mind we obtain the following result.

Theorem 18. Consider the time lagged version described above of the risk-averse prob-
lem (6.10) together with all mathematical constructions and definitions given in this
section. Assume that all the conditions of Theorem 16 are satisfied.

Then problem (6.10) has an optimal solution and its optimal value v0(s0) is the
solution of the following Bellman-type equations:

(6.24) vT (sT ) = cT (sT ), sT ∈ S,
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(6.25)
vT−1(sT−1) = min

a∈AT−1(sT−1)
{cT−1(sT−1, a) + σT−1 (vT , αT−1, sT−1, QT−1 (sT−1, a))} , sT−1 ∈ S,

(6.26) vt(st) = min
a∈At(st)

{ct(st, a) + E [vt+1 | st, a]} , st ∈ S, t = T − 2, . . . , 0.

Moreover, an optimal Markov policy π̂ = {π̂0, . . . , π̂T−1} exists and satisfies the equa-
tions:

(6.27) π̂T−1(s) ∈ arg min
a∈AT−1(s)

{cT−1(s, a) + σT−1(vT , αT−1, s,QT−1(s, a))} , s ∈ S,

(6.28) π̂t(s) ∈ arg min
a∈At(s)

{ct(s, a) + E [vt+1 | s, a]} , s ∈ S, t = T − 2, . . . , 0.

Conversely, any measurable solution of equations (6.24)–(6.28) is an optimal Markov
policy π̂.

Theorem 18 states that we can solve this variant of the problem by applying the typi-
cal Bellman equations at all but the T−1 state where we need to take into consideration
the desired threshold risk measure. Consider a new set of cost functions {c̃t}T−1

t=0 given
by c̃t = ct, t = 0, . . . , T − 2 and

(6.29) c̃T−1(s, a) = cT−1(s, a) + σT−1(vT , αT−1, s,QT−1(s, a)),

for all (s, a) ∈ graph(A). Then we can see that another way to deal with the time
lagged problem is to solve a classical risk-neutral dynamic program with the new cost
functions c̃t, t = 0, . . . , T − 1 and every other component equal to the time lagged
problem discussed in Theorem 18. This method has the advantage of reducing the
problem to a regular dynamic program to which we can apply a wide array of methods
to obtain or approximate its solution (see [23]).

7. Static-Threshold Dynamic Risk Measures

Consider now a threshold sequence α = {αt}T−1
t=0 such that for every t = 0, . . . , T −1,

the threshold function αt is constant. This threshold sequence is static in the sense that
at any given moment the threshold does not depend on either the state or the actions
taken. Static-threshold sequences can be represented as sequences α ∈ RT+, where each
α can be seen as a series of goals to meet along our dynamic optimization process.

In this section we focus on threshold dynamic risk measures with static-threshold se-
quences. We call these, static-threshold dynamic risk measures. A fixed static-threshold
sequence yields a special, and in essence simpler, case of the optimization problem (6.10)
and as such, we can apply all the techniques already discussed in previous sections to it.
The interesting case is when we are presented with a range of static-threshold sequences
and we must select the one that is “best” for our problem.

To this end we take a robust optimization point of view and seek to choose the best
policy subjected to its worst possible static-threshold sequence. In more formal words,
we want to solve

(7.1) min
π∈Π

max
α∈X

R(s0, π,α)
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where Π denotes the set of admissible policies, X ⊆ RT+ is a convex set, and

R(s0, π,α) = c0(s0, π0(s0))+ρα0
0

(
c1(s1, π1(s1))+ρα1

1

(
c2(s2, π2(s2))+· · ·+ραT−2

T−2

(
cT−1(sT−1, πT−1(sT−1))+ρ

αT−1

T−1 (cT (sT ))
)
· · ·
))

,

with π = {πt}T−1
t=0 and α = {αt}T−1

t=0 . Problem (7.1) is a difficult min-max non-convex
optimization problem and its analysis lies outside the scope of this paper. Instead,
we focus on a special case where, thanks to the properties of threshold dynamic risk
measures, the optimization of (7.1) follows simple rules.

7.1. Minimum Static-Threshold Sequences. Suppose that the convex set of static-
thresholds, X ⊆ RT+, contains a minimum element. That is, an element α∗ ∈ X such
that α∗ ≤ α for every α ∈ X, where ≤ denotes the componentwise partial order on
RT . Clearly, such a minimum element α∗ is unique. In this case, property (DR4)
of Theorem 10 gives that ρα

∗
0,T (Z) ≥ ρα0,T (Z), for every α ∈ X and every Z ∈ Z0,T .

Therefore we can conclude that for any policy π ∈ Π:

max
α∈X

R(s0, π,α) = R(s0, π,α
∗).

Thus, the solution to problem (7.1) is obtained by solving

(7.2) min
π∈Π

R(s0, π,α
∗),

and this can be done applying the techniques discussed in previous sections.
This is summarized in the following theorem:

Theorem 19. Let
{
ραt,T

}T
t=0

be a static-threshold dynamic risk measure and X ⊆ RT+
be a convex set of static-thresholds with a minimum element α∗ ∈ X. Then the solution
of the min-max optimization problem (7.1) is given by

min
π∈Π

R(s0, π,α
∗).

The following are some brief examples where Theorem 19 is applied.

Example 8. Consider the case where we have fixed thresholds 0 ≤ βt ≤ γt, t =

0, . . . , T −1, and X =
{
α = {αt}T−1

t=0 | βt ≤ αt ≤ γt, t = 0, . . . , T − 1
}

. The set X forms

a convex multidimensional box and has as minimum element the sequence β = {βt}T−1
t=0 .

Therefore by Theorem 19, problem (7.1) is given by

min
π∈Π

R(s0, π,β).

Example 9. Consider the multidimensional box X defined in example 8, let X̃ be the

set of nondecreasing sequences in X, and suppose that X̃ is not empty. Then X̃ is
convex and has as minimum element the sequence α̃ = {α̃t}T−1

t=0 , where α̃0 = β0 and
α̃t = min {α ∈ [βt, γt] | α̃t−1 ≤ α} , t = 1, . . . , T−1. Therefore we can apply Theorem 19

to solve problem (7.1) over the set of static-thresholds X̃.

Example 10. Similar to example 9, consider the multidimensional box X defined in

example 8 and let X̂ be the set of nonincreasing sequences in X. As before, suppose

that X̂ is not empty. Then X̂ is convex and has as minimum element the sequence
α̂ = {α̂t}T−1

t=0 , where α̂T−1 = βT−1 and α̂t = min {α ∈ [βt, γt] | α ≤ α̂t+1} , t = T −
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2, . . . , 0. Therefore we can apply Theorem 19 to solve problem (7.1) over the set of

static-thresholds X̂.

Theorem 19 encompasses all the applications for static-threshold sequences that we
have so far encountered in our research. As an illustration, the nondecreasing sequences
of example 9 can be seen as a relaxation of the risk-aversion towards later stages of
the time horizon, while the nonincreasing sequences of example 10 can be interpreted
as a tightening of the risk-aversion. Both of these attitudes towards risk are natural in
our applications to energy systems and markets where we apply them to obtain new
risk-averse policies.
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Appendix A

Proof of Theorem 1. Let Z = Lp(Ω,F , P ), let α ∈ Z be a threshold function and
consider the nonnegative operator [·]+.
(N0) Closeness: Let Z ∈ Z, then by the Minkowski inequality

‖[Z − α]+‖p ≤ ‖ |Z|+ |α| ‖p ≤ ‖Z‖p + ‖α‖p <∞.

Therefore [Z − α]+ ∈ Z.
(N1) Convexity: Let Z,W ∈ Z and t ∈ [0, 1]. Then for every ω ∈ Ω

[tZ(ω) + (1− t)W (ω)]+ ≤ t[Z(ω)]+ + (1− t)[W (ω)]+.

Therefore [tZ + (1− t)W ]+ � t[Z]+ + (1− t)[W ]+.
Properties (N2)–(N5) follow similarly by application to single elements ω ∈ Ω. �

Proof of Theorem 2. Let Z = Lp(Ω,F , P ), Z ∈ Z, α ∈ Z be a threshold function,
and let B ∈ F be a random event of the probability space (Ω,F ,P).

Suppose that ω ∈ B, then 1B(ω) = 1 and

(A.1) [1B(ω)Z(ω)− α(ω)]+ = [Z(ω)− α(ω)]+ = 1B(ω) [Z(ω)− α(ω)]+ .

On the other hand, if ω 6∈ B, then 1B(ω) = 0 and

(A.2) [1B(ω)Z(ω)− α(ω)]+ = [0− α(ω)]+ = 0 = 1B(ω) [Z(ω)− α(ω)]+ ,

where the second equality is justify by the fact that the threshold function α is nonneg-
ative. Clearly (A.1) and (A.2) imply that [1BZ − α]+ = 1B [Z − α]+. �
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Proof of Theorem 3. Let Z = Lp(Ω,F , P ), Z ∈ Z, and α ∈ Z be a threshold
function. Consider the optimization problem on random variables:

(A.3)

min
X

X

s.t. X � Z − α
X � 0, X ∈ Z.

Then for every ω ∈ Ω the random variable [Z − α]+ satisfies that [Z − α]+(ω) ≥
Z(ω)− α(ω) and [Z − α]+(ω) ≥ 0. Therefore [Z − α]+ is a feasible solution to problem
(A.3).

Suppose now that X is a feasible solution to problem (A.3), then a.e. ω ∈ Ω

X(ω) ≥ max{Z(ω)− α(ω), 0} = [Z − α]+(ω).

Therefore X � [Z −α]+ and we conclude that [Z −α]+ is an optimal solution to (A.3).
�

Proof of Theorem 4. Let p ∈ [1,+∞), Z = Lp(Ω,F , P ), and let % : Z → R and
ϑ : Z → R be real-valued, lower semicontinuous coherent risk measures. Let η > 0,
α ∈ Z be a threshold function and consider the risk measure of threshold α given by

ρα(Z) = %(Z) + η ϑ([Z − α]+),

for every Z ∈ Z.
Properties (T1) and (T2) are clearly inherited from the properties of coherent risk

measures.
(T3) Translation equivariance: Let a ∈ R and Z ∈ Z, then

(A.4)

ρα(Z + a) = %(Z + a) + η ϑ([Z + a− α]+)

= %(Z) + a+ η ϑ([Z − (α− a)]+)

= ρα−a(Z) + a,

where in the second inequality we used the translation equivariance property of coherent
risk measures.
(T4) Positive homogeneity: Let t > 0 and Z ∈ Z, then

(A.5)

ρα(tZ) = %(tZ) + η ϑ([tZ − α]+)

= %(tZ) + η ϑ(t[Z − α/t]+)

= t (%(Z) + η ϑ([Z − α/t]+))

= tρα/t(Z),

where we used property (N5) from Theorem 1 to justify the second equality in (A.5).
Observe now that by (N0) of Theorem 1 and the fact that both % and ϑ are real-

valued, the function ρα is real-valued and therefore a risk measure. Clearly ρα inherits
the lower semicontinuity from % and ϑ. Being real-valued, convex, and lower semicon-
tinuous everywhere imply that ρα is subdifferentiable on Z. �
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Proof of Theorem 5.Let p ∈ [1,+∞), Z = Lp(Ω,F , P ), and let % : Z → R and
ϑ : Z → R be real-valued, lower semicontinuous coherent risk measures. Let η > 0,
α, β ∈ Z be threshold functions.
(C1) Convexity of thresholds: For every Z ∈ Z and every λ ∈ [0, 1]:

ρλα+(1−λ)β(Z) = %(Z) + η ϑ([Z − (λα+ (1− λ)β)]+)

= % (λZ + (1− λ)Z) + η ϑ
(
[λ(Z − α) + (1− λ)(Z − β)]+

)
≤ % (λZ + (1− λ)Z) + η ϑ

(
[λ(Z − α)]+ + [(1− λ)(Z − β)]+

)
≤ λ (%(Z) + η ϑ([Z − α]+)) + (1− λ) (%(Z) + η ϑ([Z − β]+))

= λρα(Z) + (1− λ)ρβ(Z),

where the first inequality is obtained from property (N4) of Theorem 1 and the mono-
tonicity of coherent risk measures.
(C2) Monotonicity of Thresholds: Let α, β ∈ Z be threshold functions such that α � β,
then for every Z ∈ Z we have that Z − α � Z − β. Therefore by property (N2) from
Theorem 1 we understand that [Z − α]+ � [Z − β]+. Then by the monotonicity of
coherent risk measures we see that ρα(Z) ≥ ρβ(Z). �

Proof of Theorem 6. The first representation theorem of threshold risk measures
is a simple consequence of basic duality result for convex risk measures presented in
[32, thm. 6.4]. �

Proof of Theorem 7. Let Z = Lp(Ω,F , P ) and Z∗ = Lq(Ω,F , P ) be a conjugate pair
of spaces. Let η > 0, α ∈ Z be a threshold function, and let % : Z → R, ϑ : Z → R be
real-valued, lower semicontinuous coherent risk measures. Consider the threshold risk
measure given by

ρα(Z) = %(Z) + η ϑ([Z − α]+),

for all Z ∈ Z.
The representation theorem of coherent risk measures [32, thm. 6.4] imply that for

every Z ∈ Z, ρα(Z) is the optimal solution to

(A.6)
sup
µ,ζ
〈µ,Z〉+ η 〈ζ, [Z − α]+〉

s.t. µ ∈ ∂%(0), ζ ∈ ∂ϑ(0),

where the subdifferentials ∂%(0) and ∂ϑ(0) are closed convex sets of probability density
functions on Z with respect to the reference probability P . Then applying the linear
representation of the nonnegative operator (Theorem 3) to the random variable [Z−α]+
we obtain that ρα(Z) is the optimal solution to the following optimization problem:

(A.7)

sup
µ,ζ

min
X
〈µ,Z〉+ η 〈ζ,X〉

s.t. X � Z − α
X � 0, X ∈ Z
µ ∈ ∂%(0), ζ ∈ ∂ϑ(0).

�
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Proof of Theorem 8. Let ραt
t : Zt+1 → Zt be a one-step threshold conditional risk

measure with threshold function αt ∈ Zt+1, t = 0, . . . , T − 1.
(T0′): Notice that by definition ρα0

0 is a threshold risk measure and as such it is real-
valued, lower semicontinuous and subdifferentiable.

Properties (T1′)–(T2′) are clearly inherited from the properties of one-step condi-
tional coherent risk measures. Properties (T3′)–(T4′) are proved in a fashion similar to
the proofs of (T3′)–(T4) from Theorem 4. �

Proof of Theorem 9. Properties (C1′)–(C2′) are proved in a fashion similar to the
proofs of (C1′)–(C2′) from Theorem 5. �


