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Abstract

An example is presented to show that the worst�case complexity of Bertsekas� small�
label��rst strategy for the shortest path problem is exponential� It becomes polynomial
if� when scanning a node i� its successors j � ��i� are examined in the nondecreasing
order of dij� the distance between i and j�
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Let G 	 �N�A� be a directed graph with node set N and arc set A where the

cardinality of N and A are denoted by jN j and jAj� respectively� The nodes are numbered


� �� ���� jN j � �� Let dij denote the length of arc �i� j� � A� and ��i� 	 fjj�i� j� � Ag

denote the successors of node i� We assume throughout this paper that each dij is

nonnegative� For the well�known problem of �nding a shortest path from a single origin

�node 
� to each of the other nodes� most of the major algorithms �rst initialize a label

vector �d�� d�� ���� djN j��� and candidate list L� d� 	 
� di 	�� for each i �	 
� L 	 f
g�

Then� the algorithms repeat the following two steps until L is empty�

�a� Select a node i from the candidate list L�

�b� Remove i from L and scan node i which consists of examining each successor

j � ��i� as follows� if dj � di 
 dij � then update dj �	 di 
 dij � and add node j to L if it

does not belong to the current L�

Di�erent strategies used in procedure �a� yield di�erent algorithms� The so�called

label setting algorithm �Dijkstra ���� always selects a node with the smallest label from L�

By contrast� the so�called label correcting algorithms� e�g� the Bellman�Ford algorithm

���� the D�Esopo�Pape algorithm ���� and the threshold algorithm of Glover� Klingman�

Phillips and Schneider ��� use other procedures to avoid the cost of searching for the

minimum label� These algorithms use a queue Q to maintain the candidate list L� At

each iteration� the top node of Q is selected� removed� and scanned� They di�er in the

strategy for choosing the queue position to insert a node that is added to L� The worst�

case complexity depends on the particular strategy used� The label setting algorithm�

the Bellman�Ford algorithm� and the threshold algorithm have a worst�case complexity

of O�jN j��� O�jN jjAj�� and O�jN jjAj�� respectively� By contrast� the D�Esopo�Pape

algorithm has an exponential worst�case complexity�

Lately� Bertsekas ��� proposes a new queue insertion strategy� which he calls Small

Label First �SLF� as follows�

Whenever a node j enters Q� its label dj is compared with the label di of the top

�



0

1 3 5

2 4 6

7 8 9

10
1

37

18

1 1 1

1

1

8

717

14

1

3

35 15 5

34

Figure �� An example network with jN j 	 ��

node i of Q� If dj � di� node j is put at the top of Q� otherwise� j is put at the bottom

of Q�

Bertsekas ��� and Bertsekas� Guerriero and Musmanno ��� show through computa�

tional experiments that the SLF strategy is comparable with the known best shortest

path algorithm� and is extremely fast if combined with the threshold method of ����

However� the complexity of the SLF strategy remains as an open question ����

In the following section� we show that the worst�case complexity of the SLF strategy

is exponential by giving an example� In section �� we show that if the nodes in ��i� are

examined in a proper order when scanning node i� then the SLF strategy is bounded

by O�jN j�jAj�� Finally� we conclude the paper in Section ��

� An Example Requiring Exponential Time

Figure � shows a network with jN j 	 �� nodes� We apply the SLF strategy to this

example� provided that whenever scanning a node i� the successors j � ��i� are examined

in the order of nonincreasing dij � We write down each iteration of the algorithm in Table

� where a queue is denoted by a row vector in which the leftmost component is the top
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Figure �� An example network with jN j 	 �m
 �

node of the queue and the rightmost component is the bottom node of the queue� In

this particular example� node � and � are scanned once respectively� node � and � are

scanned twice respectively� and node � and � are scanned � times respectively�

A network with the same characteristics and of arbitrary number of nodes can be

constructed as Figure �� The network has jN j 	 �m
 � nodes� where m is an arbitrary

positive integer� The arc lengths of the network are given in Table �� Also suppose when

scanning a node i� the successors j � ��i� are examined in the order of nonincreasing

dij � Consider now the performance of the SLF strategy when applied to this example�

We claim that upon termination of the algorithm� both node �k � � and node �k �k 	

�� �� ����m� are scanned exactly �k�� times� This claim is proved in the following Lemma

� and Theorem ��

For ease of presentation� throughout the remainder of this paper� we denote a queue

by a row vector with the leftmost and rightmost components being the top and bottom

nodes respectively� In the process of solving the shortest path problem for the network

shown in Figure �� the SLF algorithm will generate a sequence of queues and a corre�

sponding sequence of label vectors �like those ones described in Table ��� The labels in a
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Table �� Iterations for the example network with jN j 	 ��
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Table �� Arc lengths for the example network with jN j 	 �m
 �

label vector represent the lengths of the shortest possible paths from node 
 to all other

nodes that have been examined by the algorithm by the time when the corresponding

queue is generated� The following results are proved mainly by observing these queues

and the corresponding labels of nodes�

Lemma �� ��� For any k� � � k � m� any queue with top node �k��� Q 	 ��k��� ����

contains node �k as its second top node �hence actually Q 	 ��k � �� �k� ����� and does

not contain any node in set Rk � f�j � �� �jjk 
 � � j � mg � f�m 
 jjk � j � mg�

and if the top node in the queue� �k��� is scanned� its successors �m
k� �k
�� �k
�

will be added to the top of the queue respectively �hence the resulting queue will be

�Q 	 ��k 
 �� �k 
 �� �m 
 k� �k� ������

��� For any k� � � k � m� any queue with top node �k� Q 	 ��k� ���� does not con�

tain any node in set Rk� and if the top node in the queue� �k� is scanned� its successors

�k 
 �� �k 
 � will be added to the top of the queue �hence the resulting queue will be

�Q 	 ��k 
 �� �k 
 �� ������

Proof� See Chen and Powell ���� �

Theorem �� Upon termination of the algorithm� both node �k � � and node �k
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�k 	 �� �� ����m� are scanned exactly �k�� times�

Proof� We prove it by induction� For k 	 �� �� �� it can be easily veri�ed from Ta�

ble �� Now suppose it holds when k 	 h for some h � �� We need to show that it holds

when k 	 h 
 �� Suppose the current queue is Q� 	 ��h � �� ���� with top node �h � ��

By Lemma �� node �h is the second node in Q�� i�e� Q� 	 ��h � �� �h� ����� Now remove

node �h � � from Q� and scan it� Suppose this is the j�th time �� � j � �h��� node

�h � � gets scanned� By Lemma �� right after �h � � is scanned the resulting queue is

Q� 	 ��h
�� �h
�� �m
h� �h� ����� Before �h�� can be scanned for the �j
���th time�

nodes �h 
 �� �h 
 �� �m 
 h� �h in Q� and possibly their successors must be removed

and scanned� By Lemma �� right after node �h in Q� is scanned the resulting queue

becomes Q� 	 ��h 
 �� �h 
 �� ����� It is easy to see that both node �h 
 � and �h 
 �

are scanned exactly once during the time from Q� to Q�� There are two cases�

Case �� If j � �h��� then there must exist some node in set R � f�i� �� �ij� � i �

h� �g that is contained in Q� because otherwise it is impossible for node �h� � to get

scanned for the �j 
 ���th time� violating the induction assumption that node �h � �

is scanned �h�� times� Let q � f�p � �� �pg �with � � p � h � �� be the earliest node

in Q� that belongs to the set R� Hence Q� can be written as ��h 
 �� �h 
 �� U� q� ����

where U is some subset of nodes� By Lemma �� �U � fqg� 	 Rh
� 	 � �where Rh
�

is de�ned in Lemma ��� thus U 
 f�m 
 ij� � i � hg� Hence starting from Q� the

algorithm scans both node �h 
 � and �h 
 � exactly once when it generates queue

Q� 	 �q� ����� By Lemma �� it can be easily shown that starting from Q� the algorithm

generates a sequence of queues Qi
� 	 ��p
i� �p
i
�� ���� �i 	 �� �� ����� and �nally queue

Q� 	 ��h� �� �h� ����� Clearly� during this process� neither node �h
 � nor node �h 
 �

is scanned� Therefore� during the time period from Q�� i�e� the time right after node

�h� � is scanned for the j�th time� to Q�� i�e� the time right before node �h� � can be

scanned for the �j 
 ���th time� both node �h
� and �h
� are scanned exactly twice�

Case �� If j 	 �h��� then there is no node in R that is contained in Q� because oth�

erwise node j will be scanned more than �h�� times� violating the induction assumption�

�



By Lemma �� no node in Q� belongs to set Rh
�� thus except nodes �h
 � and �h
 ��

all the nodes in Q� belong to f�m
 ij� � i � hg� Hence starting from Q� the algorithm

scans both �h 
 � and �h 
 � exactly once when it terminates� Therefore� both �h 
 �

and �h 
 � are scanned exactly twice during the time period from the time right after

the j�th scanning of node �h� � to the time when the algorithm terminates�

By the facts shown in Case � and Case � and the induction assumption that upon

termination of the algorithm node �h� � is scanned exactly �h�� times� we have shown

that upon termination of the algorithm both node �h
� and �h
� are scanned exactly

�h times� Thus� by induction� we have proved the theorem� �

This exponential worst�case situation is caused not only by the unusual arc lengths

but also by the order of the successors examined while scanning a node� In Bertsekas�

SLF strategy� this order is not speci�ed� In fact� this order plays an important role

in the worst case performance of the strategy� In the above example� if j � ��i� are

examined in a nondecreasing order of dij� instead of a nonincreasing order� then the

example can be solved in polynomial time� We show in the next section that the worst�

case complexity of the SLF strategy becomes polynomial if a proper order is selected to

examine the successors when scanning a node�

Bertsekas ��� suggests another slightly di�erent version� SLF�threshold strategy by

combining the SLF strategy and the threshold method of ���� It should be noted that

the worst case complexity of SLF�threshold strategy is the same as that of the SLF

strategy because the SLF�threshold strategy is equivalent to the SLF strategy when

the threshold is set su�ciently large�

� A polynomial strategy

Bertsekas� Guerriero and Musmanno ��� give a modi�cation of the SLF strategy that

has a polynomial worst�case complexity with order O�jN jjAj�� In this section� we give

another modi�cation that has a higher worst�case complexity but is in a much simpler

�



manner than the one in ����

We have noticed in Section � that the worst�case complexity of the SLF strategy

is dependent on the order used to examine the successors when scanning a node� So

a possible way of making the SLF strategy polynomial is to select this order properly

rather than arbitrarily�

We suggest the following shortest arc �rst �SAF� strategy to specify this order�

Whenever scanning a node i� the successors j � ��i� are examined in the nondecreas�

ing order of dij �

We call the resulting method SLF�SAF strategy which uses Bertsekas� SLF strategy

whenever a node enters the queue Q� and uses the above SAF strategy whenever a node

is scanned�

Recall that we assume each dij is nonnegative� In the following� we show that under

this assumption the worst case complexity of the SLF�SAF strategy is bounded by

O�jN j�jAj��

Consider the current queue generated by the strategy SLF�SAF� Denote this queue

by Q�� Without loss of generality� suppose Q� 	 ��� �� ���� k� with top node � and bot�

tom node k� As the algorithm continues� the top node of Q�� node �� is removed�

scanned� and some nodes of N nQ� may be inserted in front of node � and some other

nodes of N nQ� may be inserted behind node k� creating a new queue ����� �� �� ���� k� �����

Now� the top node of this queue is removed and scanned and the queue is updated

again� At some iteration� we can have a queue Q� 	 ��� �� ���� k� ���� which is the �rst

queue with top node � since scanning node � of Q�� Similarly� we can have queues

Q� 	 ��� �� ���� k� ����� ���� Qi 	 �i� i 
 �� ���� k� ����� ���� Qk 	 �k� ����� where Qi is the �rst

queue with top node i since scanning node � of Q�� Denote the queue immediately after

scanning node k of Qk by �Qk� Note that� given Q�� the algorithm uniquely determines

Q�� Q�� ���� Qk� �Qk� We focus on these queues in the following�

�



Lemma �� The SLF�SAF strategy needs at most jN n Qij times of node scan�

ning procedure to go from Qi to Qi
��

Proof� Starting with Qi� the algorithm removes node i� the top node of Qi� and scans

node i� If none of ��i� is eligible to be put in front of i 
 �� then Qi
� is generated

immediately after scanning node i� Suppose some of ��i� are inserted in front of i
 �

after scanning node i� Let the resulting queue be Q 	 �j�� j�� ���� jh� i
�� ���� k� ����� where�

obviously� ju � ��i� for u 	 �� �� ���� h� Since we are using the SLF strategy� we have�

dj� � dj� � ��� � djh � where dv denotes the label of node v corresponding to queue Q�

We also have� dj� � dj� � ��� � djh since we are using the SAF strategy as well� Thus�

dj� 	 dj� 	 ��� 	 djh � Now� remove and scan j�� If some nodes of ��j�� are inserted in

front of j�� then the labels of those nodes will be equal to djh as well since the arc lengths

are nonnegative� We can conclude that if we start with queue Qi� before queue Qi
� is

generated the labels of the nodes once inserted in front of node i 
 � are all the same�

Thus� if we start with queue Qi� before queue Qi
� is generated a node can appear in

front of node i 
 � at most once� which implies that this node will be scanned at most

once before Qi
� is generated� Since only the nodes in N nQi are eligible to be inserted

in front of node i
 �� the total number of nodes to be inserted in front of node i
 � is

at most jN nQij� Hence before Qi
� is generated� the algorithm will do at most jN nQij

times of the node scanning procedure� This ends the proof� �

Corollary �� The SLF�SAF strategy needs at most O�jAj� basic arithmetic op�

erations to go from Qi to Qi
��

Proof� We have shown in the proof of Lemma � that to go from Qi to Qi
�� the al�

gorithm will scan at most jN n Qij nodes and each node is scanned at most once� thus

each arc is examined at most once� So� the algorithm needs at most O�jAj� basic arith�

metic operations to go from Qi to Qi
�� �

�



Theorem �� The worst�case time complexity of the SLF�SAF strategy is bounded

by O�jN j�jAj��

Proof� Consider queue Q�� Recall that Q� 	 ��� �� ���� k� as assumed earlier� Suppose

node p has the smallest label among all the nodes of Q�� i�e�� dp 	 minj�Q�
fdjg� where di

denotes the label of node i corresponding to queue Q�� Clearly� node p will never enter

any queue after it is scanned since the arc lengths are nonnegative� Starting with Q��

the algorithm will scan each node of Q� at least once before �Qk is generated� So node p

will not appear in �Qk and any subsequent queue since then on� By Corollary �� it needs

at most O�kjAj� � O�jN jjAj� basic arithmetic operations to go from Q� to �Qk� Now

starting with queue �Qk� similarly� after at most O�jN jjAj� basic arithmetic operations�

some node q � N n fpg will never appear in any subsequent queue� Since there are jN j

nodes� we can conclude that after at most O�jN j�jAj� basic arithmetic operations� no

node will appear in the queue� i�e�� the algorithm will terminate� This ends the proof�

�

� Conclusion

This paper shows that the SLF algorithm is nonpolynomial� but can be made polynomial

with a minor change� While this is an interesting theoretical result� the question always

arises� What is the practical impact� In the worst case� the preprocessing phase of

the SLF�SAF strategy needs O�jN j� time to sort the arcs leaving a node� Does this

additional sorting produce a practical bene�t� Alternatively� it is possible to speculate

that in practice� our algorithm might even be slower�

Using Bertsekas� network generator� we ran an extensive set of comparisons of the

two algorithms on the same set of problems used in ���� The results showed no practical

di�erence between the algorithms� Of course� such experimental results always carry the

quali�cation that they are limited by the nature of the network generator� However� at

this time� we feel the results of this paper should be viewed in light of their theoretical

�




interest� and not as a practical enhancement�

Appendix

Proof of Lemma �� We prove Lemmma � by induction� For k 	 �� �� �� both ���

and ��� can be veri�ed from Table �� Given any h � �� let us assume that both ��� and

��� hold for each k with � � k � h� We need to prove that both ��� and ��� hold for

k 	 h
 ��

First we want to show that for any queue Q with top node �h � � or �h� the corre�

sponding labels of nodes �h
� and �h
� satisfy� d�h
� 	 d�h
�
� or d�h
� 	 d�h
� 	��

It is proved as follows�

Given a queue Q with top node �h � � or �h� if neither node �h � � nor node �h

has been scanned once by the time Q is generated� then d�h
� 	 d�h
� 	� because the

labels of �h 
 � and �h 
 � can be updated only when node �h � � or �h is scanned�

Otherwise� at least one of nodes �h � �� �h has been scanned at least once by the time

Q is generated� In this case� we claim that node �h � � must have been scanned at

least once� The reason is as follows� If node �h has been scanned at least once before

Q was generated� then suppose that right before �h was scanned last time before Q was

generated the queue was �Q 	 ��h� ����� It is easy to see that before this queue �Q was

generated� there was a node j � f�h��� �h��� �h��g that must have been scanned at

least once because �h��� �h��� �h�� are the predecessors of �h� If j 	 �h��� then we

have proved the claim� If j 	 �h� � or �h� �� then �Q was generated by the algorithm

starting with a queue �Q 	 ��h � �� ���� or �Q 	 ��h � �� ����� Removing and scanning

the top node of �Q� by the induction assumption� the algorithm generated another queue

�Q 	 ��h � �� �h� ����� Obviously� to get to �Q from �Q� the algorithm had to scan node

�h � � in �Q for at least once� This shows the claim�

So we need only to consider the case where node �h � � has been scanned at least

��



once by the time Q is generated� Suppose that right before node �h � � was scanned

last time before Q was generated the queue was Q� 	 ��h � �� ����� By the induction

assumption� �h was the second node in Q�� i�e� Q� 	 ��h� �� �h� ����� Suppose the label

of node �h � � corresponding to Q� was d��h�� 	 y� Starting with Q�� the algorithm

removed and scanned �h � �� by the induction assumption� resulting in a new queue

Q� 	 ��h 
 �� �h 
 �� �m 
 h� �h���� with the corresponding labels of nodes �h 
 � and

�h 
 � being d��h
� 	 y 
 �
 � �m�h�� � � and d��h
� 	 y 	 �
 � �m�h � � respectively�

There are two cases�

Case �� If �h is the top node in queue Q� then Q was generated right after node

�m 
 h in Q� was removed and scanned� In this case� before Q was generated� the

algorithm would have done the following� Starting with Q�� the algorithm removed and

scanned node �h 
 �� resulting in a new queue Q� 	 �S� �h 
 �� �m 
 h� �h� ���� where

set S was a subset of f�h 
 �� �h 
 �� �m 
 h 
 �g� It is easy to see that the labels of

�h 
 � and �h 
 � corresponding to Q� became d��h
� 	 d��h
� 	 y 
 �
 � �m�h�� � �

and d��h
� 	 d��h
� 
 � 	 y 
 �
 � �m�h�� � � respectively� To get to Q� the algorithm

proceeded starting with Q� by removing and scanning the nodes S � f�h 
 �� �m 
 hg

and possibly their successors� This process did not improve the labels of nodes �h 
 �

and �h 
 � since nodes S � f�h 
 �� �m 
 hg and their successors do not have any arc

connecting with �h 
 � or �h 
 �� Thus when Q is generated now� the labels of �h 
 �

and �h
� stay the same since Q� was generated� Hence the labels of �h
� and �h
�

corresponding to Q are d�h
� 	 d��h
� and d�h
� 	 d��h
� respectively� This shows that

d�h
� 	 d�h
� 
 � since d��h
� 	 d��h
� 
 ��

Case �� If �h� � is the top node in queue Q� then Q was generated after node �h in

Q� was removed and scanned� In this case� before Q was generated� the algorithm had

done the following� First� exactly as in Case �� starting with Q�� the algorithm removed

and scanned node �h
� and later nodes S�f�h
�� �m
hg and possibly some of their

successors� resulting in a new queue Q� 	 ��h� ���� with top node �h� Note that in Case

�� this Q� is exactly Q� But now since Q is with the top node �h� � �instead of �h�� in

order to get to Q the algorithm had to proceed starting with Q�� Suppose the label of

��



�h corresponding to Q� is z� Removing and scanning node �h in Q�� by the induction

assumption� the algorithm generated a new queue Q� 	 ��h 
 �� �h 
 �� ���� with the

corresponding labels of �h
� and �h
� being d��h
� 	 z
� and d��h
� 	 z
�
��m�h����

respectively� Then node �h 
 � was removed from Q� and scanned� resulting in a new

queue Q� 	 �T� �h
�� ���� where T was a subset of f�h
�� �h
�� �m
h
�g� The labels

of �h 
 � and �h 
 � with respect to Q� became d��h
� 	 d��h
� and d��h
� 	 d��h
� 
 �

respectively� It must be true that Q� contained some node j � f�i� �� �ij� � i � h� �g

because otherwise it was impossible for the algorithm to get to Q starting from Q��

Let node q 	 �p � � or �p �with p � h� be the earliest �leftmost� node in Q� that

belongs to the set f�i � �� �ij� � i � h � �g� Without loss of generality� suppose

Q� 	 �T� �h
 �� U� q� V � where U and V were some subsets of nodes� Then U consisted

of a subset of nodes in f�h 
 �� �h 
 �� ���� �mg � f�m 
 h 
 �� ���� �m
 �g� Obviously�

scanning nodes in T �f�h
�g�U and their successors did not a�ect the labels of �h
�

and �h
 �� Thus when the algorithm� starting from Q�� got to queue Q� 	 �q� V � with

top node q� the labels of �h 
 � and �h 
 � were not changed� Starting with Q�� by

the induction assumption� the algorithm generated a sequence of queues� one following

another� with the top two nodes being �p
� and �p
�� �p
� and �p
�� ���� respectively�

and eventually� it generated the queue Q with top two nodes �h � � and �h� Clearly�

during this process� the labels of nodes �h
� and �h
� were not improved� Therefore�

from the time after Q� was generated to the time when Q is generated now� the labels of

�h
� and �h
� kept unchanged� Thus the labels of �h
� and �h
� corresponding to Q

are� d�h
� 	 d��h
� 	 d��h
� 
� and d�h
� 	 d��h
� respectively� Hence d�h
� 	 d�h
� 
��

Combining Case � and Case �� we have shown that for any queue Q with top node

�h�� or �h� the corresponding labels of nodes �h
� and �h
� satisfy� d�h
� 	 d�h
�
�

or d�h
� 	 d�h
� 	��

In the following� we �rst prove that ��� of Lemma � holds when k 	 h
�� then prove

that ��� of Lemma � also holds when k 	 h
 ��

Part ��	 First let us see what the labels of nodes �h 
 �� �h
 �� �m
 h� �h 
 ��

�h 
 � and �m 
 h
 � will be with respect to a queue Q� 	 ��h 
 �� ���� with top node

��



�h
�� and then show that scanning the top node �h
� of Q� will add nodes �m
h
��

�h 
 � and �h 
 � to the top positions of the resulting queue respectively and hence

show the correctness of ��� of Lemma � when k 	 h 
 �� By the induction assumption�

whenever node �h�� or �h is scanned� node �h
� becomes the top node in the resulting

queue� On the other hand� nodes �h�� and �h are the only predecessors of node �h
��

therefore queue Q� must be generated right after node �h � � or �h is scanned� Let

Q� 	 �j� p� ���� be the queue right before node �h�� �or �h� is scanned where j 	 �h��

�or �h�� Then Q� is generated right after removing node j from Q� and then scanning

it� By the result we proved earlier that with respect to Q�� the labels of nodes �h 
 �

and �h
 �� d��h
� and d��h
� satisfy�

d��h
� 	 d��h
� 
 � or d��h
� 	 d��h
� 	��

By the network structure� it is easy to show that with respect to Q�� the labels of nodes

�h 
 �� �h
 � and �m
 h
 �� d�
�h
�� d

�
�h
� and d�

�m
h
� satisfy�

d��h
� � d��h
� 
 �

d��h
� � d��h
� 
 �

d�
�m
h
� � d�

�h
� 
 �
� �m�h�� � �� ���

There are two cases with respect to the top node of Q��

Case �� The top node of Q�� j 	 �h � �� By the induction assumption� removing

and scanning node �h � � in Q� results in Q� 	 ��h 
 �� �h 
 �� �m 
 h� p� ����� which

implies that the labels of nodes �h
�� �h
�� �m
 h are improved such that their new

labels corresponding to Q�� d��h
�� d
�
�h
� and d��m
h satisfy�

d��h
� 	 d��h�� 
 �
� �m�h�� � � � d��h
� ���

d��h
� 	 d��h�� 
 �
 � �m�h � � � d��h
� 	 d��h
� 
 � ���

��



d��m
h 	 d��h�� 
 �
 � �m�h � �� ���

where d��h�� is the label of node �h� � corresponding to queue Q�� While the labels of

nodes �m
 h
 �� �h
 � and �h
 � are not changed� i�e� their labels corresponding to

Q�� d��m
h
�� d
�
�h
� and d��h
� satisfy�

d��m
h
� 	 d��m
h
� ���

d��h
� 	 d��h
� � d��h
� 
 � ���

d�
�h
� 	 d��h
� � d��h
� 
 � ���

The relations of labels of nodes �h
�� �h
�� �m
h� �h
�� �h
�� �m
h
� corresponding

to queue Q� are implied in equations �������� Recall that Q� 	 ��h 
 �� �h 
 �� �m 


h� p� ����� Now we want to show that scanning the top node �h
 � of Q� will add nodes

�m 
 h 
 �� �h 
 � and �h 
 � to the top positions of the resulting queue respectively�

Remove �h
� from Q� and scan it� If the labels of nodes �h
�� �h
�� �m
h
� are

improved after node �h
 � is scanned� their new labels should be�

d�
�h
� 	 d�

�h
� 
 �
� �m�h�� � � ���

d��h
� 	 d��h
� 
 �
� �m�h�� � � ���

d��m
h
� 	 d��h
� 
 �
 � �m�h�� � � ��
�

respectively� Now let us show that they are indeed improved� i�e� d�i � d�i for i 	

�h 
 �� �h
 �� �m 
 h
 �� By ��� and ���� we have

d��h
� � d��h�� 
 �
 � �m�h � � ����

Thus by ��� and ���� it follows that

d��h
� 	 d��h�� 
 �
 � �m�h�� � � 
 �
 � �m�h�� � �

� d��h�� 
 �
 � �m�h � � � d��h
� ����

��



Similarly� by ��� and ���� we have�

d��h
� � d��h�� 
 �
 � �m�h � �� ����

and by ��� and ���� we can prove that d��h
� � d��h
�� Finally� by ���� ���� ��� and ��
��

we can easily prove that d��m
h
� � d��m
h
��

By the induction assumption that none of nodes in set Rh is contained in Q� and the

fact that during the process from Q� to Q�� none of these nodes is added to Q� except

�h 
 �� �h 
 � and �m 
 h� thus Q� does not contain any node in Rh
�� Particularly�

Q� does not contain any node in f�h
 �� �h
 �� �m
 h
 �g� Thus nodes �h
 �� �h


�� �m
h
� are eligible to enter the queue when scanning the top node �h�� of Q�� By

��
� and ���� we have� d��m
h
� 	 d�
�h��
�
��m�h ��� Hence by ���� d��m
h
� � d��h
��

On the other hand� by ���� ��� and ��
� we have� d��m
h
� � d��h
� � d��h
�� Thus when

scanning the top node �h 
 � of Q�� the algorithm� which examines the successors of

node �h 
 � in the nonincreasing order of their distances from �h 
 �� must add nodes

�m 
 h 
 �� �h 
 � and �h 
 � to the top positions of the resulting queue respectively�

This shows the correctness of ��� of Lemma � when k 	 h
 ��

So� right after node �h 
 � is scanned� the resulting queue will be Q� 	 ��h 


�� �h 
 �� �m 
 h 
 �� �h 
 �� �m 
 h� p� ����� The corresponding labels of the nodes

�h 
 �� �h 
 �� �m 
 h 
 � will be d��h
�� d
�
�h
�� d

�
�m
h
� as shown in ���� ��� and ��
�

respectively� It is easy to check that d��h
� � d��h
� 
 d�h����h
�� thus during the process

from Q� to Q�� the label of node �h 
 � is improved and its new label with respect to

Q�� d��h
� satis�es�

d��h
� 	 d��h
� 
 �� ����

While the labels of nodes �h 
 �� �m 
 h are not improved� i�e� they are d��h
� 	 d��h
�

and d��m
h 	 d��m
h respectively� By ��� and ���� d��m
h can be rewritten as�

d��m
h 	 d��h
� 
 �
� �m�h�� � �� ����

The labels d��h
�� d
�
�h
�� d

�
�h
�� and d

�
�m
h characterized here are used later to prove some

result�

��



Case �� The top node of Q� is j 	 �h� By the induction assumption� removing and

scanning node �h in Q� results in Q� 	 ��h 
 �� �h 
 �� p� ����� which implies that the

labels of nodes �h 
 �� �h
 � are improved such that their new labels corresponding to

Q� are�

d�
�h
� 	 d�

�h 
 � � d�
�h
� ����

d��h
� 	 d��h 
 �
 � �m�h�� � � � d��h
� 	 d��h
� 
 � ����

respectively� where d��h is the label of node �h corresponding to queue Q�� Since by the

induction assumption node p is not in Rh� the label of node p is not improved during

the process from Q� to Q�� On the other hand� nodes �h 
 � and �h 
 � are added to

the top positions earlier than node p� thus it must be true that�

d�p 	 d�p � d��h
� ����

where d�p and d�p are the labels of node p with respect to queue Q� and Q� respectively�

While the labels of nodes �m
h
�� �h
� and �h
� are not changed� i�e� their labels

corresponding to Q� can be described by ���� ��� and ��� respectively� The relations of

labels of nodes �h
�� �h
�� �h
�� �h
�� �m
h
�� p corresponding to queue Q� are

thus implied in equations ��������� and �������� Recall that Q� 	 ��h
�� �h
�� p� ����� In

the following we show that scanning the top node �h
� of Q� will add nodes �m
h
��

�h
� and �h
� to the top positions of the resulting queues respectively� Remove �h
�

from Q� and scan it� If the labels of nodes �h
�� �h
�� �m
 h
� are improved after

node �h
� is scanned� their new labels should be given by ���� ��� and ��
� respectively�

As in Case �� we can show that they are indeed improved as follows� By ��� and �����

we have

d��h
� � d��h 
 �
 � �m�h�� � � ����

Thus by ��� and ����� it follows that

d��h
� 	 d�
�h 
 �
� �m�h�� � �

��



� d��h 
 �
� �m�h�� � � � d��h
� ��
�

Similarly� by ��� and ����� we have�

d��h
� � d��h 
 �
 � �m�h�� � �� ����

and by ��� and ����� we can prove that d��h
� � d��h
�� Finally� we can easily prove that

d��m
h
� � d��m
h
��

Using the same argument as in Case �� we can show that Q� contains none of the

nodes in Rh
�� and that nodes �h
 �� �h
 �� �m
 h
 � are eligible to enter the queue

when scanning the top node �h 
 � of Q�� By ��
� and ����� we have� d��m
h
� 	

d��h 
 �
 � �m�h�� � �� Hence by ����� d��m
h
� � d��h
�� On the other hand� it is easy

to show that d��m
h
� � d��h
� � d��h
�� Thus when scanning the top node �h of Q�� as

in Case �� the algorithm will add nodes �m 
 h 
 �� �h 
 � and �h 
 � to the tops of

the subsequent queues respectively� This shows the correctness of ��� of Lemma � when

k 	 h
 ��

So� right after Q� is scanned� the resulting queue will be Q� 	 ��h
 �� �h
 �� �m


h 
 �� �h 
 �� p� ����� The corresponding labels of the nodes �h 
 �� �h 
 �� �m 
 h 
 �

will be d��h
�� d
�
�h
�� d

�
�m
h
� as shown in ���� ��� and ��
� respectively� As in Case �� the

label of node �h
 � with respect to Q� is improved and given by ����� It is easy to see

that during this process from Q� to Q�� the label of p is not improved� Hence by �����

���� and ����� the label of p corresponding to Q�� d�p can be written as�

d�p 	 d�p � d��h
�

	 d��h
� 
 �
� �m�h�� � � ����

Part ��	 Now let us turn to a queue �Q� 	 ��h 
 �� ���� with top node �h
 �� We

�rst characterize �Q� and then show that scanning the top node �h 
 � of �Q� will add

nodes �h
� and �h
� to the top positions of the resulting queues and hence show the

correctness of ��� of Lemma � when k 	 h
 �� By the induction assumption� whenever

node �h�� or �h is scanned� nodes �h
� and �h
� become the top node and the second

��



top node respectively in the resulting queue� Thus queue �Q� must be generated some

iterations after node �h 
 � is scanned� Thus to characterize queue �Q�� we need only

to check the relevant queues generated by the algorithm starting with a queue Q� with

top node �h 
 �� As we have shown in Part ��	� this Q� has the following properties�

either as in Case � of Part ��	� i�e� Q� 	 ��h 
 �� �h 
 �� �m
 h� p� ���� with the labels

of nodes �h
 �� �h
 �� �m
 h� �h
 � and �h
 � being given by ���� ���� ���� ��� and

��� respectively� or as in Case � of Part ��	� i�e� Q� 	 ��h 
 �� �h 
 �� p� ���� with the

labels of nodes �h 
 �� �h 
 �� p� �h
 � and �h 
 � being given by ����� ����� ����� ���

and ��� respectively� So there are two possible cases�

Case �� If Q� 	 ��h 
 �� �h 
 �� �m 
 h� p� ���� as in Case � of Part ��	� then to get

to queue �Q� 	 ��h 
 �� ����� the algorithm �rst removes �h 
 � from Q� and scan it� As

shown in Case � of Part ��	� this results in queue Q� 	 ��h
�� �h
�� �m
h
�� �h


�� �m
h� p� ���� with the corresponding labels of nodes �h
�� �h
�� �m
h
�� �h
�

and �m 
 h being given by ���� ���� ��
�� ���� and ���� respectively� The algorithm

proceeds by removing �h 
 � from Q� and scanning it� which results in a new queue

Q� 	 �S� �h
�� �m
h
�� �h
�� �m
h� p� ���� where S 
 f�h
�� �h
�� �m
h
�g�

It is easy to prove that during the process from Q� to Q�� the label of node �h
 � gets

improved and its new label is d��h
� 	 d��h
� 
 �� But the labels of nodes �h
 �� �h
 �

and �m 
 h are not changed� To get to �Q�� the algorithm needs to remove and scan

all the nodes �and possibly their successors� with positions earlier than �h 
 � in Q��

Clearly� this whole procedure will not improve the labels of nodes �h
�� �h
�� �h
�

and �m 
 h� Thus when eventually �Q� is generated� the labels of these nodes� �d�h
��

�d�h
�� �d�h
� and �d�m
h must saisfy�

�d�h
� 	 d��h
� ����

�d�h
� 	 d��h
� 
 � ����

�d�h
� 	 d��h
� ����

�d�m
h 	 d��m
h ����

where d��h
�� d
�
�h
� and d��m
h are given in ���� ���� and ���� respectively� and actually

�Q� 	 ��h 
 �� �m 
 h� p� ����� By the induction assumption� it is easy to prove that no

��



node in set Rh
� is contained in �Q�� Particularly� neither �h 
 � nor �h 
 � is in �Q��

Now remove �h
 � from �Q� and scan it� The labels of nodes �h
 � and �h
 � will be

improved because by ����� ����� ����� ��� and ����� we have�

d�h
� 	 �d�h
� 
 d�h
���h
�

	 d��h
� 
 �

� d��h
� 
 �
 � �m�h�� � � 	 d��h
� 	 �d�h
�� ����

and

d�h
� 	 �d�h
� 
 d�h
���h
�

	 d��h
� 
 �
 � �m�h�� � �

� d��h
� 
 �
 � �m�h�� � � 	 d��h
� 
 � 	 �d�h
�� ����

Thus the new labels of nodes �h 
 � and �h 
 �� d�h
� and d�h
� are given by ���� and

���� respectively� Clearly� the label of node �m
h is not improved during the process of

scanning node �h
� of �Q�� By ����� ���� and ����� it is easy to see that d�h
� � �d�m
h�

Therefore� nodes �h
� and �h
� are added to the �rst two top positions of the resulting

queue right after node �h 
 � is scanned� This shows that ��� of Lemma � holds when

k 	 h
 ��

Case �� If Q� 	 ��h 
 �� �h 
 �� p� ���� as in Case � of Part ��	� then similarly to

Case �� we can show that starting from this Q� the algorithm eventually generates queue

�Q� 	 ��h 
 �� p� ���� with the labels of nodes �h 
 �� �h 
 �� �h 
 � and p� �d�h
�� �d�h
��

�d�h
� and �dp saisfying ����� ����� ���� and

�dp 	 d�p ����

respectively� where d�p is given in ����� By the induction assumption� it is easy to prove

that no node in set Rh
� is contained in �Q�� Particularly� neither �h 
 � nor �h 
 �

is in �Q�� Now remove �h 
 � from �Q� and scan it� Using the same arguments as in

Case �� we can prove that the labels of nodes �h
� and �h
� are improved and given

by ���� and ���� respectively� Clearly� the label of node p is not improved during the

�




process of scanning node �h 
 � of �Q�� By ����� ���� and ����� it is easy to see that

d�h
� � �dp� Therefore� nodes �h
 � and �h
 � are added to the �rst two top positions

of the resulting queue right after node �h
� is scanned� This shows that ��� of Lemma

� holds when k 	 h
 ��

In summary� we have shown that both ��� and ��� of Lemma � hold when k 	 h
��

Thus by induction� we have shown the correctness of Lemma �� �
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